AN ALGORITHM FOR TANT SYNTHESIS AND ITS SEQUENTIAL APPLICATION

 $\mathbf{B}\mathbf{y}$

JOHN MICHAEL ACKEN

Bachelor of Science in Electrical Engineering

Oklahoma State University

Stillwater, Oklahoma

1976

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
May, 1978

AN ALGORITHM FOR TANT SYNTHESIS AND ITS SEQUENTIAL APPLICATION

Thesis Approved:

James R. Rowland

Thesis Adviser

Edward J. Shrene

Charles M. Bacon

Morman M. Durhum

ACKNOWLEDGMENT

I wish to express my sincere appreciation to Dr. James R. Rowland for spending many hours in valuable guidance on this thesis research.

I wish to thank the other members of my committee, Dr. Charles M. Bacon and Dr. Edward L. Shreve.

I would like to thank the students of ELEN 4253 for their many computer runs.

I wish to thank Velda Davis for typing my thesis.

Finally, I wish to thank my parents for their encouragement, and my family for their love and moral support.

TABLE OF CONTENTS

Chapter	Pa	ιge
I. I	NTRODUCTION	1
	Background	2
	An Example	4
	Problem Formulation and Approach	7
	Thesis Outline	8
II. S	SYNTHESIS OF OPTIMAL TANT NETWORKS	ç
	Basic Theorems	9
	The Network Synthesis Procedure	17
	Examples	21
	Summary	29
III. T	THE CAD SOFTWARE PACKAGE	30
	Program Description	30
	CAD Evaluation	33
	Alternate Procedures for Choosing Prime	
	Implicates as Third-Level Gate Candidates	35
	NOR Example	39
	•	42
	Summary	42
IV. S	EQUENTIAL DESIGN WITH TANT NETWORKS	43
	Problem Description	43
	Modifications for Sequential Applications	45
	The Generalized Excitation Table	46
	A Sequential Example	47
	Summary	57
	Summary) (
v . C	ONCLUSIONS AND RECOMMENDATIONS	58
	Conclusions	58
	Recommendations	59
SELECTED	BIBLIOGRAPHY	61
APPENDIX	- COMPUTER PROGRAM LISTING	63

LIST OF TABLES

Table		Page
I.	Time Requirements for Several TANT Solutions	34
II.	Timing and Storage Comparisons for Methods of Choosing Prime Implicates	38
III.	Translation of Generalized Excitation Table Entries for Some Common Types of Flip-Flops	48
IV.	Input and Gate Counts for Solutions to Sequential Example	55

LIST OF FIGURES

Figure		Page
1.	Example NAND Gate Circuit Improvements	5
2.	Flow Chart of the TANT Network Synthesis Procedure	18
3.	Design Steps and Optimal TANT Network for Example 1	23
4.	Design Steps and Optimal TANT Network for Example 2	25
5•	Design Steps and Optimal TANT Network for Example 3	27
6.	CAD Program Flow Chart	31
7.	Timing and Storage Analysis of the CAD Program	36
8.	Design Steps and Optimal Network for NOR Example	41
9.	The General Sequential Circuit	44
10.	The Primitive and Reduced Flow Tables	50
11.	Sequential Design Tables	51
12.	TANT Solution for Toggle Flip-Flops	53
13.	The Toggle-Toggle Flip-Flop Solution	54
14.	The Toggle-Delay Flip-Flop Solution	56

CHAPTER I

INTRODUCTION

Digital logic circuit designers have many computer-aided design (CAD) packages at their disposal. That most current computers were designed by computers proves the practicality of such CAD programs. a smaller scale, many algorithms and associated software packages solve the gate minimization problem for combinational logic design or select the optimum memory device from among given candidates to yield gate minimization for sequential problems. Digital logic designers choose a memory device, find the resulting logic equations, and minimize the combinational portion of the sequential feedback circuit. Another memory device is utilized only after dissatisfaction with the first has resulted. However, a CAD program can test all types of memory devices and yield a minimum combinational circuit for each device. Thus, the designer can be assured of finding the optimal design for given constraints. The problem investigated in this thesis is the design of optimal sequential circuits using NAND gates for the combinational portion. A list of several familiar memory devices is specified for the sequential portion of the problem. The number of gates and, secondarily, the number of inputs to those gates are minimized for each type of device.

Background

Historically, the problem of finding a minimum logic circuit has been divided into two parts: the combinational logic design problem and the memory selection problem. The usual criteria for minimization are propagation time and package count. In this thesis, the combinational problem under consideration is the design of optimal TANT networks, i.e., three-level NAND-gate circuits with true inputs only (1). Used in the examples as a convenient tool for visualization in combinational problems with few inputs is the circuit-action Karnaugh map. In the sequential problem, some of the memories to choose from are the D flipflop, RS flip-flop, JK flip-flop, T (or toggle) flip-flop, and, of course, any clocked version of any of these.

The TANT restriction of three levels or less is used to minimize propagation time since any logic function can be realized in three levels, and propagation time is a function of the number of levels through which the signal must pass. Solving the minimum package count is not as straightforward and, in fact, is not the consideration when logic component (chip) design is considered. Therefore, for ease in the first case and correctness in the second, rather than minimum package count, minimum-gate and minimum-input realizations will be the goal. The solution of NAND circuits is easily used in an analogous manner to solve for NOR circuits (1-3). The uncomplemented requirement is typical for inputs to a logic circuit. However, since complemented inputs will be available as outputs from memory devices, this thesis actually deals with a modified TANT problem.

The majority of previous work on the NAND/NOR synthesis problem has been four categories: the double-complement technique (4-6),

decomposition (7-9), the head-tail approach (10-12), the map factoring approach (13-15). Although there has been some work in using integer programming (16-19), it has been of a much more general nature and not explicitly advantageous in the solution of the TANT problem. There also has been work done using exhaustive search (20, 21), but this method was used to generate a table of solutions for all possible small number of input problems and is not very practical for situations involving many input variables.

The double-complement technique, which is solving the two-level AND/OR problem by essentially a Quine-McCluskey approach and then inverting inputs to achieve the necessary negated inputs, is the most straightforward technique because of the equivalence of any two-level NAND structure and its corresponding AND/OR circuit (22). Although straightforward, this procedure usually does not yield an optimal (i.e., minimum-gate, minimum-input) realization for a given problem. double-complement method was developed early by Gimpel (4) which involved certain extensions involving a prime implicant cover and closure (CC) table. Hohulin and Muroga (5) reported several alternative methods for solving the CC-table in Gimpel's algorithm suitable for computer processing, and these methods are implemented as computer programs. Ellis (6) extended the double-complement technique to NOR gates as well as NAND. Davidson (7) used decomposition, in which a first cut of the double-complement method is made, followed by backtracking for improvements while considering fan-in, fan-out, and level constraints. Dietmeyer and Su (8) used decomposition with factoring, assuming complemented inputs available and no level constraint. Schneider and Dietmeyer (9) extended decomposition solutions for multiple

outputs. Koh's (10) head-tail approach is based on first obtaining the essential prime implicants and then generating useful prime implicants. By various methods groupings are made to reduce the NAND circuit. a table analogous to the CC table is solved. Chakrabarti, Choudhury, and Basu (11) proposed an early head-tail investigation based upon analysis of production at the second-level gate outputs of the complement of the function as well as the desired minterms. Frackowiak (12) presented two approaches, one yielding a quasi-minimal hazardless solution and the other yielding a strictly minimal solution. Maley and Earle (13) initiated map factoring for finding gates from prime implicants by a method analogous to circling n-cubes on a Karnaugh map; hence, the name map factoring is appropriate. Eisenberg's (14) work was extended by Torng (15) to yield a systematic realization procedure for NAND networks by alternately inhibiting O and 1 entires in the Karnaugh map as the number of switching levels increases. After this primitive realization is obtained, a level reduction procedure is applied to reduce the number of levels to at most three. A transform technique is used to complete the design procedure. These various procedures provide a wide range of solutions to the TANT problem, with most of them having been implemented on digital computers. None of these procedures attacks the problem of associated sequential problems. Also, none of the publications give very extensive analysis of memory or CPU time requirements for computer implementations.

An Example

To demonstrate the TANT solution of a particular problem using the double-complement technique and subsequent improvements until an optimum

Figure 1. Example NAND Gate Circuit Improvements

solution is found, consider the function

$$F(x_1, x_2, x_3, x_4) = \Sigma m (0, 2, 3, 4, 5, 6, 11, 13).$$
 (1)

The solution corresponding to the optimal AND/OR network is

$$F(x_1, x_2, x_3, x_4) = \bar{x}_1 \bar{x}_3 + \bar{x}_2 x_3 x_4 + x_2 \bar{x}_3 x_4 + \bar{x}_1 \bar{x}_4$$
 (2)

which is shown as a circuit using NAND gates in Figure 1(a). Note that single input NAND gates are used as inverters to get the complemented inputs. This realization has 9 gates and 18 inputs to those gates.

Now using the first and fourth terms of the right-hand side of (2) we see that

$$\bar{x}_1 \bar{x}_3 + \bar{x}_1 \bar{x}_4 = \bar{x}_1 (\bar{x}_3 + \bar{x}_4),$$
 (3)

and substituting (3) into (2) the result is

$$F(x_1, x_2, x_3, x_4) = \bar{x}_1(\bar{x}_3 + \bar{x}_4) + \bar{x}_2x_3x_4 + x_2\bar{x}_3x_4. \tag{4}$$

This realization is shown in Figure 1 (b). It has only 8 gates and 16 inputs. Further reduction is seen by ORing zero to the second and third terms of (4), i.e.,

$$\bar{x}_{2}x_{3}x_{4} + x_{2}\bar{x}_{3}x_{4} = \bar{x}_{2}x_{3}x_{4} + \bar{x}_{2}x_{2}x_{4} + x_{2}\bar{x}_{3}x_{4} + x_{3}\bar{x}_{3}x_{4}
= (\bar{x}_{2} + \bar{x}_{3})(x_{2}x_{4} + x_{3}x_{4})
= (\bar{x}_{2}x_{3})(x_{2}x_{4} + x_{3}x_{4}).$$
(5)

Now substituing (5) into (4) yields

$$F(x_1, x_2, x_3, x_4) = \overline{x}_1(\overline{x}_3 + \overline{x}_4) + (\overline{x}_2\overline{x}_3)(x_2x_4 + x_3x_4)$$
 (6)

which is shown as a NAND circuit in Figure 1(c). This circuit has only 7

gates but still 16 inputs. With some more manipulations, the result is

$$F(x_1, x_2, x_3, x_4) = (\overline{x_2 x_3 x_4})(x_3 x_4 + x_2 x_4 + \overline{x}_1)$$
 (7)

and this result is shown in Figure 1 (d). This is the optimal TANT network for this problem with only 6 gates and 15 inputs. This is the same solution as found by Torng (15) on page 125 by using his level-reduction and gate-reduction technique. Also, this is the solution found using the algorithm developed later in this thesis. This example demonstrates the straightforward initial solution using double-complement method and that the result was not the optimal TANT circuit. With some algebraic manipulations, the optimal solution was found and matched the result using level-reduction gate-reduction technique's solution. This same example will be treated in detail using this thesis' algorithm in the next chapter.

Problem Formulation and Approach

The problem to be investigated in this thesis is the TANT problem in conjunction with memory. The combinational portion of the problem uses three-level NAND-gate circuits with only true externally supplied inputs and both true and complemented inputs available from the memory devices. Also, the combinational portion must cover multiple output cases. The memory, or sequential, portion simply tries different flip-flops and solves the related combinational problem. This combined effort of both the combinational and sequential problem does not appear in the literature.

The algorithm was initially programmed to simply solve the TANT problem with true inputs only. The program was then exercised with many

large examples with a spinoff effort to decide whether minimum gate was a prerequisite for a circuit to have minimum inputs. The program was then exercised with different implementations of arbitrary steps to determine the best on the basis of computer time, core storage requirements, and ease to user. Finally, the TANT synthesis algorithm was matched with the flip-flop selection and implemented as a computer-aided design package.

Thesis Outline

Following this introductory chapter, the TANT synthesis algorithm is rigorously developed and described in detail in Chapter II. The CAD package for the TANT problem, along with several large examples, is presented in Chapter III. Chapter IV describes the sequential problem, along with presenting a key example. Discussion of extensions, improvements, and conclusions are presented in Chapter V.

CHAPTER II

SYNTHESIS OF OPTIMAL TANT NETWORKS

This chapter presents and proves the optimality of an algorithm to solve the TANT problem. A firm theoretical basis is presented in the form of theorems and rigorous proofs, followed by a detailed discussion of the synthesis algorithm. The underlying concept was first worked on by Layton (23) beginning in 1973. The early concepts have been formalized in the form of theorems and some of his third-level gate selections have been modified to allow a form of backtracking. Also, a very extensive gate and input reduction scheme has been added onto the end of the algorithm. One of his examples is used, while two new examples have been added to demonstrate the improvements.

Basic Theorems

This section presents fundamental theorems to be used as a basis for the TANT network synthesis procedure. Notationally, the first-level gate is defined as the gate from which the output is obtained. Second-level gates feed first-level gates and third-level gates feed second-level gates. Additionally, no feedback is allowed whereby lower-level gates feed higher-level gates. Theorems 1 through 4 provide for second-level and third-level gate candidate generation. The completeness of an iterative procedure based on these first four theorems is guaranteed by Theorem 5. Theorems 6 and 7 describe a necessary selection of certain

second-level gate candidates for the optimal network. A key network reduction is indicated by Theorem 8, and Theorems 9 and 10 minimize gate inputs. Finally, Theorem 11 shows that an optimal TANT network is obtained.

Theorem 1

Each 1-set containing the primary cube is a candidate for a secondlevel gate in a three-level NAND network having only true inputs. Proof:

Let $F(x_1, x_2, ..., x_n)$ be some Boolean switching function with n inputs defined as

$$F(x_1, x_2, ..., x_n) = Q + \sum_{j=1}^{m} S_j$$
 (8)

where m is the number of 1-set terms containing only true inputs, S_j is the product of true inputs for the j^{th} 1-set, and Q is some function covering the remaining 1-sets. Using the standard involution theorem (2) gives

$$F(x_1, x_2, ..., x_n) = Q + \sum_{j=1}^{m} S_j$$
 (9)

Applying De Morgan's Theorem (2) yields

$$F(x_1, x_2, ..., x_n) = \overline{Q} \cdot \prod_{j=1}^{m} \overline{S}_j$$
 (10)

which can be recognized as a two-level NAND network with S $_j$ as inputs to the j^{th} gate at the second level. Moreover, the m outputs from these second-level gates and $\overline{\mathbb{Q}}$ are inputs to the first level.

The primary cube (22) is the O-cube having the set of coordinates (111...1), i.e., all of the true inputs. Thus, any N-cube with only true inputs must contain the primary cube.

Theorem 2

Each O-set containing the primary cube is a candidate for a thirdlevel gate in a TANT network.

Proof:

Let $F(x_1, x_2, \dots, x_n)$ be defined as

$$F(x_1, x_2, ..., x_n) = R \cdot \iint_{i=1}^{\ell} \left[\sum_{k=1}^{p_i} \bar{x}_{\xi_k} \right]$$
 (11)

where there are ℓ O-sets composed of the sums of $\mathbf{p_i}$ complemented inputs, $\bar{\bar{x}}_{\bar{\xi}_{\star}}$ denotes the $k^{\rm th}$ complemented input in the $i^{\rm th}$ sum, and R is some function covering the remaining O-sets. For example, one such function might be $(\bar{x}_1 + x_2)$ $(\bar{x}_1 + \bar{x}_3)$ $(\bar{x}_2 + \bar{x}_3 + \bar{x}_4)$ \bar{x}_5 , where $R = \bar{x}_1 + x_2$. Invoking involution and De Morgan's theorems gives

$$F(x_{1}, x_{2}, ..., x_{n}) = R \cdot \iint_{i=1}^{\ell} \left[\sum_{k=1}^{p_{i}} \bar{x}_{\xi_{k}} \right]$$

$$F(x_{1}, x_{2}, ..., x_{n}) = R \cdot \iint_{i=1}^{\ell} \left[\iint_{k=1}^{p_{i}} x_{\xi_{k}} \right]$$
(12)

$$F(x_1, x_2, ..., x_n) = R \cdot \iint_{i=1}^{\ell} \left[\iint_{k=1}^{p_i} x_{\xi_k} \right]$$
 (13)

Therefore, the inputs to the third-level gates are the p_i true inputs.

Theorem 3

For a three-level NAND network, the input combinations to a thirdlevel gate place "don't cares" in the 1-sets being considered as

candidates for second-level gates.

Proof:

Let the input set to the combinational network be represented by*

$$T_{3rd} = \sum_{i=1}^{2^n} t_i$$
 (14)

where n is the number of input variables, t_i is the i^{th} combination of the input variables, and Σ denotes the logical sum of the t_i . The k applied input combinations which yield a "1" and 2^n -k which yield a "0" at the output of the third-level gate may be expressed as

$$T_{3rd} = \sum_{i=1}^{k} t_i + \sum_{i=k+1}^{2^n} t_i$$
 (15)

Since the output of this third-level gate can be an input to the second level, the total number of inputs to the second level is n+1. The resulting 2^{n+1} combinations of inputs to the second level may be expressed as

$$T_{2nd} = \sum_{i=1}^{2^{n+1}} t_i$$
 (16)

With \mathbf{Z}_{3rd} as the output of the third-level gate,

$$T_{2nd} = \overline{Z}_{3rd} \cdot T_{3rd} + Z_{3rd} \cdot T_{3rd}$$
 (17)

^{*}The summation upper limit 2^n indicates only that there are 2^n distinct values which i can assume over the entire summation. No relation between the binary value of the particular input t_i and i is implied.

Substituting (8) into (10) and simplifying yields

$$T_{2nd} = \overline{Z}_{3rd} \sum_{i=1}^{k} t_i + \overline{Z}_{3rd} \sum_{i=k+1}^{2^n} t_i$$

$$+ Z_{3rd} \sum_{i=1}^{k} t_i + Z_{3rd} \sum_{i=k+1}^{2^n} t_i$$
(18)

Observe that \bar{Z}_{3rd} is zero for the $\sum_{i=1}^{n} t_i$ input combinations and Z_{3rd} is zero for the $\sum_{i=k+1}^{n} t_i$ input combinations. Therefore, the inputs corresponding to the first and fourth terms in (18) are never applied and may be considered as "don't cares" for any second-level gate into which Z_{3rd} feeds.

Theorem 4

If some second-level gate candidates in a three-level NAND network have been determined, then the corresponding 1-set input combinations may be treated as "don't cares" in the O-sets being considered as candidates for third-level gates.

Proof:

If q members of the 1-set are covered by the second-level gate candidates already determined, then the output of the network will be "1" regardless of whether the remaining switching would result in an output of "1" or "0" for the q members of the 1-set previously covered.

Theorem 5

If a necessary third-level gate candidate is determined but discarded in favor of another candidate (or candidates), then it will be

-)

regenerated subsequently for O-set coverage at the third level.

Proof:

Suppose a third-level gate candidate is generated but not needed as a "don't care" (Theorem 3) for particular 1-set input combinations being considered for second-level gate candidates. Even though discarded at this stage of generation, the third-level gate candidate may be required subsequently as a "don't care" to feed a second-level gate candidate covering yet another 1-set. Therefore, to cover this other 1-set with a second-level gate, it will be necessary to regenerate the given third-level gate candidate. Furthermore, it is entirely possible that an improved third-level gate candidate having fewer inputs (and containing as a subset the previously discarded gate candidate) will be generated. In the worst case, the discarded gate candidate itself will be regenerated.

Theorem 6

The last second-level gate candidate generated must be selected for the TANT network.

Proof:

Since second-level gate candidates are generated to cover members of the 1-set (Theorem 1), each new candidate generated must cover at least one member of the 1-set not covered by candidates generated previously. The generation of these second-level gate candidates ceases when all members of the 1-set have been covered. Therefore, the last candidate generated must be selected because it covers at least one member of the 1-set not covered by any other candidate.

Theorem 7

If the first stage of generation of second-level gate candidates yields only one candidate, then that candidate must be selected for the TANT network.

Proof:

At least one member of the 1-set covered by the sole second-level gate candidate must be used as a "don't care" (Theorem 4) for the subsequent generation of one or more third-level gate candidates. By Theorem 2, the resulting third-level gate candidate(s) prevent any subsequent second-level gate candidates from covering the particular member(s) of the 1-set being used in Theorem 4.

Theorem 8

If a third-level gate candidate feeds only one second-level gate candidate as the sole input to that gate candidate, then both of these gate candidates may be discarded and the inputs to the original third-level gate candidate fed directly into the first-level gate.

Proof:

Let
$$F(x_1, x_2, ..., x_n)$$
 be defined as
$$F(x_1, x_2, ..., x_n) = \overline{\overline{t_3}} P$$
(19)

where t_{3rd} is the input combination to the third-level gate under consideration and P is some function that covers the remainder of the members of the 1-set. Using the involution theorem yields

$$F(x_1, x_2, ..., x_n) = \overline{t_{3rd} P}$$
 (20)

which corresponds to t 3rd being fed directly into the first-level gate.

Theorem 9

If any input \mathbf{x}_{ζ} is fed to a particular third-level gate and to each of the second-level gates which that gate feeds, then \mathbf{x}_{ζ} may be removed, as an unnecessary input, from the third-level gate.

Proof:

Let the switching function $F(x_1, x_2, \dots, x_n)$ be represented by

$$F(x_1, x_2, \dots, x_n) = \overline{\left(R_1 x_{\zeta}(\overline{x_{\zeta} x_{\eta}})\right) \left(R_2 x_{\zeta}(\overline{x_{\zeta} x_{\eta}})\right)}$$
(21)

where \mathbf{x}_ζ and \mathbf{x}_η are inputs to a third-level gate which feeds two second-level gates. In addition to this input, \mathbf{R}_1 feeds one of the second-level gates, \mathbf{R}_2 feeds the other, and \mathbf{x}_ζ feeds them both directly, where \mathbf{R}_1 and \mathbf{R}_2 are arbitrary. Using De Morgan's theorem gives

$$F(x_1, x_2, ..., x_n) = R_1 x_{\zeta} (\bar{x}_{\zeta} + \bar{x}_{\eta}) + R_2 x_{\zeta} (\bar{x}_{\zeta} + \bar{x}_{\eta})$$
 (22)

which may further be expressed as

$$F(x_1, x_2, ..., x_n) = R_1 x_{\zeta} \bar{x}_{\zeta} + R_1 x_{\zeta} \bar{x}_{\eta} + R_2 x_{\zeta} \bar{x}_{\zeta} + R_2 x_{\zeta} \bar{x}_{\eta}$$
 (23)

Observe that the first and third terms in (23) are zero and that the remaining terms are due to the appearance of x_{ζ} as a direct input to the second-level gates. Therefore, the x_{ζ} input may be omitted from the third-level gate.

Theorem 10

To obtain an optimal network, any inputs which do not affect the output must be removed.

Proof:

If an input is present in Network A and not in Network B with all gates and other inputs being the same, then Network B obviously has fewer inputs. Provided that the two networks have identical outputs under all input conditions, Network A cannot be the optimal network.

Theorem 11

Among the networks generated by using Theorems 1 through 10, there exists an optimal network.

Proof:

Theorems 5 and 6 guarantee that all of the necessary gate candidates have been generated. Using these candidates to cover the 1-set of the desired switching function and applying Theorem 8 yields a minimum number of gates. The fewest number of inputs to these gates are determined by Theorems 9 and 10. Therefore, these exhaustive searches on covering and input reduction yield an optimal network.

The Network Synthesis Procedure

A detailed description of the TANT network synthesis procedure based upon the theorems of the previous section is presented here. A flow chart is given in Figure 2, and a detailed explanation of each step is given below.

Step 1

Determine whether the primary cube contains a "1" or a "0". If the primary cube contains a "1", then go to Step 2. If the primary cube contains a "0", go to Step 4.

Figure 2. Flow Chart of the TANT Network Synthesis Procedure

Step 2

Determine the prime implicants (largest 1-sets) not requiring complemented inputs. This step uses Theorem 1 to generate second-level gate candidates by forming, with true inputs only, the largest groups of minterms (1-set members).*

Step 3

Test for coverage of the minterms for the desired swithcing function.

If all of the minterms are covered, then go to Step 6; otherwise, more
gate candidates must be generated, and, therefore, go to Step 4.

Step 4

Using all minterms that have been covered previously as "don't cares" by Theorem 4, determine the prime implicates (largest O-sets) not requiring complemented inputs. Thus, by Theorem 2, third-level gate candidates are generated from the largest groups of maxterms (O-set members).

Step 5

This step determines which third-level gate candidates to retain.

Test whether each gate candidate, considered singly, creates suitably placed "don't cares" (by Theorem 3) to allow additional second-level gate candidates to be generated that cover at least one minterm not

^{*}Particularly for TANT networks having relatively few input variables, the Karnaugh map is a convenient tool for forming these largest groups by circling on the minterms in Step 2 and maxterms in Step 4. A computer program should be considered for handling networks with large numbers of input variables.

already covered. If none allow another second-level gate candidate to be generated, try all possible combinations of two, then all combinations of three, etc., until at least one new second-level gate candidate can be generated. When at least one new minterm can be covered by this procedure, select the combination of third-level gate candidates that allows the most new minterms to be covered. For example, let thirdlevel gate candidates considered singly or in combinations of two permit no new second-level gate generation. Furthermore, suppose two groups of these third-level gate candidates considered in combinations of three do allow new second-level gate generations. Therefore, the group consisting of a combination of three third-level gate candidates which yields the second level gate candidate(s) covering the most new minterms retained. By Theorem 5, the discarded combination, if needed for the optimal network, will be generated subsequently. Consider all the implicates covered by these third-level gate candidates to be "don't cares" for subsequent gate candidate generation. Return to Step 2.

Step 6

Create all possible networks that cover the desired switching function by using the second-level and third-level gate candidates generated.

Use Theorems 6 and 7, and then form a covering and closure table.

Step 7

Use Theorem 8 to eliminate third-level gates which solely feed second-level gates by feeding the third-level gate inputs directly to the first-level gate. Use Theorems 9 and 10 to eliminate the unnecessary inputs for the remaining second-level and third-level gates.

Step 8

Determine from among the several resulting networks the one(s) having a minimum number of gates and a minimum number of inputs to those gates. By Theorem 11, an optimal network is guaranteed.

The optimality of the resulting TANT network is based upon the procedure's adherence to the theorems of the previous section. Although more efficient steps might possibly be appropriate in selected cases, the synthesis procedure presented here does yield an optimal TANT network. Specifically, the discarding of third-level gate candidates in Step 5 may be avoided by a parallel storage and the subsequent consideration of all possible candidates. The particular selections in this step of the procedure yield an effective solution without unduly large amounts of storage. The directness of this procedure is demonstrated in the following examples.

Examples

Three examples are presented in this section to illustrate the developed network synthesis procedure. The first example appeared in the introduction and is included here for comparison as well as a detailed explanation of the steps of the present algorithm. Example 2 demonstrates the regeneration principle of Step 5 (Theorem 5) and gate selection procedures of Step 6, and Example 3 shows the details of input reduction in Step 7 (Theorems 9 and 10).

Example 1

It is required that an optimal TANT network be designed to realize the combinational switching function given by

$$F(x_1, x_2, x_3, x_4) = \sum m(0, 1, 2, 3, 4, 5, 6, 11, 13)$$
 (24)

The minterms in (24) are indicated by 1's in the Karnaugh map of Figure 3(a), and 0's are shown in all other map locations. In Step 1 of the synthesis procedure, the primary cube contains a O, which directs the algorithm to Step 4. Two prime implicates are identified and labeled as T_1 and T_2 in Step 4. In Step 5, results are shown in Figures 3(b) and 3(c) for T_1 and T_2 , respectively, by replacing the appropriate 0's by d's, allowing the tentative formation of prime implicants. Since the new 1-set coverage for the prime implicants obtained by using $\mathbf{T}_{\mathbf{1}}$ is greater than T_2 , only T_1 is retained. Proceeding to Step 2, the two prime implicants of Figure 3(b) become second-level gate candidates and are labeled S_1 and S_2 . In Step 3, Minterms 0, 1, 2, 4, and 6 are not yet covered, and the procedure returns to Step 4. Additional "don't cares" (d's) due to S_1 and S_2 are shown in Figure 3(d), along with the d's due to T_1 determined earlier. The prime implicate labeled T_3 covers the remaining five O's (Step 4). Since only one prime implicate is generated, proceed past Step 5 directly to Step 2. Replacing the entries in T_3 by d's in Figure 3(e) yields the second-level gate candidate labeled S_3 , which is composed of the entire map. Since all minterms are covered (Step 3), proceed to Step 6 to form possible TANT networks. the second-level, S_{3} must be selected, since it was the last secondlevel gate candidate. Minterms 0 through 6 are covered by S_3 , as indicated by checks $(\sqrt{\ })$ in Figure 3(a). Third-level gates whose outputs feed into the NAND-gate with output S_3 have outputs T_1 and T_3 . T_3 covers Maxterms 8, 9, 10, 12, 14, and 15. Maxterms 7 and 15 are covered by T_1 . Additional second-level gates are needed to cover Minterms 11 and 13. The gate candidate with output S_1 covers Minterms 3 and 11, and

Figure 3. Design Steps and Optimal TANT Network for Example 1

the gate candidate with output S_2 covers Minterms 5 and 13. Both of these gate candidates require T_1 as an input to cover Maxterms 7 and 15. Input variables needed for these second-level and third-level gate candidates are identified in the expressions for S_1 , S_2 , S_3 , T_1 , and T_3 in Figures 3(a), 3(b), 3(d), and 3(e). No other possible TANT networks covering the desired minterms can be formed from these gate candidates. Furthermore, no gate or input reduction (Step 7) is possible. Therefore, the combinational switching circuit shown in Figure 3(f) is the optimal TANT network (Step 8).

This example was worked by Torng (15) using Eisenberg's method (14) as Example 8.5 on Pages 118 through 125. The result in Figure 3(f) is identical to Torng's switching circuit realization in Figure 8.20 on Page 125 of (15), which was obtained after applying a level-reduction technique to the primitive realization.

Example 2

As a second example, consider the switching function given by

$$F(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \sum_{m} (0, 1, 2, 6, 7, 8, 11, 12, 14)$$
 (25)

which is indicated on the Karnaugh map of Figure 4(a). Step 1 directs the algorithm to Step 4, where the single prime implicate T_1 is formed. Passing through Step 5 to Step 2 yields the three prime implicants S_1 , S_2 , and S_3 in Figure 4(b). Since not all minterms have been covered (Step 3), return to Step 4. The four prime implicates T_2 , T_3 , T_4 , and T_5 are formed in Figure 4(c). None of these prime implicates considered singly allows new minterm coverage in Step 5. Taken two at a time, T_3 with T_4 allows Minterm 8 to be covered and T_2 with T_3 allows Minterm 2

Figure 4. Design Steps and Optimal TANT Network for Example 2

to covered. Arbitrarily choosing the T_2 and T_3 combination yields S_4 in Step 2, as shown in Figure 4(d). Again, return to Step 4. T_4 and T_5 are regenerated (Figure 4(e)), but when considered singly, only \mathbf{T}_{L} allows new minterm coverage. Returning to Step 2 yields S_5 (Figure 4(f)), which covers Minterm 8. Once again, return to Step 4. T_5 is regenerated (Figure 4(g)), allowing in Step 2 the coverage of the entire map $(S_6$ in Figure 4(h)). Since all minterms have now been covered (Step 3), proceed to Step 6. Select S_6 , which covers Minterms 0, 1, 2, and 8, as the last gate candidate formed. Moreover, select ${\bf S}_1$ to cover Minterms 6, 7, and 14, S_2 to cover Minterms 12 and 14, and S_3 to cover Minterm 11. Observe that T_2 , T_3 , T_4 , and T_5 must be used as inputs to S_6 to cover all maxterms. Rather than selecting T_1 to feed S_1 , S_2 , and/or S_3 , T_4 may be used to feed S_1 and S_2 , and T_5 to feed S_3 , as shown in Figure 4(i). Alternately, S2 may be used to cover only Minterm 12, since Minterm 14 is already covered by S_1 . If both T_3 and T_4 are used to feed \mathbf{S}_2 , then the \mathbf{x}_2 input to \mathbf{S}_2 can be removed, and \mathbf{S}_2 covers Minterms 8 and 12. Therefore, this input change yields a second optimal TANT network, in addition to the one shown in Figure 4(i).

Example 3

The purpose of this final example is to illustrate input reductions for second-level and third-level gates. Let the switching function to be realized be given by

$$F(x_1, x_2, x_3, x_4) = \sum m(0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15)$$
 (26)

Step 1 directs the algorithm to Step 2, where S_1 is formed in Figure 5(a). Passing through Step 3, Prime Implicates T_1 and T_2 are generated in

Figure 5. Design Steps and Optimal TANT Network for Example 3

Step 4 (Figure 5(b)). In Step 5, T_1 covers more new minterms, and T_2 is discarded. Returning to Step 2, S_2 and S_3 are generated (Figure 5(c)). In Step 4, T_2 and T_3 are generated, but only T_2 is retained in Step 5 (Figure 5(d)). Figure 5(e) shows the results of forming S_4 , S_5 , and S_6 in Step 2. Thereafter, T_3 is regenerated in Step 4, allowing S_7 to be formed in Step 2 (Figures 5(f) and 5(g)).

It is the application of Steps 6 and 7 in this example which requires special attention. S_7 is selected, as the last gate candidate generated, for a second-level gate to cover Minterms 0, 2, 4, 6, 8, 10, and 12. Both T_2 and T_3 are needed as inputs to this gate. In particular, T_2 covers Maxterm 14, and T_3 covers Maxterms 1, 9, 11, and 13. The ${\bf sole\ first\ second-level\ gate\ candidate\ generated\ (S_{1})\ covers\ Minterms\ 7}$ and 15, and no third-level gate outputs are required as added inputs to this gate. Only Minterms 3 and 5 remain to be covered at this point. Minterm 3 can be covered by using either S_2 with inputs x_3 , x_4 , and T_1 or S_4 with inputs x_3 , T_1 , and T_2 . Minterm 5 can be covered by using either S_3 with inputs x_2 , x_4 , and T_1 or S_5 with inputs x_2 , T_1 , and T_2 . Therefore, using either \mathbf{S}_2 and \mathbf{S}_3 or \mathbf{S}_4 and \mathbf{S}_5 should result in a TANT network covering all the minterms. However, if S_2 and S_3 are used, then the $\mathbf{x}_{\underline{4}}$ input to $\mathbf{T}_{\underline{1}}$ is redundant and can be removed by Theorem 9. Moreover, the \mathbf{x}_4 input can be omitted from both the \mathbf{S}_2 and \mathbf{S}_3 second-level gates as shown in Figure 5(h), since Minterms 2 and 6 and Minterms 4 and 6 are included in the desired switching function (Theorem 10). Theorem 10 also allows \mathbf{x}_1 to be removed as an input to \mathbf{T}_2 , since Minterm 6 is now covered by both S_2 and S_3 . The resulting optimal TANT network is shown in Figure 5(h).

Summary

The theorems provided a firm groundwork for the steps in a network synthesis algorithm for the design of optimal three-level NAND-gate combinatorial switching networks having only uncomplemented inputs (TANT). A detailed description of the procedure has been provided and a flowchart included for easy reference. Three examples have been presented to demonstrate pertinent details of the algorithm. The network synthesis procedure utilizes cyclical gate candidate generation and exhaustive input optimization, which is very amenable to digital computers.

CHAPTER III

THE CAD SOFTWARE PACKAGE

This chapter discusses the computer implementation of the algorithm described in Chapter II. The first section gives a detailed description of the program and some major subroutines. The second section discusses evaluation of the CAD package. The third section of this chapter analyzes alternative methods for Step 5 of the algorithm, which is the choosing of third-level gate candidates. The fourth section describes the slight modification required for the NOR version, and the final section provides a summary.

Program Description

The program, like the algorithm, has two main parts: the part which finds the gate candidates and the part which finds and minimizes circuits using these candidates. Figure 2 (for the algorithm) and Figure 6 (for the program) differ primarily in the part on prime implicant generation. The difference allows more of the interdependence to be seen for Steps 1 through 5 in the program. This interdependence is dictated in part by the choice of a method for Step 5. This first part finds gate candidates by continuing to circle alternately on the 1-sets and 0-sets until all minterms are covered. The second part differs in that the algorithm does all of the work in parallel; whereas, the program enters a loop. In the loop of Part II, some circuit is formed from

Figure 6. CAD Program Flow Chart

the candidates and then minimized, then another circuit is formed and minimized, and so forth until all possible circuits are formed and minimized. Finally, the best of these circuits is chosen as the solution.

Circling on the 1-sets (Step 2) and circling on the O-sets (Step 4) are actually performed by the same subroutine with an input parameter indicating whether to circle on 1's or O's. The subroutine SUBFN simply starts with the lowest minterm (maxterm), checks to determine whether it is a cell which includes the needed cube (the primary cube for TANT problems), then tests whether all members of that cell are minterms (maxterms) and, if so, that cell becomes a candidate. This subroutine is essentially finding implicants (implicates) as gate candidates. All entries within the cell are then reassigned values indicating "don't cares" for subsequent gate candidate generation. Steps 2 (circling the 1-sets), 4 (circling the 0-sets), and 5 (choosing which 0-set to discard) are all contained in a large loop, which uses minterm coverage (Step 3) to terminate the loop. Proof that these steps produce the necessary gates for an optimal network is contained in Theorems 1 through 5.

Subroutine CKFND is used to find circuits, i.e., generate different combinations of second-level gate candidates to cover the minterms.

Theorem 6 states that the last candidate generated must be used. If the first second-level candidate were generated solely, it must also be used (Theorem 7). The other candidates are chosen for the circuit by a simple covering and closure table. This routine also eliminates those third-level gates solely feeding second-level gates by feeding their inputs directly into the first-level gate (Theorem 8). Subroutine CKFND corresponds to part of Steps 6 and 7.

Subroutine M3RDI eliminates from the third-level gates any inputs

that are also present in all second-level gates it feeds. This is part of Step 7 and is covered by Theorem 9. Subroutines EL2IN and EL3IN eliminate unnecessary inputs to the second- and third-level gates, respectively. This part of Step 7 uses exhaustive search. An input is removed and, if the resulting output function is unaltered, the change is made permanent; otherwise, the input is replaced. After input reduction, some gates may have identical inputs. Subroutine DUPGT finds these redundancies and eliminates them.

At the beginning of the circuit selection sequence, CKFND found a combination of second-level gates and generated a circuit. This circuit was then minimized. Now, Subroutine ALTCK modifies the feeding third-level gates in an effort to come up with an alternate circuit with the same prime implicants (second-level gate candidates), which is then minimized. ALTCK and CKFND are called until all possible circuits are found and minimized. Step 8, the choosing of the optimal circuit(s), is then executed. The Appendix contains a listing of the computer program.

CAD Evaluation

Three categories for evaluation of a CAD software package are execution time, core storage required, and user convenience. Algorithm correctness to yield an optimal network is necessary before any of these measures even has any significance. The first two categories lend themselves readily to numerical analysis, whereas the third is a rather subjective quality. This section uses tabular and graphical displays of the first two categories.

Table I shows the measurements on many problems (including several from the literature) allowing a very thorough evaluation of this

TABLE I

TIME REQUIREMENTS FOR SEVERAL TANT SOLUTIONS

Case Number	Order	Number of Minterms	Number of Don't Cares	Execution Time (sec)	Number of Gates	Number of Inputs
1	4	11	O	1.23	8	17
2	4	9	О	0.56	6	15
3	4	9	0	1.18	9	25
4	4	11	0	0.68	6	17
5	4	1	О	0.56	6	9
6	4	8	0	1.78	8	19
7	4	1	1	0.58	6	9
8	4	3	3	0.51	5	8
9	4	3	0	0.61	7	13
10	4	7 ~	О	0.89	6	15
11	3	5	О	0.49	3	5
12	4	7	0	0.50	5	11
13	6	20	О	1.54	9	23
14	4	7	О	0.61	7	19
15	4	6	О	0.74	6 '	15
16	4	7	О	0.59	6	16
17	4	7	O	0.92	7 ·	15
18	6	10	O	1.11	8	18
19	7	15	О	3.21	8	18
20	4	6	О	0.60	7	21
21	l_{\pm}	9	0	1.00	8	20

package. The predominance of fourth-order problems is due both to the ease of hand analysis and to their presence in most of the literature. The timing analysis is, therefore, very accurate for the fourth-order problem, but not quite as complete for the higher-order problems. The times for the fourth-order problem range (from 0.50 seconds to 1.78 seconds. The time for the third-order problem was 0.49 seconds. The average for the fourth-order problems was 0.78 seconds. These are shown in Table I. Figure 7(a) shows a graph of the timing data. This data seems to point out a steep (perhaps exponential) rise of execution time with increased order.

The storage analysis is shorter primarily because the number of runs to find out the required storage is one, that is one fourth-order problem will take as much storage as any other fourth-order problem. The graph in Figure 7(b) displays the storage requirements for various order problems. As one might expect, the storage requirement is relatively constant over the range of lower order problems because program statement storage predominates. As the order increases, the array storage begins to dominate and the storage requirement begins to soar. The information in this section is sufficient for a complete numerical evaluation of the CAD package.

Alternate Procedures for Choosing Prime Implicates
as Third-Level Gate Candidates

The algorithm describes a Step 5 procedure which chooses an O-set as a gate candidate based upon how many new minterms that particular O-set allows new 1-sets to cover. This procedure is not intrinsic to the algorithm, and, consequently, other methods are possible. The

Figure 7. Timing and Storage Analysis of the CAD Program

choice could be based upon the number of 1-sets allowed to be generated, number of 0's covered, minterms in "hard" places, maxterms in "hard" places, or the first candidate which allows generation of a new 1-set.

Since the operation of circling on O's is to allow second-level gate candidates to be generated, the method of choosing the O-set which allows the most 1-sets has merit. The disadvantage of this method comes in the form of extra or unnecessary candidates being generated in some cases. The method of finding the most new 0's follows from the fact that O's must be covered to allow second-level gate candidate generation. However, it is obviously not the purpose of this algorithm to cover all of the maxterms, or even as many as possible. A "hard" places criterion can be defined as those terms farthest from the primary cube. This would generate larger cells and fewer inputs to the candidates. method chosen does not affect the optimality of the solution, as regeneration comes into play, but different methods result in faster or slower execution times. For example, the method of choosing the first O-set allowing new minterm coverage is faster in the choosing stage but may be slower in the long run by taking more time to generate all of the secondlevel candidates. Saving all of the candidates and solving in parallel, thus avoiding any choices, would not only increase time requirements, because of having to solve for all possible candidates, but would increase storage space in memory.

Table II shows the execution time and storage requirements for some of the choices for Step 5. The execution times are for an ensemble of 20 problems of various orders. The storage requirement is for up to an eighth order problem. Almost immediately apparent is the very small difference in core storage requirements. This is due to the fact that

TABLE II

TIMING AND STORAGE COMPARISONS FOR METHODS
OF CHOOSING PRIME IMPLICATES

Method	Execution Time	Storage	
Original Step 5	11.56	103k Bytes	
Maximum 1-sets	11.60	103k Bytes	
Maximum maxterms	11.85	103k Bytes	
Minterms in "hard" places	10.90	104k Bytes	
Maxterms in "hard" places	11.77	104k Bytes	
Simplistic	8.79	100k Bytes	

much of the storage requirement is due to the input and gate optimization portion of the program.

The original Step 5 chose third-level gate candidates based upon the number of new minterms allowed to be covered. The other methods are self-explanatory. All of the sophisticated methods, i.e., the original, the maximum 1-set, the maximum minterms, the maximum maxterms, minterms in hard places, and maxterms in hard places, seemed justifiable.

Actually, these methods took more time and storage than the simplistic method of choosing the first 0-set or sets to allow minterm coverage to be chosen as third-level gate candidates. Regeneration of necessary gate candidates guaranteed the optimality of any of the methods. The difference of about 4K bytes between the sophisticated methods and the simplistic method was the subroutine to determine gate candidate choice. More significant, the simplistic method used only 8.79 seconds of CPU time to solve the examples, compared to 10.9 to 11.85 seconds for the sophisticated approaches.

NOR Example

This section describes how the NAND algorithm can be used to find a NOR circuit. In fact, Theorem 12 proves that any NAND circuit finding algorithm can be used to find a NOR circuit, or vice versa. The procedure is to complement the function, then complement the inputs, and solve as if solving for a NAND circuit. The resulting circuit is merely implemented using NOR gates to realize the original function. This procedure is based upon the complemented equivalency of NAND and NOR circuits as proven by Theorem 12.

Theorem 12

When every NAND gate in a circuit is replaced in that same circuit with NOR gates, the new circuit is the realization for the complement of the original switching function with complemented inputs.

Proof:

Given a switching function

$$F(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \overline{\mathbf{x}_1 \cdot (\overline{\mathbf{x}_2 \cdot \overline{\mathbf{x}}_3})}$$
 (27)

the NAND circuit can be readily recognized. Replacing the NAND gates with NOR gates yields

$$F'(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}) = \overline{\mathbf{x}_{1} + \overline{(\mathbf{x}_{2} + \overline{\mathbf{x}_{3}})})}$$

$$= \overline{\mathbf{x}_{1} + (\overline{\mathbf{x}}_{2} \cdot \mathbf{x}_{3})}$$

$$= \overline{\mathbf{x}_{1} \cdot (\overline{\mathbf{x}_{2} \cdot \mathbf{x}_{3}})}$$

which is the complement of F with complemented inputs.

Example

Let the combinational function to be realized be given by

$$F(x_1, x_2, x_3, x_4) = \Pi M (0, 3, 4, 7, 8, 11, 12, 13, 15).$$
 (29)

Figure 8(a) shows the complement of this function, which is just replacing the maxterms with minterms, and vice versa. Complementing the inputs essentially moves the minterms around; e.g., O becomes 1 and 13 becomes 2, which is illustrated in Figure 8(b). Step 1 indicates that the

Figure 8. Design Steps and Optimal Network for NOR Example

primary cube is a 1; therefore, circling on the 1's yields S1 as shown also in Figure 8(b). Step 5 then circles on the 0's and T1 and T2 are choosen as candidates from the 0-sets generated, as shown in Figure 8(c). Returning to Step 2, S2 is generated as is shown in Figure 8(d)

Figure 8(e) shows T3 which was actually regenerated by Step 5. Step 2 now generates S1 which covers the whole map and is shown in Figure 8(f). Step 3 exits the candidate-generation loop, as all of the minterms have been covered. Step 6 finds that only S1 and S3 are needed to cover all of the minterms, and that T1, T2, and T3 must feed S3. Steps 7 and 8 find no minimization or alternate circuits. The resulting NOR circuit is shown in Figure 8(g).

Summary

This chapter has described the computer implementation of the algorithm of Chapter II, and the slight differences required. A detailed description of the program and some major subroutines has been given. The CAD package has been evaluated based upon time and storage requirements. Alternative methods for choosing from among O-sets for third-level gate candidates in Step 5 have been discussed. Finally, the adaptation to the NOR problem has been presented and proved.

CHAPTER IV

SEQUENTIAL DESIGN WITH TANT NETWORKS

This chapter describes the solution of sequential problems which use the TANT criteria for the combinational portion. The first section formulates the problem requiring sequential machines with TANT combinational logic. The second section describes the modifications required for the algorithm in Chapter II to solve the sequential problem. The third section describes the computer modifications for solving the generalized excitation table. A sequential example is given in the fourth section, and the final section provides a summary.

Problem Description

In general, a sequential problem is composed of two portions, a combinational logic circuit and some memory devices, as shown in Figure 9. The primary inputs are the nx's, and the mz's are the output. The j memory devices are fed by the excitation variables represented by E's, and feedback y's to the combinational portion. The sequential portion of the problem proceeds from the primitive flow table to the generalized excitation table. The generalized excitation table is used to start the TANT solution for the combinational portion of the problem. The sequential design portion is well documented, but the application of the TANT algorithm of Chapter II to the generalized excitation table is a new concept.

Figure 9. The General Sequential Circuit

The sequential problem begins by converting the word statement of the problem into a primitive flow table; i.e., a flow table with only one stable state per row. The next step is to use state reduction techniques to find a minimal row flow table. Next, state assignments are made and the transition table is generated. From the transition table a generalized excitation table is generated. This is a key step, in that one does not need to choose a particular type of flip-flop yet. In many design procedures the type of flip-flop is chosen at this point and excitation tables are used to produce the Boolean equations for the combinational portion of the problem. By using the generalized excitation tables, the choice of a particular flip-flop may be postponed until the optimal combinational circuit is found for each option and, thus, the overall optimal sequential machine is determined. The combinational portion of the problem proceeds as in the algorithm of Chapter II for the solving of a TANT problem.

Modifications for Sequential Applications

The basic TANT algorithm requires two modifications to be used effectively for sequential design problems. Since the state values from the memory are available in both complemented and uncomplemented form, the TANT restriction of true inputs only must be relaxed for the optimal combinational logic design problem. Secondly, the memory requires excitation values which must be supplied by the combinational portion of the circuit. These outputs, as well as the total network's output require that the TANT algorithm be capable of simultaneous optimization to provide multiple outputs. These modifications are useful as well for other applications. For example, many problems in combinational

logic require multiple outputs, and often some inputs will be available in uncomplemented form.

The presence of some uncomplemented inputs relaxes the restriction that the primary cube (111...1) be contained within every cell used as a gate input combination. The primary cube becomes a primary cell, with the requirement that every implicant or implicate used as a gate candidate must contain at least one member of the primary cell. The primary cell does contain the primary cube. The extended TANT algorithm will solve regular TANT problems, as they are a special case of the set of problems requiring a primary cell (i.e., TANT has a primary cell of dimension 1).

The multiple output case for TANT problems proceeds similar to multiple output AND/OR problems. The minterms are "tagged" to indicate for which function (outputs or excitations) the minterm is intended. As the prime implicants are generated the "tags" are carried along, and any implicant with all minterms having the same flag(s) becomes "tagged" for the same function(s) as the minterms. The final count can, thus, be minimized by using some of the same gates for two (or more) functions. The circling on the O's need not be tagged, as any function can use any third-level gate it might need. The multiple output extension is merely a bookkeeping procedure, but does result in the overall optimal result.

The Generalized Excitation Table

An excitation table shows what the next state will be given the current state and the input, a generalized excitation table (25) shows what action will be taken when given the current state and the applied inputs. Each type of flip-flop has a unique excitation table for a

given problem. However, a generalized excitation is applicable to any flip-flop. The computer program uses the generalized excitation table to generate the excitation for each of the types of flip-flops within its library. The TANT algorithm will solve the combinational circuit for each excitation table and print the optimal result. The computer program merely uses the generalized excitation to postpone the selection of a particular flip-flop.

The entries in a generalized excitation table are: a 1, which indicates that the current state is 1 and the next state is 1; a 0, which indicates the current state is 0 and the next state is 0; a 9, which represents the transition from a current state of 1 to a next state of 0, and, finally, an I, which represents a current state of 0 and a next state of 1. Table III shows how each of these entries relates to some common flip-flop devices. Table III is essentially the library that the computer uses for converting the generalized excitation table into a list of minterms for input to the TANT algorithm.

Although there are many design steps leading to the formulation of the generalized excitation table, the table is merely the beginning point for the combinational circuit which will provide the excitation values and the outputs.

A Sequential Example

This example demonstrates the solution of a sequential problem with TANT circuitry for the combinational portion. The major emphasis will be the TANT solutions. A word statement is presented with its associated primitive flow table. The minimal row table is given without showing explicitly the row reduction. The state assignments are made and the

TABLE III

TRANSLATION OF GENERALIZED EXCITATION TABLE ENTRIES FOR SOME COMMON TYPES OF FLIP-FLOPS

		R	S	J	К	Т	D
I	0 → 1	0	1	1	***	1	1
Θ	1 → 0	1	0	-	1	1	О
1	1 → 1	0	-	_	0	o	1
o	0 - 0	-	О	О	-	0	_
	-	-	-	· _	-	-	-

transition table presented, which readily yields the generalized excitation table. The solution for T flip-flops is shown in detail, and some other flip-flop type solutions are presented. Finally, an optimal sequential circuit with TANT is shown in a diagram.

The desired sequential circuit is to respond to a series of input which will produce an output to trigger the release of a combination lock. The circuit is to operate in fundamental mode, have inputs of \mathbf{x}_1 and \mathbf{x}_2 , and produce outputs of \mathbf{z}_1 and \mathbf{z}_2 . To open the lock an output of $\mathbf{z}_1\mathbf{z}_2=11$ is to occur after the $\mathbf{x}_1\mathbf{x}_2$ input sequence of: 01, 00, 10, 11. The circuit is initialized to $\mathbf{y}_1\mathbf{y}_2\mathbf{x}_1\mathbf{x}_2=0001$, and only single bit changes in the inputs will be allowed. While the correct combination is being entered the output $\mathbf{z}_1\mathbf{z}_2$ shall be 10. Upon any deviation from the correct sequence the output will become 00, which will trigger external gates to bring the system back to the 0100 initial conditions.

The primitive flow table and reduced flow table are shown in Figure 10. Using the adjacency diagram of Figure 11(a) and the state assignment map of Figure 11(b), the state assignments of: $\alpha = 00$, $\beta = 01$, $\gamma = 11$, $\delta = 10$ are found. Figure 11(x) displays the transition table, and Figure 11(d) shows the generalized excitation table.

The generalized excitation table must be coverted to an excitation table for a particular type of flip-flop to begin the modified TANT design. Figure 12(a) shows this conversion for T flip-flops. ET will represent the excitation inputs for T flip-flops. The tags are A for ET_1 , B for ET_2 , C for Z_1 , and D for Z_2 . The primary cell in this case is $y_1y_2x_1x_2=(--11)$. The "don't cares" in the output subtable are due to the unstable states. Step 1 of the algorithm from Chapter II shows 1's present in the primary cell, so proceeding to Step 2 (circling the 1-sets)

	١	NEXT	STAT	Ε		OUTP	UT Z	1 ^Z 2
	1	NPUT	x ₁ x ₂	,	1	NPUT	x_1x_2	
·	00	01	11.	10	00	01	11	10
Α	В	A	G		10	10	- 0	
В	B	Α	-	С	10	10		10
С	E		D	©	-0		1-	10
D	-	Α	(D)	F	_	1-	11	
E	E	A		F	00	- O		-0
. F	E	_	G	F	00		00	00
G		A	<u></u>	F	_	- 0	00	00

(a)

	NEXT STATE	OUTPUT Z _I Z ₂			
	INPUT X ₁ X ₂	INPUT X _I X ₂			
	00 01 11 10	00 01 11 10			
АВ α	α α δ β	10 10 -0 10			
С в	δ — γ β	-0 — 1- 10			
D Y	- α 😯 δ	- I- II -			
EFG δ	δ α δ δ	00 10 00 00			

(b)

Figure 10. The Primitive and Reduced Flow Tables

Figure 11. Sequential Design Tables

generates $S_1 - S_4$ as shown in Figure 12(a). S_1 is tagged with D for z_2 , S_2 , and S_3 are tagged with a B, and S_4 is tagged with an A. The Step 3 test indicates that not all minterms are covered; therefore, proceed to Step 4. Figure 12(b) shows the cells generated by Step 4. T_1 allows the coverage of more new minterms; therefore, it is kept: Note that the T's need not be tagged as they are available to feed any second level gate. Step 3 indicates not all minterms are covered, and Step 4 regenerates T_2 . Step 5 passes this sole 0-set to Step 2 which generates S_9 , as in Figure 12(d). All minterms are now covered, so Step 6 is now executed. Only one possible circuit is found and no minimizations are possible. The resulting circuit with 13 gates and 33 inputs and/or interconnections is shown in Figure 13.

The input and gate counts for the combinations of flip-flops is shown in Table IV for both the TANT algorithm and the double-complement algorithm. Due to the state assignment, only 2 flip-flops are required in any of the circuits. The T,D flip-flop version (i.e., using a D flip-flop for memory device 1, and a T flip-flop for memory device 2) is shown in Figure 14. The circuit using only T's has the same number of gates as the D,T version, but more inputs. The D,T version has the interesting phenomena in that a third-level gate for one function directly feeds the first-level gate of another function. The result is that a particular gate is both a second- and a third-level gate at the same time.

This example shows (a) the TANT algorithm of Chapter II, when slightly modified, yields better (fewer gates and interconnections) sequential circuits than the double-complement method, and (b) allowing multiple types of flip-flops in the same circuit can at least result in

Figure 12. TANT Solution for Toggle Flip-Flops

Figure 13. The Toggle-Toggle Flip-Flop Solution

TABLE IV

INPUT AND GATE COUNTS FOR SOLUTIONS TO THE SEQUENTIAL EXAMPLE

Flip-Fl	lop Types		is Algorithm	Using Double-Complement		
FF1	FF2	Number of Gates	Number of Inputs	Number of Gates	Number of Inputs	
T	T	13	33	14	37	
D	D	14	31	14	31	
RS	RS	14	28	16	31	
JK	JK	14	28	16	31	
${f T}$	\mathbf{D}	14	3 5	14	3 5	
${f T}$	RS	14	33	15	34	
${f T}$	JК	14	33	15	34	
D	${f T}$	13	29	14	32	
D	RS	14	29	15	30	
D	JK	14	29	15	30	
RS	\mathbf{T}	13	30	15	34	
RS	D	14	31	15	32	
RS	JK	14	28	16	31	
JК	T	13	30	15	34	
JK	D	14	31	15	32	
JK	RS	14	28	16	31	

Figure 14. The Toggle-Delay Flip-Flop Solution

fewer interconnections.

Summary

This chapter described the general problem for sequential design with NAND gate combinational logic, and only true external inputs available. The modifications for the algorithm of Chapter II to handle the special requirements of primary cell and multiple output were described. The use of the generalized excitation table as the starting point for the computer program was presented. Finally, an example with detailed explanation for some cases was presented.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This thesis applied a new map-factoring type of algorithm to the solution of three-level NAND-gate problems with only uncomplemented inputs allowed. A set of theorems proved the optimality of the solution found by the basic algorithm. The theorems formed a constructive proof, and the steps of the procedure for the algorithm followed the theorems closely. Expansion of the basic algorithm allowed solutions to problems with sequential applications.

Conclusions

Third-level and second-level gates correspond to prime implicates and prime implicants, respectively. Not all of the prime implicants for a given function are required for the minimum realization of that function. These points with some input reduction allow the generation of an optimal circuit realization without using an exhaustive search on all possible combinations of gates. The procedure is readily implemented on a computer. While the algorithm considered many situations in parallel, the computer, being essentially a sequential machine, required that many steps be converted to loops. The NOR problem is easily handled by the algorithm due to the complemented function with complemented inputs relationship between NAND and NOR gates. The overall procedure produces an optimal result independent of the particular method of implementation of

some of the steps, particularly the choice of prime implicates for third-level gate candidates.

The basic TANT problem is a subset of combinational problems which allow some complemented inputs. The extension of the basic algorithm to solve problems with some complemented inputs involved expanding the primary 1-cube concept to a primary r-cube. Multiple outputs are required in many combinational problems. The multiple output procedure entailed the tagging of minterms and generated prime implicants. The extensions of some uncomplemented inputs and multiple outputs allows sequential problems to be solved.

Recommendations

The creation of hazardless networks being a desirable goal, the investigation of covering minterms more than once by adding selected gates to the optimal circuit is suggested. Work on fault analysis is suggested to both determine a circuit's sensitivity to a particular fault as well as fault detection and correction. One possible approach to this problem is the generation of input test sequences, i.e., a series of inputs with known expected outputs which yields the most information with the least effort. Further investigation of fan-in and fanout restrictions would increase the applicability of the algorithm to common design problems. A concentrated effort is needed to create a sequential CAD package to utilize fully the TANT algorithm in sequential applications.

The generality of the concept behind the algorithm could be investigated by considering more complex units than NAND gates as the basic building blocks. The basic objective is to search for an optimal circuit

without total exhaustive search upon the set of all possible circuits. This concept could be used for NAND-trees, minimizing package counts in microprocessor circuits, of a general method of attack on logic circuits. Since much of today's logic is implemented in software, the use of this algorithm to minimize programming steps in microprocessors should be investigated.

SELECTED BIBLIOGRAPHY

- (1) McCluskey, E. J. "Logical Design Theory of NOR-gate Networks With No Complemented Inputs." 1963 Proc. 4th Annual Symp. on Switching Circuit Theory and Logical Design, IEEE Special Publication S-156 (1963), pp. 139-148.
- (2) Nagle, H. T., Jr., Carroll, B. D., Irwin, J. D. An Introduction to Computer Logic. Englewood-Cliffs, N. J.: Prentice-Hall, 1975.
- (3) Bradley, D. B. "A Survey of Boolean Function Realization Using NAND and NOR Logic." (Unpub. M. S. Thesis, Auburn University, 1970.)
- (4) Gimpel, J. F. "The Minimization of TANT Networks." <u>IEEE</u> <u>Trans.</u> <u>Electron.</u> <u>Comput.</u>, EC-16 (1967), pp. 18-38.
- (5) Hohulin, K. R., Muroga, S. "Alternative Methods for Solving the CC-table in Gimpel's algorithm for Synthesizing Optimal Three-Level NAND Networks." (Abstract.) Computer (Dec., 1975), p. 95.
- (6) Ellis, D. T. "A Synthesis of Combinational Logic With NAND or NOR Elements." <u>IEEE Trans. Electron. Comput.</u>, EC-14 (1965), pp. 701-705.
- (7) Davidson, E. S. "An Algorithm for NAND Decomposition Under Network Constraints." <u>IEEE Trans. Comput.</u>, C-18 (1969), pp. 1098-1109.
- (8) Dietmeyer, D. L., Su, Y. H. "Logic Design Automation of Fan-in Limited NAND Networks." <u>IEEE</u> <u>Trans.</u> <u>Comput.</u>, C-18 (1969), pp. 11-22.
- (9) Schneider, P. R., Dietmeyer, D. L. "An Algorithm for Synthesis of Multiple-Output Combinational Logic." <u>IEEE Trans. Comput.</u>, C-17 (1968), pp. 117-128.
- (10) Chakrabarti, K. K., Choudhury, A. K., Basu, M. S. "Complementary Function Approach to the Synthesis of Three-Level NAND Networks." <u>IEEE Trans. Comput.</u>, C-19 (1970), pp. 509-514.
- (11) Koh, K. S. "A Minimization Technique for TANT Networks." <u>IEEE</u>
 <u>Trans. Comput.</u>, C-20 (1971), pp. 105-107.
- (12) Frackowiak, J. "The Synthesis of Minimal Hazardless TANT Networks." IEEE Trans. Comput., C-21 (1972), pp. 1099-1108.

- (13) Maley, G. A., Earle, J. The Logical Design of Transistor Digital Computers. Englewood-Cliffs, N. J.: Prentice-Hall, 1963.
- (14) Eisenberg, H. "An Algorithm for the NAND-Gate Realization of Switching Functions." (Unpub. M. S. Thesis, Cornell University, 1969.)
- (15) Torng, H. C. Switching Circuits Theory and Logic Design. Reading, Mass.: Addison-Wesley, 1972.
- (16) Baugh, C. S., Chandersekaran, C. S., Swee, R. S., Muroga, S.
 "Optimal Networks of NOR-OR Gates for Functions of Three
 Variables." IEEE Trans. Comput., C-21 (1972), pp. 153-160.
- Programming." IEEE Trans. Electron. Comput., EC-14 (1965), pp. 950-952.
- (18) Cameron, S. H. "The Generation of Minimal Threshold Nets by an Integer Program." IEEE Trans. Electron. Comput., EC-13 (1964), pp. 299-302.
- (19) Muroga, S. "Logical Design of Optimal Digital Networks by Integer Programming." Advances in Information Systems Science.

 Ed. J. T. Tou. New York: Plenum, 1970, pp. 283-384.
- (20) Hellerman, L. "A Catalogue of Three-Variable OR-Invert and AND-Invert Logic Circuits." <u>IEEE Trans. Electron. Comput.</u>, EC-12 (1963), pp. 198-223.
- (21) Smith, R. A. "Minimal Three-Variable NOR and NAND Logic Circuits.

 <u>IEEE Trans. Electron. Comput.</u>, EC-14 (1965), pp. 79-81.
- (22) Ramamoorthy, C. V. "New Synthesis Techniques for Special Logical Circuits." (Internal Memo.) Needham, Massachusetts: Honeywell, Inc., 1962.
- (23) Layton, J. E., Rowland, J. R. "Direct Map Factoring TANT Network Synthesis." (Report for National Science Foundation Research.) Stillwater, Oklahoma: Department of Electrical Engineering, 1975.
- (24) Givone, D. D. <u>Introduction to Switching Theory</u>. New York, N. Y.: McGraw-Hill, 1970

APPENDIX

COMPUTER PROGRAM LISTING

```
00000010
                                                                   00000020
                                                                   00000030
                                                                   00000040
    MAIN.
                                                                   00000050
                                                                   00000060
VARIABLES:
IN-LEGICAL UNIT NUMBER FOR THE INPUT DEVICE.
                                                                   00000070
ICUT-LOGICAL UNIT NUMBER FOR CUTPUT DEVICE.
                                                                   00000080
LPI-LEVEL PLUS 1.
                                                                   00000090
                                                                   00000100
LMI-LEVEL MINUS 1.
                                                                   00000101
NCTST- ARRAY OF VALUES FOR TESTING CRITERIA
      FOR STEP 5 CHOICES OF PRIME IMPLICATES.
                                                                   00000102
JCRIT- INDEX FOR TYPE OF STEP 5 BEING USED:
                                                                   000C0103
     = 1 MOST 1-SETS GENERATED.
                                                                   00000104
     =2 MOST NEW MINTERMS COVERED.
                                                                   00000105
     =3 MOST NEW MAXTERMS COVERED.
                                                                   00000106
     =4 FIRST O-SET GENERATED ALLOWING NEW MINTERM
                                                                   00000107
                                                                   00000108
         COVERAGE.
     =5 MAXTERNS IN HARD PLACES COVERED.
                                                                   00000109
     =6 MINTERMS IN HARD PLACES COVERED.
                                                                   00000110
NITHE-NUMBER OF NEW SUBFUNCTIONS (TEMPORARY).
                                                                   00000120
                                                                   00000130
ITTMP-NEW SUBFUNCTIONS(TEMPORARY).
                                                                   00000140
JMA.JMA2-LOOP INDEXING VARIABLES.
                                                                   00000150
                                                                   00000160
   IPRIM-THE PRIMARY CUBE.
   NCTRM-NUMBER OF MINTERMS INPUT.
                                                                   00000170
   ICRDR-ORDER OF FUNCTION TO BE MINIMIZED.
                                                                   00000180
   NDC -NUMBER OF DONT CARES READ IN.
                                                                   00000190
   ISET-TYPE OF SET TO BE PROCESSED(1-SET OR O-SET).
                                                                   00000200
MCCEL-NUMBER OF MAXTERM CELLS FOUND.
                                                                   00000210
MCELL-LIST OF MAXTERM CELLS FOUND.
                                                                   00000220
                                                                   00000230
MXTRM-LIST OF MAXTERMS.
MTRMS-LIST OF MINTERMS.
                                                                   00000240
ICUBE-0-SET CUBES NOW BEING CONSIDERED.
                                                                   00000250
ASTCF-NUMBER CF 0-SET CUBES NOW BEING CONSIDERED.
                                                                   00000270
NEMX-NUMBER OF MAXTERMS.
NTMP-PARTICULAR O-SET CUBE NOW BEING CONSIDERED.
                                                                   00000280
IS-LIST OF SUBFUNCTIONS.
                                                                   00000290
NCSF-NUMBER OF SUBFUNCTIONS.
                                                                   00000310
IT-LIST OF RESIDUAL FUNCTIONS.
NCTF-NUMBER OF RESIDUAL FUNCTIONS.

1FUNC-FUNCTION VALUE AT VARIOUS LEVELS OF SOLUTION.
                                                                   00000320
                                                                   00000330
LEVEL-CURRENT LEVEL OF FUNCTION.
                                                                   00000340
ICCV-COVERING TABLE WHERE ROW IS SUBFUNCTION AND COLUMN IS MINTERMO0000350
NEPIS-NUMBER OF ESSENTIAL PI'S.
                                                                   00000360
                                                                   00000370
IEPIS-LIST OF ESSENTIAL PI'S.
IFST-FIRST LEVEL DIRECT INPUT CUBE MINIMUM.
                                                                   00000380
                                                                   00000390
NCKT-NUMBER OF CIRCUITS.
NGATS-NUMBER OF GATES FOR A CIRCUIT.
                                                                   00000400
NINFT-NUMBER OF INPUTS FOR A CIRCUIT.
                                                                   00000410
ISWIC-SWITCH FOR DEBUG PRINT, IF ON(= TO IDBUG) THEN PRINT ALL
                                                                   00000420
                                                                   00000430
    DEBUG PRINTS.
IPRT-LOGICAL UNIT NUMBER FOR LINE PRINTER.
                                                                   00000440
                                                                   00000450
ICHUG-TEST VALUE FOR DEBUG SWITCH.
IDUM-LOGICAL UNIT NUMBER FOR NOWHERE.
                                                                   00000460
                                                                   00000470
                                                                   00000480
                                                                   00000490
VARIABLES INDEXING KEYS:
IT(JG.1) = THE MINIMUM OF THE INPUT CELL FOR THE JQTH O-SET.
                                                                   00000500
IS(JR.1)=THE MINIMUM OF THE INPUT CELL FOR THE JRTH 1-SET.
                                                                   00000510
IS(JR.2)=THE # OF IT'S BEFORE THE JRTH 1-SET.
                                                                   00000520
```

```
IS(JR.3)=THE LEVEL OF IFUNC FOR THE FUNCTION VALUES FOR THE JRTH 100000530
 12NC(JS)=THE JRTH 1-SET FOR THE JSTH 2ND LEVEL GATE.
                                                                     00000540
 I3RC(JT)=THE JQTH O-SET FOR THE JTTH 3RD LEVEL GATE.
                                                                     000C0550
 IFEED(JU.1) = # OF FEEDING GATES FOR THE 12ND(JU)TH GATE.
                                                                     00000560
 IFEEC(JU,JV)=THE JVTH FEEDING JQ FOR THE 12ND(JU)TH GATE.
                                                                     00000570
 MASK2(JW.JTERM)=VALUE OF THE SECOND LEVEL GATE AT JTERM FOR THE
                                                                     00000580
                                                                     00000590
                  I2ND(JW) TH GATE.
MASK3(JX, JTERM) = VALUE OF THE THIRD LEVEL GATE AT JTERM FOR THE
                                                                     00000600
                        I3RD(JX)TH GATE.
                                                                     00000610
 XL = (QL)VNDDI
                        USED FOR INDEX CONVERSION.
                                                                     00000620
                                                                     00000630
                                                                     00000640
   <<<INPUT CARDS>>>
                                                                     00000650
                                                                     00000660
THERE IS A SET OF CARDS FOR EACH PROBLEM
                                                                     00000670
   TC BE SOLVED. A BLANK TRAILER CARD
                                                                     00000680
   FCLLOWS THE LAST SET AND TERMINATES
                                                                     00000690
   EXECUTION.
                                                                     00000700
                                                                     00000710
                                                                     00000720
EACH SET CONTAINS THESE CARDS:
                                                                     00000730
      CARD 1- TITLE OR NOTE(MUST NOT BE BLANK).
                                                                     00000740
      CARD 2-IN 415 FORMAT
                                                                     00000750
            COLS 1-5 ORDER.I.E. NUMBER OF INPUTS
COLS 6-10 NUMBER OF MINTERMS TO BE READ
                                                                     00000760
                                                                     00000770
            COLS 11-15 NUMBER OF DON'T CARES
                                                                     00000780
            COLS 16-20 EXTRA DEBUG CUTPUT DUMP SWITCH.
                                                                     00000790
                         IF 1 IN COL 20 DUMP IS ON.
                                                                     00000800
                         IF O OR BLANK IN COL 20 ONLY SOLUTION PRINTOCOCO810
         COLS 21-25 NOR INDICATOR(IF BLANK SOLVE A NAND
                                                                     00000820
                         CIRCUIT, BUT IF A POSITIVE VALUE THEN
                                                                     00000830
                         SOLVE FOR A NOR CIRCUIT).
                                                                     000C0840
                                                                     00000850
      CARD 3 (AND MORE IF NECESSARY)-CONTAINS THE MINTERMS
                                                                     00000860
               IN 1615 FORMAT, I.E. EACH MINTERM IS RIGHT
                                                                     00000870
               JUSTIFIED IN A FIELD OF 5 COLS.
                                                                     00000880
                                                                     00000890
                                                                     00000900
                                                                     00000910
DIMENSION NGATS(30).NINPT(30)
                                                                     00000920
DIMENSION NCTST(10)
                                                                     00000921
DIMENSION MCKTS(3C)
                                                                     00000930
 CIMENSION IEPIS(30)
                                                                     00000940
                                                                     00000950
DIMENSION 13RD(30), [FEED(30, 10)
 DIMENSION MCELL(20)
                                                                     00000960
DIMENSION MXTRM(256)
                                                                     00000970
DIMENSION IFUNC(40,256)
                                                                     00000980
DIMENSION MTRMS(256), IDC(256), ICELL(20)
                                                                     00000990
DIMENSION ICUBE(20)
                                                                     00001000
DIMENSION IS(30,3)
                                                                     00001010
DIMENSION IT (30,2)
                                                                     00001020
DIMENSION ISTMP(20), ITTMP(20)
                                                                     00001030
DIMENSION ICOV(20,256)
                                                                     00001040
DIMENSION LPTST(20)
                                                                     00001050
DIMENSION LPINE(20), [2ND(20), [COVT(20,256)]
                                                                     00001060
DIMENSION TITLE(20)
                                                                     00001070
CIMENSICN ITT (30)
                                                                     00001080
DIMENSION MASK3(32,256), MASK2(32,256)
                                                                     00001090
CCMMCN IN, IOUT, IPRIM, ISET, IFUNC, LEVEL,
                                                                     00001100
                                                                     00001110
*ICCNV(30),MASK3,MASK2
CATA BLANK/
                                                                     000C1120
CATA IBLNK/ 1/
                                                                     00001130
CATA IPLUS/ + 1/
                                                                     00001140
DATA MINUS/ - 1/
                                                                     00001150
                                                                     00001160
I N = 5
                                                                     00001170
```

```
00001180
                        INITIALIZE IDBUG. IF IDBUG IS EQUAL TO ISWTC(ON THE INPUT CARDS) THEN
                                                                            00001190
                                                                            00001200
                        THE SWITCH IS TURNED ON AND ALL
                                                                            00001210
                        DEBUG OUTPUT WILL BE PRINTED.
                                                                            00001220
                                                                            000C1230
    ICBUG=1
                                                                            00001240
                                                                            00001250
    IPRT12=12
                                                                            00001260
                                                                            00001270
    IDUM=13
    IPRT=6
                                                                            00001280
                                                                            00001290
    ICUT=6
    INRUN=4
                                                                            00001291
                                                                            00001292
                             INITIALIZE AND PRINT RUN COUNT.
                                                                            00001293
                                                                            00001294
    REAC(INRUN, 20) JRUN, JCRIT, IDBUG, NCASES
                                                                            00001295
 20 FCRMAT(110.11.212)
                                                                            00001296
    JRUN = JRUN+1
                                                                            00001297
    REWIND INRUN
                                                                            00001298
    WRITE(INRUN, 20) JRUN, JCRIT, IDBUG, NCASES
                                                                            00001299
 WRITE(IOUT, 30) JRUN, JCRIT, IDBUG, NCASES
30 FCRMAT(' JRUN=', I10, 10X, 'JCRIT=', I2, 10X, 'IDBUG=', I3, 10X,
                                                                            00001300
                                                                            00001301
   * "NCASES=" . 13 )
                                                                            00001302
                                                                            00001303
                             INITIALIZE CASE COUNT.
                                                                            00001310
                                                                            00001320
    JCASES=0
                                                                            00001330
                                                                            00001350
                                                                            00001360
                                                                            00001370
             INPUT
                                                                            00001380
                             FIRST CARD HAS TITLE.
                                                                            00001390
                                                                            00001400
                                                                            00001410
 90 ICUT=IPRT
                                                                            00001420
    REAC(IN.91)TITLE
                                                                            00001430
 91 FCRMAT(20A4)
                                                                            00001440
                             TEST FOR BLANK CARD(IF BLANK ALL DONE).
                                                                            00001450
                               (FIRST 72 CCLS BLANK)
                                                                            00001451
                                                                            00001452
                                                                            00001460
    DC 52 JMA=1,18
                                                                            000C1470
                                                                            00001480
    IF(TITLE(JMA)-BLANK)93,92,93
 92 CENTINUE
                                                                            000C1490
                                                                            00001500
                                                                            00001510
    GC TC 9000
 93 CCNTINUE
                                                                            00001520
                                                                            00001530
                            STOP IF NCASES HAVE BEEN PROCESSED.
                                                                            00001540
                                                                            00001550
    IF(JCASES-NCASES) $4,8990,8990
                                                                            00001560
 94 CCNTINUE
                                                                            00001570
                                                                            00001580
    JCASES=JCASES+1
                                                                            00001590
                             PRINT TITLE.
                                                                            00001600
                                                                            00001610
                                                                            00001620
    WRITE(IOUT, 96)TITLE
                                                                            00001630
 96 FCRMAT('1',20A4)
                                                                            00001640
                                                                            00001650
                             SECOND CARD HAS FUNCTION PARAMETERS
                                                                            000C1660
                             ON 15 FORMAT.
                                                                            00001670
                                                                            00001680
    REAC(IN. 100) I ORDR, NOTRM, NODC, ISWTC, NOR
                                                                            00001690
100 FCRMAT(1615)
                                                                            00001700
```

```
00001710
    NCK T=0
                                                                        000C1720
    LEVEL=1
                                                                        00001730
    NCTF=0
                                                                        00001740
    MCOV=0
    NISF=0
                                                                        00001750
                                                                        00001760
    NCSE=0
    JSTCP=2**IORDR
                                                                        00001770
    IPRIM=JSTOP-1
                                                                        00001780
                                                                        000C1790
    JP1=JSTOP+1
    DO 107 JMA=1, JP1
                                                                        00001800
    IFUNC(1.JMA)=0
                                                                        000C1810
    DO 107 JMA2=1.10
                                                                        00001820
    ICOVIJMA2.JMA1=IBLNK
                                                                        00001830
1C7 CCNTINUE
                                                                        00001840
                                                                        00001850
    WRITE(IOUT, 110) IORDR, NOTRM, NODC, ISWTC, IDBUG
                                                                        00001860
110 FCRMAT('O FUNCTION OF ORDER: ',15/' WITH',15,' MINTERMS AND ',15,' 00001870
   *DCN''T CARES'/' ISWTC=', 15, ' IDBUG=', 15)
                                                                        00001880
                                                                        00001890
                           READ MINTERMS AND SET FUNCTION VALUE.
                                                                        00001900
                                                                        00001910
                                                                        00001920
    REAE (IN. 100) (MTRMS(JMA), JMA= 1, NOTRM)
    WRITE([OUT, 111)(MTRMS(JMA), JMA=1, NOTRM)
                                                                        00001930
                                                                        00001940
111 FCRMAT( *O MINTERMS ARE: * ,50(/1615))
                                                                        000C1950
    DC 120 JMA=1.NOTRM
                                                                        00001960
    JTMP=MTRMS(JMA)+1
                                                                        00001970
    IF(JTMP-JSTOP)115,115,113
                                                                        00001980
113 WRITE(IOUT, 114) MTRMS(JMA), IORDR
                                                                        00001990
114 FCRMAT('0*****GOOF***** YOU HAVE ENTERED', 110,
                                                                        00002000
   # * WHICH IS TOO BIG AS A MINTERM IN A FUNCTION OF ORDER .
                                                                        00002010
   # 12.º ******)
                                                                        00002020
115 CCNTINUE
                                                                        00002030
    IFUNC(1.JTMP)=1
                                                                        00002040
120 CCNTINUE
                                                                        000C2050
                                                                        00002060
                                                                        00002070
                           READ DON'T CARES AND FILL FUNCTION VALUES 1000C2080
                                                                        00002090
                                                                         00002100
    IF(NODC)141,141,130
130 REAC(IN, 100)(IDC(JMA), JMA=1, NODC)
                                                                        00002110
    WRITE(IOUT, 131)(IDC(JMA), JMA=1, NODC)
                                                                        00002120
131 FCRMAT('O DONT CARES ARE:',50(/1615))
                                                                        000C2130
    DO 140 JMA=1, NODC
                                                                        00002140
                                                                        00002150
    JTMF=IDC(JMA)+1
    IFUNC(1.JTMP)=2
                                                                        00002160
140 CENTINUE
                                                                        00002170
                                                                        00002171
141 CENTINUE
    IF(NOR)150,150,142
                                                                        00002172
                                                                        00002173
142 CCNTINUE
                                                                        00002180
                                COMPLEMENT INPUTS USING IFUNC(2, J) AS 00002190
                                  A SCRATCH PAD.
                                                                        00002200
                                                                         00002210
                                                                        00002220
    DC 143 JMA=1, JSTOP
    JTMP=JSTOP-JMA+1
                                                                        00002230
                                                                        00002240
    IFUNC(2.JTMP)=IFUNC(1.JMA)
143 CCNTINUE
                                                                         00002250
                                                                        000C2260
                                 COMPLEMENT FUNCTION AND FIND NEW
                                                                        00002270
                                 WORKING MINTERMS. RESET # OF WORKING 00002280
                                 MINTERMS.
                                                                         00002290
                                                                        00002300
                                                                         00002310
    NCTRM=0
    DO 146 JMA=1, JSTOP
                                                                        00002320
    JTPP=IFUNC(2, JMA)
                                                                         00002330
```

```
00002340
     IF{JTMP-1)144,146,147
144 NOTRM=NOTRM+1
                                                                         00002350
                                                                        00002360
     MIRES(NOTRM) = JMA
                                                                         00002370
146 IFUNC(2.JMA)=1-JTMP
147 CCNTINUE
                                                                         00002380
                                                                         00002390
                                                                        00002400
150 CENTINUE
                                                                        00002410
                           TEST FOR DEBUG AND SET SWITCH.
                                                                         00002420
                                                                        00002430
                                                                         00002440
     IF(ISWTC-IDBUG)152,153,152
                                                                         00002450
152 ISHTC=IDUM
                                                                         00002460
     GC TO 154
                                                                         00002470
 153 ISWTC=IPRT
154 ICUT=ISWTC
                                                                         000C2480
                                                                         00002490
                                                                        00002500
                            SET MAXTERMS.
                                                                        000C2510
                                                                        00002520
                                                                         00002530
     JMAII=1
     NCMX=JSTOP-NODC-NCTRM
                                                                         00002540
     JIMF=NCMX
                                                                         00002550
                                                                         00002560
     CC 160 JMA=1.JSTOP
     IF(JTMP)161.161.155
                                                                         00002570
                                                                        00002580
155 IF(IFUNC(1, JMA))160,156,160
                                                                         00002590
156 MXTRM(JMAII)=JMA-1
                                                                         00002600
     J+AII=JMAII+1
     JIMP=JTMP-1
                                                                         00002610
                                                                         00002620
160 CENTINUE
 161 CCNTINUE
                                                                         00002630
                                                                         00002640
                                                                        00002650
                            TEST FOR 1 OR O SET.
                                                                         00002660
                                                                        00002670
     IF(IFUNC(1.JSTOP))170,180,170
                                                                         00002680
                                                                         00002690
                                                                         00002700
                                                                         00002710
            FIND 1 SET.
                                                                        00002720
                                                                        00002730
170 ISET=1
     CALL SUBFN(NOTRM, MTRMS, NOCEL, ICELL, IS, NOSF)
                                                                        00002740
                                                                        00002750
     IF(NCCEL)300,300,171
                                                                        00002760
                                                                        00002770
                            NOTE: AT THIS POINT NOCEL SHOULD NEVER BE 000002780
                                                                         00002790
                                                                         00002800
171 CENTINUE
     1F(NISF)172,172,173
                                                                         00002810
                                                                         00002820
              NISE-NUMBER OF INITIAL SUBFUNCTIONS.
                                                                         000C2830
                                                                         00002840
                                                                         00002850
172 CCNTINUE
                                                                         00002860
    NISF=NOCEL
                                                                        00002870
173 CCNTINUE
    CALL CLPRT (IORDR, NOCEL, ICELL)
                                                                         00002880
                                                                         00002890
                            DEBUG STATEMENT NUMBER PRINT.
                                                                         00002900
                                                                        00002910
*
     1 ST# T= 173
                                                                         000C2920
                                                                         00002930
     WRITE(IOUT, 70C) ISTMT
                                                                        00002940
                                                                         00002950
                                                                         00002960
                             INITIALIZE NEXT LEVEL OF IFUNC.
                                                                         00002970
                                                                        00002980
                                                                        00002990
     LP1=LEVEL+1
```

```
00003000
     DC 174 JMA=1.JSTOF
     IFUNC(LP1.JMA)=IFUNC(LEVEL.JMA)
                                                                          00003010
                                                                          00003020
174 CONTINUE
                                                                          00003030
                                                                          00003040
     I FVFI =I P1
                                                                          00003050
                             REPLACE 1'S WITH R'S.
                                                                          00003060
                                                                          00003070
     DC 178 JMA=1.NOCEL
                                                                          00003080
       NCSF=NOSF+1
                                                                          00003090
       LCW=ICELL(JMA)
                                                                          00003100
                                                                          00003110
       IS(NOSF.1)=LOW
                                                                          00003120
       IS(NOSF,2)=NOTF
        IS(NOSF, 3) = LEVEL
                                                                          00003130
                                                                          00003140
       DC 178 JMA2=1.NOTRM
                                                                          000C3150
         IF(MTRMS(JMA2)-LOW)178,175,175
                                                                          00003160
175
         JTMP=MTRMS(JMA2)+1
                                                                          00003170
         IF(IFUNC(LEVEL, JTMP))178,176,176
                                                                          000C3180
         ITEST= IAND(LOW. MTRMS(JMA 2))
                                                                          00003190
176
         IF(ITEST-LOW) 178,177,178
                                                                          03003200
          IFUNC(LE VEL . JTMP) = 3
                                                                          00003210
 177
                                                                          00003220
         ICOV(NOSF, JTMP) = IPLUS
178 CCNTINUE
                                                                          00003230
     WRITE(IOUT, 7777) (IFUNC(LEVEL, JKK), JKK=1, JSTOP), LEVEL
                                                                          00003240
                                                                          00003250
                             DEBUG STATEMENT NUMBER PRINT.
                                                                          00003260
*
                                                                          00003270
     ISTMT=178
                                                                          00003280
     WRITE(IOUT, 700) ISTMT
                                                                          00003290
                                                                          00003300
                                                                          00003310
                                                                          00003320
                                                                          00003330
                             CHECK MINTERM COVERAGE.
                                                                          00003340
                                                                          00003350
                                                                          00003360
     DC 179 JMA=1.NOTRM
     JMA2=MTRMS(JMA)+1
                                                                          00003370
     IF(IFUNC(LEVEL, JMA2)-1)179,180,179
                                                                          00003380
179 CCNTINUE
                                                                          00003390
                                                                          00003400
     GC TO 500
                                                                          00003410
                                                                          00003420
                                                                          00003430
          FIND O SET.
                                                                          00003440
                                                                          00003450
                                                                          00003460
180 ISET=0
     (ALL SUBFN(NCMX, MXTRM, MOCEL, MCELL, IT, NOTF)
                                                                          00CC3470
     CALL CLPRT(IORDR, MOCEL, MCELL)
                                                                          00003480
                                                                          000C3490
                             DEBUG STATEMENT NUMBER PRINT.
                                                                          00003500
                                                                          00003510
     ISTMT=180
                                                                          00003520
     WRITE(IOUT, 700) ISTMT
                                                                          000C3530
                                                                          00003540
                                                                          00003550
                             INITIALIZE NEXT LEVEL OF IFUNC.
                                                                          00003560
     LMI=LEVEL
                                                                          00003570
     LEVEL=LEVEL+1
                                                                          000C3580
                                                                          00003590
     DO 181 JMA=1.JSTOP
                                                                          00003600
    IFUNC(LEVEL, JMA) = IFUNC(LM1, JMA)
                                                                          00003610
181 CONTINUE
                                                                          00003620
     NCTST(1)=0
                                                                          00003630
     NCTST(2)=0
                                                                          00003631
    NCTST(3)=0
                                                                          00003632
```

```
00003633
    NCTST(4)=0
                                                                         00003634
    NCTST(5)=0
                                                                         00003635
    NCTST(6)=0
                                                                         00003640
    NITMF=0
                                                                         00003650
     (CUBE(1)=1
                                                                         00003660
    NSTCP=1
                                                                         00003670
182 NTMF=1
                                                                         00003671
    NEWMAX=0
    MAXDST=0
                                                                         00003672
                                                                         00003680
183 LCW=MCELL(ICUBE(NTMP))
                                                                         00003681
                           SUM UP DISTANCES FOR MAXTERMS AS
                                                                         00003682
                           HARD PLACES CRITERIA.
                                                                         00003683
                                                                         00003684
                                                                         00003685
     MAXDST=MAXDST+IDIST(LOW, ICRDR)
                                                                         00003686
                                                                         00003690
                            FILL IN D'S(HERE USE A 2).
                                                                         00003700
                                                                         00003710
                                                                         00003720
     JSTRT=1 OW+1
                                                                         00003730
     CC 190 JMA=JSTRT, JSTOP
                                                                         000C3740
                                                                         000C3750
       IF(IFUNC(LEVEL, JMA)-2)186,190,186
                                                                         00003760
186
       JTMP=JMA-1
                                                                         00003770
       ITEST=IAND(LOW.JTMP)
                                                                         00003780
       IF(ITEST-LOW)190,187,190
                                                                         00003790
187
       IFUNC(LEVEL.JMA)=2
                                                                         00003791
                           INCREMENT NEW MAXTERM COVERED COUNT.
                                                                         00003792
                                                                         00003793
                                                                         00003794
     NEWPAX=NEWMAX+1
                                                                         00003795
                                                                         00003800
190 CENTINUE
                                                                         000C3810
                                                                         00003820
     IF(NTMP-NSTOP)191,193,193
                                                                         00003830
 191 NTMP=NTMP+1
                                                                         00003840
     GC TO 183
                                                                         00003850
 193 CCNTINUE
     WRITE(IOUT, 7777) (IFUNC(LEVEL, JKK), JKK=1, JSTOP)
                                                                         00003860
                                                                         00003870
7777 FCRMAT(1H ,4013)
                                                                         00003880
                                                                         00003890
                            DEBUG STATEMENT NUMBER PRINT.
                                                                         00003900
                                                                         00003910
     ISTMT=193
                                                                         00003920
     WRITE ( IOUT. 700) ISTMT
                                                                         00003930
                                                                         00003940
                                                                         00003950
     CALL SUBFN(NOTRM. MTRMS, NOCEL, ICELL, IS, NOSF)
                                                                         00003960
                                                                         00003970
                                                                         00003990
                                                                         00004000
     IF(NCCEL)195,195,194
 194 CCNTINUE
                                                                         00004010
                                                                          00004011
                          COUNT NEW MINTERMS AND DISTANCES
                                                                         00004012
                            TO MINTERMS IN HARD PLACES.
                                                                         00004013
                                                                         00004014
     NEWMIN=0
                                                                          00004015
                                                                         00004016
     MINDST=0
     DO 192 JMA=1.NOCEL
                                                                          00004017
                                                                          00004018
       LCW=ICELL(JMA)
       MINDST=MINDST+IDIST(LGW.IORDR)
                                                                          00004019
                                                                         00004020
       DO 192 JMA2=1,NOTRM
                                                                          00004021
         IF(MTRMS(JMA).LT.LOW) GO TO 192
                                                                         00004022
         JTMP=MTRMS(JMA)+1
                                                                         00004023
         IF(IFUNC(LEVEL.JTMP).NE.1) GO TO 192
```

```
ITEST=IAND(LOW, MTRMS(JMA2))
                                                                        00004024
                                                                        00004025
        IF(ITEST.NE.LCW) GO TO 192
        IFUNC (LEVEL, JTMP)=3
                                                                        00004026
                                                                        00004027
        NEWMIN=NEWMIN+1
192 CCNTINUE
                                                                        00004028
                                                                        00004029
                            CALL STEP5 FOR TESTING FOR WHICH
                                                                        00004030
                            PRIME IMPLICATE TO KEEP AS A
                                                                        00004031
                            THIRD LEVEL GATE CANDIDATE
                                                                        00004032
                                                                        00004033
    CALL STEP5(JCRIT.NCTST.NOCEL.NITMP.NSTOP.ITTMP.MCELL.
                                                                        00004034
   * ICUBE, ISTMP, ICELL, NEWMAX, NEWMIN, MAXDST, MINDST)
                                                                        00004035
                                                                        00004041
195 CONTINUE
                                                                        00004130
                                                                        00004140
                           RESET IFUNC.
                                                                        00004150
                                                                        00004160
                                                                        00004170
    DC 196 JMA2=1.JSTCP
                                                                        00004180
    IFUNC(LEVEL, JMA2) = IFUNC(LM1, JMA2)
196 CENTINUE
                                                                        00004190
                                                                        00004200
                           IF THE CRITERIA IS 4. USE THESE PRIME
                                                                        00004210
                            IMPLICATES AS GATE CANDIDATES.
                                                                        00004220
                                                                        00004230
    IF(JCRIT.EQ.4) GO TO 201
                                                                        00004240
                                                                        00004241
                            TEST FOR END OF THIS SERIES OF O SETS.
                                                                        00004242
                                                                        00004243
                                                                        00004244
    JMA=NSTOP
                                                                        00004245
    NTEST=MOCEL
                                                                        00004250
197 IF(ICUBE(JMA)-NTEST)198,199,199
                                                                        00004260
198 ICUBE(JMA)=ICUBE(JMA)+1
                                                                        00004270
    GC TO 182
                                                                        00004280
199 IF(JMA-1)201,201,200
                                                                        00004290
200 JMA=JMA-1
    NTEST=NTEST-1
                                                                        00004300
                                                                        00004310
    GC 10 197
                                                                        00004320
                           THAT NUMBER OF 0-SETS HAS BEEN COMPLETELY S000C4330
                                                                        00004340
201 CCNTINUE
                                                                        00004350
                                                                        00004360
    IF(NCTST(1))210,210,230
                                                                        00004370
                            THESE 0-SETS DID NOT INCREASE 1-SET COVERAGO0004380
                                                                        00004390
                                                                        00004400
210 IF(NSTOP-MOCEL)22C,9010,9010
220 NSTOP=NSTOP+1
                                                                        00004410
                                                                        00004420
                           REINITIALIZE ICUBE.
                                                                        00004430
                                                                        00004440
                                                                        00004450
    DC 225 JMA=1.NSTOP
    ICUBE (JMA) = JMA
                                                                        00004460
225 CCNTINUE
                                                                        00004470
                                                                        00004480
    GC TO 182
                                                                        00004490
230 CCNTINUE
                                                                        00004500
    WRITE(IOUT,235)
                                                                        00004510
235 FORMAT('O ENVELOPE PLEASE, THE CHOSEN O-SET CELL IS:')
                                                                        00004520
    MCCFL=NITMP
                                                                        00004530
                                                                        00004540
                           MORE MINTERMS WERE COVERED. MAKE FINDINGS F100004550
                                                                        00004560
                                                                        00004570
    DC 252 JMA=1, NITMF
    NOTF=NOTF+1
                                                                        00004580
    LCW=ITTMP(JMA)
                                                                        00004590
    MCELL(JMA) = LOW
                                                                        00004600
```

```
IT(NOTF, 1)=LOW
                                                                         00004610
     JSTRT=LOW+1
                                                                         00004620
                                                                         00004630
                            FILL IN WITH D'S(HERE WITH -NOTE AS D'S.
                                                                         00004640
                                                                         00004650
     DC 250 JMA2=JSTRT,JSTOP
                                                                         000C4660
246
           JTMP=JMA2-1
                                                                         00004670
           ITEST=IAND(LOW, JTMP)
                                                                         00004680
           IF(ITEST-LOW) 250,248,250
                                                                         00004690
 248
            IFUNC(LEVEL, JMA2) =-NOTF
                                                                         00004700
                                                                         00004710
 250 CCNTINUE
                                                                         00004720
                                                                         00004730
252 CCNTINUE
                                                                         00004740
                                                                         000C4750
     I SET=0
                                                                         00004760
     CALL CLPRT(IORDR, MOCEL, MCELL)
                                                                         000C4770
     WRITE(IOUT,7777) (IFUNC(LEVEL,JKK),JKK=1,JSTOP),LEVEL
                                                                         00004780
                                                                         00004790
                            DEBUG STATEMENT NUMBER PRINT.
                                                                         00004800
                                                                         00004810
     ISTMT=252
                                                                         00004820
     WRITE(IOUT, 700) ISTMT
                                                                         00004830
                                                                         00004840
     ISET=1
                                                                         00004850
                                                                         00004860
                                                                         00004870
                            GO TO 1-SET HANDLING OF R'S.
                                                                         00004880
                                                                         000C4890
     NCCEL = NCTST(1)
                                                                         00004900
    NCTEMP=NCTST(1)
                                                                         00004901
    DC 280 JMA=1, NCTEMP
                                                                         00004910
    ICELL(JMA) = ISTMP(JMA)
                                                                         00004920
280 CENTINUE
                                                                         00004930
    GC TC 171
                                                                         00004940
                                                                         00004950
                                                                         00004960
      CUTPUT.
                                                                         00004970
                                                                         00004980
300 CENTINUE
                                                                         00004990
    CALL CLPRT(IORDR, NOCEL, ICELL)
                                                                         00005000
                                                                         00005010
*
                            DEBUG STATEMENT NUMBER PRINT.
                                                                         00005020
                                                                         00005030
     ISTMT=300
                                                                         000C5040
    WRITE(IOUT, 700) ISTMT
                                                                         00005050
                                                                         00005060
     WRITE([OUT, 400]
                                                                         00005070
400 FCRMAT(1H0)
                                                                         00005080
    GC TC 90
                                                                         00005090
                                                                         00005100
                                                                         00005110
                       PRINT HEADINGS AND THEN S AND T FUNCTIONS.
                                                                         00005120
500 CENTINUE
                                                                         00005130
    WRITE(IDUT, 505)
                                                                         00005140
505 FCRMAT('O LEVEL 3
                            LEVEL 2º)
                                                                         000C5150
                                                                         00005160
                            DEBUG STATEMENT NUMBER PRINT.
                                                                         00005170
                                                                         00005180
     ISTMT=500
                                                                         00005190
    WRITE(IOUT, 700) ISTMT
                                                                         00005200
                                                                         000C5210
                                                                         00005220
   VARIABLES.
                                                                         00005230
    ISNCH-THE 1-SET NCW BEING CONSIDERED.
                                                                         00005240
    ITFIN-THE O-SET LAST FINISHED.
                                                                         00005250
```

```
00005260
     ISNCh=1
     ITFIN=0
                                                                          000C5270
     IF(NOSF)550,550,510
                                                                          00005280
 510 CCNTINUE
                                                                          00005290
     IF(IS(ISNOW,2)-ITFIN)520,520,530
                                                                          00005300
 520 | SET=1
                                                                          00005310
     CALL CLPR2(IORDR, IS(ISNOW, 1))
                                                                          00005320
     I SNC h = I SNOW+1
                                                                          00005330
     IF(ISNCW-NOSF)510,510,550
                                                                          00005340
 530 ISET=0
                                                                          00005350
     ITFIN=ITFIN+1
                                                                          00005360
     CALL CLPR2(IORDR, IT(ITFIN, 1))
                                                                          00005370
     GC TC 510
                                                                          00005380
                                                                          00005390
                                                                          00005400
 550 CCNTINUE
                                                                          00005410
                             PRINT INITIAL COVERING TABLE.
                                                                          00005420
                                                                          000C5430
                                                                          000C5440
     LAST=MTRMS(NOTRM) +2
     MIN1=MTRMS(1)+1
                                                                          00005450
                                                                          00005460
     ICCV(NCSF.LAST)=MINUS
                                                                          00005470
     N=NCSF
     WRITE(IOUT.555)
                                                                          000C5480
                                                                          00005490
 555 FCRMAT('OINITIAL COVERING TABLE: ')
                                                                          00005500
                             DEBUG STATEMENT NUMBER PRINT.
                                                                          00005510
*
                                                                          00005520
     1 STM1=555
                                                                          00005530
     WRITE(IOUT, 700) ISTMT
                                                                          00005540
                                                                          00005550
     WRITE(IOUT, 560) (MTRMS(JMA), JMA=1, NOTRM)
                                                                          00005560
                                                                          00005570
 560 FCRMAT(1H0,4X,3213)
                                                                          00005580
     DC 580 JP=1.N
     WRITE(IOUT.570) JP.(ICCV(JP. MTRMS(JMA)+1).JMA=1.NOTRM)
                                                                          00005590
 570 FCFMAT(16,32(1X,A1,1X))
                                                                          00005600
                                                                          00005610
                                                                          00005620
 580 CCNTINUE
     NF1=NCSF+1
                                                                          00005630
                                                                          00005640
     NEPIS=1
                                                                          00005650
     TEP IS (1)=NOSF
                                                                          00005660
                             PUT LAST SUBFUNCTION INTO IP1 ROW OF ICGV. 000C5670
                                                                          00005680
                                                                          00005690
     DC 590 JMA=1, NOTRM
     JIMF=MTRMS(JMA)+1
                                                                          00005700
     ICCV(NP1, JTMP) = ICCV(NOSF, JTMP)
                                                                          00005710
                                                                          00005720
 590 CENTINUE
                                                                          00005730
                                                                          00005740
                             TEST FOR ONLY ONE SUBFUNCTION FOUND DURING 000C5750
                             FIRST 1-SET SEARCH.
                                                                          00005760
                                                                          00005770
     C=ADTSL
                                                                          00005780
                                                                          00005790
     IF(NISF-1)300,60C,630
600 CENTINUE
                                                                          00005800
                                                                          00005810
                             CHECK FOR A CNE IN THE PRIMARY CUBE.
                                                                          00005820
                                                                          00005830
                                                                          00005840
     IF(IPRIM-1)630,620,630
620 CENTINUE
                                                                          00005850
     JSTCR=1
                                                                          00005860
                                                                          00005870
630 CENTINUE
                REDPI (NEPIS, JSTOR, ICOV, NOTRM, MTRMS, MCOV, NOSF, IEPIS, NP1)000C5880
     CALL
                                                                          00005890
                             DEBUG STATEMENT NUMBER PRINT.
                                                                          00005900
                                                                          00005910
```

```
ISTMT=630
                                                                           00005920
     WRITE(IOUT, 700) ISTMT
                                                                           00005930
 700 FCRMAT(1H+,125X,15)
                                                                           00005940
                                                                           00005950
     IF(MCOV)2000,2000.1000
                                                                           00005960
1000 CONTINUE
                                                                           00005970
     CALL
                RESET(JSTOP, NEPIS, IEPIS, IS, IT, NOTRM, MTRMS)
                                                                           00005980
                                                                           00005990
     CALL CKFND(NEPIS.IEPIS.IS.IT.I3RD.ICROR.IFEEC.N3RD.IFST)
                                                                           00006000
                                                                           00006010
1002 CCNTINUE
                                                                           00006020
                                                                           00006030
                                                                           00006040
     CALL M3RDI(NEPIS, IEPIS, N3RD, I3RD, IS, IT, IFEED, ISWTC)
                                                                           00006050
                                                                           00006060
     CALL ELZIN(NEPIS, IEPIS, IS, IT, IFEED, JSTOP, IORDR)
                                                                           00006070
     CALL ELBIN(NBRD, IBRD, IT, NEPIS, IEPIS, IS, IFEED, NGTRM, MTRMS, IORDR,
                                                                           00006080
    $JSTOP, IFST)
                                                                           00006090
                                                                           00006100
     CALL DUPGT (N3 RD, I3RD, NEP IS, IT, ISWTC, IFEED)
                                                                           00006110
                                                                           00006120
     ICUI=IPRT
                                                                           00006130
                                                                           00006140
                            OUTPUT THIS CIRCUIT.
                                                                           00006150
                                                                           30006160
     JCKT=NCKT+1
                                                                           00006170
     WRITE(IOUT, 2205) JCKT
                                                                           00006180
                                                                           00006190
     CALL CKPRT(NEPIS, 13RD, N3RD, 1EPIS, IFEED, IS, IT, IORDR, IFST, NCKT, NGATS00006200
    *,NINPT)
                                                                           00006210
                                                                           00006220
                             ATTEMPT TO FIND ALTERNATE
                                                                           00006230
                             CIRCUIT.
                                                                           00006240
                                                                           00006250
                                                                           00006260
     ICUT= ISWTC
     N2NO=NEPIS
                                                                           00006270
     WRITE(IOUT, 1010)(IEPIS(JMA), JMA=1, NEPIS)
                                                                           00006280
1010 FCRMAT(' THE ESSENTIAL PI''S ARE',2X,1015/
                                                                           00006290
    *(25X.1CI5/))
                                                                           00006300
                                                                           00006310
     CALL ALTCKT(IEPIS, IS, IT, I3RD, IFEED, IFLAG, JSTOP, N3RD,
                                                                           000C6320
    *N2ND,NEPIS, IORDR)
                                                                           00006330
                                                                           00006340
     IF(IFLAG)2400.240C.1002
                                                                           00006350
                                                                           00006360
2000 CENTINUE
                                                                           00006370
                             INITIALIZE I2ND'S FIRST PLACES TO ESSENTIALO00C6380
                                                                           00006390
                                                                           00006400
     DO 2010 JMA=1,NEPIS
                                                                           00006410
     I2ND(JMA)=IEPIS(JMA)
                                                                           00006420
2010 CENTINUE
                                                                           00006430
                                                                           00006440
                             INITIALIZE LPINE=LIST OF PRIME IMPLICANTS, NOO006450
                                                                           00006460
                             ESSENTIAL.
                                                                           00006470
                                                                           000C6480
     NLPI=0
     DO 2030 JMA=1.NOSF
                                                                           00006490
     IF(ICOV(JMA, LAST)-MINUS)2020,2030,2020
                                                                           00006500
                                                                           00006510
2020 CONTINUE
     NLPI=NLPI+1
                                                                           00006520
     LPINE(NLPI) = JMA
                                                                           00006530
2030 CENTINUE
                                                                           00006540
                                                                           00006550
С
                                                                           00006560
                             INITIALIZE CONSTANTS.
                                                                           00006570
```

```
00006580
     NMBR-NUMBER OF PI'S CURRENTLY BEING CONSIDERED.
                                                                           00006590
     NSTCP-LAST NONESSENTIAL PI TO BE CONSIDERED.
                                                                           00006600
     LPTST-LIST OF NONESSENTIAL PI'S CURRENTLY BEING CONSIDERED.
                                                                           00006610
                                                                           00006620
     NMBF=1
                                                                           00006630
     JAMER=NLPI
                                                                           00006640
     LPTST(1)=1
                                                                           00006650
     ISTOP=NLPI
                                                                           00006660
                                                                           00006670
                                                                           00006680
2040 DO 2050 JMA=1,NP1
     DC 2050 JMA2=1.LAST
                                                                           00006690
     ICOVT(JMA, JMA2) = ICOV(JMA, JMA2)
                                                                           00006700
2050 CONTINUE
                                                                           00006710
     NTMF=1
                                                                           00006720
2060 N2NDT=NEPIS+NTMP
                                                                           00006730
2065 I2ND(N2NDT) = LPINE (LPTST(NTMP))
                                                                           00006740
     JSTCR=LPINE(LPTST(NTMP))
                                                                           00006750
                                                                           00006760
                             N2NDT REDUCED BECAUSE REDPI INCREMENTS IT. 00006770
                                                                           00006780
     N2NDT=N2NDT-1
                                                                           00006790
     CALL REDPI(N2NDT, JSTOR, ICOVT, NOTRM, MTRMS, MCOV, NOSF, I2ND, NP1)
                                                                           0006800
     WRITE(IOUT, 2222) JAMBR, NMBR, NTMP, ISTOP, LPTST(NTMP)
                                                                           00006810
                                                                           00006820
    *.LPINE(LPIST(NIMP)).N2NOT
                                                                           00006830
                             DEBUG STATEMENT NUMBER PRINT.
                                                                           00006840
                                                                           00006850
     ISTMT=2065
                                                                           00006860
                                                                           00006870
     WRITE(IOUT, 700) ISTMT
                                                                           00006880
                                                                           00006890
     IF(NTMP-NMBR) 2C70, 2C80, 2080
2C70 NTMP=NTMP+1
                                                                           00006900
                                                                           00006910
2074 CONTINUE
     IF(ICOVT(LPINE(LPTST(NTMP)), LAST)-MINUS) 2060, 2C75, 2060
                                                                           00006920
2075 LFTST(NTMP) = LPTST(NTMP)+1
                                                                           00006930
     IF(LPTST(NTMP)-ISTOP)2074,2060,2210
                                                                           00006940
2080 WRITE(IOUT, 2090) (I2ND(JMA), JMA=1, N2NDT)
                                                                           00006950
                                                                           00006960
2090 FCRMAT('ONOW CONSIDERING', 2015)
                                                                           00006970
                             DEBUG STATEMENT NUMBER PRINT.
                                                                           00006980
                                                                           00006990
*
                                                                           00007000
     ISTMT=2080
     WRITE(IOUT, 700) ISTMT
                                                                           00007010
                                                                           00007020
     WRITE(IOUT, 2222) JNMBR, NMBR, NTMP, ISTOP, LPTST(NTMP)
                                                                           00007030
    *. LPINE(LPTST(NTMP)), N2NDT
                                                                           00007040
     IF(MCOV)2300,2300,2200
                                                                           0.0007050
                                                                           00007060
2200 CCNTINUE
                                                                           00007070
     CALL RESET(JSTOP, N2NDT, 12ND, IS, IT, NCTRM, MTRMS)
                                                                           00007080
     WRITE(IOUT, 2222) JNMBR, NMBR, NTMP, ISTOP, LPTST(NTMP)
                                                                           00007090
    *. LPINE(LPTST(NTMP)).N2NDT
                                                                           00007100
                                                                           00007110
                             DEBUG STATEMENT NUMBER PRINT.
                                                                           00007120
                                                                           00007130
     ISTMT=2200
                                                                           00007140
     WRITE(IOUT, 700) ISTMT
                                                                           00007150
                                                                           00007160
     CALL CKFND(N2NDT, 12ND, 15, 1T, 13RD, 10RCR, 1FEED, N3RD, 1FST)
                                                                           03007170
                                                                           00007180
                             FILL ITT, A TEMPORARY IT.
                                                                           00007190
                                                                           00007200
     DC 2203 JMA=1.NOTF
                                                                           00007210
     ITT(JMA)=IT(JMA.1)
                                                                           00007220
2203 CENTINUE
                                                                           00007230
```

```
00007240
2204 CENTINUE
                                                                           000C7250
     JCKT=NCKT+1
                                                                           00007260
                                                                           00007270
     CALL M3RDI(N2NDT, I2ND, N3RD, I3RD, IS, ITT, IFEED, ISWTC)
                                                                           00007280
                                                                           00007290
     CALL ELZIN(N2NDT, I2ND, IS, ITT, IFEED, JSTOP, IORDR)
                                                                           00007300
      CALL EL3IN(N3RD.I3PD.ITT,N2NDT.I2ND.IS.IFEED,NOTRM.MTRMS.IORDR. 00007310
    *JSTCP, IFST)
                                                                           00007320
     N3RCT=N3RD
                                                                           00007330
     CALL DUPGT(N3RD, 13RD, N2NDT, 1TT, 1SWTC, IFEED)
                                                                           00007340
     ICUT=IPRT
                                                                           00007350
                                                                           00007360
     WRITE(IOUT, 2205) JCKT
                                                                           00007370
22C5 FCRMAT('OTHIS IS CKT #',12)
                                                                           00007380
     CALL CKPRT(N2NDT, I3RD, N3RD, I2ND, IFEED, IS, ITT, IORDR, IFST, NCKT, NGATSOOOC7390
    *,NINPT)
                                                                           00007400
                                                                           00007410
                             ATTEMPT TO FIND ALTERNATE
                                                                           00007420
                             CIRCUIT.
                                                                           00007430
                                                                           00007440
     ICUT=ISWTC
                                                                           00007450
     CALL ALTCKT(I2ND, IS, ITT, I3RD, IFEED, IFLAG, JSTOP, N3RD,
                                                                           00007460
    *N2NCT.NEPIS.IORDR)
                                                                           00007470
                                                                           00007480
     IF(IFLAG)2207,2207,2204
                                                                           00007490
22C7 CCNTINUE
                                                                           00007500
     N3RC=N3RDT
                                                                           00007510
     IOL T = I SWTC
                                                                           00007520
     WRITE(IOUT, 2222) JNMBR, NMBR, NTMP, ISTOP, LPTST(NTMP)
                                                                           00007530
    *.LPINE(LPTST(NTMP)),N2NDT
                                                                           00007540
     MCCV=0
                                                                           00007550
     IF(NMBR-JNMBR 12230,2230,2210
                                                                          00007560
2210 CONTINUE
                                                                           00007570
                                                                           00007580
                             HAVING FOUND A COVERAGE, TRY NEW COMBINATIO00007590
                                                                           00007600
     IF(JNMBR-1)2400,2400,2220
                                                                           00007610
2220 JAMER=JNMBR-1
                                                                           00007620
     NTMF=1
                                                                           00007630
     NMBR=1
                                                                           00007640
     LPTST(1)=LPTST(1)+1
                                                                           00007650
     WRITE(IOUT, 2222) JAMBR, NMBR, NTMP, ISTOP, LPTST(NTMP)
                                                                           00007660
    *, LPINE(LPTST(NTMP)), N2NDT
                                                                          00007670
2222 FCRMAT('OJNMBR=',13,' NMBR=',13,' NTMP=',13,' ISTOP=',13,' LPTST='000C7680
    *,13,' LPINE=',13,' N2NDT=',13)
                                                                           00007690
                                                                           00007700
                             DEBUG STATEMENT NUMBER PRINT.
                                                                           00007710
*
                                                                           00007720
     ISTMT=2220
                                                                           00007730
     WRITE(IOUT, 700) ISTMT
                                                                           00007740
                                                                           000C7750
     IF(LPTST(1)-ISTOP)2C40,2040,2400
                                                                           00007760
2230 CCNTINUE
                                                                           00007770
     LPTST(NTMP) = LPTST(NTMP) +1
                                                                           00007780
     WRITE(IOUT, 2222) JNMBR, NMBR, NTMP, ISTOP, LPTST(NTMP)
                                                                           00007790
    *.LPINE(LPTST(NTMP)).N2NDT
                                                                           00007800
                                                                           00007810
                             DEBUG STATEMENT NUMBER PRINT.
                                                                           00007820
                                                                           00007830
     ISTMT=2230
                                                                           00007840
     WRITE( IOUT, 700) ISTMT
                                                                           00007850
                                                                           00007860
     IF(LPTST(NTMP)-ISTOP)2040,2040,2240
                                                                           00007870
2240 NTMF=NTMP-1
                                                                           00007880
     IF(NTMP)2400,2400,2245
                                                                           00007890
```

```
2245 CCNTINUE
                                                                          00007900
     N#BR=NMBR-1
                                                                          000C7910
     LFTST(NTMP) = LPTST(NTMP)+1
                                                                          00007920
     WRITE(IOUT, 2222) JNMBR, NMBR, NTMP, ISTOP, LPTST(NTMP)
                                                                          00007930
    *. LFINE(LPTST(NTMP)), N2NDT
                                                                          00007940
                                                                          00007950
*
                             DEBUG STATEMENT NUMBER PRINT.
                                                                          00007960
                                                                          00007970
     ISTMT=2240
                                                                          00007980
     WRITE(IOUT, 700) ISTMT
                                                                          00007990
                                                                          00008000
2250 IF(NMBR)2210,2210,2040
                                                                          00008010
                                                                          00008020
23CO CENTINUE
                                                                          00008030
                                                                          00008040
                             MINTERMS HAVE NOT BEEN COVERED, INCREASE
                                                                          00008050
                             NUMBER OF NONESSENTIAL PI'S TO TRY.
                                                                          00008060
                                                                          00008070
     NMER=NMBR+1
                                                                          00008080
     IF(NMBR-JNMBR)2310,2310,2210
                                                                          00008090
2310 CCNTINUE
                                                                          00008100
     NIMF=NIMP+1
                                                                          00008110
     LPTST(NTMP)=LPTST(NTMP-1)+1
                                                                          00008120
2320 CCNTINUE
                                                                          00008130
     IF(LPTST(NTMP 1-1STOP)2330,2330,2210
                                                                          00008140
2330 CENTINUE
                                                                          00008150
     WRITE(IOUT, 2222) JAMBR, NMBR, NTMP, ISTCP, LPTST(NTMP)
                                                                          00008160
    *.LPINE(LPTST(NTMP)).N2NDT
                                                                          00008170
     IF(ICOVT(LPINE(LPTST(NTMP)), LAST)-MINUS)2060, 2340, 2060
                                                                          00008180
2340 CONTINUE
                                                                          00008190
     LFTST(NTMP)=LPTST(NTMP)+1
                                                                          00008200
     GO TC 2320
                                                                          00008210
                                                                          00008220
                            PRINT OUT CKT ANALYSIS.
                                                                          00008230
                                                                          00008240
24CO ICUT=IPRT
                                                                          00008250
     WRITE([OUT, 2410)
                                                                          00008260
2410 FORMAT('OCKT# # OF GATES # OF INPUTS')
                                                                          00008270
     MING= 2000
                                                                         00008280
     DC 2490 JMA=1 NCKT
                                                                          00008290
     WRITE(IDUT, 2420) JMA, NGATS(JMA), NINPT(JMA)
                                                                         00008300
2420 FCRMAT(15,2113)
                                                                         00008310
     IF(NGATS(JMA)-MING)2470,2430,2490
                                                                          00008320
2430 IF(NINPT(JMA)-MININ)2480,2485,2490
                                                                          00008330
2470 MING=NGATS(JMA)
                                                                          00008340
248C MININ=NINPT(JMA)
                                                                          00008350
     MCKT=JMA
                                                                          00008360
     NACKT=0
                                                                          00008370
2485 NMCKT=NMCKT+1
                                                                          00008380
     MCKTS (NMCKT) = JMA
                                                                          00008390
2490 CENTINUE
                                                                          00008400
     IF(NMCKT-1)2495,2495,2510
                                                                          00008410
2495 CENTINUE
                                                                          00008420
     WRITE(IOUT, 2500) MCKT, MING, MININ
                                                                          00008430
2500 FCRMAT('008V10USLY CKT#',15,' IS THE MINIMUM WITH CNLY',15,' GATES000C8440
    * AND ONLY', 15, ' INPUTS')
     GC TC 90
                                                                          00008460
2510 WRITE([OUT, 2520] MING. MININ, (MCKTS(JMA), JMA=1, NMCKT)
                                                                          00008470
2520 FORMAT('OA TIE AMENG CIRCUITS WITH', 13, ' GATES AND',
*13, ' INPUTS'/' THE WINNING CIRCUITS ARE: ', 1015)
                                                                          0.0008480
                                                                         03008490
                                                                         00008500
                                                                          00008510
                                                                         00008520
                            PRINT NUMBER OF CASES PRCCESSED.
                                                                         00008530
                                                                          00008540
8990 WRITE(IOUT, 8991) NCASES
                                                                          00008550
```

```
8991 FCRMAT( FINISHED PROCESSING . 15. TEST CASES OR EXAMPLES)
                                                                       00008560
                                                                       00008570
                                                                       00008580
9000 WRITE ( [OUT , 9001 ) JRUN
     WRITE (INRUN, 9CO1) JRUN
                                                                       00008581
9001 FCRMAT("1 ALL DONE", 10X, "JRUN=", I10)
                                                                       00008590
                                                                       00088000
     STOP
                                                                       00008610
                                                                       00008620
9010 WRITE(IOUT, 9011) NSTOP, MOCEL
                                                                       00008630
                                                                       00008640
9011 FCRMAT('ITERMINATE**ZERO SET EXHAUSTED BUT NO MORE 1-SET CELLS
                                                                       00008650
    #FOUND*******//! **NSTOP= 1,15,1
                                                                       00008660
                                      MOCEL=',15)
                                                                       000008670
                                                                       00008680
                                                                       00008690
     STOP
                                                                       00008700
                                                                       00008710
     END
                                                                       00008720
                                                                       00008730
                                                                       00008740
                                                                       00008750
                                                                       00008760
 00008780
                                                                       00008790
     SUBFOLTINE CLPR2 (ICRDR, MIN)
                                                                       008800CC
                                                                       00008810
       SUBROUTINE TO PRINT OUT THE BINARY REP. OF A CELL.
                                                                       00008820
                                                                       00008830
                                                                       00008840
                                                                       00008850
     DIMENSION IBIN(20)
     CCMMCN IN.IOUT.MAX.ISET
                                                                       00008860
                                                                       00008870
   VARIABLES:
                                                                       00008880
     IORCR-ORDER OF THE FUNCTION WITH THIS CELL.
                                                                       00008890
     IN-LOGICAL UNIT NUMBER FOR THE INPUT DEVICE.
                                                                       00008900
     ICUT-LOGICAL UNIT NUMBER FOR THE OUTPUT DEVICE.
                                                                       00008910
     MIN-MINIMUM VALUE OF THIS CELL.
                                                                       00008920
     IC-VALUE OF THE JMA2TH BIT OF MIN.
                                                                       00008930
     MAX-MAXIMUM VALUE OF THIS CELL.
                                                                       000(8940
     IP-VALUE OF THE JMAZTH BIT OF MAX.
                                                                       00008950
     IBIN-ARRAY CONTAINING BINARY REPRESENTATION OF THIS CELL.
                                                                       00008960
                                                                       00008970
     CATA IONE.IZERO.ICASH/'1'.'O'.'-'/
                                                                       00008980
                                                                       00008990
    DC 1CO JMA=1, IORDP
                                                                       00009000
                                                                       00009010
         ITMP= 2 * * ( JMA - 1)
         JMA2=IORDR+1-JMA
                                                                       00009020
         IC=IAND(MIN.ITMP)
                                                                       00009030
         IP=IAND (MAX, ITMP)
                                                                       00009040
                                                                       00009050
         IF(IC+IP-ITMP)50,60,70
                                                                       0.000,9060
 50
         IBIN(JMA2)=IZERO
                                                                       00009070
         GC TO 100
                                                                       00009080
         IBIN(JMA2)=IDASH
                                                                       00009090
 60
         GO TO 100
                                                                       00009100
  70
         IBIN(JMA2)=IONE
                                                                       00009110
100 CCNTINUE
                                                                       00009120
                                                                       00009130
     IF(ISET)200,220,200
                                                                       00009140
200 WRITE(IOUT, 210)(IBIN(JMA), JMA=1, IORDR)
                                                                       00009150
 210 FCRMAT(15X, 20A1)
                                                                       00009160
     RETLAN
                                                                       00009170
 220 WRITE(IOUT, 230)(IBIN(JMA), JMA=1, IORDR)
                                                                       00009180
230 FCRMAT(3X,20A1)
                                                                       00009190
    RETURN
                                                                       03009200
```

00009860

```
00009210
   END
                                                                     00009220
                                                                     00009230
                                                                     00009240
00009260
                                                                     00009270
    SUBROUTINE SUBFN(N, LIST, NCCEL, ICELL, IP, NIP)
                                                                     00009280
                                                                     00009290
                                                                     00009300
   THIS SUBROUTINE FINDS THE MEMBERS OF THE X-SET.
                                                                     00009310
                                                                     00009320
    N-NUMBER OF VALUES IN LIST.
                                                                     00009330
    LIST-ARRAY OF VALUES (MINTERMS OR MAXTERMS) TO BE CIRCLED ON.
                                                                     00009340
    VARIABLES:
                                                                     00009350
                                                                     00009360
    IP-PREVIOUSLY CREATED CELLS.
                                                                     00009370
    IN-LOGICAL UNIT NUMBER FOR THE INPUT DEVICE.
                                                                     00009380
    ICUT-LOGICAL UNIT NUMBER FOR THE OUTPUT DEVICE:
                                                                     00009390
    NIP-NUMBER OF PREVIOUS CELLS.
                                                                     00009400
       IPRIM-THE PRIMARY CUBE.
                                                                     00009410
       ISET-TYPE OF SET TO BE PROCESSED(1-SET OR O-SET).
                                                                     00009420
                                                                     00009430
    JANUARY 16, 1977
                                                                     00009440
                                                                     00009450
    DIMENSION IP (30,2)
                                                                     00009460
    DIMENSION IFUNC(40,256)
                                                                     00009470
    DIMENSION LIST(1), ICELL(1)
                                                                     00009480
    CCMMGN IN, IOUT, IPRIM, ISET, IFUNC, LEVEL
                                                                     00009490
                                                                     00009500
    NCT=1-ISET
                                                                     00009510
    NCCEL=0
                                                                     00009520
                                                                     00009530
    DO 1CCO JMA=1.N
                                                                     00009540
                                                                     00009550
    LCW=LIST(JMA)
    LCW=IAND(LOW, IPRIM)
                                                                     00009560
                                                                     00009570
                          TEST IF ALL VERTICES ARE IN X-SET.
                                                                     00009580
                                                                     00009590
    JTEMP=LOW
                                                                     00009600
 30 IF(JTEMP-IPRIM)40,40,100
                                                                     00009610
 40 ITEST=IAND(JTEMP, LOW)
                                                                     00009620
    IF( ITEST-LOW) 60,5C,6C
                                                                     00009630
 50 If (IFUNC(LEVEL, JTEMP+1)-NOT) 60, 1000, 60
                                                                     00009640
 60 JTEMP=JTEMP+1
                                                                     00009650
    GC TC 30
                                                                     00009660
1CO CCNTINUE
                                                                     00009670
                                                                     00009680
                          TEST IF THIS CELL IS COVERED.
                                                                     00009690
                                                                     00009700
    IF(NCCEL)110,210,110
                                                                     00009710
110 CCNTINUE
                                                                     00009720
    DC 200 JTEMP=1.NOCEL
                                                                     00009730
    ITEST=IAND(ICELL(JTEMP),LOW)
                                                                     00009740
    IF(ITEST-ICELL(JTEMP))200,1000,200
                                                                     00009750
200 CCNTINUE
                                                                     00009760
                                                                     00009770
                          TEST IF THIS CELL WAS PREVIOUSLY CREATED. 00009780
                                                                     00009790
                                                                     00009800
210 CCNTINUE
    IF(NIP)250,250,22C
                                                                     00009810
220 DC 240 JTEMP=1.NIP
                                                                     00009820
    ITEST=IAND(LOW, IP(JTEMP, 1))
                                                                     00009830
    IF(ITEST-IP(JTEMP,1))240,1000,240
                                                                     00009840
240 CCNTINUE
                                                                     00009850
```

```
00009870
250 CCNTINUE
                                                                   00009880
    NCCEL=NOCEL+1
                                                                   00009890
    ICELL(NOCEL)=LOW
                                                                   00009900
1000 CENTINUE
                                                                   00009910
                                                                   00009920
    RETURN
                                                                   00009930
                                                                   00009940
    END
                                                                   00009950
                                                                   00009960
                        END OF SUBFN.
                                                                   00009970
                                                                   00009980
 00010000
                                                                   00010010
                                                                   00010020
                                                                   00010030
                                                                   00010040
    SUBPOUTINE CLPRT(IORDR, NOCEL, ICELL)
                                                                   00010050
     THIS SUBROUTINE PRINTS A LIST OF THE CELLS FOUND.
                                                                   00010060
                                                                   00010070
                                                                   03010080
    JANLARY 16. 1977
                                                                   00010090
    DIMENSION IFUNC(40,512)
                                                                   00010100
    DIMENSION ICELL(1), IBIN(12)
                                                                   00010110
    COMMON IN. IOUT, IPRIM. ISET, IF UNC. LEVEL
                                                                   00010120
                                                                   00010130
    CATA IONE, IZERO, ICASH/'1', '0', '-'/
    VARIABLES:
                                                                   00010140
       IPRIM-THE PRIMARY CUBE.
                                                                   00010150
       ISET-TYPE OF SET TO BE PROCESSED(1-SET OR O-SET).
                                                                   00010160
    ICUT-LOGICAL UNIT NUMBER FOR THE OUTPUT DEVICE.
                                                                   00010170
    IN-LCGICAL UNIT NUMBER FOR THE INPUT DEVICE.
                                                                   00010180
                                                                   00010190
    WRITE(IOUT.10)ISET
                                                                   00010200
 10 FORMAT( *O THE *, 12, *-SET IMPLICANTS ARE: */ * CELL MIN CELL MAX
                                                                   00010210
   * BINARY FORM')
                                                                   00010220
                                                                   00010230
    IF(NCCEL)20,20,40
                                                                   00010240
 20 WRITE(IOUT, 30)
 30 FCRMAT(*O I DID NOT WISH TO PRINT ANYTHING ANYWAY#&*&*)
                                                                   00010250
                                                                   00010260
    RETURN
                                                                   00010270
 40 CCNTINUE
                                                                   00010280
    DO 110 JMA=1, NOCEL
                                                                   00010290
                                                                   00010300
                                                                   00010310
    DC 90 JTEMP=1.IORCR
                                                                   00010320
    ITMF=2**(JTEMP-1)
    JMAII= IORDR+1-JTEMP
                                                                   00010330
    IC=IAND(ICELL(JMA), ITMP)
                                                                   00010340
                                                                   00010350
    IP=IAND(IPRIM,ITMP)
    IF(IC+IP-ITMP)50,60,70
                                                                   00010360
 50 IBIN(JMAII)=IZERO
                                                                   00010370
    GC TO 90
                                                                   00010380
 60 IBIN(JMAII)=IDASH
                                                                   00010390
                                                                   00010400
    GC TO 90
 70 IBIN (JMAII) = ICNE
                                                                   00010410
                                                                   00010420
 90 CENTINUE
    WRITE(IOUT, 100) ICELL(JMA), IPRIM, (IBIN(J), J=1, IORDR)
                                                                   00010430
                                                                   00010440
100 FCRMAT(1H , 17, 110, 6X, 12A1)
 110 CENTINUE
                                                                   00010450
    RETURN
                                                                   00010460
                                                                   00010470
    END
                                                                   00010480
                                                                   00010490
 00010510
                                                                   00010520
```

```
00010530
                                                                      00010540
                                                                      00010550
   SUBPOUTINE CELL(MIN, MAX, IBIN, NSIZE, IORDR)
                                                                      00010560
   CIMENSION IBIN(1)
   CATA IONE, IZERO, IDASH/'1', "O', "-"/
                                                                      00010570
   VARIABLES.
                                                                      00010580
    MIN-CELL MINIMUM.
                                                                      00010590
                                                                      00010600
    MAX-CELL MAXI MUM.
    IBIN-ALPHAMERIC ARRAY OF THE BINARY REPRESENTATION OF THE CELL.
                                                                      00010610
    NSIZE-SIZE OF THE CELL(NUMBER OF DASHES).
                                                                      00010620
    ICRDR-ORDER OF THE CELL(NUMBER OF DIGITS).
                                                                      00010630
                                                                      00010640
                                                                      00010650
    NSIZE=0
   DC 100 JMA=1. IORDR
                                                                      00010660
                                                                      00010670
    ITMF=2**(JMA-1)
                                                                      00010680
    JMA2=IORDR+1-JMA
                                                                      00010690
    IC= IAND (MIN, ITMP)
                                                                      00010700
    IP=IAND(MAX, ITMP)
                                                                      00010710
    IF(IC+IP-ITMP)50,60,70
 50 IBIN(JMA2)=IZERO
                                                                      00010720
                                                                      00010730
    GC TO 100
 60 IBIN(JMA2)=IDASH
                                                                      00010740
                                                                      00010750
   NSIZE=NSIZE+1
                                                                      00010760
    GC TO 100
70 IBIN(JMA2)=IONE
                                                                      00010770
                                                                      00010780
100 CENTINUE
    RETURN
                                                                      00010790
                                                                      00010800
    END
                                                                      00010810
                                                                      00010820
                                                                      00010830
                                                                      00010840
00010860
                                                                      00010870
                                                                      00010880
                                                                      00010890
    SUBFOUTINE CKFND(N2ND, I2ND, IS, IT, I3RD, IORDR, IFEED, N3RD, IFST)
                                                                      00010900
                                                                      00010910
 VARIABLES:
    INUSE-I WILL USE THIS LIST AS 3RD LEVEL GATES.
                                                                      00010920
    NWU SE-NUMBER THAT WILL BE USED.
                                                                      00010930
    N2NC-NUMBER OF 2ND LEVEL GATES.
                                                                      00010940
    I 2NC-LIST OF SECOND LEVEL GATES.
                                                                      00010950
    IS-LIST OF SUBFUNCTIONS.
                                                                      00010960
                                                                      00010970
    IT-LIST OF RESIDUAL FUNCTIONS.
    I 3RD-LIST OF 3RD LEVEL GATES.
                                                                      00010980
    N3RD-NUMBER OF 3RD LEVEL GATES.
                                                                      00010990
    IFEEC-2 DIMENSIONAL LIST OF 3RD LEVELS FEEDING 2ND LEVEL.
                                                                      00011000
    IGATE-2ND LEVEL GATE NOW BEING CONSIDERED.
                                                                      00011010
    IGAT3-3RD LEVEL GATE BEING CONSIDERED.
                                                                      00011020
                                                                      00011030
    MIN-LOWER BOUND OF CELL FOR CURRENT GATE.
                                                                      00011040
    N2T-NUMBER OF 2ND LEVEL GATES TEMPORARY.
    IREF-REFERENCE FOR REDUCED CIRCUIT.
                                                                      00011050
    IFST-MIN FOR DIRECT INPUT CUBE INTO FIRST LEVEL GATE.
                                                                      00011060
                                                                      00011070
    DIMENSION I2ND(1), [3RD(1), IS(30,1), IFEED(30,1), IT(30,1)
                                                                      00011080
                                                                      00011090
    DIMENSION IFUNC(40,256)
    DIMENSION NOUSE(2C) . IWUSE(20)
                                                                      00011100
    CCMMCN IN, IOUT, IPRIM, ISET, IFUNC, LEVEL
                                                                      00011110
    IREF=0
                                                                      00011120
                                                                      00011130
    NRD=0
    N2T=N2ND
                                                                      00011140
                                                                      00011150
    IFST=-1
    DC 50C JMA=1.N2ND
                                                                      00011160
                                                                      00011170
    NWU SE=0
                                                                      00011180
    IFEED(JMA-IREF,1)=0
```

```
00011190
    IGATE= I2ND(JMA)
    MIN=IS(IGATE.1)
                                                                        00011200
                                                                        00011210
    JLEVL=IS(IGATE,3)
                                                                        00011220
                           FIND FEEDING 3RD LEVEL GATES FOR THIS GATE.00011230
                                                                        00011240
                                                                        00011250
    IBEGIN=MIN+1
                                                                        00011260
    ISTCP=IPRIM+1
    DO 2CO JMA2=IBEGIN, ISTOP
                                                                        00011270
                                                                        00011280
    JTMP=JMA2-1
    ITEST=IAND(JTMP,MIN)
                                                                        00011290
                                                                        00011300
    IF( ITEST-MIN) 200, 10, 200
                                                                        00011310
 10 CCNTINUE
                                                                        00011320
    IF(IFUNC(1, JMA2)) 15, 15, 200
                                                                        00011330
 15 CONTINUE
    ICAT3=IFUNC(JLEVL,JMA2)
                                                                         00011340
                                                                        00011350
    IF(IGAT3)20,200,200
                                                                        00011360
 20 CCNTINUE
                                                                        00011370
                           TEST AND ADD THIS GATE TO 3RD LEVEL LIST. 00011380
                                                                         00011390
                                                                        00011400
                            CHECK IF THIS GATE HAS BEEN USED, AND ADD 100011410
                            TO INUSE IF IT HASN'T BEEN USED.
                                                                        00011420
                                                                         00011430
                                                                        00011440
 45 IF(NhUSE)70,70,50
                                                                        00011450
                                                                        00011460
 50 DC 60 JMA3=1.NWUSE
    IF(IWUSE(JMA3)-IGAT3)60,200,60
                                                                        00011470
                                                                        00011480
 60 CENTINUE
                                                                        00011490
                                                                         00011500
 70 NAUSE=NWUSE+1
                                                                        00011510
    IWUSE(NWUSE) = IGAT3.
                                                                         00011520
200 CENTINUE
                                                                        00011530
                            IF MIN=O AND NWUSE=1 THIS IS REDUCIBLE.
                                                                        00011540
                                                                        00011550
                                                                         00011560
    IF(MIN)205,204,205
                                                                         00011570
204 IF(NWUSE-1)205,350,205
                                                                         00011580
2C5 CCNTINUE
                                                                         00011590
    IF(NWUSE)500,500,210
                                                                         00011600
                                                                         00011610
210 CCNTINUE
                                                                        00011620
    ITEMP=1
    DO 300 JMA2=1.NWUSE
                                                                         00011630
                                                                         00011640
    IFFED(JMA-IREF.1) = ITEMP
                                                                         00011650
    ITEMP=ITEMP+1
    IGAT3=-IWUSE(JMA2)
                                                                         00011660
    IFEED(JMA-IREF, ITEMP)=IGAT3
                                                                         00011670
    IF(N3RD)290,290,240
                                                                         00011680
                                                                         00011690
240 CCNTINUE
                                                                         00011700
    DO 280 JMA3=1.N3RD
                                                                         00011710
    IF(1GAT3-13RD(JMA3))280,300,280
                                                                         00011720
280 CCNTINUE
                                                                         00011730
290 CCNTINUE
                                                                         00011740
    N3RE=N3RD+1
                                                                         00011750
    I 3RC (N3RD) = IGAT3
                                                                         00011760
300 CONTINUE
                                                                         00011770
    GC TC 500
                                                                         00011780
350 CENTINUE
    IFST=IT(-IWUSE(1).1)
                                                                         00011790
                                                                         00011800
    N2T=N2T-1
                                                                         00011810
    IRFF= [RFF+1
                                                                         00011820
    IF(JMA-N2T)36C,36C,380
                                                                         00011830
                            MOVE 2ND LEVEL GATES UP TO COVER ELIMINATEDO3011840
```

```
00011850
                            GATE -
                                                                       00011860
360 DO 370 JMA2=JMA,N2T
                                                                       00011870
    I 2NC (JMA2) = [2ND(JMA2+1)
                                                                       00011880
370 CENTINUE
                                                                       00011890
                                                                       00011900
380 CCNT INUE
                                                                       00011910
500 CCNTINUE
                                                                       00011920
                                                                       00011930
    N2NC=N2T
                                                                       00011940
                                                                       00011950
    RETURN
                                                                       00011960
                                                                       00011970
    END
                                                                       00011980
                                                                       00011990
00012010
                                                                       00012020
    SUBROUTINE CKPRT(NEPIS, 13RD, N3RD, 12ND, IFEED, IS, IT, IORDR, IFST, NCKT, 00012030
                                                                       00012040
   *NGATS.NINPT)
                                                                       00012050
                                                                       00012060
        VARIABLES:
    NEPIS-NUMBER OF ESSENTIAL PI S=ALSO NUMBER OF 2ND LEVEL GATES.
                                                                       00012070
    IZNC-LIST OF 2ND LEVEL GATES=IEPIS IN MAIN PGM.
                                                                       00012080
    IFEED-LIST OF 3RD LEVEL GATES FEEDING 2ND LEVEL GATES.
                                                                       00012090
    N3RC-NUMBER OF THIRD LEVEL GATES.
                                                                       00012100
    IBRC-LIST OF BRD LEVEL GATES.
                                                                       00012110
    IS-LIST OF SUBFUNCTIONS.
                                                                       00012120
    NCKT-NUMBER OR CIRCUITS.
                                                                       00012130
    NGATS-NUMBER OF GATES FOR THIS CIRCUIT.
                                                                       00012140
   NINPI-NUMBER OF INPUTS FOR THIS CIRCUIT.
                                                                       00012150
                                                                       00012160
   DIMENSION NGATS(1), NINPT(1)
                                                                       00012170
    DIMENSION I 3RD(1), (2ND(1), (FEED(30,1), ($(30,1), (T(30,1))
                                                                       00012180
    DIMENSION IBIN3(10), IBIN2(10)
                                                                       00012190
   CCMMCN IN. IGUT. IPFIM
                                                                       00012200
   EATA ICOMT/'.T'/
                                                                       00012210
                                                                       00012220
    NCKT=NCKT+1
                                                                       00012230
    NGATS (NCKT) = N 3RD+NEP IS+1
                                                                       00012240
    NINFT(NCKT) = NEPIS
                                                                       00012250
    MAX=IPRIM
                                                                       00012260
    LCOP=NEPIS
                                                                       00012270
    IF(LOGP-N3RD) 10,20,20
                                                                       00012280
                                                                       00012290
 10 LOOP=N3RD
                                                                       00012300
 20 CENTINUE
                                                                       00012310
                           WRITE HEADINGS.
                                                                       00012320
                                                                       00012330
   WRITE([OUT, 50]
                                                                       00012340
50 FCRMAT('03RD LEVEL GATES',10X,' 2ND LEVEL GATES, AND INPUTS FROM 3R00012350
   *D LEVEL', 10X, 'DIRECT INPUTS TO FIRST LEVEL')
                                                                       00012360
                                                                       00012370
   DC 5CO JMA=1.LOOP
                                                                       00012380
                                                                       00012390
                           PRINT 3RD LEVEL.
                                                                       00012400
                                                                       00012410
    IF(N3RD-JMA)240,100,100
                                                                       00012420
100 I13=13RD(JMA)
                                                                       00012430
   CALL CELL(IT(IT3,1), MAX, IBIN3, NSIZE, ICRDR)
                                                                       00012440
   NINPT(NCKT) = NINPT(NCKT) + (IORDR-NSIZE)
                                                                       00012450
   WRITE(IOUT, 120) IT3, (IBIN3(JMA2), JMA2=1, IORDR)
                                                                       00012460
120 FORMAT(' T'. 12, 1X, 10A1)
                                                                       00012470
   GC TC 250
                                                                       00012480
240 WRITE(ICUT, 241)
                                                                       00012490
241 FCRMAT( * *)
                                                                       00012500
```

```
00012510
250 CENTINUE
                                                                       00012520
                                                                       00012530
                            PRINT 2ND LEVEL.
                                                                       00012540
                                                                       00012550
     IF (NEPIS-JMA) 300, 260, 260
                                                                       00012560
 260 CCNTINUE
     CALL CELL(IS(I2ND(JMA).1). IPRIM. IBIN2.NSIZE. IOROR)
                                                                       00012570
     NTS=IFEED(JMA.1)
                                                                       00012580
     NINFT(NCKT)=NINPT(NCKT)+NTS+(IORDR-NSIZE)
                                                                       00012590
                                                                       00012600
     WRITE(IOUT, 270)(IBIN2(JMA2), JMA2=1, IORDR)
 27C FCRMAT(1H+,27X,10A1)
                                                                       00012610
     IF(NTS)300,300,280
                                                                       00012620
                                                                       00012630
 280 N1S=NTS+1
                                                                       00012640
     WRITE(IOUT.290)(ICOMT.[FEED(JMA.JMA2].JMA2=2.NTS)
                                                                       00012650
 290 FCRMAT(1H+, (37X, 9(A2, I2)/))
                                                                       00012660
                            PRINT OUT FIRST LEVEL.
                                                                       00012670
                                                                       00012680
                                                                       00012690
 300 CONTINUE
     IF(1-JMA)500,310,310
                                                                       00012700
 310 CENTINUE
                                                                       00012710
     IF(IFST)500,320,320
                                                                       00012720
 320 CALL CELL(IFST, IPRIM, IBIN2, NSIZE, IOROR)
                                                                       00012730
     NINPT(NCKT)=NINPT(NCKT)+(IORDR-NSIZE)
                                                                       00012740
     write(IOUT.330)(IBIN2(JMA2), JMA2=1, IORDR)
                                                                       00012750
 330 FCRMAT(1H+,80X,10A1)
                                                                       00012760
 500 CENTINUE
                                                                       00012770
                                                                       00012780
                                                                       00012790
     RETURN
                                                                       00012800
     END
                                                                       00012810
                                                                       00012820
 00012830
                                                                       00012840
                                                                       00012850
                                                                       00012860
                                                                       00012870
     SUBFCUTINE RESET(JSTOP, NEPIS, IEPIS, IS, IT, NOTRM, MTRMS)
                                                                       00012880
     DIMENSION IS(30,1), IT(30,1)
                                                                       00012890
                                                                       00012900
     DIMENSION IFUNC(40,256)
     DIMENSION ICOV(20,256), IEPIS(1), MTRMS(1)
                                                                       00012910
                                                                       00012920
     CCMMCN IN. IOUT, IPRIM, ISET, IFUNC, LEVEL
                                                                       00012930
                                                                       00012940
     ISTRT=1
                                                                       00012950
                            SET SUBFUNCTION LEVEL INDICES.
                                                                       00012960
                                                                       00012970
                                                                       00012980
     IF(IS(1,3)-2)1010,1010,1020
                                                                       00012990
1010 LSTMP=2
     GC TO 1030
                                                                       00013000
1020 LSTMF=3
                                                                       00013010
1030 CCNTINUE
                                                                       00013020
                                                                       00013030
                            REGENERATE IFUNC VALUES.
                                                                       0.0013040
                                                                       00013050
С
                                                                       0.0013060
     DC 1300 JMA=2, LEVEL
                                                                       00013070
     LM1=JMA-1
     IF(JMA-LSTMP) 1040,1070,1040
                                                                       00013080
                                                                       00013090
                            RESER IFUNC VALUE FOR RESIDUALS.
                                                                       00013100
                                                                       00013110
1040 DC 1060 JMA2=1.JSTOP
                                                                       00013120
     IF(IFUNC(JMA, JMA2))1060, 1050, 1050
                                                                       00013130
1050 IFUNC(JMA, JMA2) = IFUNC(LM1, JMA2)
                                                                       00013140
1060 CENTINUE
                                                                       00013150
     GC TC 1300
                                                                       00013160
```

```
00013170
                            RESET FUNC VALUES FOR SUBFUNCTIONS.
                                                                      00013180
                                                                      00013190
1C70 CCNTINUE
                                                                      00013200
                                                                      00013210
                                                                      00013220
                            INITIALIZE IFUNC TO LEVEL BELOW.
                                                                      00013230
                                                                      00013240
    DC 1080 JMA2=1.JSTOP
     IFUNC(JMA.JMA2) = IFUNC(LM1.JMA2)
                                                                      00013250
                                                                      00013260
1080 CCNTINUE
                                                                      00013270
                            REPLACE 1'S WITH R'S.
                                                                      00013280
                                                                      00013290
    DO 1200 K=ISTRT.NEPIS
     JMA2=IEPIS(K)
                                                                      00013300
                                                                      00013310
     IF(IS(JMA2,3)-JMA)1200,1100,1090
1090 ITMP=K
                                                                      00013320
                                                                      00013330
    GC TC 1220
1100 CONTINUE
                                                                      00013340
     LCW=IS(JMA2,2)
                                                                      00013350
                                                                      00013360
                                                                      00013370
     DC 1140 JMA3=1.NOTRM
                                                                      00013380
     IF(MTRMS(JMA3)-LOW)1140,1110,1110
                                                                      00013390
1110 JTMF=MTRMS(JMA3)+1
                                                                      00013400
     IF(IFUNC(JMA, JTMP))1140,1120,1120
1120 ITEST=IAND(LOW.MTRMS(JMA3))
                                                                      00013410
                                                                      00013420
     IF (ITEST-LOW) 1140,1130,1140
1130 IFUNC(JMA.JTMP)=3
                                                                      00013430
1140 CENTINUE
                                                                      00013440
12CO CCNTINUE
                                                                      00013450
                                                                      00013460
1220 CENTINUE
     ISTRT=ITMP
                                                                      00013470
                                                                      00013480
    LSTMP=LSTMP+2
                                                                      00013490
1300 CENTINUE
                                                                      00013500
     RETURN
                                                                      00013510
     END
                                                                      00013520
                                                                      00013530
 00013550
                                                                      00013560
                                                                      00013570
     SUBROUTINE REDPI(NEPIS, JSTOR, ICOV, NOTRM, MTRMS, MCOV, NOSF, IEPIS, NP1)00013580
    DIMENSION ICOV(20,256), IEPIS(1), MTRMS(1)
                                                                      00013590
     CEMMEN IN. IOUT. IPRIM
                                                                      00013600
     CATA IPLUS, MINUS/*+*, *-*/
                                                                      00013610
                                                                      00013620
     LAST=MTRMS(NOTRM)+2
                                                                      00013630
     IF(JSTOR)630,630,600
 6CO CCNTINUE
                                                                      00013640
                                                                      00013650
                            PUT SUBFUNCTION IN ROW NP1 OF ICOV ALSO.
                                                                      00013660
                            THAT IS, IT IS ESSENTIAL AND IPI ROW IS
                                                                      00013670
                            FOR COVERING TESTS.
                                                                       00013680
                                                                       00013690
                                                                      00013700
    NEPIS=NEPIS+1
     IEPIS(NEPIS) = JSTOR
                                                                      00013710
     ICOV(JSTOR, LAST) = MINUS
                                                                      00013720
                                                                      00013730
     CO 620 JMA=1.NOTRM
                                                                      00013740
                                                                      00013750
     JIMF=MIRMS(JMA)+1
     IF(ICOV(JSTOR,JTMP)-IPLUS)620,610,620
                                                                      00013760
                                                                      00013770
 610 CCNTINUE
     ICOV(NP1.JTMP)=IPLUS
                                                                      00013780
                                                                      00013790
 620 CENTINUE
                                                                      00013800
                            CHECK FOR MINTERM COVERAGE.
                                                                      00013810
                                                                      00013820
```

```
DC 625 JMA=1, NOTRM
                                                                          00013830
     IF(ICOV(NP1, MTRMS(JMA)+1)-IPLUS)630,625,630
                                                                          00013840
 625 CCNTINUE
                                                                          00013850
     MCCV=1
                                                                          00013860
     GC 1C 700
                                                                          00013870
 630 CENTINUE
                                                                          00013880
                                                                          00013890
                                                                          00013900
                             FIND ESSENTIAL PI'S.
                                                                         00013910
                                                                          00013920
                                                                          00013930
     DC 680 JMA=1.NOTRM
     JTMP=MTRMS(JMA)+1
                                                                         00013940
     IF(ICCV(NP1,JTMP)-IPLUS)640,680,640
                                                                          00013950
 64C CCNTINUE
                                                                          00013960
                                                                         00013970
     I = 0
     DC 660 JMA2=1.NOSF
                                                                          00013980
     IF(ICCV(JMA2, JTMP)-IPLUS)660,650,660
                                                                          00013990
 650 CCNTINUE
                                                                         00014000
     JSTCR=JMA2
                                                                          00014010
                                                                          00014020
     [=[+]
 660 CENTINUE
                                                                          00014030
     IF(I-1)680,600,680
                                                                          00014040
 680 CCNTINUE
                                                                         00014050
                                                                          00014060
                                                                         00014070
                             ELIMINATE COVERED SUBFUNCTIONS.
                                                                          00014080
                                                                         00014090
 700 CCNTINUE
                                                                          00014100
                                                                         00014110
     DC E1C JMA=1, NOSF
     IF(ICOV(JMA, LAST)-MINUS)780,810,780
                                                                         00014120
                                                                         00014130
 780 CCNTINUE
     DC ECC JMA2=1 + NOTRM
                                                                         00014140
     JTMP=MTRMS(JMA2)+1
                                                                         00014150
     IF(ICCV(NP1,JTMP)-IPLUS)790,800,790
                                                                         00014160
 790 CCNTINUE
                                                                         00014170
     IF(ICOV(JMA,JTMP)-IPLUS)800,810,800
                                                                         00014180
 800 CCNTINUE
                                                                         00014190
     ICOV(JMA, LAST) = MINUS
                                                                         00014200
 810 CCNTINUE
                                                                         00014210
                                                                         00014220
                             PRINT REDUCED PI TABLE.
                                                                         00014230
                                                                         00014240
     WRITE(IOUT.820)
                                                                         00014250
 820 FCRMAT( 'OREDUCED TABLE.')
                                                                         00014260
                                                                         00014270
     WRITE(IDUT.830)(MTRMS(JMA).JMA=1.NOTRM)
                                                                         00014280
 830 FCRMAT(1H0.4X,32I3)
                                                                         00014290
     DC 900 JP=1,NP1
                                                                         00014300
     IF(ICCVIJP, LAST) - MINUS 1850, 900, 850
                                                                         00014310
                                                                         00014320
 850 CONTINUE
     WRITE(10UT, 360) JP, (ICOV(JP, MTRMS(JMA)+1), JMA=1, NOTRM)
                                                                         00014330
 86C FCRMAT(16,32(1X,A1,1X))
                                                                         00014340
 SCO CENTINUE
                                                                         00014350
    IF(MCOV)905,905,1000
                                                                         00014360
 905 CONTINUE
                                                                         00014370
                                                                         00014380
                             CHECK FOR MINTERM COVERAGE.
                                                                         00014390
                                                                         00014400
     CC S1C JMA=1, NOTRM
                                                                         00014410
     IF(ICOV(NP1,MTRMS(JMA)+1)-IPLUS12000,910,2000
                                                                         00014420
 S10 CCNTINUE
                                                                         00014430
     MCDV=1
                                                                         00014440
                                                                         00014450
10CO CONTINUE
                                                                         00014460
2000 CENTINUE
                                                                         00014470
     RETLAN
                                                                         00014480
```

```
END
                                                                       00014490
                                                                       00014500
                                                                       00014510
00014530
                                                                       00014540
    MINIMIZE 3RD LEVEL INPUTS.
                                                                       00014550
     SUBROUTINE Mardi(N2ND, 12ND, N3RD, 13RD, 15, 17, 1FEED, 10UT)
                                                                       00014560
                                                                       00014570
    IZNC-LIST OF 2ND LEVEL GATES.
                                                                       00014580
     IZRC-LIST OF 3RD LEVEL GATES.
                                                                       00014590
    N2NC-NUMBER OF 2NC LEVEL GATES.
                                                                       00014600
    N3RC-NUMBER OF 3RD LEVEL GATES.
                                                                       00014610
     IFEEC-FEDDING 3RD LEVEL GATES TO A PARTICULAR 2ND LEVEL GATE.
                                                                       00014620
    IS- CELL MINIMUMS FOR 2ND LEVEL INPUTS.
                                                                       00014630
     IT- CELL MINIMUMS FOR 3RD LEVEL INPUTS.
                                                                       00014640
     IELIM-LIST OF INPUTS TO BE ELIMINATED.
                                                                       00014650
     JMA- LOCP INDEX.
                                                                       00014660
     JMA2-INTERIOR LOOP INDEX.
                                                                       00014670
     ICUT-OUTPUT DEVICE LOGICAL UNIT NUMBER
                                                                       00014680
    DIMENSION IT(30.1). IS(30.1)
                                                                       00014690
                                                                       00014700
    DIMENSION IFEED (30.1)
    DIMENSION IELIM(3C)
                                                                       00014710
    DIMENSION [2ND(1).[3RD(1)
                                                                       00014720
                                                                       00014730
                                                                       00014740
     IF(N3RD)1000,1000,10
                                                                       00014750
  10 IF(N2ND)1000,1000,20
                                                                       00014760
  20 CENTINUE
                                                                       00014770
                            INITIALIZE POTENTIAL INPUT ELIMINATIONS.
                                                                       00014780
                                                                       00014790
    DC 4C JMA=1.N3RD
                                                                       00014800
    IG= I3RD(JMA)
                                                                       00014810
                                                                       00014820
    IELIM(IG)=IT(IG, 1)
    WRITE(IOUT, 30) JMA, IG, IELIM(IG)
                                                                       00014830
  30 FORMAT('0JMA=',14,' IG=',14,' IELIM(IG)=',15)
                                                                       00014840
                                                                       00014850
  40 CENTINUE
                                                                       00014860
                            AND EACH 3RD LEVEL POTENTIAL INPUT ELIMINATO0014870
                            WITH THE 2ND LEVEL GATES IT FEEDS TO
                                                                      00014880
                            FIND INPUTS TO BE ELIMINATED.
                                                                       00014890
                                                                       00014900
    DC 80 JMA=1.N2ND
                                                                       00014910
    IF(IFEED(JMA.1))80,80,50
                                                                       00014920
  50 ITEMP=IFEED(JMA.1)+1
                                                                       00014930
                                                                       00014940
    MIN=IS(I2ND(JMA),1)
                                                                       00014950
    DC &C JMA2=2. ITEMP
     IG= IFEED(JMA. JMA2)
                                                                       00014960
     IELIM(IG)=IAND(MIN, IELIM(IG))
                                                                       00014970
    WRITE(IOUT, 55) JMA, JMA2, IG, IELIM(IG), MIN
                                                                       00014980
 55 FCRMAT( JMA= ",14, JMA2= ",14, IG= ", 14, IELIM= ",14, MIN= ",14) 00014990
 60 CENTINUE
                                                                       00015000
  &C CONTINUE
                                                                       00015010
                                                                       00015020
                            ELIMINATE THE INPUTS BY EXCLUSIVE ORING.
                                                                       00015030
                                                                       00015040
                                                                       00015050
    DC 1CO JMA=1.N3RD
                                                                       00015060
    IG= [3RO(JMA)
    IT(IG.1)=IXOR(IT(IG.1).IELIM(IG))
                                                                       00015070
                                                                       00015080
    WRITE(IOUT, 30 JJMA, IG, IELIM(IG)
100 CENTINUE
                                                                       00015090
1CCO CONTINUE
                                                                       00015100
                                                                       00015110
    RETURN
                                                                       00015120
     FND.
                                                                       00015130
                                                                       00015140
```

```
00015150
20015170
                                                                     00015180
                                                                     00015190
                                                                     00015200
  ELIMINATE 2ND LEVEL INPUTS.
   SUBPOUTINE ELZIN(N2ND,12ND,15,IT,IFEED,JSTOP,IORDR)
                                                                     00015210
                                                                     00015220
                                                                     00015230
   VARAIBLES:
                                                                     00015240
   N2NE-NUMBER OF SECOND LEVEL GATES.
    IZNO-LIST OF SECOND LEVEL GATES.
                                                                     00015250
    IS -CELL MINIMUMS FOR SECOND LEVEL GATES.
                                                                     00015260
                                                                     00015270
    IT -CELL MINIMUMS FOR THIRD LEVEL GATES.
    IFEED-LIST OF 3ND LEVEL GATES FEEDING 2ND LEVEL GATES.
                                                                     00015280
    J2NC CURRENT 2ND LEVEL GATE BEING CONSIDERED.
                                                                     00015290
    ICUT-OUTPUT LOGICAL UNIT NUMBER.
                                                                     00015300
    MIN-CELL MINIMUM FOR CURRENT 2ND LEVEL GATE BEING CONSIDERED.
                                                                     00015310
    MAX-PRIMARY CELLIMAX FOR ANY CELLI.
                                                                     00015320
    MAXC-MAXIMUM FOR CELL=MAX IF NO FEEDING 3RD LEVEL;=COMPLIMENT
                                                                     00015330
         OF 3RD CELL MINIMUM IF ONLY ONE FEEDING 3RD LEVEL GATE.
                                                                     00015340
    MINF3-MINIMUM FOR FEEDING 3RD LEVEL CELL.
                                                                     00015350
                                                                     00015360
    BITNO-BIT NUMBER IN CELL BEING PROCESSED.
    MINT-MINIMUM TEMPORARY(FOR TESTING FOR INPUT REMOVAL).
                                                                     00015370
                                                                     00015380
    IRMCV-INPUT TO BE REMOVED (MAYBE?).
                                                                     00015390
    JBEG-LOWER BOUND FOR INDEXING MINTERMS IN CELL.
    JENC-UPPER BOUND FOR INDEXING MINTERMS IN THIS CELL.
                                                                     0.2015400
    JIERN-TERM BEING CONSIDERED.
                                                                     00015410
                                                                     00015420
                                                                     00015430
    DIMENSION I2NC(1), IFEED(30,1)
                                                                     00015440
    DIMENSION IFUNC(40,256)
                                                                     00015450
    DIMENSION MASK3(512)
                                                                     00015460
    CIMENSICH IBIN(10)
                                                                     00015470
    DIMENSION IS(30,1), IT(30,1)
                                                                     00015480
    DIMENSION ICONV(30)
                                                                     00015490
                                                                     00015500
   COMMON IN. IOUT. MAX. ISET. IFUNC. LEVEL, ICONV. MASK3, MASK2
                                                                     00015510
   DATA JONE/'1'/
                                                                     00015520
                                                                     00015530
                                                                     00015540
   DO 1000 JMA=1.N2ND
                                                                     00015550
    J2NC=12ND(JMA)
                                                                     00015560
   MIN=IS(J2ND.1)
                         CAN'T ELIMINATE INPUTS IF THERE AREN'T ANY.00015570
                                                                     00015580
                                                                     00015590
   IF(MIN)1000,1000,100
                                                                     00015600
100 CENTINUE
                                                                     00015610
    NFEED=IFEED(JMA.1)
                          TEST NUMBER OF FEEDING 3RD LEVEL GATES;
                                                                     00015620
                          DIFFERENT CASES FOR ONE FEED, ZERO FEEDS, 00015630
                          AND TWO CR MORE FEEDS.
                                                                     00015640
                                                                     00015650
                                                                     00015660
    IF(NFEED-1)120,300,300
                                                                     00015670
                                                                     00015680
                          ZERO FEEDERS SET MAXIMUM FOR CELL(MAXC) TO 00015690
                                                                     00015700
                          PRIMARY CUBE.
                                                                     00015710
                                                                     00015720
120 CENTINUE
                                                                     00015730
   MAXC=MAX
                                                                     00015740
130 CCNTINUE
                                                                     00015750
                                                                     00015760
                          FIND FUNCTION CELL.
                                                                     00015770
                                                                     00015780
    CALL CELL(MIN, MAXC, IBIN, NSIZE, ICRDR)
    WRITE(IOUT, 140) MIN, MAXC, (IBIN(J), J=1, IORDR)
                                                                    00015790
                                                                     00015800
140 FCRMAT("OMIN=", 14," MAXC=", 14," CELL=", 1CA1)
```

```
00015810
                           ATTEMPT TO REMOVE 2ND LEVEL INPUTS.
                                                                        00015820
                                                                        00015830
                                                                        00015840
    JENC=MAXC+1
                                                                        00015850
                                                                        00015860
    DO 250 JMA2=1,IORDR
                                                                        00015870
    IF( |BIN( JMA2) - JONE) 250, 150, 250
                                                                        00015880
150 CCNTINUE
                                                                        00015890
    IRMCV=2**(IORDR-J#A2)
                                                                        00015900
    MINT=MIN-IRMOV
                                                                        00015910
    IF(MINT)250,155,155
                                                                        00015920
155 CCNTINUE
                                                                        00015930
    JEEG=MINT+1
                                                                        00015940
                                                                        00015950
                            TEST IF ALL THE ENTRIES IN THE NEW CELL
                                                                        00015960
                            ARE MINTERMS OR DON'T CARES.
                                                                        00015970
                                                                        00015980
    DO 200 JMA3=JBEG, JEND
                                                                        00015990
                                                                        00016000
                           TEST IF THIS TERMS VALUE IS A MINTERM OR DO0016010
                                                                        00016020
    IF(IFUNC(1, JMA3))16C,160,200
                                                                        00016030
160 CCNTINUE
                                                                        00016040
                                                                        00016050
                           TEST IF THIS TERM IS THE NEW CELL.
                                                                        00016060
                                                                        00016070
    JTERM=JMA3-1
                                                                        00016080
    JTEST=IAND(JTERM. FINT)
                                                                        00016090
    IF(JTEST-MINT)200,170,200
                                                                        00016100
170 CENTINUE
                                                                        00016110
    JTEST=IAND(JTERM. MAXC)
                                                                        00016120
    IF(JTEST-JTERM)200,180,200
                                                                        00016130
180 CCNTINUE
                                                                        00016140
                                                                        00016150
                           THIS TERM IS IN THE CELL BUT IS NOT A VALUEO0016160
                           OF ONE OR A D.C. IN THE ORIGINAL FUNCTION. 00016170
                           DO NOT ELIMINATE IRMOV, JUMP TO NEXT TRY. 00016180
                                                                        00016190
    GC TO 250
                                                                        00016200
200 CCNTINUE
                                                                        00016210
                                                                        00016220
                           HAVING CHECKED ALL VALUES IN THE NEW CELL 00016230
                           AND FOUND THAT THEY ARE I'S OR DC'S, ELIMINO0016240
                           INPUT IRMOV BY SETTING MIN TO MINT.
                                                                       00016250
                                                                        00016260
    MIN=MINT
                                                                        00016270
250 CONTINUE
                                                                        00016280
                                                                        00016290
                           MAKE NEW CELL MIN PERMANENT.
                                                                        00016300
                                                                        00016310
    IS(J2ND.1)=MIN
                                                                        00016320
    GC 1C 1000
                                                                        00016330
                                                                        00016340
300 CENTINUE
                                                                        00016350
                                                                        00016360
                           MORE THAN ONE FEEDING 3RD LEVEL GATE SPECIA00016370
                                                                        00016380
                                                                        00016390
                           INITIALIZE INHIBITING 3RD LEVEL MASK.
                                                                        00016400
                                                                        00016410
                           SET ALL VALUES TO ONES.
                                                                        00016420
                                                                        00016430
    CC 350 JMA2=1.JSTCP
                                                                        00016440
    MASK3(JMA2)=1
                                                                        00016450
350 CCNTINUE
                                                                        00016460
```

```
00016470
                          PLACE ZEROES IN TERMS COVERED BY 3RD LEVEL 00016480
                                                                     00016490
     NFEEC=NFEED+1
                                                                     00016500
     DC 4CO JMA2=2,NFEED
                                                                     00016510
     MINF3=IT(IFEEC(JMA, JMA2), 1)
                                                                     00016520
     JBEC=MINF3+1
                                                                     00016530
     DO 38C JMA3=JBEG.JSTCP
                                                                     00016540
                                                                     00016550
     JTEST=JMA3-1
     JTEST= IAND(JTEST, MINF3)
                                                                     00016560
     IF(JTEST-MINF3)38C,360,380
                                                                     00016570
 360 MASK3(JMA3)=0
                                                                     00016580
 380 CENTINUE
                                                                     00016590
                                                                     00016600
400 CENTINUE
                                                                     00016610
                                                                     00016620
                                                                     00016630
                           FIND SECOND LEVEL CELL.
                                                                     00016640
                                                                     00016650
                                                                     00016660
    CALL CELL(MIN, MAX, IBIN, NSIZE, IORDR)
                                                                     00016670
                           BEGIN REMOVING INPUTS.
                                                                     00016680
                                                                     00016690
     DO 600 JMA2=1.IORDR
                                                                     00016700
     TF(IBIN(JMA2)-JONE)600,410,600
                                                                     00016710
 410 CCNTINUE
                                                                     00016720
                                                                     00016730
     IRMCV=2**(IOR DR-JMA2)
     MINT=MIN-IRMOV
                                                                     00016740
                                                                     00016750
     JBEC=MINT+1
                                                                     00016760
                           TEST IF ALL NEW ENTRIES ARE MINTERMS OR D.CO0016770
                                                                     00016780
    DC 500 JMA3=JBEG, JSTOP
                                                                     00016790
     IF(IFUNC(1, JMA3))450,450,500
                                                                     00016800
                                                                     00016810
                           TEST IF THIRD LEVEL MASK INHIBITS THIS TERMODO16820
                                                                     00016830
                                                                     00016840
450 IF(MASK3(JMA3))50C.5C0.460
 460 CONTINUE
                                                                     00016850
                                                                     00016860
                           TEST IF THIS TERM IS IN THE CELL.
                                                                     00016870
                                                                     00016880
     JTEST=JMA3-1
                                                                     00016890
     JTEST= IAND (JTEST, MINT)
                                                                     00016900
    IF(JTEST-MINT)500,600,500
                                                                     00016910
 500 CONTINUE
                                                                     00016920
                                                                     00016930
                           HAVING CHECKED ALL NEW TERMS AND FOUND THEMO0016940
                           MINTERMS OR DC'S, ELIMINATE THIS INPUT.
                                                                     00016950
                                                                     00016960
                                                                     00016970
     MIN=MINT
 600 CENTINUE
                                                                     00016980
                                                                     00016990
                                                                     00017000
                           MAKE ELIMINATIONS PERMANENT.
                                                                     00017010
                                                                     00017020
     IS(J2ND.1)=MIN
                                                                     00017030
                                                                     00017040
1000 CENTINUE
     RETURN
                                                                     00017050
     END
                                                                     00017060
                                                                     00017070
                                                                     00017080
 00017100
                                                                     00017110
                                                                     00017120
```

```
SUBPOUTINE ELBIN(NBRD.IBRD.IT.NZND.IZND.IS.IFEED.NOTRM.MTRMS.IORDRODO17130
   $, JSTOP, IFST)
                                                                         00017140
                                                                         00017150
                                                                         00017160
                                                                         00017170
    J3RC-THIRD LEVEL GATE TO BE PUT INTO MASK3.
                                                                         00017180
                                                                         00017190
    J2ND-SECOND LEVEL GATE TO BE PUT ONTO MASK2.
    N2NE-NUMBER OF SECOND LEVEL GATES.
                                                                         00017200
                                                                         00017210
    12NC-LIST OF SECOND LEVEL GATES.
    IS-LIST OF SECOND LEVEL GATE CELL MINIMUMS.
                                                                         00017220
    N3RC-NUMBER OF 3RD LEVEL GATES.
                                                                        00017230
    I3RC-LIST OF THIRC LEVEL GATES.
                                                                        00017240
    IT-LIST OF THIRD LEVEL GATE INPUT CELL MINIMUMS.
                                                                         00017250
    IFEED-LIST OF FEEDING 3RD LEVELS TO 2ND LEVEL.
                                                                         00017260
    MASK2-MASK OF VALUES FOR SECOND LEVEL GATES.
MASK3-MASK OV VALUES FOR 3RD LEVEL GATES.
                                                                         00017270
                                                                         00017280
                                                                         00017290
                                                                         00017300
    DIMENSION IFUNC(40,256)
                                                                         00017310
    DIMENSION LEST(256)
                                                                        00017320
    DIMENSION MTRMS(1)
                                                                         00017330
                                                                         00017340
    DIMENSION IT(30,1), IS(30,1), IFEED(30,1)
    DIMENSION 13RD(1),12ND(1)
                                                                         00017350
    DIMENSION IBIN(10)
                                                                         00017360
                                                                         00017370
    DIMENSION MASK3(32,256)
    DIMENSION MASK2(32, 256)
                                                                         00017380
                                                                         00017390
    DIMENSION ICONV(30)
    COMMON IN, TOUT, MAX, JSET, IFUNC, LEVEL, ICONV, MASK3, MASK2
                                                                         00017400
    CATA JONE/'1'/
                                                                         00017410
                                                                         00017420
                                                                         00017430
                            INITIALIZE CONVERSION INDEX. THIS CONVERTSOO017440
                            THE VALUE OF IFEED, WHICH IS AN INDEX FOR ITO 3017450
                            TO AN INDEX FOR MASK3.
                                                                         00017460
                                                                         00017470
                                                                         00017480
    DC 20 JMA=1,N3RD
                                                                         00017490
    JIMP=13RD(JMA)
                                                                         00017500
    ICCNV(JTMP)=JMA
 20 CCNTINUE
                                                                         00017510
                                                                         00017520
                                                                         00017530
    JFILL=0
    1F(1FST)50,40,40
                                                                         00017540
                                                                         00017550
 40 JFILL=1
                                                                         00017560
 50 CENTINUE
                                                                         00017570
                            CLEAR THE MASKS.
                                                                         00017580
                                                                         00017590
    DC 100 JMA=1.JSTOF
                                                                         00017600
    DO 8C JMA2=1.N3RD
                                                                         00017610
    MASK3(JMA2.JMA)=1
                                                                         00017620
                                                                         00017630
 80 CONTINUE
                                                                         00017640
    DC 90 JMA2=1, N2ND
                                                                         00017650
    MASK2(JMA2,JMA)=0
                                                                         00017660
                                                                         00017670
 90 CENTINUE
                                                                         00017680
                           INITIALIZE FIRST LEVEL VECTOR.
                                                                         00017690
                                                                         00017700
    LFST(JMA)=JFILL
                                                                         00017710
100 CCNTINUE
                                                                         00017720
                                                                         00017730
    WRITE(IOUT.11C)
                                                                         00017740
110 FCRMAT('OMASK3',120X,'EL3IN')
                                                                         00017750
                                                                         00017760
                            FILL MASK3 WITH ACTUAL VALUES.
                                                                         00017770
                                                                         00017780
```

```
DO 250 JMA=1,N3RD
                                                                         00017790
    J3RD=I3RD(JMA)
                                                                         00017800
    MIN=IT(J3RD,1)
                                                                         00017810
    JBEG=MIN+1
                                                                         00017820
    DO 200 JMA2=JBEG. JSTOP
                                                                         00017830
    JTMF=JMA2-1
                                                                         00017840
    JTST=IAND(JTMP, MIN)
                                                                         00017850
    1F(JTST-MIN)200,190,200
                                                                         00017860
190 CCNTINUE
                                                                         00017870
    MASK3(JMA,JMA2)=0
                                                                         00017880
200 CONTINUE
                                                                         00017890
                                                                         00017900
    WRITE(IOUT, 210) JMA, (MASK3(JMA, JMA2), JMA2=1, JSTCP)
                                                                        00017910
210 FCFMAT(1X,15, 1, 1, 1616)
                                                                        00017920
250 CCNTINUE
                                                                         00017930
                                                                        00017940
                            FILL FIRST LEVEL VECTOR IF INPUTS ARE
                                                                         00017950
                            AT THE FIRST LEVEL GATE.
                                                                         00017960
                                                                         00017970
    IF(IFST)280,260,260
                                                                         00017980
260 MIN=IFST
                                                                         00017990
    JBEC=MIN+1
                                                                         00018000
    DC 270 JMA=JBEG, JSTOP
                                                                         00018010
    JIST=JMA-1
                                                                         00018020
    JTST=IAND(JTST,MIN)
                                                                         00018030
    IF(JTST-MIN)270,265,270
                                                                         00018040
265 LFST(JMA)=0
                                                                         00018050
270 CONTINUE
                                                                        00018060
                                                                         00018070
                                                                         00018080
28C CENTINUE
                                                                         00018090
    WRITE(IOUT, 285)(LFST(JMA), JMA=1, JSTOP)
                                                                        00018100
285 FCRMAT('OLFST ',1616)
                                                                        00018110
                                                                        00018120
                            FILL MASK2.
                                                                        00018130
                                                                        00018140
    DC 340 JMA=1.N2ND
                                                                        00018150
    J2NC=I2ND(JMA)
                                                                         00018160
    MIN=IS(J2ND.1)
                                                                        00018170
    JBEG=MIN+1
                                                                        00018180
    DC 300 JMA2=JBEG. JSTOP
                                                                        00018190
    JTMP=JMA2-1
                                                                        00018200
    JTST=IAND(JTMP.MIN)
                                                                        00018210
    IF(JTST-MIN)300,290,300
                                                                        00018220
                                                                        00018230
290 MASK2(JMA, JMA2)=1
300 CONTINUE
                                                                        00018240
                                                                         00018250
    WRITE(IOUT, 210) JMA, (MASK2(JMA, JMA2), JMA2=1, JSTCP)
                                                                        00018260
340 CCNTINUE
                                                                        00018270
                                                                        00018280
                            ELIMINATE INPUTS TO 3RD LEVEL GATE BY GATE.00018290
                                                                        00018300
    DC 700 JMA=1.N3RD
                                                                         00018310
    J3RD=I3RD(JMA)
                                                                         00018320
                                                                         00018330
    MIN=IT(J3RD.1)
    CALL CELL(MIN.MAX.IBIN.NSIZE.IORDR)
                                                                         00018340
                                                                        00018350
    WRITE(IOUT, 345)(IBIN(JMA2), JMA2=1, IORDR)
                                                                        00018360
345 FCRMAT(1HO, 10A1)
                                                                        00018370
                                                                        00018380
    IF( | ICRDR-NSIZE-1) 700,700,350
                                                                        00018390
350 CCNTINUE
                                                                        00018400
                                                                        00018410
                           ELIMINATE INPUTS ONE AT A TIME.
                                                                        00018420
                                                                        00018430
    DO &CC JMA2=1.IORDR
                                                                        00018440
```

```
IF(IBIN(JMA2)-JONE)600,360,600
                                                                        00018450
360 CENTINUE
                                                                        00018460
    IRMCV=2**(IORDR-JMA2)
                                                                        00018470
    MINT=MIN-IRMOV
                                                                        00018480
    JBEG=MINT+1
                                                                        00018490
                                                                        00018500
                           REVALUE MASK3.
                                                                        00018510
                                                                        00018520
    DO 380 JMA3=JBEG.JSTOP
                                                                        00018530
    JTST=JMA3-1
                                                                        00018540
    JTST=IAND(JTST, MIRT)
                                                                        00018550
    IF(JTST-MINT) 380, 370, 380
                                                                        00018560
370 CCNTINUE
                                                                        00018570
    MASK3(JMA,JMA3)=0
                                                                        00018580
380 CONTINUE
                                                                        00018590
                                                                        00018600
    WRITE(IOUT, 381) (MASK3(JMA, JMA3), JMA3=1, JSTOP)
                                                                        00018610
381 FCRMAT('OMASK3 ', 1616)
                                                                        00018620
                                                                        00018630
                            TEST FOR MINTERM COVERAGE.
                                                                        00018640
                                                                        00018650
    DG 500 JMA3=1.NOTRM
                                                                        00018660
    MTERM=MTRMS(JMA3)+1
                                                                        00018670
                                                                        00018680
    IF(LFST(MTERM))390,390,500
                                                                        00018690
390 CCNTINUE
                                                                        00018700
                                                                        00018710
                            TEST EACH SECOND LEVEL GATE FOR A MASK2
                                                                        00018720
                            VALUE OF 1.
                                                                        00018730
                                                                        00018740
    DC 480 JMA4=1,N2ND
                                                                        00018750
    IF(MASK2(JMA4, MTERM))480,480,400
                                                                        00018760
400 CENTINUE
                                                                        00018770
    NFEEC=IFEED(JMA4,1)
                                                                        00018780
    IF(NFEED)500,500,410
                                                                        00018790
410 NFEEC=NFEED+1
                                                                        00018800
                                                                        00018810
                           TEST EACH THIRD LEVEL GATE MASKS FOR A
                                                                        00018820
                                                                        00018830
                           VALUE OF 1.
                                                                        00018840
                                                                        00018850
    DO 470 JMA5=2.NFEED
                                                                        00018860
    JTMF=MASK3(ICCNV(IFEED(JMA4, JMA5)), MTERM)
                                                                        00018870
    IF(JTMP)480,480,470
                                                                        00018880
470 CONTINUE
                                                                        00018890
                                                                        00018900
                           THIS GATE COVERS A ONE, GO TO NEXT
                                                                        00018910
                            MINTERM FOR TESTING.
                                                                        00018920
                                                                        00018930
    GC TC 500
                                                                        00018940
480 CENTINUE
                                                                        00018950
                                                                        00018960
                                                                        00018970
                           THIS MINTERM WAS NOT COVERED. DO NOT
                                                                        00018980
                           ELIMINATE THIS INPUT. REINITIALIZE THE MASO 0018990
                                                                        00019000
    GO TO 510
                                                                        00019010
                                                                        00019020
500 CCNTINUE
                                                                        00019030
                                                                        00019040
                           MINTERMS ARE COVERED MAKE THIS NEW MIN.
                                                                        00019050
                                                                        00019060
    TNIM=AIM
                                                                        00019070
    GC TO 600
                                                                        00019080
                                                                        00019090
                           SOME MINTERM NCT COVERED, REINITIALIZE MASK300019100
```

```
00019110
                                                                    00019120
510 CENTINUE
                                                                    00019130
    DC 550 JMA3=JBEG.MAX
                                                                    00019140
                                                                    00019150
    JTST=JMA3-1
    JIST=IAND(JTST,MIN)
                                                                    00019160
    IF(JTST-MIN)540,550,540
                                                                    00019170
                                                                    00019180
540 MASK3(JMA.JMA3)=1
550 CONTINUE
                                                                    00019190
                                                                    00019200
600 CENTINUE
                                                                    00019210
                                                                    00019220
                          MAKE INPUT REDUCTIONS PERMANENT.
                                                                    00019230
                                                                    00019240
                                                                    00019250
    11(J3RD,1)=MIN
                                                                    00019260
700 CCNTINUE
                                                                    00019270
                                                                    00019280
    RETURN
                                                                    00019290
    END
                                                                    00019300
                                                                    00019310
00019330
                                                                    00019340
                                                                    00019350
                                                                    00019360
   SUB. DUPGT.
    SUBFOUTINE DUPGT (N3RD, I3RD, N2ND, IT, IOUT, IFEED)
                                                                    00019370
                                                                    00019380
    SUBFOUTINE TO ELIMINATE DUPLICATE GATES.
                                                                    00019390
                                                                    00019400
    DIMENSION IFEED(30.1)
                                                                    00019410
    DIMENSION IT(30.1)
                                                                    00019420
                                                                    00019430
    DIMENSION [3RC(1)
                                                                    00019440
    DIMENSION IDUP(30)
                                                                    00019450
                          INITIALIZE IDUP AND THE FLAG.
                                                                    00019460
                                                                    00019470
    IFLAG=0
                                                                    00019480
                                                                    00019490
   DC 1C JMA=1.30
                                                                    00019500
    ICUP (JMA)=JMA
                                                                    00019510
 10 CENTINUE
                                                                    00019520
                                                                    00019530
    JMA=1
                                                                    00019540
                          LOOP THROUGH AND FIND DUPLICATE GATES.
                                                                    00019550
                                                                    00019560
                                                                    00019570
 15 IF(JMA-N3RD)20,400,400
                                                                    00019580
 2C JMA2=JMA+1
                                                                    00019590
    I3JMA=I3RD(JMA)
                                                                    00019600
                                                                    00019610
 25 1F1JMA2-N3RD130.3C.300
                                                                    00019620
 30 IF(IT(I3JMA,1)-IT(I3RD(JMA2),1))200,50,200
                                                                    00019630
                          REMOVE THE JMA2ND GATE MARK ITS REPLACEMENTO0019640
                          AND SET THE FLAG.
                                                                    00019650
                                                                    00019660
                                                                    0 0 19670
 50 IDUF(13RD(JMA2))=13JMA
    WRITE(IOUT, 55) 13 JMA, JMA, JMA2, N3RD
                                                                    00019680
 55 FCRMAT('013JMA= ',15,' JMA=',15,' JMA2=',15,' N3RD=',15)
                                                                    00019690
                                                                    00019700
    IFLAG=1
                                                                    00019710
    NARC=NARD-1
    IF(JMA2-N3RD)60,500,500
                                                                    00019720
                                                                    00019730
 60 CCNTINUE
                                                                    00019740
                          MOVE REMAINING GATES UP IN THE LIST.
                                                                    00019750
                                                                    00019760
```

```
DC 100 JMA3=JMA2.N3RD
                                                                     00019770
    13RD(JMA3)=13RD(JMA3+1)
                                                                      00019780
                                                                      00019790
100 CCNTINUE
                                                                      00019800
200 JMA2=JMA2+1
   GC TO 25
                                                                      00019810
3CO JMA=JMA+1
                                                                      00019820
    GC TO 15
                                                                      00019830
                                                                      00019840
                          FINISHED SEARCHING FOR DUPLICATES.
                                                                     00019850
                           TEST FLAG TO SEE IF ANY DUPLICATES WERE FOUO0019860
                                                                      00019870
                                                                      00019880
400 IF(IFLAG)500,700,500
                                                                     00019890
                           CORRECT IFEED FOR REMOVED GATES.
                                                                      00019900
                                                                      00019910
                                                                      00019920
500 CENTINUE
                                                                      00019930
                                                                      00019940
    DO ECO JMA=1.N2ND
                                                                      00019950
    NFEED=IFEED(JMA, 1)
    IF(NFEED)600,600,510
                                                                      00019960
                                                                     00019970
510 NFEED=NFEED+1
    WRITE(IOUT, 520) JMA, (IFEED (JMA, JMA2), JMA2=2, NFEED)
                                                                      00019980
                                                                      00019990
520 FCRMAT("OJMA=",15," IFEED=",(T21,1615/))
    CC 580 JMA2=2.NFEED
                                                                      00020000
                                                                      00020010
    IFEED(JMA, JMA2) = I CUP(IFEED(JMA, JMA2))
                                                                      00020020
580 CENTINUE
                                                                      00020030
                                                                     00020040
    WRITE(IOUT,520)JMA, (IFEED(JMA, JMA2), JMA2=2, NFEED)
                                                                      00020050
6CC CONTINUE
                                                                      00020060
                                                                      00020070
700 CENTINUE
                                                                      00020080
    RETURN
                                                                      00020090
    END
                                                                      00020100
                                                                      00020110
00020130
                                                                      00020140
                                                                      00020150
    SUBROUTINE ALTCKT(12ND, 15, 1T, 13RD, 1FEED, 1FLAG,
                                                                      00020160
                                                                      00020170
   1JSTOP.N3RD,N2ND,NEPIS,IORDR)
                                                                      00020180
                   THIS ROUTINE ATTEMPTS TO MODIFY A CIRCUIT
                                                                      00020190
                    BY REPLACING FEEDING THIRD LEVEL GATES.
                                                                      00020200
                                                                      00020210
                                                                      00020220
    NCV 24, 1977
                                                                      00020230
    VARIABLES:
                JMA, JMA2, JMA3, JMA4-LOOP INDICES.
                                                                      00020240
                                                                      00020250
                IFLAG-FLAG WHICH INDICATES ALTERED CIRCUIT.
                     = 0 MEANS NO ALTERATIONS.
                                                                      00020260
                     =+ MEANS SOME ALTERATIONS.
                                                                      00020270
                NRMOV-NUMBER OF REMOVED 3RD LEVEL FEEDING GATES.
                                                                      00020280
                MIN2 -MINIMUM OF CELL FOR SECOND LEVEL GATE.
                                                                      00020290
                MFEED-MINIMUM FOR CELL OF 3RD LEVEL FEEDING GATE.
                                                                      00020300
                                                                      00020310
                IGATE-FEEDING 3RD LEVEL GATE.
                                                                      00020320
                IGTMP-TEMP 3RD LEVEL GATE TO ALTER CIRCUIT.
                                                                      00020330
                                                                      00020340
                                                                      00020350
                                                                      00020360
    DIMENSION I2ND(1), I3RD(1), MASK2(32, 256)
                                                                      00020370
    DIMENSION MASK3(32,256), IS(30,1), IT(30,1)
                                                                      00020380
    DIMENSION IFEED(30.1), IFUNC(40,256)
                                                                      00020390
    CCMMCN IN, IOUT, IPRIM, ISET, IFUNC, LEVEL,
                                                                      00020400
   1 ICCNV(30), MASK3, MASK2
                                                                      00020410
                                                                      00020420
```

```
00020430
    TEL AGEO
                                                                      00020440
    NRMOV=0
                                                                      00020450
     INITIALIZE MASKS.
                                                                      00020460
                                                                      00020470
                                                                      00020480
                             CLEAR MASKS.
                                                                      00020490
    DO 100 JMA=1, JSTOP
                                                                      00020500
    DC 80 JMA2=1,N3RD
                                                                      00020510
    MASK3(JMA2,JMA)=1
                                                                      00020520
 80 CONTINUE
                                                                      00020530
                                                                      00020540
                                                                      00020550
    DC 90 JMA2=1, N2ND
    MASK2(JMA2.JMA)=0
                                                                      00020560
                                                                      00020570
 90 CENTINUE
                                                                      00020580
100 CCNTINUE
                                                                      00020590
                                                                      00020600
                            FILL MASKS WITH ACTUAL VALUES.
                                                                      00020610
                                                                      00020620
                                                                      00020630
    DO 250 JMA=1.N3RD
                                                                      00020640
    J3RC=I3RD(JMA)
                                                                      00020650
    MIN=IT(J3RD,1)
    JBEG=MIN+1
                                                                      00020660
                                                                      00020670
    DO 200 JMA2=JBEG.JSTOP
                                                                      30020680
                                                                      00020690
    JTMP=JMA2-1
    JTST=IAND(JTMP.MIA)
                                                                      00020700
                                                                      00020710
    IF(JTST-MIN)200,190,200
190 CONTINUE
                                                                      00020720
                                                                      00020730
    MASK3(JMA.JMA2)=0
                                                                      00020740
200 CONTINUE
                                                                      00020750
                                                                      00020760
                                                                      00020770
    WRITE(IOUT, 210) JMA, (MASK3(JMA, JMA2), JMA2=1, JSTCP)
                                                                      00020780
210 FCRMAT(' ALTCKT ', 15/(13X, 1616))
250 CCNTINUE
                                                                      00020790
                                                                      00020800
                            FILL MASK2 WITH ACTUAL VALUES.
                                                                      00020810
                                                                      00020820
    DO 340 JMA=1, N2ND
                                                                      00020830
                                                                      00020840
    J2ND=I2ND(JMA)
    MIN=IS(J2ND.1)
                                                                      00020850
                                                                      00020860
    JBEG=MIN+1
    WRITE(IOUT, 260) JMA, J2ND, MIN
                                                                      00020870
260 FCRMAT('0 GATE=', 15,' CNE-SET=', 15,' CELLMIN=',
                                                                      00020880
                                                                      00020890
   +15)
                                                                      00020900
                                                                      00020910
    DC 300 JMA2=JBEG. JSTOP
    JTMF=JMA2-1
                                                                      00020920
    JTST=IAND(JTMP, MIN)
                                                                      00020930
                                                                      00020940
    IF(JTST-MIN)300,290,300
290 MASK2(JMA,JMA2)=1
                                                                      00020950
                                                                      00020960
300 CCNTINUE
                                                                      00020970
                                                                      00020980
    WRITE(IOUT, 210) JMA, (MASK2(JMA, JMA2), JMA2=1, JSTOP)
340 CENTINUE
                                                                      00020990
                                                                      00021000
                                                                      00021010
    CREATE ALTERNATE CIRCUITS.
                                                                      00021020
                                                                      00021030
                                                                      00021040
                                                                      00021050
                            LOOP THROUGH ALL SECOND LEVEL GATES(EXCEPTO0021060
                            LAST ONE GENERATED).
                                                                      00021070
                                                                      00021080
```

	DC 500 JMA=2.N2ND		00021090
	NFEED=IFEED(JMA,1)		00021100
			00021110
		LOOP THROUGH FEEDING THIRD LEVEL GATES TO	00021130
		SEE IF ANY CAN BEREPLACED.	00021140
			00021150
	IF(NFEED)500,500,350		00021160
350	CCNTINUE		00021170
	NFEEC=NFEED+1 J2ND=I2ND(JMA)	· ·	00021180 00021190
	MIN2=IS(J2ND, 1)		00021170
	JBEG2=M[N2+1		00021210
			00021220
			00021230
	DC 450 JMA2=2.NFEED		00021240
	IGATE=IFEED(JMA, JMA2)		00021250
	MFEEC=IT(IGATE,1)		00021260 00021270
			00021280
		LOOP THROUGH POSSIBLE REPLACEMENTS.	00021290
			00021300
	DO 4CC JMA3=1.N3RD		00021310
	IF(IGATE-I3RD(JMA3))360	, 400, 400	00021320
36C	IGTMP=I3RD(JMA3)		00021330
		LOOP THROUGH TERMS TO CHECK FOR MAXTERM	00021340
		COVERAGE AND AVOID MINTERM INHIBITION.	00021360
		COVERNOE AND AVOID WINVERNA INVIDITIONS	00021370
	CC 380 JMA4=JBEG2.JSTOP		00021380
			00021390
		TEST IF WE ARE IN THE CELL.	00021400
			00021410
	JTEMP=JMA4-1	1	00021420
	JTST=[AND(JTEMP, MIN2) IF(JTST-MIN2) 380, 362, 38	n	00021430 00021440
363	CONTINUE		
202	CCATINOL		00021450 00021460
	TE	ST FOR EFFECT OF OTHER	00021470
	F	EEDING THIRD LEVEL GATES.	00021480
			00021490
242	IF(NFEED-2)366,366,363		00021500
363	CCNTINUE		00021510 00021520
	DC 365 JMA5=2.NFEED		00021520
	IF(JMA5-JMA2)364.365.36	4	00021540
364		A,JMA5)),JMA4))365,380,365	00021550
3 <i>6</i> 5	CCNTINUE		00021560
			00021570
366	CENTINUE	IMAA)	00021580 00021590
	JTMF=MASK3(ICCNV(IGTMP)	• JMA4)	00021600
		TEST FOR FUNCTIONAL EQUALITY.	00021610
			00021620
			00021630
		-IFUNC(1,JMA4))400,380,400	00021640
380	CCNTINUE		00021650
	TEL ACTIEL ACTI		00021660 00021670
	IFLAG=IFLAG+1 IFEEC(JMA,JMA2)=IGTMP		00021680
	GO 10 450	•	00021690
400	CENTINUE		00021700
			00021710
450	CCNTINUE		00021720
			00021730
50C	CENTINUE		00021740

```
00021750
                                                                      00021760
                                                                      00021770
    UPDATE I 3 RD IN THE EVENT OF
                                                                       00021780
                 HAVING BEEN REMOVED.
       GATE
                                                                      00021790
                                                                      00021800
                                                                      00021810
                                  CHECK WHETHER ANY 3RD LEVEL GATE
                                                                      00021820
                                  HAS BEEN COMPLETELY REPLACED IN
                                                                      00021830
                                                                      00021840
                                  ALL CASES.
                                                                      00021850
                                                                       00021860
                                  FIRST TEST IF ANY CHANGES WERE MADE. 00021870
                                                                      00021880
     IF(IFLAG)510,510,550
                                                                       00021890
 510 WRITE (ICUT, 520)
                                                                       00021900
 520 FORMAT( ALTCKT FOUND NO CHANGES FOR FEEDING GATES )
                                                                      00021910
                                                                      00021920
     RETURN
                                                                      00021930
                                 LOOP THROUGH I3RD.
                                                                      00021940
                                                                      00021950
 550 JMA=1
                                                                      00021960
 560 IF(JMA-N3RD)570,570,1010
                                                                      00021970
                                                                      00021980
 570 WRITE(IOUT, 580) JMA, I3RD(JMA)
                                                                      00021990
 580 FORMAT( JMA= 1,15. NOW CONSIDERING REMOVING GATE ,
                                                                      00022000
    *15)
                                                                      00022010
                                                                      00022020
                                 LOOP THROUGH IFEED.
                                                                      00022030
                                                                      00022040
    DC 800 JMA2=1.N2ND
                                                                       00022050
    NFEED=IFEED(JMA2.1)
                                                                      00022060
                                                                       00022070
                                 TEST FOR ANY FEEDING 3RD LEVEL GATES.00022080
                                                                       00022090
                                                                       00022100
     IF(NFEED)800.800.600
                                                                       00022110
6CC NFEED=NFEED+1
                                                                       00022120
                                                                      00022130
     DC 800 JMA3=2.NFEED
     IF(IFEED(JMA2,JMA3)-I3RD(JMA))800,1000,800
                                                                      00022140
                                                                      00022150
800 CENTINUE
                                                                      00022160
                                                                      00022170
     WRITE(IOUT, 810) NRMOV
810 FCRMAT(1H+, 40X, 'THIS IS THE', 13, 'TH GATE REMOVED.')
                                                                      00022180
                                                                       00022190
                                                                      00022200
     NRMCV=NRMOV+1
                                                                      00022210
    N3RC=N3RD-1
                                                                       00022220
    DC E50 JMA3=JMA.N3RD
     I 3RC(JMA3) = I3RD(JMA3+1)
                                                                      00022230
                                                                      00022240
850 CENTINUE
                                                                       00022250
                                                                       00022260
    GC 10 560
                                                                       00022270
1000 JMA=JMA+1
                                                                       00022280
    GC TC 560
                                                                       00022290
1010 CCNTINUE
                                                                       00022300
                                                                      00022310
     WRITE(IOUT, 1020) IFLAG, NRMOV
                                                                       00022320
1020 FCRMAT( ALTCKT HAS MADE ., 15, CHANGES AND ., 15, 3RD LEVEL .
                                                                       00022330
    *, 'GATE REMOVALS')
                                                                       00022340
                                                                       00022350
    RETLAN
     END
                                                                       00022360
     FUNCTION IDIST(MIN, IORDR)
                                                                       00022361
                                                                      00022362
     THIS FUNCTION FINDS THE DISTANCE FROM THE
                                                                      00022363
      PRIMARY CUBE IN A SYSTEM OF CROER IGROR AND
                                                                      00022364
```

	SCME VALUE MIN.	00022365
	1	00022366
	J=C	00022367
	DC 100 JMA=1, IORDR	00022368
	ITEST=2**(JMA-1)	00022369
	ITEST=IAND(MIN, ITEST)	00022370
	IF(ITEST)100.50.1C0	00022371
-	J=J+1	00022372
100	CCNTINUE	00022373
	ICIST=J	00022374
	RETURN	00022375
	END	00022376
	SUBFOUTINE STEP5(JCRIT, NCTST, NOCEL, NITMP, NSTOP, ITTMP, MCELL,	00022377
	* ICUBE, ISTMP, ICELL, NEWMAX, NEWMIN, MAXDST, MINDST)	00022378
		00022379
	THIS SUBROUTINE DOES THE STEP5 CHOOSING FOR SVAING	00022380
	PRIME IMPLICANTS AS GATE CANDIDATES.	00022381
		00022382
	DIMENSION NCTST(1), ITTMP(1), MCELL(1), ICUBE(1), ISTMP(1)	00022383
	DIMENSION ICELL(1), IFUNC(40, 256)	00022384
	COMMON IN, IOUT, IPRIM, ISET, IFUNC, LEVEL	00022385
		00022386
	GO TO THE CRITERIA FOR THIS METHOD.	00022387
		00022388
	GC TC(50,10,20,190,30,40),JCRIT	00022389
		00022390
	TEST IF THIS COUNT OF NEW MINTERMS IS GREATER	00022391
	THAN PREVIOUSLY COVERED.	00022392
		00022393
10	IF(NEWMIN.LE.NCTST(2)) RETURN	00022394
	NCTST(2)=NEWMIN	00022395
	GC TC 190	00022396
		00022397
	TEST IF THIS COUNT OF NEW MAXTERMS IS.	00022398
	GREATER THAN PREVIOUSLY COVERED.	00022399
		00022400
20	IF(NEWMAX.LE.NCTST(3)) RETURN	00022401
	NCTST(3)=NEWMAX	00022402
	GO TO 190	00022403
		00022404
	TEST FOR MAXTERMS IN HARD PLACES (TOTAL DISTANCE	00022405
	FORM PRIMARY CUBE.).	00022406
30	IF(MAXDST.LE.NCTST(5)) RETURN	00022407
	NCT ST(5)=MA XD ST	00022408
	GC TC 190	00022409
	TRAY PAR HITHTRANA THE HAZE CO. 1000	00022410
	TEST FOR MINTERMS IN HARD PLACES.	00022411
	TEALTHORY OF MATERIALS DETUCK	00022412
40	IF(MINDST.LE.NCTST(6)) RETURN	00022413
	NCT ST (6)=MIND ST	00022414
	GC TO 190	00022415
	TEST FOR MOST SUBSUNCTIONS(1) SETS SENSOATED	00022416
	TEST FOR MOST SUBFUNCTIONS(1-SETS) GENERATED.	00022417
50	IF(NCCEL.LE.NCTST(1)) RETURN	00022418
140	NCTST(1)=NOCEL NITHF=NSTOP	00022420
	MITFF=NSTUP	
	DO 102 IMA-1 NETOE	00022422
	DO 192 JMA=1, NSTOP	00022423
100	ITTMP(JMA)=MCELL(ICUBE(JMA))	00022425
192	CCNTINUE	00022426
	NCTEMP_NCTCT(1)	00022427
	NCTEMP=NCTST(1)	00022428
	DC 202 JMA=1, NCTEMP	00022429
	ISTMP(JMA)=ICELL(JMA)	00022430
202	CCNTINUE	00022431

```
EXAMPLE 2 FIGURE 3 PAGE 52 IN PAPER
                                                                    0000000
FUNCTION OF ORDER:
WITH 7 MINTERMS AND
                          O DON'T CARES
ISWTC= 1 IDBUG=
                   2
 MINTERMS ARE:
 3 8 10 11 12 13 15
THIS IS CKT # 1
3RD LEVEL GATES
                         2ND LEVEL GATES, AND INPUTS FROM 3RD LEVEL DIRECT INPUTS TO FIRST LEVEL
T 2 ---1
                         1---
                                   T 2 T 1
T 1 -11-
                         --11
                                   ,T 1
                         1-11
                         11-1
THIS IS CKT # 2
3RD LEVEL GATES
                         2ND LEVEL GATES, AND INPUTS FROM 3RD LEVEL DIRECT INPUTS TO FIRST LEVEL
T 2 ---1
                         1---
                                   ,T 2,T 1
T 1 -11-
                         --11
                                   ,T 1
                         1-11
                         11--
                                   ,T 1
THIS IS CKT # 3
3RD LEVEL GATES
                         2ND LEVEL GATES, AND INPUTS FROM 3RD LEVEL
                                                                         DIRECT INPUTS TO FIRST LEVEL
T 2 ---1
                         1---
                                   ,T 2,T 1
1 1 -11-
                         --11
                                   ,T 1
                         11-1
CKT#
      # OF GATES
                   # OF INPUTS
  1
                          19
               7
   2
                          19
               ?
   3
                          15
OBVIOUSLY CKT# 3 IS THE MINIMUM WITH ONLY
                                             6 GATES AND ONLY 15 INPUTS
```

```
H. P. LEE EG. 6 PE 22
                                                           0000000
FUNCTION OF ORDER: 6
WITH 20 MINTERMS AND 0 DON'T CARES
ISWTC= 1 IDBUG= 2
MINTERMS ARE:
 0 1 2 4 5 6 8 9 16 17 18 20 21 22 24 25
 34 38 40 41
THIS IS CKT # 1
                     2ND LEVEL GATES, AND INPUTS FROM 3RD LEVEL DIRECT INPUTS TO FIRST LEVEL
3RD LEVEL GATES
T 1 ----11
                      ----- ,T 1,T 4,T 2,T 5
T 4 --1-1-
                      ----1-
                             ,T 1,T 4,T 3
T 2 --11--
                      --1--- ,T 4,T 2,T 3
T 5 1----
T 3 -1----
CKT# # CF GATES # CF INPUTS
                  23
OBVIOUSLY CKT# 1 IS THE MINIMUM WITH ONLY 9 GATES AND ONLY 23 INPUTS
```

EXAMPLE 2 FIGURE 3 PAGE 16 IN PROPOSAL

0000000

FUNCTION OF ORDER: 3

WITH 5 MINTERMS AND 0 DON'T CARES.

ISWTC= 1 IDBUG= 2

MINTERMS ARE:

0 1 2 3 5

THIS IS CKT # 1

3RD LEVEL GATES T 1 -12ND LEVEL GATES, AND INPUTS FROM 3RC LEVEL

DIRECT INPUTS TO FIRST LEVEL 1--

--1 ,T 1

CKT# # OF GATES # OF INPUTS

1 3

OBVIOUSLY CKT# 1 IS THE MINIMUM WITH ONLY 3 GATES AND ONLY 5 INPUTS

VITA

John Michael Acken

Candidate for the Degree of

Master of Science

Thesis: AN ALGORITHM FOR TANT SYNTHESIS AND ITS SEQUENTIAL APPLICATION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Kansas City, Missouri, September 27, 1951, the son of Mr. and Mrs. John H. Acken, Jr.

Education: Graduated from Nathan Hale High School, Tulsa, Oklahoma, in May, 1969; received the Bachelor of Science in Electrical Engineering degree from Oklahoma State University, Stillwater, Oklahoma, in December, 1976; completed the requirements for the Master of Science degree in May, 1978.

Professional Experience: Private Computer Programming Consultant from September, 1975 to August, 1976; employed by Oklahoma State University as a Graduate Assistant from February, 1977 to May, 1978.

Professional Organizations: Member of the Institute of Electrical and Electronics Engineers, Member of the Association for Computing Machinery.