AN ALGORITHM FOR TANT SYNTHESIS AND

ITS SEQUENTIAL APPLICATION

By
JOHN MICHAEL ACKEN

Bachelor of Science in Electrical Engineering
Oklahoma State University
Stillwater, Oklahoma

1976

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

May, 1978

AN ALGORITHM FOR TANT SYNTHESIS AND

ITS SEQUENTIAL APPLICATION

Thesis Approved:

QW%W

Thesis Adviser

Y7

Dean of Graduate College

ii 1206300

‘H‘)
LAiNg

45!\/

ACKNOWLEDGMENT

I wish to express my sincere appreciation to Dr. James R. Rowland
for spending many hours in valuable guidance on this thesis research.
I wish to thank the other members of my committee, Dr. Charles M. Bacon
and Dr. Edward L. Shreve.

I would like to thank the students of ELEN 4253 for their many
computer runs.

I wish to thank Velda Davis for typing my thesis.

Finally, I wish to thank my parents for their encouragement, and

my family for their love and moral support.

iii

Chapter

I.

II.

IITI.

Iv.

V.

TABLE OF CONTENTS

INTRODUCTION ¢ ¢ o ¢ o o o o o o o o o o o &

Background . ¢ ¢ o o ¢ o ¢ o o o o o o
An Example . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o
Problem Formulation and Approach . . .
Thesis Outline . « « o« o o o o o o o @

SYNTHESIS OF OPTIMAL TANT NETWORKS e o o

Basic Theorems . « « o o o o o o o o &
The Network Synthesis Procedure
Examples . ¢ o ¢ ¢ o o o o o o o o o «
SUMMATY o« o o o o o o o o o o o o o o o

THE CAD SOFTWARE PACKAGE . . « « « « « ¢ o .

Program Description . . « « « « « « o &
CAD Evaluation . . ¢« « ¢ o o o o o o o

Alternate Procedures for Choosing Prime
Implicates as Third-Level Gate Candidates

NOR Example « ¢ o ¢ ¢ o o o o o o o o o
SUMMATY o« o o o o o o o o o o o o o o

SEQUENTIAL DESIGN WITH TANT NETWORKS

Problem Description « « « « o« ¢ o o o &

Modifications for Sequential Applications

The Generalized Excitation Table . . .
A Sequential Example . . .« « ¢ ¢ ¢ o o«
SUMMAry o« o o o o o o o s o o o o o o

CONCLUSIONS AND RECOMMENDATIONS

ConclusSions « o o o o o o o o o o o o o
Recommendations « « « o o o o o o o o o

SELECTED BIBLIOGRAPHY . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o &

APPENDIX - COMPUTER PROGRAM LISTING « « ¢ o ¢ « o o«

iv

Page

=

[e=RaN ISl (v}

17
21
29

30

30
33

35

39
42

43
43
45
46
47
57
58

58
59

61

63

LIST OF TABLES

Table Page
I. Time Requirements for Several TANT Solutions+ « « « & 34

I1. Timing and Storage Comparisons for Methods of
Choosing Prime Implicates e e e e e s e e e e e e e e . 38

III. Translation of Generalized Excitation Table Entries for
Some Common Types of Flip-FloPs « o« « o o « o o o o o o o & 48

IV. Input and Gate Counts for Solutions to Sequential
Example « o 55

LIST OF FIGURES

Figure

1.

2.

3.
4.

10.

11.

12.

13.

14.

Example NAND Gate Circuit Improvements
Flow Chart of the TANT Network Synthesis Procedure
Design Steps and Optimal TANT Network for Example
Design Steps and Optimal TANT Network for Example
Design Steps and Optimal TANT Network for Example
CAD Program Flow Chart . . ¢ ¢ o ¢ o o o o o o &«
Timing and Storage Analysis of the CAD Program .
Design Steps and Optimal Network for NOR Example
The General Sequential Circuit . « « o o « o « &
The Primitive and Reduced Flow Tables
Sequential Design Tables . . « ¢ ¢ ¢ o o o o o &
TANT Solution for Toggle Flip-Flops
The Toggle-Toggle Flip-Flop Solution

The Toggle-~Delay Flip-Flop Solution

vi

1

2

3

Page

18
23
25
27
31
36
L1
Lb
50
51
53
54

56

CHAPTER 1

INTRODUCTION

Digital logic circuit designers have many computer-aided design
(CAD) packages at their disposal. That most current computers were
designed by computers proves the practicality of such CAD programs. On
a smaller scale, many algorithms and associated software packages solve
the gate minimization problem for combinational logic design or select
the optimum memory device from among given candidates to yield gate
minimization for sequential problems. Digital logic designers choose a
memory device, find the resulting logic equations, and minimize the
combinational portion of the sequential feedback circuit. Another
memory device is utilized only after dissatisfaction with the first has
resulted. However, a CAD program can test all types of memory devices
and yield a minimum combinational circuit for each device. Thus, the
designer can be assured of finding the optimal design for given con-
straints. The problem investigated in this thesis is the design of
optimal sequential circuits using NAND gates for the combinational por-
tion. A list of several familiar memory devices is specified for the
sequential portion of the problem. The number of gates and, secondarily,
the number of inputs to those gates are minimized for each type of

device.

Background

Historically, the problem of finding a minimum logic circuit has
been divided into two parts: the combinational logic design problem and
the memory selection problem. The usual criteria for minimization are
propagation time and package count. In this thesis, the combinational
problem under consideration is the design of optimal TANT networks, i.e.,
three-level NAND-gate circuits with true inputs only (1). Used in the
examples as a convenient tool for visualization in combinational prob-
lems with few inputs is the circuit-action Karnaugh map. In the
sequential problem, some of the memories to choose from are the D flip-
flop, RS flip-flop, JK flip-flop, T (or toggle) flip-flop, and, of
course, any clocked version of any of these.

The TANT restriction of three levels or less is used to minimize
propagation time since any logic function can be realized in three
levels, and propagation time is a function of the number of levels
through which the signal must pass. Solving the minimum package count
is not as straightforward and, in fact, is not the consideration when
logic component (chip) design is considered. Therefore, for ease in the
first case and correctness in the second, rather than minimum package
count, minimum-gate and minimum-input realizations will be the goal.

The solution of NAND circuits is easily used in an analogous manner to
solve for NOR circuits (1-3). The uncomplemented requirement is typical
for inputs to a logic circuit. However, since complemented inputs will
be available as outputs from memory devices, this thesis actuqlly deéls
with a modified TANT problem.

The majority of previous work on the NAND/NOR synthesis problem has

been four categories: the double-complement technique (4-6),

decomposition (7-9), the head-tail approach (10-12), the map factoring
approach (13-15). Although there has been some work in using integer
programming (16-19), it has been of a much more general nature and not
explicitly advantageous in the solution of the TANT problem. There also
has been work done using exhaustive search (20, 21), but this method

was used to generate a table of solutions for all possible small number
of input problems and is not very practical for situations involving
many input variables.

The double-complement technique, which is solving the two-level
AND/OR problem by essentially a Quine-McCluskey approach and then
inverting inputs to achieve the necessary negated inputs, is the most
straightforward technique because of the equivalence of any two-level
NAND structure and its corresponding AND/OR circuit (22). Although
straightforward, this procedure usually does not yield an optimal
(i.e., minimum-gate, minimum-input) realization for a given problem. A
double-complement method was developed early by Gimpel (4) which
involved certain extensions involving a prime implicant cover and
closure (CC) table. Hohulin and Muroga (5) reported several alternative
methods for solving the CC-table in Gimpel's algorithm suitable for
computer processing, and these methods are implemented as computer
programs. Ellis (6) extended the double-complement technique to NOR
gates as well as NAND. Davidson (7) used decomposition, in which a
first cut of the double-complement method is made, followed by back-
tracking for improvements while considering fan-in, fan-out, and level
constraints. Dietmeyer and Su (8) used decomposition with factoring,
assuming complemented inputs available and no level constraint.

Schneider and Dietmeyer (9) extended decomposition solutions for multiple

outputs. Koh's (10) head-tail approach is based on first obtaining the
essential prime implicants and then generating useful prime implicants.
By various methods groupings are made to reduce the NAND circuit. Then
a table analogous to the CC table is solved. Chakrabarti, Choudhury,
and Basu (11) proposed an early head-tail investigation based upon analy-
sis of production at the second-level gate outputs of the complement of
the function as well as the desired minterms. Frackowiak (12) presented
two approaches, one yielding a quasi-minimal hazardless solution and the
other yielding a strictly minimal solution. Maley and Earle (13) ini-
tiated map factoring for finding gates from prime implicants by a method
analogous to circling n-cubes on a Karnaugh map; hence, the name map
factoring is appropriate. Eisenberg's (14) work was extended by Torng
(15) to yield a systematic realization procedure for NAND networks by
alternately inhibiting O and 1 entires in the Karnaugh map as the num-
ber of switching levels increases. After this primitive realization is
obtained, a level reduction procedure is applied to reduce the number of
levels to at most three. A transform technique is used to complete the
design procedure. These various procedures provide a wide range of
solutions to the TANT problem, with most of them having been implemented
on digital computers. None of these procedures attacks the problem of
associated sequential problems. Also, none of the publications give
very extensive analysis of memory or CPU time requirements for computer

implementations.

An Example

To demonstrate the TANT solution of a particular problem using the

double-complement technique and subsequent improvements until an optimum

(a)

=g
x3-_1

(c)

Figure 1.

(b)

(d)

Example NAND Gate Circuit Improvements

solution is found, consider the function

Fx , x &) = Zm (0, 2, 3, 4, 5, 6, 11, 13). (1)

o9 X3, X

The solution corresponding to the optimal AND/OR network is

(2)

{
% 1
i
+
[
o
¥
+
el
al
>
+
R
5 1

Flxg, x5, X3 x,) = x 3 27 3%y

which is shown as a circuit using NAND gates in Figure 1(a). Note that
single input NAND gates are used as inverters to get the complemented
inputs. This realization has 9 gates and 18 inputs to those gates.

Now using the first and fourth terms of the right-hand side of (2) we

see that

§1§3 + §1§4 = §1(§3 + §4)1 (3)
and substituting (3) into (2) the result is
Flx, X5, X3 xé) = §1(§3 + ;4) + ;czx3xlt + xzijxg. (&)

This realization is shown in Figure 1 (b). It has only 8 gates and 16
inputs. Further reduction is seen by ORing zero to the second and third

terms of (4), i.e.,

X X, X, + X X, X, = XX X, + X_X X, + X X X, + X_X_X
374 374 374 LY

2 2727 273 37374

(§2 + ;CB)(xlei + x3x4)

(x2x3)(x2x4 + xjxg). (5)

Now substituing (5) into (4) yields

Fxg, x,, Xy x,) = 51(53 + ;4) + (x2x3)(x2xlt + x3x4) (6)

which is shown as a NAND circuit in Figure 1(c). This circuit has only 7

gates but still 16 inputs. With some more manipulations, the result is
F(xl, Xys Xg9 x4) = (x2x3xl£)(x3xlt XX, x1) (7)

and this result is shown in Figure 1 (d). This is the optimal TANT net-
work for this problem with only 6 gates and 15 inputs. This is the same
solution as found by Torng (15) on page 125 by using his level-reduction
and gate~reduction technique. Also, this is the solution found using the
algorithm developed later in this thesis. This example demonstrates the
straightforward initial solution using double-complement method and that
the result was not the optimal TANT circuit. With some algebraic manipu-
lations, the optimal solution was found and matched the result using
level-reduction gate-reduction technique's solution. This same example
will be treated in detail using this thesis' algorithm in the next

chapter.
Problem Formulation and Approach

The problem to be investigated in this thesis is the TANT problem
in conjunction with memory. The combinational portion of the problem
uses three-level NAND-gate circuits with only true externally supplied
inputs and both true and complemented inputs available from the memory
devices. Also, the combinational portion must cover multiple output
cases. The memory, or sequential, portion simply tries different flip-
flops and solves the related combinational problem. This combined effort
of both the combinational and sequential problem does not appear in the
literature.

The algorithm was initially programmed to simply solve the TANT

problem with true inputs only. The program was then exercised with many

large examples with a spinoff effort to decide whether minimum gate was
a prerequisite for a circuit to have minimum inputs. The program was
then exercised with different implementations of arbitrary steps to
determine the best on the basis of computer time, core storage require-
ments, and ease to user. Finally, the TANT synthesis algorithm was

matched with the flip-flop selection and implemented as a computer-aided

design package.
Thesis Outline

Following this introductory chapter, the TANT synthesis algorithm
is rigorously developed and described in detail in Chapter I1II. The CAD
package for the TANT problem, along with several large examples, is pre-
sented in Chapter III. Chapter 1V describes the sequential problem,
along with presenting a key example. Discussion of extensions, improve-

ments, and conclusions are presented in Chapter V.

CHAPTER 11

SYNTHESIS OF OPTIMAL TANT NETWORKS

This chapter presents and proves the optimality of an algorithm to
solve the TANT problem. A firm theoretical basis is presented in the
form of theorems and rigorous proofs, followed by a detailed discussion
of the synthesis algorithm. The underlying concept was first worked on
by Layton (23) beginning in 1973. The early concepts have been formal-
ized in the form of theorems and some of his third-level gate selections
have been modified to allow a form of backtracking. Also, a very exten-
sive gate and input reduction scheme has been added onto the end of the
algorithm. One of his examples is used, while two new examples have

been added to demonstrate the improvements.
Basic Theorems

This section presents fundamental theorems to be used as a basis for
the TANT network synthesis procedure. Notationally, the first-level gate
is defined as the gate from which the output is obtained. Second-level
gates feed first-level gates and third-level gates feed second-~level
gates. Additionally, no feedback is allowed whereby lower-level gates
feed higher-level gates. Theorems 1 through 4 provide for second-level
and third-level gate candidate generation. 7The completeness of an itera-
tive procedure based on these first four theorems is guaranteed by

Theorem 5. Theorems 6 and 7 describe a necessary selection of certain

10

second-level gate candidates for the optimal network. A key network
reduction is indicated by Theorem 8, and Theorems 9 and 10 minimize gate
inputs. Finally, Theorem 11 shows that an optimal TANT network is

obtained.
Theorem 1

Each 1-set containing the primary cube is a candidate for a second-
level gate in a three-level NAND network having only true inputs.
Proof:

Let F(xi, X,y eooy xn) be some Boolean switching function with n

2’

inputs defined as

F(x,, X_y o0y X) =Q + (8)
1 n

29

B s E
wn
.

()
t}
[y

where m is the number of 1-set terms containing only true inputs, Sj is
. .th . .

the product of true inputs for the j 1-set, and Q is some function

covering the remaining 1l-sets. Using the standard involution theorem

(2) gives

m
F(Xyy Xpy eeey X) =Q + Z S, (9)

2,

Applying De Morgan's Theorem (2) yields

m
Flx, Xpq vues xn) =Q . Tr E;' (10)
J=1

which can be recognized as a two-level NAND network with S. as inputs to
J
the jth gate at the second level. Moreover, the m outputs from these

second-level gates and Q are inputs to the first level.

11

The primary cube (22) is the O-cube having the set of coordinates
(111...1), i.e., all of the true inputs. Thus, any N-cube with only

true inputs must contain the primary cube.
Theorem 2

Each O-set containing the primary cube is a candidate for a third-
level gate in a TANT network.
Proof:

Let F(x,, X_, «.., X_) be defined as
1 n

2’

4

01t x) =R- [

i=1 k=1

Pi)
' Z: §g | (11)
o

F(xl, x

where there are { O-sets composed of the sums of P, complemented inputs,

.th .
xg denotes the kth complemented input in the i sum, and R is some
k
function covering the remaining O-sets. For example, one such function
might be (x1 + x2) (x1 + x3) (x2 t Xy 4 xé) X5 where R = x, + x,.

Invoking involution and De Morgan's theorems gives

4 Py
Flxgy X5y eeey X)) = R - | [Z e, (12)
i=1 k=1
LoTeL
"R - a
FXgy Xpy ey xn) = R j [;J Xg] (13)
i=1 k=1 k

Therefore, the inputs to the third-level gates are the pi true inputs.
Theorem 3

For a three-level NAND network, the input combinations to a third-

level gate place "don't cares'" in the 1-sets being considered as

12

candidates for second-level gates.
Proof:
Let the input set to the combinational network be represented by*

21‘1

RS
Tjrd = Z;ti (14)
i=1

where n is the number of input variables, ti is the ith combination of
the input variables, and ¥ denotes the logical sum of the ti. The k
applied input combinations which yield a "1" and 2n—k which yield a '"O"

at the output of the third-level gate may be expressed as

K on
T3rd = EZ ti + zz ti (15)
i=1 i=k+1

Since the output of this third-level gate can be an input to the second
level, the total number of inputs to the second level is n+1. The

. 1 . . .
resulting 2n+ combinations of inputs to the second level may be expressed

as

2n+1
= . 1
T, 4 zz ts (16)
i=1
With z as the output of the third-level gate,

3rd

Tona = Z3rd : TBrd " Z3rd : T3rd (17)

*The summation upper limit 2n indicates only that there are 2n dis-
tinct values which i can assume over the entire summation. No relation
between the binary value of the particular input ti and i is implied.

13

Substituting (8) into (10) and simplifying yields

Kk 2"
=Z .+ 2 .
Tona = %3ra z Y5 " %3 Z i
i=1 i=k+1
(18)
n
k 2
Z Z
* 23ra z Yt %30 Z t
i=1 i=k-+1
Observe that Z, is zero for the ji t. input combinations and Z is
3rd 1 3rd

n .
zero for the E ti input combina%I%ns. Therefore, the inputs corre-
i=k+1
sponding to the first and fourth terms in (18) are never applied and may
be considered as '"don't cares'" for any second-level gate into which Z

3rd

feeds.
Theorem 4

If some second-level gate candidates in a three-level NAND network
have been determined, then the corresponding 1-set input combinations
may be treated as ''don't cares'" in the O-sets being considered as candi-
dates for third-level gates.

Proof:

If q members of the 1l-set are covered by the second-level gate
candidates already determined, then the output of the network will be
"1" regardless of whether the remaining switching would result in an

output of "1" or "O" for the g members of the 1-set previously covered.
Theorem 5

If a necessary third-level gate candidate is determined but dis-

carded in favor of another candidate (or candidates), then it will be

14

regenerated subsequently for O-set coverage at the third level.

Proof:

Suppose a third-level gate candidate is generated but not needed as
a "don't care'" (Theorem 3) for particular 1-set input combinations being
considered for second-level gate candidates. Even though discarded at
this stage of generation, the third-level gate candidate may be required
subsequently as a "don't care" to feed a second-level gate candidate
covering yet another 1l-set. Therefore, to cover this other 1l-set with a
second-level gate, it will be necessary to regenerate the given third-
level gate candidate. Furthermore, it is entirely possible that an
improved third-level gate candidate having fewer inputs (and containing
as a subset the previously discarded gate candidate) will be generated.
In the worst case, the discarded gate candidate itself will be

regenerated.

Theorem 6

The last second-level gate candidate generated must be selected for
the TANT network.
Proof:

Since second-level gate candidates are generated to cover members
of the 1-set (Theorem 1), each new candidate generated must cover at
least one member of the 1l-set not covered by candidates generated pre-
viously. The generation of these second-level gate candidates ceases
when all members of the 1-set have been covered. Therefore, the last
candidate generated must be selected because it covers at least one mem-

ber of the 1-set not covered by any other candidate.

15

Theorem 7

If the first stage of generation of second-level gate candidates
yields only one candidate, then that candidate must be selected for the
TANT network.

Proof:

At least one member of the 1-set covered by the sole second-level
gate candidate must be used as a "don't care" (Theorem 4) for the sub-
sequent generation of one or more third-level gate candidates. By
Theorem 2, the resulting third-level gate candidate(s) prevent any sub-
sequent second-level gate candidates from covering the particular

member(s) of the l-set being used in Theorem L.

Theorem 8

If a third-level gate candidate feeds only one second-level gate
candidate as the sole input to that gate candidate, then both of these
gate candidates may be discarded and the inputs to the original third-

level gate candidate fed directly into the first-level gate.

Proof:
Let F(xl, Xy eees xn) be defined as
F(xl, Xy oo xn) = t3rdp (19)
where t is the input combination to the third-level gate under con-

3rd

sideration and P is some function that covers the remainder of the mem-

bers of the 1-set. Using the involution theorem yields

F(xl, X,y eoey xn) =t P (20)

27 3rd

which corresponds to t d being fed directly into the first-level gate.

3r

16
Theorem 9

If any input xg is fed to a particular third-level gate and to each
of the second-level gates which that gate feeds, then XQ may be removed,
as an unnecessary input, from the third-level gate.

Proof:

Let the switching function F(x X ceey xn) be represented by

11 21

F(x,y Xy eeey X) = (Rlxgu >)(R2x Gepx,)) (21)

where xg and x_ are inputs to a third-level gate which feeds two second-
level gates. In addition to this input, R1 feeds one of the second-

level gates, R

9 feeds the other, and xC feeds them both directly, where

R1 and R2 are arbitrary. Using De Morgan's theorem gives

F(x cen, xn) = Rlxg(Eg + §n) + R xg(ig +x) (22)

1 727 2 n

which may further be expressed as

F(xl, X

2

5y cven xn) = Rlxgxg + Rlxgxn + R xgxg + szgxn (23)

Observe that the first and third terms in (23) are zero and that the
remaining terms are due to the appearance of xQ as a direct input to the
second-level gates. Therefore, the XQ input may be omitted from the

third-level gate.
Theorem 10

To obtain an optimal network, any inputs which do not affect the

output must be removed.

17

Proof:

If an input is present in Network A and not in Network B with all
gates and other inputs being the same, then Network B obviously has
fewer inputs. Provided that the two networks have identical outputs

under all input conditions, Network A cannot be the optimal network.

Theorem 11

Among the networks generated by using Theorems 1 through 10, there
exists an optimal network.
Proof:

Theorems 5 and 6 guarantee that all of the necessary gate candidates
have been generated. Using these candidates to cover the 1-set of the
desired switching function and applying Theorem 8 yields a minimum
number of gates. The fewest number of inputs to these gates are deter-
mined by Theorems 9 and 10. Therefore, these exhaustive searches on

covering and input reduction yield an optimal network.

The Network Synthesis Procedure

A detailed description of the TANT network synthesis procedure
based upon the theorems of the previous section is presented here. A
flow chart is given in Figure 2, and a detailed explanation of each step

is given below.

Step 1

Determine whether the primary cube contains a '"1" or a "O". If the
primary cube contains a '"1", then go to Step 2. If the primary cube con-

tains a "O", go to Step 4.

START

/

Figure 2.

STEP 1
DETERMINE PRIME
A ! IMPLICANTS STEP 2
(1- SETS)
ARE ALL
MINTERMS YES !
COVERED
? STEP 3 FORM ALL POSSIBLE
NO TANT NETWORKS
FROM GENERATED [STEP 6
DETERMINE PRIME GATE CANDIDATES
s IMPLICATES STEP 4 T
(O-SETS) REMOVE GATES AND
MINIMIZE INPUTS |STEP 7
i N
=t !
SELECT NETWORK
HAVING FEWEST
CONSIDER ALL POSSIBLE ~ GATES AND STEP 8
COMBINATIONS OF J THIRD- FEWEST INPUTS
l LEVEL GATE CANDIDATES TO THOSE GATES
s (Eno)
NEW
MINTERM
COVERAGE
ALLOWED >STEP 5
CHOOSE COMBINATION ALLOWING
MOST NEW MINTERM COVERAGE

Flow Chart of the TANT Network Synthesis Procedure

18

19

Step 2

Determine the prime implicants (largest 1-sets) not requiring com-
Plemented inputs. This step uses Theorem 1 to generate second-level
gate candidates by forming, with true inputs only, the largest groups

of minterms (l1-set members).*

Step 3

Test for coverage of the minterms for the desired swithcing function.
If all of the minterms are covered, then go to Step 6; otherwise, more

gate candidates must be generated, and, therefore, go to Step 4.

Step 4

Using all minterms that have been covered previously as '"don't
cares" by Theorem 4, determine the prime implicates (largest O-sets) not
requiring complemented inputs. Thus, by Theorem 2, third-level gate
candidates are generated from the largest groups of maxterms (O-set

members).
Step 5

This step determines which third-level gate candidates to retain.
Test whether each gate candidate, considered singly, creates suitably
placed "don't cares!" (by Theorem 3) to allow additional second-level

gate candidates to be generated that cover at least one minterm not

*Particularly for TANT networks having relatively few input vari-
ables, the Karnaugh map is a convenient tool for forming these largest
groups by circling on the minterms in Step 2 and maxterms in Step 4. A
computer program should be considered for handling networks with large
numbers of input variables.

20

already covered. If none allow another second-level gate candidate to

be generated, try all possible combinations of two, then all combina-
tions of three, etc., until at least one new second-level gate candidate
can be generated. When at least one new minterm can be covered by this
procedure, select the combination of third-level gate candidates that
allows the most new minterms to be covered. For example, let third-
level gate candidates considered singly or in combinations of two permit
no new second-level gate generation. Furthermore, suppose two groups of
these third-level gate candidates considered in combinations of three do
allow new second-level gate generations. Therefore, the group consisting
of a combination of three third-level gate candidates which yields the
second level gate candidate(s) covering the most new minterms retained.
By Theorem 5, the discarded combination, if needed for the optimal net-
work, will be generated subsequently. Consider all the implicates
covered by these third-level gate candidates to be '"don't cares'" for

subsequent gate candidate generation. Return to Step 2.

Step 6

Create all possible networks that cover the desired switching func-
tion by using the second-level and. third-level gate candidates generated.

Use Theorems 6 and 7, and then form a covering and closure table.

Step 7

Use Theorem 8 to eliminate third-level gates which solely feed
second-level gates by feeding the third-level gate inputs directly to
the first-level gate. Use Theorems 9 and 10 to eliminate the unnecessary

inputs for the remaining second-level and third-level gates.

21

Step 8

Determine from among the several resulting networks the one(s)
having a minimum number of gates and a minimum number of inputs to those
gates. By Theorem 11, an optimal network is guaranteed.

The optimality of the resulting TANT network is based upon the
procedure's adherence to the theorems of the previous section. Although
more efficient steps might possibly be appropriate in selected cases,
the synthesis procedure presented here does yield an optimal TANT net-
work. Specifically, the discarding of third-level gate candidates in
Step 5 may be avoided by a parallel storage and the subsequent consider-
ation of all possible candidates. The particular selections in this
step of the procedure yield an effective solution without unduly large
amounts of storage. The directness of this procedure is demonstrated in

the following examples.

Examples

Three examples are presented in this section to illustrate the
developed network synthesis procedure. The first example appeared in
the introduction and is included here for comparison as well as a detailed
explanation of the steps of the present algorithm. Example 2 demonstrates
the regeneration principle of Step 5 (Theorem 5) and gate selection pro-
cedures of Step 6, and Example 3 shows the details of input reduction in

Step 7 (Theorems 9 and 10).

Example 1

It is required that an optimal TANT network be designed to realize

the combinational switching function given by

22

F(xl, x xa) = ym(0, 1, 2, 3, 4, 5, 6, 11, 13) (24)

27 X3,

The minterms in (24) are indicated by 1's in the Karnaugh map of Figure
3(a), and O's are shown in all other map locations. In Step 1 of the
synthesis procedure, the primary cube contains a O, which directs the
algorithm to Step 4. Two prime implicates are identified and labeled

as T1 and T, in Step 4. 1In Step 5, results are shown in Figures 3(b)

2

and 3(c) for T1 and T respectively, by replacing the appropriate O's

2’
by d's, allowing the tentative formation of prime implicants. Since the
new l-set coverage for the prime implicants obtained by using T1 is

greater than T only T1 is retained. Proceeding to Step 2, the two

29
prime implicants of Figure 3(b) become second-level gate candidates and
are labeled 51 and SZ' In Step 3, Minterms O, 1, 2, 4, and 6 are not

yet covered, and the procedure returns to Step 4. Additional "don't
cares" (d's) due to S, and S, are shown in Figure 3(d), along with the
d's due to T1 determined earlier. The prime implicate labeled T3 covers
the remaining five O's (Step 4). Since only one prime implicate is
generated, proceed past Step 5 directly to Step 2. Replacing the entries
in T, by d's in Figure 3(e) yields the second-level gate candidate

3

labeled S,_,, which is composed of the entire map. Since all minterms are

3
covered (Step 3), proceed to Step 6 to form possible TANT networks. In

the second-level, S_ must be selected, since it was the last second-

3
level gate candidate. Minterms O through 6 are covered by S3’ as indi-
cated by checks (/G in Figure 3(a). Third-level gates whose outputs

feed into the NAND-gate with output S, have outputs T1 and T_.. T

3 3 3
covers Maxterms 8, 9, 10, 12, 14, and 15. Maxterms 7 and 15 are covered

by Tl' Additional second-level gates are needed to cover Minterms 11

and 13. The gate candidate with output S1 covers Minterms 3 and 11, and

X3X4

X; X2\ 00 01 11 10
o] | 3 2
00| Iv}| I Ir IV,/—-”|é‘n
(o] I: I;'aﬂyif,/»|“-é272
- 2] 13 LW.AT
11} O |V<0 O)
0] 09 07 1] 0°
(a)
X3X 4 X3X4
X|X2 00 O! 1l 10 X,XZ 00 O! I 10
ool I |t {M] 1 ool 1| 1|1 |1
SRR AR ottt |1 {oO]1
| o ftdlf o ito [(][d)d
Vi
.oo(o\yo |ooKo\Qo

\'\——H(Z)é‘s, NRER
--1(2)8 s, H-101)

(b) (4) (c) (2)

XzX4g
00 O1 1t 10
oof 1 [t]al)
| d | d]| 1
d|d|d]|d
N éss
(e)

: F(X,,X2,X3,Xgq)

Figure 3. Design Steps and Optimal TANT Network for Example 1

24

the gate candidate with output 52 covers Minterms 5 and 13. Both of

these gate candidates require T, as an input to cover Maxterms 7 and 15.

1
Input variables needed for these second-level and third-level gate candi-
dates are identified in the expressions for Sl’ 52, 83, Tl’ and T3 in
Figures 3(a), 3(b), 3(d), and 3(e). No other possible TANT networks
covering the desired minterms can be formed from these gate candidates.
Furthermore, no gate or input reduction (Step 7) is possible. Therefore,
the combinational switching circuit shown in Figure 3(f) is the optimal
TANT network (Step 8).

This example was worked by Torng (15) using Eisenberg's method (14)
as Example 8.5 on Pages 118 through 125. The result in Figure 3(f) is
identical to Torng's switching circuit realization in Figure 8.20 on

Page 125 of (15), which was obtained after applying a level-reduction

technique to the primitive realization.
Example 2
As a second example, consider the switching function given by

F(xl, Xgs Xg, xé) =7m (O, 1, 2, 6, 7, 8, 11, 12, 14) (25)

which is indicated on the Karnaugh map of Figure 4(a). Step 1 directs
the algorithm to Step 4, where the single prime implicate T1 is formed.
Passing through Step 5 to Step 2 yields the three prime implicants Sl’
82, and S3 in Figure 4(b). Since not all minterms have been covered
(Step 3), return to Step 4. The four prime implicates T, T3, Tg’ and
T5 are formed in Figure 4(c). None of these prime implicates considered

singly allows new minterm coverage in Step 5. Taken two at a time, T3

with ’I‘Lt allows Minterm 8 to be covered and T2 with T, allows Minterm 2

3

25

X3X4 X3 X4 X3X4
X X2\ 00 01 11 1o X;Xa\ 00 01 1l 10 XX\ 00 o1 1! 10181,
ool 1° 1|07 1 oo 1| 1|0]1 AS00||@| e
--1-2 -1--2
o 5 76 N | o1 [| 5
otjo’lo’|t]1u-8T o1jo |0 ﬁ__T]“ o, olojalle
12 i3 15 14 ri=— =
1@ [0 | NMAraon ld [d [la} o)
0| 1°{o°| 1" 0° ol 1| oo o tfof\lof a-
Ni-n€s; Y-S
(a) (b) (c)
X3Xq . X3 X4 X3Xq
X| X2\ 00 01 It_10 X, X>\.00 0! 11 10 X;X;\ 00 Ol Ii__10
™\
oo/ | t]d]1 L %0 1|i|djd] , oo 1]l|d]|d
oifolofda]af"S40if0]0]a}fa]"™"™ o10|0]|d |d
Sl el W 4 A e l---2 S
n|daldjd]d lafa]d)af=Ts 1ijfa|a]a]d
o[1 |0]d]dj of 1 o] dld o[1 |d|d]|d]
(d) (e) (f)
X3X4 X3 X4
X X2\ 00 0! 1110 X; X2\ 00 01 Il 10
oo| I | t|d|d A oof 1| t]d]d)

----=Te - ———— =
oifo]o|d]|d] So1fd|aldalaf Se
njd|d|ald ld|d|dald
to/d|d|d]d 1ofd|d|d]|d}

(g) (h)
: X2 S|
T O | R
W=
S2
DN D
Xq ~l X2 . >_>F(x|,x2,x3,x4)
6 —
X)TBf
X3M” X|\
Ts

o
(1)

X2

Figure 4. Design Steps and Optimal TANT Network for Example 2

26

to covered. Arbitrarily choosing the T, and T, combination yields SL1

2 3

in Step 2, as shown in Figure 4(d). Again, return to Step 4. T, and TS
are regenerated (Figure 4(e)), but when considered singly, only T4
allows new minterm coverage. Returning to Step 2 yields 55 {Figure
4(f)), which covers Minterm 8. Once again, return to Step 4. TS is
regenerated (Figure L4(g)), allowing in Step 2 the coverage of the entire
map (56 in Figure 4(h)). Since all minterms have now been covered (Step
3), proceed to Step 6. Select 56, which covers Minterms O, 1, 2, and 8,
as the last gate candidate formed. Moreover, select 5. to cover Min-

1

to cover Minterms 12 and 14, and S, to cover

3

Minterm 11. Observe that Tz, T3, TQ, and T5 must be used as inputs to

56 to cover all maxterms. Rather than selecting T1 to feed Sl’ 52,

terms 6, 7, and 14, S,

and T_ to feed S as shown

and/or S X 5 37

37 Tlt may be used to feed S1 and S

in Figure 4(i). Alternately, S, may be used to cover only Minterm 12,

2

since Minterm 14 is already covered by S If both T, and TQ are used

1° 3

can be removed, and S_ covers Min-

S
to feed 2

then the x_ input to S

27 2 2

terms 8 and 12. Therefore, this input change yields a second optimal

TANT network, in addition to the one shown in Figure 4(i).

Example 3

The purpose of this final example is to illustrate input reductions
for second-level and third-level gates. Let the switching function to

be realized be given by

F(x xa) = Ym(0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15) (26)

1, xz? xj,
Step 1 directs the algorithm to Step 2, where Sl is formed in Figure 5(a).

Passing through Step 3, Prime Implicates T1 and T2 are generated in

X3Xq X3 X4 X3Xq
X)X\ 00 0! 11 10 X)X\ 00 Ot I 10 X; X2\ 00 O! I 10
ool 11017 1° ool 1 {O| 1|1 ool 1 [0 |M)]!
orf 1° |5m’ ° ot 1 |1{d]! or| 1 {1 {[d]) 1
s e -11-2 T
n| 1 o] o n|1 fol@)o nl e laflo
8 9 H 1]
of 19070 1 o 1 Jolo) i |0|(d¢\|)
k—mf—-"s, kl——lng \“'“52
~1-185;
(a) (b) (c)
X3 Xq X3 Xq X3X4
X, X2\ 00 Ol I 10 X X5\ 00 Ot Il 10 { X5 ol_1l_10
oo{ It [[0]d) I ool I |ofda]| N oo/ | [0]d)d
o1l I |djd}i orf 1 |dld] i oitjdfd|d]|d
i ld|(d]o f(1] d]d]d) nldjd|d|d
ol 1 {d(d) 1 ol | dlfa | 10{d |d|d)d
\IH—=T2 K“"=54 Y
-8 -1-- =S5
(d) (e) 1"""%e (f)
Xz X
34
X; X2\ 00 OI 10 x T3 s
oof1 |d|d]d) 4 },7_
orf{d|d|d]|d L
nld|ld|d|d Xo >12
1old|d|d]|d) X3 X ——] Sy .
K----=57 >°—]
(g) X, >T|
>5_2'
X3

Figure 5.

Design Steps and Optimal TANT Network for Example 3

27

Step 4 (Figure 5(b)). 1In Step 5, T, covers more new minterms, and T,

1

is discarded. Returning to Step 2, 52 and S, are generated (Figure

3

5(c)). In Step 4, T, and T, are generated, but only T is retained in

2 3

Step 5 (Figure 5(d)). Figure 5(e) shows the results of forming 54, 53

and S, in Step 2. Thereafter, T, is regenerated in Step 4, allowing S

6 3 7

to be formed in Step 2 (Figures 5(f) and 5(g)).
It is the application of Steps 6 and 7 in this example which

requires special attention. S_ is selected, as the last gate candidate

7

generated, for a second-level gate to cover Minterms 0, 2, 4, 6, 8, 10,

and 12, Both T2 and T, are needed as inputs to this gate. In particu-

3

lar, T_ covers Maxterm 14, and T, covers Maxterms 1, 9, 11, and 13. The

2 3

sole first second-level gate candidate generated (Sl) covers Minterms 7
and 15, and no third-level gate outputs are required as added inputs to
this gate. Only Minterms 3 and 5 remain to be covered at this point.

Minterm 3 can be covered by using either $_ with inputs x3, X9 and T

2 1

or 54 with inputs x T and TZ' Minterm 5 can be covered by using

39 1?
either 53 with inputs X590 Xy and T1 or S5 with inputs Xy, Il, and 12.

Therefore, using either S2 and S, or 54 and 55 should result in a TANT

3

network covering all the minterms. However, if 52 and S3 are used, then
the Xy, input to T1 is redundant and can be removed by Theorem 9. More-

over, the X, input can be omitted from both the Sz and S, second-level

3

gates as shown in Figure 5(h), since Minterms 2 and 6 and Minterms 4 and
6 are included in the desired switching function (Theorem 10). Theorem

10 also allows X, to be removed as an input to T2, since Minterm 6 is

now covered by both S2 and 53. The resulting optimal TANT network is

shown in Figure 5(h).

Summary

The theorems provided a firm groundwork for the steps in a network
synthesis algorithm for the design of optimal three-level NAND-gate
combinatorial switching networks having only uncomplemented inputs
(TANT). A detailed description of the procedure has been provided and a
flowchart included for easy reference. Three examples have been pre-
sented to demonstrate pertinent details of the algorithm. The network
synthesis procedure utilizes cyclical gate candidate generation and
exhaustive input optimization, which is very amenable to digital

computers.

CHAPTER III

THE CAD SOFTWARE PACKAGE

This chapter discusses the computer implementation of the algorithm
described in Chapter II. The first section gives a detailed description
of the program and some major subroutines. The second section discusses
evaluation of the CAD package. The third section of this chapter analy-
zes alternative methods for Step 5 of the algorithm, which is the choos-
ing of third-level gate candidates. The fourth section describes the
slight modification required for the NOR version, and the final section

provides a summary.

Program Description

The program, like the algorithm, has two main parts: the part
which finds the gate candidates and the part which finds and minimizes
circuits using these candidates. Figure 2 (for the algorithm) and
Figure 6 (for the program) differ primarily in the part on prime impli-
cant generation. The difference allows more of the interdependence to
be seen for Steps 1 through 5 in the program. This interdependence is
dictated in part by the choice of a method for Step 5. This first part
finds gate candidates by continuing to circle alternately on the 1l-sets
and O-sets until all minterms are covered. The second part differs in
that the algorithm does all of the work in parallel; whereas, the pro-

gram enters a loop. In the loop of Part II, some circuit is formed from

30

CIRCLE
I-SETS

MINTERMS
COVERED

?

YES

CIRCLE
O—SETS

Figure 6.

CREATE
A

CIRCUIT

|

MINIMIZE
INPUT S8

GATES

PICK

OPTIMAL
CIRCUIT

STOP

CAD Program Flow Chart

31

32

the candidates and then minimized, then another circuit is formed and
minimized, and so forth until all possible circuits are formed and mini-
mized. Finally, the best of these circuits is chosen as the solution.

Circling on the 1-sets (Step 2) and circling on the O-sets (Step 4)
are actually performed by the same subroutine with an input parameter
indicating whether to circle on 1's or O's. The subroutine SUBFN simply
starts with the lowest minterm (maxterm), checks to determine whether it
is a cell which includes the needed cube (the primary cube for TANT
problems), then tests whether all members of that cell are minterms
(maxterms) and, if so, that cell becomes a candidate. This subroutine
is essentially finding implicants (implicates) as gate candidates. All
entries within the cell are then reassigned values indicating ''don't
cares' for subsequent gate candidate generation. Steps 2 (circling the
l-sets), & (circling the O-sets), and 5 (choosing which O-set to discard)
are all contained in a large loop, which uses minterm coverage (Step 3)
to terminate the loop. Proof that these steps produce the necessary
gates for an optimal network is contained in Theorems 1 through 5.

Subroutine CKFND is used to find circuits, i.e., generate different
combinations of second-level gate candidates to cover the minterms.
Theorem 6 states that the last candidate generated must be used. If the
first second-level candidate were generated solely, it must also be used
(Theorem 7). The other candidates are chosen for the circuit by a simple
covering and closure table. This routine also eliminates those third-
level gates solely feeding second-level gates by feeding their inputs
directly into the first-level gate (Theorem 8). Subroutine CKFND corre-
sponds to part of Steps 6 and 7.

Subroutine M3RDI eliminates from the third-level gates any inputs

33

that are also present in all second-level gates it feeds. This is part
of Step 7 and is covered by Theorem 9. Subroutines EL2IN and EL3IN
eliminate unnecessary inputs to the second- and third-level gates,
respectively. This part of Step 7 uses exhaustive search. An input is
removed and, if the resulting output function is unaltered, the change

is made permanent; otherwise, the input is replaced. After input reduc-
tion, some gates may have identical inputs. Subroutine DUPGT finds these
redundancies and eliminates them.

At the beginning of the circuit selection sequence, CKFND found a
combination of second-level gates and generated a circuit. This circuit
was then minimized. Now, Subroutine ALTCK modifies the feeding third-
level gates in an effort to come up with an alternate circuit with the
same prime implicants (second-level gate candidates), which is then
minimized. ALTCK and CKFND are called until all possible circuits are
found and minimized. Step 8, the choosing of the optimal circuit(s), is

then executed. The Appendix contains a listing of the computer program.

CAD Evaluation

Three categories for evaluation of a CAD software package are execu-
tion time, core storage required, and user convenience. Algorithm
correctness to yield an optimal network is necessary before any of these
measures even has any significance. The first two categories lend them-
selves readily to numerical analysis, whereas the third is a rather sub-
jective quality. This section uses tabular and graphical displays of
the first two categories.

Table I shows the measurements on many problems (including several

from the literature) allowing a very thorough evaluation of this

34

TABLE I

TIME REQUIREMENTS FOR SEVERAL TANT SOLUTIONS

Case Number of Number of Execution Number Number
Number Order Minterms Don't Cares Time (sec) of Gates of Inputs
1 A 11 o} 1.23 8 17
2 4L 0] 0.56 6 15
3 L 0 1.18 9 25
4 4 11 0 0.68 6 17
5 4 1 o 0.56 6 9
6 4L 8 0 1.78 8 19
7 4 1 1 0.58 6 9
8 b 3 3 0.51 5 8
9 b4 3 0 0.61 7 13
10 L 7 0 0.89 6 15
11 3 5 0 0.49 3 5
12 b 7 0 0.50 5 11
13 6 20 0 1.54 9 23
14 4 7 0 0.61 7 19
15 L 6 0 0.74 6 15
16 4 o 0.59 6 16
17 L 0 0.92 7 15
18 6 10 0 1.11 8 18
19 7 15 0 3.21 8 18
20 4 6 o 0.60 7 21
21 L 9 ¢} 1.00 8 20

35

package. The predominance of fourth-order problems is due both to the
ease of hand analysis and to their presence in most of the literature.
The timing analysis is, therefore, very accurate for the fourth-order
problem, but not quite as complete for the higher-order problems. The
times for the fourth-order problem range (from 0.50 seconds to 1.78
seconds. The time for the third-order problem was 0.49 seconds. The
average for the fourth-order problems was 0.78 seconds. These are
shown in Table I. Figure 7(a) shows a graph of the timing data. This
data seems to point out a steep (perhaps exponential) rise of execution
time with increased order.

The storage analysis is shorter primarily because the number of
runs to find out the required storage is one, that is one fourth-order
problem will take as much storage as any other fourth-order problem.
The graph in Figure 7(b) displays the storage requirements for various
order problems. As one might expect, the storage requirement is rela-
tively constant over the range of lower order problems because program
statement storage predominates. As the order increases, the array
storage begins to dominate and the storage requirement begins to soar.
The information in this section is sufficient for a complete numerical

evaluation of the CAD package.

Alternate Procedures for Choosing Prime Implicates

as Third-Level Gate Candidates

The algorithm describes a Step 5 procedure which chooses an O-set
as a gate candidate based upon how many new minterms that particular
O-set allows new l-sets to cover. This procedure is not intrinsic to

the algorithm, and, consequently, other methods are possible. The

Time (Seconds)

Storags (Bytes)

30

20

10

-

t
3 4 5 . 6 7
Order of Function

(a)

200K +

ISOK T

I0O0 KT

+

50 KA

-t
o
-

L
L}

+ +
3 4 5 6 7 8 9 10

QOrder of Function
(b)

Figure 7. Timing and Storage Analysis of the CAD Program

36

37

choice could be based upon the number of 1l-sets allowed to be generated,
number of O's covered, minterms in 'hard" places, maxterms in "hard"
places, or the first candidate which allows generation of a new l-set.

Since the operation of circling on O's is to allow second-level
gate candidates to be generated, the method of choosing the O-set which
allows the most 1-sets has merit. The disadvantage of this method comes
in the form of extra or unnecessary candidates being generated in some
cases. The method of finding the most new O's follows from the fact
that O's must be covered to allow second-level gate candidate generation.
However, it is obviously not the purpose of this algorithm to cover all
of the maxterms, or even as many as possible. A 'hard" places criterion
can be defined as those terms farthest from the primary cube. This
would generate larger cells and fewer inputs to the candidates. The
method chosen does not affect the optimality of the solution, as regener-
ation comes into play, but different methods result in faster or slower
execution times. For example, the method of choosing the first O-set
allowing new minterm coverage is faster in the choosing stage but may be
slower in the long run by taking more time to generate all of the second-
level candidates. Saving all of the candidates and solving in parallel,
thus avoiding any choices, would not only increase time requirements,
because of having to solve for all possible candidates, but would
increase storage space in memory.

Table II shows the execution time and storage requirements for
some of the choices for Step 5. The execution times are for an ensemble
of 20 problems of various orders. The storage requirement is for up to
an eighth order problem. Almost immediately apparent is the very small

difference in core storage requirements. This is due to the fact that

TIMING AND STORAGE COMPARISONS FOR METHODS

TABLE II

OF CHOOSING PRIME IMPLICATES

38

Method Execution Time Storage
Original Step 5 11.56 103k Bytes
Maximum 1l-sets 11.60 103k Bytes
Maximum maxterms 11.85 103k Bytes
Minterms in 'hard" places 10.90 104k Bytes
Maxterms in "hard" places 11.77 104k Bytes
Simplistic 8.79 100k Bytes

39

much of the storage requirement is due to the input and gate optimiza-
tion portion of the program.

The original Step 5 chose third-level gate candidates based upon
the number of new minterms allowed to be covered. The other methods are
self-explanatory. All of the sophisticated methods, i.e., the original,
the maximum l-set, the maximum minterms, the maximum maxterms, minterms
in hard places, and maxterms in hard places, seemed justifiable.
Actually, these methods took more time and storage than the simplistic
method of choosing the first O-set or sets to allow minterm coverage to
be chosen as third-level gate candidates. Regeneration of necessary
gate candidates guaranteed the optimality of any of the methods. The
difference of about 4K bytes between the sophisticated methods and the
simplistic method was the subroutine to determine gate candidate choice.
More significant, the simplistic method used only 8.79 seconds of CPU
time to solve the examples, compared to 10.9 to 11.85 seconds for the

sophisticated approaches.

NOR Example

This section describes how the NAND algorithm can be used to find
a NOR circuit. In fact, Theorem 12 proves that any NAND circuit finding
algorithm can be used to find a NOR circuit, or vice versa. The proce-
dure is to complement the function, then complement the inputs, and
solve as if solving for a NAND circuit. The resulting circuit is merely
implemented using NOR gates to realize the original function. This pro-
cedure is based upon the complemented equivalency of NAND and NOR cir-

cuits as proven by Theorem 12.

40

Theorem 12

When every NAND gate in a circuit is replaced in that same circuit
with NOR gates, the new circuit is the realization for the complement of
the original switching function with complemented inputs.

Proof:

Given a switching function

x.) = x. ¢ (x.°x.) (27)

Flxg, x5, 3 1 2 X3

the NAND circuit can be readily recognized. Replacing the NAND gates

with NOR gates yields

Fl
(g x5, x4 1 2

=x + (x - x) (28)

which is the complement of F with complemented inputs.
Example
Let the combinational function to be realized be given by

F(x11 X X x,) =TMm(0, 3, &, 7, 8, 11, 12, 13, 15). (29)

2 737 74
Figure 8(a) shows the complement of this function, which is just replacing
the maxterms with minterms, and vice versa. Complementing the inputs

essentially moves the minterms around; e.g., O becomes 1 and 13 becomes

2, which is illustrated in Figure 8(b). Step 1 indicates that the

L1

X3%4 % -1l =5,
XIXZ 00 Ol Il 10 X,X2 00 Ol 1110
ool foli1]o ool 1o (1)1
orl 1]O| 110 orl 1|O}I{O
rrriry1]o Hiyri1oft1ylo
ol joftl]o o] | {oAW|o
(a) (b)
X X -——=|=T X5 X
X‘X2 3040 oI It 10 ! X,X2 C?O ol 1l 10
ool 1ol) 1 L—""=Ts oo |1 ld|dll
ortypftofdlo Ol tjla|dl|O
-i-=T : ————
oy ofddl o 2 T Td (4] q)
10 10
I Roldji O | [d|d]d)
I---=S
(c) (d) 2
X3Xg X3X g4 ----=8g
ool |l |d]| dll) ool [d|d]|I)
-H--T3
oty |difd]O ol |d|d|d
Hlgldidld Hihdldld|d
lojd|d|d|d lo\d1d|d|d)
(e) (f)
X X3
Xq
X|
X3

(g)

Figure 8. Design Steps and Optimal Network for NOR Example

42

primary cube is a 1; therefore, circling on the 1's yields S1 as shown
also in Figure 8(b). Step 5 then circles on the O's and T1 and T2 are
choosen as candidates from the O-sets generated, as shown in Figure 8(c).
Returning to Step 2, S2 is generated as is shown in Figure 8(d)

Figure 8(e) shows T3 which was actually regenerated by Step 5. Step 2
now generates S1 which covers the whole map and is shown in Figure 8(f).
Step 3 exits the candidate-generation loop, as all of the minterms have
been covered. Step 6 finds that only S1 and S3 are needed to cover all
of the minterms, and that T1, T2, and T3 must feed S3. Steps 7 and 8
find no minimization or alternate circuits. The resulting NOR circuit

is shown in Figure 8(g).
Summary

This chapter has described the computer implementation of the
algorithm of Chapter II, and the slight differences required. A
detailed description of the program and some major subroutines has been
given. The CAD package has been evaluated based upon time and storage
requirements. Alternative methods for choosing from among O-sets for
third-level gate candidates in Step 5 have been discussed. Finally, the

adaptation to the NOR problem has been presented and proved.

CHAPTER IV
SEQUENTIAL DESIGN WITH TANT NETWORKS

This chapter describes the solution of sequential problems which use
the TANT criteria for the combinational portion. The first section
formulates the problem requiring sequential machines with TANT combina-
tional logic. The second section describes the modifications required
for the algorithm in Chapter II to solve the sequential problem. The
third section describes the computer modifications for solving the
generalized excitation table. A sequential example is given in the

fourth section, and the final section provides a summary.
Problem Description

In general, a sequential problem is composed of two portions, a
combinational logic circuit and some memory devices, as shown in Figure
9. The primary inputs are the nx's, and the mz's are the output. The j
memory devices are fed by the excitation variables represented by E's,
and feedback y's to the combinational portion. The sequential portion
of the problem proceeds from the primitive flow table to the generalized
excitation table. The generalized excitation table is used to start the
TANT solution for the combinational portion of the problem. The sequen-
tial design portion is well documented, but the application of the TANT
algorithm of Chapter II to the generalized excitation table is a new

concept.

43

L

X : : Z)
X " » COMBINATIONAL ‘ : > 7.
n
LOGIC

-
Y E
| o
Yj EJ-

- .‘_J

MEMORY VR

Figure 9. The General Sequential Circuit

45

The sequential problem begins by converting the word statement of
the problem into a primitive flow table; i.e., a flow table with only
one stable state per row. The next step is to use state reduction tech-
niques to find a minimal row flow table. Next, state assignments are
made and the transition table is generated. From the transition table
a generalized excitation table is generated. This is a key step, in
that one does not need to choose a particular type of flip-flop yet.

In many design procedures the type of flip-flop is chosen at this point
and excitation tables are used to produce the Boolean equations for the
combinational portion of the problem. By using the generalized excita-
tion tables, the choice of a particular flip-flop may be postponed until
the optimal combinational circuit is found for each option and, thus,

the overall optimal sequential machine is determined. The combinational
portion of the problem proceeds as in the algorithm of Chapter II for the

solving of a TANT problem.

Modifications for Sequential Applications

The basic TANT algorithm requires two modifications to be used
effectively for sequential design problems. Since the state values from
the memory are available in both complemented and uncomplemented form,
the TANT restriction of true inputs only must be relaxed for the optimal
combinational logic design problem. Secondly, the memory requires
excitation values which must be supplied by the combinational portion of
the circuit. These outputs, as well as the total network's output
require that the TANT algorithm be capable of simultaneous optimization
to provide multiple outputs. These modifications are useful as well

for other applications. For example, many problems in combinational

46

logic require multiple outputs, and often some inputs will be available
in uncomplemented form.

The presence of some uncomplemented inputs relaxes the restriction
that the primary cube (111...1) be contained within every cell used as
a gate input combination. The primary cube becomes a primary cell, with
the requirement that every implicant or implicate used as a gate candi-
date must contain at least one member of the primary cell. The primary
cell does contain the primary cube. The extended TANT algorithm will
solve regular TANT problems, as they are a special case of the set of
problems requiring a primary cell (i.e., TANT has a primary cell of

dimension 1).

The multiple output case for TANT problems proceeds similar to
multiple output AND/OR problems. The minterms are '"tagged" to indicate
for which function (outputs or excitations) the minterm is intended. As
the prime implicants are generated the '"tags' are carried along, and any
implicant with all minterms having the same flag(s) becomes 'tagged'" for
the same function(s) as the minterms. The final count can, thus, be
minimized by using some of the same gates for two (or more) functions.
The circling on the O's need not be tagged, as any function can use any
third-level gate it might need. The multiple output extension is merely

a bookkeeping procedure, but does result in the overall optimal result.

The Generalized Excitation Table

An excitation table shows what the next state will be given the
current state and the input, a generalized excitation table (25) shows
what action will be taken when given the current state and the applied

inputs. Each type of flip-flop has a unique excitation table for a

47

given problem. However, a generalized excitation is applicable to any
flip-flop. The computer program uses the generalized excitation table
to generate the excitation for each of the types of flip-flops within
its library. The TANT algorithm will solve the combinational circuit
for each excitation table and print the optimal result. The computer
program merely uses the generalized excitation to postpone the selection
of a particular flip-flop.

The entries in a generalized excitation table are: a 1, which
indicates that the current state is 1 and the next state is 1; a O,
which indicates the current state is O and the next state is O; a O,
which represents the transition from a current state of 1 to a next
state of O, and, finally, an I, which represents a current state of O
and a next state of 1. Table III shows how each of these entries
relates to some common flip-flop devices. Table III is essentially the
library that the computer uses for converting the generalized excitation
table into a list of minterms for input to the TANT algorithm.

Although there are many design steps leading to the formulation of
the generalized excitation table, the table is merely the beginning
point for the combinational circuit which will provide the excitation

values and the outputs.

A Sequential Example

This example demonstrates the solution of a sequential problem with
TANT circuitry for the combinational portion. The major emphasis will
be the TANT solutions. A word statement is presented with its associ-
ated primitive flow table. The minimal row table is given without show-

ing explicitly the row reduction. The state assignments are made and the

TABLE III

TRANSLATION OF GENERALIZED EXCITATION TABLE ENTRIES FOR
SOME COMMON .TYPES OF FLIP-FLOPS

48

R S J K T D
-1) 1 1 - 1 1
- 0 1 0 - 1 1 0
-1 0 - - 0 0 1

49

transition table presented, which readily yields the generalized excita-
tion table. The solution for T flip-flops is shown in detail, and some
other flip-flop type solutions are presented. Finally, an optimal
sequential circuit with TANT is shown in a diagram.

The desired sequential circuit is to respond to a series of input
which will produce an output to trigger the release of a combination

lock. The circuit is to operate in fundamental mode, have inputs of Xy

and x2, and produce outputs of z, and 22. To open the lock an output of
2122 = 11 is to occur after the X%, input sequence of: 01, 00, 10, 11.
The circuit is initialized to y_y_x_x_ = 0001, and only single bit

1212

changes in the inputs will be allowed. While the correct combination is
being entered the output z,2, shall be 10. Upon any deviation from the
correct sequence the output will become 00, which will trigger external
gates to bring the system back to the 0100 initial conditions.

The primitive flow table and reduced flow table are shown in Figure
10. Using the adjacency diagram of Figure 11(a) and the state assignment
map of Figure 11(b), the state assignments of: =00, B=01, y=11,

8 = 10 are found. Figure 11(x) displays the transition table, and
Figure 11(d) shows the generalized excitation table.

The generalized excitation table must be coverted to an excitation
table for a particular type of flip-flop to begin the modified TANT
design. Figure 12(a) shows this conversion for T flip-flops. ET will
represent the excitation inputé for T flip-flops. The tags are A for
ETl’ B for ET2, C for Z,, and D for Zg. The primary cell in this case is
y1y2x1x2==(—-11). The '"don't cares' in the output subtable are due to

the unstable states. Step 1 of the algorithm from Chapter II shows 1's

present in the primary cell, so proceeding to Step 2 (circling the 1l-sets)

50

NEXT STATE OUTPUT Z,Zp
INPUT XX, INPUT X X,
00 oI Il 10 00 Ol T 10
A B & 6 - o 10 -0 —
B A - c o 10 — 10
C E - 0 © -0 - I- 10
D - a2 (@ F - 1=l -
E ® A - F 00 -0 — -0
F E - ¢« 00 - 00 00
G - a (6 F — -0 00 00
(a)
NEXT STATE OUTPUT Z,Z,
INPUT X, X, INPUT X X,
00 ol Il 10 00 Ol ¥ 10
AB ¢ a 5 8 10 10 -0 10
| ®
C 8 5 = v -0 - | - 10
D v - & @ 8 — I- |1 -
EFG & @ o @ @ 00 10 00 00

Figure 10.

(b)

The Primitive and Reduced Flow Tables

(a)

X, Xo
oo o! Il 10
00| 00 00 10 ol
Y| Y2
or | n —_ il ol
I 10 10 Il 10
ol 10 00 10 10

(c)

Figure 11.

51

Yo
0 I
0 a B
Y|
N I Y
(b)
X1 Xp
0o ol Il 10
ooloo 00 10 o1
Y Y2
o1 |11 - 1 01l
Hlie 1o 1l e
iol1lo eo 10 0

{d)

Sequential Design Tables

52

generates S --S[t as shown in Figure 12(a). S, is tagged with D for 2,

1 1

52, and S3 are tagged with a B, and 54 is tagged with an A. The Step 3
test indicates that not all minterms are covered; therefore, proceed to
Step 4. Figure 12(b) shows the cells generated by Step k4. T1 allows
the coverage of more new minterms; therefore, it is kept: Note that the
T's need not be tagged as they are available to feed any second level
gate. Step 3 indicates not all minterms are covered, and Step 4
regenerates Tz. Step 5 passes this sole O-set to Step 2 which generates

39’ as in Figure 12(d). All minterms are now covered, so Step 6 is now
executed. Only one possible circuit is found and no minimizations are
possible. The resulting circuit with 13 gates and 33 inputs and/or
interconnections is shown in Figure 13.

The input and gate counts for the combinations of flip-flops is
shown in Table IV for both the TANT algorithm and the double-complement
algorithm. Due to the state assignment, only 2 flip-flops are required
in any of the circuits. The T,D flip-flop version (i.e., using a D
flip-flop for memory device 1, and a T flip-flop for memory device 2)
is shown in Figure 14. The circuit using only T's has the same number
of gates as the D,T version, but more inputs. The D,T version has the
interesting phenomena in that a third-level gate for one function
directly feeds the first-level gate of another function. The result is
that a particular gate is both a second- and a third-level gate at the
same time.

This example shows (a) the TANT algorithm of Chapter II, when
slightly modified, yields better (fewer gates and interconnections)
sequential circuits than the double-complement method, and (b) allowing

multiple types of flip-flops in the same circuit can at least result in

53

-- 1= T,
o] Iy 10
[; [
B
-]--=8
I kl L | 200 0] l
B B CD—B
f l-=s, B' B
10 [0
A C A C \l_(/
~=-=T,
(a) (b)
X, X ---138 X, X Ol--=$§
172 5 | "2
Y%\ _00 Ol/l—l 10 Y Y5\ 00 ol ﬁ 10
00 (C\ B‘l 00 /
~00[-=§
Ol ! (;l (‘ >
A A
il I Q\
H B B — 8 -u--=58”
(-—'\
10 20]
A"‘*“{ 1
fo-1=s
(¢) (d)
Figure 12. TANT Solution for Toggle Flip-~Flops

5k

T =

2
t:?j

Dk

XZ-, Y, =i l

Figure 13. The Toggle-Toggle Flip-Flop Solution

55

TABLE IV

INPUT AND GATE COUNTS FOR SOLUTIONS TO THE
SEQUENTIAL EXAMPLE

Flip-Flop Types Using Thesis Algorithm Using Double-Complement
Number Number Number Number

FF1 FF2 of Gates of Inputs of Gates of Inputs
T 13 33 14 37
D D 14 31 14 31
14 28 16 31
JK JK 14 28 16 31
T D 14 35 14 35
T RS 14 33 15 34
T JK 14 33 15 3k
D T 13 29 14 32
D RS 14 29 15 30
D JK 14 29 15 30
RS T 13 30 15 34
RS D 14 31 15 32
RS JK 14 28 16 31
JK 13 30 15 34
JK D 14 31 15 32
JK RS 14 28 16 31

XI_"

X, Yz—ﬂj__,

O
Yi

Yi— |
-
X, |

_ Y,
Xl_ 2 !
X o— Y| — Z

Figure 14. The Toggle-Delay Flip-Flop Solution

57

fewer interconnections.

Summary

This chapter described the general problem for sequential design
with NAND gate combinational logic, and only true external inputs avail-
able. The modifications for the algorithm of Chapter II to handle the
special requirements of primary cell and multiple output were described.
The use of the generalized excitation table as the starting point for
the computer program was presented. Finally, an example with detailed

explanation for some cases was presented.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This thesis applied a new map-factoring type of algorithm to the
solution of three~level NAND-gate problems with only uncomplemented
inputs allowed. A set of theorems proved the optimality of the solution
found by the basic algorithm. The theorems formed a constructive proof,
and the steps of the procedure for the algorithm followed the theorems
closely. Expansion of the basic algorithm allowed solutions to problems

with sequential applications.

Conclusions

Third-level and second-level gates correspond to prime implicates
and prime implicants, respectively. Not all of the prime implicants for
a given function are required for the minimum realization of that func-
tion. These points with some input reduction allow the generation of an
optimal circuit realization without using an exhaustive search on all
possible combinations of gates. The procedure is readily implemented on
a computer. While the algorithm considered many situations in parallel,
the computer, being essentially a sequential machine, required that many
steps be converted to loops. The NOR problem is easily handled by the
algorithm due to the complemented function with complemented inputs rela-
tionship between NAND and NOR gates. The overall procedure produces an

optimal result independent of the particular method of implementation of

58

59

some of the steps, particularly the choice of prime implicates for
third-level gate candidates.

The basic TANT problem is a subset of combinational problems which
allow some complemented inputs. The extension of the basic algorithm to
solve problems with some complemented inputs involved expanding the pri-
mary 1l-cube concept to a primary r-cube. Multiple outputs are required
in many combinational problems. The multiple output procedure entailed
the tagging of minterms and generated prime implicants. The extensions
of some uncomplemented inputs and multiple outputs allows sequential

problems to be solved.
Recommendations

The creation of hazardless networks being a desirable goal, the
investigation of covering minterms more than once by adding selected
gates to the optimal circuit is suggested. Work on fault analysis is
suggested to both determine a circuit's sensitivity to a particular
fault as well as fault detection and correction. One possible approach
to this problem is the generation of input test sequences, i.e., a
series of inputs with known expected outputs which yields the most infor-
mation with the least effort. Further investigation of fan-in and fan-
out restrictions would increase the applicability of the algorithm to
common design problems. A c9ncentrated effort is needed to create a
sequential CAD package to utilize fully the TANT algorithm in sequential
applications.

The generality of the concept behind the algorithm could be investi-
gated by considering more complex units than NAND gates as the basic

building blocks. The basic objective is to search for an optimal circuit

60

without total exhaustive search upon the set of all possible circuits.
This concept could be used for NAND-trees, minimizing package counts in
microprocessor circuits, of a general method of attack on logic circuits.
Since much of today's logic is implemented in software, the use of this
algorithm to minimize programming steps in microprocessors should be

investigated.

(1)

(2)

(3)

(&)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

SELECTED BIBLIOGRAPHY

McCluskey, E. J. 'Logical Design Theory of NOR-~gate Networks With
No Complemented Inputs.'" 1963 Proc. 4th Annual Symp. on
Switching Circuit Theory and Logical Design, IEEE Special
Publication S-156 (1963), pp. 139-148.

Nagle, H. T., Jr., Carroll, B. D., Irwin, J. D. An Introduction
to Computer Logic. Englewood-Cliffs, N. J.: Prentice-Hall,

1975.

Bradley, D. B. '"A Survey of Boolean Function Realization Using
NAND and NOR Logic.!" (Unpub. M. S. Thesis, Auburn University,

1970.)

Gimpel, J. F. "The Minimization of TANT Networks.'" IEEE Trans.
Electron. Comput., EC-16 (1967), pp. 18-38.

Hohulin, K. R., Muroga, S. '"Alternative Methods for Solving the
CC-table in Gimpel's algorithm for Synthesizing Optimal
Three-Level NAND Networks." (Abstract.) Computer (Dec.,

1975), p. 95.

Ellis, D. T. "A Synthesis of Combinational Logic With NAND or NOR
Elements.!" IEEE Trans. Electron. Comput., EC-14 (1965),
pp. 701-705.

Davidson, E. S. "An Algorithm for NAND Decomposition Under Net-
work Constraints." IEEE Trans. Comput., C-18 (1969),
pp. 1098-1109.

Dietmeyer, D. L., Su, Y. H. '"Logic Design Automation of Fan-in
Limited NAND Networks." IEEE Trans. Comput., C-18 (1969),
pp. 11-22.

Schneider, P. R., Dietmeyer, D. L. "An Algorithm for Synthesis of
Multiple~Output Combinational Logic.'" IEEE Trans. Comput.,
C-17 (1968), pp. 117-128.

Chakrabarti, K. K., Choudhury, A. K., Basu, M. S. 'Complementary
Function Approach to the Synthesis of Three-Level NAND
Networks." IEEE Trans. Comput., C-19 (1970), op. 509-51k,

Koh, K. S. "A Minimization Technique for TANT Networks.'" IEEE
Trans. Comput., C-20 (1971), pp. 105-107.

Frackowiak, J. '"The Synthesis of Minimal Hazardless TANT Networks.'
IEEE Trans. Comput., C-21 (1972), pp. 1099-1108.

61

(13)

(1k)

(15)

(16)

(17)

(18)

(19)

{(20)

(22)

(23)

(24)

62

Maley, G. A., Earle, J. The Logical Design of Transistor Digital
Computers. Englewood-Cliffs, N. J.: Prentice-Hall, 1963.

Eisenberg, H. "An Algorithm for the NAND-Gate Realization of
Switching Functions.!'" (Unpub. M. S. Thesis, Cornell
University, 1969.)

Torng, H. C. Switching Circuits Theory and Logic Design.
Reading, Mass.: Addison-Wesley, 1972.

Baugh, C. S., Chandersekaran, C. S., Swee, R. S., Muroga, S.
"Optimal Networks of NOR-OR Gates for Functions of Three
Variables." IEEE Trans. Comput., C-21 (1972), pp. 153-160.

Breuer, M. A. '"Implementation of Threshold Nets by Integer Linear
Programming.'" IEEE Trans. Electron. Comput., EC-14 (1965),
pp. 950-952.

Cameron, S. H. '"The Generation of Minimal Threshold Nets by an
Integer Frogram.'" IEEE Trans, Electron. Comput., EC-13
{(1964), pp. 299-302.

Muroga, S. '"Logical Design of Optimal Digital Networks by Integer
Programming.'" Advances in Information Systems Science.
Ed. J. T. Tou. New York: Plenum, 1970, pp. 283-38L.

Hellerman, L. "A Catalogue of Three-Variable OR-Invert and AND-
Invert Logic Circuits." IEEE Trans. Electron. Comput.,
EC~12 (1963), pp. 198-223.

Smith, R. A. '"Minimal Three-Variable NOR and NAND Logic Circuits.
IEEE Trans. Electron. Comput., EC-14 (1965), pp. 79-81.

Ramamoorthy, C. V. '"New Synthesis Techniques for Special Logical
Circuits." (Internal Memo.) Needham, Massachusetts:
Honeywell, Inc., 1962.

Layton, J. E., Rowland, J. R. '"Direct Map Factoring TANT Network
Synthesis.'" (Report for National Science Foundation
Research.) Stillwater, Oklahoma: Department of Electrical
Engineering, 1975.

Givone, D. D. Introduction to Switching Theory. New York, N. Y.:
McGraw-Hill, 1970

APPENDIX

COMPUTER PROGRAM LISTING

63

MAINS.

VAR IABLES:
IN-LCGICAL UNIT NUMBER FCR THE INPUT DEVICE.
ICUT-LOGICAL UNIT NUMBER FOR CUTPUT DEVICE.
LPL1-LEVEL PLUS 1.
LMI-LEVEL MINLUS 1.
NCTST— ARRAY OF VALUES FOR TESTING CRITERIA
FOR STEP 5 CHOICES OF PRIME IMPLICATES.

JCRIT- INDEX FOR TYPE OF STEP 5 BEING USEC:

=1 MOST 1-SETS GENERATED.

=2 MOST NEW MINTERMS COVERED.

=3 MOST NEW MAXTERMS COVERED.

=4 FIRST O0-SET GENERATED ALLOWING NEW MINTERM

COVERAGE.

=5 MAXTERES IN HARD PLACES CCVERED.

=6 MINTERMS IN HARD PLACES COVERED.
NITMF-NUMBER CF NEW SUBFUNCT IONS{TEMPCORARY).
ITTMP-NEW SUBFUNCTIONS{TEMPORARY).
JMAL,JMA2-LOCP INDEXING VARIABLES.

IPRIM-THE PRIMARY CUBE. .

NCTRM-NUMBER OF MINTERMS INPUT.

1CRDOR-ORDER OF FUNCTICN TO BE MINIMIZED.

NDC —NUMBER OF DONT CARES READ IN.

ISET-TYPE OF SET YO BE PROCESSED{1-SET OR 0-SET).
MCCEL-NUMBER OF MAXTERM CELLS FOUND.
MCELL-LIST OF MAXTERM CELLS FOUND.
MXTREM-LIST OF MAXTERMS.
MTRVMS-LIST OF MINTERNMS,
ICUBE-G~SET CUBES NOW BEING CONSIDERED.
NSTCF-NUMBER CF O~SET CUBES NOW BEING CONSIDERED.
NCMX-NUMBER OF MAXTERMS.
NTMP-PARTICULAR 0~SET CUBE NOW BEING CONSIDERED.
IS-LIST OF SUBFUNCTICNS.
NCSF-NUMBER OF SUBFUNCTICNS.
IT-LIST OF RESIDUAL FUNCTIONS.
NCTF-NUMBER OF RESIDUAL FUNCTIONS.
1FUNC-FUNCTION VALUE AT VARIOUS LEVELS OF SOLUTIGN.
LEVEL-CURRENT LEVEL OF FUNCTION.
ICCV-COVERING TABLE WHERE ROW IS SUBFUNCTION AND COLUMN IS
NEPIS-NUMBER OF ESSENTIAL PI*S.
TEPIS-LIST OF ESSENTIAL PI'S.
IFST-FIRST LEVEL OIRECT INPUT CUBE MINIMUM,
NCKT-NUMBER OF CIRCUITS.
NGATS-NUMBER CF GATES FOR A CIRCUIT.
NINFT-NUMBER CF INPUTS FOR A CIRCUIT.
ISWIC-SWITCH FOR DEBUG PRINT, IF ON{= TO IDBUG) THEN PRINT

CEBUG PRINTS.

IPRT-LOGICAL UNIT NUMBER FOR LINE PRINTER.
ICBUG-TEST VALUE FOR DEBUG SWITCH.
ICUM-LCGICAL UNIT NUMBER FOR NOWHERE.

VERTABLES INDEXING KEYS:

17T(JG,1)=THE MINIMUM OF THE INPUT CELL FOR THE JQTH O-SET.
IS(JR,1)=THE MINIMUM OF THE INPUT CELL FOR THE JRTH 1-SET.
IS({JR42)=THE # OF IT'S BEFORE THE JRTH 1-SET.

6k

000C0010
00000020
000€0030
000C0040
000C0050
00000060
000cCco70
00000080
00CCCO090
000C0100
00000101
00000102
000C0103
00000104
000C0105
00000106
00000107
00000108
000C0109
00000110
0oa0co120
00000130
000C0140
00000150
000C0160
000C0170
00cco180
00000190
000C€0200
00000210
00000220
000C0230
000C0240
00000250
00CcC260
000C0270
00000280
00000290
00000300
00000310
00ccc320
00000330
000CC340

MINTERMO00C0350

ALL

00000360
00000370
00000380
00000390
000C0400
00000410
00000420
00000430
0000C440
00000450
00000460

.00000470

00000480
000C0490
00000500
00000510
000C0520

65

ISCJR,3)=THE LEVEL GF IFUNC FCR THE FUNCTION VALUES FOR THE JRTH 100000530
I2NC(JSI=THE JRTH 1-SET FOR THE JSTH 2ND LEVEL GATE.
I3RC(JT)=THE JQTH O0-SET FOR THE JTTH 3RD LEVEL GATE.
IFEED(JU«1)=# OF FEEDING GATES FOR THE I2ND{(JU)ITH GATE.

IFEEC(JU,JVI=THE JVTH FEEDING JQ FOR THE I2ND{(JU)TH GATE.
MASKZ2{JW,JTERM)=VALUE OF THE SECOND LEVEL GATE AT JTERM FOR THE

MASK3{JX,JTERM)=VALUE OF THE THIRD LEVEL GATE AT JTERM FOR THE
I3RD(JIX)TH GATE.

I2ND(JWITH GATE.

ICCNV{JQ)=JX

<<<KINPUT CARDS>>>

USED FOR INDEX CONVERSICN.

THERE IS A SET OF CARDS FOR EACH PRCBLEM

TC BE SOLVED.

A BLANK TRAILER CARD

FCLLCWS THE LAST SET AND TERMINATES
EXECUTION.

EACF SET CONTAINS THESE CARDS:
CARD 1- TITLE OR NOTE{(MUST NOT BE BLANK).
CARD 2-IN 415 FORMAT
ORDER,I. Ee NUMBER CF INPUTS
NUMBER OF MINTERMS TO BE READ

CoLsS 21-25

CARD 3{AND MCRE IF NECESSARY)-CONTAINS THE MINTERMS

DIMENS ION
DIMENSICN
CIMENSICN
CIVMENS ICN
DIMENSICN
CIMENSICN
DIMENSICN
DIMENSICN
D IMENSICN
DIMENS ION
DIMENCSICN
CIMENSICN
DIMENSICN
DIMENSION
DIMENSION
DIMEANSICN
DIMENSICN
CINENS ICN
DIMENSION

CoLs 1-5
COLs 6-10
CCLS 11-15

COLS 16-20

NCR

NUMBER OF DON*T CARES

EXTRA DEBUG CUTPUT DUMP SWITCH,
IF 1 IN COL 20 DUMP IS ON,
IF 0 OR BLANK IN COL 20 ONLY SOLUTION PRINT000C0810

INDI CATOR(IF BLANK SCLVE A NAND
CIRCUIT, BUT IF A POSITIVE VALUE THEN

SOLVE FOR A NCR CIRCUIT).

IN 1615 FORMAT,1.E. EACH MINTERM
JUSTIFIED IN A FIELD OF S5 CGLS.

NGATS{3C),NINPT{(30)
NCTST(10)
MCKTS(3C)
TEPIS(30)
I3R0(30),IFEED(30,10)
MCELLL2C)
MXTRM(256)
IFUNC(4C0,256)
MTRMS(256)+IDC(256),1CELL(20)
ICUBE(20)
15(30,3)
IT(30,2)
ISTMP(20),ITTMP(20)
ICOVI20+2506)
LPTST{(2C)
LPINE(20), I2ND(20),ICOVT(204+256)
TITLE(2Q)
I7T7T1(30)
MASK31{32,256) s MASK2(32,256}

CCMMCN IN,IOUT,IPRIM,ISET,IFUNC,LEVEL,
*ICCANV(30) yMASK3 ,MASK2
CATA BLANK/® '/
CATA IBLNK/Y' ¢/

CATA IPLUS/'+*/

CATA MINUS/'-'/

IN=5

IS RIGHT

000C0540
000C€0550
00000560
000€0570
00000580
00000590
000C0600
000C0610
00000620
00060630
000C0640
00000650
00000660
0000067C
00000680
00000690
00000700
00000710
000€0720
000CC730
00000740
000CQ750
000C0760
00000770
00000780
000C0790
00000800

00000820
00000830
000€0840
00000850
000C0860
00000870
000C0880
00000890
006CC900
000€0910
00000920
000C0921
00000930
00000940
00000950
00000960
00000970
000C0980
00000990
006€1000
000C1010
00001020
00001030
00001040
00001050
000C1060
00001070
000C1080
00001090
00001100
00001110
000C€1120
00001130
00001140
000C1150
00001160
000C1170

66

000C1180

INITIALIZE IDBUG. IF IDBUG IS EQUAL 00001190

TO ISWTC{ON THE INPUT CARDS) THEN 00001200

THE SWITCH IS TURNED ON AND ALL 00001210

DEBUG OUTPUT WILL BE PRINTED. 00001220

000C1230

ICBUG=1 000C1240

. 00001250

IPRT12=12 000C1260
IDUM=13 000cC1270
[PRT=6 00001280
ICUT=6 000C1290
INRUN=4 00001291
00001292

INITIALIZE AND PRINT RUN COUNT. 00001293

00001294

REAC (INRUNy 20)JRUN, JCRIT,IDBUG,NCASES 00001295

20 FCRMAT(I10,114212) 00001296
JRUN=JRUN+1 00001297
REWIND INRUN 00001298
WRITE({INRUNs20) JRUN¢ JCRIT,IDBUG+NCASES 000C1299
WRITELIOUTs30)JRUN,JCRIT,IDBUGyNCASES 00001300

30 FCRMAT(' JRUN=*,110,10X, *JCRIT="4,12,10X,*'IDBUG="4513,10X, 00001301
% ONCASES=',13) 00C01302
000C1303

INITIALIZE CASE COUNT. 00001310

00001320

JCASES=0 000C1330
00001350

00001360

I NPUT 00GC1370

00001380

FIRST CARD HAS TITLE. 000C1390

. 00001400

30 ICUT=IPRT 00001410
REACUINLSLITITLE 00001420

91 FCRMAT(20A4) 00001430
00001440

TEST FOR BLANK CARD(IF BLANK ALL DONE). 000C1450

{FIRST 72 CCLS BLANK) 00001451

00001452

000C1460

DC $2 JMA=1,18 000C1470
IF{TITLE(JMA)-BLANK)S3,92,93 00001480

G2 CCONTINUE 000C1490
00001500

GC YC scoo 00001510

93 CCNTINUE 00001520
000C1530

STOP IF NCASES HAVE BEEN PRCCESSED. 00001540

00001550

TF{JCASES-NCASES)S4+8990,8990 000C1560

94 CCNTINUE 00001570
JCASES=JCASES+1 000€1580
00001590

PRINT TITLE. 00001600

000C1610

000C1620

WRITE(IOUT,96)TITLE 00001630

G6 FCRMAT('1',2044) 000C1640
000C1650

SECOND CARD HAS FUNCTION PARAMETERS 000C1660

ON I5 FORMAT. 000C1670

000C1680

REAC(IN,100)ICRDRyNOTRM, NODC y ISWTC,NOR 006C1690
100 FCRMAT(1615) 00CC1700

1c7

#*DCN**'T CARES' /' ISWTC=',15,"

111

NCKT1=0

LEVEL=1

NCTF=0

MCOvV=0

NISF=0

NCSF=0
JETCP=2*%]J0RDR
IPRIM=JSTOP-1
JP1=JSTCP+1

DO 1C7 JMA=1,J4P1
TFUNC(1,JMA)=0
DC 1C7 JUMA2=1,10
ICOVIJMA2,JMA Y =IBLNK
CCNTINUE

WRITE(IOUT,11C0)IORDR NOTRM,NODC ,ISWTC »I10BUG
110 FCRMAT(*0 FUNCTION OF ORDER: *¢I5/' WITH®, 15,

10BUG="*+15)

MINTERMS AND *,I5,°

READ MINTERMS AND SET FUNCTION VALUE.

REACCIN,1CC I (MTRMS{JMA) » JMA= 1, NOTRM)
WRITE{TIOUT,111) (MTRMS{JIMA)+JMA=1,NOTRM)
FCRMAT('0 MINTERMS ARE:*,50{/16I15))

DC 120 JMA=1,NOTRW¥
JTMP=MTRMS{JMA) +1
TF(JTMP-JSTOP)115+115,113

113 WRITE(IQUT,114)IMTRMS(JMA),TI0ORDR

114 FCRMAT{'Oxxxx%GOOF**%%x YOU HAVE ENTERED',I110,

#
#
115

120

130

131

140
141

142

143

' WHICH IS TOO BIG AS A MINTERM IN A FUNCTION OF ORDER?*,

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>