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PREFACE 

This dissertation develops an algorithm that can be 

used to schedule ships to collect seismic data at a given 

prospect containing N s~ismic lines. To collect the re-

quired data, a ship must leave a known port and travel to 

the prospect, traverse each of the N lines one time, then 

return to a known port. At presen~ geophysical companies 

are relying solely upon managerial judgment to schedule 

these specially equipped ships. Since all data associated 

with this problem are deterministic in nature at the time 

the decision is being made, the theoretical solution serves 

as the usable solution for alleviating the managerial deci

sion difficulties. 

The problem is formulated as a dynamic programming 

model composed of N stages and is programmed in the FORTRAN 

IV language. The proposed algorithm selects the minimum 

cost route through any configuration based on an input con

sisting of location co-ordinates and known parameters. 
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CHAPTER I 

INTRODUCTION 

Orientation to Problem 

Marine seismic exploration is an international business 

of which the primary concern is the detection of oil re-

serves beneath the floor of the ocean. At present, there 

are approximately one hundred geophysical crews collecting 

seismic data at strategic locations around the world. 

Because of the high costs associated with maintaining a 

geophysical crew, decisions concerning the management of the 

crews are very critical. 

Seismic data is collected from beneath an ocean by 

exploding an energy source in the water, then recording the 

magnitudes of the noise reflections through a series of 

sensing devices. These sensing devices are located at equal 

intervals within a seismic marine cable which is towed by a 

ship. This cable, usually from one-half of a mile to two 

miles in length, must be aligned with the shipVs movement 

when data is being collected. 

A prospect at which data is to be collected consists of 

a configuration of straight lines, the lines indicating the 

locations where data is to be gathered. An example of a 

seismic prospect is shown in Figure 1. The number of lines 
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Figure 1. Seismic Prospect Configuration 1 
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at a given prospect might be as great as two dozen, with in

dividual line lengths ranging from perhaps five miles to one 

hundred miles in length. To collect the required data, a 

ship must leave a known port P1 and travel to the prospect, 

traverse each of the lines one time collecting data 1 then" 

return to a known port Pa. 

It is the responsibility of the management of a geo

physical company to route a ship through a given configura-

tion so as to collect the required data efficiently. Ships 

are presently being scheduled through seismic prospects by 

managerial discretion with a limited number of calculations. 

Becau,se of the extremely large number of feasible paths that 

could be selected and the great expense of maintaining a 

marine crew, a decision based on subjective judgment is 

highly vulnerable to costly error. 

The objective of this investigation is to develop an 

algorithm which, with the aid of a digital computer, will 

select the minimum cost route through any given seismic 

prospect configuration. 

Mathematical Statement of Problem 

By joining the departation and termination ports with a 

line, the configuration is changed from one of .N lines to 

one having N+1 lines. The problem now becomes selecting the 

minimum circuit that covers the N+1 lines. Let the inter-

change portion of a circuit which traverses the N+1 lines be 

denoted by D. 



This problem can be stated as follows: 

given 

d(i,j,m,n) = distance from line i' end j to 

end n 

x(i,j,m,n) = 1 if line i' end j is linked 

end n 

x(i,j,m,n) = 0 otherwise 

where 

i = 1,2,J, ... ' N+1 j = 1,2 

n = 1,2 

minimize 

.M+l a N+l a 

D = l I l l d(i,j,m,n) x(i,j,m,n) 
! =1 3 =l ft =1 ft =1 

subject to 

N+la N+12 

. l l x(i,1,m,n) + .l l x(i,2,p,q) = 1 
mpi Ill =1 n =:1 p;ti P ==1 ·~ ::::1 

N+12 ~12 

. l l x(m,n,i,j) +. l l x(i,j,p,q) = 1 
m/i m =in =1 p;li ;, ::::1 q ::::1 

where 

and 

line m, 

to line m, 
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where 

i = 1,2,3, . . . , N+1 j = 1,2 

m = 1,2,3, . . . ' N+1 n = 1,2. 

Literature Survey 

A thorough search of the literature reveals that very 

little research has been published pertinent to this spe-

cific problem. An analogy can be made, however, with the 

proposed problem and the classical traveling salesman prob-

lem. The objective of the traveling salesman problem is to 

select the route that will minimize the total distance 

traveled in visiting N cities once and only once and re-

turning to the starting city. A seismic configuration con-

sisting of N lines is comparable to a 2N+2 city traveling 

salesman problem which is constrained such that cities are 

visited in specified pairs. The unconstrained traveling 

salesman problem has been treated by a number of persons 

using a variety of techniques. Several of the more impor-

tant contributions will be discussed in this chapter. 

One of the earliest investigations was made by Dantzig, 
' '. 

Fulkerson, and Johnson (9) in 1954. Their publication out-

lines a linear programming approach to the problem. Their 

approach starts with an arbitrary solution, then employs the 

standard simplex method to improve the basis. A link in the 

basis is replaced by a new link in each iteration. Since a 

link which has been removed can be re-introduced at a later 

iteration~ this approach is highly inefficient. Because of 
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the additional constraints that would need to be imposed, a 

linear programming formulation of the proposed problem would 

be extremely large. Since the above original research was 

performed, other attempts have been made to use linear pro-

gramming to solve the traveling salesman problem. Because 

of the nature of the problem, however, little success has 

been achieved. 

Miller, Tucker, and Zemlin (17) formulated the travel-

ing salesman problem as an integer programming problem. 

Using this technique, an N-city problem required Na+N con-

straints and N2 variables. The authors concluded that the 

integer programming procedure was highly inefficient. 

In 1962, Bellman (J) employed dynamic programming to 

obtain the optimal route a salesman should travel. Using 

this approach, the traveling salesman problem was formulated 

as a multi-stage decision problem. The optimal path seg-

ments obtained from a particular stage are retained and used 

in obtaining the optimal segmental routes in subsequent 

stages. The author points out that, although this method of 

attack is highly efficient, the algorithm is faced witp a 

storage problem for an arbitrarily large number of cities. 

A year later, Little, Murty, Sweeney, and Karel (16) 

developed a "branch-and-bound" algorithm for the traveling 

salesman problem. This algorithm divides all paths into two 

categories. The first category includes all paths contain-

ing a directional link connecting two particular cities, 

whereas the second category includes all remaining paths 



that exclude the selected link. At every stage where this 

separation of paths or "branching" occurs, a lower bound is 

calculated for each of the sets of paths within each of the 

above categories. At each branching stage, the directional 

7 

link is selected in such a manner that the lower bound for 

the set of paths not containing the link in question will be 

as large as possible. The optimal route is determined once 

a circuit is found where the total distance required to be 

traveled is smaller than the lower bound of each of the 

other path segments, respectively. Using both the execution 

time and memory storage requirements as criteria, this algo

rithm has been shown to be the most efficient method to date 

for solving the traveling salesman problem (5, p. 555). 



CHAPTER II 

OPTIMIZATION MODEL 

General Statement of Problem 

The following notation will be used in formulating the 

multi-stage model of the problem: 

N = Number of lines in the configuration 

Distance from P1 to line i, end j = Q(i,j) 

Distance from line i, end j to line m, end n 

= o(i,j,m,n) 

Distance from line m, end n to P 8 = ~(m,n). 

Given 

Q(i,j), o(i,j,m,n), ~(m,n) i=1,2,3, ••• , N 

m= 1,2,3, ••• , N 

j = 1, 2 

n = 1, 2 

determine the sequence containing N+1 elements that mini-

mizes D with D being defined as follows: 

where 

through N 

E1 = 1,2 i = 1,2,3, ll ••. CJ 2N 

E1 + E1+1 - 3 i ::: 1,3,5, . "' . ' 2N-1. 

8 



In general 7 there are 2NN! possible routes through an 

N-line configuration that would have to be considered if an 

exhaustive enumeration is to be performed. To reduce the 

required number of paths to be considered, Bellman's 

"principle of optimality" is employed, which states: 

An optimal policy has the property that whatever 
the initial state and initial decision are, the 
remaining decisions must constitute an optimal 
policy with regard to the state resulting from 
the first decision (2 7 p. BJ). 

9 

To utilize this principle, the problem will be formulated as 

a dynamic programming model composed of N stages. 

Stage 1 

Let subscript S1 denote the line to be covered immedi-

ately prior to returning to port P2. Prior to approaching 

line S1 7 the ship will change lines from a second line. Let 

this second line be designated by the subscript i. The last 

line covered (s1) can be traversed in either one of two pas-

sible di.rections. Cumulative penal ties of these two path 

segments from line ij end j to port P2 can be calculated as 

follows: 

ti ( i, j i S1 ) == o ( i, j , s1 , 1) + S ( s1 , 2) 

ti'(iij,s1) = o(i~j,s1i2) + S(s1,1). 

* Let f1'''( i 7 j 7 S1 ) denote the shortest path segment from 

line i, end j to P2, covering line S1. 

* f1
1
(i,j,s1), then fi(i,j 1 s1) = fi(i,j,s1). Line S1 would 

then always be attacked in the order of i,j ~ S1 ,1 ~ S1 ,2 ~ 
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Pa, should line S1 be in reality the immediate predecessor 

to Pa and the immediate successor to line i. 

If fi ( i, j , S1 ) > fi 1 
( i 7 j 7 S1 ) 7 then * ft < i, j , s1 ) = 

fi I ( i 7 j 7 S1 ) • In this case, line S1 would always be trav-

ersed in a sequence of i,j ~ { 17 2 ~ S1 ,1 - Pa. If 

fi ( i, j, S1 ) = f 11 
( i 7 j, S1 ) , line S1 could be traversed in 

either direction. 

The above procedure is extended by calculating the 

* values of f1 (i,j,!;1) using the relationship 

* fi ( i, j , S1 ) = minimum [ 6 ( i, j , S1 , n) + ~ ( S1 , ii) } 

n=1;2 

n=3-n 

for the following states: 

i = 1,2,3, ••• , N 

j = 1,2 

Sl = 1' 2 ~ 3 7 ••• 7 N s1 -J i. 

This procedure composes STAGE 1 of the optimization algo-

rithm. It is apparent that one-half of the feasible paths 

in the N-line configuration are eliminated from further con-

sideration in this stage. 

Stage 2 

Since the "principle of optimality" is being utilized, 

the optimal values determined in STAGE 1 are used in obtain-

ing the optimal values for STAGE 2. The recurrence rela-

tionship between STAGE 2 and STAGE 1 is: 
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* fi Cm,n,s1) 

n = 1,2 n = J-n. 

Subscript S1 is an index denoting the last line in the co~-

figuration to be traversed, and i - m - S1 is the line se-

quence in which the ship is routed prior to returning to 

port Pa. 

The minimum distance from line i, end j to port Pa that 

traverses two lines can be determined using the following-

expression: 

* fa(i,j,Sa) = minimum fa(i,j,k,n,k) 

k = m, ~1 

n = 1, 2 

where 

m = 1,2,J, •.• , N m I i 

S1 = 1,2,J, •• 'II 9 N Si I i ,m 

if k = m, then k = s1 

if k :: s1 , then k = m 

sa = an index denoting a unique combination of lines 

m and S1. 

Since k and n each assume two values respectively, four 

feasible paths are considered when determining a value for a 

* particular f:a ( i, j, Sa ) • Only the minimum of these four 

routings is retained for the optimal policy, hence perma-

nently eliminating all paths containing the other three 

possible path segments from future consideration. 

This elimination procedure is repeated with values of 
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* f~( i,j,Sa) being determined for the following states: 

i = 1,2,J, ••. , N 

j = 1,2 

Sa= a unique combination of two lines (neither= i) 

taken from the N lines. 

For given values of i and j, Sa will assume values repre-

senting all combinations of two lines taken from the N lines 

of the configuration, line i excluded. 

STAGE 2 thus eliminates seventy-five per cent of the 

remaining feasible paths from further consideration. This 

reduction, coupled with the fifty per cent reduction in 

STAGE 1, reduces the number of paths as candidates for the 

minimum to 12.5% of the original number as STAGE J is 

entered. 

Stage K (K = J,4,5, .•. , N-1) 

The optimization procedure described for STAGE 2 can be 

th 
generalized to be applicable for the K stage. The cumula-

tive distance traveled from line i, end j to port Pa can be 

calculated by using the following recurrence equation: 

"' ' 
fK(i,j,m,n,SK-1) = o(i,j,min) + f1<.'-1(m,n,SK-1) 

where 

i = 1,2,J, ••• 'J N 

m t::: 1,2,J, • s • ') N m I i 

j = 1,2 

n - 1,2 
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n = 3-n. 

Subscript~ m and n are the identification of the end of the 

line to be traversed immediately after having traversed line 

i and departed line i at end j. Index SK-1 identifies a 

unique combinatio.n of K,-1 lines taken from N, none of which 

are m or i, to be traversed between line m and port Pa. 

The shortest path segment to Pa from line i, end j 

having covered Klines can be determined using the following 

relationship: 

* fk (i,j,S1<) = minimum f1< (i,j,m,n,S1<-l) 

m= 1 , 2 , ••• , N m;I i 

n=1,2 

all S1< -1 

where 

i = 1,2,3, ..• , N 

j - 1,2. 

Index SK-1 denotes a unique combination of K-1 lines taken 

from the N lines of the configuration, excluding lines m and 

i. Index S1< denotes the set of lines identified by S1<-1 

plus line m. 

Stage N 

STAGE N is the last stage considered in developing the 

minimum path in a N-line configuration. This final stage 

compares the path lengths of each of the 2N remaining paths, 

one of which is the optimum, which were generated in STAGES 

1 through N-1. The recurrence relationship for this 



stage is: 

where 

i = 1,2,3, . . . ' N 

j = 1,2 

j = 3-j. 

The index SN-1 denotes all lines in the configuration with 

the exception of line i. 

The minimum route through the configuration can be 

determined as follows: 

* * fN ( P1 ) = minimum f N' ( i , j ) . 

* * 

i=1,2, ••• , N 

j=1,2. 

The first position (LN,EN) to which the ship will be routed 

after leaving port P1 will be that combination of i and j 

* associated with f N (N1). 

Backtrack Routine for Optimal Path 

* ~t: * 
Having obtained the values for LN ,, EN, and ff.J (P1) in 

STAGE N, a backtrack procedure can be employed to obtain the 

* optimal route through the prospect configuration. Line LN 

* and end EN identify the first position to which the ship 

will travel after leaving port P1. The ship will then 

* * traverse line LN to the end opposite KN. Let this opposite 

* -*:. -* end be designated as EN. The successor to LN ,E'/-{ on the 

optimal route can be found by examining STAGE N-1. This 
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* * point will be the LN·::...1 , EN::... l associated with 

* * * fN:...1 (LN,EN:, SN-1), where SN-1 is an index that identifies the 

particular combination of all lines of the configuration 

* with the exception of LN'· 

The above procedure can be repeated to determine 'the 

third line of the optimal sequence and the direction it will 

-* * be traversed. Let ENL1 denote the end of line LN:...1 from 

which the ship will depart as it changes lines. The next 

* position to which the ship will be routed will be the LN~2 

* * * * 
and EN.:.2 associated with fN:-2 (LN::..l ,EN.:.l, SN-2), where SN-2 

identifies the combination of the N lines excluding lines LN* 

* and LN·:...1. 

Continuing this reverse movement through the N stages 

of the model, the complete sequence of the minimum path can 

be determined. The optimal route is determined as being the 

following sequence: 

* * * * * * * -* * * P1 ~ LN.·, EN·.-~ LN~.-, E:~{:~ LN::..1 , EN:::..1 -) LN::.:.. 1 , EN:~ 1 ~ LN:: a, EN'.::,. :a ~ 

* * * * * * L2 , E2'· 4 L2 , E;a" _. Li\ E1 



CHAPTER III 

PROGRAMMED ALGORITHM 

The optimization algorithm was programmed in the 

FORTRAN IV language. The programmed instructions (Figure 2) 

implement the theory presented in the preceding chapter. 

The programmed algorithm will select the optimal route for a 

configuration of ten lines' or less and requires a computer 

memory capacity of approximately 250,000 bytes. As shown in 

Figure J, the execution time required for selecting the 

optimal route ranges from 0.01 minute for a three line con-

figuration to approximately 0.44 minute for a ten line con-

figuration using an IBM 360/50 computer, "G" LEVEL. The 

optimization procedure c&n be easily exten1ed for larger 

configurations, however, by using auxiliary equipment such 

as tapes or discs for temporary storage of the required 

matrices. 

A transformation routine was employed for identifying 

unique line combinations represented by the SK index 

described in Chapter II. Values of this index were gener-

ated for permanent identification of the lines being identi-

fied by first assigning a unique numerical value (8 1 ) to 

each of the lines, then using a series of nested DO LOOPS 

for each stage to generate the transformation 

16 
/ 



BEGIN 

READ 
DATA CARDS 

CALCULATE 
PENALTY MATRIX 

CALCULATE 
"~" INDEX 

'l'RANSFORMA TIONS 

CALCULATE 
t7(m 1n,i) 

CALCULATE 
,;ci,j,m,n,~1) 

,.·· 

CALCULATE 
,;ci' j' m, n, ';:) 

CALCULATE 
t;)i, j,m,n, ';:_1) 

CALCULATE 
t;(m,n, ~N) 

BACKTRACK 
ROUTINE 

PRINT 
ROUTINE 

END 

Figure 2. Summary Flow Chart 

17 



rn 
(l) 

-+,J 

E 
.,.; 
~ ._, 

* 
~ 
H 
t-i 

0.1±0 

0 • .30 
* FORTRAN IV 

IBM .360/50 
LEVEL G 
CLASS A 

0.20 

• MEASURED 

f' EXTRAPOLATED 

0.10 

1 2 .3 5 
N 

6 7 8 9 

Figure J. Execution Time for N~Line Configuration 
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identifications. The numerical values that were assigned to 

the lines needed to have the property that the sum of the 

individual 81 values (SK) would also be a unique number 

within each stage. This index is defined as follows: 

sK = tK[I e1] K: 1 , 2 , J , • • • , N -1 

iEk 

where k denotes a particular combination of Klines that 

composes a SK index. 

This procedure can be illustrated by using a simple 

example configuration composed of four lines. The values of 

81 and SK for the respective combinations are defined as 

follows: 

STAGE 1 STAGE: 2 STAGE 3 

Line 81 s1 Combination Z:::81 Sa Combination Z:::81 S.3 

A 1 1 AB 3 1 ABC 7 1 
B 2 2 AC 5 2 ABD 10 2 
C 4 3 AD 8 3 ACD 12 3 
D 7 4 BC 6 4 BCD 13 4 

BD 9 5 
CD 11 6 

The advantage of this transformation is that it uniquely 

identifies a particular combination of Klines for computa-

tion purposes by simply adding the 81 values for the K par-

ticular lines under consideration. As an example, consider 

the minimum path segment from Ca to Pa, having covered lines 

Band D. Since two lines are traversed, the stage under 

consideration is STAGE 2. 

Se + 8 0 = 2 + 7 = 9 
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* Hence, this path segment would be designated as !2 (3,2,5) 

within the computer. 

The above procedure allows the SK index value to be as 

small in magnitude as is possible, therefore allowing the 

memory storage requirements for the necessary matrices 

* associated with fK (i,j,SK) to be a minimum. To further 

reduce the core requirements, the smallest integers that 

satisfied the uniqueness property stated earlier in this 

chapter were. selected as the numerical values of the 81 's. 

The programmed algorithm will select the optimum path 

based upon any given initial penalty matrix containing the 

values of a(i,j), S(m,n), and 6(i,j,m,n). The problem was 

originally attacked with the objective of minimizing the 

total distance required to be traveled to traverse the N 

lines of a given configuration. It is believed that in 

practice a more appropriate criterion for generating the 

initial penalty matrix is travel time. 

When the recording ship is in port, the seismic 

streamer is wound on a reel aboard the ship. When collect-

ing data on a line, this streamer must be laid out in the 

water and towed by the ship. The axis of the streamer must 

lie in line with the line being traversed when data is being 

gathered. To lay out or pull in a streamer requires approx-

imately one to three hours, depending on the streamer length 

and the mechanical equipment installed on the ship. With 

the streamer aboard the ship, the average ship can travel 

approximately ten to fifteen knots per hour. If the 
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streamer is towed, the ship's speed is reduced to approxi-

mately five knots per hour because of the severe drag. 

Because of the difference in speeds with the streamer 

in or out, there is a break-even distance where it is 

equally advantageous to leave the cable in the water and 

change lines at the slower speed or pull in the cable and 

travel to the next line faster. To allow the streamer to be 

always in the correct position when data is being gathered, 

the computer calculates a new set of co-ordinates (B2
1

) for 

the approached end of each line. 

The following is a summary of how the penalty matrix is 

calculated to depict more accurately the costs actually 

incurred when changing lines. 

Define 

T. = time required to pull cable in 
in 

T = time required to lay cable out 
out 

L = streamer length 

S. = speed w/cable in 
in 

Sout = speed w/cable out. 

The calculation of the penalty for changing lines from A1 to 

B2 is as follows: 
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1) Calculate new co-ordinates (Ba') for Ba. 

2) Calculate distance (D) from A1 to Ba'. 

J) Calculate break-even travel~distance (D*). 

* D = (T. + T t)/[(1/S t) - (1/S. )] 
in OU OU in 

* Finally, if D < D, then o(A,1,B,2) = D/S t 
OU 

* If D > D then o(A,1,B,2) = [D/S. ] 
in + T. + T t· 

in OU 

Also, a.(B,2) = [ ( distance from P1 to Ba')/S. ] + T 
out' in 

and S(B,2) = [(distance from Ba to Pa)/S. J + T. 
in in 

A representative example of a seismic prospect configu-, 

ration is shown in Figure J. By calculating and using a 

penalty matrix as just described, the optimal route a ship 

should follow is shown in Table II. Also included in the 

output is the position of the streamer during each line 

change that minimizes the line change time. Mileages and 

times are printed for each of the individual path segments 

and for the total prospect. The total times and distances 

are divided into productive and non-productive portions. 

Pr0duction time is the time when the crew is actually col-

lecting the seismic data, whereas the latter is the elapsed 

time going.both to and from the prospect and changing lines. 

Al though the identification of the optimal route is the in-

formation that is of primary importance, the additional in-

formation aids both the,party manager aboard ship and the 

office executive management in effectively ut~lizing the 

ship. 
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Figure 4. Seismic Prospect Configuration 2 
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TABLE I 

INPUT DATA - CONFIGURATION 2 

************************************************ ••~- ---.... ~ * <••~ -~ _,...,,, -- ,,.-.... ~-., .. ~,•~•.'-<•-•• "'"·---..--~••••••'--''~•¥,, ... ~.,, .,,,_,~ ,,.,, ... ,.,-,,-,,•~,~,, ..._,.,_ •C ¥,'-••-''>•- -' --~--~'~•"' ,, > •'••-••• •• <or,'- , "•· ,<'>' ,0••', ~ , ••••• ·~-----~-~-, 

* * ··- ----------------- ------------- ---· ----·-·---- --- ---------- --------- --- ·-· - -··· ---··-------· -- ·----· ----- -- - -----·-· - . -· -·-·--. * PORT AND LINE CO-ORDINATES * 
* * ·--- -·-·--·------------------------------------------------------··-- -- ------··-----· ------------------------------

* * 
·---··-·--·---! ... --·---·-----·---------------XL ___ ll ___________ ,,..X2.., ____ ,...:£.2 ____________ *. _____ _ 

* * * P 5. 5. l5e 45e * -·- ···-·- *--- - - .. - . . --·-- * ---·--·-
*. A lOo l5o 250 40e * 

--------------·--------------·--·--·---------------------· -------- - -· --····--·------·· -·----··-··-------··-- ------·----

* * * A 30. 40. 20. 10. * •,_....,,,..=,,.---... ___ , ............ , ...... -----...--...... -~ .......... , ... ,-..... __,._.._._ .. .,,, ,_,..,.._., .... .,..._N,_,_~~-.. -_. O••"• ;o•e~~---·~-....... , ..... ,.._..... .... ,~, ......... , <, , •• ,.,., .. _.. , 0 O .~ "~ .• ---~---~ * • ~ ................ _ 
* C 15 .. lOe 25e 32e * ------------

* * 
··----------·-··*-·------0 ___________ 1_7 e _ 3_1 e _______ 27,, ______ 24., -----* ---·· 

* * * E l5o 27. 25. 20. * 
•• """1r.,._._.>,,,.,..,,...--,,__ ',,_ > ., ~··"'"'-V,-,.,_,,,..,. .. ,,,,,_"""P>J--...-~ ......... V,~..>.<,.,,•,~• _..,,..,.,_, '"' , .. --,~·~...-.~-·,. ,, ~-".C-"-h••,0-~., ................ , .... ,.,.,.'07'>~,-·. , • • • •'U-A .... , ~--- ·~- "' ••oV~----.....-... M- ,-. ---"·-·----

* * * F 

* * G ··-------------------------

* 
* 

25e 15. 130 24e * -·--------·-----------------------···--- .... -- ---------- - ------------····------ ------

* ___ 12 • __ 2 2. e ______ 2 ~ o --··-···· l Q__.. _________ :41 _______ _ 

* 
* --·---.. **'*'*'***_*,***.**·*~t**.********************** .. * .. ******* ... -----· * • --------------------------~-------------------·-·--··-·--·----------·------------------------• * * PARAMETERS * ----·-----------·---------------------------- --·- --· ·-- - - ---- ---------- ------------------------ -----·--------------- ·----· -----·-· 

* * 
* * ---- ·--··---·*------ ----·~ ............. CABLE LENGTH·= 7874·-·FEET - ··--- * . 
* SCALE= 0.16 UNITS/MILE * - * , .. , . * 
* SHIP SPEED (CABLE OUT)= 6.00 MPH * 

- * SHIP SPEED (CABLE INI = 15.00 MPH * 
* * __ ,_ -.·-"tABLE ... HANDlING TIME (LAY OUT)= 1.25 HOURS • 
* CABLE HANDLING TIME (PULL INl = 1.75 HOURS • ----------·----------------- --------·--·----· ··---- -·---------~- - --·· ---· -- --·---- ---- - ---· -··. - ··-··· - - ------ --···. -· --~- -- - -- . --· - -·----

* * 
* * --~-- - --· *******-***************-******************····-······· 
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TABLE II 

OUTPUT DATA - CONFIGURATION 2 

**********'¥,<'*'*~***.*'***'************************* 
* * 
* * * f1PTJMIJM PATH INFORMATION * lilt * 
* * 
* ERO~ IO CABLf .Ml LES tiQ!JBS ,or 

* * 
* P2 - Al IN 70. c; .. 7 * 
* * 
* Al - A?. nur 182. 30 .. 4 * 
* * 
* "2 - Bl IN 35., 5 .. 2 * 
* * 
* Bl - A2 nur i98., 32.9 * 
* * 
* B2 - G2 TN 36. r:; 0 7. * 
* * 
* G2 - GI OUT 111., 18 .. 4 * 
* * 
* Gl - r-2 OUT 18. 3 .. 0 * 
* * 
* F2 - Fl OUT 94 .. 15 .. 6 * 
* * 
* Fl - Cl IN 75 .. 7.8 * 
* * 
* fl - C2 mn 151. 25.2 * 
* * 
* C2 ·- El TN 74 .. 7 .. 8 * 
* * 
* El - F2 OUT 76., 12.7 * 
* * 
* F2 - r)Z O!IT 31 .. 5 .. 1 * 
* * 
* D ;> - nt OUT 76. 17 .1 * 
* * 
* 01 - P2 TN 151. ll. A * 
* * 
* • 
********************************************** 
* * 
* * 
* liOUB.S. MILES. * 
* * 
* PROO!Jr.TJVF 148 oO 888 .. * 
* * 
* Nn1\I-PR1nUCTIVE _!t.2.a.!t _!tfl!t. .. * 
* * 
* TOTU 190 .. 4 1352. * 
* * 
* * 
********************************************** 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

The algorithm described in this dissertation selects 

the optimal route through any configuration based upon the 

given input con~isting of location co-ordinates and known 

parameters. Programmed in FORTRAN IV, the algorithm re-

quires a computer memory capacity of approximately 250,000 

bytes for a ten line configuration, due to the large 

matrices which must be stored for each stage. Although all 

arrays must be kept to execute the backtrack routine, only 

the matrices for the predecessor stage are required when 

developing the matrices for any given stage. Because of 

this desirable feature, the algo~ithm presented in Chapter 

II is readily adaptable to using either discs or tapes for 

temporary storage of matrices while they are not needed. 

The time required to obtain the optimal path through an N

line prospect configuration is appro~imately (1.84)N(0.001) 

minutes when executed on an IBM 360/50 computer. 

The proposed algorithm should be a valuable and power

ful tool for enhancing the managerial decision-making of 

geophysical companies. Although a search of the literature 

reveals no previous research on this specific problem that 

could be used for comparison, the proposed dynamic 

26 
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programming formulation appears to be highly efficient rela

tive to the amount of computation required but is limited 

due to the large storage space required. Since most geo-

physical companies have access to a large memory computer 

and a sophisticated communication system, the storage prob-

lem is not too critical. The optimal route a ship should 

follow can be determined in advance, using a large memory 

computer on the mainland and dispatched to the ship. Should 

the ship be forced to deviate from this pre-determined opti

mal route, a new schedule can be calculated, based on the 

current data and transmitted to the ship through the commu

nication system. 

Since many seismic ships in the near future will be 

equipped with small memory digital computers, it is pro

posed that formulations other than dynamic programming be 

made of this problem to reduce the storage requirements. Of 

the published methods reviewed in the literature~ the 

"branch-and-bound" algorithm appears to have the greatest 

potential (16). 

Although this algorithm was developed for the primary 

objective of alleviating the managerial decision difficul

ties involved in scheduling geophysical ships, there are 

other applications where the algorithm can be used. Prob

ably the most apparent of these other applications is find

ing the solution to any constrained traveling salesman 

problem. An N-line seismic configuration is equivalent to a 

traveling salesman problem composed of N+1 sets of cities, 
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where a set is defined as an ordered s.equence of one or more 

cities to be visited. The two ends of a particular seismic 

line would be analogous to the two end cities of a con-

straining sequence. The other major application of this 

algorithm would involve schedul,ing jobs that could be pro

duced by a machime using one of two possible methods.· In 

this latter application, there would be N jobs to be per

formed by one machine, where the machine set-up cost for a 

given job and method is dependent on the previous job and 

method performed by the machine. The penalty matrix would 

include the costs t.ncurred by changing from job i, method j 

to job m, method n. 



( 1) 

( 2) 

\ ( 3,) 

(4) 

( 5) 

( 6) 

( 7) 

BIBLIOGRAPHY 

Barachet, B. L. "Graphic Solution of the Traveling 
Salesman Problem." Operations Research, Vol. 5 
(1957), 841-45. 

Bellman, R. E. Dynamic Programming. Princeton: 
Princeton University Press, 1957. 

Bellman; R. E. "Dynamic Programming Treatment for the 
Traveling Salesman Problem." Association for 
Computing Machinery, Vol. 9 (1962), 61-63.~-

Bellman, R. E. "On an Optimal Routing Problem." 
Quarterly Applied Mathematics, Vol .. 16 (t.958) ,. 
87-90. 

~ 

Bellmore, M. 9 and G. L. Nemhauser. "The Traveling 
Salesman Prob'iem: A Survey." Operations 
Research, Vol. 16 (1968), 538-58. 

Croes, G. A. 11 A Method for Solving Traveling Salesman 
Problems." Operations Research, Vol. 6 (1958), 
791-812. 

Dantzig, G. B. 
Network." 
187-90. 

"On the Shortest Route Through a 
Managem~nt Science~ Vol. 6 (1960), 

(8) Dantzig~ G. B., D.R. Fulkerson, and S. M. Johnson. 
"On a Linear Program - ,Combinatorial Approach to 
the Traveling Salesman Problem." Operations 
Research, Vol. 7 (1959), 58-66. 

(9) Dantzig, G. B. 7 D.R. Fulkerson, ands. M. Johnson. 
"Solution of a Large-Scale Traveling Salesman 
Problem. 11 Operations Research 7 Vol. 2 ( 1954), 
393-410. , 

(10) Dreyfus, S. E. "An Appraisal of Some Shortest-Path 
Algorithms." Operations Research, Vol. 17 
( 1969), 395-412. 

( 11) Flood, M. M. "The Traveling Salesman Problem. 11 

Operations Research, Vol. 4 (1956), 61-75. 

29 



(12) Hu, T. C. "A Decomposition Algorithm for Shortest 
Paths in a Network." Operations Re sear.ch, 
Vol. 16 ( 1968), 91-102. 

30 

(13) Isaac, A. M., and E. Turban. "Some Comments on the 
Traveling Salesman Problem." Operations Research, 
Vol. 17 (1969), 543-46. 

(14) Lin, s.· "Computer Solutions of Traveling Salesman 
. Problem." ~ System Technical Journal, Vol. 
44 (1965), 2245-69. 

(15) Lin, s. "Found: A Rapid Route to the Shortest Path." 
Journal of Engineering Education (1966), 89. 

(16) Little, J. D., K. G. Murty, D. W. Sweeney, and 
C. Karel. "An Algorithm for the Traveling Sales
man Problem." Operations Research, Vol. 11 
(1963), 972-89. 

(17) Miller, C. E., A. W. Tucker, and R. A. Zemlin. 
"Integer Programming and the Traveling Salesman 
Problem." Association of Computing Machinery 
Journal, Vol. 7 (1960), 326-29. 

( 18) Nicholson, T. A. "Finding the Short.est Route Between 
Two Points in a Network." Computer Journal, 
Vol. 9 (1966), 275-80. 

( 19) Obruca., A. K. "Spannirrn Tree Manipulation and the 
Traveling Salesman Problem." Computer Journal, 
Vol. 10 (1968), 374-77. 

(20) Peart 9 R. M., R. M. Randolph, and T. E. Bartlett. 
"The Shortest Route Problem." Operations 
Research, Vol. 8 (1960), 866-68~ 

(21) Perko~ A. "Some Computational Notes on the Shortest 
Route Problem." Computer Jo'Ll.rnal, Vol. 8 ( 1965), 
19. 

( 22) Pollack, M. , and W. Weibenson. "Solutions of the 
Shortest Route Problem - A Review." Operations 
Research, Vol. 8 (1960), 224-30. 

(23) Rossman~ M. J., R. J. Twery, and F. D. Stone. "A 
Solution to the Traveling Salesman Problem by 
Combinatorial Programming." Operations Re.search, 
Vol. 6 (1958)~ 897. 

(24) Rothkopf, M. "Traveling Salesman Problem: On the 
Reduction qf Certain Large Problems to Smaller 
Ones." Op:erations Research, Vol. 14 ( 1966), 
532-33-



31 

(25) Saksena, J.P.~ and S. Human. "Routing Problem With K 
Specified Nodes." Operations Research, Vol. 14 
( 1966) 7 909-13. 



VITA 

Edward Payson Willard 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: AN ALGORITHM FOR OPTIMAL SHIP ROUTING FOR SEISMIC 
DATA COLLECTION 

Major Field: Engineering 

Biographical: 

Personal Data: Born in Commerce, Texas, October 31, 
1939, the son of Dr. and Mrs. E. P. Willard. 

Education: Graduated from Highland Park High School, 
Dallas, Texas, in May, 1957; received Bachelor of 
Science in Mechanical Engineering from Southern 
Me tho di st Uni v.ersi ty in 1962; received Bachelor of 
Science in Industrial Engineering from Southern 
Methodist University in 1963; received Master of 
Science in Industrial Engineering from Southern 
Methodist University in 1964; enrolled in doctoral 
program at the Georgia Institute of Technology, 
,1964-66; completed requirements for the Doctor of 
Philosophy degree at Oklahoma State University in 
May, 1970. 

Professional Experience: Co-operative Engineer, 
Johnson Controls, 1959-63; graduate teaching 
assistant, School of Industrial Engineering, 
Georgia Institute of Technology, 1964-66; Senior 
Industrial Engineer, Texas Instruments Incorpo
rated, 1966-68; evening instructor, Southern 
Methodist University, 1967; graduate teaching 
assistant, Oklahoma State University, School of 
Industrial Engineering, 1968-69, member of 
Technical Staff 9 Texas Instruments Incorporated, 
1970. 


