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ABSTRACT 

Partnering People with Deep Learning Systems: Human Cognitive Effects of Explanations  

by 

Sean E. Dougherty  

May 2019 

Chair: Pamela Scholder Ellen 

Major Academic Unit: Executive Doctorate in Business 

Advances in “deep learning” algorithms have led to intelligent systems that provide 

automated classifications of unstructured data. Until recently these systems could not provide the 

reasons behind a classification. This lack of “explainability” has led to resistance in applying 

these systems in some contexts. An intensive research and development effort to make such 

systems more transparent and interpretable has proposed and developed multiple types of 

explanation to address this challenge. Relatively little research has been conducted into how 

humans process these explanations. Theories and measures from areas of research in social 

cognition were selected to evaluate attribution of mental processes from intentional systems 

theory, measures of working memory demands from cognitive load theory, and self-efficacy 

from social cognition theory. Crowdsourced natural disaster damage assessment of aerial images 

was employed using a written assessment guideline as the task. The “Wizard of Oz” method was 

used to generate the damage assessment output of a simulated agent. The output and 

explanations contained errors consistent with transferring a deep learning system to a new 

disaster event. A between-subjects experiment was conducted where three types of natural 

language explanations were manipulated between conditions.  



 xiv 

Counterfactual explanations increased intrinsic cognitive load and made participants 

more aware of the challenges of the task. Explanations that described boundary conditions and 

failure modes (“hedging explanations”) decreased agreement with erroneous agent ratings 

without a detectable effect on cognitive load. However, these effects were not large enough to 

counteract decreases in self-efficacy and increases in erroneous agreement as a result of 

providing a causal explanation. The extraneous cognitive load generated by explanations had the 

strongest influence on self-efficacy in the task. Presenting all of the explanation types at the same 

time maximized cognitive load and agreement with erroneous simulated output. Perceived 

interdependence with the simulated agent was also associated with increases in self-efficacy; 

however, trust in the agent was not associated with differences in self-efficacy. These findings 

identify effects related to research areas which have developed methods to design tasks that may 

increase the effectiveness of explanations. 

 

Keywords: Interpretability, Human-Agent Interaction, XAI 
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I INTRODUCTION 

I.1 Explanations in Application  

Intelligent systems that utilize artificial intelligence (AI) are increasingly being paired 

with humans to perform tasks. Some of the earliest theorists in computer science anticipated that 

computers would augment human intelligence (Wiener, 1950). Today, humans are being 

introduced into work flows to augment intelligent systems and improve their performance 

(Kamar & Manikonda, 2017). Accenture (2017) surveyed 1,201 executives and senior managers 

and found that 61% reported an increase in the number of roles expected to collaborate with 

intelligent systems. Additionally, 46% reported that some job descriptions within their firms had 

become obsolete due to intelligent systems. A recent survey by Gartner (2018) found that of 460 

executive and senior manager respondents, 40% believed AI will make a material impact on 

production or service operations, and 50% on the products or services themselves. 

The benefits of partnering people with intelligent systems depends not just on the 

capacity of the technology, but also on the ability for people to understand the reasons behind the 

system’s output and take proper action. The impact of failures in this has been significant. 

Knight Capital Group lost over $400 million in 40 minutes after a coordination failure between 

its staff and automated trading software led to millions of erroneous trading orders. The system 

produced warnings prior to the opening of the market; however, those were not addressed by the 

staff (SEC, 2013). The MD Anderson Cancer Center’s $62 million effort to integrate IBM’s 

Watson technology into the selection of treatment plans resulted in headlines about the system 

offering “unsafe and inappropriate” treatments, but users were not provided information about 

the limitations of the system’s training data to be able to evaluate why they might disagree with 

the system’s recommendations (Ross & Swetlitz, 2018). In the criminal justice context, some 
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jurisdictions have used intelligent systems to predict recidivism. These evaluations have 

influenced the bail and sentencing decisions for thousands of defendants. An investigative report 

claimed that Northpointe’s COMPAS system exhibited racial biases in risk scoring; however, 

analysis of the system’s predictions have not identified any distinctions in system rating 

performance by race (Flores, Bechtel, & Lowenkamp, 2016). On the other hand, there is 

evidence that biases do arise when people use the scores to make decisions (Green & Chen, 

2019).  

Compounding the challenge of understanding system output is a surge in the application 

of intelligent systems where the reasons behind system output are inherently difficult to 

understand (Došilović, Brčić, & Hlupić, 2018). Early algorithms in AI were designed to produce 

output that was intrinsically human intelligible, such as decision trees or lists of rules (Biran & 

Cotton, 2017). In contrast to these are “deep neural networks,” which learn how to perform a 

task by estimating large numbers of numeric parameters in a multiple layer network. An example 

system of this type are “deep learning systems,” which can process images and generate 

classifications based on objects the algorithm detects (Ball, Anderson, & Chan, 2017). A neural 

network in these systems has 5 × 107 learned parameters which define its function, and the 

system performs around 1010 mathematical operations to produce a single classification (Gilpin 

et al., 2018). Any explanation which describes the internal parameters or computation of the 

system would be unlikely to have meaning or be persuasive to a human user.  

Not surprisingly, some stakeholders are uncomfortable deploying intelligent systems 

when even the creators of the system do not understand why it produces correct output 

(Holzinger et al., 2017). In addition, computer vision techniques do not yet have generalized 

understanding of the content of images and can produce implausible classifications with high 
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confidence (Akhtar & Mian, 2018). The lack of common sense in algorithms and fear over 

algorithmic bias has led to the European Union adopting broad legal requirements for AI systems 

to be able to explain their behavior (Doshi-Velez et al., 2017). While technologists had accepted 

AI systems that were unable to explain their output if the system was more capable than a more 

interpretable system, that is now changing (Adadi & Berrada, 2018). 

Explainable Artificial Intelligence (XAI) is an area of research which seeks to maximize 

human interpretability of deep learning systems by developing means to expose logic or 

highlight elements of the data most salient to the output (Miller, 2019). These efforts have 

employed varying degrees of translation of data structures and interrogation of the deep learning 

system. Such a system is the automated bird classification system with explanations proposed by 

Hendricks, Hu, Darrell, and Akata (2018). This system presents the underlying reasons for a 

classification based on objects detected in the image by combining object recognition with a 

recurrent neural network to generate natural language explanations. An example output of this 

system is shown in Figure 1.  

 

Figure 1 Example Incorrect Explanation 

Note. Reprinted from Figure 4 (page 9) of Hendricks et al. (2018). Copyright 2018 by Springer 

Nature. Reprinted with permission. 
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The explanation in the example claims the bird is a “northern flicker” because it has a red 

beak. However, the bird in the image is in fact holding a red fruit in its beak. This does not mean 

the classification is necessarily incorrect. However, the basis of the justification provided by the 

explanation can be invalidated without needing domain knowledge about bird classification. The 

presence of the explanation may lead both to better understanding of the intelligent system and 

the requirements of the task. 

Despite optimism in the literature and the apparent utility of explanations, there is reason 

to be cautious about the value of explanations in application. Adding “explainability” to deep 

learning systems may increase their acceptance, but there is conflicting evidence that 

explanations are processed by humans as expected in application. While the XAI area is 

relatively new and focused on algorithms that have been inherently uninterpretable, explanation 

has been examined within other types of intelligent systems such as expert systems, 

recommendation engines, and decision support systems (Nunes & Jannach, 2017). Past research 

has resulted in multiple proposed quality models for explanations with competing objectives, and 

has frequently identified challenges with humans utilizing explanations as intended (Miller, 

2019). Nunes and Jannach (2017) called for explanations to be tailored and adapted to users; 

however, designers do not have clear guidelines for that effort.  

I.2 Computation in Disaster Assessment 

In the aftermath of a large natural disaster there is a need to rapidly assess vast amounts 

of unstructured data to make disaster relief and recovery decisions. Volunteers have been utilized 

extensively to monitor and assess information collected following natural disasters in the 

response and recovery phases of disaster management, using a method known as 

“crowdsourcing” (Yu, Yang, & Li, 2018). Chamales (2013) summarized crowdsourcing 
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technology as “bringing together a distributed workforce of individuals in order to collect 

resources, process information, or create new content” (p. 4). Many platforms have been 

designed to leverage crowdsourcing in numerous contexts to engage human evaluation as a 

central aspect of data processing systems, which has been termed “human computation” 

(Michelucci, 2016). Also driving this is an increase in the availability of high-resolution aerial 

imagery through the use of remote-sensing technologies, such as unmanned aerial vehicles 

(UAVs) (Kiatpanont, Tanlamai, & Chongstitvatana, 2016). As with any labor force, the quality 

of crowd workers must be monitored and controlled. This has led to the development of 

sophisticated architectures and methods to evaluate crowdsourcing products and individual 

workers (Daniel, Kucherbaev, Cappiello, Benatallah, & Allahbakhsh, 2018); however, full 

automation remains attractive. 

A large area of literature explores deep learning algorithms which can automatically 

detect and rate damage to structures in aerial imagery. The goal of this research has been to fully 

automate damage assessment by utilizing successful systems trained on previous events to 

process new events, without adapting or retraining (known as “full transferability”). However, 

there are limits and challenges due to unique geographic and damage properties of each event 

(Vetrivel, Gerke, Kerle, & Vosselman, 2015). Efforts have improved transferability over time 

under conditions with ideal image quality (Vetrivel, Gerke, Kerle, Nex, & Vosselman, 2018), but 

in order to evaluate the performance of a transferred system on a new event at scale, images must 

be classified by hand to have a basis for performance evaluation.  

State-of-the-art methods to achieve transferability include humans into the processing 

work flow as “trainers” for the algorithm and a source of inter-rater agreement. An example of 

this architecture is the microblog classification system from Imran, Castillo, Lucas, Meier, and 
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Vieweg (2014) where both crowdsourced individuals and trusted trainers review classifications 

made by the system, with the resulting data fed back to the system for further training. Proposals 

have been made to combine human computation and AI in disaster assessment with the goals of 

reducing human workload requirements and training intelligent systems to produce more rapid 

assessments (Imran et al., 2014; Ofli et al., 2016; Ostermann, 2015; R. Q. Wang, Mao, Wang, 

Rae, & Shaw, 2018). However, many of the AI methods applied today for automated assessment 

of damage are “black box” and unable to describe how they determined their output beyond 

highlighting areas of detected damage (Abdul, Vermeulen, Wang, Lim, & Kankanhalli, 2018). 

This interpretability issue and lack of training data have been identified as open issues by the 

review by Ball et al. (2017), which evaluated algorithms in remote sensing. 

At the highest level, the goal of disaster management is to take advantage of aerial 

images collected immediately after an event to make better disaster response and recovery 

decisions. At the mid-level, the goal of the data analysis team is to produce more rapid 

assessments that identify areas requiring assistance. At the lowest-level of the task, the goal of 

individual damage assessors is to judge damage levels on individual images accurately. When 

that lowest level task is a partnership between a human and intelligent system, adding 

explanations of the system’s judgment for each image provides an opportunity to identify 

erroneous system performance, as well as challenge incorrect human evaluations or 

understanding of the damage assessment guidelines.  

A damage assessment task environment was created for this study to test the effect of 

explanations. Damage classifications and explanations were developed using guidelines and 

templates from the literature. These classifications and explanations were provided as if they had 

been produced by an intelligent system (the “simulated agent”). Images of structures damaged 
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during Hurricane Michael (NGS, 2018) were used for the damage assessments. The objects 

identified in images and referenced by the explanations are aspects of structures identified by the 

Harvard Humanitarian Initiative’s Wind Damage Rating guideline (Achkar, Baker, & Raymond, 

2016). The causal and counterfactual explanation types generated by the system from Hendricks 

et al. (2018) were adopted for this study. In addition, an explanation type was included that 

discloses boundary conditions and failure modes relevant to the image (“hedging explanation”). 

These explanations were based on specific failure modes of real-world systems disclosed in the 

deep learning damage assessment literature. While an example implementation of this 

explanation type was not identified, such an explanation has been advocated by Hoffman, Miller, 

Mueller, Klein, and Clancey (2018). 

An example damage assessment task from this study appears in Figure 2. The first 

statement is the simulated output where “Heavy Significant” refers to the structure and damage 

classifications from the guideline. Following this statement are the causal, counterfactual, and 

hedging explanation types examined by this study, in that order. As in the classification of bird 

species in Figure 1, domain knowledge is required to determine whether the classifications are 

correct. But it is possible to evaluate the coherence of the explanation with the image even 

without such knowledge. Further, with access to the guidelines for classification, the simulated 

output and explanations can be evaluated against a standard without requiring domain 

knowledge.  
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Figure 2 Example Damage Classification and Explanation 

 

The advantage of utilizing the disaster assessment context in this research is that it has an 

extensive literature which has evaluated both human and automation performance. This supports 

the ability to generate a realistic task and to benchmark the results against prior findings. In 

addition, participants can be readily recruited to take part in the study. While this task is 

specialized, it may serve as an analogue for tasks in other contexts where the output of intelligent 

systems has unknown validity and people are partnered with intelligent systems to make rapid 

judgments. 

I.3 Conceptual Framework 

A conceptual framework was assembled to focus the research and identify constructs 

useful to develop understanding human information processing of explanations. The Van de Ven 
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(2007) formulation of Abraham Kaplan’s levels of abstraction is used here to start with 

semantically defined “theoretical concepts.” These concepts are expanded into one or more 

middle-range “theoretical constructs” drawn from the literature, which are then operationalized 

using “observable variables” of those constructs. Those variables become the basis of the 

research model. The theoretical concepts appear in Table 1 and the conceptual framework which 

connects these concepts appears in Figure 3. Theoretical constructs are developed in Chapter 3 to 

refine the concepts and provide theory and empirical evidence to evaluate. 

Table 1 Concept Definitions 

Concept Definition 

Worker The human interacting with the simulated agent. 

Microtask A single instance of the process cycle where the human 

produces a structure and damage assessment. 

Simulated Output A classification generated by a simulated object recognition 

process of the agent. 

Explanation Information provided to the human to increase the 

performance of the human-agent partnership. 

Type(s) of Explanation One or more forms of explanation with content distinction 

from other types of explanation. 

Information Processing  The human’s processing of the information presented to them 

by the microtask (particularly, the simulated output and any 

explanation). 
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Judgment The human’s conclusion of the correct classification for the 

microtask, which is informed by and feeds back to other 

attitudes. 

Attitudes about Agent The human’s mental attitudes toward and beliefs about the 

simulated agent. 

Performance Attitudes The human’s attitudes about their performance of damage 

assessments. 

 

 

Figure 3 Conceptual Framework 

 

I.4 Theory and Previous Research 

Human interaction with intelligent agents has been extensively studied in the discipline of 

human-computer interaction (Smith, 2018). The earliest thinkers in this space considered natural 

communication the key to human-machine symbiosis (Licklider, 1960; Wiener, 1950). It was 

observed early that placing humans as supervisors of intelligent systems was a less-than-optimal 

configuration (Woods, 1985), but achieving “joint activity” between humans and intelligent 

systems instead of supervision by either participant is not trivial (Bradshaw et al., 2009). Several 

researchers within XAI research believe that the fitness for intelligent agent explanations is 

Attitudes about  
Agent

Performance 
Attitudes

Information 
Processing

Type(s) of Explanation

Judgment

Simulated Output

Human
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based not just on the quality of the explanation logically but also how the explanation is 

perceived by humans (Doran, Schulz, & Besold, 2017; Miller, 2019; Tintarev & Masthoff, 

2011). Despite human-computer interaction being strongly rooted in cognitive science and 

information theory from psychology, cognitive psychology has not strongly informed research in 

XAI (Abdul et al., 2018). Research of human perception of explanation in XAI has frequently 

focused on the extent to which specific explanation engines generate trust or rating preferences, 

but provide limited insight into how humans interpret those explanations (Miller, 2019). 

Understanding how explanations can improve human-agent interaction can aid not just the 

disaster assessment context, but many areas where intelligent agents have the potential to 

improve safety, quality, and cost.  

Social cognition, rooted in psychology and cognitive science, seeks to understand how 

humans process information from their environment, perceive other intelligent behavior, and 

learn through observation (Fiske & Taylor, 2016). The theoretical framework of this study 

leverages three areas of theory from social cognition: intentional systems theory (Dennett, 1971), 

which examines the extent to which people perceive mental processes in observed behavior even 

in artifacts that do not have a mind; social cognitive theory (Bandura, 1986), which examines 

how social interactions inform attitudes about our capacity and motivation to engage and devote 

effort into an activity; and cognitive load theory (Sweller, 1988), which has developed 

understanding of the limits of human cognitive architecture.  

Dennett (1971) proposed intentional systems theory, which states that humans will 

attribute an observed actor as having a mind, and predict its behavior as such, even when that is 

clearly impossible. When humans are interacting with other humans, empirical research in 

attribution theory has identified that differences in attribution of observed behavior are heavily 
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based on the information available to the observer and how well they can simulate the thinking 

of the observed (Malle, 2011). The perception of mind has been explored in an increasing 

number of dimensions (H. M. Gray, Gray, & Wegner, 2007), and these concepts have been 

specifically used in robotics to understand how humans interpret actions by robots that are 

normally conducted by humans (Terada & Yamada, 2017; Thellman, Silvervarg, & Ziemke, 

2017). To the extent that workers perceive mental processes as taking place in the agent, making 

it predictable and rational, workers will be able to coordinate activity more appropriately and 

detect both the machine and their own inappropriate classifications.  

Social cognitive theory (Bandura, 1986) and cognitive load theory (Sweller, 1988) were 

originally developed in instructional settings for the purpose of optimizing how learners build 

and manipulate mental schemas of a task, and to predict future behavior such as interest in and 

effort undertaken in a learning task. Central to social cognitive theory is the theoretical construct 

of “self-efficacy,” which is perhaps closest in meaning colloquially to “confidence,” and is 

distinct from the ability to perform a task (Bandura, 1977). It has been called the foundation of 

human performance (Peterson & Arnn, 2005), and strong correlations have been identified across 

many studies of both job performance and satisfaction in a workplace setting (Judge & Bono, 

2001). Within the area of crowdsourcing damage assessment, the review by Dittus (2017) 

examined the factors of worker training and feedback through the lens of self-efficacy, citing its 

importance in having crowd workers return for future damage assessment efforts. Cognitive load 

theory has frequently been studied with self-efficacy and focuses on how limitations in working 

memory lead to challenges in manipulating and constructing mental schemas to understand a 

task (Sweller, 1988). Explanations of the intelligent agent’s logic for classification have the 

potential to focus damage assessment on relevant and differentiating content of the images. In 
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turn, this has the potential to direct the worker’s attention to the guideline, and more rapidly and 

accurately construct mental schemas for damage assessment. However, high cognitive load has 

been found to produce less accurate attributions of observed behavior (Molden, Plaks, & Dweck, 

2006), making it possible that the agent could create sufficient cognitive load to prevent its 

behavior from being perceived as intelligent. 

The XAI literature has touted the benefits of counterfactual explanations, which offer 

contrasting reasons for not making other potential classifications (Wachter, Mittelstadt, & 

Russell, 2017). Hoffman et al. (2018) proposed that explanations which offer boundary 

conditions and known failure modes have the potential to increase trust. This type of explanation 

is termed as “hedging explanations” by this study. By allowing the worker to assess the role of 

any potential boundary conditions, hedging explanations may provide clarification for how an 

agent reached an otherwise seemingly irrational classification. The need for such explanations 

may rise to a legal requirement when the providers of a system are aware of failure modes, even 

if the explanations are challenging to accomplish (Doshi-Velez et al., 2017). While causal 

explanations that provide “why” information about output have been researched extensively 

since intelligent agents were first in use, no empirical evidence was identified regarding the 

effectiveness of counterfactual and hedging explanations in an interactive judgment. However, 

literature advocates for the utilization of such explanations (Hoffman et al., 2018; Miller, 2019; 

Wachter et al., 2017).  

I.5 Research Questions 

The explanation types appropriate in an application may be most determined by the 

“explainees” and whether they process the explanation types as expected. Counterfactual 

explanations allow damage assessment novices to observe the agent applying the guidelines and 
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demonstrate contrasting logic. Hedging explanations allow workers that are unaware of the 

limitations of the agent to better evaluate the appropriateness of the output based on the image 

contents. While the potential of both types of explanation is compelling, is not clear that they 

will achieve these objectives individually, nor that the types can be combined without exceeding 

cognitive limitations of the workers. As such, the following research questions are proposed:  

1) How will people process counterfactual and hedging explanations of damage 

assessments by a deep learning system? 

2) How does combining the explanation types affect their processing? 

I.6 Motivation for the Study 

I have spent nearly my entire professional career developing and deploying enterprise 

resource management systems and information systems which have included intelligent agents in 

their functionality. Those were expected to partner well with workers to improve outcomes, but 

the potential of these agents was rarely fully realized. This outcome is not uncommon despite 

high expectations for and excitement about the potential for intelligent agents. Over time I have 

come to see how intelligent agents do not make ideal partners and teammates. The workers have 

largely remained responsible for outcomes despite being paired up with intelligent agents, since 

these seem to operate mysteriously and carry little, if any, responsibility for outcomes. The 

ability for workers to understand how an intelligent agent has reached a decision is a major step 

towards opening areas that were previously impractical or impermissible. The context used to 

explore this challenge is also uniquely motivating compared to many other possible tasks 

because of the potential for humanitarian impact.  
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I.7 Contribution and Significance 

This research contributes to the understanding of how three types of explanation are 

processed by humans by measuring cognitive load, attribution of agent intelligence, and self-

efficacy in the task. This study found that the most common construct evaluated in the literature, 

trust in the intelligent agent, did not have a significant relationship with self-efficacy when these 

other constructs were considered. The study also identified that cognitive load and perceived 

interdependence had the greatest effect on self-efficacy. The instructional literature that 

developed cognitive load theory has identified a number of approaches that could be applied to 

explanation to operate within the limitations of human working memory. Perceived 

interdependence was also associated with increased self-efficacy, and is an existing area of 

research within human-robot interaction with the aim of increasing the effectiveness of joint 

activity. These two constructs were identified as having a similar or greater effect on self-

efficacy as did previous task experience. Finally, this study indicates that when workers agree 

with erroneous output, it is most likely as a result of “going along,” rather than an illusion of 

explanatory understanding. 

I.8 Dissertation Organization 

This dissertation is organized as follows: 

• Chapter II: A literature review is conducted in the areas of Computation in Disaster 

Assessment, Social Cognition, and Explanation by Intelligent Agents with the purpose 

of identifying current knowledge and theoretical constructs that have explanatory power.  

• Chapter III: A research model is developed with hypotheses of relationships between 

the theoretical constructs, and a measurement model is developed to evaluate the research 

questions. 
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• Chapter IV: The methodology used to conduct the research and the analysis of the data 

is presented. A method to develop simulated output and explanations is described.  

• Chapter V: The results of the analysis are reported with discussion of the results, 

contributions, practical implications, limitations, and future research directions. 

• Chapter VI: A summary is offered of the study and its findings.  
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II LITERATURE REVIEW 

II.1 Computation in Disaster Assessment  

II.1.1 Background 

On January 12, 2010 a magnitude 7.0 earthquake struck Haiti, creating one of the largest 

humanitarian crises of modern times, with enormous uncertainty of the impact and extent of 

damage (Kolbe et al., 2010). Large parts of the country were unmapped with tools common in 

developed countries (Zook, Graham, Shelton, & Gorman, 2010). It was one of the first major 

natural disasters where “crowdsourced” mapping and damage assessments using remotely sensed 

aerial imagery was utilized to make disaster relief decisions (Corbane et al., 2011). Information 

challenges and capabilities arising out of natural disasters has given rise to crisis informatics, 

which has been defined as the “interconnectedness of people, organizations, information, and 

technologies during crisis.” (Hagar, 2010).  

The initial rapid assessment in the immediate aftermath of a disaster requires processing a 

large volume of unstructured data using a variety of approaches both to collect the data and to 

turn it into useful information (Poblet, García-Cuesta, & Casanovas, 2014). Crowdsourcing in 

disaster damage assessment has become highly organized, with groups such as Humanitarian 

OpenStreetMap Team emerging to develop training and pools of workers, as well as 

coordinating crowd efforts with international relief agencies (See et al., 2016). The results of 

crowdsourced disaster mapping efforts have been positive and the learnings from each disaster 

have been carried to the next in continuous improvement (GIScorps, 2013; Lallemant et al., 

2017). While automated approaches perform well once trained, successful systems do not 

necessarily perform well on images from a new disaster event (Vetrivel et al., 2015). 

Complicating efforts across both crowdsourced and machine learning domains is an inherent 
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difficulty in establishing a “correct rating” for any given image, along with disagreement 

between aerial and ground-based surveys (GIScorps, 2013; Westrope, Banick, & Levine, 2014). 

As a result, inter-rater agreement is commonly used to determine the “correct” rating, even 

among groups of expert raters. 

II.1.2 Crowd Workers in Disaster Assessment 

Albuquerque, Herfort, and Eckle (2016) examined volunteer crowdsourced humanitarian 

mapping in a non-disaster context in the Democratic Republic of Congo. Crowd workers 

reviewed images and reported whether a satellite image contained roads or a settlement. This 

provided an opportunity to compare crowdsourced interpretation with a reference map data set. 

The consensus of the crowdsourced data had high agreement and accuracy with the reference 

data (accuracy and precision of 89%, and sensitivity for feature detection of 73%). A low degree 

of rating consensus was strongly predictive of task difficulty on an image. Despite a large 

number of contributors, only a small number of volunteers completed the majority of the image 

classification effort. The average user classified 66 images with a median of just 21 images.  

GIScorps (2013) compared damage ratings between volunteers and experts in rating 

aerial images from Hurricane Sandy. They found that volunteer classifications for images 

exceeded 95% inter-rater agreement confidence once they had been rated by five workers, with 

little practical difference made by the experience level of the volunteers. Expert consensus 

ratings were generated for the images with the lowest volunteer consensus (a total of 2% of 

images). Experts and volunteers produced identical consensus ratings in 64% of these most 

difficult images, and 11% of this subset was rated at the opposite end of the damage scale 

between the two groups. Images with greater volunteer agreement were not assessed by experts. 

GIScorps also identified several areas of improvement. Among these was a proposal to consider 
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allowing participants to decline to rate invalid images, and to provide specific classification 

definitions to raters. In a separate review, Westrope et al. (2014) found that low agreement 

between raters most often occurs due to image quality, there tends to be a focus on high impact 

areas such as major cities and high-profile incidents, and lack of pre-disaster imagery 

significantly hampers any classification effort. While some of these efforts are volunteer-driven, 

it has been recommended that crowdsourced damage assessments be a paid task supervised by 

expert raters (GIScorps, 2013). 

Rather than being an on-call population of repeating workers, the review of 26 disaster 

events served by the Humanitarian OpenStreetMap Team by Dittus (2017) found that the 20,000 

crowdsourced contributors were mostly first-time workers (50.2% overall, and as high as 84.7% 

for the Nepal Earthquake event). Collaborative mapping (including disaster assessment) was 

reviewed from a cognitive systems engineering perspective by Kerle and Hoffman (2013), with 

specific observations about how current processes in complex geographic information systems 

are designer-focused instead of work-focused, leading to overly complex task design unsuitable 

for the varied expertise levels of participants.  

II.1.3 Automation in Disaster Assessment 

Much of the literature on automated damage assessment has focused on fully automating 

assessments rather than combined human-AI approaches; however, humans frequently create the 

training information used by these fully-automated approaches. Techniques from computer 

vision, where algorithms interpret images, have been applied to disaster damage assessment for 

events such as tropical cyclones (Cao & Choe, 2018), earthquakes (Joshi, Tarte, Suresh, & 

Koolagudi, 2017), tsunamis (Fujita et al., 2017), and wildfires (Trekin, Novikov, Potapov, 

Ignatiev, & Burnaev, 2018). Some researchers have focused efforts on a single element of the 



 20 

challenge such as understanding and evaluating the complex structure of residential rooftops (F. 

Wang, 2017). Computer vision techniques have been used to augment workers by highlighting 

areas of change and aligning images with maps (Trekin et al., 2018).  

Cheng and Han (2016) reviewed 270 articles to identify a taxonomy of object detection 

methods in remote sensing, including damage assessment applications. That review divided 

algorithms into four types: template matching to detect change; knowledge-based, which uses 

geometric and context rules (such as shadows) to detect buildings; object analysis; and machine 

learning. Machine learning approaches were broken into steps of feature extraction (the detection 

of individual image points, edges, and “blobs”) and classifier training to detect objects using 

detected features. Mayer (1999) developed a list of elements of buildings such as roofs, 

windows, and other structural components useful for classifying damage in aerial images. In 

addition to detecting the objects that comprise a building, automated building extraction 

techniques can identify individual buildings and center them in an image for evaluation by other 

algorithms or human damage assessors (Shrestra, 2018). Ball et al. (2017) reviewed over 400 

articles on deep learning in remote sensing. The top two open issues they identified were 

limitations in available training data, and challenges in human interpretability of deep learning 

algorithms. The set of computer vision algorithms in aerial imagery, damage assessment, and 

object detection reviewed for this research appears in Table 2, listing the types of data 

considered, the purpose of the algorithm, and types of disasters evaluated (where applicable).  
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Table 2 Example Computer Vision Algorithms 

Article Type, Purpose: Disaster 

Attari, Ofli, Awad, Lucas, and Chawla 

(2017) 

UAV Oblique Images, Damage Assessment: 

Hurricane 

Cao and Choe (2018) Satellite images, Damage Assessment: 

Hurricane 

Duarte, Nex, Kerle, and Vosselman (2017) UAV Oblique Images, Damage Assessment: 

Earthquakes 

Duarte, Nex, Kerle, and Vosselman (2018) Multiple aerial image sources, Damage 

Assessment: Earthquakes 

Fujita et al. (2017) Satellite images, Damage Assessment: Tsunami 

Kersbergen (2018) Multiple data sources, Damage Assessment: 

Hurricane 

Kluckner, Mauthner, Roth, and Bischof 

(2009) 

Aerial images, Semantic object extraction. 

Moranduzzo and Melgani (2014) UAV Images, Car Counting. 

Nguyen, Ofli, Imran, and Mitra (2017) Ground-level image damage assessment in 

natural disasters: Earthquakes, Hurricanes 

Qi, Yang, Guan, Wu, and Gong (2017) Satellite images, Building and land use 

classification. 

Trekin et al. (2018) Satellite images, building segmentation in 

natural disasters: Wildfire. 

Vetrivel et al. (2018) UAV Oblique Images, 3D point cloud inference 

in damage assessment: Earthquakes 

F. Wang (2017) Aerial images, Debris Detection and Roof 

Condition Assessment: Hurricanes  

 

The ability to use existing successful models on new disasters has improved with ultra-

high resolution imagery and advanced 3D point imputation; however, results still must be 

assessed compared to data labeled with the “correct” classification to validate performance 

(Vetrivel et al., 2018). Sensitivity to sparse and incorrect training information has an unknown 

impact on new event classifications until sufficient training labels are generated for that event 

(Frank, Rebbapragada, Bialas, Oommen, & Havens, 2017). Multiple authors have suggested 

combining human computation with automated assessments to generate labeled training data, as 

well as classify challenging images (Albuquerque et al., 2016; Ofli et al., 2016; Ostermann, 

2015). Such architecture has been used in social media microblog classification in disaster 

(Imran et al., 2014) and non-disaster settings (Sadilek et al., 2016). 
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II.1.4 Open Issues 

Perhaps the largest open issue is that accuracy of ratings in aerial damage assessment is 

not straightforward to determine. Comparisons between crowdsourced aerial damage surveys 

and field surveys have been found to have low agreement, with Cohen’s kappa agreement scores 

of less than 0.4 (Westrope et al., 2014). Similarly, GIScorps (2013) found the ratings of their 

experts were not entirely consistent with Federal Emergency Management Agency field 

assessments. Damage assessments in earthquake events have particularly low agreement between 

field and aerial image assessments as building damage is less visible from above. Users of 

disaster data are accustomed to what they believe to be over-estimation of disaster damage 

(Westrope et al., 2014). There may not be a definitively correct classification for any single 

image. 

There is limited knowledge of how combined human-automation systems or explanation 

operate in damage assessment using aerial images. A comparable system was not identified that 

joined human-generated labels with emerging disaster data similar to AIDR (Imran et al., 2014) 

for image data. Additionally, machine learning models in damage assessment have made limited 

efforts in interpretability where the deep learning techniques most commonly applied in this 

space provided only highlights of the areas the model classifies as damaged. None of the articles 

reported providing natural language or other forms of justification for their classifications.  

The role of individual expertise and skill in crowdsourced damage assessment has 

conflicting findings at different levels of analysis. Kerle and Hoffman (2013) identify 

misperceptions about the consistency in skill levels to assess damage across crowd workers, and 

particularly note that they consider efforts to open damage assessment to untrained analysts as 

“misguided.” However, the effects of these differences in expertise were not identified by 
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GIScorps (2013) to create meaningful differences in consensus ratings aggregated across 

multiple raters. 

II.2 Social Cognition 

II.2.1 Scope 

Social cognition is an area of psychology interested in perception and information 

processing in the context of social interactions (Pennington, 2012). Heider (1958) put forth the 

concept that people are naïve psychologists that predict, understand, and control their social 

environment by attempting to understand why others behave the way they do. This area became 

the foundation of social cognition through the development of attribution theories (Reeder, 

2013). Research in this area has considered and developed theories of how observers and actors 

explain their own behavior as compared to the behavior of those observed. In the context of this 

study, the simulated agent is conjectured to be an observed actor. 

The social cognition approach sees behavior as a sequence of stimulus (and its 

interpretation), person (particularly the reasoning process within the person), and response (the 

behavioral outcomes of cognition), with a strong emphasis on rationality such that even 

erroneous inferences are a result of goal-directed thought (Fiske & Taylor, 2016). These 

inferences are subject to systematic failure modes, but the heuristics behind these flaws are 

generally efficient and accurate (Tversky & Kahneman, 1974). Attitudes about the agent and an 

individual’s own performance are core to two of the three main principles of social cognition 

identified by Pennington (2012): first, people are cognitive misers and attempt to minimize 

cognitive effort; and second, self-esteem and positive self-evaluation are critical to being 

confident with one’s own capacities as well as being confident in other people. The third 
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principle, that people have separations between spontaneous and deliberative thought, is relevant 

here in the form of biases and heuristics in the judgment of classifications. 

Three areas within social cognition were identified with relevance to the task of 

interacting with the simulated agent. Intentional systems theory (Dennett, 1971), a successor of 

earlier naïve psychology, approaches the understanding of how humans infer mental states of 

observed actors, which are often technological artifacts. Self-efficacy arose from social learning 

theory (Bandura, 1977) and later social cognitive theory of behavior (Bandura, 1986), which has 

explored how humans learn from each other through observation, imitation, and modeling. 

Cognitive load theory developed out of attempts to understand how humans build mental 

schemas under human cognitive limitations (Sweller, 1988), which has been studied as a 

underlying mechanism that supports the development of self-efficacy (statistically modeled as a 

“mediator”). Explanations are likely to introduce additional cognitive load in the task, which 

may be beneficial to support understanding or harmful if exceeding limitations. 

II.2.2 Intentional Systems Theory  

II.2.2.1 Background 

Some of the earliest research that informed attribution theory found that people ascribed 

human traits to non-human things, even simple animated shapes that seemed to interact with 

each other in a movie (Heider & Simmel, 1944). Intentional systems theory (Dennett, 1971) 

proposed that there were three mechanisms of prediction that humans use: a physical stance, 

where predictions of outcomes are made with one’s understanding of the physical laws of 

science; a design stance, where the behavior of objects is predicted by their designed purpose; 

and the intentional stance, where predictions of future actions are based on inferred mental states 

of the observed actor, such as belief and desire. The scope of the inquiry within the broad 



 25 

literature here draws on learnings of how humans that interact with artificial intelligent agents on 

a task develop attitudes about the agent and the task.  

Within XAI, attribution theory has been seen as a way to explore how belief-desire-intent 

agents can relate themselves to their users (Miller, Howe, & Sonenberg, 2017). The intentional 

stance claims that people perceive mental states even when we know that machines are incapable 

of them (Dennett, 1989). The perception of mental states of others has been cited as critical to 

observational learning with specific neural structures designated for both automatic and 

purposeful inference of mental states (Frith & Frith, 2012). Attributions of mental states have 

also been found to be stable whether they are requested as immediate impressions, or when 

respondents are given time to think about the nature of the observed individuals (Lobato, 

Wiltshire, Hudak, & Fiore, 2014). 

II.2.2.2 Dimensions of Mind 

Dennett (1971) noted the difficulty of differentiating the behavior of complex artifacts 

from systems with arguably true beliefs and desires. For instance, a chess-playing computer does 

not have beliefs and desires in comparison to human chess players. However, their behavior is 

outwardly identical, and Dennett (1971) argues that for the practical purpose of understanding 

behavior the difference is irrelevant. Even the designers of a chess-playing computer speak of the 

system as intentional in terms of an identity or person rather than in the way we speak of 

designed objects as toward their purposes. This thought has been extended by experiments which 

have found that humans perceive that robots have social traits, as well as the perception of 

having mental traits. This occurs even in non-anthropomorphized robots, suggesting that this 

arises from the interaction rather than the perception of a human (K. Gray & Wegner, 2012). 



 26 

Attribution of mind has been found to be neither binary nor unidimensional across 

varying status and types of people and technology. H. M. Gray et al. (2007) explored how 

respondents perceived 12 different “characters” representing living animals or people on 18 

dimensions. They found two emergent dimensions: agency, which is mostly made up of 

cognitive activities; and experience, which is made up of mainly biological and emotional 

attributes. Weisman, Dweck, and Markman (2017) expanded on this by examining 21 entities for 

40 “a priori” concepts of mental capacity where entities included a broad range of subjects 

including a desktop stapler, a computer, a robot, various animals, and varying mental states of 

humans. They identified three emergent factors: body, physiological sensations; heart, affective 

states; and mind, cognitive properties of communication, planning, and making choices. In the 

case here, the observed behaviors that are consistent with the cognitive properties of a mind are 

most relevant. 

II.2.2.3 Attribution of Behavior of Technological Artifacts 

Several frameworks have been proposed to study the attribution of behavior for 

technological artifacts, as well as approaches to study the source of these perceptions. While 

attributions are relatively similar between humans and humanoid robots, differences have been 

observed as systems become increasingly non-human.  

Thellman et al. (2017) evaluated how people interpret the behavior of humanoid robots 

compared to humans and found little difference in inferences of intelligence, which were also not 

modified by situational cues (Thellman et al., 2017). This study used the causal network of 

explanation framework proposed by Böhm and Pfister (2015). This framework provides a model 

of attributions which they claim classifies both behavior and explanations of behavior. They 

evaluate the actor’s goals, enduring dispositions, temporary states such as emotions, actions 
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(intentional behaviors that are goal-directed), outcomes, uncontrollable events, and stimulus 

attributes which are the “features of the person or object toward which a behavior is directed.”  

Some studies have altered the appearance or portrayal of the observed entity where the 

behavior was otherwise equivalent. The study by de Visser et al. (2016) varied the type of agent 

(human, avatar, and computer) and the accuracy of its advice, evaluating trust, trust repair, and 

confidence in an agent-assisted cooperative synthetic number-guessing task. Similarly, Terada 

and Yamada (2017) varied the type of agent (a laptop computer, an intelligent toy bear, a human-

like robot, or a human) as an opponent in a simple coin flipping game. In both of these 

experiments the portrayal of the other participant altered attributions without any change to the 

interaction or behavior. 

Other studies have explored how differences in behavior with the same portrayal affect 

the perception of intelligence. Kryven, Ullman, Cowan, and Tenenbaum (2016) examined how 

participants attributed intelligence to videos of an animated non-human character moving around 

a maze. Each respondent rated many separate videos while the maze search approaches were 

manipulated. A single item 5-point scale of intelligence from “less intelligent” to “more 

intelligent” was used, and at the end of the entire sequence the participant was asked an open-

ended question: “how did you make your decision?”, which was then coded as either being based 

on “outcome” or “strategy” per respondent. Many participants provided ratings of intelligence 

based not on the strategy used, but the outcome of the strategy. They speculated that evaluating 

outcomes was a shortcut to evaluating intelligence as a form of satisficing, since reading the 

mind of the animated character required more cognitive effort. 
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II.2.2.4 Biases and Asymmetries in Attribution 

Some research has linked the cause of attributions to incorrect inferences resulting from 

differences in information availability between actors and observers (Malle, 2011; Robins, 

Spranca, & Mendelsohn, 1996). Explanations change the information available to an observer, 

and may interrupt systematic attribution processes based on asymmetry. Anderson (1983) found 

that the availability of items of information, such as having the necessary aids, using the right 

approach, and knowing relevant information, were cited more often in failure than success. 

Actors are generally able to project what observers would observe, but observers are unable to 

project what actors perceive (Krueger, Ham, & Linford, 1996). Other studies have not agreed 

with information asymmetry, such as Storms (1973), which found that actors provided similar 

explanations as observers when they watched themselves on videotape even though they had 

access to the same information as actors.  

Dzindolet, Pierce, Beck, and Dawe (1999) proposed a framework of human-automation 

teaming based in part on cognitive biases and social processes. They used that framework to 

construct four experiments which found that social, cognitive, and motivational processes each 

impact the potential use of and reliance on automation. Van Dongen and van Maanen (2006) 

examined how failures were attributed in a hypothetical decision aid system. They found that 

that attributions of failures were related to stable permanent traits of the decision aid, rather than 

relating to causes outside of the decision aid; meanwhile, failures in human decisions were 

attributed to more temporary and external causes.  

Fein (1996) found that providing suggestions of an observed actor’s mental states was 

sufficient to decrease the role of biases in attributions of behavior and inferences about the actor. 

While Fein (1996) anticipated that people understand computers as objects without intentions 
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and therefore not subject to suspicion, intelligent agents perceived as intentional systems may 

encounter this phenomenon.  

II.2.3 Self-Efficacy 

II.2.3.1 Background 

Social cognitive theory proposed that there are two conceptions that determine behavior: 

expectations relating to outcomes of the behavior, and beliefs about the ability to perform. This 

second set of beliefs was conceptualized as self-efficacy, or as defined in Bandura (1986): 

“judgments of their capabilities to organize and execute courses of action required to attain 

designated types of performances. It is not concerned with the skills one has but with one’s 

judgments of what one can do with whatever skills one possesses” (page 391). Bandura (1977) 

conceptualized self-efficacy as the expectation of performance which drives behavior to attempt 

an activity, predicting the amount of effort people will expend. Bandura (1986) proposed that 

humans acquire knowledge primarily by observing others while taking part in social interactions. 

Self-efficacy is a self-perception of competence and future performance as opposed to actual 

competence in a task. The construct has been described as the foundation of all human 

performance (Peterson & Arnn, 2005).  

Bandura identified four ways to increase self-efficacy: successful performance, watching 

others succeed (also known as vicarious learning), persuasion and encouragement, and 

physiological/affective factors (Bandura, 1986). The first two of these are particularly relevant in 

interacting with an intelligent agent to perform classification, where agreement can be 

interpreted as successful performance, and mimicking of observed reasoning and logic for 

classifications similarly produces learning leading to successful performance. Gist and Mitchell 

(1992) examined the inter-relationships and feedback between performance and self-efficacy, 
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noting that interventions designed to modify self-efficacy had to address specific determinants of 

self-efficacy, such as perceptions of ability and task complexity. 

II.2.3.2 Application to the Workplace  

While originally developed in an educational context, self-efficacy has also been 

extensively explored in an employment setting. Studies have consistently identified positive 

relationships with job satisfaction and performance. The meta-analysis by Stajkovic and Luthans 

(1998) of 114 studies found the effect of self-efficacy on job performance to be greater than 

goal-setting, feedback interventions, and organizational behavior modification. General self-

efficacy was found to have higher correlations with job satisfaction than other predictors (self-

esteem, locus of control, and emotional stability) and comparable correlations with job 

performance in the meta-analysis by Judge and Bono (2001) of 135 studies. The meta-analytic 

path model by Brown, Lent, Telander, and Tramayne (2011) used data from 8 studies identifying 

that self-efficacy had similar effects as cognitive ability on work performance. The study by 

Koutsoumari and Antoniou (2016) identifies occupational self-efficacy as having correlations 

with multiple dimensions of work engagement, and they advocate for using training and 

development to positively influence the self-efficacy of employees. 

II.2.3.3 Application to Human-Computer Interaction 

An early adaptation of self-efficacy in human-computer interaction was by Compeau and 

Higgins (1995) which developed a scale for the use of computers based upon social cognitive 

theory (Bandura, 1986). Compeau and Higgins (1995) established that an individual’s reactions 

to an information system would be impacted by their self-efficacy that they could use the system. 

Self-efficacy appeared in later conceptions of Technology Acceptance Model (TAM) such as the 

extension of TAM (Davis, Bagozzi, & Warshaw, 1989), TAM2 (Venkatesh, 2000), and UTAUT 
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(Dwivedi, Rana, Jeyaraj, Clement, & Williams, 2017). Within this space self-efficacy is 

positioned as an antecedent to use attitudes (Thompson, Compeau, & Higgins, 2006). Self-

efficacy has been examined as an antecedent to automation complacency (Parasuraman & 

Manzey, 2010), and as a way of accounting for over-use of manual control in automation settings 

(Lee & See, 2004).  

Self-efficacy has been examined in the context of specific systems both in case study and 

experimental observation, including disaster assessment. In a study by Zheng, McAlack, Wilmes, 

Kohler‐Evans, and Williamson (2009), it was used within a computer-based learning context to 

evaluate the learning impact of manipulating the multimedia conditions of a tool, where more 

complex displays lowered cognitive load and increased self-efficacy. The design of interaction 

for a website to retrieve information was examined where a more complex website decreased 

self-efficacy (P. J.-H. Hu, Hu, & Fang, 2017). In these two cases the tasks were modified in 

complexity through the way information was presented. In Leaman and La (2017), concepts 

from self-efficacy were integrated into training plans which increased successful adoption among 

users of smart wheelchairs. Within crowdsourced disaster assessment, Dittus (2017) utilized self-

efficacy as a framework to analyze microtask design and worker feedback, finding reinforcement 

led to retention of volunteers in future projects, which was interpreted as deriving from self-

efficacy.  

II.2.3.4 Illusory Understanding 

Participants do not get graded feedback on their performance during damage assessment, 

leading to the potential of having high confidence in assessments which are inconsistent with the 

scenarios and the guideline. McKenna and Myers (1997) explored the role of accountability in 

ungraded tasks and found that people who were briefed to expect an assessment of their skill 
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level provided lower ratings of their understanding than participants that were not advised of an 

assessment. Kruger and Dunning (1999) performed a series of studies which examined how 

people rated their own performance in groups. They found that low performing participants often 

rated themselves as high as the highest performing participants. The illusion of explanatory 

understanding arises when heuristics mislead us in assessing our understanding of explanations. 

This is particularly deceptive for early learners, causing them to believe they understand more 

than they actually do through perceived surges in understanding and insight that are not, in fact, 

coherent (Keil, 2006). Previous studies have found that even experts can be misled by the 

explanations of an automated judgment into producing confident but incorrect decisions 

(Bussone, Stumpf, & O'Sullivan, 2015).  

II.2.4 Cognitive Load Theory 

II.2.4.1 Background 

Cognitive load theory (Sweller, 1988) originated in cognitive psychology’s studying of 

instruction and learning, and was later investigated together with self-efficacy to optimize 

learning tasks (Hesketh, 1997; Steele-Johnson, Beauregard, Hoover, & Schmidt, 2000). 

Cognitive load theory crossed over into the Human-Computer Interaction (HCI) literature in 

computer-based instruction (Nicholson, Hardin, & Nicholson, 2003) and in automated decision 

aids (Benbasat & Todd, 1996), and later integrated into HCI more broadly (Hollender, Hofmann, 

Deneke, & Schmitz, 2010). Cognitive load theory extends schema theory’s perspective that 

knowledge is stored in mental schemata which are constructed through learning processes, where 

limitations in working memory interfere with mentally manipulating a task’s schema (Hollender 

et al., 2010). Cognitive load theory has conceptualized three kinds of cognitive load: inherent 

(the basic mental load required for a task), germane (mental load that is not inherent to the task, 
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but is beneficial to learning), and extraneous (mental load that is not related to the task) (Sweller, 

van Merriënboer, & Paas, 1998). Key to the theory is how differences between people, tasks, and 

situations influence cognitive load. It is also known that cognitive load, by reducing information 

processing resources available to other processes, modifies attributions of observed behavior to 

those more consistent with the existing views of the observer (Molden et al., 2006), and prevents 

situational information from entering into the judgment of causal processes (Hilton, 2007). 

Worked examples is an instructional method used to reduce cognitive load while 

increasing the rate of learning by showing the reasoning used to complete a problem-solving task 

(Sweller & Chandler, 1991), which in some respects is similar to the explanations of damage 

assessments. Example-based learning (Van Gog & Rummel, 2010) similarly has learners observe 

someone else performing a task to facilitate learning. 

II.2.4.2 Applications in Computing Systems 

Benbasat and Todd (1996) reviewed a series of experiments which manipulated the 

cognitive load of tasks in a decision support system to test the effect on which paths of options 

users followed. They found that users chose more complex and appropriate methods when 

cognitive load was considered in task design, and avoided the same paths otherwise. Potter and 

Balthazard (2004) investigated how a computing system assisted problem-solving by directing 

attention to causes (“cause cueing”), increasing the number of solution ideas generated. They 

also found that identification of causes decreased with distraction and increasing working 

memory requirements. Cognitive load was evaluated as a mediator for human information 

processing to understand how to work in split-attention and complex problem-solving 

environments (Oviatt, 2006). Cognitive load theory has been used to evaluate learning and 

performing tasks using information systems (P. J.-H. Hu et al., 2017; Zheng et al., 2009). 
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Worked examples have been used in a computer-based learning interface to explain chemical 

reactions, resulting in increased self-efficacy (Crippen & Earl, 2007). Within explanations, 

cognitive load was seen as a key factor in user acceptance of recommendations (Giboney, 

Brown, Lowry, & Nunamaker, 2015), and was also found to increase cognitive load, disrupting 

ease of use as the amount of explanatory information increased (Nunes & Jannach, 2017). 

II.2.4.3 Expertise and Explanation 

Task designs have been found to be sensitive to level of expertise with no “one size fits 

all” solution. In the review by Sawicka (2008), self-explanation and cognitive elaboration by 

learners was found to increase germane load for novices and increase extraneous load for 

experts. Seufert, Jänen, and Brünken (2007) found that “help” offered by an instructional system 

was sensitive to levels of existing knowledge, where insufficiently low levels were related to not 

being able to take advantage of the assistance, and levels that were too high related to “expertise 

reversal,” resulting in increased cognitive load without a benefit in understanding. Between these 

extremes, not all kinds of help were useful, and hyperlinked information and elaborations did not 

improve learning performance. This was further supported by Mascha and Smedley (2007) 

which found that computerized decision aids used by experienced people decreased the skill 

levels of experts on non-complex cases, even though the same aid was useful to novices 

approaching the same cases. As such, cognitive load can be sensitive not just to the content of 

the information but how and to whom it is being presented. 

II.2.5 Open Issues 

While research has identified multiple dimensions of mind perception across many types 

of entities, the task of this study imagines a non-embodied intelligent agent that is not 

anthropomorphized. No studies were identified that evaluated the attribution of intelligence or 
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the dimensionality of such attribution where the technological artifact provided explanations. 

Further, no studies of mind perception were identified within the context of XAI systems. 

Additionally, to the extent that agents are seen as intentional systems, the presence or lack of 

explanations may modify suspicion of the simulated output, and therefore modify the accuracy of 

resulting inferences about the agent. However, it is not clear whether explanations increase or 

decrease suspicion. 

II.3 Explanation by Intelligent Agents 

II.3.1 Scope 

The goal of this portion of the review is to identify the state-of-the-art methods and key 

learnings from XAI to apply to the simulated agent and to identify areas to explore in the 

research model. More specifically, the intention of this review is to support construct validity for 

the explanations considered in the experiment, support content validity for the simulation of a 

system, and maximize face validity of the findings for AI researchers that are focused on 

algorithm development. 

II.3.2 Background 

While interest in XAI has recently surged, the effort to make AI interpretable and 

develop models able to explain their output goes at least as far back as expert systems in the 

1970’s (Abdul et al., 2018). Knowledge-based AI systems have employed argumentation as an 

extension of Toulmin’s model (Moulin et al., 2002). The societal and legal requirements for 

explanations arises not much differently from how people are expected to explain themselves in 

court, as explanations act as a central tool for accountability (Doshi-Velez et al., 2017).  

The target audience for explanations differs across the literature. Nunes and Jannach 

(2017) consider a narrow audience of data scientists. Doran et al. (2017) defined “interpretable” 
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as the user being able to understand the mathematical connections between inputs and outputs, 

which limits the potential audience and roles of explainees in many contexts. Other authors 

position explanations as being understandable by a broad audience with potentially no 

understanding of the function of the model either explicitly through their definition (Chander, 

Srinivasan, Chelian, Wang, & Uchino, 2018; Gilpin et al., 2018; Miller, 2019; Ribeiro, Singh, & 

Guestrin, 2016), or by framing understandability such that it does not require knowledge of the 

model’s operation (Adadi & Berrada, 2018; Chander et al., 2018; Doshi-Velez & Kim, 2017; 

Lipton, 2016). In the case here, explanations are being used by individuals that certainly are not 

experts in the algorithm, and may not have proficiency in the damage assessment task. 

Many current XAI approaches have not considered the utility of the explanations to 

humans and whether they are usable or practical in real-world situations (Abdul et al., 2018). The 

goals of the explainer are most often different from the explainee (Miller, 2019), creating 

potential mismatches in communication. Explainability supports predictability, which is key to 

human-agent teamwork (Ahrndt, Fähndrich, & Albayrak, 2016), however this addresses just one 

of the ten challenges in teamwork identified by Klein, Woods, Bradshaw, Hoffman, and 

Feltovich (2004). Interactive XAI, such as a dialogue of explanation, might overcome many of 

the remaining challenges, but this remains a technical challenge yet to be practically solved 

(Weld & Bansal, 2018), and relies on an elaborate process to unfold reasoning.  

II.3.3 Composition of Explanations 

Any given event has a very large number of possible explanations going back in time 

through a causal chain. At the greatest extreme of detail are “accounts” which are narratives 

developed through a process of event comprehension designed to support claims across many 

preceding events and contributing causes (McLaughlin, Cody, & Read, 2013). Even if 
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comprehensive accounts could be algorithmically generated, the cognitive burden of complete 

explanations is too great for most decisions (Miller, 2019). Hesslow (1988) identified a series of 

traits of causes which made them preferable for inclusion in an explanation. Of these, unexpected 

conditions, abnormal conditions, precipitating causes, variable conditions, predictive value, and 

deviations from the ideal are most relevant and machine-detectable in images.  

Research has explored how people will expect an AI system to explain itself. When 

multiple people are asked to explain a shared event, they generally provide very similar and brief 

explanations, suggesting that there are systematic mechanisms people use to develop and select 

explanations (Malle, 2006). While explanations may be possible across many conceptual levels 

of causation, Miller (2019) claims that inferring the why-question that is provoking the need for 

an explanation produces the greatest relevance in explanations to the user. Gilpin et al. (2018) 

advocates that systems should account for trade-offs between completeness and interpretability, 

and err on the side of providing more detail even if it makes the explanation less understandable.  

Counterfactual explanations highlight the minimum conditions which would have 

changed the classification (Wachter et al., 2017). This is closely related to contrasting 

explanations, which provide information about the features that differentiate the actual cause 

history from the outcome that did not happen (Van Bouwel & Weber, 2002). Counterfactual 

explanations may appear to be only a small semantic shift from simple causal explanations, but 

their framing, in contrast, has been found to make them more memorable and persuasive even 

when they contain the same information (Roese, 1997). When humans generate counterfactual 

explanations we employ the simulation heuristic (Kahneman & Tversky, 1981) to imagine how 

small changes in circumstances would have altered the outcome. Within the Wachter et al. 

(2017) formulation this is a computable proposition where the contrasting outcome is the 
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smallest possible change to move to another category, while Miller (2019) considers that the best 

counterfactual explanation addresses a contrasting categorization relevant to the user, which is 

generally non-explicit and not necessarily the minimum change.  

Since intelligent agents do not have generalized understanding and can be easily fooled 

(Akhtar & Mian, 2018), the ability for an agent to detect and explain conditions where its model 

has not been trained or is known to fail adds factual explanatory value and can clarify why a 

classification is incorrect (Hoffman et al., 2018). To the extent that good explanations should be 

persuasive, contingencies and hedges on explanations can be perceived as lack of conviction 

even in scientific contexts (Hyland, 1996a). In AI argumentation a persuasive argument is 

considered one which defends against other competing arguments (Moulin et al., 2002), but 

when the purpose of the explanation is truth instead of changing someone else’s position this can 

be counterproductive. The result is a tension between persuasive explanations and ones that are 

useful to detect an erroneous classification. A classification of hedges in academic writing is 

provided by (Hyland, 1996b), where the author claims that the purposes of hedges are “fuzzy” 

and that the true intent of a hedge must be inferred by the reader as they are rarely explicit.  

II.3.4 Explanation Engines in Deep Learning 

Many of the visual explanation engines were inspired or derived from image description 

approaches. An example adapted system was proposed by Nushi, Kamar, and Horvitz (2018). In 

this multi-step process a visual detector identifies objects in the image which are fed as a list into 

a system-generated observation engine. That engine uses a human-tuned language model to 

combine the terms identified; however, that engine is not able to interpret the image itself. Those 

candidate descriptions are then fed into a caption ranker that has access to the original image to 

decide which generated description is most appropriate. This approach combines training on how 
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people would express the relationships between objects without the machine having an explicit 

understanding of why the terms are combined, and what words are used to join them. Within 

evaluation methods for explanations, similar methods have been used to leverage humans to 

score automatically generated phrases for relevance to images, such as the influential scoring 

mechanism CIDEr proposed by Vedantam, Lawrence Zitnick, and Parikh (2015). 

As an expansion on this concept, Antol et al. (2015) proposed “visual question 

answering” where users could ask a computer vision model questions about an image and 

responses would be produced tailored to the question. Due to the errors in the output of these 

types of systems, Ghosh, Burachas, Ray, and Ziskind (2018) and Park et al. (2018) separately 

explored generating explanations of the answers by combining natural language with 

highlighting areas of images relevant to classifications. Daniels and Metaxas (2018) proposed a 

context-sensitive method of classifying the content of a scene through the relationships of objects 

that occur together, which generated higher-accuracy descriptions of unknown images, but 

without producing fully natural language descriptions. Hendricks et al. (2018) developed a 

method for labeling images with visual explanations that detected objects within the image and 

explained how classifications were made, with both direct causal and counterfactual explanations 

generated by a neural network and selected for appropriateness by an algorithmic “phrase-critic,” 

shown in Figure 4.  
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Figure 4 Example Algorithmic Counterfactual Explanations 

Note. Reprinted from Figure 5 (page 12) of Hendricks et al. (2018). Copyright 2018 by Springer 

Nature. Reprinted with permission. 
 

II.3.5 Experimental Manipulation of Explanation 

Among the earliest experiments with explanations in intelligent systems were those 

conducted with expert and decision support systems. Suermondt and Cooper (1993) examined 

explanations in a decision support system in a medical context, finding that explanations 

improved diagnostic accuracy. Rook and Donnell (1993) compared two means of presenting 

information to justify a decision. That study identified that cognitive limitations in interpreting 

output was critical in the design of explanations. Template explanations of procedures were 

examined in Gregor (2001), which found relationships between their use decreasing cognitive 

effort and increasing usage of explanations in cooperative tasks. Rose (2005) identified that 

when accounting students were provided a decision-aid system to assist with decision making 

regarding tax-related rules, students with low cognitive loading learned the rules similarly to 

those without the system, but those with high load knew less about the rules than if they did not 

have the system. These early cases of research identified performance increases and the 

foundations of many of the challenges in explanation that remain today.  

The recent increase in interest in explanation has resulted in reviews collecting the past 

findings across intelligent system technologies. The review by Nunes and Jannach (2017) was 

specific to experiments with explanation and analyzed 217 studies of explanation in decision 

support and recommender systems. They found that the performance benefits identified by early 

studies did not hold over time, and that the persuasiveness of explanations was a potential 

confound to understand the presented output. Abdul et al. (2018) analyzed the connections and 

isolation of areas of research and Adadi and Berrada (2018) surveyed the body of XAI research, 
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and both identified a lack of articles which focused on the human factor. The review of the 

interpretability of explanations by Doshi-Velez and Kim (2017) identified that experiments with 

humans have preferred simplified tasks over realistic settings to focus on algorithm and 

explanation performance (Doshi-Velez & Kim, 2017). 

Some recent studies have focused on the subjective quality of explanations. Narayanan et 

al. (2018) manipulated the length and complexity of explanations and measured a subjective 

score from users on an artificial task, finding that long explanations were less preferred, though 

not as sensitive to the number of concepts in an explanation. The study by van der Waa, van 

Diggelen, van den Bosch, and Neerincx (2018) requested that users evaluate multiple 

explanations, and asked them to measure them in dimensions of preference for long or short, 

strategy versus policy, and sufficiency of information, with the highest preference for 

explanations related to policy and greater information. In the study by Lakkaraju, Bach, and 

Leskovec (2016), humans were employed to evaluate the interpretability of machine-generated 

explanation in logic form (rather than natural language) and to recreate the explanation in natural 

language. The responses were evaluated qualitatively by two judges, finding widely much better 

performance with interpretable decision sets which applied rules independently than Bayesian 

decision lists, which required interpreting an explanation sequentially.  

Several studies evaluated compliance with system decisions based on providing an 

explanation. Gedikli, Jannach, and Ge (2014) examined explanations within explanation systems, 

identifying transparency as a key antecedent of trust and compliance. Arnold, Clark, Collier, 

Leech, and Sutton (2006) looked at definition, justification, rule-trace, and strategic justifications 

with the performance metric of acceptance of the recommendation, finding that explanations did 

increase compliance with differences in the types of explanations that were persuasive to novices 
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as compared to experts. In a classification task for microblogs, the explanation, control, and 

metadata available to the user were manipulated with the primary finding that system 

recommendations should be provided ahead of search results and tools to achieve compliance 

(Schaffer et al., 2015). In a robotic experiment Nikolaidis, Kwon, Forlizzi, and Srinivasa (2018) 

found an increase in adaptation to the robot’s intentions when an explanation was provided, but 

with decreasing trust, and belief that the robot was not being truthful.  

Among more interactive uses of explanation, three studies were identified. Soundness of 

recommendations and completeness of explanations in recommendations was examined by 

Kulesza et al. (2013) in a music preference context. They tested the impact of completeness and 

soundness of explanations on user’s mental models, recommending that both completeness and 

soundness are required, but only if users believe their input is improving the intelligent agent. In 

Sklar and Azhar (2018) the researchers experimented with coordination of a robot that could 

provide an explanation in dialogue through argumentation. They found that subjective preference 

and objective performance criteria did not vary significantly between explanation and black box 

conditions. Holliday, Wilson, and Stumpf (2013) compared the effect of users being provided an 

explanation that they could then correct to a system that did not provide explanations. They 

found that participants in the condition where they were not providing explanations exhibited 

more control-exerting behaviors and reported such while “thinking aloud,” but there were no 

perceptual differences in control when the same concept was tested in a questionnaire. They 

deduced that there were differences between perception and behavior related to perception of 

control. 

Several experiments introduced intentional errors to evaluate conditions where users 

accepted erroneous output and the effects on other measures. Ribeiro et al. (2016) manipulated 
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the quality of the model being explained in human experiments of trust between unexplained and 

explained classifications, and found that explanations of erroneous performance decreased trust 

but increased accuracy of user perceptions about the quality of the classification model. 

Poursabzi-Sangdeh, Goldstein, Hofman, Vaughan, and Wallach (2018) examined the effect of 

modifying the information interpretable from a linear regression model which predicted 

apartment prices in New York. They also introduced mistakes and measured trust. They found 

that the timing of offering explanations and the design of optimal interpretability was not 

intuitive to designers of the interface, and that different levels of local explanation did not 

produce statistically significant differences in perception. In the medical context a mixed-

methods analysis was conducted with an experiment involving a simulated clinical decision 

support system. Half of the eight scenarios provided to the subjects had an incorrect 

recommendation. They found that that confidence statements did not sway trust but that 

“comprehensive why” explanations induced over-reliance, and “selective why” explanations led 

to better confidence in the user’s decisions (Bussone et al., 2015). 

The closest experiment identified to the design of this study was conducted by Tan, Tan, 

and Teo (2012). They evaluated how differences in explanation impacted cognitive measures by 

manipulating explanations into forms of trace, justification, and strategic explanations. They 

measured perceived confidence in the decision and cognitive capacity (preferences on how much 

to think) in a consumer context with types of recommendations. No single configuration of 

explanations produced an optimal outcome and they instead identified trade-offs in decision 

quality, confidence, and speed. For instance, conditions with explanations based on a table of 

metrics and benchmark comparisons resulted in the fastest decision times and highest 

confidence, but the quality of decision was lower than that for other conditions of the 
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experiment. They proposed combining multiple explanation approaches into the same interaction 

as the solution; however, such a configuration was not experimentally evaluated. 

II.3.6 Open Issues 

There has been relatively little study done on what explanations should contain to balance 

persuasive power and use of logic. The most logically rigorous models consider the ability for 

explanations to be able to defend claims against those of competing explanations. Models based 

on more subjective criteria do not reject the value of compelling logic, but instead prioritize 

human outcomes of interpreting explanations. This is not without risk as well, as persuasive 

explanations may be more accepted based on subjective criteria than complete, accurate, and 

transparent explanations (Gilpin et al., 2018). The review by Nunes and Jannach (2017) 

identified open concerns over the lack of clarity in the differences between stakeholder goals, 

user goals, and the purposes of explanation, challenges in selecting the best content for 

explanations, user interface options for revealing explanations, responsive explanations that were 

adjusted to the needs and requirements of users, and objective evaluation protocols and metrics 

which do not rely on stated behavioral intentions or subjective assessment of the explanations. 

Additionally, while the explanations generated for images have been tested in terms of 

preference and trust, they have not been evaluated in terms of to what extent users process them 

beyond those attitudes. Experiments have found widely varying results with the most consistent 

“successful” outcomes based on achieving trust and compliance. Systems that introduced errors 

identified that compliance and trust were not always the ideal outcomes for explainable systems 

to achieve partnership with the human user. 
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III RESEARCH MODEL AND HYPOTHESIS DEVELOPMENT 

III.1 Research Model 

This chapter develops a research model to address the research questions by 

hypothesizing relationships between theoretical constructs identified from the literature that 

represent the concepts in the conceptual framework.  

Self-efficacy in the task was selected as the ultimate dependent variable due to its 

predictive power for future engagement in the task, investment of mental effort, and task 

performance and satisfaction. Cognitive load was selected as a known mediator of self-efficacy 

and was expected to be impacted by adding explanations. Attribution of agent intelligence was 

selected as explanations should directly influence the perception of mental processes in the 

agent, and may be affected by cognitive load. The model focuses on the effects of adding 

counterfactual and hedging explanations. These selected theoretical constructs and their 

definitions are listed in Table 3. The developed research model appears in Figure 5. 

Some prior research which used social cognitive theories has employed repeated measure 

designs to study within-subject effects in the development of attitudes (e.g. Compeau & Higgins, 

1995) and to monitor feedback loops in cognitive processes (e.g. Leppink & van Merriënboer, 

2015). However, no prior between-subjects experiments which utilized repeated measures were 

identified that tested the effect of pre-treatment or repeated measurements on outcomes. To avoid 

the effects of measurement on the experiment outcome and maximize the realism of the task for 

participants, the research model was developed using only post-test measurement of the 

constructs. This approach is similar to the sequence in the experiment by Joseph (2013), and 

appropriate for a between-subjects test of the effect of explanation types. While a repeated 

measure design would decrease the group size required for each condition (Leppink & van 
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Merriënboer, 2015), the complexity of the experiment in terms of number of conditions and their 

analysis would increase to establish the effects of measurement (Solomon, 1949). 

Alternate explanations for self-efficacy outcomes were selected from the literature to 

understand their relative ability to explain the experiment results. Previous task experience was 

selected as it has potential interactions with each of the dependent variables. Trust, perceived 

interdependence, and perceived level of automation have been selected due to their common use 

across the human-computer interaction literature and will allow a comparison of their ability to 

explain outcomes of the experiment to the study’s theoretical constructs. 

In the task and survey instrument the simulated agent was referred to as “Automated 

Damage Assessment Machine” with the acronym “ADAM.”  

Table 3 Theoretical Constructs 

Construct Definition 

Causal Explanation “A line of reasoning that explains the decision-making 

process of a model using human-understandable features of 

the input data.” (Doran et al., 2017) 

Counterfactual Explanation An explanation “crafted in such a way as to provide a minimal 

amount of information capable of altering a decision, and they 

do not require the [lay person] to understand any of the 

internal logic of a model in order to make use of it.” (Wachter 

et al., 2017) 

Hedging Explanation An explanation which provides “specific information about 

what the system cannot do or perform well” such as boundary 

conditions and failure modes (Hoffman et al., 2018).  
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Cognitive Load The extent to which short-term working memory resources 

are utilized in the task (Sweller, 1988).  

Intrinsic Cognitive Load 

(ICL) 

The inherent and unalterable required mental effort to 

complete the task (Sweller et al., 1998). 

Germane Cognitive Load 

(GCL) 

Mental effort expended to construct schemas and 

understanding of the task (Sweller et al., 1998).  

Extraneous Cognitive Load 

(ECL) 

Mental effort which does not contribute toward the task or the 

learning of the task (Sweller et al., 1998). 

Attribution of Agent 

Intelligence 

“Attributing abstract causal mental states are not only the 

reduction in the cognitive complexity required to understand 

another’s behavior but also the prediction of the other’s future 

behavior.” (Terada & Yamada, 2017) 

Self-Efficacy in Task “Belief in one’s agentive capabilities, that one can produce 

given levels of attainment” (Bandura, 1997) here specific to 

the task of assessing structure and damage classifications 

together with the simulated agent. 
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Figure 5 Research Model 

 

III.2 Independent Variables 

III.2.1 Causal Explanation 

Explanations of the mathematical causes of a model’s output are the most direct variety 

of causal explanation, but in the case of deep learning algorithms, such explanations are unlikely 

to be brief or useful. In comparison, explanations which contain human-understandable 

statements related to objects and features of the image, such as those from Hendricks et al. 

(2018), are useful and particularly relevant when aligned to the task guideline. In this study, the 

goal for the causal explanation is to provide what Doran et al. (2017) describes as “a line of 

reasoning that explains the decision-making process of a model using human-understandable 

features of the input data.” As such, causal explanations were provided using human-observable 

attributes of the post-damage image related to the guideline. A causal explanation was included 

in all experiment conditions except for the “black box” control condition.  
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III.2.2 Counterfactual Explanation 

Counterfactual explanations provide the minimal differences capable of altering a 

decision, and they do not require knowledge of how the agent operates (Wachter et al., 2017). 

They are intended to facilitate counterfactual thought by feeding the simulation heuristic 

(Kahneman & Tversky, 1981), and allowing the worker to form better causal connections 

between the model’s claims and the data (Keil, 2006). The counterfactual explanations 

developed here are similar to the causal explanations in that they cite human-observable 

attributes; however, for counterfactual explanations the attributes are cited as missing, thereby 

making a specified alternate classification inappropriate.  

III.2.3 Hedging Explanation 

Explanations of why the simulated output may be incorrect are considered “hedging 

explanations.” Unlike the causal and counterfactual explanations, an example system to model 

hedging explanations was not identified in the literature. The call for such explanations were 

used to inform the potential content. Thelisson, Padh, and Celis (2017) called for safe-guards to 

be designed into AI systems to expose the causes behind decisions in order to reveal potential 

biases and discrimination. In this context, that can be interpreted as exposing limitations in 

damage detection associated with socioeconomic and demographic factors. Bussone et al. (2015) 

called for systems to be able to explain when their results would not apply after finding that 

medical professionals agreed with erroneous automated diagnoses. This is comparable with the 

call from Hoffman et al. (2018) for explanations that help a user apply and measure trust 

situationally. 

In formal writing it is expected to hedge claims leaving them open to being wrong, with 

the degree of hedging providing information on the strength of a claim (Hyland, 1996b). In the 
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Toulmin (1958) model of argumentation there is a provision for arguments to contain an element 

joined to a claim using the term “unless,” which provides a reason why an argued claim might 

not be true, and which is tied to something specific about the support for the claim (“a rebuttal”). 

The hedging explanations of this study follow this mode, referencing human-observable 

attributes related to a hypothetical failure mode relevant to the image. Failure modes were 

identified from the computer vision literature. Each is presented using the advisory phraseology 

“consider,” avoiding conveying confidence in a hedge.  

III.3 Dependent Variables 

III.3.1 Self-Efficacy 

The seven items of the Self-Efficacy for Learning and Performance scale (Lodewyk & 

Winne, 2005) were adapted to the task of this study, with “will” language modified to “can,” 

consistent with measure development guidance from Bandura (2006). These items were rated on 

a 7-point Likert-Type scale from “Strongly Disagree” to “Strongly Agree” with only the ends of 

the scale labeled. The adapted item “I’m confident I understand how to use the damage 

assessment guide” was dropped after testing due to cross-loading with other concepts, reducing 

the scale to six items. Two additional items were developed and considered for addition: “I 

believe I won't overly rely on ADAM,” and “I'm confident that ADAM won't distract me;” 

however, these items measured reliance rather than self-efficacy. A third item, “The automated 

assessment prevents errors in manual damage assessments” was adapted from Singh, Molloy, 

and Parasuraman (1993) to evaluate a potential perceived reliance measure, but these three items 

did not perform well. Reliability for the six adopted items for self-efficacy was measured (α = 

.952). 
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III.3.2 Cognitive Load 

To evaluate the three theoretical types of cognitive load, the eight-item scale from 

Klepsch, Schmitz, and Seufert (2017) was selected and adapted to the damage assessment task. 

The naïve methodology was used without briefing respondents on cognitive load theory beyond 

the wording of the items. A ninth item was developed to balance the number of items for 

intrinsic cognitive load compared to the other two types, intended to be reflective with the other 

two: “I had to remember many things to perform the task.” Items were rated on a 7-point Likert-

Type scale from “Strongly Disagree” to “Strongly Agree” with only the ends of the scale labeled. 

Reliability was measured for the three sub-components separately (Intrinsic α = .733, Germane α 

= .676, Extraneous α = .733). The Paas (1992) single-item total cognitive load measure has been 

well-validated across many studies (Paas, Tuovinen, Tabbers, & Van Gerven, 2003) and has 

been shown to correlate with physiological measures (Joseph, 2013). The single item from Paas 

(1992) was adapted to the study and presented immediately after the completion of the ten 

scenarios. The item asked participants: “How much mental effort did you invest in making your 

assessment?” Response was rated on a 9-point scale with ends “Very, Very Low” to “Very, Very 

High” and intermediate scale points labeled as in the original scale. While both approaches were 

employed in the instrument, validity could not be assured, and the three-component model was 

utilized for the structural model. 

III.3.3 Attribution of Agent Intelligence 

Six items were adopted from Terada and Yamada (2017). The items were: thinks 

logically, is knowledgeable, is able to make decisions, is predictable, is insightful, has a mind. 

The first five items loaded on the same extracted factor (personal intelligence) and the sixth 

loaded on a separate factor (social intelligence). Items were rated on a 7-point Likert-Type scale 
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from “Strongly Disagree” to “Strongly Agree” with only the ends of the scale labeled. Reliability 

was measured across all of the items in this scale (α = .819). 

III.4 Alternate Explanations 

III.4.1 Previous Task Experience 

Previous research in attribution and self-efficacy has found a ceiling effect with high 

levels of pre-existing self-efficacy precluding an effect of attributions (Stajkovic & Sommer, 

2000). Gist and Mitchell (1992) evaluated the development of self-efficacy across different 

levels of task experience with a novel task. They found that with low experience self-efficacy is 

informed by multiple cues in an assessment of requirements, resources, and constraints of the 

task. In comparison, those with high task experience form self-efficacy based on past 

performance and motivation rather than aspects of the task. High task experience, particularly 

experience with the specific damage guideline used in this study, would also greatly decrease the 

cognitive load. To account for this potential, participants were given three items to assess their 

previous experience in aerial image damage assessment: “How would you rate your experience 

in damage assessment of aerial images prior to this study?” with 7-point response options 

“None” (coded as 0) and “Very limited” (1) to “Highly Experienced” (6); “How often do you 

rate damage to structures in aerial images?” with 7-point response options from “Never” (coded 

as 0) and “Yearly, or less” (1) to “Daily” (6); and “Have you previously used a damage guideline 

to make ratings?” with three response options: “No” (coded as 0), “Yes – But not the same one” 

(3) and “Yes – The same guideline as here” (6). If “None” was answered to the first item, the 

remaining two items were not presented. The three components were added into an index value 

for the measure. 
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III.4.2 Trust in the Intelligent Agent 

Trust has been the primary measure of participant attitudes in human-automation research 

including XAI. Since the simulated agent provides erroneous classifications in half of the 

scenarios, lack of trust is an appropriate response. However, even if the worker does not fully 

trust the simulated agent, they may have greater trust in agents that are better able to explain 

erroneous performance. To measure trust for comparison against previous studies a single item 

from Dzindolet, Peterson, Pomranky, Pierce, and Beck (2003) (“I believe I can trust the 

automated assessment”) was adapted here and rated on a 7-point Likert-Type scale from 

“Strongly Disagree” to “Strongly Agree” with only the ends of the scale labeled.  

III.4.3 Dispositional and Learned Trust for AI 

The three-level model of information systems and technology trust proposed by Marsh 

and Dibben (2003) defines three types of trust: “learned,” based on experience with similar 

systems; “situational,” where dispositions are adjusted by cues from the environment; and 

“dispositional” where attitudes are based on pre-existing attitudes about technology. Though 

participants may have previous experience in the damage assessment task, they are unlikely to 

have had experience making assessments with an intelligent agent. The three-level model 

predicts that trust in the intelligent agent will be determined by pre-existing and stable 

dispositions towards automation and AI. To evaluate these pre-existing attitudes, dispositional 

trust for automation was measured using three items adapted from Nees (2016). These items 

were rated on a 7-point Likert-Type scale from “Strongly Disagree” to “Strongly Agree” with 

only the ends of the scale labeled. For participants that have experience working with AI, the 

inclination to trust the intelligent agent may be better informed by learned trust (or distrust) 

attained from working with other AI systems. Participants rated learned trust for AI using a 5-
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point scale of how well AI had met their expectations in their profession with “Far Short of My 

Expectations” and “Far Exceeded My Expectations” as the ends of the scale, with an option for 

not having used AI in their work. 

III.4.4 Perceived Interdependence 

The final rating in this task is fully dependent on the human’s judgment, and the human 

must actively accept the input by changing their selections after reviewing the agent’s output. As 

such, the task is not truly interdependent. However, explanations increase observability and 

predictability of the agent, which joint activity theory predicts improves performance (Johnson et 

al., 2012). Providing the cause of a disagreeing classification can also produce a greater 

understanding of the guideline, creating some level of “directability” by the agent. To assess 

attitudes about task interdependence, three items from Morgeson and Humphrey (2006) were 

adapted: “My ratings were affected by ADAM's input,” “Assessments depend on the both the 

human and ADAM for accuracy,” and “My ratings benefitted by working with ADAM.” Items 

were rated on a 7-point Likert-Type scale from “Strongly Disagree” to “Strongly Agree” with 

only the ends of the scale labeled.  

III.4.5 Perceived Level of Automation 

Participants that perceive a high degree of system automation are likely to rely on the 

agent’s assessment in erroneous cases without independently assessing the scenario themselves. 

Greater detail in explanation may be perceived as lower automation by creating a burden to the 

worker to evaluate the agent. One item was included to measure the participant’s perception of 

the level of automation of the microtask. Participants rated a single item “The damage 

assessment was” on a 7-point Likert-Type scale from “Highly Manual” to “Highly Automated” 

with only the ends of the scale labeled. 
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III.5 Scenario Measures 

III.5.1 Initial and Review Timing 

The average amount of time (in seconds) workers took to provide their ratings was 

measured for each step separately. The initial step time was measured between the presentation 

of the images and the submission of the initial rating. The review step time was measured 

between presentation of the simulated output (and any explanations) and the submission of any 

changes in the review step. The average of the ten scenarios was computed for each participant 

to match the unit of analysis of the other measures. 

III.5.2 Erroneous Agreement 

Some prior research has found that producing persuasive explanations causes users to 

accept the system’s recommendation (Arnold et al., 2006; Cramer et al., 2008; Glass, 

McGuinness, & Wolverton, 2008). In this context there should be no presumption that the agent 

has the correct answer, and it is possible to be overly persuasive. Using acceptance of the system 

output as the performance criteria might be a measure of the absence of human cognition. While 

objectively correct ratings may be impossible to identify, it is possible for the agent’s rating to be 

highly inconsistent with the image. Erroneous output, which is coherent with respect to the 

guidelines, but references objects that are clearly not in the image, provide an opportunity to 

detect overly persuasive explanations.  

Five of the scenarios presented to workers were designed and selected for inclusion based 

on the implausibility of the objects cited in the explanation. Erroneous agreement was measured 

as the proportion of erroneous scenarios where the participant changed their rating to agree with 

the agent’s damage rating in the review step. Participants that agreed with the intended erroneous 
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rating in their initial review (5.3% of ratings) were not counted as being in erroneous agreement, 

as the simulated output and explanation likely had little to no role in the worker’s rating. 

III.6 Manipulation Checks 

Three measures were included as a check to ensure manipulation of the independent 

variables. The measures asked participants to rate their agreement with three statements: “The 

Automated Damage Assessment Machine (ADAM) explained why it made its ratings,” “ADAM 

compared its rating to at least one other possible classification,” and “ADAM pointed out 

features in the image that may lead to incorrect classifications.” Each was rated as “Yes,” “No,” 

or “Don’t Know / Don’t Remember.” For detail on the development and testing of the 

manipulation check, see Appendix F.2.7. 

III.7 Demographics and Feedback 

Demographics (age, gender, income, education) were requested. An optional open-text 

feedback item was included. 

III.8 Hypothesis Development 

III.8.1 Effect of Counterfactual Explanations 

Explanations with a comparative and contrasting causal explanation will require less 

cognitive resources, potentially avoid referrals back to the guidelines, and provide direct 

contrasts to other possible classifications (Hilton, 2007; Wachter et al., 2017). These 

explanations will both connect to the facts of the image (which can be falsifiable), and inform the 

worker of the schema classifications to fill in holes and errors in their own understanding 

reducing the perception of information being extraneous (Bandura, 1986). Differences in self-

rated cognitive load were detectable between different types of puzzles in Joseph (2013), and 

users that have to spend more mental effort evaluating and reviewing damage guidelines will 
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have higher load. The interpretation of counterfactual explanations is expected to support the 

participant’s construction of a mental schema for the task, resulting in increased germane 

cognitive load in the short-run, with decreased total cognitive load as they gain experience in the 

task (Sweller, 1988). As these explanations are also composed in the manner in which humans 

generally explain themselves (Malle, 2006), counterfactual explanations are also expected to 

make it more likely that the agent is perceived as being predictable in terms of having a rational 

mind and being intelligent (Dennett, 1989). 

Hypothesis 1a: Counterfactual explanations will decrease cognitive load. 

Hypothesis 1b: Counterfactual explanations will increase attribution of agent intelligence. 

III.8.2 Effect of Hedging Explanations 

Hedging explanations provide important information on known failure modes and can 

highlight potential flaws and challenges in models that are not obvious to humans (Hoffman et 

al., 2018). At the same time, these failure modes cannot be positively detected by the model and 

therefore are not certain assertions, but instead notes of caution based on presumptive detection 

of boundary conditions which do not necessarily invalidate results. When the classifications and 

explanations are coherent with the image and guidelines, the presence of these explanatory 

warnings is nearly by definition extraneous cognitive load. They are also likely to be seen as 

declaring weaknesses which our biases treat as lack of competence and intelligence (Moulin et 

al., 2002). In conflict with this, some evaluation frameworks for explanations cite the importance 

of persuasiveness of explanations to human understanding (Gilpin et al., 2018; Tintarev & 

Masthoff, 2011). Hedging explanations are speculative in that they are not detectable with 

certainty, and as such are likely to increase cognitive load with “seductive details” which may be 

misleading and require more effort to evaluate, also consistent with extraneous cognitive load 
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(Klepsch et al., 2017). While framed in terms of the content of the image, hedging explanations 

describe conditions of the agent and are less inherently understandable to participants unfamiliar 

with the function of computer vision algorithms, even if they are experts in damage assessment. 

While literature that hasn’t specifically examined hedging explanations expects a benefit, the 

related literature in other contexts indicates hedging explanations will increase cognitive load 

and be less persuasive by reducing the perception of intelligence and confidence. 

Hypothesis 2a: Hedging explanations will increase cognitive load.  

Hypothesis 2b: Hedging explanations will decrease attribution of agent intelligence. 

III.8.3 Cognitive Load on Attribution of Agent Intelligence 

Increasing cognitive load results in people selectively processing information (Sweller, 

1988). By reducing information processing resources available, attributions of observed behavior 

conform to the pre-existing views of the observer (Molden et al., 2006). Increased cognitive load 

also prevents situational information from entering into the judgment of causal processes (Hilton, 

2007). This has been further supported by research which manipulated cognitive load to test for 

the presence of implicit mind perception, which has found that perception and attention to mental 

state requires cognitive resources which are shed under cognitive load (Schneider, Lam, Bayliss, 

& Dux, 2012). The agent in this model is fallible and commits errors; however, the explanations 

provide a basis by which to attribute intelligence if attributions are made based on the situational 

causes (such as errors in interpreting a challenging image) as compared to dispositional causes. 

The study by Gilbert and Osborne (1989) examined recovery from incorrect inferences and 

found that subjects under high cognitive load made errors in attributions even if misperceptions 

of the events those attributions were based on were “retroactively cured.” As such, while the 

agent’s explanation may cure incorrect inferences, their attributions of the agent’s behavior may 
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remain unchanged. Based on this previous knowledge that cognitive load disrupts the 

attributional processes of humans in social situations, the following hypothesis is proposed: 

Hypothesis 3: Increasing cognitive load will decrease attribution of agent intelligence. 

III.8.4 Effect of Cognitive Load on Self-Efficacy 

Many previous studies in instruction (Hesketh, 1997; Steele-Johnson et al., 2000) and 

general technology-mediated task contexts (Crippen & Earl, 2007; P. J.-H. Hu et al., 2017; 

Zheng et al., 2009) have found relationships between cognitive load and self-efficacy. Across 

each of these studies, increasing cognitive load was associated with decreasing self-efficacy 

within their respective tasks. 

Hypothesis 4: Greater cognitive load will decrease self-efficacy. 

III.8.5 Effect of Attribution of Agent Intelligence on Self-Efficacy 

Social cognitive theory anticipates that learning is a social process where we learn 

primarily by observing others rather than exclusively from our own independent experience 

(Bandura, 1986), and the development of self-efficacy is tied to observational learning (Bandura, 

1997) which should be enhanced by explanations. Intentional systems theory states that when an 

observed entity appears to behave rationally, we ascribe that behavior to having a mind (Dennett, 

1989). To that end, if the worker interprets the behavior of the agent to be rational, the behavior 

of the agent can be modeled and guide the worker in the performance of the task. To the extent 

that explanations of model output are analogous to example-based instructional techniques, the 

review by Van Gog and Rummel (2010) found that those techniques increased self-efficacy, and 

that effectiveness was tied to the traits of those being modeled. The review by Gist and Mitchell 

(1992) found that assessments of external resources are antecedents of self-efficacy, by means 

both automatic and intentional. A second potential mechanism combines instructional attribution 
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theory with early computer interaction research. Weiner (1985) theorized that stable internal 

attributions of success are a predictor of positive expectancy and motivation rather than external 

causes, and Engelbart (1962) found that people subsumed augmentation by technology into their 

own performance and could only differentiate augmentation through its removal. For a task 

where the worker is learning the particulars of an assessment guideline and the unique elements 

of a new disaster, an agent perceived as intelligent is much more likely to be modeled by the 

participant than one that is not and lead to increased expectations of future performance. 

Therefore: 

Hypothesis 5: Greater attribution of agent intelligence will increase self-efficacy. 
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IV RESEARCH METHODOLOGY 

IV.1 Experiment Design 

An experiment was developed to test the hypotheses of the research model by varying the 

explanations offered by a simulated agent in a crowdsourced damage assessment task. 

Participants in the experiment were provided a briefing on the task, expectations, and rating 

guidelines. For each scenario participants rated the structure type and damage level, after which 

they were provided the simulated output and any explanations along with the opportunity to 

change their initial assessment. After completing a total of ten scenarios, participants provided 

ratings for the study measures. Only the types of explanations offered were manipulated between 

experiment conditions. The unit of observation and analysis for the measures of the research 

model was “participant” and all measurements of attitudes were made after the completion of the 

task. 

An incomplete factorial between-subjects design for type of explanation was employed 

with five conditions, shown in Figure 6. One condition included only a causal explanation. The 

causal explanation was combined with the counterfactual and hedging explanation separately in 

two conditions. One condition included all three explanation types. In addition, a “black box” 

condition with no explanation of the simulated output was included. The probability of condition 

selection per participant was based on the proportion of remaining quota per condition with the 

goal of equal group size per condition.  



 62 

 

Figure 6 Experiment Conditions 

The design of the experiment attempted to ensure that differences in the formation of 

self-efficacy would be based solely on the explanations. Of the four pathways for developing 

self-efficacy through observational learning, the research focuses on “observation” (vicarious 

experience). By asking workers to review explanations and controlling for other pathways, the 

effect of the explanations on self-efficacy can be assessed. Of the other pathways, “successful 

performance” can only be self-assessed or inferred from rating agreement with the agent. The 

agent did not attempt to use “persuasion” to convince the participant about their capability to 

conduct a task, and any physiological or affective processes that take place outside of the 

experiment would be neutralized by random selection into conditions. 

The study materials were submitted to the Georgia State University Institutional Review 

Board and approved (see Appendix A). Pre-testing was performed prior to the study to evaluate 

the measures, selection of scenarios, and manipulation of the independent variables by the 

experiment. 
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IV.2 Selection of Participants 

Participants were recruited using the Amazon Mechanical Turk crowdsourcing platform 

and qualified using a separate two-question survey. The requirements for participation were 

having proficiency in the English language, having at least 100 approved tasks and 95% approval 

rating on the platform, and being an adult within the United States. The qualification survey 

asked participants to submit a short description of an aerial photo of an undamaged building that 

was not otherwise part of the study using an open-text field in order to evaluate their proficiency 

in English. The survey also asked them to select checkboxes if they had previous experience in 

crowdsourced citizen science, aerial image interpretation, and related fields. The qualification 

task was not compensated. Participants in any phase could be excluded from participation in later 

phases of data collection. Participants in the telephone interview pre-test were compensated 

$10.00, and all other participants were compensated $2.00.  

The requirement to demonstrate proficiency in English was beneficial to ensure that 

participants would be able to understand the guideline and natural language explanations. The 

example used was a pre-disaster image with several easily identified features, shown in Figure 7. 

The qualification step also addressed the identified phenomenon of non-English proficient 

Amazon Mechanical Turk workers using technical means to evade the platform’s United States 

location requirement (“farmers”) who have been found to produce unintelligible or “clunky” 

open-text submissions (Moss & Litman, 2018).  

No qualification submissions were rejected based on spelling or grammar. Errors in the 

interpretation such as using an incorrect shape name to describe the building or not 

understanding the scale of the building were not considered in the assessment of English 

proficiency. Examples of submissions appear in Table 4. The consistently interpretable and 
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efficiently constructed descriptions of the submissions indicated the participants were both 

proficient in English and inconsistent with the farmers identified by Moss and Litman (2018). 

 

Figure 7 Image Provided for the English Proficiency Qualification 

Note: Map data from Google (2018) 

Table 4 English Proficiency Qualification Examples 

Judgment Submitted Description 

Qualified “This photo shows a good deal of beach erosion, which is caused by ocean waves, 

currents, and high winds. The energy within the water, pulls sand away from the shore, 

carrying it elsewhere and depositing the sediment in sandbars.” 

Qualified “This is an overhead view of a beachside mansion. You can see the beach below, which 

has dozens of people enjoying themselves. There may be some erosion of some of the 

green right outside right at the edge of the mansion grounds, likely where the high tide 

comes in.” 

  

IV.3 Experiment Process Flow  

The process flow for the experiment appears in Figure 8. The qualification process was 

employed to ensure that only participants that met the qualification requirements were recruited 

for the study. An attention check was utilized to validate adequate participation by participants 

following the briefing. Failure to select the correct answer ended the survey and excluded the 

participant from the study. The correct option “You may change your answer after reviewing the 



 65 

automated assessment” was essential to the design of the experiment, and the remaining options 

included elements not mentioned or contradicted by the briefing.  

The process flow of the experiment was modified for the testing rounds to support the 

development of the instrument. The following changes only applied during the testing: 

participants were asked in the initial step of each scenario after rating the image to “Please rate 

the difficulty of this classification” on a 7-point semantic differential with scale ends “Very 

Difficult” to “Very Easy.” The manipulation checks were performed immediately after the 

scenarios to maximize recall to support evaluating the manipulation. The failure of the attention 

check did not end the survey. 
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Figure 8 Experiment Process Flow 

 

IV.4 Task Design 

The findings of previous research and feedback from participants was referenced when 

designing the damage assessment task. The goal was to reduce any extraneous cognitive load 

induced by the assessment tool and environment. An example rating screen of the final 

instrument appears in Figure 9. 
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Figure 9 Scenario Interface Example 

While the original intention was to recreate the “pybossa” user interface commonly used 

by other crowdsourcing disaster assessments, this added additional non-functional user interface 

elements and potentially increased the cognitive load of the task. Instead, a fully native 

Qualtrics-based interface was developed consistent with recommendations in the literature that 

minimized extraneous cognitive load, reduced situational elements of task difficulty, and 

supported the participant’s engagement with the rating task.  

The participant rated the image before being provided the simulated output and 

explanation similar to a “critiquing system” per the recommendations of human-centered 

computing (Smith, 2018), and similar to the collaborative human-machine problem-solving 

approach from Tianfield and Wang (2004). Pre-centered images and a simple classification entry 

method were utilized per Kerle and Hoffman (2013) to minimize mapping knowledge required 
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for the task. An interactive magnifying glass that followed the participant’s mouse cursor was 

implemented per GIScorps (2013) using the jquery library “magnify” (Doan, 2018), allowing 

users to more closely examine image details. Rating guidelines were provided via a link and by 

mouse “hover” over rating options per the recommendation of Albuquerque et al. (2016), which 

is also consistent with an integrated instructional approach (Chandler & Sweller, 1991).  

Geographic information system-based damage assessment tools fall into a wide variety of 

designs. Many real-world crowdsourced platforms address the concerns raised in the review by 

Kerle and Hoffman (2013), section 3.2, where: (i) clarity of instructions is addressed by 

simplified classification frameworks and guidelines, (ii) the need for domain knowledge is 

minimized by removing the mapping aspect of the task, (iii) options for interaction are limited to 

the selections within the classification guideline, and (iv) the software environment is a low-

barrier user interface within the user’s familiar web browser containing only the task at hand. By 

removing the mapping element of the task and providing participants with the building to be 

rated centered in the image, as well as a simple rating entry tool, the microtask is focused on 

learning the assessment of damage to the guideline in co-production with the agent.  

Integrating automation into the workflow brings the challenge of sequencing and 

allocating subtasks to both the human and intelligent agent. Poor outcomes are common when 

the human is placed in the role of “final arbiter” (Smith, McCoy, & Layton, 1997). Often these 

outcomes are diagnosed as confirmation bias or complacency on the part of humans, but 

cognitive processes such as satisficing, trust, fixation on solutions, and narrowing may better 

explain the state of the human (Smith, 2017). The sequencing of decision steps here is similar to 

a “critiquing system” which Smith (2017) claims is superior to human “final arbiter” structure. 

Participants may economize their cognition and bypass this requirement by entering a random 
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classification at the initial step to reveal the automated assessor classification and explanation. 

Such behavior will be detected by timing and reported as an outcome. Figure 10 shows the 

process flow of the microtask loop with an opportunity to change the rating after the agent 

assessment is revealed.  

 

Green = Human Processes, Blue = Survey Processes 

Figure 10 Microtask Process Loop 

IV.5 Scenario Generation 

The images for damage assessment were from a real-world disaster data set (NGS, 2018) 

and pre-disaster images were from sources similar to those available in real-world disaster 

assessment (Google, 2018). These images, while of the same structure, were potentially taken 

years apart at different times of day and camera angle, which is also consistent with real-world 

disaster assessment. 

The “Wizard of Oz” approach1 has been developed within the area of computer 

interaction research to experimentally evaluate near-term technologies and technologies where 

the artifacts are unavailable for examination, but where experiments can produce useful 

information about the design of future artifacts (Habibovic, Andersson, Nilsson, Lundgren, & 

Nilsson, 2016; Riek, 2012). Guidelines for Wizard of Oz methodologies were reviewed in the 

human-robot interaction area by Riek (2012), and several recommendations are explicitly 

                                                 
1 This approach simulates a computer system through the actions of a human operator. The term derives from the 

novel “The Wonderful Wizard of Oz” by L. Frank Baum where the character “Oz” appears to other characters in 

multiple forms other than his own by artificial means. 
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accounted for in the design of the research method for this study. The capabilities and limitations 

of the simulated system are specified below. The simulated output and explanations were 

developed in an iterative process. Unlike most research involving a Wizard of Oz approach, the 

interaction here is not in real-time and instead is based on pre-generated scenarios which are 

identical between all participants. Constraints and machine-like errors in system performance are 

included in the simulation. “Wizard error” is attempted to be controlled by developing a 

specification for the behavior of the simulation and evaluation of the simulated output for 

consistency with that specification. That specification appears in Figure 11. The explanations 

were generated in an iterative process developing a total of 22 scenarios which were tested. The 

steps used to generate the scenarios and their components are shown in Figure 12. The full list of 

scenarios appears in Appendix D. See Appendix F.1. for detailed description of the development 

process and Appendix F.2. for testing outcomes.  

 

Figure 11 Simulated Output and Explanation Specification 
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Figure 12 Process to Generate Scenarios 

IV.6 Data Analysis Plan 

The survey data was exported from Qualtrics in SPSS format. The data was prepared for 

analysis using SPSS Version 25, including restructuring and aggregation of the assessment 

outcome data. Partial Least Squares Structural Equation Modeling (PLS-SEM) was performed 

using Smart PLS 3.2.8 (Ringle, Wende, & Becker, 2015). The alternate explanations were 

considered as direct effects on self-efficacy. 

Bagozzi and Yi (1989) proposed analyzing experiment data using a covariance structural 

equation modeling approach where manipulation groups were indicated with variables, which 

was extended by Bagozzi, Yi, and Singh (1991) to PLS-SEM. Streukens, Wetzels, Daryanto, and 

De Ruyter (2010) developed a method to analyze a two-factor experiment including a test of the 

interaction with a third dummy variable in PLS-SEM, along with mediators of the ultimate 

dependent variable. That approach was adopted for the data analysis method in this study, with 

the initial evaluation model shown in Figure 13, with single-item dummy variables indicating the 

counterfactual (CF) manipulation, the hedging (H) manipulation, and the interaction of the two 

(CF×H). To account for the control condition, a fourth dummy variable is included indicating the 

presence of the causal explanation (C).  

PLS-SEM is a more appropriate estimation method over multivariate analysis of variance 

as it was developed to analyze latent constructs and mediation paths simultaneously. PLS-SEM 

estimates latent constructs using both reflective and formative models, and partial least squares is 
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well-suited to analyze the cognitive load composite-formative construct (Henseler, 2018), and is 

recommended for models with composite measures while covariance-based methods are 

inappropriate (Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). Additionally, the review by 

Hair, Hollingsworth, Randolph, and Chong (2017) supports selecting PLS-SEM for research 

where constructs are being evaluated in a new context, and the limited assumptions of PLS-SEM 

make it an appropriate choice as the data was generated using Likert-type measures with 

unknown statistical distribution. 

 

 Figure 13 Second-Order Cognitive Load Structural Model 
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Estimates of latent constructs per participant from the PLS-SEM analysis were exported 

from Smart PLS and into SPSS. Bootstrap2 analysis of path coefficients was conducted in SPSS 

and Smart PLS using bias-corrected and accelerated confidence intervals. Descriptive statistics 

were computed for each experiment condition, and a correlation table was constructed in SPSS. 

Smart PLS was used to conduct the analysis and evaluation of the structural model. Model 

quality criteria were adopted from Hair et al. (2016). Pairwise deletion of missing data was 

selected rather than mean replacement as the most appropriate treatment for missing learned trust 

for AI and demographic information. Mode A was used for reflective constructs and mode B was 

used for the formative cognitive load construct. Path weighting was selected for the analysis.  

Path coefficients for relationships with the independent variables and gender are reported 

after transformation of the analysis output by dividing the original coefficient by the standard 

deviation of the indicator variable. This rescaling allows for conventional interpretation of the 

coefficients as changes in the mean by numbers of standard deviation. The standardized 

coefficients used by Smart PLS are scaled by the proportion of the indicator, which facilitates the 

analysis but produces path coefficients which are arbitrarily scaled and cannot be readily 

compared. 

The intended second-order cognitive load construct was assessed first to establish the 

measurement model. Redundancy analysis was employed with the single-item for total cognitive 

load (Cheah, Sarstedt, Ringle, Ramayah, & Ting, 2018). Then the measurement model was 

assessed using the following metrics by the thresholds for each recommended by Hair et al. 

(2016): indicator loadings, multi-collinearity using variance inflation factor (VIF), discriminant 

                                                 
2 In “bootstrap” analysis the main procedure is repeated many times with a resampled set of the same size as the 

original data composed of randomly drawn members with replacement. Standard errors for model parameters and 

quality metrics are estimated by inference of the population from the sample (Hair, Hult, Tomas, Ringle, & Sarstedt, 

2016). 
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validity using heterotrait-monotrait ratio (HTMT), convergent validity for reflective constructs 

using average variance extracted (AVE), and cross-loadings of items with other constructs. 

Finally, the structural model was assessed for effects and predictive relevance. Manipulation 

checks were assessed using tests of differences using SPSS. 

IV.7 Determination of Sample Size  

The XAI field believes that the effect of providing explanations will be substantial and 

open up new areas of application for intelligent systems (Herman, 2017; Miller, 2019). Within 

types of explanation, no studies were identified comparing counterfactual explanations with 

simple causal explanations on attitudes to estimate the potential effect size. Effect sizes between 

explanation and “black box” conditions in the literature are generally large. However, response 

differences in trust and prediction error in Poursabzi-Sangdeh et al. (2018), where the number of 

model parameters in the explanation was varied, were not practically significant despite being 

statistically significant, with approximately 200 respondents per condition. The authors did not 

report sufficient detail to determine the effect size of types of local explanations. As the purpose 

of this study is to assess practical benefit, the sample size was determined on the basis of 

identifying or constraining the effect to at least medium effects (f = 0.25) (Cohen, 1988), but also 

sufficient power to validate the hypothesized mediation relationships. 

To establish the minimum sample size required to detect medium-size direct effects 

between manipulations of explanation type on self-efficacy, the SPSS SamplePower 2x2 

ANOVA with non-central F procedure was utilized. The required sample size per group was 

calculated as n = 32 with power of 80%. A sample size of n = 50 can detect an effect size of f = 

0.20, and n = 88 allows f = 0.15. For f = 0.10, considered a small effect size, a group size of n = 

195 would be required.  
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Power tests for mediation effects are specific to each proposed mediator, where each is 

expected to have unique path strength and statistical power (Thoemmes, MacKinnon, & Reiser, 

2010). The inverse square root rule (Kock & Hadaya, 2018) with power threshold of 80% was 

utilized to evaluate sample size requirements for the structural model. This analysis finds that 

sample sizes appropriate for main effect size f = 0.25 would be sufficient to evaluate mediation 

paths as small as of β = 0.197; at f = 0.20: β = 0.157; at f = 0.15: β = 0.119; and at f = 0.10: β = 

0.080.  

A group size of 88 and sample size of 440 was selected for the ability to detect main 

effects at the medium-effect size threshold, while being able to detect statistically significant 

mediation for path coefficients as low as 0.119.  

IV.8 Development and Testing 

The study’s task and damage assessment scenarios and survey instrument were developed 

in an iterative process. Measures of the dependent constructs, alternate explanations, and 

demographics were selected from the literature. The item to measure level of automation was 

developed by the author for this experiment. An initial pre-test using six telephone “cognitive 

interviews” was conducted to evaluate the task and instrument, followed by two rounds of pre-

test data collection with 90 participants to evaluate the measurement model, manipulation check 

outcomes, and participant feedback. All composite measures were evaluated using pre-testing 

with scale reliability testing using Cronbach’s alpha and factor loading. The development and 

testing results of the study materials is detailed in Appendix F. 
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V DATA ANALYSIS AND RESULTS 

V.1 Sample Description 

The study data were collected between February 4th and February 10th, 2019. The 

instrument used is provided in Appendix C. A summary of the results of the recruiting process 

are shown in Figure 14. A total of 610 potential participants were qualified, of which 90 

participated in testing and 445 were recruited for the study (86% of those remaining). No 

submissions for qualification were rejected for lack of English proficiency. Seventy-five percent 

of all qualifications requested were received and granted on or before the first day of data 

collection. Seventy-six percent of the sample was collected in the first three days of data 

collection.  

Of the 445 potential participants recruited into the study, 20 exited the survey at the 

consent screen, 7 at the briefing screen, and 27 failed the attention check. Of the remaining 418 

that began the rating process, 23 dropped out during the damage assessment portion of the task. 

These partial completions were removed from the data as they provided no measure data. The 

second submission of a single participant with the same worker identification number was also 

removed from the data. The final sample contained 367 participants with an average of 73 per 

condition and between 69 and 79 per condition. While less than the intended sample size, power 

analysis for sensitivity of the obtained group and sample size confirmed that medium size effects 

could be detected with statistical power of 80% (minimum main effects: f = 0.17, d = 0.34; 

mediator effects: β = 0.130). 

The mean age of the participants was 38.7 years with a median of 36. The minimum was 

19 and the maximum was 71. Sixty percent of participants were female. A total of 55% indicated 

they had a college degree (either undergraduate or graduate). Participants had limited previous 
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experience with natural disaster damage assessment in aerial images, with 53% indicating having 

no prior experience; however, this rate was consistent with the experience of crowdsourced 

workers in previous real-world events (Dittus, 2017). Of those with experience, 76% indicated 

they had performed the task a few times a year or less in the last year, and 55% had not used a 

written guideline previously. A single participant indicated having used the same guideline as in 

this study. Participants had previous experience in related tasks: 12% indicated prior experience 

in geographic information systems, 12% with natural disaster damage assessment, 29% with 

aerial image interpretation, 9.3% with experience in a citizen science project, and 61% with none 

of the related experience categories.  

Examples of participant open-text feedback appears in Table 5. Participants noted that the 

agent produced errors, but also was useful to identify their own errors. Few participants rejected 

the agent, and several indicated they felt it was essential to their performance. There was no 

indication that participants felt the task was artificial or that the agent was not real. Some 

workers provided feedback expressing that they would like the ability to indicate what the agent 

got wrong, similar to scrutability (Tintarev & Masthoff, 2011). 
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Figure 14 Recruiting Flow 
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Table 5 Selected Study Feedback 

“I thought this was a really interesting survey and it is something I have never done before. I think 

that with more practice I could be really knowledgable [sic] in this type of work. It was different 

working with ADAM because I perceived things a little differently in some cases. I felt more accurate 

in some cases whereas in other cases I felt ADAM was more accurate. I think that it is beneficial to 

work with ADAM but not heavily rely on that interpretation alone.” 

“I was a bit confused by one very large building that looked like a warehouse. I would say that about 

1/5 of the roof was destroyed, but I don't know enough about architecture or engineering to know if 

the whole roof needs to be replaced or just that section. I changed my rating to critical because of the 

automated rating, but I'm still not convinced.” 

“Some of the time it seemed that ADAM had more information that I had access to, such as the 

integrity of walls inside of buildings that I only had a strictly overhead view to refer to. I couldn't see 

walls or possible damage so most of the time just changed to what ADAM suggested.” 

“I thought that this is not only an interesting study, but it also increased my knowledge and I feel will 

help assist in damage assessment. It's a very meaningful study.” 

“I found it very interesting. I think with the combination of AI and human intelligence, damage 

assessment can be a lot easier.” 

“That was really hard! I am confused on the difference between minimal and significant - ADAM 

marked significant if just part of the roof was missing but the descriptions says entirely. Minimal says 

part of the roof ... so I wasn't confident in my prediction or his.” 

“I enjoyed doing this hit. I think it was helpful to do practice hits like these to get a feel for how the 

system works, how things are labeled and scored, etc. It was good to get the feedback of ADAM so I 

could compare and rethink how I scored each one so I could accurately assess and change any 

mistakes I made but also be able to have someone check the AI's ratings for major discrepancies or 

mistakes too. I think with both sides on board it would give an overall better rating or picture of reality 

in general in the future during natural disasters and get help to those in need faster. Thanks!” 

“Very interesting HIT. I enjoyed working with ADAM, and while I didn't agree with all of ADAM's 

assessments, it helped guide me to the correct assessment in a lot of cases. Since I'm just a beginner 

at this, it helped me to get better at identifying structures and assessing damage.” 

“I enjoyed doing this HIT. I think that ADAM made me second guess myself but also helped me 

learn to do them correctly. When ADAM was wrong it was very obviously wrong to me.” 

“I really enjoyed the assessment. There are evident accuracy issues with using just the ADAN [sic], 

but it is a good tool for pointing out things in the photo that may have been missed.” 
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V.2 Descriptive Statistics 

Scores were computed for each composite measure using the sum of item ratings in SPSS 

based on the revised item composition of the structural measurement model. Correlations 

between sum of scale scores and the latent construct estimates exceeded 0.9 for all measures. 

The descriptive statistics shown in Table 6 are grouped by experiment condition for the study 

measures, alternate explanations, and demographics with tests for differences in means between 

experiment conditions. A correlation table was computed in SPSS using Pearson correlation with 

the extracted latent construct estimates from Smart PLS, with the result shown in Table 7. 

Table 6 Descriptive Statistics by Condition and Differences in Means 

 

Of the measures expected to be equivalent between experiment conditions, only age 

shows a statistically significant difference, where the causal with counterfactual experiment 

condition has an average age 6 years higher than the other conditions (0.47 standard deviations). 

The difference in median age is consistent with the difference of the mean (43 versus 35 to 36 in 

the other conditions), eliminating the potential role of outliers in this outcome. While this 

difference arising due to random chance is very rare, a causal relationship with the experimental 

Causal Only

Causal + 

Counterfactual

Causal + 

Hedging

All Three 

Explanations Black Box

Measure n = 73 n = 73 n = 69 n = 78 n = 74

ANOVA p-value

Total Cognitive Load 7.77 (1.11) 8.10 (0.97) 7.81 (1.10) 7.87 (1.18) 7.81 (1.11) F(4,362) = 1.0 0.388

Intrinsic Cognitive Load 13.9 (3.95) 15.6 (3.45) 13.7 (4.07) 14.9 (3.50) 13.3 (3.83) F(4,362) = 4.8 <0.001

Germane Cognitive Load 18.8 (2.07) 19.2 (1.93) 18.8 (2.13) 18.5 (2.52) 19.3 (1.79) F(4,362) = 1.6 0.184

Extraneous Cognitive Load 9.4 (4.06) 9.9 (3.96) 9.2 (3.74) 10.3 (4.54) 8.0 (3.96) F(4,362) = 3.4 0.009

Attribution of Agent Intelligence 24.6 (7.65) 24.7 (7.85) 27.0 (6.21) 24.6 (7.20) 23.4 (6.62) F(4,362) = 2.5 0.046

Self-Efficacy in Task 33.4 (6.07) 33.0 (7.77) 34.3 (6.62) 33.0 (6.95) 35.6 (6.54) F(4,362) = 1.9 0.106

Erroneous Agreement 0.312 (0.262) 0.290 (0.271) 0.270 (0.256) 0.287 (0.253) 0.165 (0.202) F(4,362) = 4.0 0.004

Initial Review (Seconds) 27.8 (20.9) 30.2 (16.3) 26.4 (14.3) 31.3 (20.1) 30.4 (21.4) F(4,362) = 0.8 0.499

Review of Automated (Seconds) 24.1 (14.1) 28.4 (14.6) 23.8 (11.5) 29.3 (19.4) 19.1 (10.0) F(4,362) = 6.0 <0.001

Trust in Intelligent Agent 4.63 (1.40) 4.82 (1.32) 4.67 (1.52) 4.56 (1.35) 3.88 (1.42) F(4,362) = 5.0 <0.001

Perceived Interdependence 11.8 (1.72) 11.9 (1.84) 11.8 (1.91) 11.4 (1.90) 11.0 (2.58) F(4,362) = 2.9 0.020

Percevied Level of Automation 4.12 (1.49) 4.44 (1.47) 4.51 (1.53) 4.19 (1.49) 3.88 (1.44) F(4,362) = 2.1 0.080

Previous Task Experience 2.45 (3.40) 2.93 (3.78) 3.23 (4.28) 2.01 (3.34) 2.58 (4.00) F(4,362) = 1.1 0.345

Dispositional Trust 15.5 (3.32) 15.8 (3.69) 15.8 (3.57) 15.4 (3.52) 15.9 (2.94) F(4,362) = 0.4 0.837

Learned Trust for AI 2.95 (0.82) 3.02 (0.88) 3.19 (0.77) 3.07 (0.67) 3.04 (0.78) F(4,296) = 0.8 0.550

Gender (0 = male, 1 = female) 0.556 (0.500) 0.556 (0.500) 0.652 (0.480) 0.671 (0.473) 0.608 (0.492) F(4,358) = 0.9 0.482

Age (years) 37.5 (9.8) 43.3 (11.4) 37.5 (9.4) 37.5 (10.3) 37.8 (7.7) F(4,362) = 4.9 <0.001

Education 3.90 (1.04) 3.73 (1.12) 3.59 (0.93) 3.71 (1.11) 3.49 (0.95) F(4,361) = 1.7 0.156

Income 4.55 (2.10) 4.14 (2.07) 4.25 (1.96) 4.04 (1.72) 4.36 (1.79) F(4,360) = 0.8 0.532

Test of Differences in 

Means

Mean (Standard Deviation)
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manipulation is not plausible given the low drop-out rates and that the Qualtrics randomization 

procedure has no access to the participant’s age. The effect of age was included in the structural 

model as a direct path with self-efficacy. 

There is a large skewed peak in distribution of prior experience in task measure due to 

53% of respondents reporting no prior experience. The effect of this is apparent with standard 

deviations greater than the mean scores. This non-normality violates the assumptions of the 

analysis of variance test. The non-parametric Kruskal-Wallis Independent-Samples test of 

previous task experience by experiment condition was performed in SPSS. It also found no 

statistically significant differences between conditions when zero values are excluded (statistic: 

3.8, df = 4, p = 0.480), or in the full data (statistic: 4.2, df = 4, p = 0.385).  

Manipulation check measures were employed to validate effects of the independent 

variables. The “Don’t Know / Don’t Remember” rating for the manipulation checks were 

selected by 0.5%, 14%, and 6% of the participants for the causal, counterfactual, and hedging 

checks. For those that rated the manipulation checks, 6.5%, 19.3%, and 29.4% of participants 

rated them inconsistent with the experiment condition. For participants that provided response, 

Independent T-Tests for differences in ratings between the manipulation check between the 

manipulation conditions were all significant and in the appropriate direction of difference (causal 

z = −27.0, df = 363,  p < 0.001; counterfactual z = −11.58, df = 313, p < 0.001; hedging z = −8.4, 

df = 343, p < 0.001). This indicates that participants which rated the manipulation checks with 

confidence were broadly able to rate their experiment condition consistent with the explanations 

they had been provided. 
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Table 7 Correlation Table 

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 Total Cognitive Load

2 Intrinsic Cognitive Load .206**

3 Germane Cognitive Load .201** .088

4 Extraneous Cognitive Load .031 .506** -.277**

5 Attribution of Agent Intelligence .015 .104* .097 .063

6 Self-Efficacy in Task .075 -139** .304** -.406** .066

7 Erroneous Agreement -.007 .094 -.028 .165** .208** -107*

8 Scenarios Marked Incorrect -.009 .010 .053 -.013 -.007 .079 -.066

9 Initial Timing .180** .108* .127* -.034 .018 .042 -.088 -.100

10 Review Timing .183** .193** .080 .056 .066 -.086 .018 -.091 .582**

11 Trust in the Intelligent Agent .111* .122* .101 .026 .604** .090 .332** .036 -.096 .017

12 Interdependence .064 .038 .201** -.156** .369** .245** .118* -.050 .126* .150** .547**

13 Level of Automation -.014 .051 -.046 .090 .307** -.053 .168** -.046 -.076 .002 .284** .064

14 Previous Task Experience -.030 -.101 .017 -.084 .007 .199** -.003 .007 -.082 -109* .074 .047 .066

15 Dispositional Trust for AI -.009 .017 .307** -254** .160** .244** .061 .038 -.028 .003 .233** .333** -.036 .088

16 Learned Trust for AI .056 .003 .031 -.083 .152** .067 .159** -.102 -.005 .019 .242** .186** .069 .015 .201**

17 Gender (0 = male, 1 = female) .193** .122* .102 -.094 -.104* .011 .105* -.059 .196** .123* -.046 .075 -.041 -.129* -.098 .078

18 Age .149** .190** .032 -.023 -.040 -106* .047 -.031 .339** .350** .016 .046 .012 .001 -.006 -.115* .137**

19 Education .050 -.019 .045 -.030 -.082 .009 -.088 -.071 -.066 -.073 -.060 .006 -113* .080 .033 -.078 -.040 .051

20 Income .023 -.070 .019 -.077 -.099 .079 .006 -.019 -.012 -.081 -.061 -.013 -.024 -.006 .010 .010 .047 .045 .214**

Causal Explanation .028 .177** -.087 .174** .106* -.129* .198** .066 -.029 .200** .222** .125* .116* .006 -.025 .010 .001 .046 .097

Counterfactual Explanation .083 .240** -.018 .150** -.024 -.106* .079 .034 .066 .218** .105* .017 .049 -.038 -.051 -.007 .010 .132* .027

Hedging Explanation -.021 .047 -.099 .077 .107* -.028 .045 .022 -.012 .095 .059 -.031 .064 -.009 -.034 .080 .089 -.099 -.022

Interaction of Explanations .000 .105* -.088 .109* -.026 -.063 .046 .003 .056 .152** .020 -.075 -.011 -.085 -.075 .013 .066 -.063 .014

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).
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V.3 Assessment Outcomes 

The damage assessments were evaluated to ensure the participants produced data with 

representative effort and repeatability. A summary table of results appears in Table 8. The 

participant consensus ratings in the initial step were identical between the testing and study 

groups for 19 of 20 ratings selections. The consensus damage rating for scenario 17 was “no 

damage” in the study compared to “minimal” in the testing phase. Agreement was also assessed 

by bootstrapped resampling with 500 resamples. Only three images changed modes for damage 

ratings: scenario #8 (2% of resamples), #9 (0.4%), and #17 (47%, where the consensus damage 

rating varies from “no damage” and “minimal”). None of the structure type rating modes varied. 

Changes in ratings were assessed to evaluate differences between scenario type and 

agreement in the first step. Changes to agree were more likely for the faithful scenarios, and 

participants were unlikely to select the same damage rating as the agent in the erroneous 

scenarios indicating the types operated as expected. Participants changed their ratings to agree 

with the simulated agent in 36.6% of faithful scenarios, compared to 26.5% for erroneous 

scenarios, which was a statistically significant difference in proportion using a Chi-Square test 

for independence (χ2 = 43.3, df = 1, p < 0.001). For the erroneous scenarios, 95 of 1,835 initial 

participant damage ratings (5.3%) agreed with the intended erroneous agent rating. Of these, a 

single damage rating was changed in the following review step by the participant (to the initial 

step consensus rating).  

The task allowed participants to indicate that the automated rating was incorrect, and this 

feedback was assessed for agreement with the scenario types and between-experiment 

conditions. Participants with no cases of erroneous agreement indicated the intended number of 

scenarios were incorrect, and in a limited number of cases participants changed their rating to 
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agree with an agent damage assessment they also had marked incorrect. Descriptive statistics for 

the incorrect indication in categories by the number of scenarios with which participants were in 

erroneous agreement appear in Table 9. Participants that did not change their ratings to agree 

with the erroneous agent damage assessments have a median and mode of five scenarios marked 

incorrect, the intended number of erroneous scenarios. Each incremental erroneous agreement 

outcome decreased the median number of scenarios rated incorrect by one until the fourth 

erroneous agreement. Binary classification analysis comparing the incorrect ratings with the 

scenario type (faithful/erroneous) found sensitivity of 0.53, specificity of 0.85, and precision of 

0.78, indicating that participants selected the intended erroneous scenarios as incorrect most 

often and correctly, though with some lack of sensitivity. Usage of the checkbox was not 

consistent between experiment conditions: in the “black box” condition an average of 18% of 

participants rated the agent incorrect in faithful scenarios and 66% in erroneous scenarios, which 

decreased to 13% and 48% in conditions with an explanation. There were 17 damage 

assessments (0.5%) in which 13 participants changed their assessment to agree with the 

erroneous automated damage rating but also marked that they believed the agent was incorrect. 

Of these, seven took place in the condition with only a causal explanation, six in the condition 

with all three explanations, two each in the conditions where a counterfactual or hedging 

explanation was offered with a causal explanation, and none in the “black box” condition with no 

explanations.  

Participants that did not indicate that any scenarios were incorrect (9%) were evaluated 

for their use of the “blurry” and “obscured” quality feedback items to detect any possible 

laziness on the part of raters. The group that rated no images to be in error marked an average of 

1.39 of the 20 other image feedback options compared to 1.35 on average for people that marked 
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any number of images in error, indicating roughly consistent usage of the other quality feedback 

options between groups.  

Table 8 Descriptive Results of Damage Assessments 

 

Table 9 Erroneous Agreement and Incorrect Ratings 

 

V.4 Model Evaluation 

The quality of the measurement and structural model were assessed in three steps. First, 

the second-order latent construct measurement model for cognitive load was assessed for 

validity. As a result of this check, the second-order construct was replaced with direct 

relationships with the three components of cognitive load, and instead the three first-order 

constructs were moved to direct relationships. Second, the remainder of the measurement model 

was evaluated to understand model quality. This process found that the items for perceived 

reliance did not co-vary so the concept was removed from the analysis, and one item was 

dropped from perceived interdependence based on low composite reliability and coherence with 

Type Scenario Structure Damage Structure Damage Initial Review

7 Medium Minimal 16% 43% 13% 34.6 20.1

8 Heavy Critical 14% 58% 7% 27.6 17.0

10 Medium Significant 11% 59% 10% 31.0 17.4

18 Heavy Critical 24% 27% 29% 20.6 24.3

22 Heavy Significant 35% 35% 14% 25.6 18.1

1 Heavy Significant 23% 56% 59% 20% 34.8 28.5

9 Medium No Damage 24% 39% 46% 31% 26.7 34.2

17 Medium No Damage 14% 33% 44% 39% 31.1 30.9

19 Light No Damage 25% 38% 56% 23% 31.5 28.7

21 Heavy Minimal 39% 26% 59% 20% 29.1 31.0

n/aFaithful

Erroneous

Timing (Seconds)Erroneous 

Agreement

Rated 

Agent 

Incorrect

Changed Rating 

During Review

Initial Assessment 

Consensus

# Scenarios Participants Cumulative Mean SD Median Mode

0 124 34% 4.5 2.1 5 5

1 98 60% 3.8 1.9 4 4

2 75 81% 2.7 1.6 3 3

3 47 94% 1.9 1.0 2 2

4 18 99% 0.6 0.6 0.5 0

5 5 100% 2.4 3.8 1 0

Total 367 3.4 2.1 3 3

Scenarios Rated "Incorrect" by ParticipantErroneous Agreement
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the concept. Finally, the structural model was assessed identifying that cross-loading between 

some of the human-computer interaction concepts does not impact conclusions, and that 

predictive relevance for the statistically significant path relationships was confirmed. 

The second-order latent construct for cognitive load was assessed to confirm its validity 

prior to analyzing the full measurement model. There was no significant relationship between the 

second-order construct and the single-item total cognitive load (path coefficient = 0.062, p = 

0.484). The weights of the first-order constructs on the second-order were: intrinsic = 0.434, p < 

0.001; germane = 0.247, p = 0.146; extraneous = 0.648, p < 0.001 where the items for germane 

cognitive load are negatively loaded, consistent with theory. While model quality metrics such as 

composite reliability, average variance extracted, and heterotrait-monotrait ratios were 

acceptable for the cognitive load components, the lack of relationship between the established 

measure and the second-order construct does not support its use in the measurement model.  

When the repeated indicators of the second-order construct were replaced with the single-

item for total cognitive load, the estimated R2 for second-order construct was 10.5% (formative 

path coefficients: intrinsic 0.156, p = 0.010; germane = 0.225, p < 0.001; extraneous = 0.130, p = 

0.357). The estimates of path coefficients were most consistent with “model 1” from Klepsch et 

al. (2017) which was described as the “worst fit” of the six models they evaluated in their 

confirmatory factor analysis of the measures used in the three-component measure adapted for 

this study. These results did not support the use of this measurement model.  

A structural model was specified replacing the second-order construct with direct 

relationships for the components of cognitive load. This was consistent with “model 2” from 

Klepsch et al. (2017) which was deemed the best fit in that study. In this model, shown in Figure 

15, the number of path relationships evaluated with attribution of agent intelligence and self-
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efficacy is greatly increased. In this model each component for cognitive load had a composite 

reliability greater than 0.8 and each item loads with their latent constructs with statistical 

significance.  

 

Figure 15 Revised Structural Model 

Note: The three indicators of each cognitive load component are omitted for clarity. 

Next, the measurement model of the revised structural model was assessed. Composite 

reliability was below the 0.800 threshold for perceived interdependence (0.406) and reliance 

(0.606). Removing the first item for perceived interdependence (loading −0.203) increases 

composite reliability to 0.819, though Cronbach’s alpha is marginal (0.600). The first item asked 

for a rating of whether the agent “affected their ratings,” while the third item asked if “their 

ratings benefited” from working with the agent. The first item was dropped from the model as 

“being affected” was not as coherent conceptually with interdependence compared to a benefit 

from working together. Removing the third item for perceived reliance (loading 0.322) increased 
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composite reliability to 0.680, and the remaining items were not strongly tied conceptually, with 

one item being about reliance and the other about distraction. The measurement of perceived 

reliance was deemed unreliable and the measure was dropped from the study.  

Composite reliability exceeded 0.800 and average variance extracted (AVE) exceeded 

0.500 with p-values less than 0.001 for all constructs. A table of each metric for model quality 

appears in Table 10. Outer loading for each item is listed in Table 11. The first item for intrinsic 

load has lower loading than is ideal for a reflective measure (0.675, p < 0.001), along with the 

second extraneous load item (0.672, p < 0.001). When reflective indicators load above 0.400 and 

the construct is otherwise acceptable measures, it is appropriate to retain the items (Hair et al., 

2016).  

As previous research has identified the potential for multiple dimensions of perception of 

mental processes, the response for the items of attribution of agent intelligence were assessed to 

ensure a reflective measurement model was appropriate for the construct. Principal component 

analysis performed in SPSS extracts a single component with eigenvalue 3.17 (52.9% of 

variance) where the next component has an eigenvalue of 0.849 (14.1%), with KMO sampling 

adequacy 0.828 and sphericity test p < 0.001. All items load greater than 0.600 on the single 

extracted component. The individual items were then evaluated. When the fourth item (“has a 

mind”) with loading 0.489 is dropped, the loading of the fifth item (“is predictable”) decreases to 

0.622, below the desirable loading level of 0.700. Dropping both items improves model metrics 

slightly (composite reliability 0.869, average variance extracted 0.626, R2 = 5.7%). As the 

majority of the variance of the scale is explained by a single component and dropping items to 

increase metrics has a negligible effect on acceptable quality metrics, the items were retained as 

well as the reflective measurement model. 
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Cross-loading of items between constructs was assessed to determine if any constructs 

were not sufficiently distinct, with results shown in Table 12. The second intrinsic load item 

cross-loads above the 0.500 threshold with extraneous cognitive load. Otherwise, cross-loading 

above the threshold was between the items and constructs for attribution of agent intelligence, 

trust in the intelligent agent, and perceived interdependence. Kock and Lynn (2012) identify that 

cross-loadings above 0.500 indicate either incorrect association of items to construct, or to 

collinearity. No cross-loadings were above 0.700, and the highest outer variance inflation factor 

between composite constructs was 2.08 for trust in the intelligent agent and self-efficacy limiting 

the potential role of collinearity. To evaluate the potential that cross-loading suppressed 

relationships with the other alternate explanations, perceived interdependence was removed, and 

the model was re-evaluated. None of the other alternate explanations had a path coefficient with 

self-efficacy of absolute value greater than 0.10, or a 95% confidence interval that excluded zero. 

As such, the constructs were maintained as separate concepts without altering their composition. 

Heterotrait-monotrait (HTMT) ratios were below 0.800 in the 97.5th percentile after 

bootstrapping analysis, with the exception of perceived interdependence with trust in the 

intelligent agent (0.776 original value and 0.895 at 97.5%). All other pairs were below the 0.800 

threshold in the original and 97.5% bootstrapping results. Inner Variance Inflation Factors (VIF) 

for reflective measures were below 3.00 for all pairs except with interaction of explanation types 

with a maximum value of 3.55.  

Finally, the explanatory and predictive quality of the model was assessed. The predictive 

relevance Q2 quality metric (“blindfolding”) was computed using the cross-validated redundancy 

method with distance of 10. Each endogenous construct exceeded zero, meeting the benchmark. 

When the construct items were evaluated only the fourth item for attribution of agent intelligence 
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was less than zero (metric: −0.001), which also had lower than desirable loading in the 

measurement evaluation. When the three cognitive load constructs are removed from the model, 

the effect of cognitive load on self-efficacy was estimated as f 2  = 0.167, and the predictive 

effect was estimated as q2 = 0.115, which are above and below the “medium” guideline of 0.150. 

The same test of perceived interdependence results in metrics f 2  = 0.023 and q2 = 0.016; and, 

for previous task experience, f 2  = 0.037 and q2 = 0.027, which are each of small effect. 

Table 10 Latent Construct Quality Metrics 

 

Latent Construct Metric T Statistic p-value Metric T Statistic p-value

Intrinsic Cognitive Load 0.823 19.6 <0.001 0.613 13.0 <0.001

Germane Cognitive Load 0.809 20.4 <0.001 0.586 12.1 <0.001

Extraneous Cognitive Load 0.847 56.7 <0.001 0.652 27.0 <0.001

Attribution of Agent Intelligence 0.861 15.9 <0.001 0.514 11.5 <0.001

Self-Efficacy in Task 0.962 210.4 <0.001 0.808 42.3 <0.001

Dispositional Trust for AI 0.800 18.2 <0.001 0.506 11.4 <0.001

Percieved Interdependence 0.820 14.9 <0.001 0.698 14.0 <0.001

Composite Reliability Average Variance Extracted
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Table 11 Item Outer Loading 

 

Latent Construct Item Loading T Statistic p-value Lower Upper

Intrinsic ICL1 0.675 7.1 <0.001 0.347 0.786

ICL2 0.930 17.1 <0.001 0.882 0.999

ICL3 0.720 9.0 <0.001 0.453 0.816

Germane GCL1 0.734 8.1 <0.001 0.444 0.842

GCL2 0.740 7.6 <0.001 0.384 0.846

GCL3 0.821 9.3 <0.001 0.691 0.973

Extraneous ECL1 0.869 47.2 <0.001 0.826 0.898

ECL2 0.672 10.9 <0.001 0.515 0.765

ECL3 0.866 38.9 <0.001 0.818 0.903

Attribution of Agent Intelligence ATT1 0.746 8.9 <0.001 0.537 0.829

ATT2 0.844 10.1 <0.001 0.774 0.908

ATT3 0.818 8.9 <0.001 0.748 0.908

ATT4 0.489 3.3 0.001 -0.347 0.661

ATT5 0.622 6.4 <0.001 0.339 0.737

ATT6 0.724 7.8 <0.001 0.417 0.811

Self-Efficacy in Task SE1 0.923 81.5 <0.001 0.895 0.941

SE2 0.932 108.4 <0.001 0.914 0.948

SE3 0.922 83.6 <0.001 0.896 0.940

SE5 0.912 77.4 <0.001 0.885 0.932

SE6 0.837 29.7 <0.001 0.767 0.880

SE7 0.862 40.7 <0.001 0.815 0.897

Dispositional Trust for AI DTRUST1 0.892 21.3 <0.001 0.816 0.955

DTRUST2 0.653 6.5 <0.001 0.430 0.827

DTRUST3 0.572 4.8 <0.001 0.248 0.726

DTRUST4 0.691 7.2 <0.001 0.455 0.808

Perceived Interdependence INTERD2 0.933 19.6 <0.001 0.834 0.997

INTERD3 0.725 6.2 <0.001 0.395 0.855

Outer Loading 95% CI
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Table 12 Cross Loading of Items Between Constructs 

 

V.5 Results 

The results of the path analysis appear in Figure 16, excluding the independent variables 

for clarity. The complete list of path results is shown in Table 13. The effects of the explanation 

types are shown in bar charts in Figure 17 by measure. Both the individual effect (solid bars) of 

the explanation type and the total effect in combination (outline only) are shown. Path 

coefficients are scaled by the type of measure. Continuous variables are scaled as standardized 

beta coefficients (β) where a variation of one standard deviation produces a shift in the mean of 

the dependent variable by a proportion of standard deviations. Dichotomous indicator variables 

are scaled as the shift in the mean of the dependent variable by proportion of standard deviations 

(as in Cohen’s d). The comparison for the causal explanation and total explanation effects are to 

Item Intrinsic Germane Extraneous

Attribution 

of Agent 

Intelligence

Self-

Efficacy in 

Task

Perceived 

Interdepen

dence

Trust in the 

Intelligent 

Agent

Perceived 

Level of 

Automation

Disposition

al Trust for 

AI

Learned 

Trust for AI

Previous 

Task 

Experience

ICL1 0.29 0.22 0.07 0.05 0.11 0.06 0.01 0.13 -0.01 -0.04

ICL2 -0.01 0.52 0.11 -0.19 0.02 0.14 0.07 0.00 0.01 -0.10

ICL3 0.10 0.34 0.03 -0.08 0.01 0.04 0.00 -0.05 -0.01 -0.08

GCL1 0.13 -0.16 0.00 0.19 0.15 0.07 -0.04 0.22 0.02 -0.01

GCL2 0.13 -0.16 -0.03 0.19 0.17 -0.01 -0.15 0.31 0.01 -0.02

GCL3 0.00 -0.28 0.17 0.29 0.15 0.13 0.03 0.21 0.03 0.04

ECL1 0.46 -0.27 0.02 -0.34 -0.16 0.04 0.06 -0.19 -0.11 -0.09

ECL2 0.30 -0.21 0.03 -0.24 -0.12 -0.04 0.05 -0.26 -0.04 -0.04

ECL3 0.44 -0.20 0.09 -0.39 -0.11 0.04 0.10 -0.19 -0.03 -0.07

ATT1 0.00 0.00 0.02 0.02 0.28 0.42 0.28 0.13 0.15 -0.01

ATT2 0.10 0.15 0.04 0.05 0.38 0.57 0.27 0.17 0.12 0.00

ATT3 0.16 0.13 0.04 0.09 0.23 0.42 0.19 0.15 0.06 -0.04

ATT4 0.07 -0.08 0.19 -0.05 0.08 0.33 0.15 -0.06 0.07 -0.05

ATT5 -0.01 -0.02 0.03 0.00 0.25 0.36 0.27 0.02 0.11 0.01

ATT6 0.05 0.03 0.09 0.06 0.28 0.50 0.21 0.11 0.14 0.10

SE1 -0.13 0.25 -0.36 0.00 0.19 0.02 -0.07 0.18 0.03 0.14

SE2 -0.14 0.33 -0.39 0.06 0.25 0.11 -0.05 0.24 0.06 0.19

SE3 -0.14 0.24 -0.40 0.07 0.25 0.12 -0.03 0.23 0.07 0.19

SE5 -0.08 0.25 -0.33 0.05 0.23 0.06 -0.08 0.23 0.04 0.19

SE6 -0.14 0.27 -0.33 0.07 0.16 0.09 -0.02 0.16 0.05 0.18

SE7 -0.12 0.29 -0.37 0.10 0.23 0.09 -0.03 0.27 0.08 0.17

INTERD2 0.02 0.20 -0.15 0.25 0.25 0.39 0.00 0.28 0.10 0.06

INTERD3 0.06 0.11 -0.11 0.44 0.13 0.62 0.16 0.29 0.23 0.00

TrustItem 0.12 0.10 0.03 0.60 0.09 0.55 0.28 0.23 0.22 0.07

LOAItem 0.05 -0.05 0.09 0.31 -0.05 0.06 0.28 -0.04 0.06 0.07

DTRUST1 0.03 0.30 -0.20 0.14 0.26 0.31 0.19 -0.04 0.11 0.08

DTRUST2 -0.08 0.15 -0.30 0.08 0.16 0.22 0.15 0.01 0.12 0.02

DTRUST3 0.04 0.20 -0.11 -0.01 0.04 0.13 0.04 -0.08 0.17 0.03

DTRUST4 0.09 0.22 -0.06 0.20 0.11 0.22 0.24 -0.04 0.21 0.14

LTrustItem 0.00 0.03 -0.08 0.16 0.07 0.19 0.25 0.07 0.20 0.02

PTE -0.10 0.02 -0.08 0.01 0.20 0.05 0.07 0.07 0.09 0.01
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the “black box” condition. The counterfactual and hedging explanations are compared to the 

causal explanation condition. For gender, the comparison is female compared to male 

participants. Statistical significance of the total effects of the explanation types was calculated 

using SPSS. Post hoc Tukey HSD testing was utilized to compare the conditions with 

explanations to the “black box” condition. The effect of explanations on self-efficacy is reported 

as partial eta-squared to allow direct comparison with the explanation effect on other measures. 

The hypothesized relationships of the research model were assessed. The counterfactual 

explanation increased each component of cognitive load (intrinsic d = 0.514, germane d = 0.204, 

extraneous d = 0.132) where the increase in intrinsic was significant (p = 0.001), unlike the 

hypothesized relationship (H1a). The estimates for the effect of the hedging explanation on 

cognitive load (H2a) was negligible (d = 0.032, d = −0.001, d = −0.053) and did not reach 

statistical significance. The hedging explanation increased attribution of agent intelligence with 

statistical significance (d = 0.380, p = 0.042) which was not expected (H2b). None of the 

components of cognitive load had a statistically significant relationship with attribution of agent 

intelligence (H3) with small positive estimates for effects (d = 0.065, d = 0.117, d = 0.056). 

There is a medium-size negative effect of extraneous cognitive load on self-efficacy (β = −0.339, 

p < 0.001) and total effect of the causal explanation on self-efficacy (d = −0.314, p = 0.038). The 

direct effect of the causal explanation on extraneous cognitive load (d = 0.362, p = 0.028) 

confirms that cognitive load mediates the effect of explanations on self-efficacy in the task (H4). 

The role of attribution of agent intelligence in self-efficacy (H5) was limited with a very small 

estimated effect (β = 0.017, 95% CI [−0.132, 0.170], p = 0.826). 

The difference in the effect of cognitive load (H4) and attribution of agent intelligence 

(H5) on self-efficacy was assessed. The procedure from Rodríguez-Entrena, Schuberth, and 
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Gelhard (2018) was utilized. Differences in the absolute values of the path coefficients were 

computed for each bootstrap sample to determine the mean and variance. The 95% confidence 

interval of the difference was then calculated using parametric assumptions without bias-

correction and acceleration. This confirmed a greater effect of extraneous cognitive load 

(βdifference  = 0.276, [0.136, 0.416], p < 0.001). The method was also utilized to compare the path 

coefficients of germane cognitive load and attribution of agent intelligence with self-efficacy, 

with less distinct differences (βdifference  = 0.136, [−0.060, 0.324], p = 0.077).  

Erroneous agreement was assessed for evidence of illusory understanding effects. The 

coincident decreases in self-efficacy are most consistent with participants “going along” with the 

simulated agent rather than being convinced by the explanation. Causal explanations increased 

erroneous agreement (d = 0.580, [0.285, 0.875], p < 0.001), but decreased self-efficacy (total 

effect, d = −0.314, [−0.601, −0.016], p = 0.038), which is inconsistent with explanations 

generating false understanding. The counterfactual and hedging explanations do not greatly alter 

erroneous agreement, though there is some indication that either other explanation type could 

partially offset the effect (counterfactual d = −0.086, [−0.427,0.258], p = 0.619 and hedging 

explanations d = −0.168, [−0.494, 0.170], p = 0.327). Presenting all three explanations largely 

cancels out any potential benefit of additional explanation for erroneous agreement (interaction d 

= 0.156, p = 0.519; total effect d = 0.482, p = 0.023).  

Finally, the alternate explanations were assessed. Direct effects on self-efficacy were 

identified for previous task experience (β = 0.169, p < 0.001) and perceived interdependence (β = 

0.166, p = 0.016), but not for trust in the intelligent agent (p = 0.877), level of automation (p = 

0.577), and dispositional (p = 0.414) and learned trust in AI (p = 0.634). The effect of the 

explanation types on the alternate explanations was assessed in a post hoc analysis. Only 
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perceived interdependence was identified as a potential mediator of explanation types on self-

efficacy. Effects were detected for the causal explanation on trust in the intelligent agent (d = 

0.525, [0.212, 0.830], p < 0.001, R2 = 5.3%), perceived interdependence (d = 0.400, [0.009, 

0.737], p = 0.028, R2 = 3.0%), and level of automation (d = 0.164, [−0.148, 0.485], p = 0.312, R2 

= 2.3%). An analysis of comparative effect on self-efficacy between extraneous cognitive load 

and perceived interdependence finds less effect for perceived interdependence (βdifference  = 

−0.185, [−0.354, −0.016], p = 0.016). While the effect of the causal explanation on trust in the 

intelligent agent was not statistically distinct from that of extraneous cognitive load (βdifference  = 

0.065, [−0.107, 0.238], p = 0.229), trust in the intelligent agent did not have a relationship with 

self-efficacy in the task (β = −0.012, [−0.161, 0.143], p = 0.877) and therefore is not likely to 

have a practical effect on self-efficacy either directly or as a mediator of explanations. 

 

Figure 16 Structural Model Path Analysis Results 

Note: Independent variable paths omitted for clarity, see Table 13. 
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Table 13 Model Path Coefficients 

  

Relationship Estimate T Statistic p-value Lower Upper

with Attribution of Agent Intelligence

Intrinsic Cognitive Load 0.065 0.814 0.416 -0.089 0.216

Germane Cognitive Load 0.117 1.269 0.204 -0.090 0.265

Extraneous Cognitive Load 0.056 0.606 0.545 -0.135 0.218

with Self-Efficacy in Task

Intrinsic Cognitive Load 0.079 1.380 0.168 -0.026 0.196

Germane Cognitive Load 0.158 2.502 0.012 0.030 0.277

Extraneous Cognitive Load -0.339 5.938 <0.001 -0.458 -0.234

Attribution of Agent Intelligence 0.017 0.220 0.826 -0.132 0.170

Perceived Interdependence 0.166 2.407 0.016 0.032 0.300

Previous Task Experience 0.169 4.192 <0.001 0.089 0.247

Trust in the Intelligent Agent -0.012 0.155 0.877 -0.161 0.143

Dispositional Trust for AI 0.037 0.817 0.414 -0.058 0.115

Learned Trust for AI -0.024 0.476 0.634 -0.127 0.075

Level of Automation -0.032 0.558 0.577 -0.141 0.081

Age -0.129 2.535 0.011 -0.231 -0.035

Gender -0.048 0.453 0.651 -0.259 0.152

Education 0.071 1.519 0.129 -0.018 0.164

Income -0.027 0.533 0.594 -0.126 0.072

Causal Explanation on

Attribution of Agent Intelligence 0.162 0.887 0.375 -0.196 0.506

Self-Efficacy in Task -0.226 1.678 0.094 -0.489 0.035

Extraneous 0.362 2.205 0.028 0.025 0.667

Germane -0.240 1.534 0.125 -0.536 0.072

Intrinsic 0.214 1.242 0.214 -0.123 0.552

Erroneous Agreement 0.580 3.846 <0.001 0.282 0.872

Counterfactual Explanation (CF) on

Attribution of Agent Intelligence -0.025 0.121 0.904 -0.407 0.383

Self-Efficacy in Task -0.038 0.232 0.816 -0.352 0.280

Extraneous 0.132 0.820 0.413 -0.180 0.446

Germane 0.204 1.265 0.206 -0.110 0.516

Intrinsic 0.514 3.266 0.001 0.200 0.818

Erroneous Agreement -0.086 0.500 0.617 -0.427 0.254

Hedging Explanation (H) on 

Attribution of Agent Intelligence 0.380 2.030 0.042 -0.003 0.723

Self-Efficacy in Task 0.091 0.654 0.514 -0.185 0.357

Extraneous -0.053 0.320 0.749 -0.373 0.280

Germane -0.001 0.005 0.996 -0.336 0.344

Intrinsic 0.032 0.169 0.866 -0.334 0.398

Erroneous Agreement -0.168 1.008 0.314 -0.492 0.160

Interaction of CFxH on

Attribution of Agent Intelligence -0.383 1.228 0.219 -0.971 0.242

Self-Efficacy in Task 0.035 0.157 0.875 -0.381 0.480

Extraneous 0.115 0.492 0.623 -0.328 0.587

Germane -0.303 1.252 0.211 -0.774 0.172

Intrinsic -0.207 0.871 0.384 -0.667 0.265

Erroneous Agreement 0.156 0.650 0.516 -0.301 0.643

Path Coefficient 95% CI
-1.0 -0.5 0.0 0.5 1.0

95% CI
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Figure 17 Effects of Explanations Relative to the “Black Box” Condition 

Legend: Grey = Causal, Blue = Counterfactual, Yellow = Hedging, Green = Interaction/All Three 

Solid Fill = Individual Effect, Box/Bold = Total of Explanation Effect 

*** = p < 0.001, ** = p < 0.01, * = p < 0.05 

Note: Coefficients are scaled as in Cohen’s d. 

 

V.6 Manipulation Evaluation 

While the analysis of the manipulation check outcomes produced significant differences 

consistent with overall correct recall of the manipulated states, the size of the groups that did not 

recall the qualities of the explanation types in their condition was greater than anticipated. This 

was identified during pre-testing, and was not resolved by modifying the item wording and 

options (see Appendix F.2.7. for details). To understand the differences between manipulation 

outcomes, three post hoc analyses were conducted: first, an analysis of the manipulation 

-0.322
-0.214

-0.328-0.314

-0.008

0.100

-0.107

Self-Efficacy in Task (Total Effects)

η² = 2.1%

0.137

0.542

0.1340.162

-0.025

0.380

-0.383

Attribution of Agent Intelligence

R² = 5.3%, Adj. R² = 3.4%

0.658
0.550

0.4790.525

0.134
0.025

-0.205

Trust in the Intelligent Agent

R² = 5.3%, Adj. R² = 4.2%

0.494
0.412

0.482
0.580

-0.086
-0.168

0.156

Erroneous Agreement

R² = 4.2%, Adj. R² = 3.1%

0.494

0.309

0.556

0.362

0.132

-0.053

0.115

Extraneous Cognitive Load

R² = 3.8%, Adj. R² = 2.8%

0.462
0.354

0.143

0.400

0.062

-0.046

-0.273

Perceived Interdependence

R² = 3.0%, Adj. R² = 2.0%

0.728

0.246

0.553

0.214

0.514

0.032

-0.207

Intrinsic Cognitive Load

R² = 6.8%, Adj. R² = 5.7%

0.375 0.421

0.2100.164 0.211 0.257

-0.422

Level of Automation

R² = 2.3%, Adj. R² = 1.2%

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

-0.037

-0.241

-0.341

-0.240

0.204

-0.001

-0.303

Germane Cognitive Load
R² = 1.8%, Adj. R² = 0.7%

* **

***

**

***
* *

**

**
*****

*

**

*

*

***

*



 98 

outcomes by experiment condition was evaluated to determine whether the combination of 

explanation types interfered with recall; then, an analysis of variance was conducted on the 

review step duration, attribution of agent intelligence, and self-efficacy in the task; and finally, a 

multi-group analysis of the structural model was employed to assess whether the manipulation 

outcome groups were heterogeneous with respect to any relationships. This evaluation finds that 

the true manipulation outcomes are consistent with attention to the explanations, with effects of 

explanation in the true outcome groups consistent with the overall population; however, the 

hedging explanation was not distinctly identified in the condition with both a causal and 

counterfactual explanation.  

V.6.1 Interaction with Experiment Condition 

The first step was to evaluate how manipulation outcomes differed by experiment 

condition. Crosstab analysis with Chi-Square test of independence was used to compare true 

ratings across experiment conditions. The test of the hedging manipulation identified significant 

differences (68.7% true ratings: χ2 = 80.5, df = 4, p < 0.001) where participants rated the check 

positive with the presence of other explanation types. For conditions without a hedging 

explanation, the true negative ratings were 91.5% for the “black box” condition, 57.4% for 

causal only, but 30.4% with causal and counterfactual. For conditions with a hedging 

explanation, true positive ratings were 76.9% for the causal with hedging and 86.1% for the all 

three explanation conditions where the hedging explanation was present. No differences were 

detected for the causal explanation (93.4% true ratings, χ2 = 3.6, df = 4, p = 0.466) and 

counterfactual explanation (77.5% true ratings, χ2 = 3.5, df = 4, p = 0.478).  

The condition with all three explanations has the lowest false negative rate for the 

hedging manipulation check (13.9%) and the counterfactual manipulation check (18.6%). 
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However, it is not clear that the hedging explanation type was separately perceived by 

participants in the condition with all types from the manipulation check outcomes alone. 

V.6.2 Effect on Measures 

Next, the effect of manipulation outcome on the study measures was assessed to evaluate 

differences in responses between groups. Tests of differences in means for review time, 

attribution of agent intelligence, and self-efficacy in task were conducted using two-way analysis 

of variance. The counterfactual and hedging manipulation outcomes and the manipulation were 

entered as fixed factors in separate tests for each outcome variable and explanation type. Group 

sizes for the causal manipulation outcome did not support the use of this method. Effects were 

statistically significant for review time (outcome group, p < 0.001, η2 = 0.040) and attribution of 

agent intelligence (interaction, p < 0.001, η2 = 0.069). Effects were not statistically significant 

for self-efficacy in task (counterfactual outcome p = 0.385, interaction p = 0.946).  

Increases in time for participants in the review step were detected for those in the true 

outcome groups, compared to the false groups which had little change in review time. These 

differences, shown in Figure 18, are apparent for each of the three explanation types. The lack of 

distinction between review times in the false manipulation outcome groups when an explanation 

was provided is consistent with lack of attention or processing of the explanation. Additionally, 

review times are greatest in the condition with all three explanation types for the true hedging 

manipulation outcome group (30.8 seconds versus 28.1 seconds for the causal with 

counterfactual condition), with 2.7 additional seconds taken to review the added hedging 

explanation. In the false outcome group, there is an 8.2 second decrease in time taken when all 

three explanations are presented (21.0 seconds versus 29.2 seconds). These results are consistent 

with incremental processing time for each added explanation in the true outcome groups 
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including a combination of the three types, and the false groups being inconsistent with 

processing the explanations.  

The manipulation check outcome identifies opposing effects of the explanation types on 

attribution of agent intelligence, where the explanations increase the attribution in true outcomes 

and decrease it in false outcomes. Figure 19 shows these interactions, which also start from 

opposing baselines for attributions of intelligence. Participants that incorrectly recalled the 

presence of explanations attributed less intelligence when an explanation was present than when 

it was not, but participants that recalled correctly increased in ratings when an explanation was 

provided and had lower ratings than the incorrect group when an explanation was not present. 

While it is reasonable the false outcome group would attribute greater intelligence in the system, 

it is unclear why the presence of an explanation would decrease attributions. 

 

Figure 18 Review Times by Manipulation and Outcome 
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Figure 19 Attribution of Agent Intelligence by Manipulation and Outcome 

V.6.3 Effect on Relationships  

A multi-group analysis of the structural model was conducted to evaluate the potential for 

differences in relationships between manipulation outcome groups. Several effects of attentional 

and retention processes were identified, with increasing role of explanations and decreasing role 

of stable traits and attitudes in the true counterfactual manipulation outcome group, consistent 

with explanations being processed at some level by participants. 

The available sample for false outcomes for the causal condition (n = 24) was insufficient 

for this analysis, and the lack of discrimination of the hedging manipulation check for the 

counterfactual explanation made it most attractive to evaluate the counterfactual manipulation 

outcome groups (false, n = 71; true, n = 244). Model parameters were estimated and compared 

using the multigroup analysis procedure in Smart PLS. Differences were evaluated using the 
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significant are consistent with overall results and with processing of explanations. In comparison, 

the outcomes of the false group have greater role of pre-existing stable attitudes. The 

counterfactual explanation has the opposite effect on attribution of agent intelligence between 

groups, with path coefficient shifting from a negative relationship in the false outcome group to 

positive in the true outcome group (−0.937, p = 0.002 to 0.470, p = 0.064; diff = 1.407, p = 

0.005). The effect of counterfactual explanations on intrinsic cognitive load also increases in 

effect, becoming positive in the true group (−0.051, p = 0.903 to 0.740, p < 0.001; diff = 0.791, p 

= 0.049). The differences without statistical significance have patterns consistent with lack of 

attention with increased path strength for stable traits and attitudes such as age, income, 

dispositional trust and learned trust in AI, and previous task experience. The direction of the 

effect changes for perceived level of automation and trust in the intelligent agent. Full results are 

shown in Table 14.  

Given these differences, the true outcome group was assessed for differences in support 

for the hypotheses. While some support was identified for H1b and H5, the wide confidence 

intervals limit the ability to draw conclusions. The hypothesized positive relationship between 

counterfactual explanation and attribution of agent intelligence (H1b) has the most practically 

significant potential with a path coefficient estimate of 0.470 in the true manipulation outcome 

group. Practically significant coefficients of level 0.15 were identified at the 26th percentile, and 

0.25 at the 55th percentile, and the difference with the false outcome group is statistically 

significant (−1.407, p = 0.005). However, the confidence interval includes zero (95% CI [−0.050, 

0.924], p = 0.064). The hypothesized negative relationship between cognitive load and 

attribution of agent intelligence (H3) decreases from an estimate of 0.329 in the false group to 

−0.022 (difference, p = 0.069). This effect is less practically significant where path coefficients 



 103 

of −0.15 occur at the 7.5th percentile and −0.25 at the 0.3th percentile. The hypothesized positive 

relationship between attribution of agent intelligence and self-efficacy in the task (H5) finds 

some support within the true outcome group; however, the potential effects are also limited in 

size. Path coefficients greater than 0.15 occur at the 77th percentile and 0.25 at 97th percentile of 

the true outcome group (95% CI [−0.135,0.266], p = 0.431).  
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Table 14 Multi-Group Analysis by Manipulation Outcome 

      

Counterfactual Manipulation Groups: Green = True, Orange = False 

Relationship False True Difference p-value

with Attribution of Agent Intelligence

Intrinsic Cognitive Load 0.043 0.035 -0.007 0.969

Germane Cognitive Load 0.072 0.144 0.072 0.731

Extraneous Cognitive Load 0.329 -0.022 -0.351 0.069

with Self-Efficacy in Task

Intrinsic Cognitive Load 0.055 0.117 0.062 0.672

Germane Cognitive Load 0.056 0.160 0.104 0.527

Extraneous Cognitive Load -0.242 -0.343 -0.101 0.519

Attribution of Agent Intelligence -0.122 0.082 0.203 0.347

Perceived Interdependence 0.185 0.195 0.011 0.956

Previous Task Experience 0.199 0.143 -0.056 0.620

Trust in the Intelligent Agent 0.088 -0.073 -0.161 0.453

Dispositional Trust for AI 0.168 0.012 -0.156 0.326

Learned Trust for AI -0.072 -0.003 0.068 0.627

Level of Automation -0.172 0.003 0.174 0.265

Age -0.282 -0.104 0.178 0.225

Gender -0.049 -0.038 0.011 0.968

Education 0.032 0.080 0.048 0.710

Income -0.102 -0.019 0.083 0.519

Causal Explanation on

Attribution of Agent Intelligence -0.129 0.035 0.164 0.733

Self-Efficacy in Task 0.125 -0.358 -0.484 0.189

Extraneous 0.602 0.131 -0.471 0.257

Germane -0.159 -0.114 0.045 0.921

Intrinsic 0.487 0.081 -0.406 0.364

Erroneous Agreement 0.494 0.679 0.185 0.635

Counterfactual Explanation (CF) on

Attribution of Agent Intelligence -0.937 0.470 1.407 0.005

Self-Efficacy in Task 0.085 -0.128 -0.213 0.629

Extraneous -0.253 0.374 0.627 0.123

Germane 0.095 0.212 0.117 0.785

Intrinsic -0.051 0.740 0.791 0.049

Erroneous Agreement 0.135 -0.217 -0.352 0.426

Hedging Explanation (H) on 

Attribution of Agent Intelligence 0.099 0.536 0.437 0.358

Self-Efficacy in Task -0.163 0.167 0.329 0.401

Extraneous -0.191 -0.119 0.072 0.859

Germane 0.109 -0.001 -0.110 0.816

Intrinsic -0.138 -0.060 0.078 0.877

Erroneous Agreement -0.441 -0.097 0.344 0.460

Interaction of CFxH on

Attribution of Agent Intelligence -0.051 -0.680 -0.629 0.390

Self-Efficacy in Task 0.031 -0.029 -0.059 0.924

Extraneous 0.333 0.088 -0.245 0.685

Germane -0.767 -0.275 0.493 0.453

Intrinsic -0.438 -0.111 0.327 0.599

Erroneous Agreement -0.093 0.242 0.335 0.599

Parametric TestPath Coefficients
-1.0 0.0 1.0

95% CI
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V.7 Discussion 

V.7.1 Overview of the Study 

Explaining the output of deep learning models aims to improve understanding and may 

improve the ability for humans to partner with intelligent agents. Natural language explanations 

have long been advocated. Counterfactual explanations have been touted as matching human 

thought processes to clarify understanding while providing a contrast to another plausible but 

inappropriate decision. Hedging explanations describe potentially applicable boundary 

conditions and known error modes which aims to make these limitations more transparent. There 

may be an ethical requirement to reveal such limitations, with the potential for future legal 

requirements to provide them. Past empirical research into explanations in AI has found mixed 

outcomes for explanations. However, deep learning systems may commit errors that can be 

readily detected when partnered with a human and explanation may be more valuable than has 

been identified in research on other types of AI systems. Further, there is relatively little known 

about how people process agent explanations regardless of type of system, with past research 

focused on trust, preference, and compliance. A social cognition framework was employed to 

focus on how explanations are processed by participants performing the task. An experiment was 

conducted where three types of explanations were manipulated between conditions. Participants 

were randomly selected into one of five conditions: A “black box” condition with no 

explanations (as a control), a causal explanation, two conditions where the causal explanation 

was augmented with a counterfactual or a hedging explanation, and a condition with all three 

explanation types.  

Many of the effects of explanation did not operate as hypothesized and the effects were 

relatively subtle when present. The results did not support the hypothesis that counterfactual 

explanations reduced cognitive load (H1a), or that hedging explanations increased cognitive load 
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(H2a). The results for attribution of agent intelligence also differed from the hypothesized 

relationships where counterfactual explanations did not increase these attributions (H1b), while 

hedging explanations increased attributions of intelligence instead of decreasing them (H2b). The 

effects involving attribution of agent intelligence were insufficient to support the hypothesized 

relationships between cognitive load and self-efficacy with attribution of agent intelligence (H3 

and H5). Germane cognitive load had a positive relationship with self-efficacy; however, it was 

not clear this was related to the explanations. Causal explanations increased extraneous cognitive 

load and led to decreased self-efficacy in the task, supporting the hypothesized mediation 

relationship between cognitive load and self-efficacy (H4). While trust and compliance increased 

when explanations were provided, these were not identified as having positive relationships with 

self-efficacy.  

As in prior research, the causal explanation increased both trust and compliance (in the 

form of erroneous agreement). This indicates that explanations were processed similarly to prior 

studies. However, this study offers additional evidence of the depth to which the explanations 

were processed by participants to influence their judgments. The four processes of observational 

learning from Bandura (1986) provide specific outcomes to evaluate engagement with the task 

and the explanations. Attention and retention processes can be partially validated by the true 

manipulation outcomes where the effects are generally greater but consistent with the overall 

results. In comparison, those that did not correctly recall the explanation types in their condition 

have review times consistent with the “black box” condition without explanations, and greater 

relationships with stable attitudes and traits. These outcomes are consistent with participants 

finding functional value in explanations to trigger the storage of the nature of the explanations 

for later retrieval. Production processes are not as clear in the absence of a quality metric for 
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faithful agent assessments; however, the consensus ratings for damage assessments were highly 

repeatable. Only one scenario failed to reach a strong consensus, with responses split between 

two adjacent categories for the damage rating. This makes it plausible that workers referenced 

the written guideline and may have learned from the agent during the review step between 

scenarios. While some participants provided open-text feedback indicating they worked through 

explanations3, and that was similarly identified during cognitive interviews in the testing of the 

instrument, these participants were either induced or self-motivated to monitor and evaluate their 

cognitive processes during the task. The extent to which other participants engaged in these 

meta-cognitive processes cannot be determined. However, it is more plausible that the task 

design did not engage these processes rather than these other participants not having the capacity 

to use the causal and counterfactual explanations. The feedback also provides insight into 

motivation processes. Eighty-three participants (23%) provided comments in the optional field 

indicating the task was compelling. Additionally, 20% of participants voluntarily went beyond 

the 25-minute maximum stated time for the task, with some noting in the feedback that they 

spent extra time due to the importance of the task. Together, these results are consistent with 

observational learning pathways being active for at least a subset of the participants and 

explanations being processed to a similar extent to prior studies despite finding subtle effects. 

V.7.2 Contributions to Theory 

The effect of explanation on self-efficacy is greater than that of previous task experience, 

and was confirmed to be mediated by cognitive load rather than attribution of agent intelligence. 

Perceived interdependence was also identified as a potential mediator of self-efficacy. Insights 

from cognitive load areas may inform solutions that answer the call by Nunes and Jannach 

                                                 
3 Example quotes from open-text feedback are provided in Table 5. 
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(2017) for responsive explanations that are tailored to users. These findings enhance knowledge 

about the types of cognitive load imposed by the evaluated types of explanations as well as 

effects on attributions of intelligence. Interdependence was not originally hypothesized or 

manipulated extensively by the experiment and was measured with just two items. The literature 

on interdependence in human-robot systems offers methods of breaking apart tasks to achieve 

objectives that are complementary to the goals of instructional task design from cognitive load 

literature. While changes in the perception of interdependence did not necessarily cause 

increased self-efficacy, this association offers a second area to explore as tasks are broken apart 

to manage cognitive load.  

The findings identify limited effects of the explanation types on attributions of 

intelligence to the agent. Much of the prior research in explanations has examined trust, and 

these attributions had a large correlation with trust in the intelligent agent. Explanations were 

expected to increase the predictability and apparent rationality of the agent by revealing hidden 

internal processes of the agent, especially in assessments providing erroneous output. The causal 

and counterfactual explanations did not result in distinct increases in attribution of agent 

intelligence, even compared to the “black box” condition. While it was anticipated that hedging 

explanations would appear to participants as weakness and lack of intelligence, the ability to 

describe failure modes, admit weaknesses, and be self-aware had a large positive effect on 

perception of mental processes. The lack of effect of attribution of agent intelligence as well as 

trust on self-efficacy is consistent with the known phenomenon of people generating internal 

attributions for causes of success (Weiner, 1985). However, the true manipulation outcome 

group for counterfactual explanations provides some indication that attention and more effective 
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integration of explanations into the task might increase the role of attribution of agent 

intelligence in self-efficacy. 

The findings also provide evidence of the types of cognitive load induced by each of the 

explanation types. Counterfactual explanations were hypothesized to assist the construction of 

mental schema for the task by focusing participants on the relevant elements of the guideline and 

reducing cognitive load. The perception of intrinsic cognitive load increased, along with, to a 

lesser extent, extraneous cognitive load. As increased intrinsic load was not associated with 

decreases in self-efficacy or erroneous agreement, counterfactual explanations may have assisted 

participants in constructing more accurate mental schemas as expected, in order to become more 

aware of the inherent difficulty of the task. The lack of the hypothesized decrease in cognitive 

load might be explained by the short duration of the task. Hedging explanations were expected to 

increase extraneous cognitive load; however, there was little effect. The explanations may have 

been largely unprocessed, as evidenced by only slight increases in processing time despite the 

substantial increase in difficulty to process them compared to the other explanation types. There 

is also some indication that hedging explanations improved the contextual application of trust 

consistent with expectation in the literature, though the effect was small and did not fully offset 

increases in erroneous agreement. While some prior research has recommended combining types 

of explanations to achieve the best qualities of each, when all three explanation types were 

presented the result was the highest extraneous cognitive load and essentially no benefit for 

erroneous agreement, countering the beneficial effects of the hedging explanation.  

The results also provide some insight into the nature of erroneous agreement. The 

increase in erroneous agreement when explanations were provided is inconsistent with an 

illusion of explanatory understanding and instead more consistent with workers “going along” 
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with the agent. Participants were at some level aware of decreased competence having rated self-

efficacy in the task lower with increasing erroneous agreement, which also co-occur with 

increasing perceived trust, automation, and interdependence. This adverse effect was mostly 

driven by the causal explanation. These explanations may have decreased the participant’s 

suspicion of the agent’s output leading to greater role of cognitive biases, while counterfactual 

and hedging explanations provided cues to suspect the simulated output. 

V.7.3 Practical Implications 

This study provides insight into whether counterfactual and hedging explanations would 

be beneficial for partnering with an agent in contexts where both humans and agents are learning. 

Utilizing all of the explanation types to gain the advantages of each is tempting, but many 

beneficial effects of counterfactual and hedging explanation were counteracted when combined. 

Individually adding the counterfactual or hedging explanation to the causal explanation 

improved some outcomes. Counterfactual explanations increased awareness of the complexity of 

the task with little negative effect on cognitive load or erroneous agreement. Hedging 

explanations had the smallest decrease in self-efficacy as a result of explanations and the lowest 

erroneous agreement; however, these effects were quite small, and the large increase in 

attribution of intelligence by itself has little benefit in other attitudes and outcomes. While 

adding only a counterfactual explanation to causal achieves the greatest improvement in 

outcomes, the “black box” condition with no explanations has the lowest erroneous agreement 

and highest self-efficacy outcomes. 

These results also may shed light on why projects seeking to partner humans with 

intelligent agents frequently experience difficulties, despite best-efforts by the stakeholders. The 

workers in this study rated themselves as confident in performing the task, holding trust in the 
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agent, and broadly provided positive open-text feedback. While self-efficacy decreased when 

explanations were provided, the absolute ratings were still most often greater than neutral. 

However, the detectable performance outcomes were less than ideal. The workers in this study 

did not have the opportunity to compare or select between conditions. Based on the results of 

other studies of preference for explanation, it is quite plausible workers would have preferred an 

agent that offered explanations over working with a “black box,” and thereby unknowingly 

advocated for a configuration with inferior outcomes. “Explainability” will also be a compelling 

feature in sales presentations of future intelligent systems; however, managers should evaluate 

the level of support for the effectiveness of explanations in the system. 

In a real-world system it is likely that users will request that the review process be 

simplified by presenting the intelligent agent’s assessment immediately and perhaps only 

revealing an explanation upon request. The usage of the incorrect rating checkbox in the “black 

box” condition indicates that roughly half of workers might have sought an explanation of the 

simulated output in scenarios where the output was intendedly erroneous. Additionally, only 5% 

of ratings where workers agreed with the agent assessment in the initial step marked the agent 

incorrect across both faithful and erroneous scenarios. This suggests that agreement with the 

agent was sufficient to suppress critical evaluation of the simulated output. If the participants in 

this study performed the review in a single step, participants might be even more likely to 

“anchor” onto the agent’s assessment without conducting their own independent evaluation. A 

single-step review may be more appropriate when model output is already known or suspected to 

be incorrect, compared to tasks involving screening for erroneous output. 
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V.7.4 Limitations 

The “Wizard of Oz” method employed in this study may not accurately represent any 

current or future system, and the “Wizard” in this study was the researcher. The damage rating 

task does not allow for certainty in the true rating of an image, compounding the challenge of 

replicating system performance. The simulated agent in this task had an intended error rate 

consistent with that of a deep learning model being deployed on a new data set. However, the 

error rate was higher than most users might be expected to accept from an intelligent system. 

While the erroneous agreement measure is useful to compare with other measures, there are 

substantial limitations in its interpretation. There was no quality metric to evaluate it in 

comparison to correct assessments, and it also does not necessarily reflect the on-going rate of 

error. Additionally, it is possible that the agent assisted many workers in reaching more 

appropriate classifications which was not detectable by this design. As such this study provides 

limited insight into the rating performance of the participants or explaining interaction with an 

intelligent agent that is most often correct. 

The association between interdependence and self-efficacy was identified after the fact as 

an alternate explanation without a hypothesis. This measure only evaluated the perception of 

interdependence and used only two items which is not ideal for PLS-SEM structural models. As 

such, this finding requires further investigation to confirm that the manipulation of 

interdependence will impact self-efficacy in a task. 

The workers in this study received no feedback on their performance beyond the 

simulated output and explanations to inform their judgment and damage assessment. While the 

lack of feedback is consistent with the typical crowdsourced damage assessment task, it is well-

known that the feedback mechanisms in a typical work environment are a critical input to 

regulate behavior and establish self-efficacy.  
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While the outcomes of this study in terms of trust and erroneous agreement are not 

substantially different than in prior studies of explanations with experts, this study is unlikely to 

generalize to the information processing of explanations by experts who are highly familiar with 

a task. The information processing pathways of experts will not be loaded by learning the task. 

Essentially none of the participants had previously used the damage guideline provided, and only 

half had previously conducted damage assessments using aerial images. Participants were not 

calibrated in the task prior to data collection. The study also offers limited insight into long-term 

interactions and learned trust with an explainable intelligent system where expertise is developed 

with the system itself. While other studies in explanation and intelligent systems have involved 

interacting with a system over several hours or even multiple days, this study involved a single 

interaction with most participants having less than ten minutes of interaction with the task. 

Finally, this study did not experimentally evaluate multiple user-interface configurations 

or the sequencing of user choices. The task design was unconventional in requiring the worker to 

conduct their assessment and provide their input before receiving the simulated output. It is 

possible that participants would have been inclined to analyze more deeply an explanation that 

they requested over one presented to them for review. The explanations were also not 

specifically briefed to participants and they were not highlighted by any training, which could 

greatly increase the strength of the manipulation. By selecting design choices considered optimal 

across multiple research articles that had not previously been integrated, over-specification may 

have resulted. It was also impractical to fully optimize the Qualtrics-based user interface, and 

users were required to scroll the screen more than the typical Pybossa user-interface would have 

required. 
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V.7.5 Future Research 

Both cognitive load and perceived interdependence can be influenced by the design of the 

task, and were both found to be of similar or greater effect as previous task experience. Notably, 

cognitive load has been utilized in the computer-based instructional literature to develop 

improved tasks. The review by Hollender et al. (2010) provides a survey of methods which may 

be immediately transferrable to an XAI context. Interdependence also offers an existing literature 

within human-computer interaction to leverage. Several participants provided comments in the 

open-text feedback indicating that they would have liked feedback on ratings or the ability to 

provide specific feedback on the agent’s ratings. Research in human-robot interaction has 

specifically considered the design of joint activity, and the “directability” requirement for 

interdependence from the coactive design method (Johnson et al., 2014) could be evaluated for 

its ability increase the effectiveness of explanations. The ability to provide feedback also has the 

potential to both break the task apart to decrease extraneous cognitive load in each step, while 

activating the production pathway of observational learning from social cognitive theory.  

Researchers should consider utilizing a repeated measure design and within-subject 

longitudinal measurement. These designs could evaluate the effects of sequencing of multiple 

task configurations to determine whether configuration or competency through experience 

activates effective meta-cognitive monitoring and evaluation processes. This would decrease 

required sample size by examining effects on the same participant. Additionally, such a design 

offers the ability to identify the extent that “think aloud” verbal protocols induce meta-cognitive 

processes. Research in cognitive load and self-efficacy frequently uses a repeated measure 

approach to address large variance in measures between subjects (Beckmann, 2010). 

This study attempted to model cognitive load as a hierarchical composite construct 

combining the three theoretical components of cognitive load. The resulting model estimated 
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path coefficients for the second-order construct that were roughly consistent with theory, but 

variation in the measure was not associated with study measures other than gender. The 

criticality of the single-item total cognitive load in the original measurement model was 

recognized in advance, and this item was presented as the first measure after the rating task on its 

own screen with the recommended wording, scale points, and labels from the literature. Further, 

correlations between the three-component measure cognitive load and dispositional trust might 

suggest some interactions between pre-existing attitudes and cognitive load. Previous research in 

cognitive science has directly detected a role of trust on objectively measured cognitive load 

(W.-L. Hu, Akash, Jain, & Reid, 2016). However, other research in explanation using mixed 

methods also identified that observed behaviors differed from subjective questionnaire rating 

results (Holliday et al., 2013). Future research that isolates the effects of changes in behavior and 

subjective ratings of the same concept can inform the interpretation of subjective cognitive load 

measurement.  
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VI CONCLUSIONS 

A large area of research is developing deep learning systems capable of explaining their 

output in natural language as a means to increase transparency and improve human 

understanding when evaluating system output. Intelligent agents that utilize deep learning neural 

networks to analyze images have reached a high level of demonstrated accuracy in classification 

tasks, but their performance is known to decrease substantially when utilized on a new data set. 

Explanations are expected to improve the ability for humans to evaluate model performance, and 

where the model is more capable may improve human understanding. However, much of the 

empirical research on the effectiveness of explanations has evaluated trust in the system and 

compliance with system output, which may not be appropriate when humans are intended to 

partner with a system to produce judgments. 

In this study participants reviewed images taken before and after a natural disaster and 

classified the type of structure and degree of damage. After rating each image, a simulated 

agent’s rating was provided for their review along with the opportunity for the participant to 

modify their rating. A written guideline was provided, which the explanations referenced. Three 

types of explanations of those ratings were manipulated between participants: “causal” which 

offer reasons the classification selected was appropriate, “counterfactual” which offer why 

another classification was not appropriate, and “hedging” which offer hypothesized failure 

modes and boundary conditions related to an image. The research and measurement model 

focused on the effects of the explanations on the participant. Self-efficacy was chosen as the key 

outcome due to its ability to predict future engagement and investment of mental effort. 

Manipulation checks and testing of the instrument indicated that participants largely retained and 

recalled the qualities of the types of explanations they received. 
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Causal explanations increased trust and compliance with the simulated agent’s ratings, 

consistent with prior research. However, they also increased extraneous cognitive load, increased 

agreement with erroneous agent ratings, and decreased self-efficacy in the task. When a 

counterfactual explanation was added to the causal explanation the perception of intrinsic 

cognitive load increased without an effect on self-efficacy, suggesting that they assisted the 

participant in assessing the complexity of the task. However, they did not substantially offset the 

increase in erroneous agreement of causal explanations. When a hedging explanation was 

provided with the causal explanation the perception of agent intelligence increased but had little 

benefit on other outcomes. Providing all three types of explanation resulted in adverse outcomes 

on most study measures. Participants that changed ratings to agree with an erroneous agent 

assessment rated lower self-efficacy indicating they were likely “going along” with the provided 

rating rather than experiencing an illusion of explanatory understanding.  

Two areas of existing research were identified with the potential improve the 

effectiveness of explanations. The limitations of the human cognitive architecture can be 

managed by breaking tasks into smaller elements to optimize demands on working memory, 

utilizing existing knowledge within human-computer interaction and cognitive load theory 

(Hollender et al., 2010). Perceived interdependence was also found to have a positive 

relationship with self-efficacy, and methods to increase interdependence also start by breaking 

tasks apart with the goal of increasing the human and the agent’s ability to observe, predict, and 

direct each other (Johnson et al., 2014). The effects of cognitive load and perceived 

interdependence were greater than that of previous experience in the task but are under the 

control of the designer of the task. In comparison, the most commonly evaluated construct, trust 

in the intelligent agent, was not found to have a significant relationship with self-efficacy.
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APPENDICES 

Appendix A: IRB Approval 
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Appendix B: Test Instrument 

 

See following page. 
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Consent

Georgia State University
Informed Consent

 
Title:                                                Crowd-sourced Damage Assessment in Natural Disasters
Principal Inves�gator:                  Dr. Pam S. Ellen
Student Principal Inves�gator:   Sean E. Dougherty
 
Procedures
You are being asked to take part in a research study. If you decide to take part, you will be asked to rate the damage in ten
images. We will also ask your opinions related the task. You have been invited because of your background in either
crowd-sourced ci�zen science or aerial image interpreta�on. This survey should take less than 25 minutes of your �me in
one si�ng. As this study will be completed online, your IP address will be recorded. However, this data will be destroyed
when data collec�on is complete. The results of the study will be summarized and reported in group form. You will not be
iden�fied personally. Your name and other facts that might iden�fy you will not appear in this study.
 
Benefits
Your par�cipa�on may provide data that improves the speed and quality of disaster relief efforts.
 
Risks
There is no physical risk in undertaking the survey beyond a normal adult day. The disaster images are no more disturbing
than would appear in a newspaper or on network television news.
 
Compensa�on
The compensa�on will be $2.00 for your par�cipa�on in the study. Survey comple�ons with obvious signs of lack of
par�cipa�on by comple�on �me or failed a�en�on checks will be rejected.
 
Voluntary Par�cipa�on and Withdrawal
You do not have to be in this study. You may stop par�cipa�ng at any �me by closing this window.
 
Contact Informa�on
Sean Dougherty at (813) 344-5408 or sdougherty5@student.gsu.edu.
 
Consent
If you are willing to volunteer for this research, please start the survey by clicking next below.
 
 

Briefing
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Disaster Damage Assessment
 
Crowdsourcing has been used for many years to rapidly assess damage after natural
disasters. The results have been used to inform disaster relief officials of the extent of
damage and areas to focus relief efforts. Because of the volume of data and urgent time
sensitivity, automated damage assessments are being tested. Combining crowdsourcing
with automated damage assessments is expected to increase quality and speed, but both
the automated system and crowd workers must learn the unique aspects of each disaster in
a partnership. 
 
Your task is to review 10 images of buildings and classify the type of building and the extent
of damage using the guideline below. Rate only the building at the center of the image as
there may be more than one building. If you place your mouse cursor over the image you
can magnify sections for more detail. After you submit your rating, you will receive the
automated damage assessment for your review. Please evaluate this assessment and, if
necessary, review the images again. You can change your ratings, if desired. If you do not
believe the image is of a building, please mark "no structure".
 
 

Overview of Process
 

 
 

Screenshot Example of a Damage Assessment
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In previous disasters it has been found that having a clear damage rating guideline is very
important for data quality. The Harvard Humanitarian Institute's guidelines are shown below.
You can recall this guide at any time while reviewing images.

Harvard Humanitarian Initiative's Aerial Imagry Interpretation Guide
 

Structure
Type Symbol Description

Light

Structures that are built predominantly from light material or locally sourced materials. These
structures may be mobile or possess no real hard roof, in some cases, roofs are made of metal or

light material; they are often small in size. As such, these structures are likely to be the most
vulnerable structures in any impacted region. Examples of these types of structures can include

huts, tukuls or mobile trailers.

Medium

Structures that are built from semi-hard materials or mixed products. These structures have solid
frames built using wood, steel or cement. These type of structures are fixed and possess

hardened walls and roofs which can be made out of wood or cement. Unlike light structures,
these types of structures are able to withstand moderate level of wind, with no to little damage,
while maintaining their structural integrity. These types of structures can be individual or multi-

family houses, small stores, places of worship and similar structures.

Heavy

Structures that are built from hard materials such as reinforced cement and steel. Infrastructure of
this type is the least structurally vulnerable in any observed region. These structures are

designed to withstand high level winds without receiving heavy damage or endangering the
structural integrity of the structure. In many areas, these may include multiple story buildings,

strip malls, hospital buildings, or public utilities.

 

Damage
Classification Color Description
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You are to ignore the type of structure when making your assessment.

You may change your rating after reviewing the automated assessment.

You will be asked to estimate a value for the property.

You will upload pictures you've taken of damaged buildings.

No Visible
Damage

 The roof is virtually undamaged and the walls, in effect, remain standing. The structure
appears to have complete structural integrity and does not appear to need repair.

Minimal
Visible

Damage
 

The roof remains largely intact, but presents partial damage to the roof’s surface, with minimal
exposure beneath. In oblique aerial and satellite imagery, minimal damage may be able to be
observed within the structure and to the exterior walls. The structure appears to have general

structural integrity but needs minor repairs.

Significant
Visible

Damage
 

The roof is entirely damaged or missing. The walls of the structure remain upright. However,
the interior wall partitions can be partially damaged. Debris inside the structure can also

potentially be visible. The structure does not appear to have complete structural integrity and is
in need of significant repair.

Critical Visible
Damage  

The roof is completely destroyed or missing, and the walls have been destroyed or collapsed.
The support structures are completely leveled, and interior objects have also suffered visibly
heavy damage or destruction. The structure does not appear to have any structural integrity

and requires comprehensive reconstruction or demolition of the entire structure

 

 
 

Briefing Attention Check

Based on the briefing, select the statement which is true.

Sharing Notice

Please note:
 
This is a research study of the damage assessment task. Please do not share the contents
of this study with other potential participants.

Rating Block

These page timer metrics will not be displayed to the recipient.
First Click: 0 seconds

Last Click: 0 seconds

Page Submit: 0 seconds

Click Count: 0 clicks
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Step 1: Damage Assessment #1 of 10
  

Rate the structure and post-disaster damage for the centered building within
the blue box. 

  
Hover over the image to use the magnifying glass. 

Pre-Disaster Post-Disaster

 
Click here to open the damage guideline, or hover over the option names.

Please rate the type of structure:

No Structure
 

    

Light
 

    

Medium
 

    

Heavy
 

    

Please rate the damage level:

No Damage Minimal Significant Critical
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Please rate the difficulty of this classification:

Very Difficult      Very Easy

These page timer metrics will not be displayed to the recipient.
First Click: 0 seconds

Last Click: 0 seconds

Page Submit: 0 seconds

Click Count: 0 clicks

Step 2: Review Automated Assessment #1
  

Hover over the image to use the magnifying glass. 

Your
 Assessment  Automated Assessment

 

The images are below if you would like to review them again:
 

Pre-Disaster Post-Disaster

B-6



2/19/2019 Qualtrics Survey Software

https://gsu.ca1.qualtrics.com/WRQualtricsControlPanel/Ajax.php?action=GetSurveyPrintPreview 7/13

The structure was hidden or obscured

The image was blurry

The automated assessment was incorrect

 
Click here to open the damage guideline (new tab).

If you'd like to change your answer, please select a new structure type: (OPTIONAL)

» No Structure
 

    

» Light
 

    

» Medium
 

    

» Heavy
 

    

If you'd like to change your answer, please select a new damage rating: (OPTIONAL)

» No Damage » Minimal » Significant » Critical

Please indicate if any of the following apply in your opinion:

Manipulation Checks
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Please rate your opinion of the following statements.
 
The automated assessor explained why it made its ratings.

Strongly disagree Somewhat disagree Neither agree nor disagree Somewhat agree Strongly agree

The automated assessor contrasted its rating to another possible classification.

» Strongly disagree » Somewhat disagree
» Neither agree nor

disagree » Somewhat agree » Strongly agree

The automated assessor provided features of the image to consider which could cause
incorrect classifications.

» Strongly disagree » Somewhat disagree
» Neither agree nor

disagree » Somewhat agree » Strongly agree

Attitudes

How much mental effort did you invest in making your assessments?

Very, Very Low Very Low Low Rather Low
Neither Low

nor High Rather High High Very High
Very, Very

High

Please rate your opinion on the following statements about the damage assessment task:

   
Strongly
Disagree      

Strongly
Agree

Many things needed to be kept
in mind simultaneously when
rating damage.

  

The damage assessment task
was very complex.   

I made an effort to understand
the overall task and not just on
the details.

  

I wanted to make sure I
understood everything I was
provided while completing the
task.
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Strongly
Disagree      

Strongly
Agree

I was provided information
which supported my ability to
assess damage ratings.

  

It was exhausting to find the
important information to assess
damage.

  

The design of this assessment
tool was very inconvenient for
making ratings.

  

It was difficult to recognize and
link the crucial information
while assessing damage.

  

I had to remember many things
to perform the task.   

Based on your experience, please rate your expectations if you did more damage
assessments using the tool:

   
Strongly
Disagree      

Strongly
Agree

Knowing my skills and abilities,
I think I can do well assessing
damage

  

I expect I can do well on future
damage assessments with this
tool

  

I believe I can produce high
quality assessments with this
tool

  

I’m confident I understand how
to use the damage assessment
guide

  

I’m certain I have the skills
necessary for damage
assessment

  

I’m confident I understand the
most difficult categories   

I’m confident I know how to use
the damage assessment tool   

I believe I won't overly rely on
the automated assessment   

I'm confident the automated
assessment won't distract me   

Please rate the automated assessor:

   
Strongly
Disagree      

Strongly
Agree

Thinks logically   

Is knowledgeable   
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Strongly
Disagree      

Strongly
Agree

Is able to make decisions   

Has a mind   

Is predictable   

Is insightful   

Alternate Explanations

Please estimate the number of aerial damage images you've assessed prior to this study.

No Experience Less Than 10 Images
Between 10 and 50

Images
Between 50 and 100

Images
Between 100 and 500

Images Over 500 Images

How often do you rate damage to structures in aerial images?

Never Yearly, or less A few times a year Monthly
A few times a

month Weekly Daily

Have you previously used a written damage guideline to make ratings?

No Yes - But a different guideline. Yes - The same guideline as here.

Please rate the automated assessor on the following statements:

   
Strongly
Disagree      

Strongly
Agree

I believe I can trust the
automated assessment   

My assessment was affected
by the automated assessor's
input

  

Assessments depend on both
worker and automated
assessor for accuracy

  

My ratings benefitted by
working with the automated
assessor
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The damage assessment was:

Highly Manual      Highly Automated

Please rate your opinion of the following statements:

   
Strongly
Disagree      

Strongly
Agree

It is difficult for me to contain
my feelings when I see people
in distress.

  

I am often reminded by daily
events how dependent we are
on one another.

  

I feel sympathetic to the plight
of disaster victims.   

Please rate your opinion of the following statements:

   
Strongly
Disagree      

Strongly
Agree

I like to use technology to
make tasks easier for me   

I have bad experiences when I
try to use new technology
instead of doing things “the old-
fashioned way”

  

There are tasks in my life that
have been made easier by
computers doing the work for
me

  

I have a positive view of the
potential for robots and artificial
intelligence

  

Demographics

The following questions are for descriptive purposes only.

In what year were you born?
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Male

Female

Less than high school degree

High school graduate (high school diploma or equivalent including GED)

Some post-high school

Bachelor's degree

Some graduate school

Graduate degree

Are you... ?

What is the highest level of formal education you have completed?
 

Which of the following best describes your total family income?

Less than $15,000 $45,000 to $59,999 $100,000 to $149,999

$15,000 to $29,999 $60,000 to $79,999 Over $150,000

$30,000 to $44,999 $80,000 to $99,999 Prefer not to Say

Feedback

How did you find out about this HIT? if you found out on a web forum, please paste a link to
the page.

Finally, we value any feedback concerning this survey.  Please let us know your thoughts
and or suggestions.
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Appendix C: Study Instrument 

 

See following page. 
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onsent

Georgia State University
Informed Consent

 
Title:                                                Crowd-sourced Damage Assessment in Natural Disasters
Principal Inves�gator:                  Dr. Pam S. Ellen
Student Principal Inves�gator:   Sean E. Dougherty
 
Procedures
You are being asked to take part in a research study. If you decide to take part, you will be asked to rate the damage in ten
images. We will also ask your opinions related the task. You have been invited because of your interest in crowd-sourced
ci�zen science. This survey should take less than 25 minutes of your �me in one si�ng. As this study will be completed
online, your IP address will be recorded. However, this data will be destroyed when data collec�on is complete. The results
of the study will be summarized and reported in group form. You will not be iden�fied personally. Your name and other
facts that might iden�fy you will not appear in this study.
 
Benefits
Your par�cipa�on may provide data that improves the speed and quality of disaster relief efforts.
 
Risks
There is no physical risk in undertaking the survey beyond a normal adult day. The disaster images are no more disturbing
than would appear in a newspaper or on network television news.
 
Compensa�on
The compensa�on will be $2.00 for your par�cipa�on in the study. Survey comple�ons with obvious signs of lack of
par�cipa�on by repeated random damage ra�ngs or failed a�en�on checks will be rejected.
 
Voluntary Par�cipa�on and Withdrawal
You do not have to be in this study. You may stop par�cipa�ng at any �me by closing this window.
 
Contact Informa�on
Sean Dougherty at (813) 344-5408 or sdougherty5@student.gsu.edu.
 
Consent
If you are willing to volunteer for this research, please start the survey by clicking next below.
 
 

Briefing
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These page timer metrics will not be displayed to the recipient.
First Click: 0 seconds

Last Click: 0 seconds

Page Submit: 0 seconds

Click Count: 0 clicks

Disaster Damage Assessment
 
Crowdsourcing has been used for many years to rapidly assess damage after natural
disasters. The results have been used to inform disaster relief officials of the extent of
damage and areas to focus relief efforts. Because of the volume of data and urgent time
sensitivity, automated damage assessments are being tested. Combining crowdsourcing
with automated damage assessments is expected to increase quality and speed, but both
the automated system and crowd workers must learn the unique aspects of each disaster in
a partnership. 
 
Your task is to review 10 images of buildings and classify the type of building and the extent
of damage using the guideline below. Rate only the building at the center of the image as
there may be more than one building. If you place your mouse cursor over the image you
can magnify sections for more detail. After you submit your rating, you will receive a rating
from the Automated Damage Assessment Machine (ADAM) for your review. Please
evaluate this assessment and, if necessary, review the images again. You can change your
ratings, if desired. If you do not believe the image is of a building, please mark "no
structure".

Overview of Process
 

 
 

Screenshot Example of a Damage Assessment
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In previous disasters it has been found that having a clear damage rating guideline is very
important for data quality. The Harvard Humanitarian Institute's guidelines are shown below.
You can recall this guide at any time while reviewing images.

Harvard Humanitarian Initiative's Aerial Imagry Interpretation Guide
 

Structure
Type Symbol Description

Light

Structures that are built predominantly from light material or locally sourced materials. These
structures may be mobile or possess no real hard roof, in some cases, roofs are made of metal or

light material; they are often small in size. As such, these structures are likely to be the most
vulnerable structures in any impacted region. Examples of these types of structures can include

huts, tukuls or mobile trailers.

Medium

Structures that are built from semi-hard materials or mixed products. These structures have solid
frames built using wood, steel or cement. These type of structures are fixed and possess

hardened walls and roofs which can be made out of wood or cement. Unlike light structures,
these types of structures are able to withstand moderate level of wind, with no to little damage,
while maintaining their structural integrity. These types of structures can be individual or multi-

family houses, small stores, places of worship and similar structures.

Heavy

Structures that are built from hard materials such as reinforced cement and steel. Infrastructure of
this type is the least structurally vulnerable in any observed region. These structures are

designed to withstand high level winds without receiving heavy damage or endangering the
structural integrity of the structure. In many areas, these may include multiple story buildings,

strip malls, hospital buildings, or public utilities.

 

Damage
Classification Color Description
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You may change your rating after reviewing the automated assessment.

You will be asked to estimate a value for the property.

You are to ignore the type of structure when making your assessment.

You will upload pictures you've taken of damaged buildings.

No Visible
Damage

 The roof is virtually undamaged and the walls, in effect, remain standing. The structure
appears to have complete structural integrity and does not appear to need repair.

Minimal
Visible

Damage
 

The roof remains largely intact, but presents partial damage to the roof’s surface, with minimal
exposure beneath. In oblique aerial and satellite imagery, minimal damage may be able to be
observed within the structure and to the exterior walls. The structure appears to have general

structural integrity but needs minor repairs.

Significant
Visible

Damage
 

The roof is entirely damaged or missing. The walls of the structure remain upright. However,
the interior wall partitions can be partially damaged. Debris inside the structure can also

potentially be visible. The structure does not appear to have complete structural integrity and is
in need of significant repair.

Critical Visible
Damage  

The roof is completely destroyed or missing, and the walls have been destroyed or collapsed.
The support structures are completely leveled, and interior objects have also suffered visibly
heavy damage or destruction. The structure does not appear to have any structural integrity

and requires comprehensive reconstruction or demolition of the entire structure

 

 
 

Briefing Attention Check

Based on the briefing, select the statement which is true.

Sharing Notice

Please note:
 
This is a research study of the damage assessment task. Please do not share the contents
of this study with other potential participants.

Rating Block

These page timer metrics will not be displayed to the recipient.
First Click: 0 seconds

Last Click: 0 seconds

Page Submit: 0 seconds

Click Count: 0 clicks
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Step 1: Damage Assessment #1 of 10
  

Rate the structure and post-disaster damage for the centered building within
the blue box. 

  
Hover over the image to use the magnifying glass. 

Pre-Disaster Post-Disaster

 
Click here to open the damage guideline, or hover over the option names.

Please rate the type of structure:

No Structure
 

    

Light
 

    

Medium
 

    

Heavy
 

    

Please rate the damage level:

No Damage Minimal Significant Critical
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Please rate the difficulty of this classification:

Very Difficult      Very Easy

These page timer metrics will not be displayed to the recipient.
First Click: 0 seconds

Last Click: 0 seconds

Page Submit: 0 seconds

Click Count: 0 clicks

Step 2: Review the automated rating #1
  

Hover over the image to use the magnifying glass. 

Your
 Assessment  ADAM's Rating

 Automated Damage Assessment Machine

 

 

The images are below if you would like to review them again:
 

Pre-Disaster Post-Disaster
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The structure was hidden or obscured

The image was blurry

The automated rating by ADAM was incorrect

 
Click here to open the damage guideline (new tab).

If you'd like to change your answer, please select a new structure type: (OPTIONAL)

» No Structure
 

    

» Light
 

    

» Medium
 

    

» Heavy
 

    

If you'd like to change your answer, please select a new damage rating: (OPTIONAL)

» No Damage » Minimal » Significant » Critical

Please indicate if any of the following apply in your opinion:

Advisory
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In the next section we want to ask for your honest opinion.
 
Your answers have no effect on your eligibility for future HITS.

ttitudes

How much mental effort did you invest in making your assessments?

Very, Very Low Very Low Low Rather Low
Neither Low

nor High Rather High High Very High
Very, Very

High

Please rate your opinion on the following statements about the damage assessment task:

   
Strongly
Disagree      

Strongly
Agree

The damage assessment task
was very complex.   

I was provided information
which supported my ability to
assess damage ratings.

  

I wanted to make sure I
understood everything I was
provided while completing the
task.

  

I made an effort to understand
the overall task and not just on
the details.

  

Many things needed to be kept
in mind simultaneously when
rating damage.

  

It was exhausting to find the
important information to assess
damage.

  

The design of this assessment
tool was very inconvenient for
making ratings.

  

It was difficult to recognize and
link the crucial information
while assessing damage.

  

I had to remember many things
to perform the task.   

Based on your experience, please rate your expectations if you did more damage
assessments using the tool:

   
Strongly
Disagree      

Strongly
Agree
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Yes

No

Don't Know / Don't Remember

» Yes

» No

   
Strongly
Disagree      

Strongly
Agree

I’m confident I understand the
most difficult categories   

Knowing my skills and abilities,
I think I can do well assessing
damage

  

I’m certain I have the skills
necessary for damage
assessment

  

I’m confident I know how to use
the damage assessment tool   

I expect I can do well on future
damage assessments with this
tool

  

I believe I can produce high
quality assessments with this
tool

  

Please rate the Automated Damage Assessment Machine (ADAM):

   
Strongly
Disagree      

Strongly
Agree

Thinks logically   

Is predictable   

Is able to make decisions   

Is insightful   

Is knowledgeable   

Has a mind   

Manipulation Checks

Please rate your opinion of the following statements.
 
The Automated Damage Assessment Machine (ADAM) explained why it made its ratings.

ADAM compared its rating to at least one other possible classification.
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» Don't Know / Don't Remember

» Yes

» No

» Don't Know / Don't Remember

ADAM pointed out features in the image that may lead to incorrect classifications.

Alternate Explanations

Please estimate the number of aerial damage images you've assessed prior to this study.

No Experience
Less Than 10

Images
Between 10 and 50

Images
Between 50 and

100 Images
Between 100 and

500 Images
Between 500 and

5,000 Images Over 5,000 Images

How often have you rated damage to structures in aerial images in the last year?

Never Yearly, or less A few times a year Monthly
A few times a

month Weekly Daily

Have you previously used a written damage guideline to make ratings?

No Yes - But a different guideline. Yes - The same guideline as here.

Please rate the Automated Damage Assessment Machine (ADAM) on the following
statements:

   
Strongly
Disagree      

Strongly
Agree

I'm confident that ADAM won't
distract me   

I believe I won't overly rely on
ADAM   

My ratings benefitted by
working with ADAM   

ADAM prevents errors in
manual damage assessments   
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Strongly
Disagree      

Strongly
Agree

My ratings were affected by
ADAM's input   

I believe I can trust ADAM   

Assessments depend on the
both the human and ADAM for
accuracy

  

The damage assessment task was:

Highly Manual      Highly Automated

Please rate your opinion of the following statements:

   
Strongly
Disagree      

Strongly
Agree

I like to use technology to
make tasks easier for me   

I have bad experiences when I
try to use new technology
instead of doing things “the old-
fashioned way”

  

There are tasks in my life that
have been made easier by
computers doing the work for
me

  

I have a positive view of the
potential for robots and artificial
intelligence

  

In your own work or profession, how has artificial intelligence (AI) performed for you?

Far exceeded my
expectations

Exceeded my
expectations

Equaled my
expectations

Short of my
expectations

Far short of my
expectations

Have not used AI in
my work

Demographics

The following questions are for descriptive purposes only.

In what year were you born?
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Male

Female

Less than high school degree

High school graduate (high school diploma or equivalent including GED)

Some post-high school

Bachelor's degree

Some graduate school

Graduate degree

  

Are you... ?

What is the highest level of formal education you have completed?
 

Which of the following best describes your total family income?

Less than $15,000 $45,000 to $59,999 $100,000 to $149,999

$15,000 to $29,999 $60,000 to $79,999 Over $150,000

$30,000 to $44,999 $80,000 to $99,999 Prefer not to Say

Feedback

How did you find out about this HIT? if you found out on a web forum, please paste a link to
the page.
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Finally, we value any feedback concerning this survey.  Please let us know your thoughts
and or suggestions.
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D. Scenarios and Explanations by Condition 
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Template for Scenarios (Definitions) 

 

Scenario [X] 

Image [XXX] – [Pre-Disaster Image Source] / [Post-Disaster Image Source] 

  

 

Type: [ Faithful (consistent with guideline) / Erroneous (object not in the image) ] 

Model Output:  Structure and Damage Classification provided to user 

Next Best:  Classifications used as the counter-factual contrast 

Failure Mode:  Plausible boundary condition or outlier in the image 

Objects:  List of detected objects and features (bold items are simulated erroneously 

detected objects)  

 

All Conditions (Model Output): This structure was automatically classified [C-BEST-SLOT]. 

C (Causal): Because it is a [O-STRUCTURE-SLOT] with [O-FACTUAL-SLOT1] [ and …].  

CF (Counterfactual): It is not a [C-NEXT-SLOT] classification because it [does not] have [O-COUNTERF-

SLOT1] [ and …]. 

H (Hedge): Consider: [H-ERROR-MODE-SLOT]. 

  

Pre-Disaster Image  Post-Disaster Image  
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Scenario 1 – Factory 
Image 008 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Heavy No Damage 

Next Best:  Heavy Minimal 

Failure Mode:  Distractions 

Objects:  Large Commercial Building. Changed roof structure (intact roof). No debris. 

Multi-story.  
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Scenario 2 – Grocery Store 
Image 007 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Medium Critical 

Next Best:  Heavy Significant 

Failure Mode:  Illumination 

Objects:  Medium Commercial Building. Roof damage. Wooden Roof. Debris adjacent to 

structure (classified as wall collapse).   
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Scenario 3 – Government 
Image 009 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Heavy Minimal 

Next Best:  Heavy Significant 

Failure Mode:  Feature Count 

Objects:  Large Government Building. Multiple story. Metal roof. Roof damage. No debris. 

Intact walls. No visible debris. 
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Scenario 4 – Clear Trailer 
Image 010 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Light Critical 

Next Best:  Light Significant 

Failure Mode:  Illumination 

Objects:  Residential Trailer. Roof damaged. Interior debris. Adjacent debris. 
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Scenario 5 – Obstructed Trailer 
Image 012 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Light Minimal 

Next Best:  Light Significant 

Failure Mode:  Obscuration 

Objects:  Residential Trailer. Roof damaged. Intact walls. Wooden roof materials. Trailer 

shape. 
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Scenario 6 – Trailer Roof Error 
Image 013 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Light Significant 

Next Best:  Light Minimal 

Failure Mode:  Obscuration 

Objects:  Damaged roof (classified as internal visible debris). Adjacent debris. Intact 

walls. Missing roof. Trailer shape. 

   

  

D-8



Scenario 7 – Intact Trailer 
Image 002 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Light No Damage 

Next Best:  Light Minimal 

Failure Mode:  Obscuration 

Objects:  Residential Trailer. Intact roof. Intact walls. Trailer shape. 
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Scenario 8 – Shipyard 
Image 021 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Heavy Critical 

Next Best:  Heavy Significant 

Failure Mode:  Spectral Distinction 

Objects:  Large Industrial Building. Metal roof. collapsed wall with adjacent debris. 

collapsed roof and internal visible debris. 
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Scenario 9 – Coastal Condo 
Image 005 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Medium Critical 

Next Best:  Heavy Critical 

Failure Mode:  Feature Density 

Objects:  Multi-Family Residential Building. Intact roof. adjacent debris (classified as 

collapsed wall). Multiple stories. (seen as single story)  
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Scenario 10 – Tarp Colored Roof 
Image 003 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Medium Significant 

Next Best:  Heavy Critical 

Failure Mode:  Feature Density 

Objects:  Multi-Family Residential Building. Missing roof. Wooden roof materials. 

adjacent debris. Multiple stories.  
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Scenario 11 – Large Condo 
Image 006 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Heavy Significant 

Next Best:  Heavy Critical 

Failure Mode:  Feature Distinction 

Objects:  Multi-Family Residential Building. Multi-story. Adjacent debris. Missing roof 

sections.  Intact walls. 
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Scenario 12 – Day Care 
Image 015 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Medium Significant 

Next Best:  Heavy Minimal 

Failure Mode:  Feature Distinction 

Objects:  Attached Building Commercial Complex. Adjacent debris. Light roof damage. 

Wood Roof Materials. (collapsed wall with adjacent debris) 
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Scenario 13 – Boat Dealer 
Image 016 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Medium Significant 

Next Best:  Heavy Significant 

Failure Mode:  Object Count 

Objects:  Medium Commercial Building. Light roof damage. Adjacent debris (boats on 

building side classified as collapsed wall). 
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Scenario 14 – House with Pool 
Image 001 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Medium Minimal 

Next Best:  Medium Significant 

Failure Mode:  Roof Complexity 

Objects:  Single-Family Home. Light roof damage. No debris. 
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Scenario 15 – Artificial Island 
Image 004 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Medium Minimal 

Next Best:  Medium Significant 

Failure Mode:  Illumination 

Objects:  Single-Family Home. Light roof damage. No debris. 
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Scenario 16 – Funeral Home 
Image 014 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Medium Significant 

Next Best:  Heavy Significant 

Failure Mode:  Spectral Distinction 

Objects:  Medium Commercial Building. Missing roof segment. Adjacent debris. Wooden 

roof. 
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Scenario 17 – Recreation Center 
Image 017 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Medium Critical 

Next Best:  Medium Minimal 

Failure Mode:  Feature Density 

Objects:  Attached Building Commercial Complex. Collapsed wall with adjacent debris 

(classified as wall collapse). Missing roof section. Wooden roof construction.  
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Scenario 18 – Hangar 
Image 018 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Heavy Significant 

Next Best:  Medium Critical 

Failure Mode:  Unusual Scale 

Objects:  Large Industrial Building. Intact walls. Collapsed roof and internal visible debris. 

Metal roof materials. 
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Scenario 19 – Former Forest 
Image 019 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Medium Significant 

Next Best:  Heavy Critical 

Failure Mode:  No Pre-Disaster Image 

Objects:  Medium Commercial Building. Intact walls. collapsed roof and internal visible 

debris. Wooden construction. (entire description) 
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Scenario 20 – Retention Ponds 
Image 020 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Medium No Damage 

Next Best:  Medium Minimal 

Failure Mode:  Spectral Distinction 

Objects:  Attached Building Commercial Complex. pre-existing poor condition roof. Intact 

walls. (entire description) 
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Scenario 21 – Place of Worship 
Image 011 – Google 2018 / NGS Michael 2018  

  

 

Type: Erroneous 

Model Output:  Medium No Damage 

Next Best:  Medium Significant 

Failure Mode:  Obscuration 

Objects:  Place of Worship Complex. Missing roof shingles. Intact walls.  (Missing roof 

section). Multiple stories. No debris. 
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Scenario 22 – Supermarket 
Image 022 – Google 2018 / NGS Michael 2018  

  

 

Type: Faithful 

Model Output:  Medium Significant 

Next Best:  Medium Critical 

Failure Mode:  Object Count 

Objects:  Medium Commercial Building. Missing roof segment. Adjacent debris. Intact 

walls.  
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Appendix E: Pre-Test Interview Guide 

 

See following page. 

  



INTERVIEW GUIDE: Crowd-sourced Damage Assessment in Natural Disasters 

December 21, 2018 

Student Principal Investigator: Sean Dougherty (sdougherty5@student.gsu.edu) 

Principal Investigator: Pam Ellen (pellen@gsu.edu) 

 

1. Recruiting 
Directions: Ensure the participant can see the consent on their screen. Read the participant the 

consent form and ask them to verbalize that they agree and then to click the next button on the 

consent page of the survey. 

2. Interview 
 

Briefing 
Directions: Allow the participant to read the briefing on their own without describing the survey 

or the experiment. 

Interview Questions: 

1. Did you find any part of the briefing unclear? 

2. Did you find the structure and damage guideline to be clear? 

3. Can you describe the task as you understand it? 

 

Initial Rating Step 
Directions: Ask the following question when the image appears for them to rate in the initial 

step. Allow them to complete 7 of the 10 ratings on their own. Ask them to verbalize as much of 

their decision process as possible for all images. 

Interview Questions: 

1. Did the images appear clearly and a useful size? 

2. Did the magnifying glass functionality work for you? 

Review Rating Step 
Directions: Ask the following questions for the first three image ratings. 

Interview Questions: 

1. How confident were you in selecting your damage rating for this image? 

2. How do you feel about the automated rating for this image? 

3. Is the information provided useful to evaluate the rating? 
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Survey Measures 
Directions: Allow the participant to complete the survey measures and ask any questions as 

they complete the items on their own. 

Interview Questions: 

1. Did the questions make sense? 

2. Did the options for rating your answers make sense? 

3. How do you feel about the number of questions we asked you to rate? 

 

 

Close Out 
Directions: Instead of the participant completing the optional feedback questions on the survey, 

ask them the following questions. 

Interview Questions: 

1. Do you have any suggestions to improve the damage assessment task? 

2. Do you think any of the images should not have been used in the study? 

3. Do you have any feedback about how the automated assessment was presented? 

4. Do you have any other feedback we did not cover? 

 

Ending Script: 

Please remember to complete the survey and enter the completion code into the HIT. Thank 

you for participating in this study and helping us to test and improve this survey. 
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See following page. 
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F. INSTRUMENT DEVELOPMENT AND TESTING 

F.1 Task Development 

The scenarios for the task were generated in a multi-step process to create the elements 

needed for the specification of the simulated agent. The steps used to generate the scenarios and 

their components are shown in Figure 1 and discussed in detail below. The full list of scenarios 

appears in Appendix C. 

The literature was reviewed to identify the required components to support an 

explanation engine at the current state-of-the-art capability. The simulated output and 

explanations are synthetic with the goal of plausibility and agent behavior authentic to what the 

participant would experience if the agent were real, but not intended to replicate a single specific 

system. Building damage and object classes were generated by author evaluation of the images 

using the damage assessment guideline and land use classifications in a multiple-cycle process. 

Failure modes were collected from the literature considering the images selected for this 

experiment. Natural language explanations were generated by transforming example 

explanations from the XAI literature into templates. The model simulated here most closely 

resembles definitions of objects of buildings as in Mayer (1999), roof damage detection as in F. 

Wang (2017), general damage detection by Vetrivel et al. (2018), and semantic object 

recognition and classification as in Hendricks et al. (2016) to classify portions of an image and 

generate explanations. The specification for the simulated agent appears in Figure 2. 
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Figure 1 Process to Generate Scenarios 

 

 

Figure 2 Simulated Output and Explanation Specification 

 

F.1.1 Failure Modes for Automated Classification 

A set of real-world failure modes and boundary conditions for automated classification 

was identified by a literature search of “convolutional neural network” and “aerial” and 

“damage” since 2014 with the goal of covering the components of the specification rather than 

an exhaustive review of the literature. Articles not related to the assessment of structures were 
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excluded. When an article was included, a “snowball” approach was used for references relevant 

to building damage assessment. A two-cycle coding method was used to collect the disclosed 

failure modes with second-cycle analytic codes generated based on the causes within the image 

leading to the failure. The finished list is shown in Table 1. Two of the failure modes in the 

literature (“unexplained error,” “imbalanced classes”) were not used to generate scenarios as 

they are not readily detectable by an intelligent agent or by the participant. 

Table 1 Failure Modes Identified in Aerial Damage Assessment Literature 

 

F.1.2 Generate Classifications and Outcomes 

Targeted classifications for structure images for twenty scenarios were selected in 

advance of identifying images to ensure a diversity of structure type and damage classification 

categories. Half of the scenarios were selected at random for erroneous performance of object 

detection prior to image selection. This failure rate is not implausible for a model being 

transferred to a new disaster or geographic region without labeled training data (Vetrivel et al., 

2015), especially where classifications are sought for images with classification disagreements. 

Two scenarios were designated to have no structure in the image as a means to detect low 

ID Failure Mode References Hedging Slot

1 Atmosphere [D,N] Clouds, fog, and smoke may decrease the accuracy of assessments.

2 Distraction [C,N] Large numbers of different objects may decrease the accuracy of assessments.

3 Object Count [C,D,I] Large numbers of the same object may decrease the accuracy of assessments.

4 Feature Density [A,E] Tightly grouped features may decrease the accuracy of assessments.

5 Feature Distinction [G,H,J] Complex textures may decrease the accuracy of assessments.

6 Illumination [B,E] Shadows, reflections, and color changes may decrease the accuracy of assessments.

7 Obscuration [E,N] Overlapping objects may decrease the accuracy of assessments.

8 Pre-Existing Conditions [A] Poorly maintained structures may be misclassified as disaster damage.

9 Roof Complexity [A,K,M] Windows, chimneys, and roof textures may be misclassified as damage.

10 Spectral Distinction [F,N] Bodies of water, parking lots, and shadows may not be identified properly.

11 Unusual Scale [H,L] Very large and very small structures may decrease the accuracy of assessments.

12 No Pre-Disaster Image [I] Lack of pre-disaster image may decrease the accuracy of assessments.

13 Unexplained Error [B] n/a - not used in this research

14 Imbalanced Classes [G] n/a - not used in this research

[A] Vetrivel, A., Gerke, M., Kerle, N., Nex, F., & Vosselman, G. (2018); [B] Kersbergen, D. (2018); [C] Attari, N., Ofli, F., Awad, M., Lucas, J., & 

Chawla, S. (2017); [D] Mather, P. M., & Koch, M. (2011); [E] Moranduzzo, T., & Melgani, F. (2014); [F] Kluckner, S., Mauthner, T., Roth, P. M., & 

Bischof, H. (2009); [G] Nguyen, D. T., Ofli, F., Imran, M., & Mitra, P. (2017); [H] Qi, K., Yang, C., Guan, Q., Wu, H., & Gong, J. (2017); [I] Fujita, A., 

Sakurada, K., Imaizumi, T., Ito, R., Hikosaka, S., & Nakamura, R. (2017) ; [J] Duarte, D., Nex, F., Kerle, N., & Vosselman, G. (2017); [K] Duarte, D., Nex, 

F., Kerle, N., & Vosselman, G. (2018); [L] Wang, F. (2017); [M] Cao, Q. D., & Choe, Y. (2018);
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participatory effort; however, this phenomenon is also consistent with the user experience 

reported by GIScorps (2013) where some images crowd workers are exposed to are not 

appropriate for damage assessment. 

F.1.3 Image Selection and Simulated Output 

Images were selected for the target structure type and damage classification by an initial 

review by the author. Aerial imagery for post-disaster images was sourced from the National 

Geodetic Survey for Hurricane Michael, which was collected aerially from an altitude of 5,500 

feet (NGS, 2018). Pre-disaster images were sourced from Google Earth with images originally 

from Google Satellite as disclosed by the user interface (Google, 2018) in “2D” overhead 

orientation at an eye altitude of less than 500 meters. Images did not include overlays of street 

names or provide geographic coordinates identifying the location depicted. Images were selected 

to reflect a mix of levels of difficulty and plausibility of the identified failure modes in the 

literature. 

The selected images were coded for structure and objects in a two-step process. For 

structure type, land use classifications for structures were identified based primarily on pre-

disaster conditions; however, some structure type classifications benefited from exposed 

construction materials visible in post-disaster images. Damage visible in images was coded 

referencing the definitions contained in the damage guideline (Achkar et al., 2016) and the 

damage detection literature referenced in Chapter 2, Table 2. For erroneous scenarios, plausible 

erroneous detection of objects was used to generate an incorrect image object description and 

hedging explanation from Table 1. In the first step codes were expanded based on objects 

contained in the images and preliminary explanations were drafted. In the second step, the list of 

generated object codes was reviewed with codes combined and modified for parsimony, class 
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discrimination, consistency with the guidelines, and considerations of algorithmically generating 

explanations using templates. The final list of codes generated are shown in Table 2. 

Simulated output was revised for consistency between coded damage and structural 

features and the generated output classifications. The “next best” classification for counterfactual 

explanation was selected to be that classification which would result from testing for what 

addition or subtraction of an object would modify the classification. A decision tree was 

computed using R version 3.3.2 “rpart” library to confirm that the simulated output was 

consistent with the detected objects (decision tree visualized in Figure 4). Building structure 

classification was similarly compared to the land use classification specification. The list of 

scenarios generated for the pilot is listed in Table 3. 

Example images are shown in Figure 3 for pre-disaster and post-disaster conditions from 

Scenario 10. The simulated output for the scenario is a medium structure (multi-family home 

with multiple stories and wooden roof) and significant visible damage (the walls remain intact, 

but the roof material is nearly entirely missing, and there is adjacent debris). This example 

demonstrates the value of the pre-disaster imagery. The blue areas on the roof of the post-disaster 

image could be interpreted as having tarps covering roof damage or revealing underlying roofing 

material, where the pre-disaster image makes clear that the blue portions of the roof are likely the 

only remaining small areas of undamaged roof. The challenge of automatically comparing 

images taken of different angles and color balance is also apparent.  
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Map Data Pre-Disaster: (Google, 2018); Post-Disaster: (NGS, 2018) 

Figure 3 Example Pre-Disaster and Post-Disaster Images 
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Table 2 Table of Structures, Objects, and Classifications 
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Figure 4 Validation of Simulated Output Classifications 

 

Table 3 Pilot Scenario Listing 

 

collapsed.wall.with.adjacent.debris >= 0.5

collapsed.roof.and.internal.visible.debris >= 0.5

intact.roof >= 0.5

missing.roof.sections >= 0.5

light.roof.damage >= 0.5

intact.roof >= 0.5

missing.roof.shingles >= 0.5

yes no

1

2

4

5

10

11

22 23

3

6

7

14

15

30 31

collapsed.wall.with.adjacent.debris >= 0.5

collapsed.roof.and.internal.visible.debris >= 0.5

intact.roof >= 0.5

missing.roof.sections >= 0.5

light.roof.damage >= 0.5

intact.roof >= 0.5

missing.roof.shingles >= 0.5

Signif icant
.24  .19  .19  .38

100%

Critical

.56  .00  .00  .44
43%

Critical
1.00  .00  .00  .00

14%

Signif icant
.33  .00  .00  .67

29%

Critical
1.00  .00  .00  .00

5%

Signif icant
.20  .00  .00  .80

24%

Critical
1.00  .00  .00  .00

5%

Signif icant
.00  .00  .00  1.00

19%

Minimal

.00  .33  .33  .33
57%

Minimal
.00  1.00  .00  .00

19%

No Damage
.00  .00  .50  .50

38%

No Damage
.00  .00  1.00  .00

14%

Signif icant
.00  .00  .20  .80

24%

No Damage
.00  .00  1.00  .00

5%

Signif icant
.00  .00  .00  1.00

19%

yes no

1

2

4

5

10

11

22 23

3

6

7

14

15

30 31

ID Land Use Structure Damage Structure Damage

1 Large Commercial Erroneous 9 Heavy No Damage Heavy Minimal

2 Medium Commerical Faithful 6 Medium Critical Heavy Significant

3 Large Government Faithful 3 Heavy Minimal Heavy Significant

4 Residential Trailer Faithful 6 Light Critical Light Significant

5 Residential Trailer Faithful 7 Light Minimal Light Significant

6 Residential Trailer Erroneous 7 Light Significant Light Minimal

7 Residential Trailer Faithful 7 Light No Damage Light Minimal

8 Large Commercial Faithful 10 Heavy Critical Heavy Significant

9 Multi-Family Residential Faithful 4 Medium Critical Medium No Damage

10 Multi-Family Residential Faithful 4 Medium Significant Medium Critical

11 Multi-Family Residential Faithful 5 Heavy Significant Heavy Critical

12 Medium Commercial Complex Erroneous 5 Medium Significant Heavy Minimal

13 Medium Commerical Erroneous 3 Medium Significant Heavy Significant

14 Single-Family Home Faithful 2 Medium Minimal Medium Significant

15 Single-Family Home Faithful 6 Medium Minimal Medium Significant

16 Medium Commercial Faithful 10 Medium Significant Heavy Significant

17 Medium Commercial Complex Erroneous 4 Medium Critical Medium Minimal

18 Large Industrial Faithful 11 Heavy Significant Medium Critical

19 [no building] Erroneous 12 Medium Significant Heavy Critical

20 [no building] Erroneous 10 Medium No Damage Medium Minimal

21 Place of Worship Faithful 7 Heavy No Damage Heavy Significant

22 Medium Commercial Faithful 3 Medium Significant Medium Critical

Scenarios Simulated Model Output

Next BestModel OutputError 

Mode

Intended 

Model Output
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F.1.4 Template-Based Explanation 

The neural network structures used by state-of-the-art explanation engines such as those 

by R. Hu, Rohrbach, Andreas, Darrell, and Saenko (2017), Mao, Xu, Yang, Wang, and Yuille 

(2014), Donahue et al. (2015), and Hendricks et al. (2018) use varieties of recurrent neural 

networks which predict the word sequences of explanations based on training the network on 

exemplar explanations. Natural language generation researchers looking to increase available 

training data beyond human-generated exemplars have developed a method of replacing 

keywords from existing exemplars into a template algorithmically to transfer grammar between 

domains (Wen et al., 2016). That method is used here to produce templates for explanations 

without the use of a neural network. 

In the visual explanation approach by Hendricks et al. (2016) visual explanations are 

generated from image descriptions and class definitions.1 To be consistent with other literature, 

the human-recognizable elements of images which are termed “features” in Hendricks et al. 

(2016) are termed “objects” here while individual measurable properties of images which may 

not be measurable or recognizable by humans are termed “features” (e.g. histograms of oriented 

gradients). Class definitions are comprised of lists of objects which are indicative of the class. 

Explanation templates for causal and counterfactual explanations were created in a manner 

similar to Wen et al. (2016) with slots where object labels could be substituted into delexified 

statements. Fixed strings were used for hedging explanations. Classification slots, object support 

slots, and object slots were identified based on the classes from the guideline and objects in the 

images. For each post-disaster image, objects were identified with classifications to feed the slots 

                                                 

1 Italics are used in this section to note terminology adopted from the literature to define the behavior of the 

simulated agent. Terms in quotes differ from the cited literature for reasons cited. 
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and slot-value pairs for explanations. Class definitions were created for building damage based 

on extractable objects in an iterative process through images selected for the scenarios. The list 

of structures, classes, and objects are listed in Table 2. 

The causal explanation template was framed in the form “Because” then listing objects 

present as in the image, which was discriminative to the next best classification using a 

supporting structure classification slot in the “with” form. The counterfactual explanation was in 

the form “It is not [next best class] because” with objects listed with “does not have” where an 

object is distinctive of and contained within the next best class definition and “has” when an 

object is not contained within the next best class definition. The slots listed for the objects in 

Table 2 were substituted into the templates joined with “and” when more than one object was 

inserted into a slot. 

An approach to algorithmically generate hedges for image explanations was not 

identified in the literature. Hedges can be made in a continuum which includes disclaimers, 

warnings, cautions, alerts, precautions, advisories, considerations, notices, and messages. Hyland 

(1996a) analyzed mitigating statements to claims in academic writing, and three categories 

identified were relevant to explanations as claims here: epistemic adjectives (possible, consistent 

with), speculative judgment (suggest, indicate), and modal verbs (may, could) used in an 

epistemic sense. Where feasible, the hedge was placed in the form of “Consider: [failure mode] 

may decrease the accuracy of assessments.” Each hedge used the modal verb “may” with the 

mitigating “consider,” allowing the hedge to be either true or false and to convey minimal 

information on the probability of the hedging statement being true. The final hedging 

explanations are listed in Table 1. 
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F.1.5 Qualtrics Integration 

Simulated output and explanations for the five conditions of each of the 22 scenarios 

were transformed into static images programmatically. A python script was developed for this 

purpose. These static images were referenced by the Qualtrics survey based on the scenario and 

experiment condition. Images were hosted on Amazon S3. The Qualtrics “Loop and Merge” 

feature was utilized to randomly select and sequence scenarios for presentation. 

F.1.6 Participant Briefing 

The following briefing was provided to workers: 

Crowdsourcing has been used for many years to rapidly assess damage after 

natural disasters. The results have been used to inform disaster relief officials 

of the extent of damage and areas to focus relief efforts. Because of the volume 

of data and urgent time sensitivity, automated damage assessments are being 

tested. Combining crowdsourcing with automated damage assessments is 

expected to increase quality and speed, but both the automated system and 

crowd workers must learn the unique aspects of each disaster in a partnership.  

  

Your task is to review 10 images of buildings and classify the type of building 

and the extent of damage using the guideline below. Rate only the building at 

the center of the image as there may be more than one building. If you place 

your mouse cursor over the image you can magnify sections for more detail. 

After you submit your rating, you will receive a rating from the Automated 

Damage Assessment Machine (ADAM) for your review. Please evaluate this 
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assessment and, if necessary, review the images again. You can change your 

ratings, if desired. If you do not believe the image is of a building, please mark 

"no structure". 

An adapted presentation of the text of the damage assessment guide by Achkar et al. 

(2016) was included below the briefing, shown in Figure 5. The guide could be recalled for 

review while assessing images in a separate user-interface window. At the end of the survey 

participants were debriefed to inform them that their contribution supported future efforts in 

disaster damage assessment, but ensured they understood it was a research project. 

 

Figure 5 Classification Guideline 

Note. Categories and descriptions adopted from Achkar et al. (2016). 
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To ensure the validity of the task and instrument a series of tests were conducted with 

multiple improvement cycles. All participants were recruited from Mechanical Turk, as in the 

study. In the first round a telephone interview was conducted while the participant concurrently 

completed the survey. “Individual debriefing” (Ruel, 2015) was employed to evaluate the 

briefing and study measures, and “cognitive interviewing” (Ruel, 2015) was employed for the 

damage assessment task. The ten scenarios selected for this initial test had the same 50% mix of 

faithful and erroneous automated classification performance and variation in structure types. The 

erroneous automated classification scenario with square retention ponds and retaining walls 

(Scenario 20) was selected to evaluate how participants reacted to a “no structure” true rating. 

For erroneous automated classifications two “heavy,” one “light,” and two “medium” structure 

scenarios were selected. For faithful classification scenarios, one “heavy,” four “medium,” and 

three “light” scenarios were selected. The order of scenarios was fixed for all participants in the 

pre-test in the same randomized order to simply the interview process. The later pre-tests 

recruited participants, as in the study, completing the instrument independently. The second 

round of testing assessed the recruiting and qualification procedures, the assessment outcomes 

for scenarios, the effectiveness of the manipulation of the independent variables, and the 

measurement of the reliability of scales. Ten scenarios were selected randomly per participant 

from the full set. As such the number of erroneous scenarios varied between participants, which 

allowed evaluating the effect of the number of erroneous scenarios during testing. Later rounds 

primarily refined manipulation checks, and the final test was the initial set of respondents for the 

final instrument as used in the study. 
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F.2 Instrument Testing 

F.2.1 Interview Pre-Test 

The initial pre-test using a telephone interview was performed between January 11th and 

13th, 2019 to evaluate the simulation task and assess how participants interpreted the measures. A 

total of six participants were recruited from Mechanical Turk. The recruiting advertisement was 

modified to add the telephone interview requirement, but was otherwise identical to the later 

phases. Each experiment condition was utilized in the pre-test, with the control condition 

appearing twice. The briefing, rating task, and attitude survey questions were separately 

discussed for impressions and feedback. The interview guide appears in Appendix E. Two 

participants had no prior damage assessment experience, two had some prior experience, and two 

had evaluated many hundreds of images using multiple platforms. The interviews were between 

16 and 47 minutes long. Feedback on the overall task about the length and number of images and 

survey questions was positive with no participants reporting fatigue. None of the participants had 

previously rated images with the assistance of an automated assessment.  

Participants with prior experience reported the tool as “similar to” or “better than” other 

tools they had used. The images were expressed by participants to be better quality with clearer 

and less obscured images. More experienced raters had the longest interviews and verbalized 

their decision-making process in the greatest detail. None of the participants was familiar with 

the exact rating guideline used in this study, but those with prior written guideline experience felt 

the guideline in this study was clearer and more useful.   

F.2.2 Pre-Test Sample Description  

The second round of pre-testing was performed from January 15th to 18th, 2019. 

Participants were recruited as in the study to test overall procedures and measurement reliability. 
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The instrument utilized appears in Appendix B. Data from this second round was used to 

evaluate rating of the scenarios and selection for the study. No submissions for qualification 

were eliminated by the English proficiency requirement. A total of 58 participants were 

recruited, of which 5 failed the attention check (91.4% pass rate). The median completion time of 

the survey was 16 minutes. Each condition had between 9 and 14 responses. Scenarios were 

assessed by between 17 and 32 participants with an average of 24.  

The composition of the sample was 42% female, 58% male with an average age of 37 

years (median 36). A total of 15% of participants had a high school diploma or equivalent, 34% 

had some post-high school education, 43% Bachelor’s degree, and 7.5% with some graduate 

schooling or a graduate degree. Seven participants reported no prior experience in damage 

assessment of aerial images. The 46 respondents with previous experience self-rated a mean 6.98 

on an 18-point composite scale, standard deviation 3.04. The highest category of experience was 

reported by 26% of respondents (more than 500 images), indicating the potential to meaningfully 

increase discrimination among the most highly experienced.  

F.2.3 Scenario Assessment Outcomes 

The consensus of participant assessments was compared to individual assessments in the 

initial step (prior to seeing the automated assessment). The goal was to check for participants that 

answered randomly in the initial step, evaluate any role of expertise in rating outcomes, and 

evaluate any relationship between time for submission and consensus agreement. Because there 

are no assumed “correct” ratings for the scenarios, consensus among participants was used to 

evaluate repeatability of outcomes rather than their accuracy. The number of participants by 

number of scenarios they agreed with the consensus appears in Table 4.  
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Table 4 Pilot Agreement with Consensus  

 

Most participants (48 out of the 53) produced damage assessments in agreement with the 

consensus in at least 50% of the scenarios they assessed. Within this group there was no 

statistically significant relationship between completion time and agreement with the consensus 

(Pearson correlation, p = 0.61). Within the group of five low-consensus participants, the 

respondent with the least agreement and ratings consistent with random chance also did not have 

high agreement with the automated assessment in the review step. While that participant 

completed the survey in five minutes and 23 seconds, other participants that completed the 

survey between five and six minutes achieved 80% agreement. While it is likely the single low 

agreement participant input random ratings, the time to complete the survey was not predictive 

of rating agreement with the consensus. These results support the validity of the damage 

assessment task and respondent pool achieve repeatable structure and damage assessments. 

F.2.4 Effect of Number of Erroneous Scenarios 

The number of erroneous scenarios participants received varied as the ten scenarios were 

randomly selected from the full set for pilot participants. The median number of erroneous 

scenarios was 4, with minimum of 2 and maximum of 7. The number of participants for each 

# of Scenarios Damage Structure

2 1

3 1 2

4 4 3

5 9 3

6 19 6

7 11 10

8 8 14

9 1 12

10 2

Pilot Participant Agreement with Consensus

(# of pilot participants)
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count in increasing order was 4, 17, 14, 13, 4, and 1. The conclusions that can be reached are 

limited due to differences in experimental manipulation and small group sizes; however, any 

collapse in trust as a result of error rate would be observable. The study variables were assessed 

for correlation with the number of erroneous scenarios received as well as general linear models 

using the count as a covariate, and none of the differences in means or correlations were 

statistically significant. Means with the greatest differences between conditions were the single-

item measures of the trust in the intelligent agent and cognitive load. These measures show a 

potential greater trust and lower cognitive load for the four participants with only 2 erroneous 

scenarios (6.25 on a 7-point scale and 7.5 on the 9-point scale, respectively), but from 3 to 6 

there were only small differences in means (between 4.5 and 4.8, and 7.75 and 8.24). The single 

participant that received 7 erroneous scenarios rated trust in the intelligent agent “5” and total 

cognitive load “6.” Without evidence to suggest adjusting the error rate, 50% was retained. 

F.2.5 Scenario Selection for the Study 

The consensus “initial step” participant assessment prior to being presented the 

automated assessment for each of the evaluated scenarios appears in Table 5. Scenarios are 

grouped into those selected for the study to represent faithful scenarios, erroneous scenarios, and 

those not selected. Ratings highlighted in green indicate agreement of the participant consensus 

with the simulated automated assessment. The table also shows sample size per scenario and the 

automated assessment presented in the “review step.” The percentages indicated are the 

proportions of participants that agreed with the consensus for structure type and damage 

classification, and the proportion that disagreed with the automated damage assessment.  In the 

initial step the consensus was shared by an average of 72% of participants on structure type and 

62% for damage classification. One-way analysis of variance was used to evaluate differences in 
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outcomes between scenarios. The test of perceived difficulty was significant F(21,529)=1.783, p 

= 0.018; however, a Tukey HSD test did not differentiate means between scenarios (p = 0.058). 

Differences in the duration of the initial assessment were not significant F(21,529)=1.425, p = 

0.100. 

Table 5 Pilot Scenario Ratings and Outcomes 

 

Erroneous scenarios were selected on the basis of: (a) inconsistency of the automated 

output with the guideline, and (b) lack of agreement with the automated assessment in the initial 

review. None of the participants selected the same damage classification as the automated 

assessment in the initial step for four of the erroneous scenarios selected, and one scenario had 

one participant (4%) select the erroneous rating. While the correct answer is not necessarily 

determinable, this will ensure the erroneous answers were unlikely to be agreeable to the vast 

majority of participants. 

Automated

Scenario Disagree Time Perceived

Type # n Structure Damage Structure Damage Damage (seconds) Difficulty Structure Damage

7 19 Light Minimal 74% 58% 79% 57 3.1 Light No Damage

8 25 Heavy Critical 48% 52% 48% 39 3.2 Heavy Critical

10 25 Medium Significant 80% 52% 48% 41 3.7 Medium Significant

18 28 Heavy Critical 61% 79% 79% 26 2.5 Heavy Significant

22 21 Heavy Significant 57% 62% 38% 42 3.1 Medium Significant

1 17 Heavy Significant 76% 53% 100% 30 3.3 Heavy No Damage

9 32 Medium No Damage 84% 56% 100% 36 3.4 Medium Critical

17 29 Medium Minimal 90% 41% 100% 36 3.2 Medium Critical

19 23 No Structure No Damage 91% 74% 96% 36 3.3 Medium Significant

21 21 Heavy Minimal 62% 76% 100% 29 3.5 Medium No Damage

2 29 Heavy Significant 62% 59% 69% 40 3.2 Medium Critical

3 24 Heavy Minimal 83% 46% 54% 28 2.5 Heavy Minimal

4 22 Light Critical 82% 50% 50% 29 3.3 Light Critical

5 22 Medium Minimal 59% 45% 55% 33 3.4 Light Minimal

6 24 Light Critical 71% 83% 17% 21 2.8 Light Significant

11 27 Heavy Significant 70% 59% 41% 33 3.2 Heavy Significant

12 25 Medium Significant 60% 72% 28% 27 3.2 Medium Significant

13 20 Medium Minimal 50% 60% 60% 27 3.7 Medium Significant

14 22 Medium Minimal 73% 86% 14% 24 2.2 Medium Minimal

15 26 Medium Minimal 88% 69% 31% 32 2.8 Medium Minimal

16 29 Medium Significant 62% 48% 52% 29 3.4 Medium Significant

20 20 No Structure No Damage 95% 90% 10% 23 2.4 Medium No Damage

Green highlight indicates agreement of participant consensus and the automated assessment.

Consensus Rating Agreement

Not Selected

Erroneous

Faithful

Participant

Automated AssessmentInitial Step Assessment
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Faithful scenarios were selected on the basis of being (a) most clearly consistent with the 

damage assessment guideline compared to the other faithful scenarios, and (b) exhibiting a level 

of disagreement with participants in the initial review such that the automated assessment acts as 

more than a confirmation of initial assessments. The selected faithful scenarios had average 

consensus agreement of approximately 64% for structure and 60% damage classifications; 

however, that consensus was not in agreement with the yet-to-be-revealed automated assessment 

for three scenarios. Disagreement with the automated damage classification was 59% on average, 

ranging between 38% to 79% by scenario. 

F.2.6 Evaluation of the Measurement Model 

Scale reliability was assessed with Cronbach alpha calculated using SPSS version 25 

using the pre-test data collection of participants after the interviews were completed. Each of the 

dependent and alternative explanation composite measures was found to have Cronbach alpha 

metrics of 0.708 or greater. Exploratory factor analysis using principal components analysis with 

varimax rotation was employed to analyze the multi-item dependent measures.  

For the self-efficacy items, SE8 and SE9 extracted into a second component with an 

eigenvalue of 1.27, item loadings greater than 0.850, and first component item loadings of 0.133 

and 0.192. These two items were most closely related to the automated assessor’s impact on the 

ability to perform the task. Reliance has been found as a separate dimension from both 

confidence and trust in automation complacency (Lee & See, 2004; Singh et al., 1993). Item SE4 

had the lowest loading on the first component (0.700) and greatest cross-loading (0.524) and as 

least distinct on either dimension, was dropped from the study. By removing items SE4, SE8, 

and SE9 alpha increased from 0.905 to 0.930.  
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The deleted self-efficacy items SE8 and SE9 were relabeled RE1 and RE2 to evaluate the 

explanatory potential of “automation reliance.” Their composite score (by simple addition) had 

correlations greater than an absolute value of 0.200 with germane cognitive load (r = 0.307, p = 

0.025), extraneous cognitive load (r=−0.250, p = 0.071), previous task experience (r=−0.265, p = 

0.056), and dispositional trust (r = 0.240, p = 0.084). A third item RE3, “I think the automated 

assessor prevents manual assessment errors” was added to meet recommendations of having at 

least three-items for PLS-SEM analysis of a composite construct (Hair et al., 2016), and the scale 

was retained as an alternate explanation.  

Cronbach’s alpha for the three components of cognitive load were: intrinsic 0.786, 

germane 0.829, and extraneous 0.708. The nine items of cognitive load extracted three 

components with 73% of the variance, with the items loading 0.654 or greater on their respective 

dimensions. ICL2 was the highest cross-loading item loaded 0.690 on the intrinsic load 

component and 0.493 on germane load component, followed by ECL1 loading 0.654 on 

extraneous load component and 0.295 on intrinsic component load. The remaining cross loadings 

were below 0.200. All items were retained since they loaded most strongly on their original 

dimensions as developed by Klepsch et al. (2017). Total cognitive load did not have a 

statistically significant correlation with the sum of all cognitive load scores (r = 0.172, p = 

0.217), however it is known that the three components are not best modeled as additive with 

equal weight (Klepsch et al., 2017). The single item for total cognitive load had a statistically 

significant correlation with the germane load composite score (r = 0.504, p < 0.001). Across all 

pilot participants only the top three points of the 9-point scale were utilized. 

The six items of the attribution of agent intelligence scale extracted a single component 

with eigenvalue of 3.402 representing 56.7% of the variance of the items. The lowest loaded item 
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was ATT5 “is predictable” with loading of 0.575. Cronbach’s alpha was 0.839 for the whole 

scale, however deleting ATT5 would increase to 0.847. With limited improvement and 

consistent membership from the source study (Terada & Yamada, 2017), the item was retained. 

The viability of the alternate explanations was assessed. With the exception of previous 

task experience, each had a correlation with dependent variable of an absolute value of r = 0.2 or 

greater. As a result, all of the alternate explanations were retained. 

F.2.7 Manipulation Check Refinement 

The test of manipulation of the independent variables for explanation types produced 

significant differences in means using Independent T-Tests in the correct association with the 

presence of the manipulation with the original items: causal explanation difference=3.20 (t = 

9.81, df = 51, p < 0.001), counterfactual explanation difference=1.38 (t = 3.71, df = 51, p = 

0.001), and hedging explanation difference=1.16 (t = 3.20, df = 51, p = 0.002).  

The original measures were opinion statements about the agent rated on a 7-point Likert-

type scale. Binary classification tests2 were utilized to analyze participant response to the 

manipulation items making the responses Binary with a threshold of “Agree” and above being 

considered a “Yes.” A score of 1.00 on a test metric indicates perfect matching of participant 

response and the manipulation state and 0.00 indicates answering inverse to the intended state. 

The initial item wording found sensitivity for the causal explanation was 0.91 indicating a high 

ability for participants to detect the explanation, and specificity was 1.00 indicating that no 

participants incorrectly identified the presence of the explanation. Further, precision was 1.00 

showing that  no participants falsely indicated the condition while also indicating the presence of 

                                                 

2 Sensitivity = Count of true positives divided by the sum of count of true positive and false negative. 

Specificity = Count of true negatives divided by the sum of count of true negatives and false positives. 

Precision = Count of true positives divided by the sum of count of true positives and false positives. 
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the condition correctly. For counterfactual and hedging conditions sensitivities were 0.78 and 

0.83, specificities were 0.67 and 0.53, and precision was 0.64 and 0.58. These results indicate 

that the majority of respondents recalled the presence of the explanations consistently with the 

intended manipulation, with some lack of sensitivity, specificity, and precision for counterfactual 

and hedging explanations. While these results were consistent with successful manipulation, 

revisions to the items and rating options were tested to understand the false positive ratings for 

the presence of counterfactual and hedging explanations when they were not present. 

In the final revision of the items wording was simplified further and more directly 

connected to the manipulation, and responses were made binary “Yes” or “No” with a third 

option “Don’t Know/Don’t Remember” which was treated as a missing response. Reviewing the 

feedback from testing, some participants were viewing the task as a qualification for future 

damage assessment work. To address any potential of participants rating the tool and the agent 

with future qualification in mind, a message was added at the start of the measures which asked 

the participants to rate their opinion honestly and that their answers would have no effect on their 

eligibility for future tasks. The first 56 valid respondents for the study in the final form were used 

to evaluate the final revisions. Sensitivity, specificity, and precision for the explanation types 

were: causal 89%, 90%, 98%; counterfactual 76%, 60%, 57%; hedging 83%, 69%, 67%. Five 

respondents (9%) reported not knowing/remembering whether another classification was 

compared, and no respondents of the other explanation types used that option. These revisions 

reflected small improvements for hedging explanations, and small decreases in classification 

matching for causal and counterfactual explanations. With a similar response pattern across 

multiple revisions and false responses occurring in the lack of presence of the explanation type, 

data collection was completed without further modifications.    
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F.2.8 Improvements to the Task 

Over the course of testing the following improvements were made to the task: a notice 

was placed after the briefing to ensure that participants understood the task was part of a study, 

and a reminder was given not to share the contents with other potential participants. Each of the 

participants interpreted the simulation as a genuine damage assessment tool and two participants 

discussed how they expected participants to compare interpretations of guidelines and images on 

public forums in an effort to improve their understanding and the quality of their results. The 

notice was added to limit the extent that the manipulation might be exposed by comparison 

across participants. Some participants evaluated buildings in the image other than the intended 

building. This was primarily occurring in the second step following the automated assessment 

output to rationalize erroneous assessments. To increase clarity of the task, a box with a blue 

boundary was added around the subject building in the post-damage image to highlight the 

subject of the classification but not to highlight specific elements of the explanation. Checkboxes 

were added in the second step on each image to provide feedback for images that were (a) 

obscured or (b) blurry, and to (c) indicate that the automated assessment was incorrect. The 

ADAM (Automated Damage Assessment Machine) acronym was added to simplify references to 

the simulated agent. An advisory statement that the answers would not impact eligibility for 

future tasks was included.  

Only half of the participants passed the original attention check despite otherwise being 

attentive in the telephone interview. The distractors were made less challenging and the “none of 

the above” option was replaced with a fourth distractor. No revisions were suggested or made to 
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the wording of the briefing or to the study measures and participants expressed meanings behind 

the items of the measures that was consistent with their constructs.  
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