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ABSTRACT 

Cancer recurrence is the major cause of cancer mortality. Despite tremendous research efforts, 

there is a dearth of biomarkers that reliably predict risk of cancer recurrence. Currently available 

biomarkers and tools in the clinic have limited usefulness to accurately identify patients with a 

higher risk of recurrence. Consequently, cancer patients suffer either from under- or over- 

treatment.  

Recent advances in machine learning and image analysis have facilitated development of 

techniques that translate digital images of tumors into rich source of new data.  Leveraging 

these computational advances, my work addresses the unmet need to find risk-predictive 

biomarkers for Triple Negative Breast Cancer (TNBC), Ductal Carcinoma in-situ (DCIS), and 

Pancreatic Neuroendocrine Tumors (PanNETs). I have developed unique, clinically facile, 

models that determine the risk of recurrence, either local, invasive, or metastatic in these 



tumors. All models employ hematoxylin and eosin (H&E) stained digitized images of patient 

tumor samples as the primary source of data. The TNBC (n=322) models identified unique 

signatures from a panel of 133 protein biomarkers, relevant to breast cancer, to predict site of 

metastasis (brain, lung, liver, or bone) for TNBC patients. Even our least significant model (bone 

metastasis) offered superior prognostic value than clinopathological variables (Hazard Ratio 

[HR] of 5.123 vs. 1.397 p<0.05). A second model predicted 10-year recurrence risk, in women 

with DCIS treated with breast conserving surgery, by identifying prognostically relevant features 

of tumor architecture from digitized H&E slides (n=344), using a novel two-step classification 

approach. In the validation cohort, our DCIS model provided a significantly higher HR (6.39) 

versus any clinopathological marker (p<0.05). The third model is a deep-learning based, multi-

label (annotation followed by metastasis association), whole slide image analysis pipeline 

(n=90) that identified a PanNET high risk group with over an 8x higher risk of metastasis (versus 

the low risk group p<0.05), regardless of cofounding clinical variables. These machine-learning 

based models may guide treatment decisions and demonstrate proof-of-principle that 

computational pathology has tremendous clinical utility. 
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1 Introduction and Literature Review 

Despite tremendous research, activism, and improvements in screening and therapy, cancer still 

represents either the first or second leading cause of death for almost all age and sex groups in 

the United States [1]. However, the cause of the overwhelming majority of solid tumor deaths are 

not due to the primary cancer, but instead from the cancer recurrence, specifically metastasis [2]. 

The process of metastasis, and to a smaller intent local recurrence, is complicated and not 

completely understood. In no sequential order, cells have to pick up an aggressive phenotypes 

through epi/genetic instabilities, gain prerequisite properties such as self-renewal and motility, 

push the surrounding microenvironment towards a more invasion supportive role, gain the ability 

to enter, and survive, blood vessels (and change its phenotype to mesenchymal like within it),  be 

able to ‘home’ into targets outside the blood vessel, extravasate toward them, and finally (and 

perhaps most complexly) have to be able to colonize, proliferate, and survive in a vastly different 

microenvironment [3]. Unsurprisingly, confidently predicting patients whose cancer will undergo 

this perfect storm, whose cancer will spread or comes back, has been an exercise in futility.  

There are worryingly few prognostic markers actually used clinically in the overall landscape of 

cancer [4] and, paradoxically, the relative number (versus published rate) of biomarkers approved 

by the FDA has actually been going down [5]. While standard of care clinical variables, such as 

size and lymph node invasion, have a logical interpretations of metastatic risk, in reality, they are 

poorly prognostic [6] and ultimately can only accurately predict recurrence risk in around 30% of 

patient [7]. Although the potential is enormous, the major hurdle to gain clinical acceptance is to 

show utility in treatment options and move towards personalized healthcare [5]. Herein my 

research focuses on providing biomarkers towards predicting metastasis or recurrences, for three 

cancers with significant uncertainty in therapy decision making.  
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1.1 Triple Negative Breast Cancer and Site of Metastasis 

Breast cancer is an extremely heterogeneous disease. A classical method to ‘group’ breast 

cancers (based on the underlying biology and treatment options) is through molecular subtypes. 

Classically, for breast cancer, they are often determined by the presence, or absence, of 3 key 

receptors:  estrogen receptor (ER), progesterone receptor (PR), and hormone epidermal growth 

factor receptor 2 (HER-2) [8]. Distinct combinations of these receptors constitute different 

molecular subtypes, which often have differences in cancer biology and metastatic risk [9]. A 

particularly worrisome subtype is one which lacks each receptor, termed “Triple Negative Breast 

Cancer”, or TNBC. TNBC’s have extremely aggressive clinical behavior, with more than two times 

the risk of metastasis compared to other subtypes [10], and, importantly, to sites which are more 

likely to ultimately lead to death [11, 12]. If the propensity of a TNBC cancer to metastasize to a 

specific organ could be identified, then specialized preemptive, site-specific, therapies (such as 

through the use of RANKL antibodies if the cancer is primed for bone metastasis [13]) could be 

used to significantly improve patient outcomes.  

1.2 Ductal Carcinoma in Situ and Recurrence 

Ductal Carcinoma in Situ (DCIS) is a non-obligate precursor of invasive breast cancer where the 

malignant cells are confined to the lumen of a mammary duct by an intact outer myoepithelial 

layer and basement membrane [14]. Despite the similarity of their genetic profile [15], risk factors 

[16], morphology, and even the degree of heterogeneity [17]  to invasive ductal carcinoma, 

untreated DCIS progresses to invasive disease only in ~40% of cases, sometimes only after 

decades [18-20]. However, this risk diminishes to ~10-20% after treatment [21]. This invasive 

recurrence is the most significant end-point for DCIS clinically, and yet it lacks accurate prognostic 

markers [22, 23]. While breast conserving surgery (also known as a lumpectomy) is the most 

common surgical treatment for DCIS [24], there is no consensus regarding the use of adjuvant 

radiation therapy, even for low grade or small DCIS tumors [25]. Without a clear understanding of 
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recurrence risk, clinicians are forced to balance, potentially significant, side effects associated 

with radiation [26-29] without knowing if it will provide marginal, if any, benefit towards 

suppressing recurrence [30, 31]. Ultimately, this results in many patients either over (i.e. 

unnecessary radiation) or under (i.e. omitted radiation when they will in fact recur) treated [32]. 

While attempts have been made to develop biomarkers to determine patient risk, and in turn 

adjuvant radiation decision making, they have lacked cost effectiveness [33], have been 

inconsistent [23], or simply not good enough [34]. 

1.3 Pancreatic Neuroendocrine Tumor and Metastasis 

Despite overall trends showing a decrease in cancer deaths, pancreatic cancers death rates are 

alarmingly climbing [1]. Pancreatic neuroendocrine tumors are described as epithelial derived 

tumor cells with neuroendocrine differentiation. Through constant evolution, the World Health 

Organization (WHO) has described the two most common types, depending on differentiation and 

proliferation, as well-differentiated pancreatic neuroendocrine tumors (PanNETs) and poorly 

differentiated pancreatic neuroendocrine carcinomas (PanNECs)[35]. Although it current 

accounts for about 2.2 per 100,000 annual cases in the United States[36], PanNETs are the 

second most common type of pancreatic cancer, and its incidence is steadily rising [37]. Although 

the overall survival for PanNET patients is optimistic, long term follow up has shown that even 

small resected tumors show metastasis in up to 15% of cases [38]. Unfortunately, only Ki67 and 

Mitotic Index have widespread use prognostically for PanNET, with morphology, even high risk 

morphology, often not adopted [39]. Markers to determine metastasis risk for PanNET patients 

had either no control for overfitting or did not outperform clinopathological markers [40, 41]. A 

wide assortment of both systemic and targeted therapies could be tailored for patients 

management if risk could be accurately ascertained [42].  
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1.4 Computational Pathology 

A promising new avenue of biomarker development is through the rapid developing field of 

computational pathology.  Defined as a way to analyze complex, multidimensional, laboratory 

data, including molecular (e.g. protein or gene expression) and histological (e.g. IHC or H&E), 

and utilize it to generate predictive inferences [43]. Multiple cancer types including invasive breast 

carcinoma [44, 45], prostate [46], colon [47], and lung [48] have benefited from using these 

techniques to assist with diagnosis, tumor classification, predicting patient prognosis and even, 

extremely accurately, inferring H&E staining on unstained tissue [49]. Systems used to analyze 

computational pathology data, for predictive purposes, could be roughly grouped (and ordered in 

increasing accuracy) as statistical models, machine learning, and deep learning [50]. While deep 

learning networks have become the go-to for digital image analysis, sweeping most recent 

histopathology competitions[51], the ability of hand-crafted features within traditional machine 

learning models has provided super human results [52] and had the added benefit of 

interpretability. Although statistical models theoretically provide the poorest relative predictions, 

they provide the only commercial models, with genetic data, currently used in the clinic (such as 

the Oncotype [53] and MammaPrint [54] models), perhaps due to the obvious nature of the 

features and results. 

I have applied all 3 types of models above to create 3 novel computational pathology 

tools/pipelines using a variety of multidimensional retrospective datatypes. The first model was a 

statistical one, used alongside an exhaustive protein biomarker panel, to determine risk of site-

specific metastasis for TNBC patients. In this project I developed 4 separate regression models, 

of two protein markers each, that significantly identified patients at high risk for either bone, brain, 

liver, and lung metastasis. The crux of my research presented here, though, is developing 

biomarkers which leveraged whole slide image analysis of H&E stained surgical tissue. In both 

image analysis projects I take advantage of the tremendous variability of these stains within 
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different tissue regions [55] to develop a whole slide annotation tool. After this, I analyze the 

patterns and distribution of these stains (either through hand crafted features or within a 

convolutional neural network) within the previously annotated tissue classes. Variations in these 

stains could reflect changes in tissue architecture and cellular cytological features, or broadly, 

morphology. The morphology of cancer has been shown to correlate with different gene 

expression patterns, some of which promote invasive characteristics and therefore increase 

metastatic risk [56]. Perhaps the most readily observable morphological changes are within 

cancer cells nuclei, known as nuclear pleomorphism, and include increased size and atypia and 

chromatin clumping [39]. Identifying these changes are often used as backbones in tumor grading 

systems, traditional prognostic markers [57]. Through analysis of whole slide variations in these 

morphological changes, or a nested deep learning model to identify metastasis associated areas, 

I create tools with state-of-the-art prognostic value for DCIS and PanNET patients, respectively. 
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2 Novel immunohistochemistry-based signatures to predict metastatic site of triple-

negative breast cancers 

Parts of this chapter have been published verbatim in British Journal of Cancer as ‘Novel 

immunohistochemistry-based signatures to predict metastatic site of triple-negative breast 

cancers’. 

Authors Listed on the paper: Sergey Klimov, Padmashree CG Rida, Mohammed A 

Aleskandarany, Andrew R Green, Ian O Ellis, Emiel AM Janssen, Emad A Rakha and Ritu Aneja. 

 

2.1 Abstract 

Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and 

the most common underlying cause of cancer related deaths, the outcome following the 

development of DM is related to the site of metastasis. Triple negative BC (TNBC) is an 

aggressive form of BC characterised by early recurrences and high mortality. While multiple 

variables can be used to predict the risk of metastasis, few markers can predict the specific site 

of metastasis. This study aimed at identifying a biomarker signature to predict particular sites of 

DM in TNBC.  

In this study, a clinically annotated series of 322 TNBC were immunohistochemically stained with 

133 biomarkers relevant to BC, to develop multibiomarker models for predicting metastasis to the 

bone, liver, lung and brain. Patients who experienced metastasis to each site were compared to 

those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Cox univariate 

analyses. Biomarker combinations were finally ranked based on statistical significance and 

evaluated in multivariable analyses.  

Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 8, 

7, and 8 times higher risk of developing metastasis to the bone, liver, lung, and brain, respectively, 
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than low-risk subgroups. These models for predicting site-specific metastasis retained 

significance following adjustment for tumor size, patient age, and chemotherapy status.  

Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumors, enable 

prediction of specific sites of metastasis, and potentially unravel biomarkers previously unknown 

in site tropism.  

2.2 Introduction 

Breast cancer (BC) is the most common cancer and the second leading cause of cancer related 

deaths among North American women [U.S. Cancer Statistics Working 58], and presents the 

largest overall cancer threat for women worldwide [59]. The vast majority of breast cancer deaths 

result from dissemination of cancer to distant metastatic sites [60]. BC, unlike prostate or 

sarcomas [61], shows significantly more organ variation in metastasis [62], making it very 

challenging to employ site-specific surveillance/preventative measures.  

The molecular subtypes of BC  have been shown to have very different underlying biology and 

distinct metastasis patterns [9].Triple negative BC (TNBC) is a subtype of BC characterized by an 

absence of the estrogen receptor (ER), progesterone receptor (PR), and HER2 protein over-

expression. TNBCs account for around 16% of invasive BCs [63] and are considered one of the 

most clinically aggressive subtypes, with over twice the risk of distant metastasis relative to other 

molecular subtypes [10]. Compared to other subtypes, TNBCs also show much higher 

frequencies of metastasis to the brain and lung - sites associated with higher mortality compared 

to bone and other sites [11, 12]. Predicting TNBC’s propensity for metastasis to those specific 

sites may allow preventive therapy and enable active surveillance to significantly improve 

outcomes.  

The metastatic cascade is a multi-step process consisting of growth, vascularization, detachment, 

invasion, evasion of host defenses and survival in circulation, extravasation, and finally the ability 

to grow in the new organs’ microenvironment [3, 64]. Few cells are successfully able to 



8 
 

accomplish all of the steps, and require specific biological properties both for general metastasis 

(e.g. factors which trigger EMT) and site-specific metastasis (e.g. breaching the blood-brain-

barrier to colonize the brain)[3, 61, 65] . The similarity of genetic profiles between the primary and 

metastatic site tumors seems to suggest that many of the properties required for successful 

metastasis are developed early in the primary tumor cells well prior to the onset of metastasis 

[66]. Therefore, the identification of the specific biomarker profile of a primary tumor that is primed 

to metastasize to a specific site would enable the development of preventative and surveillance 

strategies tailored specifically to that particular site.  

Being able to predict site of metastasis has very tangible evidence of improving patient survival. 

For instance, Denosumab [67], a RANKL antibody, and Bonefos [13], an oral bisphosphonate 

clodronate, have shown significant effect in reducing bone specific metastasis in clinical trials. 

However, both are currently only recommended for patients who already show evidence of bone 

metastasis [68, 69]. For brain metastases, where the blood-brain-barrier makes targeting tumor 

areas very difficult [70], there has been success pre-clinically, using Vorinostat [71], a histone 

deactylase inhibitor, and in clinical trials via sorafenib [72], a kinase inhibitor. For lung metastasis 

there has been success of inhibiting metastasis by blocking specific lung guiding molecules, 

S100A8 and S100A9 [73]. Finally for liver, where COX-2 expression is increased, using etodolac 

markedly decreased invasive properties [74]. Thus, if the site of metastasis could be identified in 

advance, active surveillance and the use of preemptive therapies could be implemented [70].   

Studies involving genomic data have attempted to identify signatures for metastatic tropism. 

Multiple studies using microarray data have characterized gene expression profiles of BC that 

preferentially metastasized to lung or bone in mice [75, 76]. A retrospective study of transcriptomic 

data enabled the identification of a 6-gene prognostic classifier which could significantly 

discriminate BC patients who developed distant metastasis to lung [77]. Although the benefit of 

using genetic data is quite obvious, it also has pitfalls, the biggest of which is the lack of strong 
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correlation between (a) gene expression and protein levels, and (b) protein levels and protein 

activity levels, the latter of which can be extensively modified post-translationally. Additionally, 

while the price of sequencing a genome is decreasing exponentially, the price may still be 

prohibitive in a clinical setting [78]. 

In order to investigate protein signatures (in primary tumors) that are predictive of potential 

metastasis to specific anatomical sites, we evaluated a well-characterised cohort of clinically 

annotated TNBC with a long-term follow-up, utilizing the immunohistochemical expression of 133 

biomarkers with relevance to BC progression and metastasis. By taking into account the protein 

localization (nuclear and/or cytoplasmic), the staining intensity, percentage of cells expressing the 

biomarker, and standard clinicopathologic variables, we investigated over 400 variables to 

produce the most relevant statistical models. In this paper we describe a method for step-wise 

filtering that yielded robust predictive models for four distinct sites of TNBC metastasis:  bones, 

liver, lung, and brain.  

2.3 Materials and Methods 

2.3.1 Study Population 

This study was based on a well-characterised series of primary operable invasive breast 

carcinoma cases (TNM stage I-IIIA) diagnosed in Nottingham between 1989 and 1998 (N=1944) 

of which 322 were classified as TNBC [i.e. 0% IHC staining of PR, ER, and HER2 0/1+ IHC 

staining or 2+ FISH non-amplified] (Table 2.1). Patients’ clinical history and tumor characteristics, 

information on therapy, tumour recurrence and survival are described in previous publications 

[12, 79-83]. Data related to outcome including information on the development, site and time of 

DM and mortality were collected prospectively. Patients were treated according to a uniform 

protocol based on the Nottingham Prognostic Index (NPI) groups [84], ER and menopausal 

status. A systemic cyclophosphamide-methotrexate-5-fluorouracil (CMF) chemotherapy regimen 

was used if the patient was ER-negative provided the patient was considered fit enough to 

withstand this regimen. None of the patients received neoadjuvant or anti-HER2 targeted therapy.  
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Table S1. TNBC cohort clinical characteristics.   
Baseline characteristic Total (N = 322) 

Patient age     

Median Age (range), years 50 (25 - 71) 

Age <50, n (%) 157 (48.8) 

Age>=50, n (%) 157 (48.8) 

Menopausal Status, n (%) 

Pre 164 (50.9) 

Post 154 (47.8) 

Peri 2 (0.6) 

Nottingham Grade, n (%) 

1 7 (2.2) 

2 19 (5.9) 

3 295 (91.6) 

Tubularity Grade, n (%) 

1 3 (0.9) 

2 42 (13.4) 

3 270 (83.9) 

Mitotic Grade, n (%) 

1 14 (4.3) 

2 25 (7.8) 

3 276 (85.7) 

Nuclear Grade, n (%) 

1 1 (0.3) 

2 15 (4.7) 

3 297 (92.2) 

Chemotherapy, n (%) 

No Therapy 160 (49.7) 

Classic CMF 135 (41.9) 

Tumor Size 

Median Tumor Size (range), cm 2.2 (0.2 - 8.0) 

Size <2.0, n (%) 113 (34.4) 

Size >=2.5, n (%) 201 (60.5) 

Nottingham Prognostic Index 

Median NPI (range) 4.5 (1.3 - 7.6) 

Good Prognostic Index, n (%) 15 (4.5) 

Medium Prognostic Index, n (%) 220 (66.3) 

Poor Prognostic Index, n (%) 79 (23.8) 

LN Stage 

1 206 (64.0) 

2 81 (25.2) 

3 34 (10.6) 

Last follow up status 

Alive 174 (54.0) 

Died -Cause Unknown 7 (2.2) 

Died -Breast Cancer 109 (33.9) 

Died -Other Causes 31 (9.6) 

Table S1. TNBC cohort clinical characteristics.   

Table 2.1: Patient Characteristics 
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This study included 133 IHC-based biomarkers (Table 2.2) of clinical and biological relevance to 

BC [12, 79-83, 85-90] .  During the follow-up period (243 months) 197 patients (61.2%) remained 

disease-free while 111 (34.5%) developed DM.  Ethical approval was granted by Nottingham 

Research Ethics Committee 2 under the title ‘Development of a molecular genetic classification 

of breast cancer’ (C202313) and by The North West 7 Research Ethics Committee- Greater 

Manchester Central (10/H1008/72). 
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Table 2.2: Full list of biomarkers used in study.  Over 300 total variables were extracted when 
taking into account protein cellular location (Nuclei vs. Cytoplasm) and type of quantification 
(intensity, percentage, and Hscore). 

Immunity-related markers EGFR family members  Small secreted proteins 

CD3  EGFR TFF1 

CD8 Growth factors/Tyrosine-protein kinases  TFF3 

CD20 c-erb-B3   Transcription related proteins 

CD68  c-erb-B4   STAT1 

FOXP3  Fibroblast growth factor receptor STAT3 

Cell cycle-associated, 
proliferation,  Hormone receptors and ER-related  SOX10   

and apoptosis-related proteins AGTR1    ADA3   

Aurora A  Estrogen Receptor Beta 1 VGLL1   

BCL2   GR    Nuclear receptor co-activator 3 

CCNB1    
Hypoxia- and immunity-related and other 
markers hMOF   

CDK7    hypoxia-inducible factor 1  ID4   

C-Myc  IL-17  Transport proteins 

Cyclin D1    interferon gamma receptor 1 CD71 

H3mitosis  mannose receptor C type OATP2   

MAT1    Cell Adhesion Molecules  Tumor suppressor genes 

Ki67    alpha v integrin b6 BARD1   

MORF E-cadherin   BRCA1    

p16    EpCAM   BRCA2   

p21    Keratin 23   CHK2 

pAKTs473    N-Cadherin FHIT   

PARP1 Cleaved   P-cadherin    p53   

PIAS1   Luminal-associated cytokeratins PTEN 

PIASgamma Cytokeratin 7/8 Basal Cytokeratins 

Retinoblastoma   Cytokeratin 18 CK5/6 

TGFBeta1  Cytokeratin 19 CK14 

TK1   Nuclear Rceptor Superfamily member CK17 

TOP2A    Androgen Receptor  Proposed cancer stem cell marker 

UBC9   LRH1    CD24    

DNA damage response VDR (Vitamin D Receptor) CD44    

APE1   RAR  Other 

ATM   ROR Gamma   MAGE3    

ATR    Oncogenic PPARA   

Dicer   HDAC1    PPARBeta    

DNA PK   HDAC2    ST8SIA6    

Drosha   Histone Acp53K382   SUV    

gammaH2AX   Lactate dehydrogenase 5  NHERF1 

KU70/KU80   MTA1   KPNA2 

Nucleophosmin    PIK3CA    GMPR2  

RAD51   TWIST2    Cathepsin D   

SMC6L1   Other basal/myoepithelial-associated markers Chromogranin A   

Tip60    caveolin 1   Mucin 1 

XPD    FABP7  Mucin 2 

CHK1  Smooth muscle actin  STAC2   

2.3.2 Biomarker preparation 

Breast cancer tissue microarrays (TMA) were prepared and immunohistochemically stained as 

previously described [12, 79-83]. Positive and negative controls for each marker included in this 

study were used according to the supplier’s data sheet. Two cores were evaluated from each 

tumor and only staining of the invasive malignant cells was considered. Each core was scored 
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individually and the mean of the two readings was calculated. Immunohistochemical scoring was 

performed in a blind fashion. 

2.3.3 Selected Biomarker IHC details 

For all model selected antibodies; heat induced retrieval of antigen epitopes was carried out, when 

required, by microwave treatment of slides in 1 liter of 10 mM sodium citrate buffer (pH 6.0) for 

10 minutes at high power (800 W), followed by 10 minutes at low power (600 W).  All primary 

antibodies were incubated for 1 hour (60 min) according to the manufacturer recommendation.  

Secondary detection: was performed using the Novolink Kit-polymer detection system (Leica, 

Newcastle, UK), except for N-Cadherin which used ABC.  The following primary antibodies were 

used: MTA1 (Ab84136), KPNA2 (Ab84440), N-Cadherin (Sigma-C3865), XPD (Ab111596), 

RARα (Active Motif No: 39971), PARP1 (A6.4.12), BRCA2 (Ab110967).   

2.3.4 Statistical analysis 

Statistical analysis was carried out with SAS 9.4 ® software and Matlab version 9.2.0.556344 

(R2017a). Patients were first grouped according to the site of distant metastasis or to a “no 

metastasis” group. If a patient had multiple metastases, that patient would be included in all the 

relevant groups based on the sites of their multiple metastases. Differences between 

clinicopathological proportions were determined using χ2 test. Differences between continuous 

clinicopatholgical variables were evaluated via a 2-tailed t-test  

2.3.5 Biomarker feature Selection   

Due to variation of the number of biomarkers which each patient in our dataset was stained for 

(coefficient of variation = 0.36, not shown) and the difference in number of cases with informative 

data for each stained biomarker, we chose to select 2 biomarkers for each distant metastasis 

model. This allowed us to preserve substantial n numbers and to keep the models clinically facile. 

Biomarker selection (Figure 2.1A) was done using three progressive significance tests for each 

site.  First, 2-tailed t-tests were performed between patients in whom distant metastasis occurred 

to that site versus patients who remained distant metastasis-free. This is to test for significant 
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baseline differences between all biomarkers. Significantly different (p-value <0.05) biomarkers 

were displayed as waterfall plots, with the height of each bar representing the average difference 

between expression of that biomarker in the “site-specific metastasis” group versus the 

“metastasis-free” group. Further selection was done through logistic regression, with “yes versus 

no” binary responses using all the biomarkers, one by one, as predictors. This selection appeared 

to be more stringent, as much fewer biomarkers were shown to be significant. Variables that were 

selected both by the t-test and the logistic regression are represented by asterisks on the waterfall 

plots. Finally, the selected biomarkers were run through a univariate Cox Proportional Hazard 

models for prognostic filtering, with Wald p-values <0.05 indicating significant variables (unless 

no biomarkers were found using this criterion, in which case it was relaxed to 0.1). Time to site-

specific metastasis was considered as the time interval from date of surgery to date of distant 

metastasis to that particular site. Significant prognostic biomarkers were represented via arrows 

on the aforementioned waterfall plots.   

2.3.6 Model building 

Models were built by combining all previously selected prognostic biomarkers (in pairs), with the 

patient’s Nottingham Prognostic Index (NPI). Each model used the Cox parameter of the 

respective biomarkers as weights, combined into a score, and was thresholded (Figure 2.1B) by 

using Contal’s and O’Quigley’s approach [91]. The model chosen, for each distant site studied, 

was the one that minimized the Cox and Wald’s p-values (Figure 2.1C). The NPI threshold for 

testing risk of metastasis to each site using our models, was determined by finding the highest 

NPI value which would, regardless of the values for the IHC biomarkers in the relevant risk model, 

not allow the patient to have a score above the risk threshold (i.e., not allow the patient to fall into 

the high-risk group for that particular anatomical site).  
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Figure 2.1: Schematic depicting sequence of steps leading to development of a model that 
predicts site-specific metastasis in TNBC. Briefly, a two tailed t-test was used to compare the 

biomarker profile for each patient who developed a site-specific metastasis versus every patient 
who did not have any metastasis. The biomarkers that showed significant differences in 

expression were then compared prognostically, with a continuous univariate Cox model, for site-
specific metastasis hazard. Those significant variables which had a p-value <0.1 were then all 

tested with each other to identify the best combination, alongside NPI 

To evaluate if their ability to predict risk of site-specific metastasis was robust regardless of the 

nature of model used, the selected biomarkers were also evaluated using two different machine 

learning algorithms: a support vector machine (SVM) and an Ensemble tree-based method. 

Hyperparameters for both types of models were found using Bayesian optimization, through 

maximization of the ‘expected-improvement-plus’[92, 93] over 60 iterations (Table 2.3 and Table 

2.4). The following parameters were optimized for the SVM algorithm: Box Constraint, Kernel 
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Scale, Kernel type, Polynomial order (if polynomial kernel), and feature standardization. For the 

Ensemble tree algorithm, the following hyperparameters were optimized: Ensemble method 

(Bagging, GentleBoost, LogitBoost, AdaBoost, RUSBoost’), maximum number of branch nodes, 

minimum number of leaf nodes, and the split criteria. Both methods were also built with/without 

empirical prior dataset probabilities for site-specific metastasis. The optimized hyperparameters 

for each model are detailed in the online Supplementary Data. 

Table 2.3: Hyperparameters identified for each distant metastasis site’s Ensemble-based model 
through Bayesian optimization via maximization of the ‘expected-improvement-plus’ over 60 
iterations. 

  

Ensemble 
Method 

Max 
Branches 

Nodes 

Min 
Leaf 

Nodes 

Split 
Criteria 

Priori 

Bone RUSBoost 9 10 deviance Uniform 

Lung 
Bag 10 9 

Gini's 
diversity 

index Uniform 

Liver 
AdaBoostM1 3 3 

Gini's 
diversity 

index Uniform 

Brain AdaBoostM1 1 4 deviance Uniform 

 

Table 2.4:Hyperparameters identified for each distant metastasis site’s SVM-based model 
through Bayesian optimization via maximization of the ‘expected-improvement-plus’ over 60 
iterations. 

  

Box 
Constraint 

Kernel 
Scale 

Kernel 
Type 

Polynomial 
Order 

Standardization Priori 

Bone 0.001004734 1.389753067 gaussian - TRUE Uniform 

Lung 0.011543653 - polynomial 3 TRUE Uniform 

Liver 0.005632345 - linear - TRUE Uniform 

Brain 870.3162264 18.03512966 gaussian - TRUE Uniform 
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2.3.7 Model Validation 

All models (namely, our combined and then thresholded model, the optimized SVM, and the 

optimized Ensemble) to each site, were 5-fold cross-validated for survival risk evaluation. Kaplan-

Meier survival curves were created by combining the 5 testing sets and then used to confirm 

significance and rank models. The comparison metric used to compare the cross validated 

models was the Akaike Information Criterion (AIC), a measure of fit. The model which granted the 

lowest AIC per site, was considered the optimal model for that site. Multivariate analysis was also 

performed to control for the effects of chemotherapy, tumor size, and age.  

2.4 Results 

The ability of clinical variables to predict distant metastasis [94] and specifically in TNBCs [95] is 

well documented, with common features, as for instance tumor size, and nodal stage providing 

significant prognostic ability. Our data corroborate these findings by showing tumor size (HR = 

0.002), age (p < 0.048), and NPI (p < 0.0001) as having significant univariate impact on distant 

metastasis-free survival. However, a comparison of the distribution of these clinical factors for 

specific metastasis sites (Table 2.5) showed no difference in mean values of these variables or 

in the proportions of patients in each group.  

Table 2.5: Clinical characteristics of TNBC patients in this study categorized according to site of 
distant metastasis.  Proportions/means significance noted via either chi-square/ANOVA p-

values. 

 

χ2 P-value

Patient age

Median Age (range), years

Age <50, n(%)

Age>=50, n(%)

Menopausal Status, n (%)

Pre

Post

Peri

Nottingham Grade, n (%)

1

2

3

Chemotherapy, n (%)

No Therapy

Classic CMF

Median Tumor Size (range), cm 0.9862

Median NPI (range) 0.7488

50 (25 - 71)

Lung metastasis     

(n = 34)

48 (28 - 69)47 (31 - 68)48 (28 - 70)50 (28 - 71)

Baseline characteristic Total (N = 322)

Bone metastasis     

(n = 47)

Liver metastasis     

(n = 29)

Brain metastasis     

(n = 29)

157 (48.8) 24 (51.1) 14 (48.3) 12 (41.4) 16 (47.1)

157 (48.8) 23 (48.9) 15 (51.7) 17 (58.6) 17 (50.0)

154 (47.8) 22 (46.8) 11 (37.9) 11 (37.9) 15 (44.1)

164 (50.9) 23 (48.9) 16 (55.2) 18 (62.1) 17 (50.0)

7 (2.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

2 (0.6) 1 (2.1) 1 (3.4) 0 (0.0) 1 (2.9)

4 (8.5) 2 (6.9) 0 (0.0) 2 (5.9)

295 (91.6) 42 (89.4) 27 (93.1) 29 (100.0) 32 (94.1)

4.5 (1.3 - 7.6) 3.8 (3.1 - 6.9) 5 (3.2 - 7.3) 4.9 (4.3 - 6.8) 4.7 (3.4 - 7.3)

2.2 (0.2 - 8.0) 2.2 (0.6 - 7.0) 2.2 (1.2 - 6.5) 2.3 (1.3 - 6.0) 2.2 (1.1 - 6.5)

Table S5: Clinical characteristics of TNBC patients in this study categorized according to site of distant metastasis

0.8759

0.9109

0.8231

0.4651

160 (49.7) 21 (44.7) 11 (37.9) 9 (31.0) 16 (47.1)

135 (41.9) 20 (42.6) 13 (44.8) 13 (44.8) 13 (38.2)

19 (5.9)
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We also observed that chemotherapy did not affect recurrence patterns (Table 2.6). This led us 

to investigate if any of our biomarker models could provide the required specificity of being both 

prognostically relevant and unique to specific distant metastasis sites. 

Table 2.6: Recurrence pattern to specific sites depending on therapy regime. Proportions 
significance noted via chi-square p-values. 

 

2.4.1 Bone metastasis 

Among the protein biomarkers available in our TNBC dataset, those whose expression was 

significantly different in patients who developed bone metastasis (Fig. 2.2A), included several 

that were overexpressed (blue lines) or highly underexpressed (red lines) in the primary tumor. 

The 8 biomarkers which are eligible for inclusion into the final model, based on univariate 

prognostic significance, are indicated. Fig. 2.2B shows the results of the parameter selection, 

with the lowest p-value (p<0.0001) obtained combining the MTA1 nuclear H-score, KNPA2 

nuclear percentage, in addition to NPI. NPI was included in all our models as a stand-in for a 

 

Table S6.  Effect of therapy on distant metastasis site 

  

% post CMF % no chemotherapy P-value 

Bone Metastasis       

No 85.19 86.79 
0.6918 

Yes 14.81 13.21 

Liver Metastasis 

No 90.37 93.08 
0.3975 

Yes 9.63 6.92 

Lung Metastasis 

No 90.37 89.94 
0.9012 

Yes 9.63 10.06 

Brain Metastasis 

No 90.37 94.34 
0.1974 

Yes 9.63 5.66 
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“generalized risk of metastasis” as high-NPI patients have a higher risk of distant metastasis 

compared to low-NPI (Metastasis HR = 1.6, p<0.001). 

 

 

Figure 2.2: A) Waterfall plot showing significantly different biomarkers (as determined via a t-
test), when comparing patients who had bone metastasis versus patients with no metastasis.  

The y-axis represents difference between mean biomarker levels in patients who had no 
metastasis and patients who had bone metastasis. Blue lines represent significantly higher 

mean expression of biomarker among patients who had metastasis, while red represents the 
opposite. Asterisks indicate significance in logistic regression. Green arrows indicate 

significance in Cox regression for time until bone specific metastasis.   B) Ranked list of 
biomarker combinations (alongside NPI) based on their Cox regression p-values for bone 

metastasis. 
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This model, detailed below, enables us to identify patients who have a 5 times higher risk of 

developing metastasis to bones (Fig. 2.3A) and stayed significant after cross validation. 

Multivariate analysis (Table 2.7) confirmed the prognostic value of our model by having it 

independently associated with bone metastasis risk (p < 0.0001) following adjustment for age, 

chemotherapy status, and tumor size.  

 

Figure 2.3: Kaplan-Meier survival curves showing patient stratification via our survival-based 
models for A) Bone (BMF = Breast Metastasis Free), B) Liver (LMF = Liver Metastasis Free), C) 

Lung (LuMF = Lung Metastasis Free), and D) Brain sites (BrMF = Brain Metastasis Free). All 
significances are measured via the log-rank test. Light grey lines represent baseline survival for 

the patients before stratification by the respective site-specific metastasis predictive models. 

𝐵𝑜𝑛𝑒 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒

=  (0.27) ∗ 𝑀𝑇𝐴1 𝑁𝑢𝑐𝑙𝑒𝑎𝑟 𝐻𝑠𝑐𝑜𝑟𝑒 − (1.26) ∗ 𝐾𝑃𝑁𝐴2 𝑁𝑢𝑐𝑙𝑒𝑎𝑟 % + (43.49) ∗ 𝑁𝑃𝐼 

𝐼𝑓 𝐵𝑜𝑛𝑒 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒 ≥ 196, 𝑡ℎ𝑒𝑛 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑜𝑓 𝑏𝑜𝑛𝑒 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 
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We also compared the performance of this model in the patient subgroup that received adjuvant 

CMF chemotherapy versus the subgroup that received no adjuvant chemotherapy, to determine 

if the model’s prognostic value was affected by therapy. Results showed that the model for 

predicting bone-specific metastasis-maintained significance regardless of whether 

chemotherapy was administered or not (Table 2.8).  

Table 2.7: Univariate and multivariate Cox regression analysis of common clinicopathological 
variables and IHC models affecting distant metastasis risk. 
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Table 2.8: Prognostic value of the survival-based model for each site, depending on adjuvant 
therapy received (univariate Cox regression). 

  

Hazard 
Ratio 

95% Confidence 
interval 

P-value 

Bone Model 

Classic CMF (N = 73) 5.003 1.777 - 14.085 0.0023* 

No Chemotherapy (N = 66) 5.362 1.871 - 15.266 0.0018* 

Liver Model 

Classic CMF (N= 54) 6.147 1.790 - 21.112 0.0039* 

No Chemotherapy (N = 38) 12.533 2.509 - 82.598 0.0007* 

Lung Model 

Classic CMF (N = 39) 9.122 1.832 - 45.412 0.0069* 

No Chemotherapy (N = 27) 6.468 0.661 - 63.249 0.1086 

Brain Model 

Classic CMF (N = 49) 40.307 0.331 - 3.653  0.2903 

No Chemotherapy (N = 41) 14.955 2.687 - 83.241 0.002* 

*P<0.05. 

 

Interestingly, the cross-validated AICs showed that this survival-based model slightly 

outperformed the SVM and Ensemble-based models (Table 2.9). Notably, all models tested 

yielded statistically significant stratification.  

Table 2.9: AIC values for each model were obtained from survival analyses of combined 5-fold 
cross-validated test sets and used as a comparison matrix. The model which grants the lowest 
AIC, per site, is considered the optimal model for that site. Log-rank p-value 

  

Without 
Covariates 

Survival Model 
Optimized 

SVM 
Optimized 
Ensemble 

Bone 334.58 319.73 321.533 323.431 

Lung 106.661 101.639 102.399 101.764 

Liver 187.201 180.305 173.041 184.067 

Brain 107.641 98.478 94.977 96.003 
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2.4.2 Liver metastasis 

For patients with liver metastases, we observed that the majority of differentially expressed 

biomarkers (p<0.05; 29 vs. 9) were underexpressed in the patient subgroup with liver metastases 

compared to metastasis-free patients (Fig. 2.4A). Furthermore, we found that the 

underexpression of majority of these biomarkers (7 vs. 1), was statistically significant in univariate 

analyses. The combination that yielded the lowest p-value (p <0.0001) involved N-cadherin H 

score, the cytoplasmic intensity of xeroderma pigmentosum complementation group D (XPD), 

and NPI (Fig. 2.4B). The model shown below can stratify patients into a high-risk group that 

shows ~8x higher risk of liver metastasis (Fig. 2.3B) and retained significance after cross 

validation. Multivariate analysis indicated that this model is contributing predictive information for 

liver-specific metastasis independently of other factors (Table 2.8).  

𝐿𝑖𝑣𝑒𝑟 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒
=  (0.61) ∗ (𝑁 − 𝑐𝑎𝑑ℎ𝑒𝑟𝑖𝑛 𝐻𝑠𝑐𝑜𝑟𝑒) − (108) ∗ 𝑋𝑃𝐷 𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚𝑖𝑐 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 + (90)

∗ 𝑁𝑃𝐼 

𝐼𝑓 𝐿𝑖𝑣𝑒𝑟 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒 ≥ 436, 𝑡ℎ𝑒𝑛 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑜𝑓 𝑙𝑖𝑣𝑒𝑟 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 

As with the bone model, the survival-based model for lung retained significance regardless of 

chemotherapy (Table 2.8) and performed marginally better than machine learning approaches 

(Table 2.9). 
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Figure 2.4: A) Waterfall plot showing significantly different biomarkers (as determined via a t-
test), when comparing patients who had liver metastasis versus patients with no metastasis.  
The y-axis represents difference between mean biomarker expression levels in patients who 
had no metastasis and patients who had liver metastasis. Blue lines represent significantly 

higher mean expression of biomarker among patients who had metastasis, while red represents 
the opposite. Asterisks indicate significance in logistic regression. Green arrows indicate 

significance in Cox regression for time until liver specific metastasis. B) Ranked list of biomarker 
combinations (alongside NPI) based on their Cox regression p-values for liver metastasis. 

2.4.3 Lung metastasis 

Unlike for liver, multiple IHC biomarkers, such as Fascin-1, Id1, and Id3 have been reported to 

mediate lung colonization in invasive BC including TNBCs [96, 97]. Unlike the previously 

mentioned proteins (where overexpression was correlated with lung metastasis) our model 

filtering (Fig. 2.5) led to the selection of two biomarkers that accorded a favorable prognosis 

when expressed at a high level. Combining TFF1 and RARa, as shown below,  
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Figure 2.5: A) Waterfall plot showing significantly different biomarkers (as determined via a t-
test), when comparing patients who had lung metastasis versus patients with no metastasis.  
The y-axis represents difference between mean biomarker expression levels in patients who 
had no metastasis and patients who had lung metastasis. Blue lines represent significantly 

higher mean expression of biomarker among patients who had metastasis, while red represents 
the opposite. Asterisks indicate significance in logistic regression. Green arrows indicate 
significance in Cox regression for time until lung specific metastasis.    B) Ranked list of 
biomarker combinations (alongside NPI) based on their Cox regression p-values for lung 

metastasis. 

 

produced a high-risk group which had over a 7 times higher risk of developing lung metastasis 

(Figure 2.3C). Additionally, this model retained its significance in cross validation and 

multivariable analysis, independent of other factors (Table 2.8). 
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𝐿𝑢𝑛𝑔 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒 =  (−1.25) ∗ 𝑇𝐹𝐹1 %− (0.82) ∗ 𝑅𝐴𝑅𝑎 𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝐻𝑠𝑐𝑜𝑟𝑒 + (115) ∗ 𝑁𝑃𝐼 

𝐼𝑓 𝐿𝑢𝑛𝑔 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒 ≥ 436, 𝑡ℎ𝑒𝑛 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑜𝑓 𝑙𝑢𝑛𝑔 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 

Unlike the previous two site-specific models, using an SVM to predict lung metastasis produced 

a marginally superior AIC, and thus fit (Table 2.9), although all models retained significant 

stratification. Also, while the model showed powerful prognostic ability among CMF-treated 

patients, it lost significance in the patient subgroup that did not receive CMF (Table 2.8, p = 

0.1); this was likely due to the low number of metastatic events and metastasis-free patients in 

that patient subgroup (4 and 27, respectively). 

2.4.4 Brain metastasis 

Although brain metastasis only accounts for around 10-16% of all breast metastasis sites [98], 

and is a relatively longer process due to the blood-brain barrier [99], it results in a very poor 

survival and a dramatic reduction in quality of life [100]. The current paucity of biomarkers with 

the ability to predict metastasis to the brain [101], coupled with lack of an effective targeted 

treatment [102] demonstrate that this is an area of urgent and unmet clinical need for BC 

patients. Recently, though, αB-crystallin, a chaperone protein predominantly expressed in brain 

metastasis, has shown promise as a TNBC site-specific IHC biomarker [103, 104]. In our 

dataset, we found only a few biomarkers that (a) showed significantly different expression 

between patients with metastasis to the brain and those with no metastases, and (b) had 

prognostic value in univariate analyses (Figure 2.6A). Post-hoc survival analysis using a non-

optimized (minimized Wald p-value) biomarker combination for brain metastasis patients yielded 

a very imbalanced high-risk group that included only 2 patients (not shown). We therefore 

combined the biomarkers whose combination had the second-best p-value (Figure 2.6B) to 

develop the model shown below. With this model, high-risk patients possessed more than a 7x 

higher risk of brain metastasis (Figure 2.3D). This effect was maintained in multivariate analysis 

(Table 2.8) and cross validation. 
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𝐵𝑟𝑎𝑖𝑛 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒
=  (0.77) ∗ 𝑃𝑎𝑟𝑝1 𝑁𝑢𝑐𝑙𝑒𝑎𝑟 𝐻𝑠𝑐𝑜𝑟𝑒 + (0.87) ∗ 𝐵𝑅𝐶𝐴2 𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚𝑖𝑐 𝐻𝑠𝑐𝑜𝑟𝑒 + (79)

∗ 𝑁𝑃𝐼 

𝐼𝑓 𝐵𝑟𝑎𝑖𝑛 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑆𝑐𝑜𝑟𝑒 ≥ 568, 𝑡ℎ𝑒𝑛 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑜𝑓 𝑏𝑟𝑎𝑖𝑛 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 

 

Figure 2.6: A) Waterfall plot showing different biomarkers (as determined via a t-test), when 
comparing patients who had brain metastasis versus patients with no metastasis. The y-axis 

represents difference between mean biomarker expression levels in patients who had no 
metastasis and patients who had brain metastasis. Blue lines represent significantly higher 

mean expression of biomarker among patients who had metastasis, while red represents the 
opposite. Asterisks indicate significance in logistic regression. Green arrows indicate 

significance in Cox regression for time until brain specific metastasis. B) Ranked list of 
biomarker combinations (alongside NPI) based on their Cox regression p-values for brain 

metastasis. 
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The prognostic value appears to result from significant stratification of the untreated patients 

(Table 2.8), as only 3 treated patients, who were stained for both markers, had distant metastasis 

to the brain. Patient prognosis, while significant with our model, was predicted slightly better using 

an SVM (Table 2.9).  

We then addressed the question of whether every TNBC patient in the clinic should be prescribed 

the test for our panel of 8 IHC-based biomarkers that are able to foretell risk of metastasis to 

specific sites. Interestingly, we found that the vast majority of TNBC patients in this dataset had 

an NPI>4 regardless of whether they experienced metastasis or not (Figure 2.7), and thus would 

require testing for all 8 biomarkers. We confirmed elevated NPI among TNBCs in a second 

independent dataset (Figure 2.7B). These data suggest that with the exception of a very small 

proportion of TNBC patients whose NPI is below 4, the majority of TNBCs may require testing for 

all 8 biomarkers to determine risk of metastasis to these sites in the future. 
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Figure 2.7: Mean NPI value for patients who have developed distant metastasis and those 
without metastases for the A) Nottingham University Hospital, and B) Stavanger University 
Hospital (in Norway) cohorts.  T-tests for both hospitals presented a p-value > 0.05 when 

comparing mean NPI between patients who developed distant metastasis versus those who did 
not. 

2.5 Discussion 

BC patients with DM have a median survival of only 2-3 years [105]. Even more worrisome is the 

fact that both the time until DM and survival after metastasis is greatly reduced for TNBCs, 

especially among those with residual disease after neoadjuvant treatment [106, 107]. However, 

metastasis to different sites is associated with distinct survival times after metastasis with some 

metastatic sites associated with poorer outcomes compared to others. Therefore, predicting DM 

before it occurs and identifying the potential sites of metastasis would have a significant impact 

in management of TNBC.  
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Previous studies investigating biomarkers predictive of the site of DM in BC have mainly utilized 

either global gene expression data using high-throughput techniques such as microarrays and 

next generation sequencing or single proteins using IHC [108-110]. No studies have investigated 

DM using large groups of protein biomarkers in primary TNBC tumor samples. Using our novel 

models, we are able to introduce a clinically-facile IHC biomarker panel that can identify high-risk 

subgroups among TNBCs, with at least a 5x increased risk of site-specific metastasis. The 

strength of the current study stems from (a) the large number of cases in our TNBC series, (b) 

their long-term follow-up and detailed clinical annotation, (b) the unique, and, to the best of our 

knowledge, largest IHC biomarker dataset available for this cohort, and (c) the comprehensive 

analytical approaches.   

Bone is the most studied BC DM site, with multiple steps of the metastasis cascade elucidated in 

substantial detail [111, 112]. Alongside this molecular knowledge, multiple bone metastasis-

specific biomarkers have been proposed. For example, Winczura et al. [113] have found that a 

reduction of osteopontin was consistently observed in patients who developed bone metastasis 

while Mihai et al. [114] have found that the calcium-sensing receptor (CaR) was commonly 

expressed in breast tumors which metastasized to the bone. While our models uncovered some 

proteins previously known to be associated with metastasis, it also uncovered several proteins 

that generally have not been studied in the context of BC tropism to specific metastatic 

sites/tissues, or have not been implicated directly in regulating metastasis. For example, 

upregulation of the high risk biomarker MTA1 in our bone metastasis model, is seen in several 

aggressive cancers [115] and has been linked to bone metastasis from prostate cancer [116]. In 

BC, MTA1 upregulation has been shown to promote lung-specific metastasis in mice [117]. By 

contrast, we found that underexpression of the karyopherin, KPNA2, is associated with 

development of bone metastasis. KPNA2 has not been implicated in site specificity of metastasis; 

in fact, its overexpression was correlated with poorer recurrence-free overall survival in BC [118, 



31 
 

119]. More importantly, KPNA2 expression in patients with no metastases and patients with 

metastasis to sites other than bone, was higher than in patients with bone metastasis. These 

results suggest that TNBC patients (a) have high baseline expression of KPNA2 [90], and (b) this 

high expression preferentially selects for all the other metastatic sites (seen in Figure 2.8, along 

with the other site specific biomarker comparisons). 

 

Figure 2.8: Box plots comparing selected model biomarkers expression between that site, all 
other sites (combined), and with patients who experienced no metastasis. Note that for liver the 
second biomarker used was the cytoplasmic intensity value of XPD, a categorical variable; thus 
this biomarker is not represented in these box plots. All biomarkers were significantly different 

when comparing patients who have had metastasis to the specific site versus patients combined 
in the two other groups    

Although liver is one of the most common sites of metastasis for BC patients [60] there is little 

research into potential liver metastasis-specific IHC biomarkers. Interestingly, the biomarkers that 

were differentially expressed in patients with liver metastases showed a strong tendency to be 

overexpressed in patients with liver metastases. The best model included N-cadherin, whose 

upregulation has been associated with pro-migratory phenotypes [120], and is thus believed to 

contribute to the general risk of metastasis. There is also evidence suggesting a preference for 

tropism to liver in BCs that overexpress N-cadherin [121, 122], although the mechanistic 

underpinning of that preference is yet to be uncovered. The other biomarker selected, XPD (also 
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known as ERCC2), has no previously published evidence of being involved in BC metastasis. In 

fact, most studies focus on the association between mutations in this gene and an increased risk 

of developing BC [123], or specifically TNBC [124].  

We also found that the roles reported for some of the metastasis biomarkers in our models appear 

to differ between ER-positive and TNBC patients. For instance, in ER-positive BC cohorts, gene 

expression studies showed TFF1 to be very highly overexpressed in patients who had bone 

metastasis versus metastasis to another site [125]. However, IHC data showed no significant 

difference between patients who developed bone metastasis and those with no metastasis [126]. 

There are also conflicting reports regarding the impact of TFF1 overexpression on BC prognosis 

with some studies suggesting that it may play an oncogenic role [127] while others indicate an 

association between its overexpression and a favorable prognosis [128]. In our TNBC cohort, 

reduced TFF1 expression was associated with high risk of lung metastasis. However, studies in 

ER-positive BC suggest that high TFF1 levels could promote lung metastasis via TFF1’s role in 

enhancing chemotaxis [129]. Another protein that has not previously studied with regard to 

promoting metastasis to any specific site is RARα. Our data suggest that TNBC patients who 

experience lung metastasis underexpress nuclear RARα. In ER-positive BC, the presence of ER 

both correlates with the number of RARα receptors and the ability of ER to inhibit cell growth in 

concert with RARα [130]. In TNBCs that underexpress RARα, it is plausible that the brakes on 

proliferation are lifted; however, the molecular basis of the propensity of these low-RARα TNBCs 

to metastasize to the lung is currently unclear and merits further study.  

An important feature that cancer cells require to metastasize to the lung, the ability to 

extravasation through non-fenestrated capillaries, is also vital for brain metastasis. In fact, multiple 

genetic similarities were shown between cells primed to metastasize to the brain and to the lungs, 

such as COX2 [131]. In the brain metastasis model we derived, we observed an unexpected 

combination of overexpressed biomarkers that were not significant for metastasis to any other 
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site. A previous study of IHC biomarkers had shown that an increase in both PARP1 and nuclear 

BRCA2 expression is associated with a stark decrease in both OS and RFS, separately and when 

combined [132]. By contrast though BRCA2 in our brain metastasis model was cytoplasmic; more 

studies are required to clarify the functions of cytoplasmic BRCA2 [133].  

The aim of this retrospective study was exploratory, to identify IHC-based biomarkers which held 

statistical significance in predicting TNBC metastasis to specific sites. Our study highlights the 

importance of evaluating protein subcellular localization and identification of such “phenotypic’ 

biomarkers, as subcellular localization can profoundly influence biological activities and 

prognostic significance of protein biomarkers. In fact, we found that in the majority of the cases, 

the nuclear-localized or cytoplasmic pools of the proteins in our signatures held prognostic 

significance while the overall levels did not. This finding emphasizes a key limitation of gene-

expression-based signatures where robust gene expression-based signatures would be limited 

to the subset of proteins whose cellular activities are directly proportional to mRNA expression 

levels.  

It is also noteworthy that in our dataset, among patients with metastases to multiple sites, the 

exact order of metastases is unknown, and each metastasis was treated independently even 

though it is possible that some of these metastases may have arisen from other earlier metastases 

rather than from the primary tumor. In closing, our novel multi-parametric prognostic models allow 

for very significant identification of patients with TNBC who will experience distant metastasis to 

a specific site. Design of a cost-effective, clinically-facile IHC-based battery of tests to predict the 

most likely site of metastasis for TNBCs would (a) enable early detection of metastases through 

increased surveillance, (b) allow use of preventative therapy to prevent disease progression, and 

(c) improve outcomes for TNBCs. 
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3 A Whole Slide Image Based Machine Learning Approach to Predict Ductal Carcinoma 

in Situ (DCIS) Recurrence Risk 

Parts of this chapter have been submitted to Breast Cancer Research as ‘A Whole Slide Image 

Based Machine Learning Approach to Predict Ductal Carcinoma in Situ (DCIS) Recurrence Risk’. 

Authors Listed on the paper: Sergey Klimov, Islam M. Miligy, Arkadiusz Gertych, Yi Jiang, Michael 

S. Toss, Padmashree Rida, Ian O. Ellis, Andrew Green, Uma Krishnamurti, Emad A. Rakha, and 

Ritu Aneja1 

3.1 Abstract 

Breast ductal carcinoma in situ (DCIS) represent approximately 20% of screen-detected 

breast cancers. The overall risk for DCIS patients treated with breast conserving surgery stems 

almost exclusively from local recurrence. Although a mastectomy or adjuvant radiation can reduce 

recurrence risk, there are significant concerns regarding patient over-/under-treatment. Current 

clinicopathological markers are insufficient to accurately assess recurrence risk. To address this 

issue, we developed a novel machine learning (ML) pipeline to predict risk of ipsilateral recurrence 

using digitized whole slide images (WSI) and clinicopathologic long-term outcome data from a 

retrospectively collected cohort of DCIS patients (n=344) treated with lumpectomy at Nottingham 

University Hospital, UK.  

The patient cohort was split case-wise into training: (n=159, 37 with recurrence); and 

validation (n=185, 32 with recurrence) sets. Sections from primary tumors were stained with H&E, 

then digitized and analyzed by the pipeline. In the first step, a classifier trained manually by 

pathologists was applied to digital slides to annotate areas of stroma, normal/benign ducts, cancer 

ducts, dense lymphocyte region, and blood vessels. In the second step a recurrence risk classifier 

was trained on 8 select architectural and spatial organization tissue features from the annotated 

areas to predict recurrence risk.  
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The recurrence classifier significantly predicted the 10-year recurrence risk in the training 

[hazard ratio (HR)=11.6; 95% confidence interval or CI: 5.3─25.3, p<0.0001; concordance 

index=0.77 (95% CI: 0.69–0.85)] and independent validation [HR=6.39 (95% CI: 3.0─13.8), 

p<0.0001; concordance index=0.69 (95% CI: 0.59–0.78)] cohorts. Our tool outperformed 

clinicopathological variables in predicting overall local, invasive, and DCIS recurrences 

(p<0.0001), had a superior concordance index compared to all clinicopathological variables, and 

identified patients that might benefit from additional therapy (validation cohort p=0.0006). Our 

machine learning-based model fills an unmet clinical need for accurately predicting recurrence 

risk for lumpectomy treated DCIS patients. 

3.2 Introduction 

The incidence of ductal carcinoma in situ (DCIS) has rapidly risen over the past few decades [1] 

and is estimated to affect over 1 million US women by 2020 [134]. Despite the excellent overall 

survival of DCIS patients [135, 136], over-treatment is a considerable concern [137]; which results 

mainly from the inability of standard clinicopathologic factors to accurately identify a low risk group 

unlikely to recur [138, 139].  

One of the goals of DCIS treatment is to curb local recurrence, especially invasive recurrence. 

Common histopathological factors such as age at diagnosis, DCIS growth pattern, tumor size, 

margin status, nuclear grade, presence of comedo necrosis [21, 140], and combinations of the 

aforementioned (such as in the Van Nuys Prognostic Index or in prognostic nomograms) [141, 

142] have been shown to have limited value in predicting recurrence. Efforts to introduce new 

DCIS molecular prognostic variables have not offered consistent results [23] nor were they found 

to be significantly prognostic tools [34]. Additionally, transcriptomic models have restrictive 

requirements [143], are not cost-effective [33], lack significant “genetic patterns leading to 

invasive disease” signatures [144], and do not take into account the tumor stromal 
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microenvironment. Thus, there is an unmet clinical need for novel tools to improve recurrence risk 

stratification of DCIS [145].  

With the advent of technology able to process data in a high throughput manner, computational 

pathology has shown promise as a valuable prognostic tool. By integrating image analysis, data 

generation, and medical statistics, computational pathology enables a high-level quantitative 

tissue analysis [43, 146]. Although relatively new, computational pathology has already shown 

marked success in assisting with diagnosis, tumor classification, and predicting patient prognosis 

in a variety of cancer types [44-48, 147]. Whole slide quantitative image analysis pipelines have 

demonstrated significant discriminatory success not only using features stemming from pixel 

(stain) intensities [148, 149], but also morphometric features and texture [150, 151]. For predicting 

DCIS recurrence, various scales of these image features have been studied using H&E-stained 

tissue, such as through quantifying image features of comedo necrosis within ducts [152]. At the 

cellular level, chromatin distribution, long considered a computationally quantifiable feature of 

cancer cells [153], has also been used to predict DCIS recurrence [154, 155] and was shown to 

outperform its pathological analog, nuclear grade [156]. However, these results focus on a narrow 

range of very specific characteristics of the DCIS and discard the rich information that could 

potentially be derived from consideration of other architectural features (e.g., surrounding stromal, 

blood vessel-related) within the sample.  

Human eye limitations and lack of concordance between pathologist’s impact DCIS grading in 

clinical practice. Notably, the breadth of DCIS grading is limited to a single (high grade) duct, and 

oftentimes histopathologic features are grouped into qualitative categories instead of capturing 

and analyzing more granular data derived from quantitative features. This simplification overlooks 

(a) the prognostic value of surrounding microenvironment [157-159] and even alterations in non-

cancerous epithelial cells [160], and (b) the tremendous intra-tumor heterogeneity, which cannot 

be categorized in a fundamentally meaningful way [161]. Our current study evaluates whether 
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quantitatively analyzing the whole slide, dubbed whole slide image analysis (WSI) [162]  has 

prognostic and predictive value with respect to recurrence prediction for DCIS.  

In the retrospective study presented herein, we developed a machine learning-based image 

analysis pipeline, identified prognostically relevant features obtained from the texture of H&E 

slides [55], and designed a novel two-step classification approach to predict 10-year recurrence 

risk in DCIS patients treated with breast conservative surgery (BCS) (Fig 3.1).  

 

Figure 3.1: Two-step WSI method for stratifying DCIS patients based on their recurrence risk. 
The first step in this pipeline automatically annotates the patient’s whole surgical H&E slides into 
prognostically informative tissue classes. For this automated annotation, the patient’s whole 
virtual slide is (A) preprocessed through whole slide color normalization and down-sampling 
followed by (B) a sliding window, over the whole slide, which extracts non-overlapping image 
tiles which are then (C) color deconvoluted to yield the hematoxylin image from which (D) 
values for 166 texture features are extracted. These features are then (E) input into a random 
forest annotation classifier which (F) outputs a probability of each tile belonging to a specific 
class (malignant ducts of DCIS, surrounding breast parenchyma / ducts, blood vessels, and 
stromal regions with and without dense immune infiltration [immune cells occupying at least 
50% of the tile area]) which are combined to produce (G) a whole slide annotation. The second 
step extracts tissue architecture features and features of spatial relationship between these 
tissue classes, from the previously annotated slides, and compiles them into what serves as the 
‘full slide’ feature set. For prediction of DCIS recurrence risk, (H) each annotation is analyzed 
through (I) feature distributions, spatial features which compare distances between different 
classes, and other features such as region confidence. (J) The final (optimized) feature list , 



39 
 

alongside the patients follow-up (recurrence) data as the labels, is used to train a (K) random 
forest recurrence risk classifier to predict (L) high- versus low-risk of recurrence and allows for 
the recommendation of optimal therapy. 

 

 

3.3 Methods 

3.3.1 Study population  

The study population was obtained from patients diagnosed at Nottingham City Hospital (DCIS 

case series), spanning the period from 1989 to 2012. The training cohort comprised slides from 

159 patients (127 of whom had multiple tumor blocks yielding a total of 335 slides); these slides 

were used for the model development (Table 3.1) and training. A further 185 patients (9 of whom 

had multiple slides, yielding a total of 199 slides) comprised an independent validation cohort for 

the recurrence risk classifier (Table 3.1). Patients included in this study were exclusively those 

presenting with pure DCIS (without any invasive component/tumor in the primary biopsy whether 

ductal, lobular, or any special type), without bilateral disease, and treated with BCS, rather than 

mastectomy. The DCIS classification was initially identified through pathological records and 

further verified through a review of slides by 2 pathologists. Details on clinicopathological 

variables including size, tumor grade (classified according to the three-tier nuclear grading system 

[163]), comedo necrosis (defined as presence of central acellular necrosis with nuclear debris), 

and final margins],  demographic information, and follow-up data/recurrence status were 

retrospectively obtained from patient medical records and validated by pathologists. Post BCS, 

patients at Nottingham were screened once a year until their 5th year, after which they were 

followed up every 3 years. Recurrence-free survival (RFS) was calculated from the date of 

pathologic diagnosis until the first ipsilateral breast local recurrence or last follow-up. Local 

recurrence (either invasive or DCIS) was considered as an event. Cases with contralateral 

recurrences, or those who developed a second lower grade tumor, were treated as censored at 

the time of development to avoid mixing recurrences with new primaries.  
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Table 3.1: Patient characteristics. Descriptive data detailing the training and validation cohort’s 
clinicopathological variables. The cutoff point for positive margins was 2 mm. In the training 
cohort the tumor size of 3 cases was not known and a patient was missing data for margin 

status and grade. 

 

3.3.2 Tumor Slide Selection 

All diagnostic slides, from the lumpectomy surgical sample, for each patient were pathologist-

reviewed (IMM and MST) and the best representative (to ensure presence of adequate tumor 

tissue for analysis, morphological variation, and to confirm the pure DCIS diagnosis) formalin-

Clinicopathologic Characteristics of Patients in the Training and Validation Cohorts 

      Training Cohort Validation Cohort 

Baseline characteristic  (N = 159)  (N = 185) 

Patient age       

Median Age (range), years 57 (30 - 83) 59 (36 - 77) 

Age <50, n (%) 26 (16.3) 23 (12.4) 

Age>=50, n (%) 133 (83.7) 162 (87.6) 

Menopausal Status, n (%)   

Pre 31 (19.5) 29 (15.7) 

Post 128 (80.5) 156 (84.3) 

Presentation, n (%)   

Screening 85 (53.5) 120 (64.9) 

Symptomatic 74 (46.5) 65 (35.1) 

Comedo Necrosis, n (%)   

No 60 (37.7) 34 (18.4) 

Yes 99 (62.3) 151 (81.6) 

Radiation, n (%)   

No 117 (73.6) 145 (78.4) 

Yes 42 (26.4) 40(21.6) 

Grade, n (%)   

1 25 (15.8) 0 (0.0) 

2 24 (15.2) 0 (0.0) 

3 109 (69.0) 185 (100.0) 

Margins, n (%)   

Negative 154 (97.5) 183 (98.9) 

Positive 4 (2.5) 2 (1.1) 

Tumor Size   

Median Tumor Size (range), 
cm 

1.7 (0.1-14.5) 1.7 (0.2-12.0) 

Size <2.0, n (%) 88 (56.4) 101 (55.6) 

Size >=2.5, n (%) 68 (43.6) 84 (45.4) 

Survival status, n (%)   

Alive 109 (68.6) 159 (86.0) 

Dead 50 (31.4) 26 (14.0) 

Recurrence status, n (%)   

Recurrence free 122 (76.7) 153 (82.7) 

Recurred 37 (23.3) 32 (17.3) 

 1 
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fixed paraffin-embedded (FFPE) tumor blocks (donor) for each patient’s specimen were retrieved 

and included in the study. A fresh full-face section of 4 μm thickness was cut from each selected 

block, stained with H&E to standardize the consistency of staining quality, and again pathologist 

reviewed. Slide scanning was performed with a slide scanner at 40× magnification (0.24 µm/pixel) 

(PANNORAMIC 250 FLASH III, 3DHISTECH). Slides were reviewed for image quality and those 

with out of focus areas re-scanned and those with folded over tissues removed from analysis. 

3.3.3 Scanning Options: 

Automatic scanner mode was selected with Optovar position Pos10_1.6_1 (The Panoramic 250 

Flash III, 3DHISTECH, Hungary) for good quality images scanning option (JPEG: 80, 24bit 

depth, and 8 bit per color channel). Flash mode was selected with 6 focus distance in field of 

view single layer using stitching mode without Bright-field compensation. 

3.3.4 Automated Full Slide Annotation 

OpenSlide software [164] allowed for 4x down-sampling of the full slides for computational 

feasibility. A simple graphical user interface (GUI) was developed to manually select and extract 

50x50 pixel, pathologist-identified, “ground truth” image tiles from our training cohort, for training 

our annotation classifier to identify stroma, benign epithelial ducts (including normal breast 

parenchyma elements, epithelial hyperplasia and other non-malignant epithelial changes), 

cancerous ducts, stromal regions with dense immune infiltration (immune cells occupying at least 

50% of the tile area), and blood vessels (Fig 3.2).  
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Figure 3.2: An example of the Graphical User Interface (GUI) developed to allow for ground 
truth annotations used for classifier training. Through this interface, a user will select regions 

representative of each class, from which the program will apply feature extraction from multiple 
50x50 pixel windows within that region 

Regions which fell outside these classes (such as areas of fat), or slide areas that were non-

tissue, were given a background classification. An effort was made to select non-mixed-class 

(mutually exclusive) ground truth regions, which were completely surrounded by the pathologists’ 

manual annotation, with occasional edge cases (such as intersections of classes) being labeled 

by the predominant class in the image tile. Each 50x50 pixel image tile used was color normalized 

to a standard H&E staining distribution [165] to account for specimen and staining variability, and 

to improve classifier performance [166]. The normalized image tiles were then color deconvoluted 

[167] into separate hematoxylin and eosin channels through an optical density matrix which 

contains the relative absorbance of each stain in the RGB color channel (Table 3.2). A total of 

166 texture features (Table 3.3) were extracted from the deconvoluted hematoxylin (nuclear stain) 

channel for training the random forest annotation classifier.  
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Table 3.2: Optical density matrix. This matrix is used to deconvolute RGB H&E images into 
greyscales of each layer whose intensity correlated with stain absorbance. 

 

Table 3.3: Breakdown of textural features extracted and used in region annotation. 

Textural Feature Type No. of Features Source 

Entropy 1 [168] 

Gray-Level Co-occurrence Matrix 
(GLCO) 

16 [169] 

Gray-Level Run Length (GRLRL) 44 [170, 
171] 

Segmentation-based Fractal 
Texture Analysis (STFA) 

45 [172, 
173] 

Gabor wavelet filters 60 [174-
177] 

Sum: 166  

 

To reduce same slide bias, testing of the classification ability was performed on a slide-based 

leave-one-out cross-validation. Each held out set of image tiles used for testing was composed 

of (pathologist-annotated) ground truth regions from single individual slides, such that the test fold 

always consisted of extracted image tiles from a slide which was not used in training. The classifier 

was re-trained with increasing tile N numbers in the training sets, until the cross-validated test set 

accuracy leveled off. To take into account the rotational invariance of the data (all of the image 

tiles have the same label regardless of the angle), and increase the size of the dataset, without 

decreasing the quality [178], we augmented the training image tiles by 4-fold, by performing 

diagonal flipping, 90° rotation, and the combination of the two, on all training tiles. Tissue features 

extracted from the augmented set of image tiles were used to train a random forest classifier [179] 

for tissue annotation on the slide class (development depicted in Fig 3.3A). The output of this 

random forest was the probability of the input image tile belonging to each of the five classes with 

the final assigned annotation determined by the highest probability.  
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Figure 3.3: Summary of the methodology for model development. (A) The slide annotation 
classifier was developed using a random selection of slides within the training cohort. The 

ground truth regions were preprocessed and color deconvoluted so that texture features could 
be extracted from the hematoxylin distributions. Five-fold cross validation was performed to 

determine the model’s classification ability after which the training set was augmented through 
rotation and transposition of ground truth regions and input into the final annotation classifier 
(red box fill). (B) To develop the recurrence classifier the training slides were first annotated 

through the trained annotation classifier (red box fill). The fully class-annotated slides had whole 
slide features extracted and selected to identify the set of features that differed most 

significantly between patients who recurred and recurrence-free patients. The performance of 
these features within a classifier was determined through 5-fold cross validation, and the full 

training cohort was used to train a recurrence classifier (gold box fill). (C) The prognostic value 
of the pipeline was confirmed on a validation cohort. Both the previously-trained annotation 

classifier and recurrence classifier were applied towards the patient samples in this validation 
cohort, and the resulting stratification of patients was evaluated. 

 

Full slides being processed by the WSI pipeline (i.e., slides that were not previously used for 

training the annotation classifier) were annotated through a grid approach wherein adjacent non-

overlapping 50x50 pixel image tiles (that made up the full slide) were processed (Fig 3.1A/B/C), 

as previously detailed for the training data, their features input into the trained random forest (Fig 
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3.1D/E), and the classified image tiles stitched together (Fig 3.1F/G). Additional post processing, 

using neighborhood voting, was performed only for the analysis of spatial features (see next 

section). In this approach, the class assigned to a region was amended if the sum of all its direct 

neighbors’ trees classifications resulted in a larger proportion vote for a different annotation (Fig 

3.4 shows an example). 

 

Figure 3.4: Example of region smoothing using a mode (class appearing most often) filter. In 
this example the middle tile was originally classified as a lymphocyte-dense region. The 

surrounding neighbors though, were predominantly classified as cancer; thus, the middle tile 
had its class changed to cancer. While this example showed the mode depending on each tile’s 
predicted class, our model actually uses the mode of tree predictions of surrounding neighbors 

to adjust the middle tile classification. 

3.3.5 Full-Slide Feature Optimization and Recurrence Prediction 

Following automated slide annotation, a set of distinct full-slide features can be extracted (Fig 

3.1I) (Table 3.4). The majority (99%) of these features consist of statistical moments (Fig 3.5) of 

the 166 texture features for each annotated class and provide information on the shape of the 

texture features distribution for that class.  
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Table 3.4: Features extracted from class-annotated virtual/digital slides. The texture feature 
distribution statistics constitute the majority of evaluated features as they include the mean, 
standard deviation, skew, and kurtosis for each of the 166 textural features within each of the 5 
annotated classes. 

Full-Slide Feature Type No. of Features 

Distribution Statistics 3320 

Spatial Distance Densities   12 

Class Proportions 5 

Confidence Metric 5 

 

 

Figure 3.5: An example of the statistical moments obtained from full slide analysis. For each 
window for an annotated class the distribution of all texture features was computed. From each 

of these distributions, the mean, standard deviation, skew, and kurtosis was calculated and 
input as individual components of the full slide feature list. 

Additionally, spatial features were derived that related the distance and size of cancer to either 

blood vessels or immune-rich stroma, as literature suggests that both these spatial relationships 

have prognostic relevance (Fig 3.6) [180, 181].  

 

Figure 3.6: Density Distance Statistic. Statistic comparing the size (A) and distance (D) between 
all (sum) cancer (i) areas (connected regions) and either immune-rich or blood vessel (BV) 

areas (j), normalized (divided) by the total cancer area. 

Finally, proportions of each class, such as the amount of tumor on a slide (a quantity commonly 

calculated in cancer staging), and average annotation confidence (calculated by averaging the 

number of trees which voted for each annotated class, such that low values would be given if 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
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there was large ambiguity for any annotation on that slide) were included as features. To reduce 

data dimensionality and improve training time and prediction accuracy [182], a feature reduction 

step was performed. First, we selected a maximum follow-up time point past which a patient will 

be right censored and considered as a non-recurring patient. For the selected follow-up time, we 

filtered and sequentially selected the list of candidate features within multiple machine learning 

models, and using patient recurrence status as the input label, to build an optimized classifier (Fig 

3.1J). The performance of this final DCIS recurrence risk classifier model was then examined 

univariately through Kaplan-Meier curves (Fig 3.1K/L).This model output a prognostic risk on a 

slide level, and as some patients had multiple slides (n = 127 in this cohort), a simple logic was 

used if a patient’s slides had discordant risk classifications (i.e. a situation wherein one slide 

belonging to the patient classified the patient as high-risk, while another did not). In these cases, 

patients were given a high-risk classification (Fig 3.7). For comparison, we performed a separate 

analysis wherein we omitted these patients to test if the model performance suffered. The 

development of this full slide classifier is depicted in Fig 3.3B.  
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Figure 3.7: Schematic of the logic used to translate risk category of patient slides to patient risk. 
Patients who possessed multiple resection slides were put into a high-risk subgroup if any of 

their slides were classified as high-risk by the recurrence classifier. 

 

To develop a continuous metric we utilized the selected features within a random survival forest 

(RSF) [183, 184] and provided each patient a ‘risk score’ which was equal to 1 – the RSF’s output 

survival function for that patient for the previously selected follow-up time.  

3.3.6 Time Threshold Selection: 

As patients who experience recurrence after a very long follow up may possess features 

resembling features in patients who do not recur, it becomes imperative to select a time point that 

is both clinically relevant and maximizes the number of significant features that separate recurring 

and non-recurring groups. Therefore, t-tests were run on all of the full slide features (texture 

distributions, spatial features, annotation proportions, and the confidence metric) between 

recurrence-free and recurring (at a specified time point) patients, starting at a follow-up period of 

5 years, as most patients recur within 10 years of diagnosis [185, 186]. To identify the temporal 

change in significant features, the same process was performed for every additional year of 
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follow-up until a maximum follow-up period of 25 years. The maximum follow-up time selected for 

our study was the one which provided the greatest number of significant features between 

patients who recurred by that time versus those that did not. 

3.3.7 Feature and Machine Learning Model Selection: 

The full features set was first filtered to those that were significantly different (t-test p-value < 0.05) 

between slides of patients who recurred versus those that did not. The retained features were 

further evaluated by sequential forward feature selection with random forest, k-nearest neighbor, 

and support vector machine classifiers (Fig 3.1J) with the goal of identifying a classifier and a 

subset of features that together best predict the DCIS risk recurrence. The retained features were 

sequentially added one by one to the training of a classifier, and the resulting classifier’s 

performance was measured through the misclassification rate observed upon 5-fold cross 

validation. Features which minimized the misclassification rate the most were retained. The 

process of adding features was continued until there was no further improvement in classifier’s 

performance. The selected features alongside the classifier which provided the best cross 

validated accuracy and HR was selected for the final DCIS recurrence risk prediction model.  

3.3.8 Comparison of recurrence classifier accuracy with or without inclusion of 

standard clinicopathologic variables 

To evaluate if our final model provides an advantage over DCIS recurrence risk prediction using 

available clinicopathologic parameters (comedo necrosis, size, grade, surgical margins, and 

patients age), we (a) performed multivariable Cox proportional hazard regression analysis using 

these clinicopathologic variables as covariates, and (b) concatenated the clinicopathologic 

variables to the 8 (optimized) features in our model, and assessed the performance of this 

expanded machine learning model, and the importance of each variable to the overall prediction 

accuracy of this model, via  a variable permutation approach.  
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3.3.9 Prediction of DCIS recurrence risk in the context of different adjuvant 

therapies 

We then evaluated our final model’s ability to predict DCIS recurrence risk among patients who 

(a) were diagnosed as having high-grade DCIS (due to the clinical relevance), (b) were treated 

with BCS alone, and (c) received adjuvant radiotherapy after BCS. The risk of invasive recurrence 

was also analyzed within the classified patient risk groups.  

3.3.10 Recurrence Classifier Validation  

To validate the recurrence classifier’s significant prognostic ability, we applied it to a second 

independent cohort of BCS-treated patients diagnosed with pure DCIS. The final feature-selected 

recurrence risk classifier model and pipeline, as previously trained for both annotation and 

recurrence classification, was used on 199 slides (of 185 patients, which were not included in the 

training cohort). The patients predicted by the model to be in the high-risk subgroup were 

compared with patients predicted to be in the low recurrence risk subgroup through survival 

analysis (Kaplan-Meier and Cox regression) of their 10-year recurrence outcomes (Fig 3.3C).  

3.3.11 Statistical Analysis 

Statistical analysis was carried out with SAS 9.4 software (Cary, NC, USA), MATLAB R2017b 

(Natick, MA, USA), the Python programming language (Python Software Foundation, 

https://www.python.org/), and R (R Foundation for Statistical Computing, Vienna, Austria, 

http://www.R-project.org/). Significance of texture feature differences between annotated classes, 

were analyzed with an Analysis of Variance (ANOVA) with a post-hoc Tukey-Kramer procedure. 

T-tests used during the initial stage of feature selection were 2-tailed. The accuracy metric was 

calculated as the sum of true positives and true negatives divided by the total observations. 

Accuracy for the training recurrence classifiers were ascertained through the average of 100 

repeated 5-fold cross validation, with confusion matrices chosen from the combined testing folds 

of one of the repeats. When analyzing invasive or DCIS recurrence separately, patients who 

experienced DCIS or invasive recurrence, respectively, were treated as censored. For the training 

cohort, both the Kaplan-Meier survival analysis and the subsequent multivariate analyses were 

https://www.python.org/
http://www.r-project.org/
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performed on the 5-fold cross validated data with risk classification groups taken from the cross 

validated test sets [187] and significance determined using the log-rank test and Wald chi-square 

test respectively. Comparisons between clinicopathological proportions of training/testing versus 

the validation cohort was carried out through a chi-square test. Multivariate analysis was 

controlled for comedo necrosis, size, grade, age, and the surgical margin status. Model fit was 

compared with the through the Akaike Information Criterion (AIC) [188], a measure of goodness 

of fit/efficiency within the Cox regression statistical model. The lower the AIC value the better the 

likelihood. Model discrimination ability was analyzed through the Harrell’s c-statistic [189] using a 

SAS macro [190]. Feature importance within the RF model that included standard 

clinicopathologic variables concatenated with the features in our recurrence classifier, was 

determined through 100 iterations of out-of-bag variable permutations in which the average 

increase in prediction error, for each variable whose value was permuted, was calculated for out-

of-bag observations [179]. For fitting and optimizing survival forests, the R package 

‘randomForestSRC’ [191] was used. When necessary, dichotomization of continuous features 

was performed by identifying an optimal outcome-based threshold [192]. To facilitate visualization 

of hazard ratios for continuous variables, z-score transformation of features was used. 

 

3.4 Results 

3.4.1 Traditional clinicopathological factors have limited DCIS recurrence risk 

predictive ability 

The major clinicopathological characteristics for the cohorts of DCIS patients used to train and 

validate our model, are shown in Table 3.1. For the training cohort, While the recurrence rate was 

low (23%), the majority (84%) of recurrences occurred within the first 10 years of follow-up (Fig 

3.8).  
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Figure 3.8: Recurrence distributions of the 159 patients in the training/test cohort, ordered 
according to earliest censored time or time of recurrence to last follow-up. Red points indicate a 

recurrence at the last follow up date while green points specify censoring. 

 

Patients were mostly high-grade (69%), post-menopausal (80.5%), older than 50 (83.7%), and 

did not receive radiotherapy (73.6%). Additionally, almost all patients had complete excision with 

wide (>2mm) negative margins (97.5%). Within this training cohort, aside from an increased 

prevalence of high grade, patients who developed recurrence did not have any significant 

differences in the proportions of standard clinicopathological variables compared to patients who 

remained recurrence-free (Table 3.5).  
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Table 3.5: The distribution of baseline characteristics between patients who experienced 
ipsilateral recurrences versus those that did not in the training cohort. The χ2 p value signifies 

significant difference in proportions 

 

The validation cohort consisted of only high-grade (3) patients, but otherwise differed from the 

training cohort with higher rates of comedo necrosis (81.6%, p<0.0001), and slightly higher 

proportion of patients presenting at screening (64.9%, p=0.0316) (Table 3.1 and Table 3.6). 

Within this validation cohort only radiation has a significant proportional difference between 

patients who developed recurrence versus those who did not (Table 3.7). 
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Table 3.6: Proportional differences in variable distributions between the training/testing cohort 
and the external validation cohort. P-values are for the chi-square test for proportions 

 

Table 3.7: Distribution of baseline characteristics between patients who experienced recurrence 
versus those that did not in the validation cohort. The χ2 p-value signifies significant difference 

in proportions 
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3.4.2 Texture features differentiate significantly between annotated tissue 

regions  

To develop a pipeline for automated annotation of various clinically relevant regions within DCIS 

tumor tissue sections, we found that overall accuracy leveled off at 10,359 50x50 pixel ground 

truth image tiles (Fig 3.9) from 32 training cohort slides. For developing the final annotation 

classifier, these ground truth areas were augmented (using rotation/transposition) to a total of 

41,436 (Fig 3.10A).  

 

Figure 3.9: Effect of sample size used for ground truth annotation on cross-validated accuracy. 
Average k-fold accuracy of annotation prediction versus number of ground truth regions. 

Shaded bands represent 95% confidence intervals 

Using the original (non-augmented) collection of ground truth regions, we observed that majority 

of our texture features possessed significant discriminatory ability between all annotated class 

combinations (Fig 3.10B). The classes with the most discriminatory texture features between 

them were cancer versus stroma (96% of features had a p-value <0.05). By contrast, texture 

features had the least discriminating power when it came to distinguishing stroma from blood 

vessels (only 80% of features were significant). Cross validation of the unaugmented ground truth 

collection resulted in an accuracy of 84.59%, with individual class distinction accuracies, not 

counting background, ranging from 75.8%-90.5% (Fig 3.10C) (with additional performance 

metrics shown in Table 3.8). 
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Figure 3.10: Full Slide Annotation. (A) List of annotation classes used, and representative 
examples, alongside the number of ground truth regions available to develop the texture-based 
annotation classifier. (B) Multivariate adjusted p-value (Tukey-Kramer) distributions for all 166 
features (as points) between all annotated class comparisons. Reference dotted line indicates 

an adjusted p-value of 0.05, with features possessing significant discriminatory ability (p-
values<0.05) situated on the left of it and summarized alongside. (C) Confusion matrix (which 

quantifies the performance of the class annotation model) comparing training ground truth data 
to the cross validated annotation classifier test set outputs.  Analysis was performed on the 

original regions before 4-fold augmentation. 
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Table 3.8: Additional confusion matrix performance metrics for the annotation classifier. 

 

3.4.3 An 8-feature recurrence classifier significantly predicts recurrence risk  

Thresholding at a 10-year follow-up maximized the number of significant whole slide features 

different between slides from patients who recurred versus those that did not progress (Fig 

3.11A). This follow up time is also consistent with many follow-up times in clinical studies [193] 

and with the fact that most DCIS patients recur within 10 years. Overall, around 1,238 (37%) 

whole slide features differed significantly (p<0.05) with a 10-year follow-up as compared to at 

most 25% for 5, 15, and 20-year follow-up time points.  

 

Figure 3.11: (A) The cumulative density function (CDF) of feature significance, noted by the t-
test p-values, versus maximum follow-up (FU) time explored. Using 10-year recurrence, 37% of 

whole slide features were significantly (0.05) different between patients who developed 
recurrence by 10 years versus those that remained recurrence-free. (B) Within this 10-year 

follow-up recurrence distinction, the significant feature distribution by class difference is shown 

Annotation Sensitivity Specificity

Background 0.96 1.00

Stroma 0.85 0.97

Benign Ducts 0.76 0.94

Cancer Duct 0.85 0.89

Immune Rich 0.91 0.99

Blood Vessel 0.91 0.99 0.71

Recall

0.96

0.85

0.76

0.85

0.91

0.91

Precision

0.96

0.92

0.67

0.86

0.77

0.79

F-Score

0.96

0.88

0.71

0.86

0.83
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in a radar plot, with the max fill (blood vessel features) indicating 39% of the filtered total 
significant features. 

Testing 10-year recurrence risk model built with these filtered features (i.e. using all significant 

features prior to the sequential removal step in Fig. 3.1J), resulted in an average 5-fold cross 

validated accuracy around 80% ,regardless of the ML model (Table 3.9), and a random forest 

high-risk group possessing a hazard ratio of 3.19 (Fig 3A), almost equivalent to the performance 

of using the full feature set (accuracy: 80.8%; HR: 3.13). Interestingly, among the filtered whole 

slide features, the majority (88%) stemmed from non-cancer annotations and only 1% came from 

differences in lymphocyte dense properties between patients (Fig 3.11B).  

Table 3.9: Comparison of multiple machine learning algorithms to select the best model (and its 
associated features) for the recurrence classifier. ‘No annotation’ indicates the performance of a 

random forest model built without considering classes obtained from the first annotation step. 
Optimized models reflect performance after selection of optimal set of features. For each ML 

model, the model accuracy and high-risk group hazard ratio upon using either the full feature set 
or the optimized feature set, are shown. 

 

Choosing the most prognostic variables through the sequential forward selection though, resulted 

in half of the features being derived from cancer areas (Fig 3.12B with additional feature details 

in Table 3.10). The final 8-feature model lowered the misclassification rate to 0.101, achieved an 

average (of 100 iterations) cross validated accuracy above 86%, and yielded a model that robustly 

stratified the DCIS patients in our training cohort and identified a high-risk group with 8.5x higher 

recurrence risk by 10 years (Fig 3.12A). Fig 3C illustrates a typical Kaplan Meier survival curve 

from one of the model training iterations (out of the total 100) of the combined cross-validated test 
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sets. The slides classified into the high-risk group carry a recurrence-free survival (RFS) of only 

24% compared to the 90% seen in the low-risk group. To show the importance of the initial 

machine learning annotation step (Fig 1A-G), a ‘non-annotated’ RF model built (with feature 

selection) without utilizing annotation classification (simply using the overall texture statistical 

moments of all the areas of the slides) resulted in a significantly lower accuracy (79%) and HR 

(2.82) (Table 3.9). 

 

Figure 3.12: Full Slide Feature Selection for development of recurrence classifier.  (A) The 
change in model accuracy and high-risk group hazard ratio with the sequential addition of 

features. The reference hazard ratio and accuracies, based on the model with all features, is 
shown in red and blue horizontal dashed lines respectively.  The model which included all 

filtered features (Sig*: p<0.05) is also shown for comparison. Bars on markers indicate 95% 
confidence intervals. (B) General feature descriptions, and the annotations from which they 
stem from, of the final 8-feature recurrence classification model. (C) Kaplan-Meier curves 

showing stratification of patient slides by the final recurrence classifier model. Data shown is 



60 
 

based on slides used for the training cohort, wherein the test sets for each selected cross 
validated iteration were combined. Significance was measured using the log-rank test. (D) 

Univariate HR of the selected features, z-score transformed for illustrative purposes. All 
variables are significant and blue horizontal lines depict 95% confidence intervals. The fact that 
none of the confidence intervals cross the HR=1.0 reference line shows that these features are 

highly and unequivocally significant. 

 

The 8 features selected for the final model, when evaluated as continuous variables in univariate 

analysis, all provided significant prognostic value, with half being associated with higher risk of 

recurrence and the other half providing a protective effect (Fig 3.12D).  

Table 3.10: Feature characteristics of the final 8-feature recurrence classification model. The 
significance shown is based on the t-test for each feature between patients who experienced 

recurrence within 10 years and those that did not. The misclassification cost is computed 
sequentially (for e.g., the misclassification cost for feature 3 is the cost for a model which 

includes features 1, 2 and 3). SFTA: Segmentation-based Fractal Texture Analysis, GLRL: Grey 
Level Run Length, GLCO: Grey Level Co-Occurrence 

 

Dichotomizing patients into groups using the 2 mean cancer features (consisting of feature #1 

and #3, as the mean moment and cancer annotations are the most intelligible combination for 

texture-based analyses), for interpretive purposes, showed conflicting effects. Alone, feature #1, 

calculates the hematoxylin staining, or blue color intensity, per pixel (or point) within the malignant 

ductal profile areas (above a certain Otsu method autogenerated threshold [194]) (Fig 3.13A-D), 

very significantly stratified patients into two distinct risk groups (Fig 3.13E), while feature #3 was 

unable to do so (Fig 3.14). However, if patients were first split into high- and low-risk groups 
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through feature #1 (Fig 3.14B) followed by another stratification using feature #3, a significant 

difference in survival between the two subgroups was increased when compared to the 

stratification by feature #1 alone (Fig 3.14C), showing the dependency of variables for maximizing 

prognostic relevance (High Risk Group HR for feature #1 alone=3.017, High Risk Group HR for 

features #1+#3=7.308). 
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Figure 3.13: Interpretation and prognostic relevance of the most prognostic feature in our 8-
feature DCIS recurrence risk prediction model. (A) An example “cancer” region with a cribriform 
architecture in an H&E-stained slide (prior to deconvolution). (B) The region shown in (A) after 
hematoxylin deconvolution. (C) Intense hematoxylin staining (relative to the image tile section) 

is represented by a grey level intensity of 1, while no staining is depicted by a grey level value of 
255. The adaptive Otsu thresholds by progressively using a higher threshold. Therefore, if the 

cancer region has lumens, it would yield a higher average intensity (more white pixels) as 
compared to a solid pattern (no white pixels). Using an optimized threshold of 208 (D), it is 
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observed that full slides whose cancer regions have an average feature #1 above that cutoff 
recur significantly less than patients below that threshold (E). 

 

Figure 3.14: Combination of features produces optimal stratification. (A) Optimally stratifying 
patients by feature #3 provides little individual prognostic benefit. However, if patients are first 

split by feature #1, followed by feature #3 (B), a very significant survival difference can be 
observed between the high- and low-risk groups (C). 

 

Applying the recurrence classifier based on the final 8 features at the patient level showed that 

the classifier significantly stratified the patients in the training cohort (p<0.0001). Patients 
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classified to the high-risk group (N=34) had an RFS of only 35%, compared to the 93% seen in 

patients in the low-risk group (N=125) (Fig 3.15A). This significant stratification remained even if 

the analysis was performed after omitting patients with discordant slide classifications. This 

iteration had a univariate high-risk hazard ratio of 11.6 and retained its very high significance 

when controlling for necrosis, size, grade, margins, radiation therapy, and patient age (Fig 3.15B).  

 

Figure 3.15: A) 5-fold Cross validated Kaplan-Meier curves of the training cohort. Significance is 
measured using the log-rank test and the grey line represents the un-stratified full cohort. B) 

Univariate and multivariate Cox regression analysis comparing the influence of common 
clinicopathological variables alongside the 8-feature recurrence risk prediction model for 

recurrence-free survival, on the training set (after 5-fold cross validation) 

 

None of the clinical variables in the original cohort showed significant risk stratification ability in 

multivariate analysis, although grade was significant univariately (Fig 3.15B and Fig 3.16). 

Moreover, the model provided a superior c-index (0.77) and model fit (AIC = 239.8) to the clinical 
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variables (Fig 3.17). Additionally, select clinical variables neither improved the overall model nor 

add any prognostic relevance individually (Fig 3.18).  

 

Figure 3.16: Stratification of patients in training cohort using standard clinical variables. Cross 
validated Kaplan-Meier curves of patient outcomes (Recurrence-free survival, RFS) stratified 

based on (A) tumor size, (B) patient age, (C) comedo necrosis status, and (D) Nottingham 
grade. Significance is measured through the log-rank test. 

 

Figure 3.17: (A) The Harrell’s c-statistic and 95% confidence interval for the 8-feature model and 
common clinopathological variables in the training cohort. (B) The Akaike Information Criterion 
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(AIC) comparing the fit of a null model (no variables), the 8-feature model, and a model 
composed of the common clinopathological variables (Grade, margins status, necrosis, 

radiation, age, and size). The lower the AIC value the better the model fits the recurrence data 

 

 

 

Figure 3.18: Impact of clinical features on model performance when clinical variables are 
concatenated with the 8 features of the recurrence classifier, within a random forest model. 
Averaged out-of-bag feature importance (and 95% confidence intervals) from 100 models 

shows that clinical features do not contribute positively to the overall performance of the model. 
Feature importance (i.e., how heavily the model relies on each given feature for the output 

prediction) is defined as the change in prediction error when the values of those variables are 
permuted (to, in effect, break the relationship between the feature and the model outcome) 

across out-of-bag observations. Hence larger error changes correspond to more vital variables. 
Insert: Average cross-validated accuracy and hazard ratios of models built with and without 

clinical variables show (yes/no) significant differences 

 

Notably, the same model was able to significantly stratify high grade DCIS patients (Fig 3.19A), 

low/intermediate grade DCIS patients (Fig 3.19B), the subset of all patients who received 

adjuvant radiation therapy, and all patients treated with BCS alone (Fig 3.19C-D) into subgroups 

with high and low recurrence risks. Additionally, the model was able to identify patients at high-

risk for both invasive (Fig 3.20) and DCIS recurrence (Fig 3.21), even when controlling for 

clinicopathological variables. Converting the 8 selected features into a continuous risk score, 
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through an RSF, resulted in a significant (p<0.0001) prognostic model, with each unit increase 

providing incremental 5% higher 10-year recurrence risk (Table 3.11). 

 

 

 

Figure 3.19: Cross validated Kaplan-Meier curves of patients within the training cohort, 
developed by combining the testing sets for a cross validated iteration.  (A) The recurrence 
classifier model used with Grade 3 patients’ slides only. (B) The recurrence classifier model 
used with Grade 1 and 2 patients’ slides only. (C) Recurrence classifier used on slides from 
patients who received adjuvant radiation and (D) Recurrence classifier used on slides taken 

from patients treated with BCS alone. 
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Figure 3.20: (A) Cross validated Kaplan-Meier curves of patients within the training cohort 
stratified by the trained recurrence classifier and using only invasive recurrence as an event. 

Significance is measured through the log-rank test. (B) Univariate and multivariate Cox 
regression analysis comparing the influence of common clinicopathological variables alongside 

the 8-feature recurrence risk prediction model for invasive recurrence-free survival, on the 
training set 

 

Figure 3.21: (A) Cross validated Kaplan-Meier curves of patients within the training cohort 
stratified by the trained recurrence classifier and using only DCIS recurrence as an event. 

Significance is measured through the log-rank test. (B) Univariate and multivariate Cox 
regression analysis comparing the influence of common clinicopathological variables alongside 
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the 8-feature recurrence risk prediction model for DCIS recurrence-free survival, on the training 
set 

 

Table 3.11: Univariate cox regression analysis of the impact that a random survival forest, 
trained with the 8 selected features, has on both the training (through combining the cross-

validation test sets) and validation cohorts. Each unit risk is produced through the RSFs output 
10-year recurrence survival function 

 

3.4.4 Validation study confirms prognostic value of the 8-feature recurrence risk 

classifier 

We proceeded to validate our 8-feature DCIS recurrence risk prediction model in an independent 

validation cohort of DCIS cases (n=185 from Nottingham University Hospital).  Analyzing 

individual slides (treating each slide as an individual patient) using our previously-trained 8-feature 

classifier resulted in highly significant stratification of the validation cohort into high- and low-risk 

groups with regard to their RFS (Fig 3.22). Patient-wise analysis led to further improvement in 

recurrence risk prediction. Ninety-two percent of patients classified into the low-risk stayed 

recurrence-free for 10 years, compared to only 54% of patients who are classified as high-risk 

(Fig 3.23A). Removing patients with discordant cases did not adjust the model stratification.  

Bagged Survival Tree Models

1.051 1.037 - 1.065 <0.0001

1.051 1.003 - 1.102 0.0358Predictive Model (Validation) Per unit risk

Predictive Model (Training) Per unit risk

Recurrence Free Survival

Variables 

Univariate Analysis

Hazard 

Ratio

95% Confidence 

interval
P -value
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Figure 3.22: Kaplan-Meier curves of slides within the validation cohort stratified by the trained 
recurrence classifier model. Significance is measured through the log-rank test 

While lower than the training/test cohort, the univariate hazard ratio of this classifier on the 

validation cohort patients is 6.4 (p<0.0001) and over 6.8 (p<0.0001) when controlling for necrosis, 

size, margin status, and age (Fig 3.23B).  

 

Figure 3.23: Validation of 8-feature DCIS recurrence risk prediction model in an independent 
validation cohort. (A) Kaplan-Meier curves showing robust stratification of patients in the 

validation cohort into high-risk of recurrence and low-risk of recurrence subgroups. Significance 
was measured using the log-rank test and the grey line represents the un-stratified full validation 

cohort. (B) Univariate and multivariate Cox regression analysis of the validation cohort 
comparing the influence of common clinicopathological variables on the recurrence risk 

predictive 8-feature model, for 10-year recurrence-free survival. 
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Once again, the model provided superior discrimination (c-index=0.69) and model fit (AIC=243) 

as compared to the clinicopathological variables (Fig 3.24).  Even though this validation cohort 

had very few patients recurring after radiotherapy, the 8-feature recurrence risk-predictive model 

was able to significantly predict long-term outcomes after radiotherapy (Fig 3.25A).  

 

Figure 3.24: (A) The Harrell’s c-statistic and 95% confidence interval for the 8-feature model and 
common clinopathological variables in the validation cohort. (B) The Akaike Information 

Criterion (AIC) comparing the fit of a null model (no variables), the 8-feature model, and a model 
composed of the common clinopathological variables (Margins status, necrosis, radiation, age, 

and size). The lower the AIC value the better the model fits the recurrence data. 

 

Additionally, a clear high-risk subgroup was identified among patients treated with only BCS (Fig 

3.25B). Censoring the 8 patients whose recurrence was DCIS (rather than invasive disease) 

resulted in robust identification of patients at high-risk of recurrence as invasive disease, 

regardless of other clinicopathological variables (Fig 3.26). Furthermore, although the number of 

events was limited, the model significantly identified a group at high risk of DCIS recurrence (Fig 

3.27).  
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Figure 3.25: Kaplan-Meier curves of patients within the validation cohort, developed by 
combining the testing sets for a cross validated iteration. (A) Recurrence classifier model used 

on slides from patients who received adjuvant radiation, (B) Patients who were treated with BCS 
alone, and (C) using invasive recurrence as the event. Significance is measured through the 

log-rank test. 

 

Figure 3.26: (A) Kaplan-Meier curves showing robust stratification of patients in the validation 
cohort into high-risk of recurrence and low-risk of recurrence subgroups and using only invasive 
recurrence as an event. (B) Univariate and multivariate Cox regression analysis comparing the 

influence of common clinicopathological variables alongside the 8-feature recurrence risk 
prediction model for invasive recurrence-free survival, on the validation set 
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Figure 3.27: (A) Kaplan-Meier curves showing robust stratification of patients in the validation 
cohort into high-risk of recurrence and low-risk of recurrence subgroups and using only DCIS 

recurrence as an event. (B) Univariate and multivariate Cox regression analysis comparing the 
influence of common clinicopathological variables alongside the 8-feature recurrence risk 

prediction model for DCIS recurrence-free survival, on the validation set 

 

Additionally, using an RFS model for continuous risk resulted in a similar, significant (p=0.0358), 

hazard ratio as was seen in the training cohort (HR = 1.05 per unit increase) (Table 3.11). 

3.5 Discussion 

Limited understanding of progression of pre-invasive ductal lesions to invasive ones [144] and 

lack of clinicopathological [22] and molecular markers [23], which can predict recurrence, lead to 

uncertainty in therapeutic decision-making. Without a confident measure of recurrence risk, 

patients are often at risk for over- and under-treatment [32]. The aim of this study was to develop 
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a novel image analysis pipeline which could predict the 10-year ipsilateral recurrence risk in DCIS 

patients treated with BCS. We also show that our approach of class-annotating slide regions prior 

to feature extraction for recurrence prediction enhances our model's prognostic ability. 

Additionally, our two-tiered approach enables better interpretation of the features that our model 

uses for recurrence prediction; this is particularly important given that with machine learning 

approaches, it is often difficult to understand why the trained model responds in a particular way 

to a set of input data. 

Predictably, most of the features selected for the final recurrence classifier model originate from 

tumor regions, whose cells show both gross morphological changes and nuclear alterations, such 

as deviations in heterochromatin [195]. The patterns and distribution of hematoxylin within cancer 

could reflect changes in both ductal architecture and cellular cytological features, both long 

mainstays of DCIS grading [196-203], and can be continuously quantified [153]. The surrounding 

stroma is composed of a collection of many varied cell types that also produce diverse 

hematoxylin staining patterns. Fibroblasts [157] and myofibroblasts [204], for example, have both 

been implicated in DCIS invasion and recurrence, and provide distinct hematoxylin distributions. 

As fibroblasts are rich in rough endoplasmic reticulum, they would be much more basophilic [55] 

and demonstrate different hematoxylin staining patterns compared to myofibroblasts. It should be 

noted, as a limitation, that the stroma is the principal area where the addition of eosin 

deconvolution into our pipeline would perhaps improve model performance due to stromal 

collagen diffusion and densities. Thickening of the ECM, through fibrous deposits such as 

collagen, promotes cancer progression [205], and since collagen is eosinophilic, its distribution 

and texture features would be best quantified with the eosin stain. 

Benign epithelial ducts and blood vessels both provide a single feature towards the final 

recurrence classifier model. These classes’ relative deficiency of selected features can perhaps 

be due to limitations for these annotation within the pipeline and/or these regions not being as 
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prognostically informative as compared to cancer or the surrounding stroma. Vascular 

heterogeneity has varied impact on breast tumor progression [206]. It is possible that this 

prognostic value is being harnessed through our recurrence classifier. However, our choice of 

H&E slides limits us to only studying the texture of vessels containing visible red blood cells within 

a relatively large section (image tile); a smaller sliding window, would perhaps uncover smaller, 

but relevant, vascularization. It is interesting that a feature of benign epithelial ducts was included 

in our final recurrence classifier. As our use of the ‘benign epithelial duct’ annotation is inclusive 

of everything but DCIS, it is possible that potentially prognostic information inherent in regions 

containing abnormal malignancy precursor cells is being captured by our feature. Proliferative, 

non-cancerous, alterations such as columnar cell lesions often co-occur with DCIS, suggesting 

their potential for malignant transformations and can be used as a marker for BC risk [207]. 

Importantly, these premalignant regions could also possess variation in hematoxylin staining 

patterns. For example, usual ductal hyperplasia [160], characteristically shows nuclear pseudo-

inclusions [208], which would show a unique hematoxylin texture pattern. As the distinction 

between some benign areas and low grade DCIS is not clear [209], with potentially similar 

histological and nuclear features, it comes as no surprise that benign epithelial ducts and cancer 

duct annotations had a level of uncertainty. Further testing to differentiate annotations between 

non-benign and benign regions might be advisable to see if this distinction can glean additional 

prognostic and interpretable value. Immune-rich regions were notably absent in both filtered 

features and the final model, likely due to immune dense areas of lymphocyte infiltration not 

possessing significant variability in cell and nuclear morphology [210]. 

Based on the hematoxylin texture distribution of these annotated regions, our model consists of 

some features that are perhaps amenable to logical interpretation in terms of disease biology, 

and some that elude obvious explanation; yet, both types are useful prognostically. Interpretable 

texture features can correlate with accepted pathological principles, such as histology, and allow 
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for a continuous, quantifiable, and non-biased measure which is beyond the capacity of the 

human eye. Additionally, they instill more confidence in machine learning approaches, which often 

can be considered black boxes. On the other hand, texture features and patterns which may lack 

discriminatory ability per se, can still provide discriminatory information when their higher order 

spatial statistics (e.g., statistical moments) are considered [211]. These non-visually extractable 

features can supplement a pathologist’s visual inspection to provide additional unbiased 

prognostic value [212]. Our final full slide recurrence classifier model includes both types of 

features, with a clear example demonstrated through the two mean cancer slide annotated 

textures (the more interpretable feature #1, and a less intuitively interpretable feature #3). The 

most significant feature in the model (i.e., feature #1) quantifies the average hematoxylin intensity 

at a high end threshold, which broadly represents the underlying average tissue architecture (by 

enabling luminal versus more solid areas to be distinguished), long shown to have some value 

predicting DCIS recurrence [213]. Furthermore, as this feature is a continuous measurement, it 

also presents a relative scale that a more broadly defined architectural pattern (such as a 

classification of cribriform architecture) cannot. This can be especially useful for comparing 

between mixed pattern cases, which are often present in DCIS [214] and underlie inter-observer 

variability among pathologists [215]. Our univariate analysis indicated that a lower value of feature 

#1 correlated strongly with a higher rate of recurrence, consistent with the empirical observation 

that more solid DCIS cases have poorer outcomes [213] and are often of higher grade [214]. 

Feature #3 on the other hand, does not grant such discernable interpretation for our data. The 

SRHGE (Short Runs High Gray-level Emphasis) is a second order texture feature that explains 

the joint distribution of spatial arrangement and grey level, which, notwithstanding, has had 

previous success in machine learning algorithms for cancer classification [216-218]. Interestingly, 

this feature also presents a prime example of the dependency of some of these features within 

our data and why a tree-based classifier can exploit such a relationship. On its own, feature #3 

did not show significant stratification ability; however, if used on patients directly after splitting 
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them into high and low feature #1 groups, we observed a marked increase in stratification ability. 

This type of association is conserved in a tree-based algorithm as they allow for branching results 

which depend on upstream features.  

In this study, we used a combination of 8 features to create a machine learning-based model to 

predict risk of DCIS recurrence. Our model demonstrated outstanding prognostic ability in two 

independent patient cohorts, commandingly outperforming traditional histopathological variables. 

Additionally, this model was able to create prognostic groups with over double the hazard ratio of 

risk groups created through the commercially available Oncotype DCIS score [219] and improved 

concordance to the DCIS nomogram [147]. In our validation cohort, the model was able to identify 

a high-risk group of patients that had almost a 50% chance of recurring within 10 years (versus 

<10% chance within the low-risk group).  

Within subsets of patients treated with BCS alone or those receiving additional adjuvant radiation, 

the recurrence classifier model also identified patients likely to recur. Thus, our model can serve 

as a clinical tool to help with treatment decisions. For example, high-risk patients who may have 

undergone BCS alone might require more aggressive treatments (such as radiotherapy) to avert 

recurrence. While there is debate if adjuvant radiation even provides a significant reduction in 

breast cancer-specific mortality for DCIS [220], or if any observed survival benefit should be 

attributed to radiotherapy’s potential systemic effects (as opposed to local disease control) [221], 

the impact of radiotherapy on reducing recurrence is significant. Additionally, our model identifies 

a low-risk group that has only an 8% 10-year risk of recurrence even without radiation. This result 

compares favorably to the low-risk group identified by the OncoType DX DCIS score (10.6% 10 

year rec risk) [222], and can suggest de-escalation/elimination of radiation therapy for this patient 

subgroup. Thus, our model offers distinct clinical utility for high-grade patients (who have a high 

recurrence risk) as well as preliminary results for low-/intermediate-grade patients. Finally, our 

data has shown some potential in identifying patients who have a high risk of recurrence even 
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after adjuvant radiotherapy. Although the sample size is very limited for this cohort, our findings 

provide impetus to pursue a larger study exploring this aspect.  

Our study has a few limitations. The first caveat is that both the training and validation cohorts 

originate from the same institution. Although the recurrence classifier model is ‘seeing’ samples 

from patients in the validation cohort for the first time, the cohorts are likely to have significant 

similarities in tissue processing, staining, and imaging protocols, and likely, patient demography. 

Thus, the generalizability of this model must be tested in additional external cohorts from diverse 

institutions. Additionally, our validation cohort consists entirely of high-grade patients. Although It 

is important to note that finding a reliable cost-efficient prognostic variable in high grade DCIS 

remains of utmost importance, as radiotherapy currently appears to be overused in high grade 

DCIS compared with the reported lower recurrence rates, the value of the model in lower grade 

lesions, and the view of safe radiation omission from these lower grade patients is a valid question 

that has to be validated in a subsequent study.  

Although our model significantly stratified patients who received radiation, in both the training and 

validation cohort, the sample size is notably small and requires additional testing. Technical 

avenues for improvement include combining multiple image resolutions and sliding window sizes, 

as we had to balance the slide processing speed (20× would not be feasible to run a similar 

analysis on our current computers) while still preserving structural differences that would allow 

pathologists to distinguish all annotated classes. An intrinsic limitation of traditional ‘human-

crafted feature-based’ ML is that feature engineering is limited to human knowledge. Alternatively, 

a deep learning approach, such as one involving convolutional neural networks, may be able to 

outperform this system and identify novel morphological signatures even more informative for 

patient recurrence risk prediction. 
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3.6 Conclusion 

The model presented in this study robustly predicts DCIS recurrence risk and significantly 

outperforms traditional clinicopathologic variables. Simply inputting a scan of an H&E-stained 

DCIS tumor slide into this tool would allow the identification of patients who are at low-risk and 

likely do not even require adjuvant radiation, and those patients at such high-risk that an even 

more aggressive therapy may be advisable (such as systemic radiation[221]). Although this 

methodology is promising, it requires additional testing with more diverse samples and treatments 

before any clinical utility of this pipeline can be unequivocally established. Ultimately, our study 

provides proof-of-principle that such a pipeline can predict DCIS recurrence risk; in future studies, 

we hope to train this pipeline on images from core biopsies, as a treatment aware model, to predict 

patients' recurrence risk so that their entire treatment plan (including type of surgery and 

recommendations regarding radiotherapy) can be tailored based on their risk profile. 
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4 Predicting Pancreatic Neuroendocrine Tumor (PanNET) Metastasis Risk through a 

Multi-Label Deep Learning Approach 

4.1 Abstract 

Pancreatic neuroendocrine tumors (PanNET) are the second most common type of pancreatic 

cancer, and its incidence is steadily rising. Unlike its extremely aggressive cousin, pancreatic 

neuroendocrine carcinomas (PanNECs), PanNET patients have variable outcomes. 

Unfortunately, clinical prognostic markers are inadequate in identifying patient metastasis risk. To 

provide an accurate biomarker for this unmet clinical need, we develop a novel deep learning 

pipeline that first annotates whole slide images, identifies regions that are metastasis associated, 

and aggregates these regions into a probability distribution through which overall metastasis risk 

can be predicted.  

H&E stained surgical resections of 90 patients (18 who develop metastasis) utilized for training 

and testing the sequential models. First a CNN was trained (through pathologist annotation) to 

identify tiles of cancer (separately as stromal poor/clearly delineated and stromal rich), stroma 

without cancer, normal parenchymal, and fat. Next, additional CNNs were trained, using patient 

metastasis outcome as the label, to predict if cancer and stromal annotated tiles came from slides 

from patients who ultimately experienced metastasis. Finally, the probability of every metastasis 

associable tile from a whole slide was aggregated into a distribution. Distribution statistics were 

extracted and fit into 18 machine learning models, with basic feature selection, to develop a model 

that outputs overall slide risk.  

Annotation classification had a validated accuracy of 92.8%, with a sensitivity and specificity of 

over 90% for each label. Cross-validated tiles with high output probabilities (>99.9%) from the 

metastasis classifiers produced a sensitivity/specificity of 62%/89% for stromal tiles and 76%/69% 

for cancer tiles. Finally, a quadratic SVM was able to utilize a filter set of these features to provide 

a, leave-one-out cross validated, hazard ratio of over 8.00 regardless of cofounding variables. 
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Our 3 layered model fill’s an unmet clinical need for accurately predicting metastasis risk for 

PanNET patients.  

4.2 Introduction 

Pancreatic neuroendocrine tumors (PanNETs) represent a rare subset (2%) of pancreatic 

neoplasms that affect up to 2 per every 1,000,000 new patients a year. PanNETS are epithelial 

cell cancers with neuroendocrine differentiation, often resembling cells making up the islets of 

Langorn (the endocrine producing cells within the pancreas). Like the aforementioned islets, 

PanNETS can also secrete hormones (notably insulin) into the bloodstream (noted as a 

‘functional’ clinical type). Based on the most recent WHO classification system PanNETs are 

divided into well (WDNETs or ‘ordinary’) and poorly differentiated (PDNEC) categories though 

recent evidence suggests that these tumors are not in a continuum and should be regarded 

separately. Our study focus is on WDNETS (which we will refer to simply as PanNETS 

hereinafter), as the poorly differentiated versions risk stratification is much less ambiguous due to 

overall extremely pessimistic outcomes (with median survival typically under 2 years) [38]. 

Perhaps the biggest clinical hurdle in accurate patient prognosis for PANnet patients is the lack 

of viable biomarkers. The only markers routinely accepted in the clinic are those used to determine 

phases of the cell cycle: the mitotic count and the Ki-67 index. Unfortunately, these two grading 

mainstays are prone to quantification errors, with mitotic counts faulted by cells expressing mitotic 

mimics (such as cells undergoing pyknosis) and Ki-67 often showing poor visual concordance 

[223]. Aside from the technical issues with these markers, papers often argue for percent (1-2%) 

differences in grading to improve patient stratification. But these minute adjustments are unlikely 

to lead to prognostic shifts of any real magnitude. While the overall survival for ordinary PanNETS 

is quite high (60-70% 10-year survival), even the smallest lesions have shown a metastatic risk 

up to 15% in long term follow up. A model able to consistently provide accurate measure of 

metastatic risk would allow the oncology team confidence in recommending increased 
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surveillance or potentially using adjuvant targeted treatments. Some progress in developing 

models to determine recurrence free survival for PANnet patients has been done through IHC 

[40] and linear pathological combinative approaches [41]. But these models suffer from a lack of 

cross validation, and thus likely over-fit, and their results are not overtly superior to classic staging. 

While there is a wide variation of morphological characteristics within PanNETS and 

morphological descriptors of high grade in NET’s significantly impacts patient outcome [39], they 

are, surprisingly, not used for grading. Histological changes such as patterns of necrosis, 

variations in nuclear shape/atypia, chromatin clumping, and a reduction in tumor stroma, can 

represent a high-risk component even within the current well-differentiated grading of 

PanNETS[224].  To include a whole slide morphological analysis, we develop a novel 

multiclassification pipeline, which utilizes Convolutional Neural Networks (CNNs). CNNs have 

shown tremendous promise in identifying morphology distinct areas on digitized slides [225] and 

in directly identifying image patterns correlating to prognostic risk [226]. Taking advantage of 

these characteristics, our first CNN first annotates a full slide into relevant tissue regions. Next, 

we develop tissue specific CNNs to determine metastasis association for both cancer and 

adjacent stromal areas. Finally, we aggregate all of the results into a full slide metastasis 

association probability distribution, extract descriptive features of it, and use an ultimate layer of 

machine learning to determine an overall risk of metastasis for the patient.  

4.3 Methodology 

4.3.1 Study Population 

This retrospective study cohort was obtained from surgical resections of patients, diagnosed as 

having PanNET, treated at Emory University hospital between 2002 and 2017 (Table 4.1). 

Patients presenting with metastasis during surgery, or those with a censored last-follow-up before 

a year were omitted from the analysis. In total, 90 patients were utilized for the study, with 20% 

developing metastasis at follow-up.  Patient records were mined to obtain details of follow-up, 
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demography, and clinicopathological variables. Metastasis free survival was measured from 

surgical time to metastasis or last follow-up. 

Table 4.1: Patient Characteristics. Descriptive data detailing the clinicopathological variables of 
the Emory PanNET cohort. 

 

4.3.2 Tumor Slide Selection 

Full-face sections, from surgical resection tumor blocks, were pathologist analyzed and the most 

representative slides (based on tumor tissue and morphological variance) selected for analysis. 

Tissues were digitized using a 40x scanner (0.24 µm/pixel). Image quality was reviewed for focus 

and artifacts with any issues leading to a re-scan or omission respectively.  

4.3.3 Automated Full Slide Annotation 

For training a deep network towards predicting region annotation, the GoogLeNet architecture 

[227] was chosen and its terminal SoftMax layer was modified to classify 5 tissue classes: Cancer 

(separately as stromal poor/clearly delineated and stromal rich (Fig 4.1), stroma without cancer, 

normal parenchymal, and fat. Pathologist annotated ground truth regions (non-overlapping 

150x150x3 pixel tiles), for each class, were extracted using the MATLAB Image labeler app. Aside 

from the cancer/stroma class, which was determined by any cancer cluster within a stromal rich 

Baseline characteristic

Patient age

Tumor Size

Missing 13 (14.4)

Missing 13 (14.4)

Female 44 (48.9)

Sex, n (%)

Male 35 (38.9)

Recurred 18 (20.0)

Missing 0 (0.00)

Metastasis status, n (%)

Recurrence free 72 (80.0)

Median Size (range), cm 3 (0.6 - 11)

Size <2.0, n (%) 34 (37.8)

Size>=2.0, n (%) 43 (47.8)

Missing 11 (12.2)

Total (N = 90)

Patient  Clinicopathological Characteristics

Age <50, n (%) 26 (28.9)

Age>=50, n (%) 53 (58.9)

Median Age (range), years 56 (19 - 82)
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region (fibrious stroma, fibrious septa, or hyalinized), training tiles almost exclusively came from 

non-mixed ground truth regions. The occasional intersection of annotations (edges) were labeled 

by the predominant class in the image tile.  

 

Figure 4.1: An example of the differences in tiles labeled as ‘cancer (stroma poor)’, 
‘cancer/stroma (hyalinized)’, and stroma without cancer. 

As single cell analysis/segmentation was outside the scope of this analysis, the WSI’s were 4x 

down-sampled (Fig 4.2 shows an example of the visual difference). This allowed for 

computational practicality while still providing clear visual discrimination of the gross scaled 

annotation regions. To take into account staining variability, and improve machine learning 

performance[166] , each tile, for both training and later classification, was color normalized [165] 

to a consistent H&E stain. To improve the generalizability and robustness of the CNN classifier, 

and reduce overfitting, without reducing the image quality [178],  a thorough augmentation [225] 

of training tiles was performed.  
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Figure 4.2: An example of the visual appearance of the digitized slide after 4x down sampling.   

 

Tiles were altered through image orientation, hue adjustment, and blur/noise/contrast 

perturbations[225] to expand the final training set by a factor of 45 (Fig 4.3 has an example of 

some augmentations). The CNN was trained using the stochastic gradient descent with 

momentum, a batch size of 35 tiles, and a learning rate of 1e-4. The training tiles were re-shuffled 

at the start of each epoch and the training accuracy was measured at the end of each epoch. 

Training was performed until the, end of epoch, multiclass accuracy for each label was over 99%. 

The classifier was validated using external slides. Due to the scarcity of histology slides within the 

cohort, tiles from the validation slides were extracted with overlap (50%). 
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Figure 4.3: An example of the types of alterations utilized in training augmentation. 

WSI annotation was performed by fully partitioning slides into non overlapping 150x150 tile 

segments, with background ‘non-tissue’ regions omitted from classification. These segmented 

tiles were independently processed with the trained CNN to produce a 5-dimensional output layer 

with the probability of the tiles belonging to one of the 5 classes. To assess the whole slide 

classification capability, CNN annotated cancer areas were overlaid with pathologist annotations 

and the Jaccard index calculated. 

4.3.4 Metastasis Association Classifier 

After annotating each WSI within our cohort, subsequent GoogLeNet classifiers were trained to 

predict metastasis association for tiles classified as either cancer or stroma (separately). For 

computational feasibility, and to reduce using weakly likelihood areas, only tiles predicted at a 

high enough confidence (95%) for either cancer or stromal were used (80% of total tiles). The 

WSI cohort was split through 5-fold cross validation. WSIs coming from different blocks of the 

same patient (n=14) were kept together in a ‘fold’. This reduced potential bias by forcing each 

testing set to contain tiles from slides only from patients which the classifier was not trained with. 

The patient’s distant metastasis status was used as the ground truth label for all tiles annotated 

from their slides. Each training set, for both the cancer and stromal CNN, was trained for 6 epochs 

(using stochastic gradient descent with momentum and dropping the initial learning rate of 0.001 
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by a factor of 0.1 at 4 epochs) before being applied towards the respective test set. To decrease 

overfitting to the training data, an L2 regularization was applied (0.0001). The predicted 

metastasis association labels (and scores) for tiles within each cross-validated testing set were 

concatenated to rebuild the full-sized cohort and used for further analysis.  

4.3.5 Full Slide Feature Extraction and Metastasis Prediction 

Metastasis associated probabilities, for both cancer and stromal tiles, were stitched together to 

form a WSI mask. Tiles without enough, directly adjacent, similarly annotated (tissue) neighbors 

(4 for cancer and 2 for stroma) were considered noise and filtered out. The distribution of the 

metastasis association score (0-100%) for the remaining tiles within each slide were the basis for 

the extraction of 150 ‘full slide’ features. These features were derived from histogram metrics of 

both individual tiles within the WSI (Fig 4.4) and after aggregation within a 10x10 tile area (Fig 

4.5).Histogram metrics used included the statistical moments (mean, standard deviation, 

skewness, and kurtosis) and the tile counts/proportions, for both the overall metastasis associated 

probability tile distributions and within high probability (>90%) regions of each WSI.. Spatial 

features were bin counts of ‘spatially clustered’ metastasis associated groups with the assumption 

that ‘clusters’ of high-risk areas possess potential prognostic value beyond single regions.  
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Figure 4.4: An example of a histogram of the metastasis associated probabilities within a full 
slide. Blue regions on the mask represent tiles associated with a non-metastatic patient and are 
overwhelmingly prevalent with most tiles having a 90% probability of not being associated with a 

metastatic patient (teal histogram). The few red regions, indicating high risk areas, are also 
highlighted in a separate histogram (showing the count of tiles with a high probability of 

metastasis association). Features extracted represent statistical moments (mean, standard 
deviation, skewness, and kurtosis) for the full histogram and on both extreme edges. 

Additionally, the overall frequency of high-risk regions and their relative proportions are also 
used. 

Eighteen different machine learning models (Table 4.2) were trained using the full slide features 

as the input variables and the patient’s metastasis information as the labels. Models were trained 

through a patient level, leave-one-out cross validation, wherein each left out set composed of only 

all the slides (if multiple) from a single patient. Patients with multiple slides (n = 14) were given a 

‘high-risk’ prediction if any of their slides were predicted to metastasize. To improve accuracy 

[182], and reduce data dimensionality, simple feature filtering was performed. For each training 

fold, within the leave one out cross validation, a two-sample t-test was performed for all features 

between patients who experienced later metastasis versus those which did not. Consecutively 

increasing thresholds of the resulting t-score were tested for each ML model, with the final model 

selected based on the highest resulting accuracy. This model was further analyzed univariately 

using Kaplan-Meier survival analysis and multivariate analysis (alongside tumor size, patient age, 

and sex) using Cox Regression. 
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Figure 4.5: Example of the spatial cluster features used in the model. 10x10 tile areas are 
analyzed for frequency of various metastasis association probabilities (>50% and >90%). 

Features are the frequency of various ‘clusters’ (10x10 tile regions). An example of a frequency 
measure is seen above, where there are 2 clusters with at least 8 metastasis associated tiles 

 

 

Table 4.2: List of machine learning models used for metastasis prediction 

 

1 - Fine Tree

2 - Medium Tree

3 - Coarse Tree 

4 - Fine KNN

5 - Medium KNN

6 - Coarse KNN

7 - Cosine KNN

8 - Cubic KNN

9 - Weighted KNN

10 - Linear SVM 

11 - Quadratic SVM

12 - Cubic SVM

13 - Fine Guassian SVM

14 - Medium Guassian SVM

15 - Coarse Guassian SVM

16 - Ensemble boosted trees

17 - Ensemble bagged trees

18 - RUSBoost trees

Machine Learning Models
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4.3.6 Statistical Analysis 

For confusion matrix metrics accuracy was measured as the sum of true positives (TP) and true 

negatives (TN) divided by the total sum, sensitivity was the number of TP divided by total 

positives, and specificity was the number of TN divided by total negatives. Variable significance 

within survival analysis was measured though the log-rank test for Kaplan Meier curves and the 

Wald chi-square test for cox regression analysis. A p value of < 0.05 was considered significant 

for all results. Statistical analysis was performed using the SAS 9.4 software (Cary, NC, USA) 

and MATLAB R2018b (Natick, MA, USA). 

4.4 Results 

4.4.1 Deep Learning Discriminates between PanNET Tissue Annotations 

A total of 8,474 non-overlapping 150x150 pixel, pathologist annotated, ground truth regions were 

extracted (Fig 4.6A). Augmenting this data resulted in 381,330 tiles utilized to train the annotation 

CNN. After 9 epochs the training data was almost perfectly classified (Fig 4.6B) and for the 

validation cohort produced an overall accuracy of 92.8% with greater than 90% sensitivity and 

specificity for every annotated class. The most accurate classification, in the validation cohort 

(n=42,976), was for stromal regions, which were properly classified over 95% of the times (Table 

4.3) while the most discordance was found in cancer tiles, wherein 5% were improperly classified 

as stromal. Whole slide image classification provided strong concordance to (Fig 4.6C) 

pathologist annotations with a median Jaccard Index of 0.79. Cancer regions were always 

highlighted, with false positive areas associated to sparse edge/interface cases (generally not 

seen in training). These false positive areas have low probability (<95%), and thus were not used 

for downstream analysis. 
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Figure 4.6: A) Examples of the tissue annotation classes and the (non-augmented) ground truth 
count used for training. B) The multi-class sensitivity, specificity, and accuracy for the training 

and validation tiles. C) Examples of pathologist annotations (green solid line) for cancer regions 
versus automated whole slide annotation (major cancer regions outlined with a white dashed 

line) 

 

 

 

Table 4.3: Row normalized confusion matrix for tissue annotation within the validation cohort 

 

4.4.2 Metastasis Association Provides Significant Prognostic Value 

Within the full cohort, 430,318 cancer (both stroma rich/poor) and 211,361 stromal tile annotations 

were given with a greater than 95% CNN probability. Training the metastasis association CNN 

with these tiles (using the patients metastasis status as their labels) provided an overall test-set 

sensitivity/specificity of 36%/74% and 52%/65% for cancer and stromal tiles, respectively (Fig 

4.7A). Analyzing tiles above a certain probability score resulted in an overall increase of both 
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cancer and stromal performance measures. This resulted in a maximum of a 62% sensitivity and 

89% specificity for cancer tiles classified with over a 99.999% probability (n=12,585) and 76% 

sensitivity and 69% specificity for stromal tiles classified with over a 99.9% probability (n=4,524). 

Predicting patient metastasis risk, using full slide features stemming from their metastasis 

associated tiles, resulted in a best leave-one-out cross validated accuracy of 78% using either a 

course gaussian SVM or a weighted KNN (Fig 4.7B). An optimal model (accuracy 83%) was 

found using a quadratic SVM and filtering out features that were not significantly different 

(between patients in the training set who experienced metastasis versus those that did not) over 

a t-score value of +/- 2.9. Almost 90% of patients selected as high risk by this model metastasized 

within 10 years, as compared to only 13% of patients put in the low risk group (Fig 4.7C). The 

model stratification was highly significant, controlling for clinical variables (Fig 4.7D). 
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Figure 4.7: A) The cross validated sensitivity (or tiles which actual came from a patient who 
experienced metastasis/all tile predicted as metastasis associated) and specificity (or tiles which 

actual came from a patient who did not experienced metastasis/all tile predicted as non-
metastasis associated)  for various metastasis association probability cut points for the neural 

network built for cancer and stromal tiles. The cut points represent the CNN probability 
threshold at which a slide is analyzed. For example, at the tile probability cutoff of 0.7, the 

sensitivity/specificity was determined by only using tiles which had a metastasis/non-metastasis 
association >= 0.7. B) The leave-one-out cross validated accuracies of each model and different 
levels of feature filtering. A z-score filter of 0 represented models trained with all features while a 
z-score of 3.3 used models which only utilized the most significantly different features between 
the training metastasis and non-metastasis groups.  C) Leave-one-out cross validated Kaplan-
Meier curves of selected model for metastasis free survival. D) Univariate and multivariate Cox 

analysis comparing the selected model alongside common clinicopathological variables. 

 

4.5 Discussion 

Well differentiated pancreatic neuroendocrine tumors are a logical disease to study through 

computational pathology; it has a variability in outcomes, diverse morphology, and currently lacks 

sufficient prognostic biomarkers. Unlike neuroendocrine carcinomas, which are usually lethal, 

PanNET patients have an unpredictable prognosis (stemming mostly from metastasis risk), which 

almost entirely relies on Ki67 [224]. Neuroendocrine morphology, observed with H&E histology, 

has been shown to be a significant indicator of both prognosis and therapeutic response and is 
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linked to various important oncogenetic alterations [228]. Being able to identify and study these 

tumors through deep learning could reveal latent features important to disease progression. 

Additionally, the surrounding stroma, shown to have significant prognostic value in other cancers 

[52], is not well studied in PanNETs and could potentially provide supplementary prognostic value. 

Therefore, our study attempted to both identify these prognostic tissue regions within a WSI, 

employ separate deep learning networks to determine metastatic association risk within these 

regions, and analyze the probability distribution of metastatic association to predict an overall 

patient risk of metastasis.  

At each step, our novel 3-step pipeline showed significant promise. Deep learning has 

consistently presented superhuman image classification, which remained consistent with the 

tissue labels for our PanNET cohort. In over 40,000 validation images, the CNN provided an 

overall accuracy of better than 92% for 5 separate annotations. Adding an additional label of 

metastasis association to tiles annotated as cancerous or adjacent stromal gave optimistic results. 

Unsurprisingly, low confidence metastasis associated areas, ones which the CNN gave 50-80% 

probability (for either mets or non-mets association), did not show meaningful discriminatory 

power. However, whenever this classifier output a prediction with a high probability (>99%), the 

discrimination significantly increased. This indicates that these stromal and cancer tiles possess 

morphological features, identifiable by a deep learning network, which can represent risk (or lack 

of) of these patients experiencing metastasis. Finally, when put together, a cross validated model 

was able to find a high-risk group of patients which had an over 8x higher risk of distant 

metastasis, higher than any biomarker for PanNET reported in literature. Although preliminary, 

these results show the potential of a multi-structured machine learning based model to provide 

enough risk stratification to help clinical decision planning. 

Despite these encouraging results, this study has clear limitations. As our cohort is from a single 

hospital, and due to the relatively low incidence rate of PanNETs, our sample size is quite limited 
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in power and requires thorough external validation. Although our results stay significant when 

controlling for clinopathological variables, our retrospective cohorts lack Ki67 results, arguably the 

most important variable to control for, as it’s the only real standard of care marker. Importantly, 

the deep learning networks likely would benefit from longer training or starting with more complex 

networks. But these concerns are outside the scope of this study due to data limitation and 

computational hardware constraints. Our study provides proof-of-principle that this unique, multi 

labeling, deep learning pipeline can predict PanNET metastasis risk using only surgical resection 

H&E tissue. Additionally, these results suggest that prognostic morphological patterns exist, for 

PanNET tissue, for both cancer and adjacent stromal regions, and provide evidence towards 

including them in clinical decision making. In future studies we hope to significantly increase our 

sample size, improve our network, and add in treatment options so that our model can hopefully 

provide predictive benefit.  
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5 Conclusion 

 

Improperly identifying a patient’s risk is an underlying, unacceptable, issue in healthcare. 

Approximately 10% of patient deaths, and up to 17% of adverse hospital events, result from an 

inability to form an actionable and timely measure of risk [229]. This is especially true for cancer, 

wherein a ‘one size fits all’ treatment approach is not uncommon, despite tremendous 

heterogeneity between patients cancers [230]. Beyond leading to either over or undertreatment, 

this inability to accurately identify optimal treatment contributes to an incredible resource waste 

[231].  This lack of personalization for patient cancer therapy, in general, is due to the fact that 

very few cancers have any clinically viable prognostic biomarkers developed and even fewer have 

ones capable of altering therapy decision making or predicting response [232].  

As cancer moves more and more towards personalized therapy, an increasing amount of 

prognostic and predictive biomarkers will be required to finely tune clinical decision guidelines. To 

be optimally suitable for inclusion in the clinic the biomarkers will likely have to meet certain 

overarching criteria. Although no biomarker is immune to the uncertainty of cancer, the most 

importantly characteristic of a model is the ability to maximally stratify the ‘split’ of patient risk 

groups. Models which provide a ‘low risk group’ with too many events risk omitting potentially 

lifesaving therapy. Alternatively, if a model puts many ‘true’ low risk patients in their high risk 

groups they will unnecessarily open patients up to, potentially life threatening, long term and acute 

side effects from adjuvant therapy [233]. Additionally, the model should ideally be treatment 

facing. That is, it should have predictive properties [5] which would allow it to recommend (or 

argue against) a treatment option. While knowing if a patient is at high risk is good (prognostic), 

identifying if a patient is at high risk AFTER certain therapies is better, and a necessity for 

personalized medicine. Practically, the biomarker must be both safe and economically viable [5]. 
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Markers which are too expensive for their benefit, such as Oncotype DCIS [33], are unlikely to 

get insurance (and consequentially patient) buy in.  

The advancement of AI within cancer has led to monumental progress within biomarker 

development by applying varied algorithms towards diverse, multidimensional, data[234]. Models 

have been derived to utilize genetic data [235], clinicopathological variables [236],  and 

imaging[237] to classify survival, recurrence, and susceptibility for cancers severely lacking in 

accurate biomarkers. For analyzing image, these models are more increasingly taking advantage 

of deep learning algorithms to provide superhuman classifications[238].  Our seminal work looks 

to further push this field through developing novel end to end approaches for WSI analysis and 

applying it towards determining various metrics of prognosis. Generally, we show the importance 

of multi-scale multi-label (region annotation classification followed by full slide risk determination). 

While other important publications have tried to show the ability of utilizing tiles for whole slide 

risk analysis, they either require pathologist annotation for risk regions [226]  or had a limited 

annotation step and relatively minor prognostic value [52]. Our models thoroughly, and accurately, 

annotate WSIs and each model provided better than state-of-the-art stratification, regardless of 

cofounding clinopathological variables. Our models generally provided a level of treatment 

dependency. Our identification of the specific metastasis sites allows for biologically justifiable 

therapy (focused on the organ). For DCIS we explicitly showed our model validation in patients 

who have both received/been omitted radiotherapy. PanNET patients are the only ones who lack 

a directly correlated treatment decision, but as they have only been treated with resection, 

identifying the high-risk group could justifiably put them into a cohort requiring systemic therapy. 

While promising, this model requires the most varied and exhaustive validation. Additionally, our 

models are relatively cheap and, as it uses slices of tissue obtained from surgery, adds no risk. 

The image analysis models simply require slide digitization of samples already required in the 
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clinical workflow, whereas the distant metastasis model would require only 8 IHC TMA’s, still an 

order of magnitude cheaper than clinical genetic signatures (~4,000 USD).  

Our models, though, do have limitations. The overarching one being external, ideally blinded, 

validation. As the data required is quite precious and needs large cohort specific cohorts (specific 

antibodies or high-resolution resections) with long follow-up times, this is ongoing question that 

we are pursuing.  While we have listed the specific technical limitations to each project, there exist 

general improvements, following the state of the art, that we are looking to address. Specifically 

deep learning  networks which utilize multi-label multi-instance are perfect for our pipelines and 

have started to show significance for histopathology [239]. Furthermore, attaching a continuous 

measure of risk that encompasses follow-up time (such as Cox regression) is an adjustment that 

should be considered (either through survival forests [240] or Cox CNNs[241]). To improve 

prognostic capabilities, we would also like to link our histological analysis towards a genetic 

signature[226].  

Ultimately our frameworks are easily transferred to other cancer types which utilize pathology 

(either H&E or IHC) and can be adapted to the biopsy setting (and thus theoretically provide 

neoadjuvant and surgical recommendations). Our models provide outstanding prognostic value, 

which in turn leads to more confident treatment recommendations from the clinician and provides 

hope for the patient. With a more confident therapy plan patients will be less likely to be 

over/undertreated and thus face less unnecessary side effects or recurrence. Importantly, our 

markers can be processed in a matter of minutes, even for full, max resolution, slides.  Thus, 

these models will provide a potential tremendous health economic benefit at almost no cost. 

Ideally, we will test the potential of integrating our molecular model with our histological analysis 

in a cohort with multiple therapy options, to truly move towards the goal of personalized medicine..  
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