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ABSTRACT 

Type 2 diabetes (T2DM) is a chronic condition affecting 1 in every 10 adults in the United States. 

There is evidence that individuals with greater levels of F2-isoprostanes at similar levels of 

adiposity have reduced risk of T2DM. F2-isprostanes have been validated as markers of oxidative 

status in animal and human studies. Many cross-sectional studies found correlations between 

F2-isprostanes and adiposity measured as body mass index (BMI). The connection of F2-

isprostanes to the lower risk of diabetes and BMI suggests that these markers can be interpreted 

as a part of some compensatory mechanisms involved in metabolic adaptation to body fat 

accumulation. The purpose of this study was to compare the additive relationship between BMI, 

as a measure of adiposity, and 2,3-dinor-iPF2α-III (F2-isoP), as a measure of adaptation to 

increased BMI, to a model that proposes multiplicative relationships between F2-isoP to BMI 

expressed by the ratio of F2-isoP to BMI. The present analysis utilizes data from the Insulin 

Resistance Atherosclerosis Study (IRAS), a multicenter prospective cohort designed to study the 

relationships between insulin resistance, type 2 diabetes, cardiovascular disease risk factors and 

behaviors in a diverse population including non-Hispanic whites, African Americans, and 

Hispanics. Between October 1992 and April 1994 approximately 1625 participants, between 40-

69 years of age at baseline, were recruited from four U.S. clinical centers located in San Antonio, 

TX; San Luis Valley, CO; Oakland, CA; Los Angeles, CA. Wilcoxon-rank sum/ Kruskal-Wallis tests 

and Wald-chi-square test were used to describe the study population. Logistic regression models 

were used assess the relationships between the exposures of interest as well as age, gender, 

race/ethnicity, glucose tolerance status. The additive model estimated the association between 

F2-isoP and the risk of T2DM with BMI being a covariate. The multiplicative model estimated the 

association between F2-isoP/BMI ratio, F2-isoP and the risk of T2DM. Percent differences of odds 

ratios were calculated between the two models, with >10% difference indicating meaningful 

change. The results from the analysis show that the new variable F2-isoP/BMI ratio does not 

clearly indicate whether the multiplicative model represents a better way to evaluate the 

relationships between F2-isoP, BMI and risk for T2DM. Evaluation of the additive and 

multiplicative models for outcomes—such as weight change, decrease in insulin resistance, blood 

pressure and others—might clarify whether the additive or multiplicative relationships, between 

F2-isoP and BMI, better predict these outcomes.  
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Chapter I: Introduction 

1.1 Purpose of study 

Type 2 diabetes (T2DM) is a chronic disease which affects about 1 in every 10 adults in the U.S.1. 

Diabetes is a major public health issue because of the many comorbidities it promotes including 

hypoglycemia, hyperglycemic crisis, kidney disease, cardiovascular disease and stroke, to name 

a few 11.  Optimized body weight and physical activity can help in reducing T2DM risk thereby 

reducing risk of cardiovascular events 3.  Metabolically healthy obese adults are half as likely to 

develop diabetes when compared to the obese counterparts 8. Cross-sectional studies suggest 

that oxidative stress plays an etiologic role in the pathology of various chronic diseases, including 

T2DM 4. These associations can be explained by a compensatory mechanism known as metabolic 

adaptation, when fatty acid oxidation increases with increased adiposity. This was shown to be 

the case when it was found that individuals with greater levels of F2-isoprostanes at similar levels 

of adiposity would have a reduced risk of T2DM 20. This additive relationship between body mass 

index (BMI) as a measure of adiposity and 2,3-dinor-iPF2α-III (F2-isoP) as a measure of oxidative 

status has been studied previously. We compared the additive model to the model that proposes 

multiplicative relationships between F2-isoP to BMI expressed by the ratio of F2-isoP to BMI.  
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Chapter II: Literature review 

2.1 Diabetes Mellitus 

Diabetes Mellitus (DM) is one of the most predominant chronic conditions in the U.S. and is one 

of the leading causes of death 9. According to the Centers for Disease Control and Prevention 

(CDC) about 23 million adults in the U.S. have been diagnosed with diabetes in 2016, out of which 

90% to 95% have type 2 diabetes (T2DM). The highest prevalence of T2DM was found to be 

among those who aged >65 years (25.2%) and lowest among those below 18 years (4%). There 

was a significantly higher prevalence among those who classified as non-Hispanic blacks (11.52%) 

when compared to non-Hispanic whites (7.99%), Hispanics (9.07%), and Asians (6.89%). 

However, those who had higher education attainment, more than high school education, had a 

lower prevalence of T2DM (6.89%) when compared to those with less than high school education 

(14.20%).  

There are many comorbidities and complications associated with diabetes. Diabetes is a known 

risk factor for cardiovascular diseases (CVD). Approximately 65% of mortality among diabetic 

patients is due to heart disease or stroke 33. Other conditions associated with T2DM include 

retinopathy, chronic renal impairment, cardiovascular events, and amputation of lower body 

limbs. High comorbidity makes T2DM a high priority public health problem. Approximately 7.2 

million hospital discharges were reported with diabetes as a diagnosis in 2014 in the United 

States. Hospitalizations were mainly due to CVD (70.4 per 1,000 individuals with diabetes)), lower 

extremity amputation (5 per 1000 individuals with diabetes), ketoacidosis (7.7 per 1,000 

individuals with diabetes) 11. In a study conducted by Pantalone et al. (2015), the most prevalent 

comorbidities included: hypertension (82.5%) and CVD (26.8%). Among all complications and 

comorbidities, retinopathy increased slightly from 3.2% to 3.4% in 2008 to 2013, respectively 39. 

Nephropathy, neuropathy, and peripheral vascular disease were among other complications in 

those with T2DM. In a study done in the United Arab Emirates, 83.74% of individuals with T2DM 

had more than one clinically diagnosed complication, including retinopathy—the primary 

complication, coronary artery disease, neuropathy and nephropathy 14.  The cost of diabetes has 

increased from $245 billion in 2012 to $327 in 2017—this is almost a 30% increase in five years 
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28. People with diabetes spend approximately $9,600 to manage their disease. Indirect costs 

include increased absenteeism (costing about $3.3 billion) and reduced productivity in the 

workplace ($27 billion, approximately), disease-related disability ($37.5 billion), and many more 

costs leading to almost $90 billion in indirect costs 28. 

T2DM has a long natural history and is more a deterioration of one’s metabolic pathways than 

just an occurrence. Impaired glucose tolerance and impaired fasting glucose are intermediates 

of abnormal glucose regulation which exists between normal glucose homeostasis and diabetes 

31. Impaired glucose tolerance is defined as an elevated 2-hour plasma glucose concentration, 

>=140 and <200mg/dl, after a 75-grams glucose load from an oral glucose tolerance test (OGTT) 

in addition to a fasting plasma glucose concentration of <126 mg/dl as described by Genuth et al. 

(2003) 31. IGT progression to diabetes is a strong risk predictor of cardiovascular disease (CVD). 

CVD risk increases from two-fold to four-fold in those who progress to diabetes 31.  High levels of 

circulating fatty acids and fat deposits in skeletal muscle also disrupt insulin signaling pathways, 

which promotes the development of T2DM 18. Circulating free fatty acids in plasma were found 

to be elevated among obese individuals with diabetes when compared to metabolically healthy 

obese and normal weight individuals 36.  

2.2 T2DM risk factors and prevention 

Two major risk factors for T2DM are obesity/overweight and physical inactivity 34. Prospective 

studies show that both a low physical activity and obesity are associated with the risk of T2DM. 

Hu et al. (2004) found that there was an inverse association between physical activity and T2DM 

risk based on a subgroup analysis of BMI (<30 kg/m2 and <=30kg/m2) and glucose levels—either 

normal glucose level or impaired glucose level. Adjusting for age, BMI, blood pressure, education, 

obesity, current percent of individuals smoking, and physical activity, subjects with impaired 

glucose regulation showed approximately a five-fold increase of developing T2DM when 

compared to those with normal glucose levels. 

Lifestyle changes related to obesity, eating habits, and physical activity are all factors that need 

to be suggested to individuals at high risk for diabetes along with medication adherence 15. 

Dietary modifications targeting high fiber, low calorie, low-saturated fat and moderate physical 
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activity of at least 150 minutes per week contributed to approximately 5% loss of initial body 

weight. There was a 58% risk reduction of diabetes in these studies 41. Heavy smokers—those 

who smoked more than 20 cigarettes per day—had a relative risk of 1.66 (95% CI: 1.43, 1.80) 

when compared with light smokers (1.29 (95% CI: 1.13, 1.48)) and former smokers (1.23 (95% CI: 

1.14, 1.33)) 42. Low trans-fats and glycemic index, regular exercise 35, abstinence from smoking 

and reduction of alcohol consumption 15 are also important considerations for managing T2DM.  

2.3 Reactive oxygen species, oxidative stress, and F2-isoprostanes 

Reactive oxygen species (ROS) are a group of highly reactive oxygen-containing molecules, which 

are produced in normal metabolic processes in all aerobic organisms 23. ROS are generated 

through reduction-oxidation reactions, most of which happen in the mitochondria. Mitochondria 

within cells are major sources of endogenous ROS. ROS react with lipids, proteins, and nucleic 

acids which alter structural and functional properties of the target molecules 22. Antioxidant 

defense mechanisms protect cells from ROS-induced oxidative damage 23. Redox homeostasis is 

achieved when ROS levels and antioxidant defenses are in balance. Oxidative stress is a concept 

considering an imbalance in redox homeostasis towards the oxidative process due to insufficient 

antioxidant defense system.  

Polyunsaturated fatty acids easily react with ROS producing various oxidation products including 

F2-isoprostanes. F2-isoprostanes are prostaglandin-like stable compounds that are commonly 

used for assessing oxidative status 27. Systemic levels of F2-isoprostanes reflect the overall levels 

of ROS and have been validated indicators of oxidative status in animal and human models 24. 

Elevated systemic F2-isoprostane levels are commonly interpreted as indicators of harmful 

oxidative stress but can also indicate the intensity of mitochondrial metabolism. Supporting the 

latter interpretation, prospective studies showed that individuals with greater F2-isprostane 

levels have a lower risk of diabetes and weight gain 24. This inverse relationship acts as a 

protective factor for those at risk for T2DM. 2,3-dinor-iPF2α-III (F2-isoP) is one F2-isoprostane 

isomer which showed the strongest inverse association with T2DM risk 29. This association was 

even stronger among obese individuals. Therefore, the relationship between F2-isoprostanes, 
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specifically 2,3-dinor-iPF2α-III (F2-isoP), and BMI as an index of adiposity is of interest in this 

study. 

2.4 Conceptual framework 

Adipose tissue is the main fatty acid storage unit, while skeletal and cardiac muscles are the most 

important tissues for fatty acid oxidation. Individuals differ in their ability to use fat as fuel and 

therefore in the intensity of fatty acid oxidation.  Accumulation of fatty acids occur either with 

an increased uptake and/or decreased oxidation. There is evidence suggesting that accumulation 

of lipids within the skeletal muscle result from low capacity of fat oxidation 34.  In humans, a 

decrease in post absorptive fat oxidation was reported in obesity and T2DM after weight loss 

when compared with lean individuals 34. Palmitate oxidation was 58% lower in skeletal muscle 

for extremely obese individuals when compared with normal-weight individuals and 83% lower 

in overweight/obese individuals 38. Thus, impaired fatty oxidation is associated with both 

disorders – obesity and T2DM.    

Metabolic adaptation is a concept stating that physiological response to positive (fat 

accumulation) and negative (fat loss) energy balance involves opposing changes in fatty acid 

oxidation. Increased levels of F2-isoprostanes have been found among individuals with obesity 

and diabetes in cross-sectional studies 19. According to the concept of metabolic adaptation, 

increase in systemic F2-isoprostanes in obesity might reflect increased mitochondrial fatty acid 

metabolism in response to fat accumulation. It has been hypothesized that F2-isoprostanes, in 

relation to BMI, captures the metabolic phenotype showing adaptation to increased adiposity 

through intensification of fat oxidation. This agrees with previous literature that slow fat 

oxidation promotes weight gain obesity-related deterioration of glucose homeostasis 19.  
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Chapter III: Methods 

3.1 Study Population  

The present analysis utilizes data from the Insulin Resistance Atherosclerosis Study (IRAS), a 

multicenter prospective cohort designed to study the relationships between insulin resistance, 

type 2 diabetes, cardiovascular disease risk factors and behaviors in a diverse population 

including non-Hispanic whites, African Americans, and Hispanics. Between October 1992 and 

April 1994 approximately 1625 participants, between 40-69 years of age at baseline, were 

recruited from four U.S. clinical centers located in San Antonio, TX; San Luis Valley, CO; Oakland, 

CA; Los Angeles, CA. Metabolic diversity was maintained and ensured by having equal number of 

individuals with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and type 2 

diabetes.  

3.2 Diabetes status and covariates 

Baseline glucose tolerance was measured through the oral glucose tolerance test, based on the 

criteria established by the World Health Organization (WHO). Age, gender, race/ethnicity was 

assessed through self-report and recorded through questionnaires. Body Mass Index (BMI) was 

calculated based on the measurements during the baseline examination as weight in kilograms 

divided by height in meters squared for each participant to represent adiposity.  

3.3 Assessment of main exposure—2,3-dinor-iPF2α-III 

F2-isoprostane isomer, 2,3-dinor-iPF2α-III (F2-isoP), was measured in morning spot urine 

samples collected at baseline examination; the urine samples were stored at -70° C. F2-isoP was 

quantified using liquid chromatography with tandem mass spectrometry detection and adjusted 

for urinary creatinine concentration as earlier described 21. Creatinine was assayed using a fast 

electrospray ionization-tandem mass spectrometry method 21.  

3.4 Analytical Cohort 

Our analytical cohort included those free of type 2 diabetes at baseline. A total of 1025 

participants were identified as non-diabetic, NGT or IGT, at baseline; among them only 905 
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underwent the follow-up examination and had urine specimens available for measurements of 

F2-isoprostanes.  F2-isoprostanes could be measured in 858 urine specimens. After excluding 

participants with missing values, 857 participants were included in the analysis; 140 participants 

were identified as those who had incident type 2 diabetes and 717 participants remained free of 

diabetes. 

3.5 Statistical analysis 

Descriptive statistics were examined using the baseline sample of 857 participants. Bivariate 

associations between diabetes status and all other participant characteristics (age, gender, race, 

BMI at baseline, F2-isoP, glucose tolerance status at baseline, and F2-isoP/BMI) were performed. 

All continuous variables were assessed using Wilcoxon-rank sum/ Kruskal-Wallis test and all 

categorical variables were assessed using Wald Chi-square test. We used Logistic regression to 

compare two models where F2-isoP and BMI are represented in an additive scale and 

multiplicative scale. In the additive scale model, F2-isoP and BMI are two separate variables to 

predict incident diabetes, whereas in the multiplicative scale, the F2-isoP/BMI ratio alone is used 

to predict incident diabetes. A p-value <0.05 was considered significant in the present analysis. 

All statistical analyses were performed using SAS statistical software, version 9.4. 
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Chapter IV: Results 

The groups selected for this analysis were metabolically diverse among categories of gender and 

race/ethnicity which included NHW, NHB, Hispanics. The main variables of interest for this 

analysis were F2-isoP and F2-isoP/BMI ratio with regards to incident diabetes.  

4.1 Baseline characteristics 

Among the total number of participants included in this study (n=857), 16.33% developed T2DM 

by the follow-up examination (cases) and 83.66% remained free of diabetes (non-cases). Cases 

on average were approximately 2 years older than non-cases. The sex distribution did not differ 

between cases and non-cases. Ethnic distribution in this study population was 40.02%, 27.77% 

and 32.21% for non-Hispanic whites, non-Hispanic blacks, and Hispanics, respectively and did not 

vary between cases and non-cases.  There was a significant difference in baseline BMI between 

cases and non-cases (p<0.0001): the mean BMI at baseline measurement was 31.29 kg/m2 for 

cases while it was 27.91 kg/m2 for non-cases. The mean levels of F2-isoP were not significantly 

lower among cases as compared to non-cases: mean (median) values were 3.92 (3.43) among 

cases and 4.43 (3.77) among non-cases Baseline glucose tolerance status was significantly 

different between cases and non-cases (p<0.0001). Out of 140 cases, 32.14% had normal glucose 

tolerance (NGT) and 67.86% had impaired glucose tolerance (IGT) at baseline. Significant 

differences were found between cases and non-cases in the F2-isoP/BMI ratio. The mean 

(median) ratio was 0.126 (0.11) and 0.16 (0.14) for cases and non-cases, respectively (p<0.0001).  

Table 1. Distribution of demographic and baseline characteristics by diabetes status at follow-up. 

Participant Characteristics 
Cases 
(N=140) 

Non-Cases 
(N=717) 

Total 
(N=857) 

P-value* 

Age  
Median (IQR) 
Mean (SD) 
Missing 

 
56 (13) 
56.07 (7.75) 
0 

54 (15) 
54.26 (8.39) 

54 (143) 
54.56 (8.31) 

0.0187 

Gender  
Male N (%) 
Female N (%) 
Missing N (%) 

 
56 (40.00) 
84 (60.00) 
0 

307 (42.82) 
410 (57.18) 

363 (42.36) 
494 (57.64) 

0.5372 
 

Race/ethnicity    0.8368 
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Non-Hispanic White N (%) 
Non-Hispanic Black N (%) 
Hispanic N (%) 
Missing N (%) 

53 (37.86) 
41 (29.29) 
46 (32.86) 
0 

290 (40.45) 
197 (27.48) 
230 (32.08) 

343 (40.02) 
238 (27.77) 
276 (32.21) 

BMI  
Median (IQR) 
Mean (SD) 
Missing 

 
28.99 (8.26) 
31.29 (6.43) 
 

 
26.98 (5.24) 
27.91 (5.32) 
 2 

27.29 (5.75) 
28.46 (5.66) 

<0.0001 

2,3-dinor-iPF2α-III 
(ng/mg-cn)  
Median (IQR) 
Mean (SD) 
Missing 

 
3.43 (2.76) 
3.92 (2.75) 
2 

 
3.77 (2.74) 
4.43 (3.04) 
2 

 
3.71 (2.74) 
4.35 (3.0) 
4 

0.0167 

Glucose tolerance status  
NGT 
IGT 
Missing 

 
45 (32.14) 
95 (67.86) 
0 

 
534 (74.48) 
183 (25.52) 
 

 
579 (67.56) 
278 (32.44) 
 

<0.0001 

Ratio of 2,3-dinor-iPF2α-III 
to BMI 
Median (IQR) 
Mean (SD) 
Missing 

 
 
0.11 (0.085) 
0.126 (0.088) 
2 

 
 
0.14 (0.104) 
0.16 (0.10) 
4 

 
 
0.132 (0.104) 
0.154 (0.099) 
6 

<0.0001 

NGT: normal glucose tolerance; IGT: impaired glucose tolerance; *Difference in the distribution of the continuous variables by cases status was 

assessed using Wilcoxon Rank Sum/Kruskal Wallis test and Chi Square test was used for categorical variables. 

4.2 Crude associations between incident diabetes and participant characteristics 

The strongest crude association of incidence diabetes was with IGT status (cOR=6.160, 95% CI: 

4.160, 9.119). BMI was associated with increased diabetes risk, with the cOR for increase by 5 

units, being 1.582 (95% CI: 1.364, 1.834). In this study population, no crude association was found 

between diabetes risk and either race/ethnicity or sex. F2-isoP and F2-isoP/BMI ratio were 

inversely associated with incidence diabetes, with cOR for 75-25 contrast of 0.818 (95% CI: 0.663, 

1.010) and 0.591 (95% CI: 0.449, 0.776), respectively.  

 

Table 2 Bivariate associations between baseline characteristics and incident diabetes and all 

participant characteristics.  

Participant Characteristics cOR (95% CI) Units 

Age 1.141 (1.022,1.274) 5 



 
 

17 
 

Gender 
Males 
Females 

 
0.890 (0.616, 1.288) 
REF 

N/A 

Race/ethnicity 
Non-Hispanic White 
Non-Hispanic Black 
Hispanic 

 
REF 
1.139 (0.729,1.779) 
1.094 (0.711,1.684) 

N/A 

BMI  1.582 (1.364, 1.834) 5 
2,3-dinor-iPF2α-III (ng/mg-cn) 0.818 (0.663, 1.010) 2.74* 
Glucose tolerance 
NGT 
IGT 

 
REF 
6.160 (4.160, 9.119) 

N/A 

Ratio of 2,3-dinor-iPF2α-III 
(ng/mg-cn) 
to BMI 

0.591 (0.449, 0.776) 0.1040* 

 

*75th-25th percentile contrast 

4.3 Additive and Multiplicative models 

We compared two models in this analysis, additive and multiplicative (Table 3 and Table 4, 

respectively). The additive model included BMI at baseline, 2,3-dinor-iPF2α-III (ng/mg-cn), and 

glucose tolerance status at baseline controlling for age, gender, race/ethnicity. The multiplicative 

model included 2,3-dinor-iPF2α-III (ng/mg-cn)/BMI ratio and glucose tolerance status at baseline 

adjusting for age, gender, race/ethnicity.  

Both models showed positive associations of T2DM risk with age and impaired glucose tolerance. 

The aOR for age in additive and multiplicative models were 1.091 (0.963, 1.237) and 1.063 (0.940, 

1.202), respectively. Impaired glucose tolerance aOR for the additive model was 5.018 (3.306, 

7.616) and 5.910 (3.940, 8.864) for the multiplicative model. In the multiplicative model, males 

have a lower aOR 0.734 (0.478, 1.128) compared to aOR of 0.822 (0.530, 1.274) in the additive 

model. No association was found between race/ethnicity in both models. In the additive model, 

Non-Hispanic blacks had an aOR of 0.846 (0.511, 1.400) and Hispanics had an aOR of 1.217 (0.754, 

1.963) when compared to the referent group. In the multiplicative model, Non-Hispanic blacks 

had aOR of 0.907 (0.554,1.485) and Hispanics had an aOR of 1.267 (0.790, 2.032) compared to 

referent group.  
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Table 3 Adjusted odds ratios for incident diabetes measured at 5-year follow-up using additive 

model. 

Participant Characteristics aOR (95% CI) Units 

Age(years) 1.091 (0.963, 1.237) 5 

Gender 
Male  
Female 

 
0.822 (0.530, 1.274) 
REF 

N/A 

Race/ethnicity 
Non-Hispanic White  
Non-Hispanic Black  
Hispanic 

 
REF 
0.846 (0.511, 1.400) 
1.217 (0.754, 1.963) 

N/A 

BMI 1.557 (1.307, 1.854) 5 
2,3-dinor-iPF2α-III (ng/mg-cn) 0.563 (0.427, 0.743) 2.74* 
Glucose tolerance status 
NGT 
IGT 

 
REF 
5.018 (3.306, 7.616) 

N/A 

Full model includes only BMI at baseline, 2,3-dinor-iPF2α-III (ng/mg-cn), and diabetes status at baseline adjusting for age, gender, race/ethnicity. 

*75th-25th percentile contrast 

 

Table 4 Adjusted odds ratios for incident diabetes measured at 5-year follow-up using 

multiplicative model.  

Participant Characteristics aOR (95% CI) Units 

Age(years) 1.063 (0.940, 1.202) 5 

Gender 
Male  
Female 

 
0.734 (0.478, 1.128) 
REF 

N/A 

Race/ethnicity 
Non-Hispanic White  
Non-Hispanic Black  
Hispanic 

 
REF 
0.907 (0.554, 1.485) 
1.267 (0.790, 2.032) 

N/A 

Glucose tolerance status 
NGT 
IGT 

 
REF 
5.910 (3.940, 8.864) 

N/A 

Ratio of 2,3-dinor-iPF2α-III 
(ng/mg-cn) to BMI 

0.500 (0.364, 0.687) 0.1040* 

Full model includes 2,3-dinor-iPF2α-III (ng/mg-cn)/BMI ratio and diabetes status at baseline adjusting for age, gender, race/ethnicity.                  

*75th-25th percentile contrast 
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4.4 75%-25% contrast for the association of T2DM risk with F2-isoP and the ratio (F2-isoP/BMI) 

by gender 

Association between T2DM and both variables of interest were stronger among females as 

compared to males. Males had an OR of 0.815 (0.486, 1.367) and females had an OR of 0.571 

(0.425, 0.767) in the additive model. In the multiplicative model, males had an OR of 0.707 (0.412, 

1.215) and females had an OR of 0.472 (0.332, 0.672). When looking at the additive and 

multiplicative relationship of 2,3-dinor-iPF2α-III (ng/mg-cn) and BMI, males have a higher OR 

compared to females, thus, a stronger inverse relationship between T2DM and female gender 

was found.  

 

 

Table 5 Association between T2Dm risk with F2-isoP and F2iso/BMI males and females. 

OR (95% CI) FOR 75TH-25TH PERCENTILE CONTRAST 

 2,3-dinor-iPF2α-III 
(additive model) 

2,3-dinor-iPF2α-
III/BMI ratio 
(multiplicative model) 

 
Cases/Non-cases 

MALES  0.815 (0.486, 1.367) 0.707 (0.412, 1.215) 55/307 
FEMALES  0.571 (0.425, 0.767) 0.472 (0.332, 0.672) 83/406 
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Chapter V: Discussion 

 T2DM is an important chronic disease linked to many other conditions including obesity 

and CVD. The primary purpose of this study was to examine the relationship between F2-isoP, 

BMI, and risk of T2DM in the IRAS cohort. The IRAS study provides valuable information on the 

relationships between insulin resistance, T2DM, CVD risk factors and behaviors. There are health 

disparities which exist between different race/ethnicity groups 45. It has been shown in various 

studies that individuals of African descent are at higher risk of developing metabolic disorders 

including obesity and T2DM 24,45. Higher risk of T2DM diagnosis was found in NHB (1.44 (95% CI: 

1.18,1.75) and other races (1.58 (95% CI: 1.25, 2.00) compared to NHW (reference group) 30. The 

prevalence of T2DM diagnosis, in adults aged 20 years and older, was found to be highest among 

NHB (12.6%), Hispanics (11.8), and Native Americans/Alaska natives (16.1%). The prevalence of 

T2DM was higher among specific Hispanic populations including Mexican Americans (13.3%) and 

Puerto Rican Americans (13.8%) 45. Confirming that minorities have a higher risk in developing 

T2DM when compared to the major population 45. Overall levels of F2-isoP were found to be 

lower among NHB (mean=3.61 and standard deviation=2.1) when compared to NHW (mean=4.08 

and standard deviation=2.30). Given that fat oxidation was found to be lower among NHB, this 

finding suggests that F2-isoP levels reflect the intensity of fat metabolism 19. Biological factors 

such as genetics and non-biological factors such as socioeconomic status and access to care are 

all important when considering the health disparities between different race/ethnicity groups 45. 

 The study population used for this analysis was demographically and ethnically diverse. 

This diversity makes our results generalizable to the U.S. population. This study included three 

major ethnic groups: non-Hispanic whites, non-Hispanic blacks, and Hispanics. The United States 

Census Bureau population estimates, as of July 1st, 2018, show that there are approximately 

76.6% are NHW, 13.4% NHB, and 18.1% Hispanics in the U.S. 43. The current analysis using the 

IRAS study cohort utilizes data from four different centers around the U.S. Participants from these 

four centers were selected if they were likely to have IGT or non-insulin dependent diabetes 

mellitus (NIDDM) 44. The researchers recruited participants to yield approximately the same 

proportion of NGT, IGT, and T2DM. In this study, only NGT and IGT groups were included in the 
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analytical cohort.  However, the method of recruitment might have been a reason for the masked 

differences between race/ethnicity and risk of T2DM.  

 As expected, age, BMI and IGT were associated with T2DM risk in this study sample. The 

National Diabetes Statistics Report found that the highest incidence rate in 2015 was 10.9 per 

1000 population in those aged 45-64 years. Those between 18-44 and >=65 years of age had an 

incidence rate of 3.1 and 9.4 per 1000 people, respectively 11. Individuals with IGT at baseline, 

had an OR of 9.06 of developing T2DM in a study conducted using the IRAS cohort 46. Other 

studies have found that individuals with IGT (n=834) were aged approximately 55 years and BMI 

of 28.7 kg/m2 when compared with healthy subjects 35. They found a 30-fold increased risk in 

development of T2DM in participants who were obese, reported low levels of physical activity, 

and with impaired glucose regulation—compared to their healthy counterparts.  

We compared two models with F2-isoP and F2-isoP/BMI ratio being two main variables of 

interest. We compared adjusted ORs for the analogous variables between the two models. 

Gender and race/ethnicity were not included in this comparison because they were not 

associated with T2DM. To assess whether the differences in ORs were meaningful, we calculated 

percent differences between analogous ORs in the additive and multiplicative models. We 

considered a commonly accepted measure of difference in the relative risk estimates of >10% to 

be indicative of meaningful change. The OR for age was similar in both models (difference <10%). 

The difference in IGT was approximately 17.78%, the OR being higher in the multiplicative 

compared to the additive model. When comparing F2-isoP with F2-isoP/BMI ratio, there was an 

overall 11% difference between the additive and multiplicative models. The differences in the 

75%-25% contrast odds ratios between males and females were 13.25% and 17.34%, 

respectively. Thus, multiplicative relationships between with F2-isoP and BMI (F2-isoP/BMI ratio) 

shows a stronger association with the risk of T2DM as compared for with F2-isoP adjusted for 

BMI as a covariate (additive model). 

 In conclusion, the results from our analysis (11% difference between the odds ratios 

derived from the additive and multiplicative model) show that the new variable, F2-isoP/BMI 

ratio, does not clearly indicate whether multiplicative model presents a better way to evaluate 
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the relationships between F2-isoP, BMI, and T2DM.  However, IGT had an OR difference greater 

than 10%, the multiplicative model OR being higher than the additive model OR. This might be 

an indication that multiplicative relationships between F2-isoP and BMI strengthen the 

associations of other risk factors with T2DM. Evaluation of the additive and multiplicative models 

for outcomes—such as weight change, decrease in insulin resistance, blood pressure and 

others—might clarify whether the additive or multiplicative relationships, between F2-isoP and 

BMI, better predict these outcomes. 
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