Georgia State University ScholarWorks @ Georgia State University

Geosciences Theses

Department of Geosciences

5-10-2019

Characterization of a Shallow Urban Aquifer in Atlanta, Georgia

Jude Waguespack

Follow this and additional works at: https://scholarworks.gsu.edu/geosciences theses

Recommended Citation

Waguespack, Jude, "Characterization of a Shallow Urban Aquifer in Atlanta, Georgia." Thesis, Georgia State University, 2019. https://scholarworks.gsu.edu/geosciences_theses/129

This Thesis is brought to you for free and open access by the Department of Geosciences at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Geosciences Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.

CHARACTERIZATION OF A SHALLOW URBAN AQUIFER IN ATLANTA, GEORGIA

by

JUDE WAGUESPACK

Under the Direction of Brian Meyer, PhD

ABSTRACT

The City of Atlanta is a rapidly growing urban center in the Southeastern U.S. whose increasing population will place considerable strain on the city's water supply in terms of quality and availability. The purpose of this research is to characterize the water quality and provide lithological context of an unconfined aquifer on Georgia State University (GSU) campus as a prospective non-potable water supply to meet Atlanta's demand for water. Two groundwater monitoring wells were installed at 100 Auburn Avenue and serve as the network by which the surficial aquifer was characterized and water quality assessed. Based on groundwater monitoring, water quality varies due to the occurrence of volatile organic compounds in one well exceeding EPA drinking water standards. In addition, the depth to bedrock varied significantly with topography. As a result, water quality and availability would need to be assessed on a site basis for non-potable use and production needs.

INDEX WORDS: Groundwater quality, Urban, Aquifer, Lithology, Atlanta, Water science

CHARACTERIZATION OF A SHALLOW URBAN AQUIFER IN ATLANTA, GEORGIA

by

JUDE WAGUESPACK

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2019

Copyright by Jude Vincent Waguespack 2019

CHARACTERIZATION OF A SHALLOW URBAN AQUIFER IN ATLANTA, GEORGIA

by

JUDE WAGUESPACK

Committee Chair: Brian Meyer

Committee: Luke Pangle

W. Crawford Elliott

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2019

DEDICATION

I dedicate this thesis to my friend and mentor, Russell Walter Kirn III. His influence, above all else, has shaped me into the human I am today.

ACKNOWLEDGEMENTS

I would like to thank Dr. Meyer for his guidance on this project. I would also like to thank my committee, Dr. Pangle and Dr. Elliott, for their assistance. This research could not have been completed without Fabian Zowam and his unwavering curiosity as to my progress on the project. Without his unrelenting questions, I never would have learned what my project was about. I would also like to thank the Field Methods summer class of 2018 for hauling the GPR up and down the streets of Atlanta.

TABLE OF CONTENTS

ACKNOW	LEDGEMENTS V
LIST OF 1	TABLESIX
LIST OF F	TIGURES X
LIST OF A	ABBREVIATIONSXI
1 INTRO	DUCTION1
1.1 Pu	rpose of the Study1
1.1.1	Importance of the Study
1.2 Ba	ckground3
1.2.1	Geology, climate, land-use
1.2.2	Water Quality of Urban Environments
1.2.3	Total Area of Study
1.2.4	Monitoring Well Network
2 METH	ODS
2.1 Mo	onitoring Wells
2.1.1	Well Installation
2.1.2	Soil Borings
2.1.3	Water Level Logger
2.1.4	Multiparameter Water Quality Meter9
2.1.5	Groundwater Sample Collection and Geochemistry

	2.2	Pr	ecipitation Data	13
	2.2	2.1	Sample Collection and Geochemical Analysis	13
	2.2	2.2	Additional Rain Data	13
	2.3	Li	thology1	14
	2.3	8.1	Sample Collection and X-Ray Diffraction	14
	2.3	8.2	Ground Penetrating Radar	15
3	RE	SU]	LTS1	17
	3.1	W	ater Quality	17
	3.1	.1	Chemical Composition	17
	3.2	Ac	dditional Precipitation Analysis 1	18
	3.2	2.1	Chemical Composition	18
	3.3	Ph	ysical Framework of Aquifer System1	19
	3.3	8.1	Water Table and Precipitation Accumulation	19
	3.3	8.2	Soil Boring and XRD2	20
	3.3	8.3	<i>GPR</i>	21
4	DIS	SCU	JSSION	25
	4.1	Ev	valuation of Water Quality	25
	4.1	.1	Chemical Analysis	25
	4.2	Ac	dditional Precipitation Analysis	31
	4.2	2.1	Chemical and Seasonal Variation	31

	4.3 Physical Framework of Aquifer System	
	4.3.1 Soil Boring and XRD	32
	4.3.2 GPR	33
	4.3.3 Subsurface Lithology	
:	5 CONCLUSIONS	40
]	REFERENCES	41
	APPENDICES	43
	Appendix A: Monitoring Well Construction Log and Soil Boring Logs	43
	Appendix B: TestAmerica Results	45
	Appendix C: X-Ray Diffraction Patterns	133
	Appendix D: GPR Profiles	

LIST OF TABLES

Table 1: Ion Concentrations of MW01, MW02, and RW01	17
Table 2: Physiochemical data of MW01	18
Table 3: Ion concentrations established by NADP compared with sample RW01	18
Table 4: Summary of physiochemical data comparison between Atlanta surface waters, Seoul	
groundwater, and Atlanta groundwater	29

LIST OF FIGURES

Figure 1: Downtown Atlanta Area Map with Study Area	2
Figure 2: Total Area of Study Location Map	6
Figure 3: MWN Location Map	7
Figure 4: ThermoFisher Ion Chromatograph	12
Figure 5: Precipitation Collector	13
Figure 6: Researcher Fabian Zowam operating the GPR	16
Figure 7: Water Table Elevation and Temperature	19
Figure 8: Water Table Elevation and Precipitation Accumulation	20
Figure 9: GPR Transect Location Map	22
Figure 10: Transect 1	23
Figure 11: Transect 2	23
Figure 12: Transect 3	24
Figure 13: Transect 4	24
Figure 14: Piper Diagram of MW01, MW02, and RW01	26
Figure 15: Piper Diagram of NADP data and sample RW01	32
Figure 16: Transect 1 with labeled features	34
Figure 17: Transect 2 with labeled features	35
Figure 18: Transect 3 with labeled features	35
Figure 19: Transect 4 with labeled features	36
Figure 20: Subsurface lithology of the Total Area of Study and Monitoring Well Network;	blue
arrows indicate groundwater flow direction	39

LIST OF ABBREVIATIONS

City of Atlanta	СоА
Georgia State University	GSU
Monitoring Well (#)	MW01
Soil Boring (#)	SB01
Below Land Surface	BLS
Water Table	WT
X-Ray Diffraction	XRD
Ground Penetrating Radar	GPR
Direct Push Technology	DPT
Hollow Stem Auger	HSA
Environmental Protection Agency	EPA
(Semi)Volatile Organic Compounds	(S)VOCs
Total Dissolved Solids	TDS
United States Geological Survey	USGS
Quality Assurance and Quality Control	QA/QC
Below Detection Limit	BDL
National Oceanic and Atmospheric	NOAA
Administration	
Ground Penetrating Radar	GPR
National Atmospheric Deposition Program	NADP
Total Area of Study	TAS
Monitoring Well Network	MWN
(Primary/Secondary) Maximum Contaminant	(P/S)MCL
Level	
Atlanta Metropolitan Region	AMR

1 INTRODUCTION

1.1 Purpose of the Study

The City of Atlanta (CoA) is a rapidly growing urban center in the Southeastern U.S. The population of the city is expected to increase by 2.5 million people by the year 2040 (Atlanta Regional Commission, 2015). The increasing population will place considerable strain on the city's water supply. 70% of the CoA's water supply comes from Lake Lanier, with an additional 13% supplied from the Chattahoochee and Coosa River Basins (Missimer et al., 2014). Aging and outdated infrastructure, as well as an increase in vehicle traffic, provide potential sources of water contaminants. Previous water quality studies of the CoA have focused predominantly on surface water, with little research existing regarding groundwater quality. Additionally, existing geologic cross-sections encompassing the study area are small scale and of lower resolution than the one created for this study. The purpose of this research is to determine the water quality and provide a detailed lithological context of the unconfined aquifer on GSU campus. The characterization of groundwater quality will allow for potential non-potable water use, including irrigation water and "make-up" water for heating, ventilation and air conditioning (HVAC) system needs.

This research will evaluate an alternative source of water by answering the following research questions: 1) *Does the shallow groundwater quality meet the water quality standards for non-potable use?* 2) *What is the physical framework of the shallow groundwater system and how does it vary spatially?*

The goals of the project will be accomplished by completing the following objectives: (1) Install two groundwater monitoring wells on Georgia State campus; (2) Collect and log continuous soil cores to approximately 40 feet below land surface; (3) Prepare boring logs and

1

monitoring well construction logs; (4) Collect and analyze water samples to characterize water quality; and (5) Assimilate lithological data into a cross-section of the study area. The analysis of these objectives will determine if the quality of shallow groundwater on Georgia State University campus meets non-potable water use standards. Future studies will then assess the availability and supply of water from the aquifer. Based on existing literature, we hypothesize that the water quality within an urban aquifer will not meet EPA drinking water standards but may instead be used as a non-potable water source.

Figure 1: Downtown Atlanta Area Map with Study Area

1.1.1 Importance of the Study

The study area lies within the Peachtree Creek Watershed. This watershed has shown a decreasing amount of groundwater recharge due to rapid runoff from an increasing amount of impervious surfaces (Rose and Peters, 2001). Fulton County withdraws 200.7 million gallons of water per day (Mgal/d) from surface water sources whereas only 4.8 Mgal/d is collected from groundwater (Lawrence, 2016). The monitoring wells used in this study will provide preliminary results of the quality of groundwater in downtown Atlanta with the intention of utilizing the groundwater as a non-potable water sources by providing an alternative water supply.

1.2 Background

1.2.1 Geology, climate, land-use

Georgia State University is located downtown in the City of Atlanta in the Piedmont Province within the state of Georgia. The Piedmont Province is characterized by hilly topography and features numerous stream valleys. This region is underlain by Paleozoic metamorphic rock, topped by a regolith with a ranging thickness of 0 – 164 feet (Rose and Peters, 2001; Higgins, M. W., et al., 2003). The basement lithology is composed of discrete belts of metamorphic rock and intruded igneous plutons. The migmatitic metamorphic rocks consist of gneisses, schists, and amphibolites, while the plutons are mostly biotite granitoids (Horton and Zullo, 1991; Alexander Speer and McSween Jr., 1994). The regolith is composed mostly of alluvium, sandy clay saprolite, and soils (Rose and Peters, 2001).

The climate of Georgia is classified as humid subtropical with an average annual summer temperature range from 72°F in the northeast to 82°F in southern regions. Average annual winter

temperatures vary from 39°F in the north to 55°F in the south (NOAA, n.d.). The Atlanta region receives 49.7 inches of annual precipitation distributed evenly throughout the year. The hilly terrain and urban infrastructure within the study area produce high rates of runoff from large storm surge events (Rose and Peters, 2001).

The Atlanta metropolitan region is a sprawling mixture of urban and suburban environments with an area of 8,376 mi². The 2015 population was 4,450,487 and had increased by over 1 million people in 15 years. The population is forecasted to grow by another 2.5 million by the year 2040 (Atlanta Regional Commission, 2019). The increasing population brings with it an increasing amount of impervious surfaces and concrete infrastructure. In 2010, low density urban land cover in Atlanta accounted for roughly 50% of the total land space (Shem and Shepherd, 2008). Continuous addition of concrete infrastructure and vehicle traffic, coupled with aging utilities, will increase the risk of contamination to surface and groundwater in the city.

1.2.2 Water Quality of Urban Environments

Urban environments are characterized by the replacement of natural permeable soils with impervious surfaces. Increasing amounts of impervious surfaces show a decrease in groundwater recharge of urban watersheds and an increase in stormwater runoff (Peters, 2009). Storm runoff significantly increases both peak discharge and contaminant concentrations in urban streams within hours (Characklis and Wiesner, 1997; Horowitz, 2009; Peters, 2009; Rose and Peters, 2001). Greater rates of discharge erode urban stream channels at a significantly higher rate than stream channels in natural environments (Peters, 2009). Increased erosion leads to a higher concentration of suspended sediments. Suspended sediments account for \geq 75% of annual fluxes of trace and major elements in Atlanta streams (Horowitz, 2009).

Contaminant concentrations in urban streams have been shown to exceed water quality standards for potable and non-potable use (Peters, 2009). Contamination sources include acidic rain, solid and liquid waste disposal, small and large scale industry discharges, stormwater runoff, leaking sewage systems, and automobile traffic (Carey et al., 2013; Choi, et al., 2005; Lee, et al., 2015; Rose and Peters, 2001). Trace metal concentrations of zinc (Zn) from surface street runoff are two orders of magnitude higher than non-urban stream concentrations. Zn is mobilized primarily during storm events from areas of traffic (Rose and Peters, 2001).

Urbanization directly affects stream quality by showing increased specific conductivity and increased concentrations of chloride (Cl⁻), sulfate (SO₄²⁻), and pesticides. Concentrations of nutrients in stream water did not necessarily correlate with urbanization but rather with the percentage of the watershed under forested cover (Gregory and Calhoun, 2007). However, streams in Atlanta showed elevated levels of SO₄²⁻, Cl⁻, K⁺, and Na⁺ that correlated with electrolytes found in human waste (Rose, 2007). Fecal coliform concentrations of Atlanta streams have been found to exceed the state of Georgia's water quality usage for any class. (Peters, 2009).

Urban aquifers also show a decline in water quality compared to non-urban and rural aquifers (Choi, et al., 2005; Lee, et al., 2015). Seoul, South Korea is a comparable city to Atlanta because of similar geologic bedrock (granite, gneiss, and schist) and the average amount of annual precipitation (51.2 inches). Groundwater in Seoul was shown to have a significantly higher concentration of total dissolved solids in industrialized areas (average 585 mg/L) compared to forested areas (average 151 mg/L). Additionally, sewage leakage was shown to be a significant source of groundwater contamination in the city, accounting for >90% of annual groundwater recharge (Choi, et al., 2005).

1.2.3 Total Area of Study

For the purposes of this research, the study area is classified into two categories: Total Area of Study (TAS), and the Monitoring Well Network (MWN). The intention of this division is to provide a broader lithological context (within the TAS) for the smaller area of the MWN. The total area of study consists of an 87,383 m² (940,584 ft²) three block area in Downtown Atlanta on the GSU main campus. The northern and southern boundaries are John Wesley Dobbs Ave. and Auburn Ave., respectively. The western and eastern boundaries are Park Place and Piedmont Ave., respectively. This area encompasses soil borings SB01, SB02, and SB03; and monitoring wells MW01 and MW02. The subsurface lithology of the TAS was determined from the soil boring logs, XRD analysis of the sediment cores, and from survey of the area using ground penetrating radar (GPR).

Figure 2: Total Area of Study Location Map

1.2.4 Monitoring Well Network

The MWN consists of a smaller area within the TAS. The MWN encompasses an area of $1148 \text{ m}^2 (12,357 \text{ ft.}^2)$ and includes the groundwater monitoring wells MW01 and MW02, as well as soil boring SB03.

The monitoring wells were installed in April of 2018 at 100 Auburn Ave NE, Downtown Atlanta. An unsuccessful attempt was made to install two additional wells the same day but the drilling team experienced auger refusal due to the proximity of impenetrable bedrock to the land surface. Instead, at these locations, two soil cores (SB01 and SB02) were obtained with a recovery depth of 22 inches and 11.25 feet. Elevations of the top of the well casings of MW01 and MW02 are 1011.60' and 1007.93' above sea level, respectively. MW01 lies approximately

Figure 3: MWN Location Map

100 feet to the west of MW02. Each well extends 37 feet below land surface, screened from 21' BLS to 36' BLS. A complete soil core (SB03) was obtained from MW01. Water level was monitored manually at each well until the installation of a continuous water level data logger in MW01 in November of 2018 and MW02 in March 2019.

2 METHODS

2.1 Monitoring Wells

2.1.1 Well Installation

Two monitoring wells were installed by EMServices Inc. with a drill rig using Direct Push Technology (DPT) and a Hollow Stem Auger (HSA) system. Each well consists of a 2-inch diameter Schedule 40 PVC riser pipe that reaches a total depth of 37 feet BLS. The well screening is 15 feet in length and composed of Schedule 40 PVC with 0.01" slot size. The screen extends from 21-36 feet BLS. The PVC piping sits within a well-casing pipe filled with three distinct materials. The bottom 18 feet is filled with filter pack sand which surrounds the screened portion of the well to allow groundwater to enter the well. A bentonite clay seal 2 feet thick caps the top of the filter pack to provide a competent seal. Cement grout was placed from the bentonite seal to fill the remainder of the well-casing and to ensure stability of the riser pipe. A concrete pad 2'x 2' x 4" was installed at ground surface and serves as the housing and protection for the monitoring well. A traffic grade manhole cover within the concrete pad serves to protect and provide access to the wells.

2.1.2 Soil Borings

Initially, four monitoring wells were scheduled for installation but in two locations impenetrable bedrock was encountered close to the ground surface. Soil borings (SB01 and

SB02) were recovered in these locations with a recovery depth of 22 inches and 11.25 feet, respectively. A third soil boring (SB03) was obtained at the location of MW01 with a full recovery depth of 37 feet. Each soil core was obtained using DPT during the well installation and was removed from the HSA encased in a hollow plastic tube 1-inch in diameter. The cores were removed and stored in 5 foot intervals. Each boring was analyzed for mineral identification, grain size, sorting, and color. Sediment color was determined using the Munsell color system.

2.1.3 Water Level Logger

Depth to the water table in both wells was manually measured using a Solinst Water Level Meter Model 101 until the installation of a Solinst Levelogger Edge in MW01. The level logger was installed November 29, 2018 and programmed to record the water table depth in 12 hour intervals. Water table elevation was calculated by subtracting the depth to the water table from the elevation recorded at the top of the well casing. Barometric pressure data was obtained from the Hartsfield Jackson Airport weather station and used to correct the water table elevation from fluctuations associated with changes in atmospheric pressure. Atmospheric pressure was subtracted from the overhead pressure directly measured by the level logger within MW01.

2.1.4 Multiparameter Water Quality Meter

A YSI ProDSS multiparameter water quality meter was used to measure temperature, pH, conductivity, and dissolved oxygen and the instrument was calibrated for each parameter before use. A two-point calibration was performed for the pH sensor using known pH buffers of 4 and 7. Similarly, a traceable conductivity calibration solution was used to verify the accuracy of the conductivity sensors. The instrument was placed in an environment of 100% humidity for 5-10 minutes to calibrate the dissolved oxygen sensor using a one-point calibration. During

groundwater sampling or testing the instrument was allowed to operate until the parameter values stabilized, to ensure the collection of representative groundwater samples.

2.1.5 Groundwater Sample Collection and Geochemistry

Groundwater samples were obtained using a peristaltic pump. Each well was purged for a period of 15 minutes and geochemical parameters stabilized as per EPA methodologies before sample collection to assure an accurate analysis of the aquifer water and to ensure stable analyte concentrations. A total of 12 groundwater samples were collected during the course of this study.

The first two samples were collected in April of 2018. One liter of groundwater was collected from each well, preserved in coolers at temperatures not exceeding 2°C, and shipped to TestAmerica Laboratory in Savannah, GA. TestAmerica processed the samples and a blank according to applicable EPA standards for the following analytes: Volatile Organic Compounds (VOCs), Semivolatile Organic Compounds (SVOCs), Cl⁻ and SO₄²⁻ Anions, Total Hardness (as CaCO₃), Metals, Mercury, Alkalinity, and Total Dissolved Solids (TDS).

A total of ten samples were collected in 60 mL HDPE bottles to be analyzed using two ThermoFisher Dionex TM Aquion TM Ion Chromatographs courtesy of Dr. Sarah Ledford. The samples were prepared and analyzed in the Ledford Urban Hydrology Lab in the Geosciences Department of GSU. To capture temporal variation of the aquifer geochemistry, six of the ten well samples were collected and analyzed in November 2018, and the remaining 4 in February 2019. Each sample was analyzed for the following anions and cations: F⁻, Cl⁻, NO₂⁻, Br⁻, NO₃⁻, PO₄³⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, and Ca²⁺.

Each sample was filtered through 0.47 micron MilliPore filter to remove any solid or undissolved material prior to analysis within 48 hours of collection and stored at 4°C before and after filtration. The filtration process is critical to avoid damaging the instrument and to prevent nitrogen species (NO₂⁻, NO₃⁻, NH₄⁺) from reacting with any solid, organic material or microbes. The ion chromatographs were calibrated by running five in-house standards with known concentrations of each ion and two USGS standards for calibration verification. Linear calibration curves for each ion were made and all demonstrated R² values of 0.99, with the exception of ammonium which was fit with a quadratic. QA/QC was performed by calculating percent error of all standards as well as percent change of any samples rerun. With the exception of the lowest concentration standard, all errors were <10%.

Piper diagrams were created using GW_Chart, freely distributed software from the USGS to characterize groundwater facies and evaluate geochemical trends or changes in groundwater composition during the study period. Due to the limitations of the ion chromatograph, values of CO_3^{2-} and HCO_3^{-} were only obtained from the samples analyzed by TestAmerica and were used when plotting the in-house samples. For the purposes of this study, CO_3^{2-} and HCO_3^{-} concentrations were assumed to be constant.

Figure 4: ThermoFisher Ion Chromatograph

2.2 Precipitation Data

2.2.1 Sample Collection and Geochemical Analysis

One liter of precipitation was collected October 2018 in a five-gallon bucket with a 6inch diameter funnel. An Olympic-standard ping-pong ball was placed inside the funnel and used to avert evaporation of collected rainwater thereby preventing an artificial increase in concentration of dissolved ions. An insect screen was fastened atop the funnel to prevent any detritus from falling inside the collector.

The rainwater was preserved in a cooler and shipped to the TestAmerica Laboratory for geochemical analysis. TestAmerica processed the samples and a blank according to applicable EPA standards for the following analytes: Cl^- and SO_4^{2-} Anions, Total Hardness (as CaCO₃), Metals, Alkalinity, and TDS. Ion concentrations were then plotted on a Piper Diagram. SO_4^{2-} and HCO_3^- values were both below the detection limit so according to standard practice the values

were halved when plotted on the diagram. The full analytical report can be found in Appendix B.

2.2.2 Additional Rain Data

Quantitative precipitation data (rainfall totals) were obtained from the National Oceanic and Atmospheric Administration (NOAA) for the years of 2018 and 2019, collected at station US1GADK0028 in the Candler Park community in Atlanta. Qualitative

Figure 5: Precipitation Collector

precipitation data were obtained from the National Atmospheric Deposition Program (NADP) for the year of 2017, collected at station GA41 ten miles southwest of Griffin, Ga. This data included concentration values of the following ions: Cl⁻, Br⁻, NO₃⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, and Ca²⁺. Additionally, the data contained values of pH and conductivity. This data was used to determine temporal variation of precipitation geochemistry and to provide a chemical baseline with which to compare the precipitation sample, RW01.

2.3 Lithology

2.3.1 Sample Collection and X-Ray Diffraction

A total of 19 sediment samples were taken from SB01, SB02, and SB03. When possible, samples were taken in increments of 30 inches until the end of the core. Due to the limited boring recovery only one sample was taken from SB01 at a depth of 12", while five samples were taken from SB02 at depths of 25", 60", 80", 120", and 130". SB03 features a full recovery of 35' obtained in multiple cores 5' in length. However, several of the 5' sections contained less than 5' of sediment representing consolidation or loss of the material. In the instances where the incomplete recovery of these cores overlapped the sampling scheme of 30-inch increments the sample was obtained as close as possible to the 30-inch mark. A total of 13 samples were obtained from SB03.

Each sample was dried in a Thelco lab oven at 55°C for 3 hours before being ground into powder using an SPEX sample pulverizer. The samples were pulverized for 15 minutes in a ceramic canister. Between each sample the canister was cleaned of sediment by running the instrument with standard quartz sand.

After pulverization, the samples were prepared in a randomly oriented mount and placed inside a Panalytical X'Pert Pro X-Ray Diffractometer. Mineral determination of the diffraction peaks was done using the Panalytical HighScore Plus identification software and referenced by hand-sample analysis of the soil borings. Quartz and biotite were readily identified in handsample, while the remaining clay minerals and oxides were determined to be weathering products of common minerals found within the protolith. The clay minerals halloysite and kaolinite are created from the hydration of feldspar, while montmorillonite may sometimes occur intermixed with kaolinite. Gibbsite is an aluminum hydroxide formed as the weathering product of feldspars or amphiboles.

Typically, the verification of specific clay minerals requires additional methodologies, such as ethylene glycol solvation, oriented mounts, and the sieving of clay-size particles for separate analysis. However, due to time constraints these methodologies proved beyond the scope of this study. As such, the identification of clay minerals in this project provides a tentative baseline with which future studies may evaluate.

2.3.2 Ground Penetrating Radar

Using a MALA Model GroundExplorer HDR, several profiles of the subsurface within the study area were obtained. Multiple runs were completed over the same area utilizing a 160 MHz antenna which provided imagery at depths up to ~60 feet BLS.

Figure 6: Researcher Fabian Zowam operating the GPR

The GPR data were post-processed for DC removal, Time-Zero adjustment, spatial interpolation, background removal, 2D spatial filtering, amplitude correction and bandpass filtering. The intention of DC removal is to remove a constant signal component if present. Time-Zero Adjustment corrects the zero-point of the vertical time scale to the time-zero of the radar wave emitted from the antenna. Spatial interpolation was used to recalculate the horizontal scale by interpolating the traces of the regular profile interval. Due to the nature of radar detection, the strongest signal received comes directly from the transmitting antenna. Background removal accounts for this signal and removes it as needed. 2D spatial filtering averages the raw sample signal to enhance the visual output. Amplitude correction acts as an automatic gain control equalizing the wave amplitudes of the vertical traces. Bandpass filtering increases the signal/noise ratio by filtering either the low or high end frequencies received.

3 RESULTS

3.1 Water Quality

3.1.1 Chemical Composition

Initial results acquired from TestAmerica in April of 2018 indicate VOC and SVOC

concentrations in MW01 to be below the EPA's Maximum Contaminant Level (MCL) of which

there is no known or expected health risk. An exceedance was noted in MW02 for

tetrachloroethylene (aka PCE) at 6.0 $\mu g/L$ versus an MCL of 5.0 $\mu g/L$. A full report of the

TestAmerica sample results can be found in Appendix B. Anion and cation concentrations of all

samples are summarized in Table 1.

Sample ID	Fluoride	Chloride	Nitrite	Bromide	Nitrate	Phosphate	Sulfate	Sodium	Ammonium	Potassium	Magnesium	Calcium
	mg F/L	mg Cl/L	mg N/L	mg Br/L	mg N/L	mg P/L	mg SO4/L	mg Na/L	mg N/L	mg K/L	mg Mg/L	mg Ca/L
MW01-1	0.0945	23.4090	bdl	0.1870	7.5076	bdl	141.7516	24.3467	bdl	4.1637	17.7545	17.4171
MW01-2	0.0807	23.4713	bdl	0.1828	7.5321	0.0965	137.7971	24.3933	0.0003	4.1309	17.6892	16.8818
MW01-3	0.0799	23.1835	bdl	0.1798	7.4160	0.0907	139.0176	24.3835	bdl	4.1307	17.7242	17.2051
MW01-A	0.0684	22.0876	0.0165	0.1280	7.7975	N/A	75.7813	27.3106	0.0717	4.3177	14.7481	1.1747
MW01-B	0.0915	22.1479	0.0166	0.1326	7.7741	N/A	76.0385	27.3776	0.0743	4.3577	14.6565	1.1589
MW01-TA	N/A	23	N/A	N/A	N/A	N/A	120	24	N/A	4.5	18	25
MW02-1	0.1052	24.4237	0.0359	0.1091	3.4590	bdl	146.3336	22.2760	0.0094	5.0466	14.8188	23.3293
MW02-2	0.0602	24.3309	0.0348	0.1100	3.4494	bdl	144.6595	22.3085	0.0082	4.8596	14.7205	23.6243
MW02-3	0.1030	24.7917	0.0344	0.1099	3.5242	bdl	146.8977	22.2758	0.0080	4.6739	14.5766	23.7703
MW02-A	0.0438	16.3012	N/A	0.0644	2.1952	N/A	82.0740	15.0470	0.0235	3.9196	9.0298	17.2103
MW02-B	0.0576	16.7115	N/A	0.0718	2.2716	0.0087	86.6997	15.7164	0.0228	3.9945	9.5845	17.7490
MW02-TA	N/A	24	N/A	N/A	N/A	N/A	160	27	N/A	6.4	20	35
RW01	N/A	0.41	N/A	N/A	N/A	N/A	0.20	0.49	N/A	0.66	0.13	0.61

Table 1: Ion Concentrations of MW01, MW02, and RW01

MW01-TA and MW02-TA represent baseline concentration values obtained by TestAmerica. Samples MW01-1, MW01-2, MW01-3, MW02-1, MW02-2, and MW02-3 were analyzed in the Ledford Urban Hydrology Lab in November of 2018. Samples MW01-A, MW01-B, MW02-A, and MW02-B were analyzed from the same lab in February of 2019. Groundwater temperature, pH, conductivity, and dissolved oxygen results collected from the YSI multiparameter meter are displayed below, in Table 2.

Date: 06/12/18	11:48	11:55	11:58
Temperature (°C)	21.2	21.2	21.2
рН	5.20	5.20	5.20
Conductivity (μS/cm)	373.0	378.1	380.8
Dissolved Oxygen	34%	33%	32%

 Table 2: Physiochemical data of MW01

3.2 Additional Precipitation Analysis

3.2.1 Chemical Composition

Site	Characteri	stics	Dissolved Constituents (mg/L)						
siteID seas yr			Ca	Mg	К	Na	Cl	SO4	
GA41	Winter	2015	0.024	0.012	0.013	0.094	0.171	0.45	
GA41	Spring	2015	0.067	0.034	0.108	0.148	0.259	0.525	
GA41	Summer	2015	0.092	0.038	0.208	0.059	0.114	0.598	
GA41	Fall	2015	0.02	0.018	0.082	0.066	0.123	0.271	
GA41	Winter	2016	0.027	0.023	0.05	0.126	0.229	0.302	
GA41	Spring	2016	0.067	0.018	0.035	0.115	0.199	0.456	
GA41	Summer	2016	0.077	0.018	0.028	0.068	0.106	0.418	
GA41	41 Fall 2016		0.03	0.023	0.051	0.114	0.187	0.206	
GA41	Winter	2017	0.041	0.012	0.014	0.092	0.175	0.411	
GA41	Spring	2017	0.096	0.03	0.043	0.183	0.331	0.575	
GA41	Summer	2017	0.07	0.016	0.035	0.066	0.114	0.303	
GA41	Fall	2017	0.024	0.02	0.09	0.123	0.237	0.208	
RW01	Fall	2018	0.61	0.13	0.66	0.49	0.41	0.2	

Table 3: Ion concentrations established by NADP compared with sample RW01

Data obtained from NADP, summarized in Table 3, was used to provide a baseline with which to compare the precipitation sample RW01 before the sample was compared with the

geochemistry of groundwater. The results obtained indicate higher concentrations of all dissolved constituents within RW01 with the exception of SO₄.

3.3 Physical Framework of Aquifer System

3.3.1 Water Table and Precipitation Accumulation

Depth to the water table was first recorded on 6/27/2018 and was 12.75' BLS at MW01 and 9.60' BLS at MW02. The calculated elevation (hydraulic head) of the water table on this date was 998.85' ASL at MW01. The water table elevation did not fluctuate significantly during the course of this study. The greatest deviation was measured to be 1.10'. Groundwater temperature did not vary more than 0.25°C from November to March.

Figure 7: Water Table Elevation and Temperature

Figure 8: Water Table Elevation and Precipitation Accumulation

Water table response to rain events occurs within a period of one to two days. The water table begins to fall within a similar time period after several days without precipitation.

3.3.2 Soil Boring and XRD

Three soil borings were obtained and characterized for this study. The soil boring and monitoring well construction logs can be found in Appendix A. A total of 19 samples were collected for XRD analysis between the three borings, and the diffraction patterns can be found in Appendix C. SB01 was obtained from 26 Auburn Ave. and has a recovery depth of 22". Three attempts were made to install a complete monitoring well, and each attempt experienced auger refusal at depths from 2', 5.5', and 17' BLS. Refusal was due to impenetrable bedrock, and the varying depths in such a small area showcase the uneven topography of the bedrock surface. SB01 consists of a light gray sand with extensive lithics, with most ranging in size from 1-2 mm and the largest of 25.4 mm. XRD Analysis revealed the dominant mineralogy to be quartz, biotite, and halloysite.

SB02 was obtained behind the College of Law at 85 Park Place and has a recovery depth of 135". Of the 135" depth, only 65.5" of sediment was recovered representing consolidation of sediment. Auger refusal occurred at 11.25' BLS once again due to impenetrable bedrock. SB02 consists of a 12" top layer of brown sand rich in organic material with some lithics. The rest of the boring is a mixture of sand and fine sand with color ranging from an oxidized reddish brown to a lighter grey with lithics at greater depths. XRD analysis revealed the dominant mineralogy to be quartz, biotite, gibbsite, and clay minerals of montmorillonite and kaolinite.

SB03 was obtained from the completed MW01 at 100 Auburn Ave. and features a full recovery depth of 35'. Loose, unconsolidated sands compose the first ten feet of the core. From 10 - 27', the sandy sediments are more densely packed than those above. From 27 - 35' the material was harder and more compacted and composed of fine sands mixed with lithic fragments in the final three feet. Of particular importance are the abundance of lithics within the final three feet representing partially weathered bedrock, further showing the proximity of bedrock close to the land surface within the study area. XRD analysis revealed the dominant mineralogy to be quartz, biotite, gibbsite, and K-feldspar throughout the boring. Clay mineralogy transitions from halloysite and montmorillonite near the land surface to kaolinite below the water table (from depths of 13' to the bottom of the well).

3.3.3 GPR

Four GPR profiles of the TAS were made, and the transects are classified as follows: (1) A W-E transect along Auburn Ave. from Woodruff Park to Piedmont Ave.; (2) A N-S transect along Courtland St. from John Wesley Dobbs Ave. to Auburn Ave.; (3) A 140 ft. transect obtained at the site of SB02 behind the GSU College of Law; and (4) A W-E transect from

MW01 to MW02.

The four GPR profiles are displayed in Figures 12-15 and the image contrast was adjusted for ease of visibility. The raw images are attached in Appendix D. Monitoring well, soil borings, and street

Figure 9: GPR Transect Location Map

locations are labeled on each. Soil borings and monitoring wells are represented to scale within their respective profiles. Hatch marks were drawn to establish the screened portion of each monitoring well.

Transects 2-4 display four distinct units or radar facies as determined by differences in reflective banding. The top unit ranges from 0-10 feet BLS and consists of lightly colored broad reflections. The second unit consists of much brighter but equally broad reflections with a varying total depth throughout each profile. The third unit displays lighter and more narrow banding than the first two, while the fourth unit is lighter still and more broad than the third.

Figure 10: Transect 1

Figure 11: Transect 2

Figure 12: Transect 3

Figure 13: Transect 4

Transect 1 represents a cross-sectional profile of the TAS and as such, the reflective bandings display more complex features over a wider area. The four distinctly banded units seen in transects 2 - 4 are similar in appearance in Transect 1. However, the depths of each unit vary spatially throughout the profile. Additionally, several unique banding patterns were identified near Courtland St. featuring prominently bright and broad reflections that vary in terms of horizontality.

4 **DISCUSSION**

4.1 Evaluation of Water Quality

4.1.1 Chemical Analysis

On a piper diagram displayed in Figure 16, the groundwater samples showed no dominant cation type, a sulfate rich anion type, and plots within the Ca-SO₄ hydrochemical facies. The precipitation sample, RW01, shows no dominant cation type, a bicarbonate rich anion type, and plots close to the boundary between the magnesium bicarbonate and mixed type hydrochemical facies. The facies distinction between precipitation and groundwater is most likely attributed to groundwater mixing with wastewater effluents rich in SO_4^{2-} and Cl^- .

Figure 14: Piper Diagram of MW01, MW02, and RW01

The geochemistry of MW01 samples showed little to no temporal change in Cl and K. The samples obtained in the fall show an increase in SO₄ concentration by 20 ppm from the baseline data, a decrease in Ca concentration by 8 ppm, and little change in Na and Mg values. Those tested in February show a marked decrease in SO₄, Mg, and Ca concentrations of ~65 ppm, 3 ppm, and 16 ppm, respectively. Na values increased by 3 ppm from November to February. Groundwater geochemistry of MW02 exhibited decreasing concentrations of all ions from fall to spring. The Cl concentration in the fall was similar to the baseline values, but decreased by 8 ppm in February. SO₄ values dropped from the baseline of 160 ppm to ~145 ppm in November, then further to ~84 ppm in February. Similarly, Na values decreased from 27 ppm to 22 ppm to 15 ppm, Mg from 20 ppm to 14 ppm to 9 ppm, and Ca from 35 ppm to 23 ppm to 17 ppm. K values decreased from 6.4 ppm to 4.8 ppm to 4.0 ppm.

Although cation and anion concentrations in MW02 decreased from November to February, their relative percentages remained around the same as indicated by their fixed positions on the piper diagram. This indicates dilution of the groundwater, probably due to a high amount of precipitation and groundwater recharge during this time period. The same phenomenon was not seen in MW01, as the relative percentages of cations and anions fluctuated in the samples analyzed in February. This fluctuation was driven primarily by a decrease in Ca, suggesting dilution may not be the only factor leading to temporal changes in cation/anion concentrations. One interpretation is that Na values increased slightly during this time, possibly due to ion-exchange of Na and Ca, but the seasonal mechanism of this exchange remains unknown. Future studies could offer greater insight into the temporal variation of groundwater geochemistry and determine the groundwater source contributions from precipitation and inflow from sanitary sewer systems.

Water Quality Standards

EPA guidelines have established National Drinking Water Regulations that determine water quality standards for public and private use. PMCLs are mandatory water quality standards established for drinking water contaminants proven to pose a risk to human health. The primary standards relevant to this study include disinfectants, disinfection byproducts, and inorganic and organic chemicals. SMCIs are non-mandatory water quality guidelines for 15 contaminants that do not pose a health risk but assist in managing drinking water for aesthetic concerns such as color, odor, and taste. Secondary standard contaminants, while not dangerous to human health, pose several problems related to aesthetic, cosmetic, and technical effects produced by elevated contamination levels and low pH. Excess metals within drinking water can cause unpleasant odors or taste, and excess silver can cause skin discoloration (although does not impair bodily function). Some metals, such as copper, iron, manganese, and zinc, can lead to corrosive water that may compromise utility pipes and underground infrastructure. Excess chloride and low pH has also been shown to increase corrosivity of water (EPA, 2017).

Baseline results of groundwater samples collected from MW01 indicate VOC and SVOC concentrations to be below PMCL standards. A tetrachloroethylene (aka PCE) concentration of $6.0 \ \mu g/L$ in MW02 exceeds the EPA's MCL of $5.0 \ \mu g/L$. MW01 was determined to have a Mn concentration of 0.32 ppm. MW02 was determined to have concentrations of Mn, Al, and Fe, equal to 2.9 ppm, 2.4 ppm, and 2.7 ppm, respectively. These values exceed the EPA's recommended SMCL of 0.05 ppm Mn, 0.05 to 0.2 ppm Al, and 0.3 ppm Fe. The pH of the groundwater within the MWN is moderately acidic at 5.20, below the SMCL range of 6.5 - 8.5. The elevated levels of Mn and Fe, coupled with the low pH, could lead to the corrosion of utility pipes within the study area. If compromised, the leaking sewage pipes would provide a future source of contamination within the aquifer system.

			Dissolved Constituents (mg/L)						
Site	Characteristics		Ca	Mg	Na	к	Cl	SO ₄	рН
	Rural Streams	Mean	2.48	2.10	3.68	1.33	4.87	2.11	6.16
	N = 12	SD	*	*	*	*	*	*	0.17
Atlanta	Chattahoochee River	Mean	5.42	1.25	10.65	2.65	14.21	7.01	6.42
Surface	N = 9	SD	*	*	*	*	*	*	0.23
Water (Rose,	Developed Basins within AMR	Mean	9.62	2.09	8.14	2.46	12.15	5.28	6.56
2007)	N = 9	SD	*	*	*	*	*	*	0.23
	AMR CSO Basins	Mean	18.36	3.61	18.35	4.80	31.78	22.42	6.45
	N = 5	SD	*	*	*	*	*	*	0.42
	Forested	Mean	21.9	1.5	11.9	1.1	11.1	13.2	6.9
	N = 15	SD	6.6	0.4	4.4	0.5	6.4	4.6	0.5
Social SK	Residential	Mean	51.6	11.4	26.5	3.1	59.3	33	6.5
Ground	N = 22	SD	10.9	5.5	10.0	1.5	15.5	30.0	0.4
Ground-	Agricultural	Mean	46.2	9.6	25.5	3.8	53.7	21.1	6.4
(Choi of	N = 14	SD	20.2	3.7	10.6	1.9	33.6	16.3	0.3
(Ch0), et	Traffic	Mean	54.7	8.5	47.4	7	49.9	56.1	6.4
al., 2004)	N = 16	SD	19.5	2.0	18.7	7.2	11.5	13.1	0.3
	Industrialized	Mean	84.2	23.1	42.2	2.4	97.5	74.9	6.6
	N = 12	SD	32.3	6.0	38.0	0.8	43.2	60.5	0.3
	MW01-Nov	Mean	17.17	17.72	24.37	4.14	23.35	139.52	5.2
	N = 3	SD	0.22	0.03	0.02	0.02	0.12	1.65	**
Atlanta	MW01-Feb	Mean	1.17	14.70	27.34	4.34	22.12	75.91	5.2
Cround	N = 2	SD	0.01	0.05	0.03	0.02	0.03	0.13	**
Ground-	MW02-Nov	Mean	23.57	14.71	22.29	4.86	24.52	145.96	5.2
water	N = 3	SD	0.18	0.10	0.02	0.15	0.20	0.95	**
	MW02-Feb	Mean	17.48	9.31	15.38	3.96	16.51	84.39	5.2
	N = 2	SD	0.27	0.28	0.34	0.04	0.21	2.31	**

Table 4: Summary of physiochemical data comparison between Atlanta surface waters, Seoul groundwater, and Atlanta groundwater

Table 4 presents a summary comparison of the pH and dissolved constituents found within Atlanta surface waters, Seoul groundwater, and Atlanta groundwater. Atlanta surface water data was obtained and adapted from Rose, 2007. The mean values of the dissolved constituents obtained from Rose were converted from meq/L to mg/L, and so the standard deviations could not be converted or displayed in this table. The standard deviation values can instead be found within the article source. The standard deviation of pH values were not calculated for the monitoring well samples due to the limited data set obtained.

In a 2007 study, Seth Rose determined the highest concentrations of surface water pollutants within the Atlanta Metropolitan Region (AMR) were found in "urbanized basins

directly receiving treated effluent and combined sewer overflow (CSO) basins". Urban basins with main sewage trunk lines and urbanized basins represent the basin types with succeeding levels of solute concentration. Rose suggested that leaking sewer lines and septic tank systems were the predominant sources of low-level non-point contamination that is affecting shallow groundwater chemistry within the AMR. Rose also determined that Na, K, and Cl ion concentrations were atypical of waters with a comparable lithological subsurface and noted that these ions are the prevailing electrolytes in human waste. Similarly, in a 2004 study, Byoung-Young Choi and colleagues determined the highest concentrations of groundwater contaminants (Ca, Mg, Na, K, Cl, and SO⁴) in Seoul, South Korea were found in industrialized and traffic areas. Na, K, and Cl ion contamination sources were determined to originate from wastewater, industrial effluents, and deicing road salt.

Chemical analysis of MW01 and MW02 reveal Ca concentrations comparable to those found within AMR CSO Basins, but below the levels found within forested areas in Seoul. This suggests the contaminant origin in Seoul could likely be contributed to sources other than wastewater, such as leather industry or deicing salt (Choi, et al. 2005) and is not as great a concern in Atlanta. Mg and Na values were determined to exceed values in AMR CSO Basins and are similar to several urban environment types in Seoul. K concentrations are comparable to AMR CSO Basins and agricultural areas in Seoul. Cl levels within the monitoring wells were significantly lower than urban environments in Seoul, once again suggesting the prevalence of deicing salt in South Korea. Cl ions were found to be less than those in AMR CSO Basins but greater than developed basins. Notably, sulfate concentrations were considerably higher than found in both Atlanta surface waters and groundwater in Seoul. Vehicle traffic and waste-water treatment has been shown to be a significant source of sulfate pollution within urban groundwaters (Pitt, et al. 1999; Rose, 2007). Given similar traffic densities between both cities, this suggests that a larger contribution of sulfate contamination in Atlanta comes from sewer leakage.

The pH within the MWN is more acidic than both the surface waters in the AMR and the groundwater in Seoul. Groundwater pH typically decreases due to anthropogenic pollution related to acidic wastewater rich in organic matter and industrial effluents (Choi, et al., 2005). Water-rock interactions typically raise the pH of groundwater. As the groundwater within the MWN displays a much lower pH than those seen in Atlanta surface waters and Seoul groundwater, anthropogenic pollution must increase the acidity to a greater extent than the bedrock neutralizes.

4.2 Additional Precipitation Analysis

4.2.1 Chemical and Seasonal Variation

Sample RW01 plots within range of the NADP baseline data. Cyclical variation was seen in calcium concentrations as they decreased in colder months and increased in warmer months. It should be noted that RW01 was collected in the Fall but displays a calcium concentration equal to NADP's Spring and Summer samples. However, as RW01 contained higher concentrations of all dissolved constituents (with the exception of SO₄), it is possible that with a larger sample size the same cyclical variation could be seen at higher concentrations. Seasonal variation of precipitation chemistry and its effect on groundwater geochemistry may be addressed in future studies.

Figure 15: Piper Diagram of NADP data and sample RW01

4.3 Physical Framework of Aquifer System

4.3.1 Soil Boring and XRD

Based upon the soil boring logs and XRD analysis of 19 samples, sediment mineralogy and grain size did not vary significantly. The greatest amount of variation was seen in SB03, as loose, unconsolidated sediments transition into more compacted materials below 10 feet. The difference in consolidation marks a distinct boundary between a surficial alluvium layer and a layer of saprolite. Below the extent of the saprolite the materials became harder and more compacted in the final eight feet of the soil boring. Lithic fragments became more abundant within the last three feet of the boring, implying proximity to the upper extent of a weathered regolith and bedrock.

The separation of alluvium and saprolite layers was also indicated by XRD analysis of samples taken from the three soil borings. The mineralogy of SB03 transitions from a dominance of quartz, biotite, halloysite, and montmorillonite to a prominence of kaolinite below the water table. The kaolinite within the sediments most likely occurs as a hydration product of halloysite.

4.3.2 GPR

Transects 2 and 4 showcase similar lithological features as interpreted based upon the four distinct banding units or radar facies mentioned previously. A surficial layer of loose, unconsolidated residuum approximately 12 feet thick is distinguished by a lack of reflections, indicating a porous medium lacking in compositional variation. Immediately below, a layer of saturated sediments is evidenced by brightly contrasting broad reflectors. These reflections are indicative of a greater variation within the medium, as water-saturated sediments alter GPR transmission speeds within a small spatial area due to variance in water composition and sediment compaction. The transition between these two layers indicates the surface of the water table, at approximately 13' BLS, and is verified by water level measurements from MW01 and MW02. This layer varies in thickness, extending to ~28' BLS at MW01 and ~25' BLS at MW02, and undulating in between. The layer of saturated sediments corresponds to the loosely compacted layers of sand evident within SB03. A compacted or dense layer of weathered bedrock lies below the saturated sediments as indicated by fainter and more narrow reflective banding due to considerable attenuation of the radar signal. This layer shows less variance in

sediment compaction and saturation indicated by consistent band thickness and relative horizontality. This layer corresponds to the more compacted layers of sand seen with SB03. The thickness of this unit varies more at the upper contact than the lower, extending to ~40' BLS at MW01 and ~38' BLS at MW02, undulating slightly in between. The deepest unit of bedrock is indicated by the very light reflective banding due to almost complete attenuation of the radar signal that remains horizontal throughout the profile, showcasing even less compositional variation than the weathered bedrock and saturated sediments found above. Depth to the bedrock begins ~40' BLS and extends further than the maximum vertical range of the GPR (60' BLS).

Figure 16: Transect 1 with labeled features

Figure 18: Transect 3 with labeled features

Figure 19: Transect 4 with labeled features

Transect 3 features 4 reflective banding units similar in appearance to those seen in Transects 2 and 4, but auger refusal during SB02 collection leads to a different lithological interpretation. A surficial layer of loose, unconsolidated residuum is seen again, but with a thickness of only 3 - 5' BLS. Immediately below, broad and lightly contrasting reflections indicate a partially weathered bedrock that extends to depths ~12' BLS. The undulatory nature of the banding implies the regolith is composed of large, fractured blocks of impenetrable bedrock close to the land surface. Brightly contrasting broad bands below this unit are interpreted as a partially weathered and saturated bedrock as water flows through a network of fractures. Beginning at a depth ranging from 25 - 30' BLS, and extending further than the maximum vertical range of the GPR, the bedrock is shown to have features similar to the bedrock seen in the other transects. The lightly contrasting horizontal reflective bands imply a lack of fractures or faulting and therefore does not allow the transmission of water through the unit. Transect 1 represents a cross-sectional profile of the TAS and includes a combination of features seen within transects 2 - 4. From Peachtree St. to a distance of 1200 feet the extent of the weathered bedrock atop the bedrock is shown to vary significantly. Around 100 feet to the east of SB01, the brightly contrasting and broadly undulating reflective bands representing partially weathered and saturated bedrock transition into an equally bright but more tightly undulating series of reflections. From around 750 – 900 feet distance a clear sinuous reflection is seen dipping from ~12' BLS before ending at bedrock 30' BLS. This reflection represents the termination of the large, fractured blocks of impenetrable bedrock that led to augur refusal at SB01 and SB02. At this boundary, the surficial layer of residuum increases in thickness from 5 to 12' and is underlain by a saturated and more heavily weathered bedrock. Underneath Courtland St., from a distance of 1200 – 1375 feet, brightly contrasting and very broad reflective banding transition into a series of bright parabolas indicating a possible sewage access area and several utility pipes underneath the surface. The final 600 feet of the profile show a similar subsurface lithology seen in transect 4 of the MWN.

4.3.3 Subsurface Lithology

A cross section of the TAS and MWN was made based upon observations of the soil borings and GPR transects and can be found in Figure 22.

Paleozoic metamorphic rock consisting of gneiss, schist, and amphibolite compose the bedrock underneath the study area. Depth to the bedrock surface was found to vary from ~28' BLS west of the existing well to greater than 40' BLS further east. Weathering of the bedrock has produced a fractured regolith with a varying spatial extent and is composed mostly of residuum and a fine sandy saprolite. The behavior of the regolith varies according to the degree of weathering. I believe the regolith encountered at soil boring locations SB01 and SB02 to be

less-weathered than in the MWN due to the rejection of the auger when drilling SB01 and SB02. Auger refusal is indicative of larger blocks of impenetrable bedrock intermingled within the regolith. Greater amounts of weathering in the MWN have created a layer of saprolite in between surficial residuum and the upper boundary of weathered bedrock. The contact between the residuum and saprolite layers was found to correspond with the water table, suggesting that the spatial extent of the aquifer is limited within the TAS to the MWN. It should be noted that the limit of the aquifer is not an immediate boundary, but rather a transitional one. The aquifer is most likely recharged from inaccessible groundwater flowing east from within the fractured bedrock underlying the TAS. This is verified by a measurement taken at the existing well (with a total well depth of 37.5' BLS) that determined the depth to the water table to be 34.2' BLS. With only 3.3 feet of water within the well, the existing well most likely passes through bedrock. Knowing the vertical extent of the bedrock is critical for future research within the study area if additional monitoring wells are to be installed.

Groundwater flow direction is dictated by the hydraulic head, calculated to be 1006.3' ASL at the existing well, 998.7' ASL at MW01, and 998.1' ASL at MW02. In the MWN, groundwater flows from West to East following the topography downhill until it recharges one of the many tributaries of Peachtree Creek.

Figure 20: Subsurface lithology of the Total Area of Study and Monitoring Well Network; blue arrows indicate groundwater flow direction

5 CONCLUSIONS

Surface water quality in the City of Atlanta has been shown to contain higher concentrations of contaminants than rural or non-urban watersheds (Peters, 2009; Rose, 2007). Elevated levels of SO₄²⁻, Cl⁻, K⁺, and Na⁺ in Atlanta streams have been attributed to sewage overflow and infiltration (Rose, 2007). Of the two monitoring wells that compose the MWN, water quality was determined to be variable based on the occurrence of PCE in MW02. While non-potable use would not normally consider drinking water standards, non-potable water use for irrigation would still have to consider direct human exposure and incidental ingestion. As a result, water quality would need to be assessed on a site basis for non-potable use. Additionally, chemical analysis of 12 groundwater samples determined that concentrations of the dissolved constituents Ca, Mg, Na, K, and SO₄ were greater than those found within surface waters surrounding the study area.

A lithological map of the study area was produced to provide a broader geologic context for the MWN. Four GPR transects of the TAS indicate a varying subsurface lithology consisting of four distinct units. A surficial layer of loose, unconsolidated residuum increases in thickness from West to East and is underlain by a layer of saturated sediments within the MWN. A transitional layer of partially weathered regolith and bedrock underlie the TAS and depth to bedrock is extremely variable and related to topography. As a result, water availability would need to be assessed on a site basis to meet production needs.

REFERENCES

- Alexander Speer, J., and Harry Y. McSween Jr. "Generation, Segregation, Ascent, and Emplacement of Alleghanian Plutons.." *Journal of Geology*, vol. 102, no. 3, May 1994, p. 249. *EBSCOhost*, doi:10.1086/629669.
- Atlanta Regional Commission (ARC) (2019). *Population and Employment Forecasts*. Accessed March 2019. <u>http://atlantaregionsplan.org/population-employment-forecasts/</u>.
- Carey, R. O., et al. (2013). "Evaluating nutrient impacts in urban watersheds: challenges and research opportunities." <u>Environ Pollut</u> **173**: 138-149.
- Characklis, G. W. and M. R. Wiesner (1997). "Particles, metals, and water quality in runoff from large urban watershed." Journal of Environmental Engineering **123**(8): 753.
- Choi, B.-Y., et al. (2005). "Hydrochemistry of urban groundwater in Seoul, South Korea: effects of land-use and pollutant recharge." <u>Environmental Geology</u> **48**(8): 979-990.
- Gregory, M. B. and D. L. Calhoun (2007). Chapter B. Physical, Chemical, and Biological Responses of Streams to Increasing Watershed Urbanization in the Piedmont Ecoregion of Georgia and Alabama, 2003. <u>Scientific Investigations Report</u>.
- Higgins, M. W., et al. (2003). Geologic Map of the Atlanta 30' x 60' Quadrangle, Georgia. <u>IMAP</u>.
- Horowitz, A. J. (2009). "Monitoring suspended sediments and associated chemical constituents in urban environments: lessons from the city of Atlanta, Georgia, USA Water Quality Monitoring Program." Journal of Soils and Sediments **9**(4): 342-363.
- Horton, J.W., Jr., Zullo, V.A., 1991, An introduction to the geology of the Carolinas. In: Horton, J.W. Jr., Zullo, V.A. (Eds.), The Geology of the Carolinas. Carolina Geological Society Fiftieth Anniversary Volume, The University of Tennessee Press, pp. 1–10.
- Lawrence, S. J. (2016). Water use in Georgia by county for 2010 and water-use trends, 1985–2010. <u>Open-File Report</u>. Reston, VA: 218.
- Lee, D. G., et al. (2015). "Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers." <u>Water Res</u> **85**: 467-475.
- Missimer, T., et al. (2014). "Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict." **16**: 669.
- National Oceanic and Atmospheric Administration (NOAA). n.d. *Climate of Georgia*. National Climatic Data Center, Asheville, North Carolina. Accessed March 2019. https://www.ncdc.noaa.gov/climatenormals/clim60/states/Clim_GA_01.pdf

- Peters, N. E. (2009). "Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA." <u>Hydrological Processes</u> **23**(20): 2860-2878.
- Pitt, R., et al. (1999). "Groundwater contamination potential from stormwater infiltration practices." <u>Urban Water</u> 1(3): 217-236.
- Rose, S. and Peters, N. E. (2001), Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach. Hydrol. Process., 15: 1441-1457. doi:10.1002/hyp.218
- Rose, S. (2007). "The effects of urbanization on the hydrochemistry of base flow within the Chattahoochee River Basin (Georgia, USA)." Journal of Hydrology **341**(1-2): 42-54.
- Shem, W. and M. Shepherd (2009). "On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies." <u>Atmospheric Research</u> 92(2): 172-189.
- U.S. Environmental Protection Agency (EPA). 2017. Water Quality Standards Handbook: Chapter 3: Water Quality Criteria. EPA-823-B-17-001. EPA Office of Water, Office of Science and Technology, Washington, DC. Accessed November 2018. https://www.epa.gov/sites/production/files/2014-10/documents/handbook-chapter3.pdf

APPENDICES

Appendix A: Monitoring Well Construction Log and Soil Boring Logs

(© EOSCIENCES MONITORING CONSTRUCTION		G WELL	BOREHOLE/WELL NUMBER: SB-03/MW-01		
	^w EOSCIENCES	CONSTRUCTIO	N DIAGRAM	PAGE NO. 1 OF 1		
PRO	JECT NAME: GEORGIA STATE UNIV	TOTAL BOREHOLE DEPTH: 37 FE	EET BELOW LA	AND SURFACE (BLS)		
W.O	.#: <u>N/A</u>	NORTHING: 3,738,227.89				
LOC	ATION: Atlanta, Georgia	EASTING: 742,294.96				
DRII	LLING COMPANY: EMServices Inc.		TOP OF CASING ELEV. IN FEET: _	1,011.60		
DRII	L RIG TYPE: Direct Push Technology/H	ollow Stem Auger (DPT/HSA)	AIR MONITORING INSTRUMENT	·		
DRI	LUNG METHOD: HSA		WELL CASING DIAMETER: 2 IN	THESID		
DKI	ELING METHOD. DET Mensee		CONDICISION DIAMETER.			
SAW	IPLING METHOD: DPT Macrocore		COMMENTS.			
LOG	GED BY: Jude Waguespack WEATHE	R: Cloudy, light drizzle				
DAT	E BEGUN: <u>04/07/2018</u> DATE CC	DMPLETED: 04/07/2018				
H BGS ET)	LITHO	LOGIC LOG				
DEPTI (FE)	LITHOLOGY - SB03	DESCRIPTION	MONITORING	WELL CON	STRUCTION	
			TRAFFIC GRADE MANHOLE		CONCRETE PAD (2' X 2' X 4'')	
		LAND SURFACE				
0	0.0.0	Fine loose sand with lithics		FI	° ∆°∆	
-	in the second	Fine loose sand	ł P.	₀ ∀		
-	44	Biotite, Halloysite		> \ \ \		
-		No Recovery				
	y 0 2 C 0. 0	Biotite - Fine loose sand w/ lithics		ő ő	RISER PIPE ID: 2-INCH	
-	27	Coarse loose sand Biotite, Hallovsite, Montmorillonite		7 0	TYPE: SCH. 40 PVC	
- 1		Very fine loose sand				
10		No Recovery				
		Biotite, Halloysite, Montmorillonite	CEMENT			
-	- 47 · · ·	Biotite, Kaolinite		í ≚ ¦ö	-12.05'	
_		No Recovery Kaolinita				
-		Fine sand w/ 1-2 mm laminations				
	47.	Kaolinite, Montmorillonite	7	5 Ŭ	BENTONITE SEAL THICKNESS: 2 FEET	
_				_	TOP: -17 FEET BLS BOTTOM: -19 FEET BLS	
20-		Biotite, Kaolinite, Hallovsite	1 13		Lorion. Dibiblo	
			EILTED BACK SAND			
	47	Biotite, Kaolinite	THICKNESS: 18 FEET			
-		No Recovery	BOTTOM: -37 FEET BLS			
	*	Kaolinite	1 6		6000000	
					 SCREEN ID: 2-INCH TYPE OF SCREEN: PVC 	
-	4	Kaolinite, Gibbsite, Montmorillonite, Biotite	4 1:		LENGTH OF SCREEN: 15.00 FEET	
-		Fine hard sand w/ 2.5 mm lithic	1 1.		TOP OF SCREEN: -21.0 FEET BUS	
30	· · · · · · · · · · · · · · · · · · ·	Biotite, Gibbsite, K-Spar	1 1		BOTTOM OF	
		Disting Kaslinita K.Coss	4 1		SUREEN: -30 FEET BLS	
-	é	Fine hard sand w/ 1-2 mm lithics	1 12			
		No Recovery	j :			
] [:			
-			l			
	Sand/ With lithics With lit	nd/ XRD No hics Sample Site Recovery	TOTAL DEPTH	H = 37.00 F	EET BLS	

0				BOREHOLE NUMBER: SB-01/SB-02
Ø	W EOSCIENCES	Soll box		PAGE NO. 1 OF 1
PRO W.C DRI DRI DRI SAM LOC DAT	DJECT NAME: <u>GEORGIA STATE UNI</u> D.#: <u>N/A</u> CATION: <u>Atlanta. Georgia</u> LLING COMPANY <u>EMServices Inc.</u> LL RIG TYPE: <u>Direct Push Technology/</u> LLING METHOD <u>HSA</u> APLING METHOD: <u>DPT Macrocore</u> GGED BY: <u>Jude Waguespack</u> WEATHE TE BEGUN: <u>04/07/2018</u> DATE CO	VERSITY Hollow Stem Auger (DPT/HSA) R: <u>Cloudy</u> , light drizzle MPLETED: <u>04/07/2018</u>	TOTAL BOREHOLE DEPTH <u>, 5 FE</u> NORTHING: <u>3,738,147 (SB01); 3,73</u> EASTING: <u>742,058 (SB01); 742,060</u> TOP OF CASING ELEV. IN FEET <u>3</u> AIR MONITORING INSTRUMENT WELL CASING DIAMETER <u>; N/A</u> COMMENTS:	ET (SB-01)/11.25 FEET (SB02) BLS 8,238 (SB02) (SB02) //A
BGS T)	LITHO	LOGIC LOG	LI	HOLOGIC LOG
DEPTH (FEE	LITHOLOGY - SB01	DESCRIPTION	LITHOLOGY - SB02	DESCRIPTION
0	ŭ 0' 0' 0 0. 6 a 0.0 0 0 0	LAND SURFACE Fine loose sand with lithics Biotite, Halloysite	6'0.8'''''.6.	LAND SURFACE Fine loose sand with lithics Gibbsite, Montmorillonite
-		No Recovery		No Recovery
				Gibbsite - Fine sand Gibbsite, Montmorillonite No Recovery
				Kaolinite, Montmorillonite Biotite, Gibbsite - Fine sand
20				
30				
	Sand/ With lithics	Fine sand/ $b \circ o \circ o \circ c$ $b \circ o \circ o \circ c$ With lithics	XRD Sample Site	No Recovery

Appendix B: TestAmerica Results

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-150889-1 Client Project/Site: Monitoring Well Installation

For:

Georgia State University Dept of GeoSciences 24 Peachtree Center Avenue Suite 340 Atlanta, Georgia 30303

Attn: Dr. Brian Meyer

Mik Com

Authorized for release by: 4/20/2018 4:48:23 PM

Keaton Conner, Project Manager I (813)885-7427 keaton.conner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Georg Project/Site:	jia State University TestAmerica Job ID: 680-150889-1 Monitoring Well Installation	2
Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
U	Indicates the analyter was analyzed for but not detected.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
*	LCS or LCSD is outside acceptance limits.	
*	RPD of the LCS and LCSD exceeds the control limits	
GC/MS Semi	i VOA	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Х	Surrogate is outside control limits	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	
F1	MS and/or MSD Recovery is outside acceptance limits.	
F2	MS/MSD RPD exceeds control limits	
4	MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
в	applicable. Compound was found in the blank and sample.	
General Che	mistry	
Qualifier	Qualifier Description	
	Indicates the analyte was analyzed for but not detected	
J	Result is less than the RL but oreater than or equal to the MDL and the concentration is an approximate value.	
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report	
× × × × × × × × × × × × × × × × × × ×	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	

TestAmerica Savannah

Definitions/Glossary

Client: Georg	ia State University	TestAmerica Job ID: 680-150889-1			
Project/Site: Monitoring Well Installation					
Glossary	Continued)				
Abbreviation	These commonly used abbreviations may or may not be present in this report.				
QC	Quality Control				
RER	Relative Error Ratio (Radiochemistry)				
RL	Reporting Limit or Requested Limit (Radiochemistry)				
RPD	Relative Percent Difference, a measure of the relative difference between two points				
TEF	Toxicity Equivalent Factor (Dioxin)				
TEQ	Toxicity Equivalent Quotient (Dioxin)				

TestAmerica Savannah

Page 3 of 73

Sample Summary

Client: Georgia State University Project/Site: Monitoring Well Installation

Lab Sample ID	Client Sample ID	Matrix	Collected Received
680-150889-1	SB04	Solid	04/09/18 14:00 04/10/18 08:00
680-150889-2	MW-01	Water	04/09/18 09:00 04/10/18 08:00
680-150889-3	MW-02	Water	04/09/18 09:55 04/10/18 08:00
680-150889-4	Trip Blank	Water	04/09/18 00:00 04/10/18 08:00

Page 4 of 73

TestAmerica Savannah

4/20/2018

TestAmerica Job ID: 680-150889-1

Case Narrative

Client: Georgia State University Project/Site: Monitoring Well Installation

Job ID: 680-150889-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Georgia State University

Project: Monitoring Well Installation

Report Number: 680-150889-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 4/10/2018 8:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.2° C and 1.7° C.

RECEIPT EXCEPTIONS

A trip blank was submitted for analysis with these samples; however, it was not listed on the Chain of Custody (COC).

The COC was incomplete as received: A sample collection date nor sample collection time was not provided for samples -2 (MW-01) and -3 (MW-02). The client supplied this information via phone.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample SB04 (680-150889-1) was analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 04/11/2018 and analyzed on 04/13/2018.

Sample SB04 (680-150889-1)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample SB04 (680-150889-1) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared and analyzed on 04/11/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples MW-01 (680-150889-2), MW-02 (680-150889-3) and Trip Blank (680-150889-4) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 04/11/2018.

4-Methyl-2-pentanone recovered outside of criteria low for LCSD 680-519398/5. 4-Methyl-2-pentanone exceeded the RPD limit. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample SB04 (680-150889-1) was analyzed for TCLP semivolatile organic compounds (GC-MS) in accordance with EPA SW846 Methods 1311 / 8270D. The samples were leached on 04/11/2018, prepared on 04/12/2018 and analyzed on 04/17/2018.

Page 5 of 73

TestAmerica Savannah 4/20/2018 4

TestAmerica Job ID: 680-150889-1

Case Narrative	
Client: Georgia State University TestAmerica Job ID: 680-150889-1 Project/Site: Monitoring Well Installation TestAmerica Job ID: 680-150889-1	
Job ID: 680-150889-1 (Continued)	
Laboratory: TestAmerica Savannah (Continued)	Λ
2.4.6-Tribromophenol (Surr), 2-Fluorobiphenvl. 2-Fluorophenol (Surr), Nitrobenzene-d5 (Surr), Phenol-d5 (Surr) and Terphenvl-d14 (Surr)	4
recovered outside of criteria high for LB 680-519572/1-B. Refer to the QC report for details.	
No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.	
SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)	
Sample SB04 (680-150889-1) was analyzed for Semivolatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method	
8270D. The samples were prepared on 04/11/2018 and analyzed on 04/15/2018.	
To analytical of quality issues were noted, other than those described above of in the Deminions/Clossary page.	
SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)	
Samples MW-01 (680-150889-2) and MW-02 (680-150889-3) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 04/12/2018 and analyzed on 04/16/2018.	
No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.	

METALS (ICP) - TCLP

Sample SB04 (680-150889-1) was analyzed for Metals (ICP) - TCLP in accordance with EPA SW-846 Methods 1311/6010C. The samples were leached on 04/11/2018, prepared on 04/18/2018 and analyzed on 04/19/2018.

Arsenic and Silver recovered outside of criteria low for the MS and MSD of sample SB04 (680-150889-1) in batch 680-520874. Silver exceeded the RPD limit.

The presence of the '4' qualifier indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Sample SB04 (680-150889-1) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared and analyzed on 04/11/2018.

Chromium recovered outside of criteria low for the MS of sample SB04 (680-150889-1) in batch 680-519787. Barium failed the recovery criteria high.

Chromium and Selenium recovered outside of criteria low for the MSD of sample SB04 (680-150889-1) in batch 680-519787.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples MW-01 (680-150889-2) and MW-02 (680-150889-3) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 04/14/2018 and analyzed on 04/18/2018.

Iron was detected in method blank MB 680-520055/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

MERCURY - TCLP

Sample SB04 (680-150889-1) was analyzed for mercury - TCLP in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 04/11/2018, prepared on 04/13/2018 and analyzed on 04/16/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page

Page 6 of 73

TestAmerica Savannah 4/20/2018

Case Narrative		
Client: Georgia State University	TestAmerica Job ID: 680-150889-1	
Project/Site: Monitoring Well Installation		
Job ID: 680-150889-1 (Continued)		
Laboratory: TestAmerica Savannah (Continued)		4
TOTAL MERCURY		5
Samples MW-01 (680-150889-2) and MW-02 (680-150889-3) were analyzed for total mercury 7470A. The samples were prepared on 04/11/2018 and analyzed on 04/13/2018.	in accordance with EPA SW-846 Methods	6
No analytical or quality issues were noted, other than those described above or in the Definition	ons/Glossary page.	
TOTAL MERCURY Sample SB04 (680-150889-1) was analyzed for total mercury in accordance with EPA SW-84 prepared on 04/10/2018 and analyzed on 04/12/2018.	6 Method 7471B. The samples were	
No analytical or quality issues were noted, other than those described above or in the Definition	ons/Glossary page.	
IGNITABILITY FOR SOLIDS		
Sample SB04 (680-150889-1) was analyzed for ignitability for solids in accordance with EPA sanalyzed on 04/12/2018.	SW-846 Method 1030. The samples were	
The following sample did not ignite: SB04 (680-150889-1); therefore, an ignitability value could reported as "No Burn" (NB).	d not be obtained. The result has been	

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples MW-01 (680-150889-2) and MW-02 (680-150889-3) were analyzed for alkalinity in accordance with SM 2320B. The samples were analyzed on 04/10/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL DISSOLVED SOLIDS

Samples MW-01 (680-150889-2) and MW-02 (680-150889-3) were analyzed for total dissolved solids in accordance with SM 2540C. The samples were analyzed on 04/11/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Sample SB04 (680-150889-1) was analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 04/12/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL SULFIDE

Sample SB04 (680-150889-1) was analyzed for total sulfide in accordance with EPA SW-846 Method 9034. The samples were prepared and analyzed on 04/12/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CORROSIVITY (PH)

Sample SB04 (680-150889-1) was analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 04/19/2018.

This analysis is considered a field test and is to be performed within 15 minutes of collection. This sample(s) was performed in the laboratory outside the 15 minute timeframe.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Page 7 of 73

TestAmerica Savannah 4/20/2018

Case Narrative	
Client: Georgia State University TestAmerica Job ID: 680-150 Project/Site: Monitoring Well Installation TestAmerica Job ID: 680-150)889-1
Job ID: 680-150889-1 (Continued)	3
Laboratory: TestAmerica Savannah (Continued)	4
9056 ANIONS Samples MW-01 (680-150889-2) and MW-02 (680-150889-3) were analyzed for 9056 Anions in accordance with SW 846 9056. The samples were analyzed on 04/12/2018.	5
Samples MW-01 (680-150889-2)[5X] and MW-02 (680-150889-3)[5X] required dilution prior to analysis. The reporting limits have been	6
adjusted accordingly.	
No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.	
PERCENT SOLIDS/MOISTURE Sample SB04 (680-150889-1) was analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 04/11/2018.	
No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.	
TOTAL HARDNESS (AS CACO3) BY CALCULATION	

TOTAL HARDNESS (AS CACO3) BY CALCULATION Samples MW-01 (680-150889-2) and MW-02 (680-150889-3) were analyzed for total hardness (as CaCO3) by calculation in accordance with SM 2340B. The samples were analyzed on 04/20/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: SB04 Date Collected: 04/09/18 14:00

Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-1 Matrix: Solid Percent Solids: 76.5

Method: 8260B - Volatile Org	ganic Compou	inds (GC/M	S)	MOL	Unit	-	Bronened	Analyses	DILE	5
	Result	uuaimer	KL			<u>ע</u>	Prepared	Analyzed	DIIFac	
Acetone	14	J	50	0.72	ug/Kg	× ×	04/11/18 09:15	04/11/18 18:08	1	
Benzene	0.73	0	5.0	0.73	ug/Kg	~ ~	04/11/16 09:15	04/11/10 10:00	1	
Bromobenzene	1.7	U	5.0	1.7	ug/Kg	×	04/11/18 09:15	04/11/18 18:08		
Bromocniorometnane	3.3	U	5.0	3.3	ug/Kg	× 	04/11/18 09:15	04/11/18 18:08	1	
Bromodichioromethane	0.97	0	5.0	0.97	ug/Kg	~ ~	04/11/10 09.15	04/11/10 10:00	1	
Biomonothene	1.0	0	5.0	1.0	ug/Kg	·····	04/11/10 09.15	04/11/10 10:00		
	1.5	0	5.0	1.5	ug/Kg	ж ж	04/11/10 09.15	04/11/10 10:00	1	
2-Butahone (MEK)	2.4	0	20	2.4	ug/Kg	č.	04/11/10 09:15	04/11/10 10:00	1	
	2.4		5.0	2.4	ug/Kg	· · · · · ·	04/11/18 09:15	04/11/10 10:00		
tort Butylbenzene	2.1	0	5.0	Z.1	ug/Kg	~ ~	04/11/10 09:15	04/11/10 10:00	1	
Carbon disulfide	1.0	0	5.0	1.0	ug/Kg	å	04/11/18 09:15	04/11/18 18:08	1	
Carbon totrachlorido	1.1		5.0	0.02	ug/Kg	· · · · · ·	04/11/18 09:15	04/11/10 10:00		
Chlorobenzene	0.03		5.0	0.03	ug/Kg	*	04/11/18 00:15	04/11/18 18:00	1	
Chloroethane	0.90		5.0	0.30	ug/Ng	*	04/11/10 03.13	04/11/10 10:00	1	
Chloroform	2.7	U 11	5.0	∠./ 1 1	ug/Ng	·····*	04/11/18 00:15	04/11/18 18:00	1	
Chloromethane	1.1		5.0	1.1	ug/Kg	с. 	04/11/18 00:15	04/11/18 18:08	1	
2-Chlorotoluene	2.0		5.0	2.0	ug/Kg ug/Kg	÷	04/11/18 09:15	04/11/18 18:08	1	
4 Chlorotoluene	2.0		5.0	2.0	ug/Kg	····· &	04/11/18 09:15	04/11/18 18:08		
Dibromochloromethane	1.7		5.0	1.7	ug/Kg ug/Kg		04/11/18 09:15	04/11/18 18:08	1	
1.2-Dibromo-3-Chloropropane	1.7		10	1.7	ug/Kg		04/11/18 09:15	04/11/18 18:08	1	
1.2-Dibromoethane	1.5		50	1.7	ug/Kg		04/11/18 09:15	04/11/18 18:08		
Dibromomethane	1.5		5.0	1.5	ug/Kg	÷	04/11/18 09:15	04/11/18 18:08	1	
Dichlorodifluoromethane	0.94	0	5.0	0.94	ua/Ka	¢.	04/11/18 09:15	04/11/18 18:08	1	
1 1-Dichloroethane	11		5.0	11	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/11/18 09:15	04/11/18 18:08	·····	
1.2-Dichloroethane	1.1	0	5.0	1.1	ua/Ka	÷	04/11/18 09:15	04/11/18 18:08	1	
cis-1 2-Dichloroethene	1.1	U U	5.0	1.1	ua/Ka	\$	04/11/18 09:15	04/11/18 18:08	1	
trans-1 2-Dichloroethene	0.63		5.0	0.63	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/11/18 09:15	04/11/18 18:08	·····	
1 2-Dichloroethene Total	0.63	U U	10	0.63	ua/Ka	¢	04/11/18 09:15	04/11/18 18:08	1	
1 1-Dichloroethene	1.5	U U	50	1.5	ua/Ka	\$	04/11/18 09:15	04/11/18 18:08	1	
1.2-Dichloropropage	0.86		5.0	0.86	ua/Ka	· · · · · · · · · · · · · · · · · · ·	04/11/18 09:15	04/11/18 18:08	· · · · · · · · · · · · · · · · · · ·	
1 3-Dichloropropane	1.8	U U	5.0	1.8	ua/Ka	\$	04/11/18 09:15	04/11/18 18:08	1	
2.2-Dichloropropane	1.1	ŭ	5.0	1.1	ua/Ka	\$	04/11/18 09:15	04/11/18 18:08	1	
1 1-Dichloropropene	0.95	- U	5.0	0.95	ua/Ka	• • • • • • • • •	04/11/18 09:15	04/11/18 18:08		
cis-1.3-Dichloropropene	0.83	U	5.0	0.83	ua/Ka	¢	04/11/18 09:15	04/11/18 18:08	1	
trans-1.3-Dichloropropene	0.87	Ū	5.0	0.87	ua/Ka	¢	04/11/18 09:15	04/11/18 18:08	1	
Ethylbenzene	1.3	U	5.0	1.3	ug/Ka	****	04/11/18 09:15	04/11/18 18:08	· · · · · · · · · · · · · · · · · · ·	
2-Hexanone	3.3	U	25	3.3	ug/Ka	⇔	04/11/18 09:15	04/11/18 18:08	1	
Isopropylbenzene	1.9	U	5.0	1.9	ug/Kg	¢	04/11/18 09:15	04/11/18 18:08	1	
p-Isopropyltoluene	2.2	U	5.0	2.2	ug/Ka	· · · · · · · · · · · · · · · · · · ·	04/11/18 09:15	04/11/18 18:08	1	
Methylene Chloride	0.98	U	5.0	0.98	ug/Kg	\$	04/11/18 09:15	04/11/18 18:08	1	
- 4-Methyl-2-pentanone	4.2	U	25	4.2	ug/Ka	¢	04/11/18 09:15	04/11/18 18:08	1	
Methyl tert-butyl ether	1.0	U	5.0	1.0	ug/Kg	***	04/11/18 09:15	04/11/18 18:08	1	
N-Propylbenzene	2.7	U	5.0	2.7	ug/Kg	\$	04/11/18 09:15	04/11/18 18:08	1	
Styrene	0.93	U	5.0	0.93	ug/Kg	⇔	04/11/18 09:15	04/11/18 18:08	1	
1,1,1,2-Tetrachloroethane	2.4	U	5.0	2.4	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/11/18 09:15	04/11/18 18:08	1	
1,1,2,2-Tetrachloroethane	1.6	U	5.0	1.6	ug/Kg	¢	04/11/18 09:15	04/11/18 18:08	1	
Tetrachloroethene	1.9	U	5.0	1.9	ug/Kg	¢	04/11/18 09:15	04/11/18 18:08	1	
Toluene	0.84	U	5.0	0.84	ug/Kg	\$	04/11/18 09:15	04/11/18 18:08	1	

TestAmerica Savannah

Page 9 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: SB04 Date Collected: 04/09/18 14:00 Date Received: 04/10/18 08:00

Lab Sample ID: 680-150889-1
Lab Sample 1D. 000-100000-1
Matrix: Solid
Percent Solids: 76.5

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ied)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2,3-Trichlorobenzene	1.6	U	5.0	1.6	ug/Kg		04/11/18 09:15	04/11/18 18:08	1	-
1,1,1-Trichloroethane	0.59	U	5.0	0.59	ug/Kg	⇔	04/11/18 09:15	04/11/18 18:08	1	
1,1,2-Trichloroethane	1.3	U	5.0	1.3	ug/Kg	\$	04/11/18 09:15	04/11/18 18:08	1	
Trichloroethene	1.3	U	5.0	1.3	ug/Kg	⇔	04/11/18 09:15	04/11/18 18:08	1	
Trichlorofluoromethane	1.2	U	5.0	1.2	ug/Kg	⇔	04/11/18 09:15	04/11/18 18:08	1	
1,2,4-Trimethylbenzene	1.4	U	5.0	1.4	ug/Kg	\$	04/11/18 09:15	04/11/18 18:08	1	
1,3,5-Trimethylbenzene	1.7	U	5.0	1.7	ug/Kg	⇔	04/11/18 09:15	04/11/18 18:08	1	
Vinyl acetate	2.5	U	10	2.5	ug/Kg	⇔	04/11/18 09:15	04/11/18 18:08	1	
Vinyl chloride	1.5	U	5.0	1.5	ug/Kg	¢	04/11/18 09:15	04/11/18 18:08	1	
o-Xylene	1.1	U	5.0	1.1	ug/Kg	¢	04/11/18 09:15	04/11/18 18:08	1	
m-Xylene & p-Xylene	2.6	U	5.0	2.6	ug/Kg	⇔	04/11/18 09:15	04/11/18 18:08	1	
Xylenes, Total	1.1	U	10	1.1	ug/Kg	¢	04/11/18 09:15	04/11/18 18:08	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	100		70 - 130				04/11/18 09:15	04/11/18 18:08	1	
1,2-Dichloroethane-d4 (Surr)	96		70 - 130				04/11/18 09:15	04/11/18 18:08	1	
Dibromofluoromethane (Surr)	95		70 - 130				04/11/18 09:15	04/11/18 18:08	1	
4-Bromofluorobenzene (Surr)	104		70 - 130				04/11/18 09:15	04/11/18 18:08	1	

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) - TCLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0086	U	0.020	0.0086	mg/L			04/13/18 14:41	20
2-Butanone	0.068	U	0.20	0.068	mg/L			04/13/18 14:41	20
Carbon tetrachloride	0.0066	U	0.020	0.0066	mg/L			04/13/18 14:41	20
Chlorobenzene	0.0052	U	0.020	0.0052	mg/L			04/13/18 14:41	20
Chloroform	0.010	U	0.020	0.010	mg/L			04/13/18 14:41	20
1,4-Dichlorobenzene	0.0092	U	0.020	0.0092	mg/L			04/13/18 14:41	20
1,2-Dichloroethane	0.010	U	0.020	0.010	mg/L			04/13/18 14:41	20
1,1-Dichloroethene	0.0072	U	0.020	0.0072	mg/L			04/13/18 14:41	20
Hexachlorobutadiene	0.050	U	0.10	0.050	mg/L			04/13/18 14:41	20
Tetrachloroethene	0.015	U	0.020	0.015	mg/L			04/13/18 14:41	20
Trichloroethene	0.0096	U	0.020	0.0096	mg/L			04/13/18 14:41	20
Vinyl chloride	0.010	U	0.020	0.010	mg/L			04/13/18 14:41	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120			-		04/13/18 14:41	20
1,2-Dichloroethane-d4 (Surr)	93		73 - 131					04/13/18 14:41	20
4-Bromofluorobenzene (Surr)	93		80 - 120					04/13/18 14:41	20
Dibromofluoromethane (Surr)	99		80 - 122					04/13/18 14:41	20

e Organic Co	mpounds (GC/MS)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2100	U	2100	2100	ug/Kg		04/11/18 08:30	04/15/18 21:02	1
44	U	420	44	ug/Kg	\Leftrightarrow	04/11/18 08:30	04/15/18 21:02	1
37	U	420	37	ug/Kg	⇔	04/11/18 08:30	04/15/18 21:02	1
44	U	420	44	ug/Kg	\$	04/11/18 08:30	04/15/18 21:02	1
56	U	420	56	ug/Kg	⇔	04/11/18 08:30	04/15/18 21:02	1
1000	U	2100	1000	ug/Kg	\$	04/11/18 08:30	04/15/18 21:02	1
62	U	420	62	ug/Kg	\$	04/11/18 08:30	04/15/18 21:02	1
51	U	420	51	ug/Kg	\$	04/11/18 08:30	04/15/18 21:02	1
	e Organic Co Result 2100 44 37 44 56 1000 62 51	e Organic Compounds (Result Qualifier 2100 U 44 U 37 U 44 U 56 U 1000 U 62 U 51 U	Compounds (GC/MS) Result Qualifier RL 2100 U 2100 44 U 420 37 U 420 44 U 420 56 U 420 1000 U 2100 62 U 420 51 U 420	Result Qualifier RL MDL 2100 U 2100 2100 44 U 420 44 37 U 420 37 44 U 420 44 56 U 420 56 1000 U 2100 1000 62 U 420 62 51 U 420 51	Presult Qualifier MDL Unit Result Qualifier RL MDL Unit 2100 U 2100 2100 ug/Kg 44 U 420 37 ug/Kg 37 U 420 37 ug/Kg 44 U 420 34 ug/Kg 56 U 420 56 ug/Kg 1000 U 2100 1000 ug/Kg 62 U 420 62 ug/Kg 51 U 420 51 ug/Kg	Porganic Compounds (GC/MS) Result Qualifier RL MDL Unit D 2100 U 2100 2100 2100 ug/Kg % 44 U 420 44 ug/Kg % 37 U 420 37 ug/Kg % 44 U 420 44 ug/Kg % 56 U 420 56 ug/Kg % 1000 U 2100 1000 ug/Kg % 62 U 420 62 ug/Kg % 51 U 420 51 ug/Kg %	MDL Unit D Prepared 2100 U 2100 20/Kg 37 24 24 24 20/Kg 37 24/20 37 20/Kg 37 24/11/18 20/Kg 37 24/20 24 20/Kg 37 24/11/18 26/31 20/Kg 37 24/11/18 26/31 20/Kg 37 24/11/18 26/31	MDL Unit D Prepared Analyzed 2100 U 2100 2100 200 200 04/11/18 08:30 04/15/18 21:02 44 U 420 44 ug/kg 04/11/18 08:30 04/15/18 21:02 37 U 420 37 ug/kg 04/11/18 08:30 04/15/18 21:02 44 U 420 34 ug/kg 04/11/18 08:30 04/15/18 21:02 56 U 420 56 ug/Kg 04/11/18 08:30 04/15/18 21:02 1000 U 2100 1000 ug/Kg 04/11/18 08:30 04/15/18 21:02 1000 U 2100 1000 ug/Kg 04/11/18 08:30 04/15/18 21:02 62 U 420 56 ug/Kg 04/11/18 08:30 04/15/18 21:02 61 U 420 62 ug/Kg 04/11/18 08:30 04/15/18 21:02 51 U 420 51 ug/Kg 04/11/18 08:30 04/15/18 21:02

TestAmerica Savannah

Page 10 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: SB04

Date Collected: 04/09/18 14:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-1 Matrix: Solid

ate Received: 04/10/18 08:00								Percent Solid	s: 76.5
Method: 8270D - Semivolatile Analyte	e Organic Con Result	n <mark>pounds</mark> (Qualifier	(GC/MS) (Co RL	ntinued) MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chloronaphthalene	- <u> </u>	J	420	44	ug/Kg		04/11/18 08:30	04/15/18 21:02	1
2-Methylnaphthalene	48 L	j	420	48	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/11/18 08:30	04/15/18 21:02	1
2-Methylphenol	34 L	J	420	34	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
2-Nitroaniline	57 L	J	2100	57	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
2-Nitrophenol	52 L	- J	420	52	ua/Ka	****	04/11/18 08:30	04/15/18 21:02	1
3 & 4 Methylphenol	54 L	J	420	54	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
3.3'-Dichlorobenzidine	35 L	J	830	35	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
3-Nitroaniline	58 L	- J	2100	58	ua/Ka	****	04/11/18 08:30	04/15/18 21:02	1
4.6-Dinitro-2-methylphenol	210 L	J	2100	210	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
4-Bromophenyl phenyl ether	45 L	J	420	45	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
4-Chloro-3-methylphenol	44 L	J	420	44	ua/Ka	· · · · · · · · · · · · · · · · · · ·	04/11/18 08:30	04/15/18 21:02	1
4-Chloroaniline	66 L	J	830	66	ug/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
4-Chlorophenyl phenyl ether	56 L	J	420	56	ug/Kg	⇔	04/11/18 08:30	04/15/18 21:02	1
4-Nitroaniline	62 L	J · · · · · · · · · · ·	2100	62	ug/Kg	÷	04/11/18 08:30	04/15/18 21:02	1
Acenaphthene	52 L	J	420	52	ug/Kg	¢	04/11/18 08:30	04/15/18 21:02	1
Acenaphthylene	45 L	J	420	45	ug/Kg	⇔	04/11/18 08:30	04/15/18 21:02	1
Acetophenone	35 L	J · · · · · · · · · · ·	420	35	ug/Kg	÷	04/11/18 08:30	04/15/18 21:02	1
Anthracene	32 L	J	420	32	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
Benzolalanthracene	40 .	-	420	34	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Benzolalpyrene	66 L		420	66	ua/Ka	• • • • • • • •	04/11/18 08:30	04/15/18 21:02	1
Benzolb]fluoranthene	48 L	- .J	420	48	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Benzola h.ilpervlene	28 L	J	420	28	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Benzo[k]fluoranthene	82 1		420	82	ua/Ka	***	04/11/18 08:30	04/15/18 21:02	
Bis(2-chloroethoxy)methane	49 1	1	420	49	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Bis(2-chloroethyl)ether	57 1	1	420	57	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Bis(2-ethylhexyl) phthalate	37 L	- J	420	37	ua/Ka	• • • • • • • •	04/11/18 08:30	04/15/18 21:02	· · · · · · · · · · · · · · · · · · ·
Chrysene	59 .	-	420	27	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Dibenz(a h)anthracene	49 L	J	420	49	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Dibenzofuran	42 L	- J	420	42	ua/Ka	• • • • • • • •	04/11/18 08:30	04/15/18 21:02	
Di-n-butyl phthalate	38 L	- J	420	38	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Diethyl phthalate	47 L	-	420	47	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Dimethyl phthalate	43 1	- J	420	43	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	
Di-n-octvl phthalate	37 L	J	420	37	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
Fluoranthene	140	-	420	40	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
Fluorene	45 1	- J	420	45	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	
Hexachlorobenzene	49 L	J	420	49	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
Hexachlorobutadiene	45 L	J	420	45	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
Hexachlorocyclopentadiene	52 1	- J	420	.5	ua/Ka	÷	04/11/18 08:30	04/15/18 21:02	
Hexachloroethane	35 1	- J	420	35	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
ndeno[1.2.3-cd]pyrene	35 L	- J	420	35	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
sophorone	42 1	- J	420	42	ua/Ka	÷	04/11/18 08:30	04/15/18 21:02	
Naphthalene	38 1	- J	420	38	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
Nitrobenzene	33 1	- J	420	33	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
N-Nitrosodiphenylamine	42 1	-]	420	42	ua/Ka	·····	04/11/18 08:30	04/15/18 21:02	
N-Nitrosodi-n-propylamine	40 I		420	40	ua/Ka	\$	04/11/18 08:30	04/15/18 21:02	1
Pentachlorophenol	420 1	.]	2100	420	ua/Ka	¢	04/11/18 08:30	04/15/18 21:02	1
Phononthrono	95 C	-	420	34	-9/19 110/Ka		04/11/18 08:30	04/15/18 21:02	
A REAL PROPERTY OF A REAL PROPERTY.	00 0	·	740	54	~9/1.9		0.00.00	0 10 10 21.02	
Phenol	43	J	420	43	ua/Ka	☆	04/11/18 08:30	04/15/18 21:02	1

TestAmerica Savannah

Page 11 of 73

		Client	Sample	Resul	ts					
Client: Georgia State University Project/Site: Monitoring Well Insta	Illation					٦	estAmerica .	Job ID: 680-15	0889-1	
Client Sample ID: SB04						La	b Sample	ID: 680-150	889-1	
Date Collected: 04/09/18 14:00								Matrix	: Solid	
Date Received: 04/10/18 08:00								Percent Solid	ls: 76.5	
Mathad: 2270D Samiyolatila	Organic Co	mnounde		ntinued	`					· •
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Butyl benzyl phthalate	33	U	420	33	ug/Kg	☆	04/11/18 08:30	04/15/18 21:02	1	
bis (2-chloroisopropyl) ether	38	U	420	38	ug/Kg	¢	04/11/18 08:30	04/15/18 21:02	1	
Carbazole	38	U	420	38	ug/Kg	\diamond	04/11/18 08:30	04/15/18 21:02	1	
2,6-Dinitrotoluene	53	U	420	53	ug/Kg	¢	04/11/18 08:30	04/15/18 21:02	1	
4-Nitrophenol	420	U	2100	420	ug/Kg	☆	04/11/18 08:30	04/15/18 21:02	1	
Atrazine	29	U	420	29	ug/Kg	¢	04/11/18 08:30	04/15/18 21:02	1	
Benzaldehyde	73	U	420	73	ug/Kg	¢	04/11/18 08:30	04/15/18 21:02	1	
Caprolactam	83	U	420	83	ug/Kg	\$	04/11/18 08:30	04/15/18 21:02	1	
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2.4.6-Tribromophenol (Surr)	86		45 - 129				04/11/18 08:30	04/15/18 21:02	1	
2-Fluorobiphenyl (Surr)	86		41 - 116				04/11/18 08:30	04/15/18 21:02	1	
2-Fluorophenol (Surr)	83		39 - 114				04/11/18 08:30	04/15/18 21:02	1	
Terphenyl-d14 (Surr)	90		46 - 126				04/11/18 08:30	04/15/18 21:02	1	
Phenol-d5 (Surr)	81		38 - 122				04/11/18 08:30	04/15/18 21:02	1	
Nitrobenzene-d5 (Surr)	76		37 - 115				04/11/18 08:30	04/15/18 21:02	1	
Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS) - TO		Unit	Б	Prepared	Apolyzed	Dil Eas	
1 4-Dicblorobenzene	0.0026		0.049	0.0026	mal		01/12/18 15:10	01/17/18 01:31	1	
Pyridine	0.0020	0	0.045	0.0020	mg/L		04/12/18 15:10	04/17/18 01:31	1	
Hexachlorobenzene	0.012	U U	0.049	0.012	ma/l		04/12/18 15:10	04/17/18 01:31	1	
2 4-Dinitrotoluene	0.0058	ц.	0.049	0.0058	ma/l		04/12/18 15:10	04/17/18 01:31		
Hexachloroethane	0.0037	Ŭ	0.049	0.0037	ma/L		04/12/18 15:10	04/17/18 01:31	1	
Hexachlorobutadiene	0.0030	U	0.049	0.0030	ma/L		04/12/18 15:10	04/17/18 01:31	1	
Pentachlorophenol	0.0097	U	0.24	0.0097	ma/L		04/12/18 15:10	04/17/18 01:31	1	
2,4,6-Trichlorophenol	0.0042	U	0.049	0.0042	mg/L		04/12/18 15:10	04/17/18 01:31	1	
2,4,5-Trichlorophenol	0.0058	U	0.049	0.0058	mg/L		04/12/18 15:10	04/17/18 01:31	1	
Nitrobenzene	0.0036	U	0.049	0.0036	mg/L		04/12/18 15:10	04/17/18 01:31	1	
2-Methylphenol	0.0044	U	0.049	0.0044	mg/L		04/12/18 15:10	04/17/18 01:31	1	
3 & 4 Methylphenol	0.0063	U	0.049	0.0063	mg/L		04/12/18 15:10	04/17/18 01:31	1	
Current and the	0/ D	0	1				Owner and	A	0// 5	
2.4.6. Tribromonhonol (Surr)	%Recovery	Quaimer	21 141				Prepared	Analyzed	Dil Fac	
2,4,6-Thbromoprienor (Sun)	70		31 - 141				04/12/10 15.10	04/17/10 01.31	1	
2-Fluorophenol (Surr)	65		25 130				04/12/18 15:10	04/17/18 01:31	1	
Terohenyl-d14 (Surr)	74		10 143				04/12/18 15:10	04/17/18 01:31		
PhenoLd5 (Surr)	66		25 130				04/12/18 15:10	04/17/18 01:31	1	
Nitrobenzene-d5 (Surr)	71		39 - 130				04/12/18 15:10	04/17/18 01:31	1	
Method: 6010C - Metals (ICP)	Posult	Qualifier	PI	МО	Unit	Р	Prepared	Applyzed	Dil Eac	
Areanic	2 4	I	22	0.89	ma/Ka		04/11/18 06:50	04/11/18 21·10	1	
Barium	4. I 130	5	<u>ـــ</u> 1 1	0.05	ma/Ka	 ج	04/11/18 06:50	04/11/18 21:10	1	
Cadmium	0.11	U	0.56	0.10	ma/Ka	\$	04/11/18 06:50	04/11/18 21:10	1	
Chromium	22	F1	11	0.23	ma/Ka	· · · · · · · · · · · · · · · · · · ·	04/11/18 06:50	04/11/18 21:10		
Silver	0 067	 U	11	0.067	ma/Ka	\$	04/11/18 06:50	04/11/18 21:10	1	
Lead	13		1.1	0.38	ma/Ka	\$	04/11/18 06:50	04/11/18 21:10	1	
Selenium	1.1	U F1	2.8	1.1	mg/Kg	¢	04/11/18 06:50	04/11/18 21:10	1	

TestAmerica Savannah

Page 12 of 73

4/20/2018

	С	l	ie	er	ıt	S	a	m	p	le	R	es	ult	ts
--	---	---	----	----	----	---	---	---	---	----	---	----	-----	----

		Client	Sample	Resul	ts					
Client: Georgia State University Project/Site: Monitoring Well Installa	ation					Т	estAmerica .	lob ID: 680-15	50889-1	
Client Sample ID: SB04 Date Collected: 04/09/18 14:00						La	ıb Sample	ID: 680-150 Matrix	889-1 C: Solid	
Date Received: 04/10/18 08:00								Percent Sond	15: 70.5	
Method: 6010C - Metals (ICP) - T Analyte	CLP Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	0.20	U F1	0.20	0.20	mg/L		04/18/18 13:16	04/19/18 16:53	1	
Barium	1.0	U	1.0	1.0	mg/L		04/18/18 13:16	04/19/18 16:53	1	
Cadmium	0.10	U	0.10	0.10	mg/L		04/18/18 13:16	04/19/18 16:53	1	
Chromium	0.20	U	0.20	0.20	mg/L		04/18/18 13:16	04/19/18 16:53	1	
Lead	0.20	U	0.20	0.20	mg/L		04/18/18 13:16	04/19/18 16:53	1	
Selenium	0.50	U	0.50	0.50	mg/L		04/18/18 13:16	04/19/18 16:53	1	
Silver	0.10	U F1 F2	0.10	0.10	mg/L		04/18/18 13:16	04/19/18 16:53	1	
Method: 7470A - Mercury (CVAA) - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.020	U	0.020	0.020	mg/L		04/13/18 09:27	04/16/18 09:24	1	
Method: 7471B - Mercury (CVAA	3									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.0090	U	0.023	0.0090	mg/Kg	<u>\$</u>	04/10/18 15:11	04/12/18 17:59	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Ignitability	NB				mm/sec			04/12/18 07:57	1	
Cyanide, Total	0.20	J	0.65	0.17	mg/Kg	⇔	04/12/18 05:29	04/12/18 10:14	1	
Sulfide	75	U	75	75	mg/Kg	⇔	04/12/18 04:00	04/12/18 04:30	1	
corrosivity by pH	5.8	HF			SU			04/19/18 13:18	1	

TestAmerica Savannah

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-01 Date Collected: 04/09/18 09:00 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-2 Matrix: Water

lient Sample ID: MW-01	Lab Sample ID: 680-150889-2								
ate Collected: 04/09/18 09:0	Matrix: Water								
ate Received: 04/10/18 08:00	0								
Mathadi 9260 R. Valatila Orr	anio Compo	unde (CCMIS)							
Analyte	Result	Qualifier	RI	MDI	Unit	D	Prenared	Analyzed	Dil Fac
1 1 1 2-Tetrachloroethane	0.37		1.0	0.37			Troparoa	04/11/18 15:14	1
1 1 1-Trichloroethane	0.37	U U	1.0	0.37	ug/L			04/11/18 15:14	1
1 1 2 2-Tetrachloroethane	0.62	U U	1.0	0.62	ua/l			04/11/18 15:14	. 1
1 1 2-Trichloroethane	0.33	Ū.	1.0	0.33	ua/l			04/11/18 15:14	
1 1-Dichloroethane	0.38	U U	1.0	0.38	ug/L			04/11/18 15:14	. 1
1 1-Dichloroethene	0.36	U U	1.0	0.36	ua/l			04/11/18 15:14	. 1
1 1-Dichloropropene	0.34	Ū.	1.0	0.34	ua/l			04/11/18 15:14	
1 2 3-Trichlorobenzene	25	U U	5.0	2.5	ug/L			04/11/18 15:14	. 1
1 2 4-Trimethylbenzene	0.47	U U	1.0	0.47	ua/l			04/11/18 15:14	. 1
1 2-Dibromo-3-Chloropropane	11	Ū.	5.0	11	ua/l			04/11/18 15:14	
1 2-Dichloroethane	0.50	U U	1.0	0.50	ug/L			04/11/18 15:14	. 1
1.2-Dichloroethene. Total	0.37	- U	2.0	0.37	ua/L			04/11/18 15:14	1
1.2-Dichloropropane	0.67	- U	1.0	0.67	ua/L			04/11/18 15:14	
1.3.5-Trimethylbenzene	0.31	- U	1.0	0.31	ua/L			04/11/18 15:14	1
1.3-Dichloropropane	0.34	- U	1.0	0.34	ua/L			04/11/18 15:14	1
2.2-Dichloropropane	0.37	- U	1.0	0.37	ua/L			04/11/18 15:14	
2-Chlorotoluene	0.27	U U	1.0	0.27	ua/l			04/11/18 15:14	1
2-Hexanone	2.0	0	10	2.0	ug/L			04/11/18 15:14	1
	0.45		1.0	0.45	ug/L			04/11/18 15:14	
	7.0	0	10	7.0	ug/L			04/11/18 15:14	1
Benzene	0.43	1	10	0.43	ug/L			04/11/18 15:14	1
Bromohenzene	0.40		1.0	0.45	ug/L			04/11/18 15:14	
Bromochloromethane	0.50	1	1.0	0.00	ug/L			04/11/18 15:14	1
Bromoform	0.43	1	1.0	0.10	ug/L			04/11/18 15:14	1
Bromodichloromethane	0.40		1.0	0.40	ug/L			04/11/18 15:14	
Bromomethane	25	1	5.0	25	ug/L			04/11/18 15:14	1
Carbon disulfide	1.0	1	2.0	1.0	ug/L			04/11/18 15:14	1
	0.33		1.0	0.33	ug/L			04/11/18 15:14	
Chlorobenzene	0.26	U U	1.0	0.00	ug/L			04/11/18 15:14	1
Chloroethane	2.5	0	5.0	25	ug/L			04/11/18 15:14	1
Chloroform	0.50		1.0	0.50	ug/L			04/11/18 15:14	
Chloromethane	0.00	-	1.0	0.00	ug/l			04/11/18 15:14	1
cis-1.2-Dichloroethene	0.40	u U	1.0	0.41	ua/L			04/11/18 15:14	1
cis-1 3-Dichloropropene	0.40		1.0	0.40	ug/l			04/11/18 15:14	····· 1
Dibromochloromethane	0.40	-	1.0	0.40	ug/l			04/11/18 15:14	1
Dibromomethane	0.32	- U	1.0	0.02	ug/l			04/11/18 15:14	1
Dichlorodifluoromethane	0.60		1.0	0.55	ug/l			04/11/18 15:14	
Thylbenzene	0.00	-	1.0	0.33	ug/l			04/11/18 15:14	1
sopronylbenzene	0.35	u U	1.0	0.35	ua/l			04/11/18 15:14	1
m-Xvlene & n-Xvlene	0.35	- <u>-</u>	1.0	0.35	ua/l			04/11/18 15:14	
Methyl tert-butyl ether	0.30	U U	10	0.30	ua/l			04/11/18 15:14	1
Methylene Chloride	25	- U	5.0	25	ua/L			04/11/18 15:14	1
4-Methyl-2-pentanone	2.5	- U	10	2.0	ua/L			04/11/18 15:14	
2-Butanone (MEK)	3.4	U U	10	3.4	ug/L			04/11/18 15:14	1
1 2-Dibromoethane	0.44	U U	10	0.44	ug/L			04/11/18 15:14	1
n-Butylbenzene	0.44		1.0	0.44	ug/L			04/11/18 15:14	
N-Pronybenzene	0.47	U U	1.0	0.47	ug/L			04/11/18 15:14	1
-Xvlene	0.00	U U	1.0	0.00	ug/L			04/11/18 15:14	1
n-Isonropyttoluene	0.25		1.0	0.25	ug/L			04/11/18 15:14	
, isobiobairono	0.40	~	1.0	0.40	ag/L			5-711710 13.14	1

TestAmerica Savannah

Page 14 of 73
Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-01 Date Collected: 04/09/18 09:00 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-2 Matrix: Water

Viethod: 8260B - Volatile O Analyte	rganic Compo	unds (GC/I	WS) (Continu	Ied)	Unit	р	Prepared	Applyzed	Dil Eac
sec-Butylbenzene			1.0	0.42			Flepaled	- <u>04/11/18 15:14</u>	1
Styrene	0.72	Ŭ	1.0	0.72	ug/L			04/11/18 15:14	1
ert-Butvlbenzene	0.45	Ū	1.0	0.45	ua/L			04/11/18 15:14	
Fetrachloroethene	0.74	U	1.0	0.74	ug/L			04/11/18 15:14	1
Foluene	0.48	U	1.0	0.48	ug/L			04/11/18 15:14	1
rans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			04/11/18 15:14	1
rans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			04/11/18 15:14	1
Frichloroethene	0.48	U	1.0	0.48	ug/L			04/11/18 15:14	1
Frichlorofluoromethane	0.42	U	1.0	0.42	ug/L			04/11/18 15:14	1
/inyl acetate	0.81	U	2.0	0.81	ug/L			04/11/18 15:14	1
/inyl chloride	0.50	U	1.0	0.50	ug/L			04/11/18 15:14	1
Kylenes, Total	0.23	U	1.0	0.23	ug/L			04/11/18 15:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120					04/11/18 15:14	1
1,2-Dichloroethane-d4 (Surr)	89		73 - 131					04/11/18 15:14	1
Dibromofluoromethane (Surr)	97		80 - 122					04/11/18 15:14	1
4-Bromofluorobenzene (Surr)	95		80 - 120					04/11/18 15:14	1

Method: 8270D - Semivolati	le Organic Co	ompounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzaldehyde	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:03	1
Phenol	0.80	U	9.6	0.80	ug/L		04/12/18 15:10	04/16/18 00:03	1
Bis(2-chloroethyl)ether	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:03	1
2-Chlorophenol	0.84	U	9.6	0.84	ug/L		04/12/18 15:10	04/16/18 00:03	1
2-Methylphenol	0.86	U	9.6	0.86	ug/L		04/12/18 15:10	04/16/18 00:03	1
bis (2-chloroisopropyl) ether	0.75	U	9.6	0.75	ug/L		04/12/18 15:10	04/16/18 00:03	1
Acetophenone	0.55	U	9.6	0.55	ug/L		04/12/18 15:10	04/16/18 00:03	1
3 & 4 Methylphenol	1.3	U	9.6	1.3	ug/L		04/12/18 15:10	04/16/18 00:03	1
N-Nitrosodi-n-propylamine	0.69	U	9.6	0.69	ug/L		04/12/18 15:10	04/16/18 00:03	1
Hexachloroethane	0.73	U	9.6	0.73	ug/L		04/12/18 15:10	04/16/18 00:03	1
Nitrobenzene	0.70	U	9.6	0.70	ug/L		04/12/18 15:10	04/16/18 00:03	1
Isophorone	0.87	U	9.6	0.87	ug/L		04/12/18 15:10	04/16/18 00:03	1
2-Nitrophenol	0.73	U	9.6	0.73	ug/L		04/12/18 15:10	04/16/18 00:03	1
2,4-Dimethylphenol	3.8	U	9.6	3.8	ug/L		04/12/18 15:10	04/16/18 00:03	1
Bis(2-chloroethoxy)methane	0.90	U	9.6	0.90	ug/L		04/12/18 15:10	04/16/18 00:03	1
2,4-Dichlorophenol	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:03	1
Naphthalene	0.67	U	9.6	0.67	ug/L		04/12/18 15:10	04/16/18 00:03	1
4-Chloroaniline	2.1	U	19	2.1	ug/L		04/12/18 15:10	04/16/18 00:03	1
Hexachlorobutadiene	0.60	U	9.6	0.60	ug/L		04/12/18 15:10	04/16/18 00:03	1
Caprolactam	0.76	U	9.6	0.76	ug/L		04/12/18 15:10	04/16/18 00:03	1
4-Chloro-3-methylphenol	0.96	U	9.6	0.96	ug/L		04/12/18 15:10	04/16/18 00:03	1
2-Methylnaphthalene	0.75	U	9.6	0.75	ug/L		04/12/18 15:10	04/16/18 00:03	1
Hexachlorocyclopentadiene	2.4	U	9.6	2.4	ua/L		04/12/18 15:10	04/16/18 00:03	1
2.4.6-Trichlorophenol	0.82	U	9.6	0.82	ua/L		04/12/18 15:10	04/16/18 00:03	1
2.4.5-Trichlorophenol	1.2	- _U	9.6	1.2	ua/L		04/12/18 15:10	04/16/18 00:03	1
1.1'-Biphenvl	0.56	U	9.6	0.56	ua/L		04/12/18 15:10	04/16/18 00:03	1
2-Chloronaphthalene	0.77	U	9.6	0.77	ua/L		04/12/18 15:10	04/16/18 00:03	1
2-Nitroaniline	1.3	U	48	1.3	ua/L		04/12/18 15:10	04/16/18 00:03	
Dimeth d phthalate	0.95	U	9.6	0.95	ua/L		04/12/18 15:10	04/16/18 00:03	1

TestAmerica Savannah

Page 15 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-01

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-2 Matrix: Water

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Co	ntinued)				
Analyte	Result	Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,6-Dinitrotoluene	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:03	1
Acenaphthylene	0.82	U	9.6	0.82	ug/L		04/12/18 15:10	04/16/18 00:03	1
3-Nitroaniline	4.8	U	48	4.8	ug/L		04/12/18 15:10	04/16/18 00:03	1
Acenaphthene	0.73	U	9.6	0.73	ug/L		04/12/18 15:10	04/16/18 00:03	1
2,4-Dinitrophenol	9.6	U	48	9.6	ug/L		04/12/18 15:10	04/16/18 00:03	1
1-Nitrophenol	1.8	U	48	1.8	ug/L		04/12/18 15:10	04/16/18 00:03	1
Dibenzofuran	0.76	U	9.6	0.76	ug/L		04/12/18 15:10	04/16/18 00:03	1
2,4-Dinitrotoluene	1.2	U	9.6	1.2	ug/L		04/12/18 15:10	04/16/18 00:03	1
Diethyl phthalate	0.85	U	9.6	0.85	ug/L		04/12/18 15:10	04/16/18 00:03	1
Fluorene	0.92	U	9.6	0.92	ug/L		04/12/18 15:10	04/16/18 00:03	1
4-Chlorophenyl phenyl ether	0.81	U	9.6	0.81	ug/L		04/12/18 15:10	04/16/18 00:03	1
4-Nitroaniline	4.8	U	48	4.8	ug/L		04/12/18 15:10	04/16/18 00:03	1
1,6-Dinitro-2-methylphenol	9.6	U	48	9.6	ug/L		04/12/18 15:10	04/16/18 00:03	1
N-Nitrosodiphenylamine	0.89	U	9.6	0.89	ug/L		04/12/18 15:10	04/16/18 00:03	1
I-Bromophenyl phenyl ether	0.74	U	9.6	0.74	ug/L		04/12/18 15:10	04/16/18 00:03	1
Hexachlorobenzene	0.76	U	9.6	0.76	ug/L		04/12/18 15:10	04/16/18 00:03	1
Atrazine	1.2	U	9.6	1.2	ug/L		04/12/18 15:10	04/16/18 00:03	1
Pentachlorophenol	1.9	U	48	1.9	ug/L		04/12/18 15:10	04/16/18 00:03	1
Phenanthrene	0.74	U	9.6	0.74	ug/L		04/12/18 15:10	04/16/18 00:03	1
Anthracene	0.66	U	9.6	0.66	ug/L		04/12/18 15:10	04/16/18 00:03	1
Carbazole	0.68	U	9.6	0.68	ug/L		04/12/18 15:10	04/16/18 00:03	1
Di-n-butyl phthalate	0.80	U	9.6	0.80	ug/L		04/12/18 15:10	04/16/18 00:03	1
Fluoranthene	0.71	U	9.6	0.71	ug/L		04/12/18 15:10	04/16/18 00:03	1
⊃yrene	0.61	U	9.6	0.61	ug/L		04/12/18 15:10	04/16/18 00:03	1
Butyl benzyl phthalate	1.2	U	9.6	1.2	ug/L		04/12/18 15:10	04/16/18 00:03	1
3,3'-Dichlorobenzidine	29	U	58	29	ug/L		04/12/18 15:10	04/16/18 00:03	1
Benzo[a]anthracene	0.53	U	9.6	0.53	ug/L		04/12/18 15:10	04/16/18 00:03	1
Chrysene	0.49	U	9.6	0.49	ug/L		04/12/18 15:10	04/16/18 00:03	1
Bis(2-ethylhexyl) phthalate	1.5	U	9.6	1.5	ug/L		04/12/18 15:10	04/16/18 00:03	1
Di-n-octyl phthalate	1.3	U	9.6	1.3	ug/L		04/12/18 15:10	04/16/18 00:03	1
Benzo[b]fluoranthene	2.5	U	9.6	2.5	ug/L		04/12/18 15:10	04/16/18 00:03	1
Benzo[k]fluoranthene	1.2	U	9.6	1.2	ug/L		04/12/18 15:10	04/16/18 00:03	1
Benzo[a]pyrene	0.68	U	9.6	0.68	ug/L		04/12/18 15:10	04/16/18 00:03	1
ndeno[1,2,3-cd]pyrene	0.96	U	9.6	0.96	ug/L		04/12/18 15:10	04/16/18 00:03	1
Dibenz(a,h)anthracene	0.96	U	9.6	0.96	ug/L		04/12/18 15:10	04/16/18 00:03	1
Benzo[g,h,i]perylene	0.84	U	9.6	0.84	ug/L		04/12/18 15:10	04/16/18 00:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	79		32 - 118				04/12/18 15:10	04/16/18 00:03	1
2-Fluorobiphenyl (Surr)	87		32 - 113				04/12/18 15:10	04/16/18 00:03	1
Terphenyl-d14 (Surr)	101		10 - 126				04/12/18 15:10	04/16/18 00:03	1
Phenol-d5 (Surr)	73		27 - 110				04/12/18 15:10	04/16/18 00:03	1
2-Fluorophenol (Surr)	64		26 - 109				04/12/18 15:10	04/16/18 00:03	1
2,4,6-Tribromophenol (Surr)	105		39 - 124				04/12/18 15:10	04/16/18 00:03	1
Method: 9056A - Anions, k	on Chromatogr	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23		0.50	0.20	mg/L			04/12/18 20:38	1
Sulfate	120		5.0	2.0	mg/L			04/12/18 20:51	5

TestAmerica Savannah

Page 16 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-01 Date Collected: 04/09/18 09:00 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-2 Matrix: Water

Date Received: 04/10/18 08:00									
- Method: 2340B-2011 - Total Hardn Analyte	i <mark>ess (as</mark> Result	CaCO3) by (Qualifier	calculation _{RL}	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	140		3.3	3.3	mg/L			04/20/18 12:15	1
Method: 6010C - Metals (ICP)	Result	Qualifier	RI	MDI	Unit	п	Prepared	Analyzed	Dil Fac
Aluminum	90		200	24			04/14/18 16:02	04/18/18 19:12	1
Antimony	53	ŭ	20	5.3	ua/l		04/14/18 16:02	04/18/18 19:12	1
Arsenic	6.2	Ŭ	20	6.2	ua/L		04/14/18 16:02	04/18/18 19:12	1
Barium	130		10	1.7	ua/L		04/14/18 16:02	04/18/18 19:12	
Bervllium	0.10	U	4.0	0.10	ua/L		04/14/18 16:02	04/18/18 19:12	1
Cadmium	1.0	U	5.0	1.0	ug/L		04/14/18 16:02	04/18/18 19:12	1
Calcium	25000		500	25	ug/L		04/14/18 16:02	04/18/18 19:12	
Chromium	1.6	U	10	1.6	ug/L		04/14/18 16:02	04/18/18 19:12	1
Cobalt	3.9	J	10	1.0	ug/L		04/14/18 16:02	04/18/18 19:12	1
Copper	1.8	U	20	1.8	ug/L		04/14/18 16:02	04/18/18 19:12	1
Iron	28	JB	50	17	ug/L		04/14/18 16:02	04/18/18 19:12	1
Lead	3.9	U	10	3.9	ug/L		04/14/18 16:02	04/18/18 19:12	1
Magnesium	18000		500	33	ug/L		04/14/18 16:02	04/18/18 19:12	1
Manganese	320		10	1.0	ug/L		04/14/18 16:02	04/18/18 19:12	1
Nickel	2.1	U	40	2.1	ug/L		04/14/18 16:02	04/18/18 19:12	1
Potassium	4500		1000	17	ug/L		04/14/18 16:02	04/18/18 19:12	
Selenium	9.9	U	20	9.9	ug/L		04/14/18 16:02	04/18/18 19:12	1
Silver	0.60	U	10	0.60	ug/L		04/14/18 16:02	04/18/18 19:12	1
Sodium	24000		1000	480	ug/L		04/14/18 16:02	04/18/18 19:12	1
Thallium	6.0	U	25	6.0	ug/L		04/14/18 16:02	04/18/18 19:12	1
Vanadium	1.0	U	10	1.0	ug/L		04/14/18 16:02	04/18/18 19:12	1
Zinc	7.0	U	20	7.0	ug/L		04/14/18 16:02	04/18/18 19:12	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.092	J	0.20	0.080	ug/L		04/11/18 09:42	04/13/18 08:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	12		5.0	5.0	mg/L			04/10/18 18:09	1
Bicarbonate Alkalinity as CaCO3	12		5.0	5.0	mg/L			04/10/18 18:09	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			04/10/18 18:09	1
Hydroxide Alkalinity	5.0	U	5.0	5.0	mg/L			04/10/18 18:09	1
Carbon Dioxide, Free	28		5.0	5.0	mg/L			04/10/18 18:09	1
Phenolphthalein Alkalinity	5.0	U	5.0	5.0	mg/L			04/10/18 18:09	1
Bicarbonate ion as HCO3	15		6.1	6.1	mg/L			04/10/18 18:09	1
Total Dissolved Solids	280		10	10	mg/L			04/11/18 12:30	1

TestAmerica Savannah

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-02 Date Collected: 04/09/18 09:55 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-3 Matrix: Water

Client Sample ID: MW-02							Lab Sample ID: 680-150889-3						
ate Collected: 04/09/18 09:5	55							Matrix	Water				
ate Received: 04/10/18 08:0	00												
Mathada 0000 D. Malatila O.													
Method: 8260B - Volatile Or Analyte	rganic Compol	unds (GC/MS)	DI.	мы	Unit	р	Proporad	Applyzod	Dil Eao				
1 1 1 2 Tetrachloroethane			1.0	0.37			Frepareu	04/11/18 18:32	1				
1 1 1-Trichloroethane	0.37	0	1.0	0.37	ug/L			04/11/18 18:32	1				
1 1 2 2-Tetrachloroethane	0.57		1.0	0.57	ug/L			04/11/18 18:32	1				
1 1 2 Trichloroethane	0.02	11	1.0	0.02	ug/L			04/11/18 18:32	····· 4				
1.1. Dichloroethane	0.33	0	1.0	0.33	ug/L			04/11/18 18:32	4				
1 1-Dichloroethene	0.36	0	1.0	0.30	ug/L			04/11/18 18:32	1				
1 1-Dichloropropene	0.30	1	1.0	0.34	ug/L			04/11/18 18:32	·····				
1.2.3 Trichlorobenzene	2.54		5.0	2.54	ug/L			04/11/18 18:32	4				
1.2.4-Trimethylbenzene	0.47	0	1.0	0.47	ug/L			04/11/18 18:32	1				
1.2 Dibromo 3 Chloropropono	0.47	1	5.0	0.47	ug/L			04/11/10 10:32					
1.2 Dishleresthene	1.1	0	1.0	0.50	ug/L			04/11/10 10.32	1				
1.2 Dichloroethane Total	0.50	0	2.0	0.50	ug/L			04/11/10 10.32	1				
1.2-Dichloropropage	0.37	U	2.0	0.37	ug/L			04/11/10 10.32	·····a				
1.2-Dicitio opioparte 1.3.5 Trimethylbenzono	0.07	0	1.0	0.07	ug/L			04/11/10 10.32	1				
	0.31	0	1.0	0.31	ug/L			04/11/10 10.32	1				
2.2 Dichloropropane	0.34	0	1.0	0.34	ug/L			04/11/10 10:32	····· 4				
2,2-Dicitioropropane	0.37	0	1.0	0.37	ug/L			04/11/10 10:32	1				
	0.27	U	1.0	0.27	ug/L			04/11/18 18:32	1				
2-Hexanone	2.0	0	10	2.0	ug/L			04/11/18 18:32					
4-Chiorotoluene	0.45	U	1.0	0.45	ug/L			04/11/18 18:32	1				
Acetone	7.0	U	10	7.0	ug/L			04/11/18 18:32	1				
Benzene	0.43	U	1.0	0.43	ug/L			04/11/18 18:32	1				
Bromobenzene	0.50	U	1.0	0.50	ug/L			04/11/18 18:32	1				
Bromocniorometnane	0.45	0	1.0	0.45	ug/L			04/11/18 18:32	1				
Bromotorm	0.43	U	1.0	0.43	ug/L			04/11/18 18:32	1				
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			04/11/18 18:32	1				
Bromometnane	2.5	U	5.0	2.5	ug/L			04/11/18 18:32	1				
Carbon disulfide	1.0	U	2.0	1.0	ug/L			04/11/18 18:32	1				
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			04/11/18 18:32	1				
Chlorobenzene	0.26	U	1.0	0.26	ug/L			04/11/18 18:32	1				
Chloroethane	2.5	U	5.0	2.5	ug/L			04/11/18 18:32	1				
Chloroform	1.3		1.0	0.50	ug/L			04/11/18 18:32	1				
Chloromethane	0.40	U	1.0	0.40	ug/L			04/11/18 18:32	1				
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			04/11/18 18:32	1				
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			04/11/18 18:32	1				
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			04/11/18 18:32	1				
	0.35	U	1.0	0.35	ug/L			04/11/18 18:32	1				
	0.60	U	1.0	0.60	ug/L			04/11/18 18:32	1				
	0.33	U	1.0	0.33	ug/L			04/11/18 18:32	1				
Isopropylbenzene	0.35	U	1.0	0.35	ug/L			04/11/18 18:32	1				
m-Xylene & p-Xylene	0.35	U	1.0	0.35	ug/L			04/11/18 18:32	1				
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			04/11/18 18:32	1				
Methylene Chloride	2.5	U	5.0	2.5	ug/L			04/11/18 18:32	1				
4-Methyl-2-pentanone	2.1	U	10	2.1	ug/L			04/11/18 18:32	1				
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			04/11/18 18:32	1				
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			04/11/18 18:32	1				
n-Butylbenzene	0.47	U	1.0	0.47	ug/L			04/11/18 18:32	1				
N-Propylbenzene	0.38	U	1.0	0.38	ug/L			04/11/18 18:32	1				
o-Xylene	0.23	U	1.0	0.23	ug/L			04/11/18 18:32	1				
p-Isopropyltoluene	0.48	U	1.0	0.48	ug/L			04/11/18 18:32	1				

TestAmerica Savannah

Page 18 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-02 Date Collected: 04/09/18 09:55 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-3 Matrix: Water

Method: 8260B - Volatile Or	rganic Compo	unds (GC/	MS) (Continu	ed)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
sec-Butylbenzene	0.42	U	1.0	0.42	ug/L			04/11/18 18:32	1	
Styrene	0.27	U	1.0	0.27	ug/L			04/11/18 18:32	1	
tert-Butylbenzene	0.45	U	1.0	0.45	ug/L			04/11/18 18:32	1	
Tetrachloroethene	6.0		1.0	0.74	ug/L			04/11/18 18:32	1	
Toluene	0.48	U	1.0	0.48	ug/L			04/11/18 18:32	1	
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			04/11/18 18:32	1	
trans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			04/11/18 18:32	1	
Trichloroethene	0.48	U	1.0	0.48	ug/L			04/11/18 18:32	1	
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			04/11/18 18:32	1	
Vinyl acetate	0.81	U	2.0	0.81	ug/L			04/11/18 18:32	1	
Vinyl chloride	0.50	U	1.0	0.50	ug/L			04/11/18 18:32	1	
Xylenes, Total	0.23	U	1.0	0.23	ug/L			04/11/18 18:32	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	101		80 - 120			-		04/11/18 18:32	1	
1,2-Dichloroethane-d4 (Surr)	88		73 - 131					04/11/18 18:32	1	
Dibromofluoromethane (Surr)	97		80 - 122					04/11/18 18:32	1	
4-Bromofluorobenzene (Surr)	94		80 - 120					04/11/18 18:32	1	

Method: 8270D - Semivolati	le Organic Co	ompounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzaldehyde	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:27	1
Phenol	0.80	U	9.6	0.80	ug/L		04/12/18 15:10	04/16/18 00:27	1
Bis(2-chloroethyl)ether	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:27	1
2-Chlorophenol	0.83	U	9.6	0.83	ug/L		04/12/18 15:10	04/16/18 00:27	1
2-Methylphenol	0.85	U	9.6	0.85	ug/L		04/12/18 15:10	04/16/18 00:27	1
bis (2-chloroisopropyl) ether	0.75	U	9.6	0.75	ug/L		04/12/18 15:10	04/16/18 00:27	1
Acetophenone	0.55	U	9.6	0.55	ug/L		04/12/18 15:10	04/16/18 00:27	1
3 & 4 Methylphenol	1.2	U	9.6	1.2	ug/L		04/12/18 15:10	04/16/18 00:27	1
N-Nitrosodi-n-propylamine	0.69	U	9.6	0.69	ug/L		04/12/18 15:10	04/16/18 00:27	1
Hexachloroethane	0.73	U	9.6	0.73	ug/L		04/12/18 15:10	04/16/18 00:27	1
Nitrobenzene	0.70	U	9.6	0.70	ug/L		04/12/18 15:10	04/16/18 00:27	1
Isophorone	0.86	U	9.6	0.86	ug/L		04/12/18 15:10	04/16/18 00:27	1
2-Nitrophenol	0.73	U	9.6	0.73	ug/L		04/12/18 15:10	04/16/18 00:27	1
2,4-Dimethylphenol	3.8	U	9.6	3.8	ug/L		04/12/18 15:10	04/16/18 00:27	1
Bis(2-chloroethoxy)methane	0.90	U	9.6	0.90	ug/L		04/12/18 15:10	04/16/18 00:27	1
2,4-Dichlorophenol	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:27	1
Naphthalene	0.67	U	9.6	0.67	ug/L		04/12/18 15:10	04/16/18 00:27	1
4-Chloroaniline	2.1	U	19	2.1	ug/L		04/12/18 15:10	04/16/18 00:27	1
Hexachlorobutadiene	0.59	U	9.6	0.59	ug/L		04/12/18 15:10	04/16/18 00:27	1
Caprolactam	0.76	U	9.6	0.76	ug/L		04/12/18 15:10	04/16/18 00:27	1
4-Chloro-3-methylphenol	0.96	U	9.6	0.96	ug/L		04/12/18 15:10	04/16/18 00:27	1
2-Methylnaphthalene	0.75	U	9.6	0.75	ug/L		04/12/18 15:10	04/16/18 00:27	1
Hexachlorocyclopentadiene	2.4	U	9.6	2.4	ug/L		04/12/18 15:10	04/16/18 00:27	1
2,4,6-Trichlorophenol	0.81	U	9.6	0.81	ug/L		04/12/18 15:10	04/16/18 00:27	1
2,4,5-Trichlorophenol	1.1	U	9.6	1.1	ug/L		04/12/18 15:10	04/16/18 00:27	1
1,1'-Biphenyl	0.56	U	9.6	0.56	ug/L		04/12/18 15:10	04/16/18 00:27	1
2-Chloronaphthalene	0.77	U	9.6	0.77	ug/L		04/12/18 15:10	04/16/18 00:27	1
2-Nitroaniline	1.2	U	48	1.2	ug/L		04/12/18 15:10	04/16/18 00:27	1
Dimethyl phthalate	0.95	U	9.6	0.95	ug/L		04/12/18 15:10	04/16/18 00:27	1

TestAmerica Savannah

Page 19 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-02

Sulfate

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-3 Matrix: Water

Method: 8270D - Semivolati	le Organic Co	mpounds	(GC/MS) (Co	ntinued)			
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
2,6-Dinitrotoluene	1.1	U	9.6	1.1	ug/L	04/12/18 15:10	04/16/18 00:27	1
Acenaphthylene	0.81	U	9.6	0.81	ug/L	04/12/18 15:10	04/16/18 00:27	1
3-Nitroaniline	4.8	U	48	4.8	ug/L	04/12/18 15:10	04/16/18 00:27	1
Acenaphthene	0.73	U	9.6	0.73	ug/L	04/12/18 15:10	04/16/18 00:27	1
2,4-Dinitrophenol	9.6	U	48	9.6	ug/L	04/12/18 15:10	04/16/18 00:27	1
l-Nitrophenol	1.8	U	48	1.8	ug/L	04/12/18 15:10	04/16/18 00:27	1
Dibenzofuran	0.76	U	9.6	0.76	ug/L	04/12/18 15:10	04/16/18 00:27	1
2,4-Dinitrotoluene	1.1	U	9.6	1.1	ug/L	04/12/18 15:10	04/16/18 00:27	1
Diethyl phthalate	0.84	U	9.6	0.84	ug/L	04/12/18 15:10	04/16/18 00:27	1
Fluorene	0.92	U	9.6	0.92	ug/L	04/12/18 15:10	04/16/18 00:27	1
-Chlorophenyl phenyl ether	0.80	U	9.6	0.80	ug/L	04/12/18 15:10	04/16/18 00:27	1
l-Nitroaniline	4.8	U	48	4.8	ug/L	04/12/18 15:10	04/16/18 00:27	1
1,6-Dinitro-2-methylphenol	9.6	U	48	9.6	ug/L	04/12/18 15:10	04/16/18 00:27	1
V-Nitrosodiphenylamine	0.88	U	9.6	0.88	ug/L	04/12/18 15:10	04/16/18 00:27	1
l-Bromophenyl phenyl ether	0.74	U	9.6	0.74	ug/L	04/12/18 15:10	04/16/18 00:27	1
lexachlorobenzene	0.76	U	9.6	0.76	ug/L	04/12/18 15:10	04/16/18 00:27	1
Atrazine	1.1	U	9.6	1.1	ug/L	04/12/18 15:10	04/16/18 00:27	1
Pentachlorophenol	1.9	U	48	1.9	ug/L	04/12/18 15:10	04/16/18 00:27	1
henanthrene	0.74	U	9.6	0.74	ug/L	04/12/18 15:10	04/16/18 00:27	1
nthracene	0.66	U	9.6	0.66	ug/L	04/12/18 15:10	04/16/18 00:27	1
Carbazole	0.68	U	9.6	0.68	ug/L	04/12/18 15:10	04/16/18 00:27	1
Di-n-butyl phthalate	0.80	U	9.6	0.80	ug/L	04/12/18 15:10	04/16/18 00:27	1
luoranthene	0.71	U	9.6	0.71	ug/L	04/12/18 15:10	04/16/18 00:27	1
Pyrene	0.60	U	9.6	0.60	ug/L	04/12/18 15:10	04/16/18 00:27	1
Butyl benzyl phthalate	1.1	U	9.6	1.1	ug/L	04/12/18 15:10	04/16/18 00:27	1
3,3'-Dichlorobenzidine	29	U	57	29	ug/L	04/12/18 15:10	04/16/18 00:27	1
Benzo[a]anthracene	0.53	U	9.6	0.53	ug/L	04/12/18 15:10	04/16/18 00:27	1
Chrysene	0.49	U	9.6	0.49	ug/L	04/12/18 15:10	04/16/18 00:27	1
Bis(2-ethylhexyl) phthalate	1.5	U	9.6	1.5	ug/L	04/12/18 15:10	04/16/18 00:27	1
Di-n-octyl phthalate	1.3	U	9.6	1.3	ug/L	04/12/18 15:10	04/16/18 00:27	1
Benzo[b]fluoranthene	2.5	U	9.6	2.5	ug/L	04/12/18 15:10	04/16/18 00:27	1
Benzo[k]fluoranthene	1.1	U	9.6	1.1	ug/L	04/12/18 15:10	04/16/18 00:27	1
Benzo[a]pyrene	0.68	U	9.6	0.68	ug/L	04/12/18 15:10	04/16/18 00:27	1
ndeno[1,2,3-cd]pyrene	0.96	U	9.6	0.96	ug/L	04/12/18 15:10	04/16/18 00:27	1
Dibenz(a,h)anthracene	0.96	U	9.6	0.96	ug/L	04/12/18 15:10	04/16/18 00:27	1
Benzo[g,h,i]perylene	0.83	U	9.6	0.83	ug/L	04/12/18 15:10	04/16/18 00:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	79		32 - 118			04/12/18 15:10	04/16/18 00:27	1
-Fluorobiphenyl (Surr)	78		32 - 113			04/12/18 15:10	04/16/18 00:27	1
erphenyl-d14 (Surr)	49		10 - 126			04/12/18 15:10	04/16/18 00:27	1
Phenol-d5 (Surr)	68		27 - 110			04/12/18 15:10	04/16/18 00:27	1
P-Fluorophenol (Surr)	61		26 - 109			04/12/18 15:10	04/16/18 00:27	1
2,4,6-Tribromophenol (Surr)	91		39 - 124			04/12/18 15:10	04/16/18 00:27	1
Method: 9056A - Anions, Ior	n Chromatogr	aphy			11 14	D. Denne i	August 1	DUE
Analyte	Kesult	Qualifier	KL		Unit	Prepared	Analyzed	
			0.50		11111111			1

TestAmerica Savannah

04/12/18 21:17

Page 20 of 73

5.0

160

2.0 mg/L

4/20/2018

5

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-02 Date Collected: 04/09/18 09:55 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-3 Matrix: Water

ate Received: 04/10/18 08:00									
Method: 2340B-2011 - Total Hard	ness (as Result	CaCO3) by Qualifier	calculation RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	170		3.3	3.3	mg/L			04/20/18 12:15	1
M-41									
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2700		200	24	ug/L		04/14/18 16:02	04/18/18 19:06	1
Antimony	5.3	U	20	5.3	ug/L		04/14/18 16:02	04/18/18 19:06	1
Arsenic	6.2	U	20	6.2	ug/L		04/14/18 16:02	04/18/18 19:06	1
Barium	79		10	1.7	ug/L		04/14/18 16:02	04/18/18 19:06	1
Beryllium	0.17	J	4.0	0.10	ug/L		04/14/18 16:02	04/18/18 19:06	1
Cadmium	1.0	U	5.0	1.0	ug/L		04/14/18 16:02	04/18/18 19:06	1
Calcium	35000		500	25	ug/L		04/14/18 16:02	04/18/18 19:06	1
Chromium	8.1	J	10	1.6	ug/L		04/14/18 16:02	04/18/18 19:06	1
Cobalt	35		10	1.0	ug/L		04/14/18 16:02	04/18/18 19:06	1
Copper	9.7	J	20	1.8	ug/L		04/14/18 16:02	04/18/18 19:06	1
ron	2400	в	50	17	ug/L		04/14/18 16:02	04/18/18 19:06	1
Lead	3.9	U	10	3.9	ug/L		04/14/18 16:02	04/18/18 19:06	1
Magnesium	20000		500	33	ug/L		04/14/18 16:02	04/18/18 19:06	1
Manganese	2900		10	1.0	ug/L		04/14/18 16:02	04/18/18 19:06	1
Nickel	4.1	J	40	2.1	ug/L		04/14/18 16:02	04/18/18 19:06	1
Potassium	6400		1000	17	ug/L		04/14/18 16:02	04/18/18 19:06	1
Selenium	9.9	U	20	9.9	ug/L		04/14/18 16:02	04/18/18 19:06	1
Silver	0.60	U	10	0.60	ug/L		04/14/18 16:02	04/18/18 19:06	1
Sodium	27000		1000	480	ug/L		04/14/18 16:02	04/18/18 19:06	1
Thallium	6.0	U	25	6.0	ug/L		04/14/18 16:02	04/18/18 19:06	1
/anadium	7.7	J	10	1.0	ug/L		04/14/18 16:02	04/18/18 19:06	1
Zinc	11	J	20	7.0	ug/L		04/14/18 16:02	04/18/18 19:06	1
Method: 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.080	U	0.20	0.080	ug/L		04/11/18 09:42	04/13/18 08:33	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	21		5.0	5.0	mg/L			04/10/18 18:15	1
Bicarbonate Alkalinity as CaCO3	21		5.0	5.0	mg/L			04/10/18 18:15	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			04/10/18 18:15	1
Hydroxide Alkalinity	5.0	U	5.0	5.0	mg/L			04/10/18 18:15	1
Carbon Dioxide, Free	25		5.0	5.0	mg/L			04/10/18 18:15	1
Phenolphthalein Alkalinity	5.0	U	5.0	5.0	mg/L			04/10/18 18:15	1
Bicarbonate ion as HCO3	25		6.1	6.1	mg/L			04/10/18 18:15	1
Total Dissolved Solids	320		10	10	mg/L			04/11/18 12:30	1

TestAmerica Savannah

Page 21 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: Trip Blank Date Collected: 04/09/18 00:00 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-4 Matrix: Water

Client Sample ID: Trip Blank							Lab Sample ID: 680-150889-4					
ate Collected: 04/09/18 00:00						Matrix: Water						
ate Received: 04/10/18 08:00	0											
Method: 8260B - Volatile Org	ganic Compo	unds (GC/MS)	ы	MDI	Unit		Broporod	Apolyzad	Dil Eco			
1 1 1 2 Totrachloroothana			1.0	0.27			Frepareu	04/11/19 14:25	DIFAC			
1,1,1,1,2-1 etrachiol dethane	0.37	0	1.0	0.37	ug/L			04/11/10 14.25	1			
1 1 2 2-Tetrachloroethane	0.57	0	1.0	0.57	ug/L			04/11/18 14:25	1			
1 1 2 Trichloroethane	0.02	1	1.0	0.02	ug/L			04/11/18 14:25				
1 1 Dichloroethane	0.33	0	1.0	0.33	ug/L			04/11/18 14:25	1			
1 1-Dichloroethene	0.30	0	1.0	0.30	ug/L ug/l			04/11/18 14:25	1			
1 1-Dichloropropene	0.34		1.0	0.34	ug/L			04/11/18 14:25				
1 2 3-Trichlorobenzene	2.54	0	5.0	25	ug/L			04/11/18 14:25	1			
1 2 4-Trimethylbenzene	0.47	U U	1.0	0.47	ug/L			04/11/18 14:25	1			
1 2-Dibromo-3-Chloropropane	11		5.0	11	ug/L			04/11/18 14:25				
1 2-Dichloroethane	0.50	1	1.0	0.50	ug/L			04/11/18 14:25	1			
1.2-Dichloroethene Total	0.37	U	2.0	0.37	ua/L			04/11/18 14:25	1			
1.2-Dichloropropane	0.67	Ū	1.0	0.67	ua/L			04/11/18 14:25				
1.3.5-Trimethylbenzene	0.31	- U	1.0	0.31	ua/L			04/11/18 14:25	1			
1.3-Dichloropropane	0.34	U U	1.0	0.34	ua/L			04/11/18 14:25	1			
2.2-Dichloropropane	0.37	- U	1.0	0.37	ua/L			04/11/18 14:25				
2-Chlorotoluene	0.27	- U	1.0	0.27	ua/L			04/11/18 14:25	1			
2-Hexanone	2.0	U U	10	2.0	ug/L			04/11/18 14:25	. 1			
4-Chlorotoluene	0.45	ŭ	1.0	0.45	ug/L			04/11/18 14:25				
Acetone	7.0	Ű	10	7.0	ug/L			04/11/18 14:25	1			
Benzene	0.43	U	1.0	0.43	ug/L			04/11/18 14:25	. 1			
Bromobenzene	0.50	ŭ	1.0	0.50	ug/L			04/11/18 14:25				
Bromochloromethane	0.45	Ű	1.0	0.45	ug/L			04/11/18 14:25	1			
Bromoform	0.43	u U	1.0	0.43	ua/L			04/11/18 14:25	1			
Bromodichloromethane	0.44	U	1.0	0.44	ua/L			04/11/18 14:25				
Bromomethane	2.5	U	5.0	2.5	ua/L			04/11/18 14:25	1			
Carbon disulfide	1.0	U	2.0	1.0	ug/L			04/11/18 14:25	1			
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			04/11/18 14:25	1			
Chlorobenzene	0.26	U	1.0	0.26	ug/L			04/11/18 14:25	1			
Chloroethane	2.5	U	5.0	2.5	ug/L			04/11/18 14:25	1			
Chloroform	0.50	U	1.0	0.50	ug/L			04/11/18 14:25	1			
Chloromethane	0.40	U	1.0	0.40	ug/L			04/11/18 14:25	1			
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			04/11/18 14:25	1			
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			04/11/18 14:25	1			
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			04/11/18 14:25	1			
Dibromomethane	0.35	U	1.0	0.35	ug/L			04/11/18 14:25	1			
Dichlorodifluoromethane	0.60	U	1.0	0.60	ug/L			04/11/18 14:25	1			
Ethylbenzene	0.33	U	1.0	0.33	ug/L			04/11/18 14:25	1			
Isopropylbenzene	0.35	U	1.0	0.35	ug/L			04/11/18 14:25	1			
m-Xylene & p-Xylene	0.35	U	1.0	0.35	ug/L			04/11/18 14:25	1			
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			04/11/18 14:25	1			
Methylene Chloride	2.5	U	5.0	2.5	ug/L			04/11/18 14:25	1			
4-Methyl-2-pentanone	2.1	U	10	2.1	ug/L			04/11/18 14:25	1			
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			04/11/18 14:25	1			
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			04/11/18 14:25	1			
n-Butylbenzene	0.47	U	1.0	0.47	ug/L			04/11/18 14:25	1			
N-Propylbenzene	0.38	U	1.0	0.38	ug/L			04/11/18 14:25	1			
o-Xylene	0.23	U	1.0	0.23	ug/L			04/11/18 14:25	1			
p-Isopropyltoluene	0.48	U	1.0	0.48	ug/L			04/11/18 14:25	1			

TestAmerica Savannah

Page 22 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: Trip Blank Date Collected: 04/09/18 00:00 Date Received: 04/10/18 08:00

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-4 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
sec-Butylbenzene	0.42	U	1.0	0.42	ug/L			04/11/18 14:25	1	
Styrene	0.27	U	1.0	0.27	ug/L			04/11/18 14:25	1	
tert-Butylbenzene	0.45	U	1.0	0.45	ug/L			04/11/18 14:25	1	
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			04/11/18 14:25	1	
Toluene	0.48	U	1.0	0.48	ug/L			04/11/18 14:25	1	
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			04/11/18 14:25	1	
trans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			04/11/18 14:25	1	
Trichloroethene	0.48	U	1.0	0.48	ug/L			04/11/18 14:25	1	
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			04/11/18 14:25	1	
Vinyl acetate	0.81	U	2.0	0.81	ug/L			04/11/18 14:25	1	
Vinyl chloride	0.50	U	1.0	0.50	ug/L			04/11/18 14:25	1	
Xylenes, Total	0.23	U	1.0	0.23	ug/L			04/11/18 14:25	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	102		80 - 120					04/11/18 14:25	1	
1,2-Dichloroethane-d4 (Surr)	86		73 - 131					04/11/18 14:25	1	
Dibromofluoromethane (Surr)	96		80 - 122					04/11/18 14:25	1	
4-Bromofluorobenzene (Surr)	96		80 - 120					04/11/18 14:25	1	

TestAmerica Savannah

Page 23 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank Prep Type: Total/NA

TestAmerica Job ID: 680-150889-1

Lab Sample ID: LB 680-519459)/1-A						Client Sam	ple ID: Method	Blank	
Matrix: Water								Prep Type: To	otal/NA	
Analysis Batch: 519398										
-	LB	LB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	C
2-Chlorotoluene	5.4	U	20	5.4	ug/L			04/11/18 15:49	20	0
4-Chlorotoluene	9.0	U	20	9.0	ug/L			04/11/18 15:49	20	
Acetone	140	U	200	140	ug/L			04/11/18 15:49	20	
1,2-Dibromo-3-Chloropropane	22	U	100	22	ug/L			04/11/18 15:49	20	
Benzene	8.6	U	20	8.6	ug/L			04/11/18 15:49	20	
Bromobenzene	10	U	20	10	ug/L			04/11/18 15:49	20	
Bromochloromethane	9.0	U	20	9.0	ug/L			04/11/18 15:49	20	
Bromoform	8.6	U	20	8.6	ug/L			04/11/18 15:49	20	
1,1-Dichloroethane	7.6	U	20	7.6	ug/L			04/11/18 15:49	20	
Bromodichloromethane	8.8	U	20	8.8	ug/L			04/11/18 15:49	20	
1,2-Dichloroethane	10	U	20	10	ug/L			04/11/18 15:49	20	
Bromomethane	50	U	100	50	ug/L			04/11/18 15:49	20	
Carbon disulfide	20	U	40	20	ug/L			04/11/18 15:49	20	
Carbon tetrachloride	6.6	U	20	6.6	ug/L			04/11/18 15:49	20	
1,2-Dichloroethene, Total	7.4	U	40	7.4	ug/L			04/11/18 15:49	20	
Chlorobenzene	5.2	U	20	5.2	ug/L			04/11/18 15:49	20	
1,1-Dichloroethene	7.2	U	20	7.2	ug/L			04/11/18 15:49	20	
Chloroethane	50	U	100	50	ug/L			04/11/18 15:49	20	
1,2-Dichloropropane	13	U	20	13	ug/L			04/11/18 15:49	20	
Chloroform	10	U	20	10	ug/L			04/11/18 15:49	20	
1,3-Dichloropropane	6.8	U	20	6.8	ug/L			04/11/18 15:49	20	
Chloromethane	8.0	U	20	8.0	ug/L			04/11/18 15:49	20	
2,2-Dichloropropane	7.4	U	20	7.4	ug/L			04/11/18 15:49	20	
cis-1,2-Dichloroethene	8.2	U	20	8.2	ug/L			04/11/18 15:49	20	
1,1-Dichloropropene	6.8	U	20	6.8	ug/L			04/11/18 15:49	20	
cis-1,3-Dichloropropene	8.0	U	20	8.0	ug/L			04/11/18 15:49	20	
Dibromochloromethane	6.4	U	20	6.4	ug/L			04/11/18 15:49	20	
Dibromomethane	7.0	U	20	7.0	ug/L			04/11/18 15:49	20	
Dichlorodifluoromethane	12	U	20	12	ua/L			04/11/18 15:49	20	
2-Hexanone	40	U	200	40	ug/L			04/11/18 15:49	20	
Ethylbenzene	6.6	U	20	6.6	ug/L			04/11/18 15:49	20	
Isopropylbenzene	7.0	U	20	7.0	ua/L			04/11/18 15:49	20	
Methylene Chloride	50	U	100	50	ug/L			04/11/18 15:49	20	
4-Methyl-2-pentanone	42	U	200	42	ug/L			04/11/18 15:49	20	
Methyl tert-butyl ether	6.0	U	200	6.0	ug/L			04/11/18 15:49	20	
2-Butanone (MEK)	68	U	200	68	ug/L			04/11/18 15:49	20	
1,2-Dibromoethane	8.8	U	20	8.8	ug/L			04/11/18 15:49	20	
1,1,1,2-Tetrachloroethane	7.4	U	20	7.4	ua/L			04/11/18 15:49	20	
n-Butylbenzene	9.4	U	20	9.4	ua/L			04/11/18 15:49	20	
1,1,2,2-Tetrachloroethane	12	U	20	12	ug/L			04/11/18 15:49	20	
N-Propylbenzene	7.6	U	20	7.6	ug/L			04/11/18 15:49	20	
p-Isopropyltoluene	9.6	U	20	9.6	ug/L			04/11/18 15:49	20	
1,2,3-Trichlorobenzene	50	U	100	50	ug/L			04/11/18 15:49	20	
sec-Butylbenzene	8.4	U	20	8.4	ug/L			04/11/18 15:49	20	
1,1,1-Trichloroethane	7.4	U	20	7.4	ug/L			04/11/18 15:49	20	
Styrene	5.4	U	20	5.4	ug/L			04/11/18 15:49	20	
1,1,2-Trichloroethane	6.6	U	20	6.6	ug/L			04/11/18 15:49	20	
tert-Butylbenzene	9.0	U	20	9.0	ug/L			04/11/18 15:49	20	

TestAmerica Savannah

Page 24 of 73

lient: Georgia State Universit roiect/Site: Monitoring Well Ir	y Istallation	QC S	Sample Ro	esults	;	Т	estAmerica	Job ID: 680-15	0889-1		
lethod: 8260B - Volatile	e Organic C	ompoun	ds (GC/MS) (Cont	inued)						
Lab Sample ID: LB 680-519 Matrix: Water	459/1 - A				,	(Client Sample ID: Method Bla Prep Type: Total/I				
Analysis Batch: 519398											
-	LB	LB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
etrachloroethene	15	U	20	15	ug/L			04/11/18 15:49	20		
oluene	9.6	U	20	9.6	ug/L			04/11/18 15:49	20		
,2,4-Trimethylbenzene	9.4	U	20	9.4	ug/L			04/11/18 15:49	20		
ans-1,2-Dichloroethene	7.4	U	20	7.4	ug/L			04/11/18 15:49	20		
,3,5-Trimethylbenzene	6.2	U	20	6.2	ug/L			04/11/18 15:49	20		
ans-1,3-Dichloropropene	8.4	U	20	8.4	ug/L			04/11/18 15:49	20		
richloroethene	9.6	U	20	9.6	ug/L			04/11/18 15:49	20		
richlorofluoromethane	8.4	U	20	8.4	ug/L			04/11/18 15:49	20		
≻Xylene	4.6	U	20	4.6	ug/L			04/11/18 15:49	20		
/inyl acetate	16	U	40	16	ug/L			04/11/18 15:49	20		
n-Xylene & p-Xylene	7.0	U	20	7.0	ug/L			04/11/18 15:49	20		
/inyl chloride	10	U	20	10	ug/L			04/11/18 15:49	20		
vlenes, Total	4.6	U	20	4.6	ug/L			04/11/18 15:49	20		
,									20		
	LB	LB					_				
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac		
oluene-d8 (Surr)	104		80 - 120					04/11/18 15:49	20		
,2-Dichloroethane-d4 (Surr)	97		/3 - 131					04/11/18 15:49	20		
Subromotiuoromethane (Surr)	98		80 - 122					04/11/18 15:49	20		
-Bromofluorobenzene (Surr)	111		80 - 120					04/11/18 15:49	20		
Lab Sample ID: MB 680-519 Matrix: Water	398/9					(Client Sam	Die ID: Method	Blank		
Analysis Batch: 510302								Tiep Type. It	anna		
analysis Baton, 515550	MB	МВ									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
-Chlorotoluene	0.27	U	1.0	0.27	ug/L		• -	04/11/18 15:04	1		
					-						
-Chlorotoluene	0.45	U	1.0	0.45	ug/L			04/11/18 15:04	1		
-Chlorotoluene Acetone	0.45 7.0	U U	1.0 10	0.45 7.0	ug/L ug/L			04/11/18 15:04 04/11/18 15:04	1		
l-Chlorotoluene Acetone .2-Dibromo-3-Chloropropane	0.45 7.0 1 1	U U U	1.0 10 5.0	0.45 7.0 1 1	ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1		
-Chlorotoluene ketone ,2-Dibromo-3-Chloropropane lenzene	0.45 7.0 1.1 0.43	U U U U	1.0 10 5.0 1.0	0.45 7.0 1.1 0.43	ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1		
-Chlorotoluene xcetone ,2-Dibromo-3-Chloropropane Jenzene kromohenzene	0.45 7.0 1.1 0.43 0.50	U U U U II	1.0 10 5.0 1.0 1.0	0.45 7.0 1.1 0.43 0.50	ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1		
-Chlorotoluene ccetone ,2-Dibromo-3-Chloropropane ienzene irromochloromethane	0.45 7.0 1.1 0.43 0.50	U U U U U	1.0 10 5.0 1.0 1.0	0.45 7.0 1.1 0.43 0.50	ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1		
-Chlorotoluene xcetone ,2-Dibromo-3-Chloropropane kenzene kromobenzene kromochloromethane kromotom	0.45 7.0 1.1 0.43 0.50 0.45 0.45		1.0 10 5.0 1.0 1.0 1.0	0.45 7.0 1.1 0.43 0.50 0.45 0.43	ug/L ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1 1 1		
-Chlorotoluene xcetone ,2-Dibromo-3-Chloropropane lenzene kromobenzene bromochloromethane kromoform 1-Dichloroothane	0.45 7.0 1.1 0.43 0.50 0.45 0.45 0.43		1.0 10 5.0 1.0 1.0 1.0 1.0	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38	ug/L ug/L ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1 1 1		
Chlorotoluene xcetone ,2-Dibromo-3-Chloropropane enzene kromobenzene kromochloromethane eromochloromethane itomochloroethane	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38		1.0 10 5.0 1.0 1.0 1.0 1.0 1.0	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38	ug/L ug/L ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1 1 1 1 1		
L-Chlorotoluene Acetone ,2-Dibromo-3-Chloropropane Benzene Bromobenzene Bromochloromethane Bromoform ,1-Dichloroethane Bromodichloromethane	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38 0.44		1.0 10 5.0 1.0 1.0 1.0 1.0 1.0 1.0	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38 0.44	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1 1 1 1 1		
A-Chlorotoluene Acetone 1,2-Dibromo-3-Chloropropane Benzene Bromobenzene Bromochloromethane Bromoform ,1-Dichloroethane Rromodichloromethane ,2-Dichloroethane	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38 0.44 0.50		1.0 10 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38 0.44 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1 1 1 1 1		
4-Chlorotoluene Acetone 1,2-Dibromo-3-Chloropropane Banzene Bromobenzene Bromoform 1,1-Dichloroethane Bromodichloroethane -,2-Dichloroethane Bromomethane	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38 0.44 0.50 2.5		1.0 10 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38 0.44 0.50 2.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04 04/11/18 15:04	1 1 1 1 1 1 1 1 1 1 1 1 1		
4-Chlorotoluene Acetone 1,2-Dibromo-3-Chloropropane Banzene Bromobenzene Bromoform 1,1-Dichloroethane Bromodichloroethane 1,2-Dichloroethane Bromodichloroethane Bromomethane Darbon disulfide	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.38 0.44 0.50 2.5 1.0		1.0 10 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 2.0	0.45 7.0 1.1 0.43 0.50 0.45 0.43 0.43 0.44 0.50 2.5 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			04/11/18 15:04 04/11/18 15:04	1 1 1 1 1 1 1 1 1 1 1 1 1 1		

0.37 ug/L

0.26 ug/L

0.36 ug/L

2.5 ug/L

0.67 ug/L

0.50 ug/L

0.34 ug/L

0.40 ug/L

0.37 ug/L

2.0

1.0

1.0

5.0

1.0

1.0

1.0

1.0

1.0

Page 25 of 73

04/11/18 15:04

04/11/18 15:04

04/11/18 15:04

04/11/18 15:04

04/11/18 15:04

04/11/18 15:04

04/11/18 15:04

04/11/18 15:04

04/11/18 15:04

TestAmerica Savannah

1

1

1

1

1

1

1

1

1

4/20/2018

0.37 U

0.26 U

0.36 U

2.5 U

0.67 U

0.50 U

0.34 U

0.40 U

0.37 U

1,2-Dichloroethene, Total

Chlorobenzene

Chloroethane

Chloroform

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Chloromethane

lient: Georgia State University roject/Site: Monitoring Well Installa	ation	QC S	Sample Re	esults	5	Τe	estAmerica	Job ID: 680-15	50889-1
lethod: 8260B - Volatile Or	ganic C	ompoun	ds (GC/MS)) (Cont	tinued)	1			
Lab Sample ID: MB 680-519398/9 Matrix: Water Analysis Batch: 519398	9					C	Client Sam	ple ID: Methoo Prep Type: To	d Blank otal/NA
	MB	MB				_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	0.41	U	1.0	0.41	ug/L			04/11/18 15:04	1
, I-Dichloropropene	0.34	0	1.0	0.34	ug/L			04/11/10 10:04	1
	0.40		1.0	0.40	ug/L			04/11/10 15:04	1
ibionochioromethane	0.32	0	1.0	0.32	ug/L			04/11/18 15:04	۲ ۲
ichlorodifluoromether a	0.35	0	1.0	0.35	ug/L			04/11/10 10:04	1
Hevenone	0.00		1.0	0.00	ug/L			04/11/10 10.04	1
n Ichanolle	2.0	U 11	10	2.0	ug/L			04/11/10 10:04	·····
	0.33	0	1.0	0.33	ug/L			04/11/10 10:04	1
opropymenzene latbulana Chlarida	0.35	0	1.0	0.35	ug/L			04/11/18 15:04	1
Methyl 2 pentanone	∠.⊃ 2.4	U 11	0.0	2.2	ug/L			04/11/10 10.04	·····
	2.1		10	2.1	ug/L			04/11/10 13:04	1
Rutanone (MEK)	0.30		10	0.30	ug/L			04/11/10 10:04	1
	0.4		10	0.44	ug/L			04/11/10 15:04	
	0.44	0	1.0	0.44	ug/L			04/11/10 15:04	1
	0.37	0	1.0	0.37	ug/L			04/11/10 15:04	1
A 2 2 Tetrachlangethang	0.47	0	1.0	0.47	ug/L			04/11/10 15.04	·····
	0.62	0	1.0	0.62	ug/L			04/11/10 15:04	1
Propyidenzene	0.38	U	1.0	0.38	ug/L			04/11/16 15:04	1
	0.48	U	1.0	0.48	ug/L			04/11/18 15:04	
2,3-Trichlorobenzene	2.5	0	5.0	2.5	ug/L			04/11/18 15:04	1
	0.42	0	1.0	0.42	ug/L			04/11/18 15:04	1
1,1-1 richloroethane	0.37	U	1.0	0.37	ug/L			04/11/18 15:04	
tyrene	0.27	U	1.0	0.27	ug/L			04/11/18 15:04	1
1,2-Trichloroethane	0.33	0	1.0	0.33	ug/L			04/11/18 15:04	1
rt-Butylbenzene	0.45	U	1.0	0.45	ug/L			04/11/18 15:04	1
etrachloroethene	0.74	U	1.0	0.74	ug/L			04/11/18 15:04	1
oluene	0.48	0	1.0	0.48	ug/L			04/11/18 15:04	1
,2,4- I rimethylbenzene	0.47	U	1.0	0.47	ug/L			04/11/18 15:04	1
ans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			04/11/18 15:04	1
3,5- I rimethylbenzene	0.31	U	1.0	0.31	ug/L			04/11/18 15:04	1
ans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			04/11/18 15:04	1
richloroethene	0.48	U	1.0	0.48	ug/L			04/11/18 15:04	1
richlorofluoromethane	0.42	U	1.0	0.42	ug/L			04/11/18 15:04	1
-Xylene	0.23	U	1.0	0.23	ug/L			04/11/18 15:04	1
inyl acetate	0.81	U	2.0	0.81	ug/L			04/11/18 15:04	1
-Xylene & p-Xylene	0.35	U	1.0	0.35	ug/L			04/11/18 15:04	1
inyl chloride	0.50	U	1.0	0.50	ug/L			04/11/18 15:04	1
ylenes, Total	0.23	U	1.0	0.23	ug/L			04/11/18 15:04	1
	МВ	MB							
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
oluene-d8 (Surr)	105		80 - 120			-		04/11/18 15:04	1
2-Dichloroethane-d4 (Surr)	95		73 - 131					04/11/18 15:04	1
ibromofluoromethane (Surr)	99		80 - 122					04/11/18 15:04	1
-Bromofluorobenzene (Surr)	111		80 - 120					04/11/18 15:04	1

mole Result 00 84

TestAmerica Savannah

Page 26 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

roject/Site: Monitoring Well Installation							
lethod: 8260B - Volatile Organic Co	mpounds (GC	:/MS) (C	ontinue	ed)			
Lab Sample ID: LCS 680-519398/4 Matrix: Water				Clie	ent Sample ID	: Lab Control Sample Prep Type: Total/NA	4
Analysis Batch: 519398							
	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	6
2-Chlorotoluene	50.0	49.4		ug/L	99	80 - 120	
1-Chlorotoluene	50.0	52.7		ug/L	105	80 - 120	
Acetone	250	197		ug/L	79	68 - 132	
,2-Dibromo-3-Chloropropane	50.0	47.4		ug/L	95	74 - 120	
Benzene	50.0	50.6		ug/L	101	80 - 120	
Bromobenzene	50.0	48.9		ug/L	98	71 - 124	
Bromochloromethane	50.0	48.3		ug/L	97	80-120	
Bromoform	50.0	51.5		ug/L	103	52-122	
,1-Dichloroethane	50.0	46.9		ug/L	94	80-120	
Bromodichloromethane	50.0	52.0		ug/L	104	80-120	
,2-Dichloroethane	50.0	51.6		ug/L	103	72-128	
Bromomethane	50.0	50.1		ug/L	100	43 - 146	
Carbon disulfide	50.0	44.3		ug/L	89	77 - 129	
Carbon tetrachloride	50.0	51.0		ug/L	102	67 - 125	
,2-Dichloroethene, Total	100	97.2		ug/L	97	80 - 120	
Chlorobenzene	50.0	49.4		ug/L	99	80 - 120	
,1-Dichloroethene	50.0	46.9		ug/L	94	80 - 120	
Chloroethane	50.0	46.4		ug/L	93	48 - 145	
,2-Dichloropropane	50.0	49.6		ug/L	99	80 - 120	
Chloroform	50.0	49.5		ug/L	99	80 - 120	
,3-Dichloropropane	50.0	52.4		ug/L	105	80 - 120	
Chloromethane	50.0	43.9		ug/L	88	76 - 149	
2,2-Dichloropropane	50.0	51.8		ug/L	104	80 - 135	
sis-1,2-Dichloroethene	50.0	49.6		ug/L	99	80 - 120	
I,1-Dichloropropene	50.0	47.4		ug/L	95	80 - 120	
sis-1,3-Dichloropropene	50.0	51.7		ug/L	103	80 - 129	
Dibromochloromethane	50.0	56.4		ug/L	113	68 - 120	
Dibromomethane	50.0	49.4		ug/L	99	80 - 120	
Dichlorodifluoromethane	50.0	46.5		ug/L	93	70 - 137	
2-Hexanone	250	253		ug/L	101	80 - 131	
Ethylbenzene	50.0	50.7		ua/L	101	80 - 120	
sopropylbenzene	50.0	52.1		ua/L	104	79 - 126	
/lethvlene Chloride	50.0	44.7		ua/L	89	80 - 120	
-Methyl-2-pentanone	250	246		ua/L	98	80 - 134	
Aethyl tert-hutyl ether	50.0	47.0		ua/l	94	80 - 122	
P-Butanone (MEK)	250	237		ua/l	95	79-125	
2-Dibromoethane	50.0	52.9		ug/L	106	75-126	
1.1.2-Tetrachloroethane	50.0	50.7		ug/L	101	73 124	
	50.0	58.0		ug/L	116	75 132	
1.2.2.Tetrachloroethane	50.0	46.6		ug/L	93	76 126	
	50.0	-5.0 19 1		ua/l	90	80_125	
sopropyltoluene	50.0	 55 G		ug/L	111	80 120	
2.3. Trichlorobenzene	50.0	JJ.0 55.2		ug/L	111 848	70 125	
	50.0	50.5 50 E		ug/L	105	80 120	
	50.0	J2.5		ug/L	105	80 120	
	0.00	49.1		ug/L	98	00-120	
	50.0	51./		ug/L	103	ou - 120	
,1,2- I fichloroethane	50.0	53.0		ug/L	106	80-120	
ert-Butvipenzene	50.0	51.0		ua/L	102	80-120	

TestAmerica Savannah

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-519398/4 Matrix: Water				Clie	nt Sample II	: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 519398	Spilles	1.08	1.08			W Baa
Analyte	Added	Result	Oualifiar	Unit	D % Rec	% Rec.
Tetrachloroethene		53.0	auanner		<u>106</u>	71-123
Toluene	50.0	53.4		ug/L	107	80 - 120
1.2.4-Trimethylbenzene	50.0	51.6		ua/L	103	80-120
trans-1,2-Dichloroethene	50.0	47.6		ug/L	95	80 - 120
1,3,5-Trimethylbenzene	50.0	53.2		ug/L	106	80 - 120
trans-1,3-Dichloropropene	50.0	55.6		ug/L	111	80 - 128
Trichloroethene	50.0	48.7		ug/L	97	80 - 120
Trichlorofluoromethane	50.0	50.3		ug/L	101	58 - 127
o-Xylene	50.0	51.8		ug/L	104	80 - 120
Vinyl acetate	100	99.5		ug/L	100	74 - 156
m-Xylene & p-Xylene	50.0	51.7		ug/L	103	80 - 120
Vinyl chloride	50.0	46.5		ug/L	93	80 - 129
Xylenes, Total	100	104		ug/L	104	80_120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	91		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		73 - 131
Dibromofluoromethane (Surr)	99		80 - 122
4-Bromofluorobenzene (Surr)	106		80 - 120

Lab Sample ID: LCSD 680-51939 Matrix: Water Analysis Batch: 519398

Analyte

2-Chlorotoluene

8/5			C	Client Sa	ample	ID: Lat	Control S Prep Typ	Sample be: Tot	e Dup al/NA
	Spike	LCSD	LCSD				%Rec.		RPD
	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	50.0	48.6		ug/L		97	80-120	1	20
	50.0	51.8		ug/L		104	80-120	2	20
	250	194		ug/L		77	68-132	2	30

4-Chlorotoluene	50.0	51.8	ug/L	104	80-120	2	20
Acetone	250	194	ug/L	77	68-132	2	30
1,2-Dibromo-3-Chloropropane	50.0	47.1	ug/L	94	74 - 120	1	20
Benzene	50.0	47.4	ug/L	95	80-120	7	20
Bromobenzene	50.0	47.5	ug/L	95	71 - 124	3	20
Bromochloromethane	50.0	49.2	ug/L	98	80-120	2	20
Bromoform	50.0	47.1	ug/L	94	52-122	9	20
1,1-Dichloroethane	50.0	52.4	ug/L	105	80-120	11	20
Bromodichloromethane	50.0	50.4	ug/L	101	80 - 120	3	20
1,2-Dichloroethane	50.0	46.9	ug/L	94	72-128	10	50
Bromomethane	50.0	49.8	ug/L	100	43-146	1	20
Carbon disulfide	50.0	47.8	ug/L	96	77 - 129	8	20
Carbon tetrachloride	50.0	52.8	ug/L	106	67 - 125	4	20
1,2-Dichloroethene, Total	100	106	ug/L	106	80-120	9	20
Chlorobenzene	50.0	49.9	ug/L	100	80 - 120	1	20
1,1-Dichloroethene	50.0	47.8	ug/L	96	80-120	2	20
Chloroethane	50.0	46.2	ug/L	92	48-145	0	20
1,2-Dichloropropane	50.0	47.4	ug/L	95	80 - 120	5	20
Chloroform	50.0	51.0	ug/L	102	80-120	3	20
1,3-Dichloropropane	50.0	50.8	ug/L	102	80-120	3	20
Chloromethane	50.0	41.4	ug/L	83	76-149	6	30
2,2-Dichloropropane	50.0	54.5	ug/L	109	80-135	5	20

TestAmerica Savannah

Page 28 of 73

4/20/2018

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

1001. 0200D - 0010	ine organi	c oompe			onuna	cu)					
Lab Sample ID: LCSD 68 Matrix: Water	0-519398/5				C	Client Sa	ample	ID: Lat	Control S Prep Typ	Sample be: Tot	e Dup al/NA
Analysis Batch: 519398											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
is-1,2-Dichloroethene			50.0	53.1		ug/L		106	80-120	7	20
,1-Dichloropropene			50.0	46.2		ug/L		92	80 - 120	2	20
s-1,3-Dichloropropene			50.0	48.9		ug/L		98	80-129	5	20
bromochloromethane			50.0	53.8		ug/L		108	68-120	5	20
bromomethane			50.0	49.7		ug/L		99	80-120	0	20
ichlorodifluoromethane			50.0	48.3		ug/L		97	70-137	4	40
Hexanone			250	235		ug/L		94	80_131	7	20
hylbenzene			50.0	51.0		ug/L		102	80-120	1	20
opropylbenzene			50.0	47.4		ug/L		95	79-126	9	20
lethylene Chloride			50.0	47.6		ug/L		95	80-120	6	20
Methyl-2-pentanone			250	197	*	ug/L		79	80-134	22	20
ethyl tert-butyl ether			50.0	51.3		ug/L		103	80-122	9	20
Butanone (MEK)			250	237		ug/L		95	79-125	0	20
2-Dibromoethane			50.0	50.3		ug/L		101	75-126	5	20
1.1.2-Tetrachloroethane			50.0	50.5		ua/L		101	73-124	0	20
Butvlbenzene			50.0	51.1		ua/L		102	75-132	13	20
1.2.2-Tetrachloroethane			50.0	47.1		ua/L		94	76-126	1	20
Propylbenzene			50.0	51.9		ug/l		104	80 - 125	5	20
sopropyltoluene			50.0	52.9		ua/l		106	80-120	5	20
2 3-Trichlorobenzene			50.0	52.8		ug/l		106	70-125	5	20
c-Butylbenzene			50.0	54.6		ug/L		109	80 120	4	20
1 1-Trichloroethane			50.0	52.6		ug/L		105	80 120	7	20
vrene			50.0	49.2		ug/L		98	80 126	5	20
1 2-Trichloroethane			50.0	51.7		ug/L		103	80 120	2	20
			50.0	50.2		ug/L		100	80 120	2	20
			50.0	50.2		ug/L		100	71 122	4	20
			50.0	51.2		ug/L		103	80 120	1	20
Juciic 2.4. Trimethylbenzene			50.0	51.5		ug/L		105	00-120	4	20
2,4- minetnyidenzene			50.0	52.b		ug/L		105	00-120	2	20
ans-1,2-Dichloroethene			50.0	52.7		ug/L		105	00-120	10	20
3,5- i rimetnyidenzene			50.0	51.8		ug/L		104	80-120	3	20
ans-1,5-Dicnioropropene			50.0	54.4		ug/L		109	80-128	2	30
icnioroetnene			50.0	49.1		ug/L		98	80-120	1	20
icniorofiuoromethane			50.0	48.7		ug/L		97	58-127	3	20
Xylene			50.0	50.3		ug/L		101	80-120	3	30
nyl acetate			100	109		ug/L		109	74-156	9	20
-Xylene & p-Xylene			50.0	50.5		ug/L		101	80-120	2	20
nyl chloride			50.0	44.2		ug/L		88	80-129	5	20
ylenes, Total			100	101		ug/L		101	80 - 120	3	20
	LCSD	LCSD									
urrogate	%Recovery	Qualifier	Limits								
vluene-d8 (Surr)	94		80 - 120								
2-Dichloroethane-d4 (Surr)	89		73 - 131								
ibromofluoromethane (Surr)	103		80 - 122								

4-Bromofluorobenzene (Surr)

97

TestAmerica Savannah

Page 29 of 73

80 - 120

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

			-	,				
ab Sample ID: MB 680-51953 Aatrix: Water	36/9	-				Client Samp	e ID: Metho Prep Type: T	d Blank otal/NA
alvsis Batch: 519536								
	MB MB							
nalyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-Chlorotoluene	0.27 U	1.0	0.27	ug/L			04/11/18 12:22	1
-Chlorotoluene	0.45 U	1.0	0.45	ug/L			04/11/18 12:22	1
cetone	7.0 U	10	7.0	ug/L			04/11/18 12:22	1
2-Dibromo-3-Chloropropane	1.1 U	5.0	1.1	ug/L			04/11/18 12:22	1
enzene	0.43 U	1.0	0.43	ug/L			04/11/18 12:22	1
romobenzene	0.50 U	1.0	0.50	ug/L			04/11/18 12:22	1
romochloromethane	0.45 U	1.0	0.45	ug/L			04/11/18 12:22	1
romoform	0.43 U	1.0	0.43	ug/L			04/11/18 12:22	1
1-Dichloroethane	0.38 U	1.0	0.38	ug/L			04/11/18 12:22	1
romodichloromethane	0.44 U	1.0	0.44	ug/L			04/11/18 12:22	1
2-Dichloroethane	0.50 U	1.0	0.50	ua/L			04/11/18 12:22	1
romomethane	2.5 U	5.0	2.5	ua/L			04/11/18 12:22	1
arbon disulfide	1.0 U	2.0	1.0	ua/L			04/11/18 12:22	1
arbon tetrachloride	0.33 U	1.0	0.33	ua/L			04/11/18 12:22	1
2-Dichloroethene Total	0.37 11	2.0	0.00	ug/L			04/11/18 12:22	1
lorobenzene	0.26 11	1.0	0.26	ug/L			04/11/18 12:22	·····
1-Dichloroethene	0.20 0	1.0	0.20	ug/L			04/11/18 12:22	1
	25 11	5.0	2.50	ug/L			04/11/18 12:22	4
2 Dichloropropage	2.5 0	1.0	2.5	ug/L			04/11/10 12:22	
	0.57 0	1.0	0.07	ug/L			04/11/10 12:22	1
2 Dieblesensenene	0.30 0	1.0	0.00	ug/L			04/11/10 12:22	1
	0.34 0	1.0	0.34	ug/L			04/11/10 12.22	
	0.40 0	1.0	0.40	ug/L			04/11/10 12.22	1
	0.37 0	1.0	0.37	ug/L			04/11/10 12.22	1
	0.41 0	1.0	0.41	ug/L			04/11/10 12.22	·····.
	0.34 0	1.0	0.34	ug/L			04/11/10 12.22	
s-1,3-Dichloropropene	0.40 U	1.0	0.40	ug/L			04/11/18 12:22	1
bromochloromethane	0.32 U	1.0	0.32	ug/L			04/11/18 12:22	1
bromomethane	0.35 U	1.0	0.35	ug/L			04/11/18 12:22	1
chlorodifluoromethane	0.60 U	1.0	0.60	ug/L			04/11/18 12:22	1
Hexanone	2.0 U	10	2.0	ug/L			04/11/18 12:22	1
hylbenzene	0.33 U	1.0	0.33	ug/L			04/11/18 12:22	1
opropylbenzene	0.35 U	1.0	0.35	ug/L			04/11/18 12:22	1
ethylene Chloride	2.5 U	5.0	2.5	ug/L			04/11/18 12:22	1
Methyl-2-pentanone	2.1 U	10	2.1	ug/L			04/11/18 12:22	1
ethyl tert-butyl ether	0.30 U	10	0.30	ug/L			04/11/18 12:22	1
Butanone (MEK)	3.4 U	10	3.4	ug/L			04/11/18 12:22	1
2-Dibromoethane	0.44 U	1.0	0.44	ug/L			04/11/18 12:22	1
1,1,2-Tetrachloroethane	0.37 U	1.0	0.37	ug/L			04/11/18 12:22	1
Butylbenzene	0.47 U	1.0	0.47	ug/L			04/11/18 12:22	1
1,2,2-Tetrachloroethane	0.62 U	1.0	0.62	ug/L			04/11/18 12:22	1
Propylbenzene	0.38 U	1.0	0.38	ug/L			04/11/18 12:22	1
Isopropyltoluene	0.48 U	1.0	0.48	ug/L			04/11/18 12:22	1
2,3-Trichlorobenzene	2.5 U	5.0	2.5	ug/L			04/11/18 12:22	1
c-Butylbenzene	0.42 U	1.0	0.42	ug/L			04/11/18 12:22	1
1,1-Trichloroethane	0.37 U	1.0	0.37	ug/L			04/11/18 12:22	1
yrene	0.27 U	1.0	0.27	- ug/L			04/11/18 12:22	1
1.2-Trichloroethane	0.33 U	1.0	0.33	ua/L			04/11/18 12:22	1
			2.50	- <u>-</u>				

TestAmerica Savannah

Page 30 of 73

ient: Georgia State University		QC S	Sample	Resul	ts		TestAmeri	ca .lob ID: 680-14	50889-1
pject/Site: Monitoring Well Installati	on						1000 (men		10000
ethod: 8260B - Volatile Orga	anic C	ompoun	ds (GC/N	1 <mark>S) (C</mark> o	ontinu	ed)			
ab Sample ID: MB 680-519536/9							Client Sa	mple ID: Method	d Blank
Aatrix: Water								Prep Type: To	otal/NA
Analysis Batch: 519536									
	MB	MB							
nalyte	Result	Qualifier	RL	M	DL Unit		D Prepare	d Analyzed	Dil Fac
etrachloroethene	0.74	U	1.0	0.	/4 ug/L			04/11/18 12:22	1
Oluene	0.48	U	1.0	0.	48 ug/L			04/11/18 12:22	1
,2,4-1 rimeinyidenzene	0.47	U	1.0	0.	47 ug/L			04/11/18 12:22	1
ans-1,2-Dichloroethene	0.37	U	1.0	0.	.37 ug/L			04/11/18 12:22	1
,3,5-1 rimetnyibenzene	0.31	U	1.0	0.	.31 ug/L			04/11/18 12:22	1
ans-1,3-Dictrioroproperte	0.42		1.0	0.	42 ug/L			04/11/10 12.22	
	0.48	U	1.0	0.	48 ug/L			04/11/18 12:22	1
noniorometnane	0.42	U	1.0	0.	.4∠ ug/L			04/11/18 12:22	1
⊢∧yiene	0.23	0	1.0	0.	∠3 ug/L			04/11/18 12:22	1
	0.81	0	2.0	0.	ວເ ug/L ຈຣ//			04/11/18 12:22	1
n-Aylene & p-Aylene	0.35	0	1.0	0.	.ວວ ug/L =0 ມສ″			04/11/18 12:22	1
nnyi chionae Manaa Tatal	0.50	0	1.0	0.	50 ug/L			04/11/18 12:22	1
yienes, Tolai	0.23	U	1.0	0.	.∠ວ ug/L			04/11/18/12:22	1
	MB	MB							
Currogate %F	Recovery	Qualifier	Limits				Prepare	d Analyzed	Dil Fac
								04/41/48 12:22	1
oluene-d8 (Surr)	103		80 - 120					04/11/10 12.22	'
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr)	103 83		80 - 120 73 - 131					04/11/18 12:22	1
Foluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) I-Bromofluorobenzene (Surr) _ab Sample ID: LCS 680-519536/5	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120			Cli	ent Sample	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22	1 1 1 Sample
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 flatrix: Water Nathreis Bataby 510526	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120			Cli	ent Sample	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control 3 Prep Type: To	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Nibromofluoromethane (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike	LCS I	_CS	Cli	ent Sample	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control S Prep Type: To %Rec.	1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 Analyte	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike	LCS L Result (_CS Qualifier	Clic	ent Sample D %Rec	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control S Prep Type: To %Rec. Limits	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Atrix: Water Analysis Batch: 519536 analyte -Chlorotoluene	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5	-CS ⊋ualifier	Clie Unit	ent Sample D_ %Rec 103	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control S Prep Type: To %Rec. Limits 80-120	3 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorotoluene	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0 50.0	LCS L Result (51.5 51.9	_CS Qualifier	Clia Unit ug/L ug/L	ent Sample D <u>%Rec</u> 103	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control S Prep Type: To %Rec. Limits 80-120 80-120	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) -Bromofluorobenzene (Surr) .ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorotoluene cotone	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0 250	LCS L Result (51.5 51.9 248	-CS Qualifier	Clin ug/L ug/L ug/L	ent Sample D <u>%Rec</u> 104 99	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control S Prep Type: To % Rec. Limits 80-120 80-120 68-132	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) .ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorotoluene vectone ,2-Dibromo-3-Chloropropane	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0 250 50.0	LCS L Result (51.5 51.9 248 56.3	_CS Qualifier	Clit ug/L ug/L ug/L ug/L	ent Sample <u> </u>	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control S Prep Type: To % Rec. Limits 80-120 80-120 68-132 74-120	1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bloromofluoromethane (Surr) -Bromofluorobenzene (Surr) .ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorotoluene veetone ,2-Dibromo-3-Chloropropane benzene	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0 250 50.0 250 50.0 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7	_CS Qualifier	Cliu ug/L ug/L ug/L ug/L ug/L	ent Sample <u>D</u> %Rec 103 104 95 113 101	04/11/18 12:22 04/11/18 12:22 04/11/	1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 analyte -Chlorotoluene cetone ,2-Dibromo-3-Chloropropane lenzene romobenzene	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0 50.0 50.0 50.0 50.0 50.0 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1	-CS Qualifier	Clic ug/L ug/L ug/L ug/L ug/L	D %Rec 0 %Rec 103 104 95 113 101 101 105	04/11/18 12:22 04/11/18 12:22 04/18 12:22 04/11/18	Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Ab Sample ID: LCS 680-519536/5 Aatrix: Water -Analysis Batch: 519536 -Chlorotoluene -	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	LCS L Result (51.5 51.9 248 56.3 50.7 54.1 51.3	-CS Qualifier	Clic ug/L ug/L ug/L ug/L ug/L ug/L	D %Rec 103 104 95 113 101 106 103	04/11/18 12:22 04/11/18 12:22 04/11/	Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 unalyte -Chlorotoluene -Chloroto	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	LCS L Result (51.5 51.9 248 56.3 50.7 54.1 51.3 54.4	_CS ⊋ualifier	Cliu ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D %Rec 103 104 95 113 104 105 105 105 105 105	04/11/18 12:22 04/11/18 12:22 04/11/	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 unalyte -Chlorotoluene -Chloroto	103 83 94 94	,	80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 51.4 49.4	-CS Qualifier	Cliu ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	D % Rec 1003 1004 101 1004 101 1004 1002 1005 1003 1004 1004 905 1005 1005 1006 1005 1005 905	04/11/18 12:22 04/11/18 12:22 04/12 12 04/11/18 12:22 04/11/18 12:	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 Valyte -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorobenzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0	-CS Qualifier	Cliu ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	D %Rec 0 %Rec 103 104 95 113 104 105 103 105 102 102 102 102 102 103 104 105 104 105 105 105 105 105 105 105 105	04/11/18 12:22 04/11/18 12:22 05 - 120 05 - 120	Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorotoluene coetone ,2-Dibromo-3-Chloropropane Benzene Bromochloromethane Bromochloromethane Bromodichloromethane J-Dichloroethane Bromodichloromethane -Chlorotoluene	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result G 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2	_CS Qualifier	Cliu ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	D % Rec 100 100 104 96 112 101 104 96 102 102 103 104 104 96 105 102 106 102 107 96 102 94	04/11/18 12:22 04/11/18 12:22 05 - 120 05 - 1	1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) .ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorotoluene -Chlorotoluene vectone .2-Dibromo-3-Chloropropane Benzene Bromodenzene Bromodenzene Bromodichloromethane promodichloromethane stromodichloromethane stromodichloromethane stromodichloromethane stromodichloromethane stromodichloromethane	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 49.4 51.0 49.4 51.3 54.4 49.4 51.3 54.4 49.4 51.5 51	_CS Ωualifier	Cliv ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D % Rec 102 102 103 104 104 95 113 101 106 103 105 95 102 94	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 D: Lab Control S Prep Type: To % Rec. Limits 80-120 68-132 74-120 80-120 68-132 74-120 80-120 52-122 80-120 52-128 43-146	Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) .ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 Malyte -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorototuene -Chlorotuene -Chlorototuene -Chlorotuene -Chlorotuene -Chlorot	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9	_CS Qualifier	Clia ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D %Rec 102 104 95 113 104 95 113 104 105 105 95 102 94 84 84 94	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 0 % Rec. Limits 80-120 80-120 80-120 80-120 90-121 80-120	1 1 1 5ample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bloromofluoromethane (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) .ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 Malyte -Chlorotoluene -C	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7	_CS Qualifier	Clia ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D %Rec 102 104 99 113 104 99 113 100 102 99 102 94 84 94 101	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 0 % Rec. Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 72-128 43-146 77-129 67-125	1 1 1 5ample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluoromethane (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Ab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 -Analyte -Chlorotoluene -Chlorot	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result 0 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101	_CS Qualifier	Clia ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D % Rec 103 104 99 113 101 106 102 94 94 94 101 101	04/11/18 12:22 04/11/18 12:25 04/11/18 12:25 04/11/	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) Dibromofiluoromethane (Surr) -Bromofiluorobenzene (Surr) -Bromofiluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 unalyte -Chlorotoluene -Chloroto	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101 53.0	_CS Qualifier	Cliv ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D % Rec 103 104 95 113 101 106 102 95 102 94 94 101 101 101	04/11/18 12:22 04/11/18 12:22 04/12 12 04/11/18 12:22 04/11/18 12:	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichlaroethane-d4 (Surr) Dibromofluoromethane (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) Lab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorothane tromodichloromethane tromodichloromethane -2-Dichloroethane tromodichloromethane -2-Dichloroethene -2-Dichloroethene, Total Chlorobenzene -1-Dichloroethene	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101 53.0 50.3	-CS Ωualifier	Cliu ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	D %Rec 103 104 95 113 104 105 105 105 95 102 94 84 94 101 101 106 101 101 106	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 05 12:22 05 12:0 0 68 - 132 74 - 120 68 - 120 74 - 120 74 - 120 52 - 122 80 - 120 80 - 120 72 - 128 43 - 146 77 - 129 67 - 125 80 - 120 80 - 120	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr))bioromofiluoromethane (Surr) -Bromofiluorobenzene (Surr) -Bromofiluorobenzene (Surr) -Ab Sample ID: LCS 680-519536/5 Aatrix: Water Analysis Batch: 519536 -Analysis Batch: 519536 -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorothane tromodichloromethane tromodichloromethane -2-Dichloroethane tromodichloromethane -2-Dichloroethane -2-Dichloroethene, Total chlorobenzene ,1-Dichloroethene -1-Dichloroethene	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.5 56.3 56.3 56.3 54.1 51.3 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101 50.3 49.1	-CS Qualifier	Clie ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D % Rec 100 100 101 104 102 112 101 100 102 94 84 94 101 101 1001 101 101 101 102 94 84 94 101 101 1001 101 1002 94	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 05:20 05:22 05:20 05:	i 1 1 Sample otal/NA
oluene-d8 (Surr) p2-Dichloroethane-d4 (Surr) bibromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Ab Sample ID: LCS 680-519536/5 fatrix: Water Analysis Batch: 519536 -Chlorotoluene -Chlorotethane -Z-Dichloroethene, Total -Chlorotethene -Chloropenpane	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result G 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101 53.0 50.7 101 53.0 50.3 49.1 51.5 50.7 101 51.5 50.7 101 50.7 101 50.7 101 50.7 101 101 101 101 101 101 101 10	-CS Qualifier	Clie ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D % Rec 100 100 101 100 102 101 103 104 102 102 103 105 104 96 105 102 106 102 94 84 94 101 106 101 106 101 106 101 106 101	04/11/18 12:22 04/11/18 12:22 05/04/04 06/04/04 06/04 0000000000	1 1 3 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) ibromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Ab Sample ID: LCS 680-519536/5 flatrix: Water 	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 120 Spike Added 50.0	LCS L Result C 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101 53.0 50.3 49.1 101 53.0 50.3 49.1 51.5 10 10 10 10 10 10 10 10 10 10	_CS Ωualifier	Clia ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D %Rec 102 104 95 112 104 95 102 105 102 94 84 94 101 106 101 106 102 95 102 94 104 105 102 95 102 105 105 105 105 105 105 105 105	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 0 07 Rec. Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	1 1 1 Sample otal/NA
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Bromofluorobenzene (Surr) -Ab Sample ID: LCS 680-519536/5 Matrix: Water Analysis Batch: 519536 -Altrix: Water -Chlorotoluene -Chlorotoluene -Chlorotoluene cetone .2-Dibromo-3-Chloropropane enzene romochloromethane romodenzene romodichloromethane ,2-Dichloroethane romodichloromethane arbon disulfide arbon tetrachloride ,2-Dichloroethene, Total hlorobenzene ,1-Dichloroethene hloroethane .2-Dichloroethene hloroethane .2-Dichloropropane hloroform .3-Dichloropropane	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 122 80 - 120 Spike Added 50.0 50	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101 53.0 50.3 49.1 51.1 49.3 51.2	-CS Qualifier	Clia ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D %Rec 103 104 99 113 104 99 102 103 105 94 84 94 84 101 101 106 101 96 102 94 84 101 106 107 94 84 94 84 94 94 84 94 94 94 94 94 94 94 94 94 94 94 94 94	04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 04/11/18 12:22 05 05 05 05 05 05 05 05 05 05 05 05 05	1 1 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) bibromofiluorobenzene (Surr) -Bromofiluorobenzene (Surr) -Bromofiluorobenzene (Surr) -ab Sample ID: LCS 680-519536/5 fatrix: Water Inalysis Batch: 519536 -Chlorotoluene -Chlorotoluene cetone ,2-Dibromo-3-Chloropropane enzene romochloromethane romochloromethane romodichloromethane romodichloromethane romomethane arbon disulfide arbon disulfide arbon tetrachloride ,2-Dichloroethene, Total hlorobenzene 1-Dichloroethene hloroethane 2-Dichloropropane hloroform 3-Dichloropropane hloroform	103 83 94 94		80 - 120 73 - 131 80 - 122 80 - 122 80 - 120 Spike Added 50.0 50	LCS L Result C 51.5 51.9 248 56.3 50.7 54.1 51.3 54.4 49.4 51.0 47.2 41.8 46.9 50.7 101 53.0 50.3 49.1 51.1 49.3 51.2 44.8	-CS Qualifier	Clia ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D % Rec 103 104 99 113 101 102 102 94 101 100 102 94 101 101 100 101 101 101 102 94 94 101 101 100 102 94 101 100 102 95 102 96 102 96 102 96 102 96 102 96 102 96 102 96	04/11/18 12:22 04/11/18 12:22 04/12 12 04/11/18 12:22 04/11/18 12:	1 1 1 Sample otal/NA

2,2-Dichloropropane

TestAmerica Savannah

Client: Georgia State University Project/Site: Monitoring Well Installation

4-Bromofluorobenzene (Surr)

99

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

iethod: 8260B - Vola	ine Organi	c Compo	unas (GC	(C	ontinu	ea)			
Lab Sample ID: LCS 680- Matrix: Water	519536/5					Clie	nt Samp	ole ID	Lab Control Sample Prep Type: Total/NA
Analysis Batch: 519536									
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D%	Rec	Limits
cis-1,2-Dichloroethene			50.0	50.8		ug/L		102	80 - 120
,1-Dichloropropene			50.0	49.0		ug/L		98	80 - 120
is-1,3-Dichloropropene			50.0	53.4		ug/L		107	80 - 129
bibromochloromethane			50.0	53.3		ug/L		107	68 - 120
Dibromomethane			50.0	50.8		ug/L		102	80-120
Dichlorodifluoromethane			50.0	41.7		ug/L		83	70-137
-Hexanone			250	260		ug/L		104	80-131
thylbenzene			50.0	52.2		ug/L		104	80 - 120
sopropylbenzene			50.0	52.9		ug/L		106	79-126
lethylene Chloride			50.0	52.6		ug/L		105	80 - 120
-Methyl-2-pentanone			250	258		ug/L		103	80-134
lethyl tert-butyl ether			50.0	50.4		ug/L		101	80 - 122
-Butanone (MEK)			250	277		ug/L		111	79-125
,2-Dibromoethane			50.0	51.3		ug/L		103	75-126
1,1,2-Tetrachloroethane			50.0	54.3		ug/L		109	73-124
Butylbenzene			50.0	51.5		ug/L		103	75-132
1,2,2-Tetrachloroethane			50.0	53.8		ug/L		108	76-126
-Propylbenzene			50.0	52.3		ug/L		105	80 - 125
Isopropyltoluene			50.0	52.2		ug/L		104	80 - 120
2,3-Trichlorobenzene			50.0	53.2		ug/L		106	70-125
ec-Butylbenzene			50.0	53.2		ug/L		106	80 - 120
1,1-Trichloroethane			50.0	49.2		ug/L		98	80 - 120
tvrene			50.0	54.1		ua/L		108	80 - 126
1.2-Trichloroethane			50.0	51.2		ua/L		102	80 - 120
rt-Butvlbenzene			50.0	53.8		ua/L		108	80 - 120
etrachloroethene			50.0	52.5		ug/l		105	71-123
oluene			50.0	51.9		ua/L		104	80 - 120
2.4-Trimethylbenzene			50.0	52.8		ua/l		106	80-120
ans-1 2-Dichloroethene			50.0	49.9		ua/l		100	80-120
3.5-Trimethylhenzene			50.0	53.1		ug/L		106	80-120
ans-1 3-Dichloronronene			50.0	52.7		ug/L		104	80 - 128
richloroethene			50.0	52.2		ug/L		105	80 120
richlorofluoromethane			50.0	JZ.J 15 1		ug/L		91	58 127
-Yvlene			50.0	4J.4 50.4		ug/L		104	80 120
inul acetate			100	JZ. I 100		ug/L		104	74 156
Videne & n. Videne			100 EQ.Q	109		ug/L		109	14-100 90 100
i-Ayiene & p-Ayiene			50.0	52.4		ug/L		100	00-120
			0.00	46.2		ug/L		92	00-129
yienes, l'otai			100	105		ug/L		105	80-120
	LCS	LCS							
urrogate	%Recovery	Qualifier	Limits						
oluene-d8 (Surr)	104		80 - 120						
,2-Dichloroethane-d4 (Surr)	93		73 - 131						
)ibromofluoromethane (Surr)	103		80 - 122						

77

TestAmerica Savannah

Page 32 of 73

80 - 120

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ab Sample ID: LCSD 680-519536/6 fatrix: Water			C	Client Sa	ample	ID: Lab	Control	Sample be: Tota	Dup al/NA
nalysis Batch: 519536									
	Spike	LCSD	LCSD				%Rec.		RPD
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
-Chlorotoluene	50.0	46.4		ug/L		93	80-120	10	20
-Chlorotoluene	50.0	46.6		ug/L		93	80-120	11	20
cetone	250	220		ug/L		88	68-132	12	30
2-Dibromo-3-Chloropropane	50.0	48.5		ug/L		97	74 - 120	15	20
enzene	50.0	45.7		ug/L		91	80-120	10	20
romobenzene	50.0	48.2		ug/L		96	71-124	12	20
romochloromethane	50.0	46.9		ug/L		94	80-120	9	20
romoform	50.0	48.2		ug/L		96	52-122	12	20
1-Dichloroethane	50.0	45.0		ug/L		90	80-120	9	20
romodichloromethane	50.0	46.3		ug/L		93	80 - 120	10	20
2-Dichloroethane	50.0	42.7		ug/L		85	72-128	10	50
romomethane	50.0	40.8		ug/L		82	43 - 146	2	20
arbon disulfide	50.0	41.8		ug/L		84	77 - 129	11	20
arbon tetrachloride	50.0	44.0		ua/L		88	67 - 125	14	20
2-Dichloroethene. Total	100	90.4		ua/L		90	80-120	11	20
nlorobenzene	50.0	48.1		ua/L		96	80-120	10	20
1-Dichloroethene	50.0	44 1		ua/l		88	80_120	13	20
bloroethane	50.0	44.8		ua/l		90	48-145	9	20
2-Dichloronronane	50.0	46.3		ug/L		93	80_120	10	20
bloroform	50.0	44.8		ug/L		90	80 120	10	20
3-Dichloropropage	50.0	44.0 16.7		ug/L		02 02	80 120	 a	20
loromethane	50.0	40.7 30.9		ug/L		80	76 149	12	20
2-Dichloropropape	50.0	JJ.0 16 1		ug/L		00	80 125	12	20
= 12-Dichloroethene	50.0	40.4		ug/L		93	80 120	11	20
	50.0	40.0		ug/L		91 97	80 120	11	20
	50.0	40.4		ug/L		07	90 120	12	20
bromochloromethane	50.0	40.1		ug/L		90	68 120	10	20
bromomethane	0.00	40.2		ug/L		90	80 120	10	20
oromomethane	50.0	40.0		ug/L		30	70 427	3	20
	DU.U	30.2		ug/L		70	10-13/	17	40
	200	221		ug/L		91	00-131	13	20
nyipenzene	0.00	46.0		ug/L		92	00-120	12	20
opropyidenzene	50.0	46.9		ug/L		94	/9-126	12	20
eurylene Chloride	50.0	47.9		ug/L		96	80-120	9	20
	250	226		ug/L		91	80-134	13	20
etnyi tert-butyi ether	50.0	45.3		ug/L		91	80-122	11	20
Butanone (MEK)	250	245		ug/L		98	/9-125	12	20
2-Dibromoethane	50.0	46.3		ug/L		93	75-126	10	20
1,1,2- i etrachioroethane	50.0	48.7		ug/L		97	/3-124	11	20
Butylbenzene	50.0	45.5		ug/L		91	75-132	12	20
1,2,2-Tetrachloroethane	50.0	47.3		ug/L		95	76-126	13	20
Propylbenzene	50.0	46.4		ug/L		93	80-125	12	20
Isopropyltoluene	50.0	45.7		ug/L		91	80 - 120	13	20
2,3-Trichlorobenzene	50.0	49.8		ug/L		100	70-125	7	20
c-Butylbenzene	50.0	46.3		ug/L		93	80 - 120	14	20
1,1-Trichloroethane	50.0	42.8		ug/L		86	80 - 120	14	20
yrene	50.0	48.7		ug/L		97	80-126	10	20
1,2-Trichloroethane	50.0	46.5		ug/L		93	80 - 120	9	20
rt Butulhanzona	50.0	16.5				0.2	90 120	14	20

TestAmerica Savannah

Page 33 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-519536/6 Matrix: Water			C	Client Sa	ample	ID: Lab	Control	Sample	e Dup al/NA	
Analysis Batch: 519536										5
• • • •	Spike	LCSD	LCSD		_		% Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	0
Tetrachloroethene	50.0	47.2		ug/L		94	71 - 123	11	20	6
Toluene	50.0	46.8		ug/L		94	80 - 120	10	20	
1,2,4-Trimethylbenzene	50.0	47.1		ug/L		94	80-120	11	20	
trans-1,2-Dichloroethene	50.0	45.1		ug/L		90	80 - 120	10	20	
1,3,5-Trimethylbenzene	50.0	47.2		ug/L		94	80-120	12	20	
trans-1,3-Dichloropropene	50.0	47.5		ug/L		95	80-128	9	30	
Trichloroethene	50.0	47.3		ug/L		95	80-120	10	20	
Trichlorofluoromethane	50.0	39.5		ug/L		79	58-127	14	20	
o-Xylene	50.0	46.3		ug/L		93	80-120	12	30	
Vinyl acetate	100	102		ug/L		102	74 - 156	7	20	
m-Xylene & p-Xylene	50.0	47.3		ug/L		95	80-120	10	20	
Vinyl chloride	50.0	40.2		ug/L		80	80 - 129	14	20	
Xylenes, Total	100	93.6		ug/L		94	80-120	11	20	

	LUGD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	92		80 - 120
1,2-Dichloroethane-d4 (Surr)	84		73 - 131
Dibromofluoromethane (Surr)	94		80 - 122
4-Bromofluorobenzene (Surr)	90		80 - 120

Lab Sample ID: MB 680-519580/11 Matrix: Solid Analy

2,2-Dichloropropane

Chloromethane

Analysis Batch: 519580								
	MB	MB						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
2-Chlorotoluene	2.0	U	5.0	2.0	ug/Kg			04/11/18 14:56
4-Chlorotoluene	1.7	U	5.0	1.7	ug/Kg			04/11/18 14:56
Acetone	11	U	50	11	ug/Kg			04/11/18 14:56
1,2-Dibromo-3-Chloropropane	4.4	U	10	4.4	ug/Kg			04/11/18 14:56
Benzene	0.73	U	5.0	0.73	ug/Kg			04/11/18 14:56
Bromobenzene	1.7	U	5.0	1.7	ug/Kg			04/11/18 14:56
Bromochloromethane	3.3	U	5.0	3.3	ug/Kg			04/11/18 14:56
Bromoform	1.5	U	5.0	1.5	ug/Kg			04/11/18 14:56
1,1-Dichloroethane	1.1	U	5.0	1.1	ug/Kg			04/11/18 14:56
Bromodichloromethane	0.97	U	5.0	0.97	ug/Kg			04/11/18 14:56
1,2-Dichloroethane	1.1	U	5.0	1.1	ug/Kg			04/11/18 14:56
Bromomethane	1.5	U	5.0	1.5	ug/Kg			04/11/18 14:56
Carbon disulfide	1.1	U	5.0	1.1	ug/Kg			04/11/18 14:56
Carbon tetrachloride	0.83	U	5.0	0.83	ug/Kg			04/11/18 14:56
1,2-Dichloroethene, Total	0.63	U	10	0.63	ug/Kg			04/11/18 14:56
Chlorobenzene	0.96	U	5.0	0.96	ug/Kg			04/11/18 14:56
1,1-Dichloroethene	1.5	U	5.0	1.5	ug/Kg			04/11/18 14:56
Chloroethane	2.7	U	5.0	2.7	ug/Kg			04/11/18 14:56
1,2-Dichloropropane	0.86	U	5.0	0.86	ug/Kg			04/11/18 14:56
Chloroform	1.1	U	5.0	1.1	ug/Kg			04/11/18 14:56
1,3-Dichloropropane	1.8	U	5.0	1.8	ug/Kg			04/11/18 14:56

Client Sample ID: Method Blank Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

TestAmerica Savannah

04/11/18 14:56

04/11/18 14:56

Page 34 of 73

5.0

5.0

1.0 ug/Kg

1.1 ug/Kg

1.0 U

1.1 U

ent: Georgia State University		QC S	Sample Re	esults	;	TestAmerica		0880-1
oject/Site: Monitoring Well Installatio	on					restAmened	300 ID. 000-10	0000-1
ethod: 8260B - Volatile Orga	nic C	ompoun	ds (GC/MS)) (Cont	inued)			
ab Sample ID: MB 680-519580/11						Client Sam	ple ID: Method	l Blank
latrix: Solid							Prep Type: To	otal/NA
halysis Batch: 519580	MB	MB						
nalvte	Result	Qualifier	RI	MDI	Unit	D Prenared	Analyzed	Dil Fac
s-1.2-Dichloroethene	1.4	U	5.0	1.4	ua/Ka		04/11/18 14:56	1
1-Dichloropropene	0.95	U	5.0	0.95	ua/Ka		04/11/18 14:56	
s-1.3-Dichloropropene	0.83	U	5.0	0.83	ua/Ka		04/11/18 14:56	1
ibromochloromethane	1.7	Ū	5.0	1.7	ua/Ka		04/11/18 14:56	1
bromomethane	1.7	Ū	5.0	1.7	ua/Ka		04/11/18 14:56	· · · · · · · 1
ichlorodifluoromethane	0.94	U	5.0	0.94	ua/Ka		04/11/18 14:56	1
Hexanone	3.3	U	25	3.3	ua/Ka		04/11/18 14:56	1
hvlbenzene	1.3	U	5.0	1.3	ua/Ka		04/11/18 14:56	· · · · · · · 1
opropylbenzene	1.9	U	5.0	1.9	ua/Ka		04/11/18 14:56	1
ethylene Chloride	0.98	Ū	5.0	0.98	ua/Ka		04/11/18 14:56	1
Methyl-2-pentanone	4.2	U	25	4.2	ua/Ka		04/11/18 14:56	
ethyl tert-butyl ether	1.0	u.	5.0	1.0	ua/Ka		04/11/18 14:56	. 1
Butanone (MEK)	24	Ű.	25	24	ua/Ka		04/11/18 14:56	1
2-Dibromoethane	1.5		5.0	1.5	ua/Ka		04/11/18 14:56	· · · · · · · · 1
1 1 2-Tetrachloroethane	24	U	5.0	24	ua/Ka		04/11/18 14:56	1
Butylhenzene	24	Ű.	5.0	24	ua/Ka		04/11/18 14:56	1
1.2.2-Tetrachloroethane	1.6	ŭ	5.0	16	ua/Ka		04/11/18 14:56	
Providenzene	27	U U	5.0	27	ua/Ka		04/11/18 14:56	1
sopropyltoluene	2.7	U U	5.0	2.7	ua/Ka		04/11/18 14:56	1
2 3-Trichlorobenzene	1.6		5.0	1.6	ug/Kg		04/11/18 14:56	
c-Butylbenzene	2.1	0	5.0	2.1	ug/Kg		04/11/18 14:56	1
1 1-Trichloroethane	0.59	U U	5.0	0.59	ua/Ka		04/11/18 14:56	1
vrene	0.00		5.0	0.00	ug/Kg		04/11/18 14:56	····· 1
1 2-Trichloroethane	0.55	0	5.0	13	ug/Kg ug/Kg		04/11/18 14:56	1
	1.0	0	5.0	1.0	ug/Kg		04/11/18 14:56	1
trachloroethene	1.0		5.0	1.0	ug/Kg		04/11/18 14:56	
	0.84	0	5.0	0.84	ug/Kg ug/Kg		04/11/18 14:56	1
2 4-Trimethylbenzene	0.04		5.0	1.04	ug/Kg		04/11/18 14:56	1
ans_1_2-Dichloroethene	0.63	Ŭ.	5.0	0.63	ug/Kg		04/11/18 14:56	····· 4
3.5 Trimethylbenzene	0.03		5.0	0.03	ug/Kg		04/11/18 14:50	1
ans-1 3-Dichloropropene	0.87	0	5.0	0.87	ug/Ng ug/Kg		04/11/10 14.30	1
ichloroethene	0.07	U 11	5.0	1.07	ug/ry		04/11/18 14:56	····· 4
ichlorofluoromethane	1.0		5.0	1.0	ug/Kg		04/11/10 14.50	ן א
Yvlene	1.2	0	5.0	1.2	ug/Kg		04/11/18 14:30	1
nyl acetate	1.1	1	10	1.1 2.5	ug/Kg		04/11/18 14:50	····· 4
Videne & n. Videne	2.0	0	10	2.0	ug/Ka		04/11/10 14.30	1
	∠.b 1 ⊑	0	5.0	∠.b 1 ⊑	ug/Kg		04/11/10 14.30	1
lenes Total	6.1 A A	U 11	3.0	G.T N.N.	ug/ry		04/11/10 14:50	····· ,
Vicines, I Utal	1.1	0	10	1.1	uying		04/11/10 14.00	1
	MB	MB						
irrogate %R	ecovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
oluene-d8 (Surr)	94		70 - 130				04/11/18 14:56	1
2-Dichloroethane-d4 (Surr)	96		70 - 130				04/11/18 14:56	1
ibromofluoromethane (Surr)	99		70 - 130				04/11/18 14:56	1

Page 35 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ab Sample ID: LCS 680-519580/4				Clier	nt Sample ID	: Lab Control Sample
Aatrix: Solid						Prep Type: Total/NA
Analysis Batch: 519580						
	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
-Chlorotoluene	50.0	47.8		ug/Kg	96	70-130
-Chlorotoluene	50.0	47.4		ug/Kg	95	70-130
cetone	250	223		ug/Kg	89	40 - 160
2-Dibromo-3-Chloropropane	50.0	48.7		ug/Kg	97	40 - 160
enzene	50.0	47.7		ug/Kg	95	70-130
romobenzene	50.0	48.9		ug/Kg	98	70-130
romochloromethane	50.0	46.7		ug/Kg	93	70-130
romotorm	50.0	49.1		ug/Kg	98	70-130
1-Dichloroethane	50.0	47.3		ug/Kg	95	70-130
	50.0	46.5		ug/Kg	93	70-130
2-Dicnioroethane	50.0	46.7		ug/Kg	93	/0-130
omometnane	50.0	43.8		ug/Kg	88	40 - 160
	50.0	44.0		ug/Kg	88	40-160
arbon tetrachloride	50.0	46.6		ug/Kg	93	70-130
2-Dichloroethene, lotal	100	92.6		ug/Kg	93	70-130
	50.0	47.7		ug/Kg	95	70-130
	50.0	42.6		ug/Kg	85	/0-130
noroethane	50.0	44.2		ug/Kg	88	40-160
2-Dichloropropane	50.0	47.9		ug/Kg	96	70-130
	50.0	40.0		ug/Kg	91	70-130
3-Dicnioropropane	50.0	49.2		ug/Kg	98	70-130
noromethane	50.0	50.4		ug/Kg	101	40-160
2-Dichloropropane	50.0	46.4		ug/Kg	93	70-130
	50.0	48.2		ug/Kg	96	70-130
	50.0	47.0		ug/Kg	94	70-130
	50.0	46.2		ug/Kg	92	70-130
	50.0	48.3		ug/Kg	97	70-130
	50.0	47.4		ug/Kg	95	70-130
Chlorodinuoromethane	50.0	00.1		ug/Kg	106	40 - 160
Hexanone	200	263		ug/Kg	105	40-160
nyibenzene	50.0	40.4		ug/Kg	97	70-130
opropyroenzene othylong Chlorida	50.0	47.3		ug/Kg	95	70-130
Mathyl 2 paptopapa	30.0	43.4		ug/Kg	106	10-100
atbut tart but d atbar	200	200		ug/Kg	108	40-100
euryr tert-butyr etner Butonono (MEK)	50.0	46.0		ug/Kg	92	10-150
Dutanone (MEN) 2 Dibromoethane	200	230 40 4		ug/Kg	94	40-100
	50.0	49.4		ug/Kg	99	70 130
	50.0	40.9		ug/Kg	98	70-130
	50.0	40.7		ug/Kg	93	70-130
	50.0	40./		ug/Kg	93	70 130
	50.0	47.4		ug/Kg	95	70-130
	50.0	47.4		ug/Kg	95	70-130
	50.0	48.7		ug/Kg	97	70-130
	50.0	47.7		ug/Kg	95	70-130
1,1-Irichloroethane	50.0	46.3		ug/Kg	93	/0-130
yrene	50.0	50.8		ug/Kg	102	70-130
I,2-Trichloroethane	50.0	47.3		ug/Kg	95	70 - 130
rt-Butvlbenzene	50.0	48.1		ua/Ka	96	70-130

TestAmerica Savannah

Page 36 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-519580/4 Matrix: Solid				Clier	nt Sa	mple ID	: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 519580	0	1.00					04 B	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	50.0	48.7		ug/Kg		97	70-130	6
Toluene	50.0	49.3		ug/Kg		99	70-130	
1,2,4-Trimethylbenzene	50.0	49.2		ug/Kg		98	70-130	
trans-1,2-Dichloroethene	50.0	44.4		ug/Kg		89	70 - 130	
1,3,5-Trimethylbenzene	50.0	48.6		ug/Kg		97	70 - 130	
trans-1,3-Dichloropropene	50.0	48.6		ug/Kg		97	70-130	
Trichloroethene	50.0	47.7		ug/Kg		95	70 - 130	
Trichlorofluoromethane	50.0	40.7		ug/Kg		81	40 - 160	
o-Xylene	50.0	47.3		ug/Kg		95	70 - 130	
Vinyl acetate	100	99.8		ug/Kg		100	70 - 130	
m-Xylene & p-Xylene	50.0	47.8		ug/Kg		96	70 - 130	
Vinyl chloride	50.0	50.3		ug/Kg		101	70 - 130	
Xylenes, Total	100	95.1		ug/Kg		95	70-130	

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Dibromofluoromethane (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	93		70 - 130

Lab Sample ID: LCSD 680-519580/5 Matrix: Solid Analysis Batch: 519580

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit RPD Analyte D %Rec Limits Limit 50.0 45.6 70-130 5 2-Chlorotoluene ug/Kg 91 20 4-Chlorotoluene 50.0 45.9 ug/Kg 92 70-130 3 20 250 225 ug/Kg 40 - 160 20 Acetone 90 1 1,2-Dibromo-3-Chloropropane 50.0 47.4 ug/Kg 95 40 - 160 3 20 50.0 46.3 93 70-130 20 Benzene ug/Kg 3 50.0 46.4 93 70-130 20 Bromobenzene ug/Kg 5 Bromochloromethane 50.0 45.5 ug/Kg 91 70-130 3 20 50.0 47.8 96 70-130 20 Bromoform ug/Kg 3 1,1-Dichloroethane 50.0 46.2 ug/Kg 92 70-130 2 20 Bromodichloromethane 50.0 44.6 ug/Kg 89 70-130 20 4 50.0 46.0 92 70-130 1,2-Dichloroethane ug/Kg 2 20 Bromomethane 50.0 43.5 87 40-160 20 ug/Kg 1 Carbon disulfide 50.0 427 ug/Kg 85 40 - 160 3 20 Carbon tetrachloride 50.0 45.7 ug/Kg 91 70 - 130 2 20 1,2-Dichloroethene, Total 100 89.3 89 70-130 20 ug/Kg 4 Chlorobenzene 50.0 45.7 ug/Kg 91 70-130 4 20 70-130 1,1-Dichloroethene 50.0 41.9 ug/Kg 84 2 20 40-160 Chloroethane 50.0 45.2 ug/Kg 90 2 20 1,2-Dichloropropane 50.0 46.5 ug/Kg 93 70-130 3 20 50.0 44.1 70-130 Chloroform ug/Kg 88 3 20 1,3-Dichloropropane 50.0 47.9 ug/Kg 96 70-130 3 20 50.0 97 40 - 160 3 20 Chloromethane 48.7 ug/Kg 50.0 70-130 2,2-Dichloropropane 45.0 ug/Kg 90 3 20

TestAmerica Savannah

Page 37 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ab Sample ID: I CSD 690	510520/5				-	light So	mple ID). Lab	Control	Sample	Due
ab Sample ID. LCSD 660	-519580/5					ment Sa	Inple ID	. Lap	Pren Tyr	Sample	al/MA
Analysis Batch: 519580									тер тур	Je. 100	
analysis Baten. 515500			Snike	LCSD	LCSD				%Rec		RPD
nalvte			Added	Result	Qualifier	Unit	D %	Rec	Limits	RPD	Limit
is-1 2-Dichloroethene	·		50.0	46.1		μα/Κα		92	70_130	5	20
1-Dichloropropene			50.0	45.5		ua/Ka		91	70 - 130	3	20
s-1.3-Dichloropropene			50.0	44.3		ua/Ka		89	70-130	4	20
bromochloromethane			50.0	47.3		ua/Ka		95	70-130	2	20
bromomethane			50.0	46.4		ua/Ka		93	70-130	2	20
ichlorodifluoromethane			50.0	53.2		ua/Ka		106	40 - 160	0	20
Hexanone			250	258		ua/Ka		103	40 - 160	2	20
hylbenzene			50.0	46.8		ug/Kg		94	70-130	3	20
propylbenzene			50.0	46.1		ua/Ka		92	70-130	- 3	20
ethylene Chloride			50.0	41.8		ug/Ka		84	70-130	4	20
Methyl-2-pentanone			250	260		ug/Ka		104	40 - 160	2	20
ethyl tert-butyl ether			50.0	44.3		ua/Ka		89	70-130	4	20
Butanone (MEK)			250	239		ug/Ka		95	40 - 160	1	20
2-Dibromoethane			50.0	47.8		ua/Ka		96	70-130	3	20
1 1 2-Tetrachloroethane			50.0	46.3		ua/Ka		93	70-130	6	20
Butylbenzene			50.0	44.7		ua/Ka		89	70-130	4	20
1.2.2-Tetrachloroethane			50.0	45.9		ua/Ka		92	70, 130	2	20
Propylbenzene			50.0	45.8		ua/Ka		92	70-130	- 3	20
Isopropyltoluene			50.0	45.1		ua/Ka		90	70-130	5	20
2.3-Trichlorobenzene			50.0	45.6		ua/Ka		91	70 - 130	7	20
c-Butylbenzene			50.0	45.8		ua/Ka		92	70-130	4	20
1 1-Trichloroethane			50.0	44.6		иа/Ка		89	70-130	4	20
vrene			50.0	48.5		ug/Kg		97	70-130	5	20
1 2-Trichloroethane			50.0	46.2		ug/Kg		92	70-130	2	20
rt-Butylbenzene			50.0	46.5		иа/Ка		93	70-130	- 3	20
etrachloroethene			50.0	46.5		ug/Kg		93	70 130	5	20
bluene			50.0	48.2		ua/Ka		96	70_130	2	20
2 4-Trimethylbenzene			50.0	47.1		ua/Ka		94	70_130	4	20
ans-1 2-Dichloroethene			50.0	42.2		ua/Ka		87	70 130		20
3.5-Trimethylbenzene			50.0	45.5		ua/Ka		93	70-130	4	20
ans-1.3-Dichloropropene			50.0	40.0		ug/Kg		94	70_130	7 2	20
ichloroethene			50.0	46.7		ug/Kg		93	70 130		20
ichlorofluoromethane			50.0	11.7		ug/Kg		88	40_160	∠ 8	20
Xviene			50.0	44.2		ug/Kg		91	70_130	4	20
nyl acetate			100	40.7 Q2 2		ug/Kg		93	70 130	7	20
Vilene & n-Xulene			50.0	33.3 15 0		ug/Kg		ິວວ	70 120	r A	20
			50.0	40.9 18 F		ug/Kg		92 97	70 130	ч л	20
ilenes Total			100	40.J 01 C		ug/Kg		ຊາ	70 130		20
Acres, I Utal			100	51.0		uy/ny		32	10-150	4	20
	LCSD	LCSD									
urrogate	%Recovery	Qualifier	Limits								
oluene-d8 (Surr)	91		70 - 130								
2-Dichloroethane-d4 (Surr)	87		70 - 130								
ibromofluoromethane (Surr)	90		70 - 130								
Bromofluorobenzene (Surr)	88		70 130								

TestAmerica Savannah

Page 38 of 73

		QC	Sample	Resı	ults							
Client: Georgia State Universit Project/Site: Monitoring Well Ir	y Istallation							Test	America	Job ID: 680-15	50889-1	
Method: 8260B - Volatile	e Organic C	ompou	nds (GC/N	/IS) (C	ont	inue	ed)					
Lab Sample ID: MB 680-519	861/9			, (,	Clie	ent Sam	ple ID: Methor	Blank	
Matrix: Solid										Prep Type: To	otal/NA	
Analysis Batch: 519861												
-	MB	МВ										
Analyte	Result	Qualifier	RL	1	MDL	Unit		D P	repared	Analyzed	Dil Fac	
1,4-Dichlorobenzene	0.00046	U	0.0010	0.00	0046	mg/L				04/13/18 11:51	1	4
Hexachlorobutadiene	0.0025	U	0.0050	0.0	0025	mg/L				04/13/18 11:51	1	
Benzene	0.00043	U	0.0010	0.00	0043	mg/L				04/13/18 11:51	1	
1,2-Dichloroethane	0.00050	U	0.0010	0.00	0050	mg/L				04/13/18 11:51	1	
Carbon tetrachloride	0.00033	U	0.0010	0.00	0033	mg/L				04/13/18 11:51	1	
Chlorobenzene	0.00026	U	0.0010	0.00	0026	mg/L				04/13/18 11:51	1	
1,1-Dichloroethene	0.00036	U	0.0010	0.00	0036	mg/L				04/13/18 11:51	1	
Chloroform	0.00050	U	0.0010	0.00	0050	mg/L				04/13/18 11:51	1	
2-Butanone	0.0034	U	0.010	0.0	0034	mg/L				04/13/18 11:51	1	
Tetrachloroethene	0.00075	U	0.0010	0.00	0075	mg/L				04/13/18 11:51	1	
Trichloroethene	0.00048	U	0.0010	0.00	0048	mg/L				04/13/18 11:51	1	
Vinyl chloride	0.00050	U	0.0010	0.00	0050	mg/L				04/13/18 11:51	1	
	MB	МВ										
Surrogate	%Recovery	Qualifier	Limits					F	repared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	102		80 - 120							04/13/18 11:51	1	
1,2-Dichloroethane-d4 (Surr)	86		73 - 131							04/13/18 11:51	1	
Dibromofluoromethane (Surr)	95		80 - 122							04/13/18 11:51	1	
4-Bromofluorobenzene (Surr)	99		80 - 120							04/13/18 11:51	1	
Lab Sample ID: LCS 680-51 Matrix: Solid Analysis Batch: 519861	9861/4						Clie	nt Sa	mple ID	: Lab Control S Prep Type: To	Sample otal/NA	
Analysis Daten, 513001			Spike	LCS	LCS	;				% Rec.		
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits		
1,4-Dichlorobenzene			0.0500	0.0486			mg/L		97	80 - 120		
Hexachlorobutadiene			0.0500	0.0515			mg/L		103	71 - 131		
Benzene			0.0500	0.0496			mg/L		99	80 - 120		
1,2-Dichloroethane			0.0500	0.0461			mg/L		92	72-128		
Carbon tetrachloride			0.0500	0.0504			mg/L		101	67 - 125		
Chlorobenzene			0.0500	0.0511			mg/L		102	80-120		

Delizelle	0.0500	0.0496	mg/L	99	00-120
1,2-Dichloroethane	0.0500	0.0461	mg/L	92	72-128
Carbon tetrachloride	0.0500	0.0504	mg/L	101	67 - 125
Chlorobenzene	0.0500	0.0511	mg/L	102	80-120
1,1-Dichloroethene	0.0500	0.0509	mg/L	102	80-120
Chloroform	0.0500	0.0483	mg/L	97	80-120
2-Butanone	0.250	0.259	mg/L	104	79-125
Tetrachloroethene	0.0500	0.0513	mg/L	103	71 - 123
Trichloroethene	0.0500	0.0514	mg/L	103	80-120
Vinyl chloride	0.0500	0.0507	mg/L	101	80-129

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	92		73 - 131
Dibromofluoromethane (Surr)	101		80 - 122
4-Bromofluorobenzene (Surr)	96		80 - 120

Page 39 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

104

99

Lab Sample ID: LCSD 68 Matrix: Solid	0-519861/5				C	Client Sa	ample	ID: Lab	Control	Sample be: Tot	e Dup al/NA	
Analysis Batch: 519861												
			Spike	LCSD	LCSD				%Rec.		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	6
1,4-Dichlorobenzene			0.0500	0.0508		mg/L		102	80 - 120	4	20	0
Hexachlorobutadiene			0.0500	0.0536		mg/L		107	71 - 131	4	20	
Benzene			0.0500	0.0504		mg/L		101	80-120	2	20	
1,2-Dichloroethane			0.0500	0.0477		mg/L		95	72-128	3	50	
Carbon tetrachloride			0.0500	0.0507		mg/L		101	67 - 125	1	20	
Chlorobenzene			0.0500	0.0522		mg/L		104	80-120	2	20	
1,1-Dichloroethene			0.0500	0.0504		mg/L		101	80-120	1	20	
Chloroform			0.0500	0.0485		mg/L		97	80-120	0	20	
2-Butanone			0.250	0.274		mg/L		110	79-125	6	20	
Tetrachloroethene			0.0500	0.0514		mg/L		103	71 - 123	0	20	
Trichloroethene			0.0500	0.0520		mg/L		104	80-120	1	20	
Vinyl chloride			0.0500	0.0500		mg/L		100	80 - 129	1	20	
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
Toluene-d8 (Surr)	100		80 - 120									
1,2-Dichloroethane-d4 (Surr)	94		73 - 131									

80 - 122

80 - 120

Lab Sample ID: LB 680-519599/1-A Matrix: Solid Analysis Batch: 519861

Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank Prep Type: TCLP

	IB	I B							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0092	U	0.020	0.0092	mg/L			04/13/18 14:17	20
Hexachlorobutadiene	0.050	U	0.10	0.050	mg/L			04/13/18 14:17	20
Benzene	0.0086	U	0.020	0.0086	mg/L			04/13/18 14:17	20
1,2-Dichloroethane	0.010	U	0.020	0.010	mg/L			04/13/18 14:17	20
Carbon tetrachloride	0.0066	U	0.020	0.0066	mg/L			04/13/18 14:17	20
Chlorobenzene	0.0052	U	0.020	0.0052	mg/L			04/13/18 14:17	20
1,1-Dichloroethene	0.0072	U	0.020	0.0072	mg/L			04/13/18 14:17	20
Chloroform	0.010	U	0.020	0.010	mg/L			04/13/18 14:17	20
2-Butanone	0.068	U	0.20	0.068	mg/L			04/13/18 14:17	20
Tetrachloroethene	0.015	U	0.020	0.015	mg/L			04/13/18 14:17	20
Trichloroethene	0.0096	U	0.020	0.0096	mg/L			04/13/18 14:17	20
Vinyl chloride	0.010	U	0.020	0.010	mg/L			04/13/18 14:17	20
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120			-		04/13/18 14:17	20
1,2-Dichloroethane-d4 (Surr)	94		73 - 131					04/13/18 14:17	20
Dibromofluoromethane (Surr)	101		80 - 122					04/13/18 14:17	20
4-Bromofluorobenzene (Surr)	94		80 - 120					04/13/18 14:17	20

TestAmerica Savannah

Page 40 of 73

4/20/2018

TestAmerica Job ID: 680-150889-1

Client: Georgia State University Project/Site: Monitoring Well Installation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

106

93

Lab Sample ID: 680-1508 Matrix: Solid	89-1 MS							CI	ient Sample ID: SB04 Prep Type: TCLP	
Analysis Batch: 519861	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	C
1,4-Dichlorobenzene	0.0092	U	1.00	0.951		mg/L		95	80 - 120	6
Hexachlorobutadiene	0.050	U	1.00	0.954		mg/L		95	71 - 131	
Benzene	0.0086	U	1.00	1.02		mg/L		102	80 - 120	
1,2-Dichloroethane	0.010	U	1.00	0.984		mg/L		98	72 - 128	
Carbon tetrachloride	0.0066	U	1.00	1.01		mg/L		101	67 - 125	
Chlorobenzene	0.0052	U	1.00	1.02		mg/L		102	80 - 120	
1,1-Dichloroethene	0.0072	U	1.00	1.01		mg/L		101	80 - 120	
Chloroform	0.010	U	1.00	0.990		mg/L		99	80 - 120	
2-Butanone	0.068	U	5.00	5.83		mg/L		117	79-125	
Tetrachloroethene	0.015	U	1.00	1.05		mg/L		105	71 - 123	
Trichloroethene	0.0096	U	1.00	1.04		mg/L		104	80 - 120	
Vinyl chloride	0.010	U	1.00	0.929		mg/L		93	80 - 129	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Toluene-d8 (Surr)	100		80 - 120							
1,2-Dichloroethane-d4 (Surr)	97		73 - 131							

80 - 122

80 - 120

Lab Sample ID: 680-150889-1 MSD Matrix: Solid Analysis Batch: 519861

Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr)

Client Sample ID: SB04 Prep Type: TCLP

TestAmerica Job ID: 680-150889-1

Analysis Batch. 515001											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	0.0092	U	1.00	0.974		mg/L		97	80 - 120	2	20
Hexachlorobutadiene	0.050	U	1.00	1.04		mg/L		104	71 - 131	8	20
Benzene	0.0086	U	1.00	1.01		mg/L		101	80-120	1	20
1,2-Dichloroethane	0.010	U	1.00	0.951		mg/L		95	72 - 128	3	50
Carbon tetrachloride	0.0066	U	1.00	1.02		mg/L		102	67 - 125	1	20
Chlorobenzene	0.0052	U	1.00	1.04		mg/L		104	80-120	2	20
1,1-Dichloroethene	0.0072	U	1.00	1.00		mg/L		100	80-120	1	20
Chloroform	0.010	U	1.00	0.972		mg/L		97	80-120	2	20
2-Butanone	0.068	U	5.00	5.31		mg/L		106	79-125	9	20
Tetrachloroethene	0.015	U	1.00	1.05		mg/L		105	71 - 123	0	20
Trichloroethene	0.0096	U	1.00	1.05		mg/L		105	80 - 120	1	20
Vinyl chloride	0.010	U	1.00	0.963		mg/L		96	80 - 129	4	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	102		80 - 120								
1,2-Dichloroethane-d4 (Surr)	92		73 - 131								
Dibromofluoromethane (Surr)	102		80 - 122								
4-Bromofluorobenzene (Surr)	96		80 - 120								

TestAmerica Savannah

			554113	•	TestAmerica Job ID: 680-150889-1
tallation					
atile Orga	nic Comp	ounds (GC	C/MS)		
22/ 7-A					Client Sample ID: Method Blank Prep Type: Total/NA
MB	MB				Prep Batch: 519522
Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil Fac
39	U	320	39	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
40	U	320	40	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
43	U	320	43	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
34	U	320	34	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
26	U	320	26	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
42	U	320	42	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
51	U	640	51	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
34	U	320	34	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
37	U	320	37	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
28	U	320	28	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
34	U	320	34	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
27	U	320	27	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
1700	U	1700	1700	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
34	U	320	34	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
44	U	1700	44	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
35	U	320	35	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
45	U	1700	45	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
38	U	320	38	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
40	U	320	40	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
44	U	320	44	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
810	U	1700	810	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
48	U	320	48	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
32	U	320	32	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
36	U	320	36	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
43	U	320	43	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
33	U	320	33	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
48	U	1700	48	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
170	U	1700	170	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
35	U	320	35	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
35	U	320	35	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
38	U	320	38	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
35	U	320	35	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
40	U	320	40	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
27	U	320	27	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
24	U	320	24	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
32	U	320	32	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
29	U	320	29	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
29	U	320	29	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
25	U	320	25	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
31	U	320	31	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
32	U	320	32	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
31	U	320	31	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
320	U	1700	320	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
27	U	640	27	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
26	U	320	26	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
26	U	320	26	ug/Kg	04/11/18 08:30 04/12/18 15:33 1
			22	um/l/m	04/44/40 00:00 04/40/40 45:00 4
	tallation atile Organ 22/7-A MB Result 39 40 43 34 26 42 51 34 26 42 51 34 26 42 51 34 26 42 51 34 26 42 51 34 42 51 34 28 34 27 1700 34 44 810 44 810 44 810 48 32 36 40 44 810 44 810 48 32 36 40 40 44 810 44 810 44 810 44 810 44 810 44 810 44 810 44 810 44 810 44 810 44 810 44 810 45 38 83 88 40 44 810 44 810 45 35 38 83 80 40 44 810 44 810 44 810 45 35 38 83 40 44 810 44 810 45 35 36 33 33 33 88 35 35 36 35 35 38 35 36 36 37 37 36 37 37 36 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 37 37 36 37 37 37 37 37 37 37 37 37 37	QC Satistical Satistica	MB MB Result Qualifier RL 22/7-A Qualifier RL 39 320 320 40 U 320 <td>GC Sample Results tallation atile Organic Compounds (GC/MS) 22/7-A MB MB Result Qualifier RL MDL 39 U 320 39 40 U 320 39 40 U 320 40 43 U 320 43 34 U 320 26 42 U 320 44 26 U 320 34 37 U 320 34 40 U 320 34 41 U 320 34 42 U 320 35 38 U 320</td> <td>ACC Sample Results tallation atile Organic Compounds (GC/MS) 22/7-A MB MB RL MDL Unit Qualifier RL MDL Unit Qualifier RL MDL Unit Qualifier RL MDL Unit 43 U 320 43 ug/Kg 34 U 320 44 ug/Kg 26 U 320 26 ug/Kg 34 U 320 34 ug/Kg 37 U 320 34 ug/Kg 34 U 320 34 ug/Kg 34 U 320 34 ug/Kg 35 U 320 38 ug/Kg 44</td>	GC Sample Results tallation atile Organic Compounds (GC/MS) 22/7-A MB MB Result Qualifier RL MDL 39 U 320 39 40 U 320 39 40 U 320 40 43 U 320 43 34 U 320 26 42 U 320 44 26 U 320 34 37 U 320 34 40 U 320 34 41 U 320 34 42 U 320 35 38 U 320	ACC Sample Results tallation atile Organic Compounds (GC/MS) 22/7-A MB MB RL MDL Unit Qualifier RL MDL Unit Qualifier RL MDL Unit Qualifier RL MDL Unit 43 U 320 43 ug/Kg 34 U 320 44 ug/Kg 26 U 320 26 ug/Kg 34 U 320 34 ug/Kg 37 U 320 34 ug/Kg 34 U 320 34 ug/Kg 34 U 320 34 ug/Kg 35 U 320 38 ug/Kg 44

Page 42 of 73

ethod: 8270D - Semivo	latile Orga	aic Com	ounds (G(Conti	nuod)			
iethou. 6270D - Sennvo	nathe Organ			5/10/5) (Conti	nueuj			
Lab Sample ID: MB 680-519	522/7 - A						Client Samp	le ID: Method	Blank
Matrix: Solid								Prep Type: 10	DTAI/NA
Analysis Batch: 519765	MB	MB						Prep Batch:	019022
Analyte	Result	Qualifier	RL	MDL	Unif	D	Prepared	Analyzed	Dil Fac
vrene	26	U	320	26	ua/Ka		04/11/18 08:30	04/12/18 15:33	1
sis(2-ethylhexyl) phthalate	28	U	320	28	ua/Ka		04/11/18 08:30	04/12/18 15:33	1
Butyl benzyl phthalate	25	U	320	25	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Di-n-octyl phthalate	28	U	320	28	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
3enzo[b]fluoranthene	37	U	320	37	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Benzo[k]fluoranthene	63	U	320	63	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Benzo[a]pyrene	51	U	320	51	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
ndeno[1,2,3-cd]pyrene	27	U	320	27	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Dibenz(a,h)anthracene	38	U	320	38	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Benzo[g,h,i]perylene	21	U	320	21	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
is (2-chloroisopropyl) ether	29	U	320	29	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Carbazole	29	U	320	29	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
2,6-Dinitrotoluene	41	U	320	41	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
-Nitrophenol	320	U	1700	320	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Atrazine	22	U	320	22	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
3enzaldehyde	56	U	320	56	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
Caprolactam	64	U	320	64	ug/Kg		04/11/18 08:30	04/12/18 15:33	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Vitrobenzene-d5 (Surr)	83		37 - 115				04/11/18 08:30	04/12/18 15:33	1
2-Fluorobiphenyl (Surr)	84		41 - 116				04/11/18 08:30	04/12/18 15:33	1
Terphenyl-d14 (Surr)	100		46 - 126				04/11/18 08:30	04/12/18 15:33	1
Phenol-d5 (Surr)	88		38 - 122				04/11/18 08:30	04/12/18 15:33	1
2-Fluorophenol (Surr)	88		39-114				04/11/18 08:30	04/12/18 15:33	1
2,4,6-Tribromophenol (Surr)	98		45 - 129				04/11/18 08:30	04/12/18 15:33	1

Analysis Batch: 519763

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
6350	5170		ug/Kg		81	47 - 130	
6350	5210		ug/Kg		82	43 - 130	
6350	5120		ug/Kg		81	43 - 130	
6350	5500		ug/Kg		87	48 - 130	
6350	4820		ug/Kg		76	46-130	
6350	5340		ug/Kg		84	46-130	
6350	3830		ug/Kg		60	10-130	
6350	5700		ug/Kg		90	51 - 130	
6350	4790		ug/Kg		75	48 - 130	
6350	5330		ug/Kg		84	50-130	
6350	5150		ug/Kg		81	51 - 130	
6350	5050		ug/Kg		80	44 - 130	
6350	5000		ug/Kg		79	48 - 130	
6350	4950		ug/Kg		78	48-130	
6350	5940		ug/Kg		93	44 - 130	
6350	5070		ug/Kg		80	45-130	
6350	4690		ug/Kg		74	21 - 130	
	Spike Added 6350	Spike LCS Added Result 6350 5170 6350 5210 6350 5120 6350 5120 6350 5120 6350 4820 6350 5340 6350 5340 6350 5330 6350 5330 6350 5050 6350 5050 6350 5050 6350 5050 6350 5050 6350 5050 6350 5050 6350 5040 6350 5940 6350 5070 6350 5070 6350 4690	Spike LCS LCS Added Result Qualifier 6350 5170 6350 6350 5210 6350 6350 5120 6350 6350 5400 6350 6350 4820 6350 6350 5340 6350 6350 5340 6350 6350 5370 6350 6350 5330 6350 6350 5050 6350 6350 5050 6350 6350 5050 6350 6350 5050 6350 6350 5050 6350 6350 5050 6350 6350 5040 6350 6350 5940 6350 6350 5070 6350 6350 5070 6350 6350 5070 6350 6350 5070 6350	Spike LCS LCS Added Result Qualifier Unit 6350 5170 ug/Kg 6350 5210 ug/Kg 6350 5120 ug/Kg 6350 5500 ug/Kg 6350 4820 ug/Kg 6350 5340 ug/Kg 6350 5340 ug/Kg 6350 5340 ug/Kg 6350 5300 ug/Kg 6350 5300 ug/Kg 6350 5300 ug/Kg 6350 5050 ug/Kg 6350 5040 ug/Kg 6350 5940 ug/Kg 6350 5070 ug/Kg 6350 5070 ug/Kg 6350	Spike LCS LCS Added Result Qualifier Unit D 6350 5170 ug/Kg 0 0 6350 5210 ug/Kg 0 0 6350 5120 ug/Kg 0 0 6350 5120 ug/Kg 0 0 6350 5500 ug/Kg 0 0 6350 5500 ug/Kg 0 0 6350 5340 ug/Kg 0 0 6350 5340 ug/Kg 0 0 6350 5700 ug/Kg 0 0 6350 5700 ug/Kg 0 0 6350 5030 ug/Kg 0 0 6350 5050 ug/Kg 0 0 6350 5050 ug/Kg 0 0 6350 5040 ug/Kg 0 0 6350 5070 ug/Kg 0<	Spike LCS LCS Added Result Qualifier Unit D % Rec 6350 5170 ug/Kg 81 6350 5210 ug/Kg 82 6350 5120 ug/Kg 81 6350 5120 ug/Kg 81 6350 5120 ug/Kg 81 6350 5500 ug/Kg 87 6350 4820 ug/Kg 84 6350 5340 ug/Kg 84 6350 5340 ug/Kg 84 6350 5700 ug/Kg 84 6350 5700 ug/Kg 84 6350 5330 ug/Kg 84 6350 5150 ug/Kg 81 6350 5050 ug/Kg 81 6350 5050 ug/Kg 79 6350 5050 ug/Kg 79 6350 5940 ug/Kg 93	Spike LCS LCS % Rec. Added Result Qualifier Unit D % Rec. Limits 6350 5170 ug/Kg 81 47-130 47.130 6350 5210 ug/Kg 82 43.130 43.130 6350 5120 ug/Kg 81 43.130 6350 5500 ug/Kg 87 48.130 6350 4820 ug/Kg 87 48.130 6350 5340 ug/Kg 84 46.130 6350 5340 ug/Kg 84 46.130 6350 5340 ug/Kg 84 46.130 6350 5700 ug/Kg 84 45.130 6350 5700 ug/Kg 84 50.130 6350 5330 ug/Kg 84 50.130 6350 5050 ug/Kg 81 51.130 6350 5050 ug/Kg 79 48.130

TestAmerica Savannah

Page 43 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

ab Sample ID: LCS 680-519522/8-A				Clie	nt Sa	mple ID	: Lab Control Sample
Aatrix: Solid							Prep Type: Total/NA
Analysis Batch: 519763							Prep Batch: 519522
	Spike	LCS	LCS				%Rec.
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
lis(2-chloroethoxy)methane	6350	5230		ug/Kg		82	47 - 130
cenaphthene	6350	4440		ug/Kg		70	47 - 130
sis(2-chioroethyi)ether	6350	5120		ug/Kg		81	37 - 130
,4-Dinitrophenol	12700	2960		ug/Kg		23	10-130
,4-Dinitrotoluene	6350	5220		ug/Kg		82	49-111
	6350	4880		ug/Kg		//	49-130
Alerandra and an and all an	6350	5170		ug/Kg		81	49-130
-Chiorophenyi phenyi ether	6350	4740		ug/Kg		75	49-130
Ametry prinalate	6350	5090		ug/Kg		00	50-130
	6350	5350		ug/Kg		04	41-130
	12700	5730		ug/Kg		40	23-130
Drement end at end other	6350	4960		ug/Kg		/0	52-130
	6350	5260		ug/Kg		00	53-130
	6350	5260		ug/Kg		03	55-150
	6350	4550		ug/Kg		75	40-130
	6250	4700		ug/Kg		73	20-130
exactionoeinane	6350	4700 5100		ug/Kg		/4 00	42-130
	6350	5190		ug/Kg		02	JU-130 49 120
	6350	1000		ug/Kg		04	40-130
	6350	4090		ug/Kg		07	47 - 130
itrobonzono	6350	5050		ug/Kg		07	JZ-130 45 120
lu openzene	6350	5420		ug/Kg		00	40-100
	6350	5130		ug/Kg		94	50 130
	6350	4040		ug/Kg		04 77	20 120
	12700	7040		ug/Kg		55	30-130 41 120
	6350	/040		ug/Kg		55	41-130
,5-Dichiolobenzidine	6350	5120		ug/Kg		04	52 120
	6250	5520		ug/Kg		01	50 120
enzolajanunacene	6250	5070		ug/Kg		07	47 120
herene	6350	5520		ug/Kg		03	47 - 130
	6350	5570		ug/Kg		07	47 - 130
ic/2 athulhavid) anthalata	6250	6120		ug/Kg		00	10-130
utul benzul phthalate	6350	5840		ug/Kg ug/Kg		90	40-130
i. p. octvl phthalate	6350	5970		ug/Kg		92	JS-134 46 130
enzolbifluoranthene	6350	5570		ug/Kg		24 99	48 130
enzolsjindorannene enzolkifiuoranthene	6350	4870		ug/Kg ug/Kg		77	48 108
enzolalnyrene	6350	5410		ug/Kg		85	47 131
deno[1.2.3-cd]ovrene	6350	5670		ug/Kg		80	41 130
ideno(1,2,3-od)pyrene ibenz(a b)anthracene	6350	5320		ug/Kg		84	41-130
enzola h ilberylene	6350	5460		ug/Kg		40 88	42 130
is (2-chloroisonronyl) ether	6350	1270		ug/Ka		60	38 130
arbazola	6350	43/0		ug/Kg		61 03	51 130
a Dipitrateluene	0000	5320		ug/Kg		04	JI-130 40-130
Nitrophenol	10200	11000		ug/Kg		0U 07	40-130
trazine	12/00	E200		ug/Kg		07	40-130
u azınıçı anzal dahuda	0000	J20U		uy/r\g		03	47 - 130
	0050	1310		uy/Kg		21	10-130

TestAmerica Savannah

Page 44 of 73

			QC	Sample	Resi	ults	;					
Client: Georgia State Univers Project/Site: Monitoring Well	sity Installation			·					Те	stAmerica .	Job ID: 680-1	50889-1
Method: 8270D - Semiv	volatile Org	gar	nic Con	npounds	(GC/M	IS) ((Cor	tinued)			
Lab Sample ID: LCS 680-5 Matrix: Solid	519522/8-A							Clie	nt S	Sample ID:	Lab Control Prep Type: T	Sample otal/NA
Analysis Batch: 519763											Prep Batch:	519522
Surmate	LCS %Recovery	LCS	lifior	l imits								
Nitrobenzene-d5 (Surr)	85			37 - 115								
2-Fluorobiphenyl (Surr)	77			41 - 116								
Terphenyl-d14 (Surr)	94			46 - 126								
Phenol-d5 (Surr)	82			38 - 122								
2-Fluorophenol (Surr)	88			39-114								
2,4,6-Tribromophenol (Surr)	78			45 - 129								
Lab Sample ID: MB 680-5' Matrix: Solid Analysis Batch: 520185	19670/16-A								C	lient Samp	le ID: Metho Prep Type: T Prep Batch:	d Blank otal/NA 519670
· · · · · · · · · · · · · · · · · · ·	I	MВ	МВ									
Analyte	Res	sult	Qualifier	RL	I	MDL	Unit	[D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.000	054	U	0.010	0.0	0054	mg/L		0	4/12/18 15:10	04/16/18 19:41	1
Pyridine	0.00	023	U	0.050	0.0	0023	mg/L		0	4/12/18 15:10	04/16/18 19:41	1
2-Methylphenol	0	.89	U	10	I.	0.89	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
3 & 4 Methylphenol		1.3	U	10		1.3	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
2,4,6-Trichlorophenol	0	.85	U	10	I.	0.85	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
2,4,5-Trichlorophenol		1.2	U	10	I.	1.2	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
2,4-Dinitrotoluene		1.2	U	10		1.2	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
Hexachlorobenzene	0	0.79	U	10	I.	0.79	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
Hexachlorobutadiene	0	.62	U	10	I.	0.62	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
Hexachloroethane	0	.76	U	10		0.76	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
Nitrobenzene	0).73	U	10	I.	0.73	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
Pentachlorophenol		2.0	U	50	I.	2.0	ug/L		0	4/12/18 15:10	04/16/18 19:41	1
		MR	MR									
Surmaate	%Recov	on	Oualifier	l imits						Prenared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)		65	waanner	32 118					$\overline{0}$	4/12/18 15:10	04/16/18 19:41	1
2-Eluorobinhenvl		68		32 113					0	4/12/18 15:10	04/16/18 19:41	1
Terphenyl-d14 (Surr)		91		10_126					0	4/12/18 15:10	04/16/18 19:41	1
Phenol-d5 (Surr)		63		27_110					0	4/12/18 15:10	04/16/18 19:41	
2-Eluorophenol (Surr)		61		26_109					0	4/12/18 15:10	04/16/18 19:41	1
2,4,6-Tribromophenol (Surr)		80		39 - 124					0	4/12/18 15:10	04/16/18 19:41	1
Lab Sample ID: LCS 680-5 Matrix: Solid Analysis Batch: 520185	519670/20-A			Snike	LCS	1.05		Clie	nt S	Sample ID:	Lab Control Prep Type: T Prep Batch:	Sample otal/NA 519670
Analvte				Added	Result	Qua	- alifier	Unit		D %Rec	Limits	
				0.100	0.0608			mg/L		61	31 - 130	
1,4-Dichlorobenzene				0.200	0 115			mg/L		57	10-130	
I,4-Dichlorobenzene				0.200	0.110			-		07		
1,4-Dichlorobenzene Pyridine 2-Methylphenol				100	67.1			ug/L		67	40 - 130	
1,4-Dichlorobenzene Pyridine 2-Methylphenol 3 & 4 Methylphenol				100 100	67.1 77.4			ug/L ug/L		67 77	40 - 130 42 - 130	
1,4-Dichlorobenzene Pyridine 2-Methylphenol 3 & 4 Methylphenol 2,4,6-Trichlorophenol				100 100 100	67.1 77.4 84.7			ug/L ug/L ug/L		67 77 85	40 - 130 42 - 130 47 - 130	
1,4-Dichlorobenzene Pyridine 2-Methylphenol 3 & 4 Methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol				100 100 100 100 100	67.1 77.4 84.7 77.9			ug/L ug/L ug/L ug/L		67 77 85 78	40 - 130 42 - 130 47 - 130 48 - 130	
1,4-Dichlorobenzene Pyridine 2-Methylphenol 3 & 4 Methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrotoluene				100 100 100 100 100 100	67.1 77.4 84.7 77.9 85.1			ug/L ug/L ug/L ug/L ug/L		67 77 85 78 85	40 - 130 42 - 130 47 - 130 48 - 130 52 - 130	
1,4-Dichlorobenzene Pyridine 2-Methylphenol 3 & 4 Methylphenol 2,4,6-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene				100 100 100 100 100 100 100	67.1 77.4 84.7 77.9 85.1 79.0			ug/L ug/L ug/L ug/L ug/L ug/L		67 77 85 78 85 79	40 - 130 42 - 130 47 - 130 48 - 130 52 - 130 43 - 130	
1,4-Dichlorobenzene Pyridine 2-Methylphenol 3 & 4 Methylphenol 2,4,5-Trichlorophenol 2,4-5.Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene				100 100 100 100 100 100 100 100	67.1 77.4 84.7 77.9 85.1 79.0 64.8			ug/L ug/L ug/L ug/L ug/L ug/L ug/L		67 77 85 78 85 79 65	40 - 130 42 - 130 47 - 130 48 - 130 52 - 130 43 - 130 27 - 130	

Page 45 of 73

lient: Georgia State Univers	sity		30	Samp	5 10	550				Test	America	Job ID: 680-15	0889-1
oject/Site: Monitoring Well	Installation												
ethod: 8270D - Semi	volatile Or	gan	ic Con	npound	s (G(C/M	S) (Con	tinued)			
Lab Sample ID: LCS 680-5 Matrix: Solid	519670/20-A								Clie	nt Sai	mple ID:	Lab Control S Prep Type: To	Sample otal/NA
Analysis Batch: 520185				Spike Added	Re	LCS esult	LCS Qua	lifier	Unit	D	% Rec	Prep Batch: 4 %Rec. Limits	519670
Nitrobenzene				100		73.0			ug/L		73	43 - 130	
Pentachlorophenol				200		170			ug/L		85	33 - 130	
	LCS	LCS											
Surrogate	%Recovery	Qual	ifier	Limits									
Nitrobenzene-d5 (Surr)	72			32 - 118									
2-Fluorobiphenyl	70			32 - 113									
Terphenyl-d14 (Surr)	94			10 - 126									
Phenol-d5 (Surr)	67			27 - 110									
2-Fluorophenol (Surr)	65			26 - 109									
2,4,6-Tribromophenol (Surr)	82			39 - 124									
Lab Sample ID: MB 680-51 Matrix: Water	19677/8-A									Clie	ent Samp	ole ID: Method Prep Type: To	l Blank otal/NA
Analysis Batch: 520049	1	MP	MB									Prep Batch:	519677
Analyte	Ros	wi D sult	Qualifier		RI	M	וחו	Unit	r	ם ר	renared	Analyzed	Dil Eac
2-Chlorophenol	Kes	1.87			10 -	۱۷ ۲	1.87			- 104/1	2/18 15:10	04/15/18 16:48	1
2-Nitrophenol	0	,) 76	Ŭ		10	r) 76	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
2 4-Dimethylphenol	0	4.0	- U		10	C	4 0	ua/l		04/1	2/18 15:10	04/15/18 16:48	1
2,4 Dichlorophenol		7.0 11			10		7.0 1 1	ug/L		04/1	2/18 15:10	04/15/18 16:49	· · · · · · · · · · · · · · · · · · ·
2-Methvinhenol	0	0.89	ŭ		10	ſ	1.1	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
3 & 4 Methylphenol	0	1.3	Ŭ		10	C	13	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
4-Chloroaniline		22			20		22	ug/l		04/1	2/18 15:10	04/15/18 16:48	····· 4
4-Chloro-3-methylphenol		1.0	- U		10		1.0	ug/l		04/1	2/18 15:10	04/15/18 16:48	1
2-Methylnaphthalene	a).78	- U		10	C).78	ua/L		04/1	2/18 15:10	04/15/18 16:48	1
2.4.6-Trichlorophenol		0.85	- U		10).85	ua/L		04/1	2/18 15:10	04/15/18 16:48	
2,4,5-Trichlorophenol	Ŭ	1.2	U		10		1.2	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
Acetophenone	C).57	U		10	C).57	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
1,1'-Biphenyl		.58	U		10).58	ug/L		04/1	2/18 15:10	04/15/18 16:48	
2-Chloronaphthalene	a	.80	U		10	c	.80	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
2-Nitroaniline	, i i i i i i i i i i i i i i i i i i i	1.3	U		50		1.3	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
Acenaphthylene		0.85	U		10	C).85	ug/L		04/1	2/18 15:10	04/15/18 16:48	
3-Nitroaniline		5.0	U		50		5.0	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
Bis(2-chloroethoxy)methane	C	.94	U		10	C).94	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
Acenaphthene		0.76	U		10).76	ua/L		04/1	2/18 15:10	04/15/18 16:48	
Bis(2-chloroethyl)ether	-	1.1	U		10		1.1	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
2,4-Dinitrophenol		10	U		50		10	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
2,4-Dinitrotoluene		1.2	U		10		1.2	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
Dibenzofuran	C	.79	U		10	C).79	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
Diethyl phthalate	C	.88	U		10	C	.88	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
4-Chlorophenyl phenyl ether	0	.84	U		10	C).84	ug/L		04/1	2/18 15:10	04/15/18 16:48	
Dimethyl phthalate	O	.99	U		10	C).99	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
4-Nitroaniline		5.0	U		50		5.0	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
4,6-Dinitro-2-methylphenol		10	U		50		10	ug/L		04/1	2/18 15:10	04/15/18 16:48	· · · · · · · · 1
Fluorene	a	.96	U		10	C).96	ug/L		04/1	2/18 15:10	04/15/18 16:48	1
4-Bromophenyl phenyl ether	C).77	U		10	C).77	uq/L		04/1	2/18 15:10	04/15/18 16:48	1
Hexachlorobenzene		.79	U		10).79	ua/l		04/1	2/18 15:10	04/15/18 16:48	
	0		-					~ .		2.01	0.10		

Page 46 of 73

ient: Georgia State University			F • •					TestA	merica	Job ID: 680-15	50889-1
oject/Site: Monitoring Well Installa		nia Com	anoundo (COM	<u>c) ((</u>		tinuad				
lethod: 8270D - Semivolati	le Orgai		npounds (GC/IVI	5) (C	-on	unuea)				
Lab Sample ID: MB 680-519677/4 Matrix: Water Analysis Batch: 520049	8-A							Clie	nt Samı	ole ID: Methoo Prep Type: To Prep Batch:	d Blank otal/NA 519677
-	MB	MB									
Analyte	Result	Qualifier	RL	I	IDL I	Jnit	D	Pr	epared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	2.5	U	10		2.5 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
lexachloroethane	0.76	U	10		0.76 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Anthracene	0.69	U	10		0.69 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
sophorone	0.90	U	10		0.90 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Naphthalene	0.70	U	10		0.70 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Di-n-butyl phthalate	0.83	U	10		0.83 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Nitrobenzene	0.73	U	10		0.73 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Fluoranthene	0.74	U	10		0.74 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
N-Nitrosodiphenylamine	0.92	U	10		0.92 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
N-Nitrosodi-n-propylamine	0.72	U	10		0.72 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Pentachlorophenol	2.0	U	50		2.0 i	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
3,3'-Dichlorobenzidine	30	U	60		30 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Phenanthrene	0.77	U	10		0.77 i	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Benzo[a]anthracene	0.55	U	10		0.55 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Phenol	0.83	U	10		0.83 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Chrysene	0.51	U	10		0.51 ι	ıg/L		04/12	2/18 15:10	04/15/18 16:48	1
Pyrene	0.63	U	10		0.63 i	ig/L		04/12	2/18 15:10	04/15/18 16:48	1
- Bis(2-ethylhexyl) phthalate	1.6	U	10		1.6 u	Ja/L		04/12	2/18 15:10	04/15/18 16:48	1
Butyl benzyl phthalate	1.2	U	10		1.2 ı	Ja/L		04/12	2/18 15:10	04/15/18 16:48	1
Di-n-octyl phthalate	1.4	- Ū	10		1.4	Ja/L		04/12	2/18 15:10	04/15/18 16:48	· · · · · · · · · · · · · · · · · · ·
Benzolb Ifluoranthene	2.6	- U	10		26 1	.g. –		04/12	2/18 15:10	04/15/18 16:48	1
Benzolk)fluoranthene	12	Ŭ.	10		12 1	ia/l		04/12	2/18 15:10	04/15/18 16:48	1
Benzola Invrene	0.71		10		0.71	ia/l		04/12	2/18 15:10	04/15/18 16:48	
ndeno[1,2,3-cd]pyrene	1.0	U U	10		10.7	ia/l		04/12	2/18 15:10 2/18 15:10	04/15/18 16:48	1
Dibenz(a h)anthracene	1.0	U U	10		10	ia/l		04/12	2/18 15:10	04/15/18 16:48	1
Bibeniz(u,ii)uninacene Benzola h ilhen/ene	0.87		10		0.87	ig/L		04/12	2/18 15:10	04/15/18 16:48	
ais (2 abloraisopropul) ether	0.07		10		0.07 1	19/L		04/12	2/10 13.10 2/19 15:10	04/15/18 16:48	1
	0.70		10		0.70 0	ig/L		04/12	0/10 15.10	04/15/10 10:40	1
	0.71		10		44.	ig/L		04/12	10 13.10	04/15/10 10.40	
	1.1	0	10		1.1 0	IG/L		04/12	2/10 10.10	04/15/10 10.40	1
4-INILIOPHENOI	1.9	0	50		1.9 1	ig/L		04/12	10 10.10	04/15/10 10.40	1
nuazine Ponzoldobydo	1.2		10		1.2 L	ig/L		04/12	10 15:10	04/10/10 10:48	
	1.1	U	10		1.1 l 0.70	ig/L		04/12	2/18/15:10	04/15/18 16:48	1
Japroiaciam	0.79	U	10		0.79 l	ıg/L		04/12	2/18/15:10	04/15/18 16:48	1
	MВ	MB									
Surrogate	%Recovery	Qualifier	Limits					Pr	epared	Analyzed	Dil Fac
Vitrobenzene-d5 (Surr)	76		32 - 118					04/12	2/18 15:10	04/15/18 16:48	1
2-Fluorobiphenyl (Surr)	70		32 - 113					04/12	2/18 15:10	04/15/18 16:48	1
Terphenyl-d14 (Surr)	75		10 - 126					04/12	2/18 15:10	04/15/18 16:48	1
Phenol-d5 (Surr)	68		27 - 110					04/12	2/18 15:10	04/15/18 16:48	1
2-Fluorophenol (Surr)	67		26 - 109					04/12	2/18 15:10	04/15/18 16:48	1
2,4,6-Tribromophenol (Surr)	81		39 - 124					04/12	2/18 15:10	04/15/18 16:48	1
_ab Sample ID: LCS 680-519677 Matrix: Water Analysis Batch: 520049	/9 - A		Spike	LCS	LCS		Clien	t San	nple ID:	Lab Control S Prep Type: To Prep Batch: %Rec.	Sample otal/NA 519677
Analyte			Added	Result	Quali	fier	Unit	D	%Rec	Limits	
2 Oblanach an al			400	CAA	aaan				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20 120	

Page 47 of 73

	QC	Sam	ple	Resı	ılts
--	----	-----	-----	------	------

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

ab Sample ID: LCS 680-519677/9-A				Clie	nt Sa	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 520049							Prep Batch: 519677
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Nitrophenol	100	71.2		ug/L		71	43 - 130
2,4-Dimethylphenol	100	68.9		ug/L		69	37 - 130
2,4-Dichlorophenol	100	71.5		ug/L		71	44 - 130
2-Methylphenol	100	69.8		ug/L		70	40-130
3 & 4 Methylphenol	100	69.8		ug/L		70	42-130
	100	54.1		ug/L		54	42-130
	100	/4.4		ug/L		74	47 - 130
-Methylnaphthalene	100	66.3		ug/L		66	40-130
(4,6-) richlorophenol	100	79.1		ug/L		79	47 - 130
	100	79.7		ug/L		8U 70	40-130
	100	/1.5		ug/L		12	44-130
	100	73.6		ug/L		74	40-100
	100	13.9		ug/L		/4 00	44-100
	100	02.1		ug/L		02	JI-130 49 130
Nitroaniline	100	/4.2 75.7		ug/L		/4 76	40-130 53 130
	100	71.0		ug/L		70	JJ 130 17 130
ors(2-onio) delitoxy)memane	100	/1.8 70.2		ug/L		70	47 - 130
accuapturene Dis(2.chloroethyl)ether	100	19.3		ug/L		19	40-130 32 130
Disitrophenol	200	160		ug/L		00	31 130
	100	100		ug/L		04 85	52 130
i,+-Diniti Oluciic	100	00.4 77 0		ug/L		70	50 130
	100	11.0 88.9		ug/L		70 80	53 130
L-Chloronhenvl phenvl ether	100	00.0 79.2		ug/L		79	45-130
Dimethyl phthalate	100	, J.Z 81 0		ug/L		, J 81	53-130
1-Nitroaniline	100	76.5		ug/L		76	49-130
4 6-Dinitro-2-methylphenol	200	200		ug/L		100	42-130
	100	823		ug/L		82	50, 130
I-Bromonhenyl phenyl ether	100	82.5		ug/L		83	47 - 130
Hexachlorobenzene	100	81 3		ug/L		81	43-130
Hexachlorobutadiene	100	58.3		ua/l		58	27.130
Hexachlorocyclonentadiene	100	Δ7 1		ug/L		47	11_130
Hexachloroethane	100	54.5		ug/L		55	29-130
Anthracene	100	85.2		ua/L		85	49-130
sophorone	100	70.6		ua/L		71	47 - 130
Naphthalene	100	66.0		ua/L		66	39-130
Di-n-butyl phthalate	100	92.2		ua/L		92	51 - 130
litrobenzene	100	68.6		ua/L		69	43 - 130
luoranthene	100	84.9		ua/L		85	47 - 130
I-Nitrosodiphenvlamine	100	85.0		ua/L		85	50 - 130
I-Nitrosodi-n-propylamine	100	71.8		ua/L		72	42-130
Pentachlorophenol	200	175		ua/L		87	33 - 130
.3'-Dichlorobenzidine	100	85.4		ua/l		85	46 - 130
Phenanthrene	100	83.2		ua/L		83	51 - 130
Benzola lanthracene	100	82.3		ua/l		82	44.130
Phenol	100	63.6		ua/L		64	35.130
hrysene	100	83.3		ua/I		83	47 - 130
λ/rene	100	82.4		ug/L		82	52 130

TestAmerica Savannah

Page 48 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation TestAmerica Job ID: 680-150889-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-519677/9-A Matrix: Water				Clie	nt Sai	mple ID	: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 520049							Prep Batch: 519677	5
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bis(2-ethylhexyl) phthalate	100	88.1		ug/L		88	45 - 130	6
Butyl benzyl phthalate	100	84.3		ug/L		84	50 - 130	
Di-n-octyl phthalate	100	96.1		ug/L		96	42 - 130	
Benzo[b]fluoranthene	100	82.2		ug/L		82	43 - 130	
Benzo[k]fluoranthene	100	79.2		ug/L		79	40 - 130	
Benzo[a]pyrene	100	80.8		ug/L		81	44 - 130	
Indeno[1,2,3-cd]pyrene	100	91.8		ug/L		92	31 - 130	
Dibenz(a,h)anthracene	100	83.0		ug/L		83	41 - 130	
Benzo[g,h,i]perylene	100	82.4		ug/L		82	41 - 130	
bis (2-chloroisopropyl) ether	100	70.7		ug/L		71	26 - 130	
Carbazole	100	88.1		ug/L		88	54 - 130	
2,6-Dinitrotoluene	100	81.3		ug/L		81	52 - 130	
4-Nitrophenol	200	159		ug/L		80	44 - 130	
Atrazine	100	81.0		ug/L		81	39 - 130	
Benzaldehyde	100	47.8		ug/L		48	14 - 130	
Caprolactam	100	82.9		ug/L		83	26 - 130	
105 105								

	200	200	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	69		32 - 118
2-Fluorobiphenyl (Surr)	75		32 - 113
Terphenyl-d14 (Surr)	76		10 - 126
Phenol-d5 (Surr)	63		27 - 110
2-Fluorophenol (Surr)	58		26 - 109
2,4,6-Tribromophenol (Surr)	79		39 - 124

Lab Sample ID: LCSD 680-519677/10-A Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 520049							Prep Batch: 519677		
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chlorophenol	100	72.3		ug/L		72	39-130	12	50
2-Nitrophenol	100	74.6		ug/L		75	43 - 130	5	50
2,4-Dimethylphenol	100	71.1		ug/L		71	37 - 130	3	50
2,4-Dichlorophenol	100	75.5		ug/L		75	44 - 130	5	50
2-Methylphenol	100	74.8		ug/L		75	40 - 130	7	50
3 & 4 Methylphenol	100	75.6		ug/L		76	42-130	8	50
4-Chloroaniline	100	61.2		ug/L		61	42-130	12	50
4-Chloro-3-methylphenol	100	77.8		ug/L		78	47 - 130	5	50
2-Methylnaphthalene	100	72.3		ug/L		72	40 - 130	9	50
2,4,6-Trichlorophenol	100	82.4		ug/L		82	47 - 130	4	50
2,4,5-Trichlorophenol	100	83.3		ug/L		83	48 - 130	4	50
Acetophenone	100	76.2		ug/L		76	44 - 130	6	50
1,1'-Biphenyl	100	77.8		ug/L		78	45 - 130	5	50
2-Chloronaphthalene	100	77.6		ug/L		78	44 - 130	5	50
2-Nitroaniline	100	84.7		ug/L		85	51 - 130	3	50
Acenaphthylene	100	80.4		ug/L		80	48 - 130	8	50
3-Nitroaniline	100	83.6		ug/L		84	53 - 130	10	50
Bis(2-chloroethoxy)methane	100	75.2		ug/L		75	47 - 130	5	50

TestAmerica Savannah

Page 49 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

ab Sample ID: LCSD 680-519677/10-A			C	Client Sa	ample	ID: Lab	Control	Sample	e Dup	
Aatrix: Water	Prep Type: Total/N									
Analysis Batch: 520049							Prep Ba	atch: 5'	19677	
	Spike	LCSD	LCSD				%Rec.		RPD	
Inalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
cenaphthene	100	85.1		ug/L		85	48 - 130	7	50	
is(2-chloroethyl)ether	100	72.7		ug/L		73	32-130	10	50	
4-Dinitrophenol	200	180		ug/L		90	31 - 130	7	50	
4-Dinitrotoluene	100	85.4		ug/L		85	52-130	0	50	
benzofuran	100	79.7		ug/L		80	50_130	2	50	
iethyl phthalate	100	85.8		ug/L		86	53 - 130	3	50	
Chlorophenyl phenyl ether	100	80.4		ug/L		80	45-130	1	50	
methyl phthalate	100	83.3		ug/L		83	53 - 130	3	50	
Nitroaniline	100	75.6		ug/L		76	49-130	1	50	
6-Dinitro-2-methylphenol	200	175		ug/L		87	42-130	13	50	
uorene	100	82.1		ug/L		82	50-130	0	50	
Bromophenyl phenyl ether	100	77.5		ug/L		77	47 - 130	6	50	
exachlorobenzene	100	79.4		ug/L		79	43 - 130	2	50	
exachlorobutadiene	100	67.0		ug/L		67	27 - 130	14	50	
exachlorocyclopentadiene	100	49.8		ug/L		50	11_130	6	50	
exachloroethane	100	66.6		ug/L		67	29-130	20	50	
nthracene	100	83.3		ug/L		83	49-130	2	50	
ophorone	100	76.0		ug/L		76	47 - 130	7	50	
phthalene	100	71.5		ug/L		71	39-130	8	50	
-n-butyl phthalate	100	82.3		ug/L		82	51 - 130	11	50	
trobenzene	100	73.9		ug/L		74	43 - 130	8	50	
uoranthene	100	79.4		ug/L		79	47 - 130	7	50	
Nitrosodiphenylamine	100	76.2		ug/L		76	50 - 130	11	50	
Nitrosodi-n-propylamine	100	77.2		ua/L		77	42-130	7	50	
entachlorophenol	200	172		ug/L		86	33 - 130	2	50	
3'-Dichlorobenzidine	100	85.5		ua/L		85	46 - 130	0	50	
nenanthrene	100	81.9		ug/L		82	51 - 130	2	50	
enzolalanthracene	100	85.0		ua/L		85	44 - 130	3	50	
nenol	100	73.1		ug/L		73	35-130	14	50	
hrvsene	100	83.7		ua/L		84	47 - 130	0	50	
vrene	100	74.5		ua/L		75	52-130	10	50	
s(2-ethylhexyl) phthalate	100	85.4		ua/L		85	45-130	3	50	
ityl benzyl phthalate	100	83.0		ua/l		83	50-130	2	50	
-n-octvl phthalate	100	87.8		ua/L		88	42-130	9	50	
enzolbifluoranthene	100	85.5		ua/l		85	43_130	4	50	
enzolkifluoranthene	100	82.9		ua/l		83	40_130	5	50	
enzolalnyrene	100	02.5 84 २		ug/L		84	44_130		50	
deno[1 2 3-cd]nvrene	100	86.3		ug/L		86	31_130	r A	50	
henz(a h)anthracene	100	85.7		ug/L		86	41 130	3 2	50	
nzola h ilnen/ene	100	00.7 85 C		ug/L		85	41 130		50	
s (2-chloroisonronyl) ether	100	76.1		ug/L		76	26 130	7	50	
	100	70.1 95.2		ug/L		25	54 120	3	50	
	100	00.3		ug/L		C0 20	52 120	ى 	50	
5-Dimit otoluene	100	85.2		ug/L		80	JZ-13U	5	50	
	200	162		ug/L		81	44 - 130	2	50	
razine	100	/5.9		ug/L		76	39-130	6	50	
enzaidenyde	100	52.1		ug/L		52	14 - 130	9	50	
aprolactam	100	63.3		ua/l		63	26_130	27	50	

TestAmerica Savannah

Page 50 of 73
		QC	Sample	e Results	5			1
Client: Georgia State University Project/Site: Monitoring Well Installa	tion					TestAmerica	Job ID: 680-15	0889-1
Method: 8270D - Semivolatil	e Orga	nic Con	npounds	(GC/MS)	(Continued))		3
Lab Sample ID: LCSD 680-51967	7/10-A				Client Sa	mple ID: Lab	Control Samp	le Dup
Matrix: Water							Prep Type: To	otal/NA
Analysis Batch: 520049							Prep Batch:	519677
L	LCSD LCS	SD						
Surrogate %Reco	overy Qua	alifier	Limits					6
Nitrobenzene-d5 (Surr)	75		32 - 118					
2-Fluorobiphenyl (Surr)	76		32 - 113					
Terphenyl-d14 (Surr)	69		10 - 126					
Phenol-d5 (Surr)	70		27 - 110					
2-Fluorophenol (Surr)	66		26 - 109					
2,4,6-Tribromophenol (Surr)	82		39 - 124					
Lab Sample ID: LB 680-519572/1-	-В					Client Sam	le ID: Method	l Blank
Matrix: Solid	_						Prep Type	: TCLP
Analysis Batch: 520185							Prep Batch:	519670
	LB	LB						1
Analyte	Result	Qualifier	F	L MDL	Unit D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0026	U	0.04	0.0026	mg/L	04/12/18 15:10	04/16/18 20:04	1 1
Pyridine	0.012	U	0.2	24 0.012	mg/L	04/12/18 15:10	04/16/18 20:04	1
2-Methylphenol	0.0043	U	0.04	0.0043	mg/L	04/12/18 15:10	04/16/18 20:04	1
3 & 4 Methylphenol	0.0062	U	0.04	8 0.0062	mg/L	04/12/18 15:10	04/16/18 20:04	1
2,4,6-Trichlorophenol	0.0041	U	0.04	0.0041	mg/L	04/12/18 15:10	04/16/18 20:04	1
2,4,5-Trichlorophenol	0.0058	U	0.04	8 0.0058	mg/L	04/12/18 15:10	04/16/18 20:04	1
2,4-Dinitrotoluene	0.0058	U	0.04	8 0.0058	mg/L	04/12/18 15:10	04/16/18 20:04	1
Hexachlorobenzene	0.0038	U	0.04	8 0.0038	mg/L	04/12/18 15:10	04/16/18 20:04	1
Hexachlorobutadiene	0.0030	U	0.04	8 0.0030	mg/L	04/12/18 15:10	04/16/18 20:04	1
Hexachloroethane	0.0037	U	0.04	8 0.0037	mg/L	04/12/18 15:10	04/16/18 20:04	1
Nitrobenzene	0.0036	U	0.04	8 0.0036	mg/L	04/12/18 15:10	04/16/18 20:04	1
Pentachlorophenol	0.0096	U	0.2	0.0096	mg/L	04/12/18 15:10	04/16/18 20:04	1
	LB	LB						
Surrogate %	Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	161	X	39 - 130)		04/12/18 15:10	04/16/18 20:04	1
2-Fluorobiphenyl	144	X	38 - 130)		04/12/18 15:10	04/16/18 20:04	1
Terphenyl-d14 (Surr)	166	X	10 - 143	3		04/12/18 15:10	04/16/18 20:04	1
Phenol-d5 (Surr)	156	X	25 - 130)		04/12/18 15:10	04/16/18 20:04	1
2-Fluorophenol (Surr)	152	X	25 - 130)		04/12/18 15:10	04/16/18 20:04	1
2,4,6-Tribromophenol (Surr)	173	Х	31 - 14	ł		04/12/18 15:10	04/16/18 20:04	1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 680-51973 Matrix: Water Analysis Batch: 519736	36/88						Client Sam	ple ID: Method Prep Type: To	l Blank otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.20	U	0.50	0.20	mg/L			04/12/18 19:59	1
Sulfate	0.40	U	1.0	0.40	ma/L			04/12/18 19:59	1

TestAmerica Savannah

Page 51 of 73

		QC	Sam	ple	Resi	ults	;						
lient: Georgia State University roject/Site: Monitoring Well Installation	n								Test	tAmerica	Job ID: 680)-15()889-1
/lethod: 9056A - Anions, Ion C	hron	natogra	phy (C	Cont	inuec	d)							
Lab Sample ID: LCS 680-519736/89								Clie	ent Sa	mple ID:	Lab Contr	ol S	ample
Analysis Batch: 519736											Fieb Type	. 10	lai/INA
-			Spike		LCS	LCS	;				%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Chloride			10.0		9.94			mg/L		99	90-110		
Sulfate			10.0		9.78			mg/L		98	90-110		
Lab Sample ID: LCSD 680-519736/9 Matrix: Water	0						C	lient S	ample	e ID: Lab	Control Sa Prep Type	impl : To	e Dup tal/NA
Analysis Batch: 519736													
			Spike		LCSD	LCS	D				%Rec.		RPD
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			10.0		9.96			mg/L		100	90-110	0	15
Sulfate			10.0		9.86			mg/L		99	90-110	1	15
/lethod: 2340B-2011 - Total Ha	rdne	ss (as	CaCO	3) by	/ calc	ulat	tion						
Lab Sample ID: MB 680-520877/1									Cli	ent Sam	ole ID: Met	hod	Blank
Matrix: Water											Prep Type	: То	tal/NA
Analysis Batch: 520877													
	MВ	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D_F	Prepared	Analyzed	1 	Dil Fac
Hardness as calcium carbonate	3.3	0		3.3		3.3	mg/L				04/20/10 12	.15	1
Method: 6010C - Metals (ICP) Lab Sample ID: MB 680-519520/1-A Matrix: Solid Analysis Batch: 519787									Cli	ent Sam	ole ID: Met Prep Type Prep Bato	hod : To :h: 5	Blank tal/NA 19520
Apolyto	IVI B	NB		ы		MDI	Unit			Proporad	Apolyzor	4	Dil Eco
	0.73			1.8		0.73	ma/Ki	a		11/18 06:50	Analyzet	- -00 -	1
Barium	0.75	U U		0.92		0.15	mg/K	9	04/	11/18 06:50	04/11/18 21	.00	1
Cadmium	0.092	Ŭ		0.46	C	0.092	ma/Ki	a	04/	11/18 06:50	04/11/18 21	:00	1
Chromium	0.19	- U		0.92		0.19	ma/K	a	04/	11/18 06:50	04/11/18 21	:00	. 1
Lead	0.31	U		0.92		0.31	ma/K	a	04/	11/18 06:50	04/11/18 21	:00	1
Selenium	0.89	U		2.3		0.89	ma/K	a	04/	11/18 06:50	04/11/18 21	:00	1
Silver	0.055	U		0.92	C	0.055	mg/K	g	04/	11/18 06:50	04/11/18 21	:00	1
Lab Sample ID: LCS 680-519520/2-A Matrix: Solid Analysis Batch: 519787	A							Clie	ent Sa	mple ID:	Lab Contr Prep Type Prep Bato	ol S : To :h: 5	ample tal/NA 19520
			Spike		LCS	LCS	5				%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Arsenic			9.35		9.14			mg/Kg		98	80 - 120		
Barium			9.35		9.22			mg/Kg		99	80-120		
Cadmium			4.67		4.70			mg/Kg		101	80-120		
Chromium			9.35		9.76			mg/Kg		104	80-120		
Lead			46.7		44.6			mg/Kg		96	80-120		
Selenium			9.35		8.25			mg/Kg		88	80-120		
Silver			4.67		4.70			mg/Kg		101	80-120		

Page 52 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-150889-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-150889 Matrix: Solid	-1 MS							CI	lient Sample ID: SB04 Prep Type: Total/NA	
Analysis Batch: 519787	Sample	Sample	Spike	MS	MS				Prep Batch: 519520 %Rec.	5
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	G
Arsenic	2.1	J	11.0	12.3		mg/Kg	\$	94	75 - 125	D
Barium	130		11.0	144	4	mg/Kg	⇔	148	75 - 125	
Cadmium	0.11	U	5.49	4.93		mg/Kg	\Leftrightarrow	90	75 - 125	
Chromium	33	F1	11.0	35.1	F1	mg/Kg	\$	21	75 - 125	
Lead	13		54.9	63.7		mg/Kg	\Leftrightarrow	92	75 - 125	
Selenium	1.1	U F1	11.0	9.57		mg/Kg	☆	87	75-125	
Silver	0.067	U	5.49	4.76		mg/Kg	\$	87	75 - 125	

Lab Sample ID: 680-150889-1 MSD Matrix: Solid C40707

Lab Sample ID: 680-150889 Matrix: Solid Analysis Batch: 519787	-1 MSD	Sample	Spiko	MCD	MSD			C	lient Sam Prep Typ Prep Ba	ple ID: pe: Tot itch: 51	SB04 al/NA 19520
Analyte	Result	Qualifier	Added	Result	Qualifier	Unif	D	%Rec	Limits	RPD	Limit
Arsenic	2.1		11.0	12.5		mg/Kg		95	75 - 125	1	20
Barium	130		11.0	137	4	mg/Kg	⇔	91	75-125	5	20
Cadmium	0.11	U	5.49	5.04		mg/Kg	⇔	92	75-125	2	20
Chromium	33	F1	11.0	32.1	F1	mg/Kg	\$	-7	75-125	9	20
Lead	13		54.9	60.5		mg/Kg	☆	86	75-125	5	20
Selenium	1.1	U F1	11.0	8.11	F1	mg/Kg	⇔	74	75-125	17	20
Silver	0.067	U	5.49	4.94		mg/Kg	\$	90	75-125	4	20

Lab Sample ID: MB 680-520055/1-A Matrix: Water Analysis Batch: 520707

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 520055

ranary sis bacom of or								ricp bacom	020000
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	24	U	200	24	ug/L		04/14/18 16:02	04/18/18 17:03	1
Antimony	5.3	U	20	5.3	ug/L		04/14/18 16:02	04/18/18 17:03	1
Arsenic	6.2	U	20	6.2	ug/L		04/14/18 16:02	04/18/18 17:03	1
Barium	1.7	U	10	1.7	ug/L		04/14/18 16:02	04/18/18 17:03	1
Beryllium	0.10	U	4.0	0.10	ug/L		04/14/18 16:02	04/18/18 17:03	1
Cadmium	1.0	U	5.0	1.0	ug/L		04/14/18 16:02	04/18/18 17:03	1
Calcium	25	U	500	25	ug/L		04/14/18 16:02	04/18/18 17:03	1
Chromium	1.6	U	10	1.6	ug/L		04/14/18 16:02	04/18/18 17:03	1
Cobalt	1.0	U	10	1.0	ug/L		04/14/18 16:02	04/18/18 17:03	1
Copper	1.8	U	20	1.8	ug/L		04/14/18 16:02	04/18/18 17:03	1
Iron	24.2	J	50	17	ug/L		04/14/18 16:02	04/18/18 17:03	1
Lead	3.9	U	10	3.9	ug/L		04/14/18 16:02	04/18/18 17:03	1
Magnesium	33	U	500	33	ug/L		04/14/18 16:02	04/18/18 17:03	1
Manganese	1.0	U	10	1.0	ug/L		04/14/18 16:02	04/18/18 17:03	1
Nickel	2.1	U	40	2.1	ug/L		04/14/18 16:02	04/18/18 17:03	1
Potassium	17	U	1000	17	ug/L		04/14/18 16:02	04/18/18 17:03	1
Selenium	9.9	U	20	9.9	ug/L		04/14/18 16:02	04/18/18 17:03	1
Silver	0.60	U	10	0.60	ug/L		04/14/18 16:02	04/18/18 17:03	1
Sodium	480	U	1000	480	ug/L		04/14/18 16:02	04/18/18 17:03	1
Thallium	6.0	U	25	6.0	ug/L		04/14/18 16:02	04/18/18 17:03	1
Vanadium	1.0	U	10	1.0	ug/L		04/14/18 16:02	04/18/18 17:03	1
Zinc	7.0	U	20	7.0	ug/L		04/14/18 16:02	04/18/18 17:03	1

TestAmerica Savannah

Page 53 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-520055/2-A Matrix: Water				Clie	ent Sample ID	: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 520707	Spike	LCS	LCS			Prep Batch: 520055 %Rec.	
Analyte	Added	Result	Qualifier	Unit	D % Rec	Limits	C
Aluminum	5000	5060		ug/L		80 - 120	6
Antimony	50.0	45.2		ug/L	90	80 - 120	
Arsenic	100	102		ug/L	102	80 - 120	
Barium	100	103		ug/L	103	80 - 120	
Beryllium	50.0	52.0		ug/L	104	80 - 120	
Cadmium	50.0	51.9		ug/L	104	80 - 120	
Calcium	5000	5170		ug/L	103	80 - 120	
Chromium	100	105		ug/L	105	80 - 120	
Cobalt	50.0	52.4		ug/L	105	80 - 120	
Copper	100	105		ug/L	105	80 - 120	
Iron	5000	5100		ug/L	102	80 - 120	
Lead	500	510		ug/L	102	80 - 120	
Magnesium	5000	5120		ug/L	102	80 - 120	
Manganese	500	535		ug/L	107	80 - 120	
Nickel	100	105		ug/L	105	80 - 120	
Potassium	8000	8280		ug/L	104	80 - 120	
Selenium	100	98.1		ug/L	98	80 - 120	
Silver	50.0	50.7		ug/L	101	80 - 120	
Sodium	5000	5180		ug/L	104	80 - 120	
Thallium	40.0	42.8		ug/L	107	80 - 120	
Vanadium	100	105		ug/L	105	80 - 120	
Zinc	100	103		ug/L	103	80 - 120	

Lab Sample ID: MB 680-520523/1-A Matrix: Solid Analysis Batch: 520874

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 520523

Analysis Datum. J20014								riep battin.	JZUJZJ	
-	MB	MB						-		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	0.020	U	0.020	0.020	mg/L		04/18/18 13:16	04/19/18 16:38	1	
Barium	0.10	U	0.10	0.10	mg/L		04/18/18 13:16	04/19/18 16:38	1	
Cadmium	0.010	U	0.010	0.010	mg/L		04/18/18 13:16	04/19/18 16:38	1	
Chromium	0.020	U	0.020	0.020	mg/L		04/18/18 13:16	04/19/18 16:38	1	
Lead	0.020	U	0.020	0.020	mg/L		04/18/18 13:16	04/19/18 16:38	1	
Selenium	0.050	U	0.050	0.050	mg/L		04/18/18 13:16	04/19/18 16:38	1	
Silver	0.010	U	0.010	0.010	ma/L		04/18/18 13:16	04/19/18 16:38	1	

Lab Sample ID: LCS 680-520523/2-A Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 520874							Prep Batch: 520523
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	2.00	2.12		mg/L		106	80 - 120
Barium	2.00	2.01		mg/L		100	80 - 120
Cadmium	1.00	1.00		mg/L		100	80 - 120
Chromium	2.00	2.04		mg/L		102	80 - 120
Lead	10.0	9.79		mg/L		98	80 - 120
Selenium	2.00	1.95		mg/L		97	80 - 120
Silver	1.00	1.02		mg/L		102	80 - 120

TestAmerica Savannah

Page 54 of 73

4/20/2018

TestAmerica Job ID: 680-150889-1

Client: Georgia State University Project/Site: Monitoring Well Installation TestAmerica Job ID: 680-150889-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LB 680-519572 Matrix: Solid	2/1 -D			Client Sample ID: Method Blank Prep Type: TCLP						
Analysis Batch: 520874							Prep Batch:	520523	5	
	LB	LB								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	C	
Arsenic	0.20	U	0.20	0.20 mg/L		04/18/18 13:16	04/19/18 16:48	1	0	
Barium	1.0	U	1.0	1.0 mg/L		04/18/18 13:16	04/19/18 16:48	1		
Cadmium	0.10	U	0.10	0.10 mg/L		04/18/18 13:16	04/19/18 16:48	1		
Chromium	0.20	U	0.20	0.20 mg/L		04/18/18 13:16	04/19/18 16:48	1		
Lead	0.20	U	0.20	0.20 mg/L		04/18/18 13:16	04/19/18 16:48	1		
Selenium	0.50	U	0.50	0.50 mg/L		04/18/18 13:16	04/19/18 16:48	1		
Silver	0.10	U	0.10	0.10 mg/L		04/18/18 13:16	04/19/18 16:48	1		

Lab Sample ID: 680-150889-1 MS Matrix: Solid Analysis Batch: 520874

Matrix: Solid Analysis Batch: 520874									Prep Prep Ba	Type: TCLP atch: 520523
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.20	U F1	1.60	0.895	F1	mg/L		56	75 - 125	
Barium	1.0	U	1.60	1.74		mg/L		109	75-125	
Cadmium	0.10	U	1.60	1.48		mg/L		93	75-125	
Chromium	0.20	U	1.60	1.51		mg/L		94	75-125	
Lead	0.20	U	1.60	1.48		mg/L		93	75-125	
Selenium	0.50	U	1.60	1.24		mg/L		78	75-125	
Silver	0.10	U F1 F2	1.60	0.486	F1	mg/L		30	75-125	

Lab Sample ID: 680-150889-1 MSD Matrix: Solid nalysis Batch: 520874

Method: 7470A - Mercury (CVAA)

Client Sample ID: SB04
Prep Type: TCLP
Prep Batch: 520523

Client Sample ID: SB04

Analysis Datch, 520074									гіер Ба	IIII. J	20323
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.20	U F1	1.60	0.852	F1	mg/L		53	75 - 125	5	20
Barium	1.0	U	1.60	1.76		mg/L		110	75-125	1	20
Cadmium	0.10	U	1.60	1.49		mg/L		93	75 - 125	1	20
Chromium	0.20	U	1.60	1.52		mg/L		95	75-125	1	20
Lead	0.20	U	1.60	1.47		mg/L		92	75-125	1	20
Selenium	0.50	U	1.60	1.34		mg/L		83	75-125	7	20
Silver	0.10	U F1 F2	1.60	0.603	F1 F2	mg/L		38	75 - 125	22	20

Lab Sample ID: MB 680-519560/13-A Matrix: Water Analysis Batch: 519944 ME	6 MB			Client Sam	ple ID: Method Blank Prep Type: Total/NA Prep Batch: 519560
Analyte Result	Qualifier	RL M	DL Unit	D Prepared	Analyzed Dil Fac
Mercury 0.080	U	0.20 0.0	080 ug/L	04/11/18 09:42	04/13/18 07:53 1
Lab Sample ID: LCS 680-519560/14-A Matrix: Water Analysis Batch: 519944				Client Sample ID:	Lab Control Sample Prep Type: Total/NA Prep Batch: 519560
	Spike	LCS I	LCS		%Rec.
Analyte	Added	Result (Qualifier	Unit D %Rec	Limits
Mercury	2.50	2.60		ug/L104	80 - 120

TestAmerica Savannah

4/20/2018

	QC	Sample	Results		1	
Client: Georgia State University Project/Site: Monitoring Well Installation				TestAmerica	Job ID: 680-150889-1	
Lab Sample ID: MB 680-519887/1-A Matrix: Solid				Client Sam	ble ID: Method Blank Prep Type: Total/NA	
Analysis Batch: 520140	МВ МВ				Prep Batch: 519887 4	
Analyte Re:	sult Qualifier	RL	MDL Unit	D Prepared	Analyzed Dil Fac	
Mercury 0.00	020 U	0.00020	0.00020 mg/L	04/13/18 09:27	04/16/18 09:14 1 5	Þ
Lab Sample ID: LCS 680-519887/2-A				Client Sample ID:	Lab Control Sample 6	5
Matrix: Solid					Prep Type: Total/NA	
Analysis Batch: 520140		Spike	LCS LCS		Prep Batch: 519887 %Rec.	
Analyte		Added	Result Qualifier	Unit D %Rec	Limits	
Mercury		0.250	0.252	mg/L 101	80-120	
Lab Sample ID: LB 680-519572/1-C Matrix: Solid				Client Sam	Prep Type: TCLP	
Analysis Batch: 520140	LB LB				Prep Batch: 519887	
Analyte Re:	sult Qualifier	RL	MDL Unit	D Prepared	Analyzed Dil Fac	
Mercury 0.	020 U	0.020	0.020 mg/L	04/13/18 09:27	04/16/18 09:21 1	
Lab Sample ID: 680-150889-1 MS Matrix: Solid Analysis Batch: 520140				Cli	ent Sample ID: SB04 Prep Type: TCLP Prep Batch: 519887	
Sample	Sample	Spike			% Rec.	
Mercury 0.020		0.0830	0.0833	mg/L D % Rec 100	80-120	
Lab Sample ID: 680-150889-1 MSD Matrix: Solid Analysis Batch: 520140				Cli	ent Sample ID: SB04 Prep Type: TCLP Prep Batch: 519887	
Sample	Sample	Spike	MSD MSD		%Rec. RPD	
Analyte Result	Qualifier	Added	Result Qualifier	Unit D %Rec	Limits RPD Limit	
Mercury 0.020	U	0.0830	0.0802	mg/L 97	80-120 4 20	
Method: 7471B - Mercury (CVAA))					

Lab Sample ID: MB 680-5194 Matrix: Solid Analysis Batch: 519903	79/1-A Me	8 MB							Clie	ent Sam	ple ID: Metho Prep Type: T Prep Batch:	d Blank otal/NA 519479
Analyte	Result	Qualifier		RL	1	MDL	Unit	1	D P	repared	Analyzed	Dil Fac
Mercury	0.0075	Ū		0.019	0.0	0075	mg/Kg	<u>j</u>	04/1	0/18 15:11	1 04/12/18 17:45	1
Lab Sample ID: LCS 680-5194 Matrix: Solid Analysis Batch: 519903 Analyte Mercury	479/2-A		Spike Added 0.236		LCS Result 0.238	LCS Qual	lifier	Clies Unit mg/Kg	nt Sa D	mple ID: 	: Lab Control Prep Type: T Prep Batch: %Rec. Limits 80-120	Sample otal/NA 519479
Lab Sample ID: 680-150889-1	MS									Cl	ient Sample II	D: SB04
Matrix: Solid											Prep Type: T	otal/NA
Analysis Batch: 519903											Prep Batch:	519479
	Sample Sa	mple	Spike		MS	MS					%Rec.	
Analyte	Result Qu	alifier	Added		Result	Qual	lifier	Unit	D	%Rec	Limits	
Mercury	0.0090 U		0.123		0.136			mg/Kg	— <u>*</u>	110	80 - 120	

Page 56 of 73

		QC	Samp	ble	Resi	llts		_				00.45	0000 -
nent: Georgia State University roject/Site: Monitoring Well Inst	allation							1	est/	America	a Jod ID: 6	80-15	0889-1
Lab Sample ID: 680-150889-1	MSD									С	lient Sam	ple ID	: SB04
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 519903	Sample S	ample	Snike		MSD	MSD					WRec	atch: :	019479 RPD
Analvte	Result Q	ualifier	Added		Result	Qualifie	ər	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.0090 U		0.117		0.118			mg/Kg	\$	101	80 - 120	14	20
/lethod: 1030 - Ignitability	/, Solids												
Lab Sample ID: MB 680-5197	33/1								Clie	nt San	nple ID: M	ethod	Blank
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 519733													
	_ M	вмв						_	_				
Analyte	Resu	It Qualifier		RL				<u> </u>	Pi	repared		2ed	DII Fac
-	IN	D				1111	11/50	50			04/12/10	07.57	1
Lab Sample ID: LCS 680-5197	/33/2							Client	Sar	nple ID	: Lab Co	ntrol S	ample
Matrix: Solid											Prep Tv	pe: To	tal/NA
Analysis Batch: 519733													
-			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qualifie	er	Unit	D	%Rec	Limits		
Ignitability			3.18		3.178			mm/sec		100	75-125		
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733	9733/12						C	lient San	ıple	ID: Lat	Control Prep Ty	Samp pe: To	le Dup tal/NA
Lab Sample ID: LCSD 680-51 Matrix: Solid Analysis Batch: 519733	9733/12		Spike		LCSD	LCSD	C	lient San	nple	ID: Lat	Control Prep Ty %Rec.	Samp pe: To	le Dup tal/NA RPD
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte	9733/12		Spike Added		LCSD Result	LCSD Qualifie	C	lient San ^{Unit}	nple D	ID: Lat %Rec	Control Prep Ty %Rec. Limits	Samp pe: To RPD	le Dup tal/NA RPD Limit
Lab Sample ID: LCSD 680-51 Matrix: Solid Analysis Batch: 519733 Analyte	9733/12		Spike Added 3.12		LCSD Result 3.118	LCSD Qualifie	C er	Unit mm/sec	D	1D: Lat %Rec 100	Control Prep Ty %Rec. Limits 75 - 125	Samp pe: To RPD 2	le Dup otal/NA RPD Limit 10
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Aethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530	9733/12 <u>:alinity, 1</u> 30/7 M	otal	Spike Added 3.12		LCSD Result 3.118	LCSD Qualifie	C er	Unit mm/sec	D Clie	NRec 100	Control Prep Ty %Rec. Limits 75-125	Samp pe: To 2 lethod pe: To	le Dup tal/NA RPD Limit 10 Blank tal/NA
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Aethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte	9733/12 xalinity, 1 30/7 M Resu	otal B MB It Qualifier	Spike Added 3.12	RL	LCSD Result 3.118	LCSD Qualifie	C er iit	Unit mm/sec	D Clie	NRec 100	% Rec. Limits 75-125	Samp pe: To 2 ethod pe: To zed	le Dup tal/NA RPD Limit 10 Blank tal/NA Dil Fac
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Aethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity	9733/12 xalinity, 1 30/7 M Resu 5 5	otal B MB It Qualifier	Spike Added 3.12	RL 5.0	LCSD Result 3.118	LCSD Qualifie	c iit	Unit D	D Clie	NRec 100	Analy Odv/10/18	Samp pe: To 2 ethod pe: To 2 zed 17:40	le Dup ttal/NA RPD Limit 10 Blank ttal/NA Dil Fac
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Aethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity Bicarbonate Alkalinity as CaCO3 Gerbeste Alkalinity as CaCO3	9733/12 xalinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	Fotal B MB It Qualifier 0 U 0 U	Spike Added 3.12	RL 5.0 5.0	LCSD Result 3.118	LCSD Qualifie 5.0 mg 5.0 mg	iit iit	Unit D_	D Clie	NRec 100	Control Prep Ty %Rec. Limits 75-125 pile ID: M Prep Ty 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 2 zed 17:40 47:40	Limit Limit 10 Blank tal/NA
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Aethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hordrovide Alkalinity as CaCO3	9733/12 xalinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	otal B MB It Qualifier 0 U 0 U 0 U	Spike Added 3.12	RL 5.0 5.0 5.0	LCSD Result 3.118	LCSD Qualifie VIDL Un 5.0 mg 5.0 mg 5.0 mg	er iit g/L g/L	Unit D	D Clie	ID: Lat	Control Prep Ty %Rec. Limits 75-125 pple ID: M Prep Ty Analy 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 77:40 17:40 17:40 17:40	le Dup tal/NA RPD Limit 10 Blank tal/NA Dil Fac
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Alethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide Alkalinity Carbon Divide Erec	9733/12 salinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	otal B MB It Qualifier 0 U 0 U 0 U 0 U 0 U	Spike Added 3.12	RL 5.0 5.0 5.0 5.0 5.0	LCSD Result 3.118	VIDL Un 5.0 mg 5.0 mg 5.0 mg 5.0 mg	it	Unit mm/sec	D Clie	ID: Lat	Control Prep Ty % Rec. Limits 75-125 pple ID: M Prep Ty Analy 04/10/18 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 7:40 17:40 17:40 17:40	Limit Limit 10 Blank btal/NA Dil Fac
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability //ethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide Alkalinity Carbon Dioxide, Free Deapolottbalein Alkalinity	9733/12 salinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	otal B MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	Spike Added 3.12	RL 5.0 5.0 5.0 5.0 5.0 5.0	LCSD Result 3.118	VIDL Un 5.0 mg 5.0 mg 5.0 mg 5.0 mg 5.0 mg	iit j /L j /L j /L j /L	Unit mm/sec	D Clie	ID: Lat	Control Prep Ty %Rec. Limits 75-125 pple ID: M Prep Ty Analy 04/10/18 04/10/18 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 7:40 17:40 17:40 17:40 17:40 17:40	le Dup tal/NA RPD Limit 10 Blank tal/NA Dil Fac 1 1 1 1
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Alethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity Bicarbonate Alkalinity as CaCO3 Carbon Dioxide, Free Phenolphthalein Alkalinity Bicarbonate ion as HCO3	9733/12 calinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	Fotal B MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	Spike Added 3.12	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.1	LCSD Result 3.118	LCSD Qualifie 5.0 6.1	iit <i>i</i> /L <i>y</i> /L <i>y</i> /L <i>y</i> /L <i>y</i> /L	Unit mm/sec	D Clie	ID: Lat	Control Prep Ty % Rec. Limits 75-125 pile ID: M Prep Ty 04/10/18 04/10/18 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 7:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40	Limit RPD Limit 10 Blank tal/NA Dil Fac 1 1 1 1 1 1 1 1
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Alethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide Alkalinity Carbon Dioxide, Free Phenolphthalein Alkalinity Bicarbonate ion as HCO3 Lab Sample ID: LCS 680-5195 Matrix: Water	9733/12 calinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	Fotal B MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 1 U	Spike Added 3.12	RL 5.0 5.0 5.0 5.0 5.0 6.1	LCSD Result 3.118	LCSD Qualifie VIDL Un 5.0 mg 5.0 mg 5.0 mg 5.0 mg 5.0 mg 5.0 mg 6.1 mg	it it j /L j /L j /L j /L	Unit mm/sec D Client	D Clie	NRec 100 nt San	Control Prep Ty % Rec. Limits 75-125 pple ID: M Prep Ty Analy 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 2 ethod pe: To 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40	Limit RPD Limit 10 Blank tal/NA Dil Fac 1 1 1 1 1 1 3 ample tal/NA
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability //ethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Akalinity Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide Alkalinity Carbon Dioxide, Free Phenolphthalein Alkalinity Bicarbonate ion as HCO3 Lab Sample ID: LCS 680-5195 Matrix: Water Analysis Batch: 519530	9733/12 calinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	Fotal B MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 1 U	Spike Added 3.12	RL 5.0 5.0 5.0 5.0 5.0 5.0 6.1	LCSD Result 3.118	VDL Un 5.0 mg 5.0 mg 5.0 mg 5.0 mg 6.1 mg	iit	Unit mm/sec	D D Clie	NRec 100 nt San repared	Control Prep Ty % Rec. Limits 75-125 pple ID: M Prep Ty Analy 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 2 ethod pe: To 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40	Limit RPD Limit 10 Blank tal/NA Dil Fac 1 1 1 1 1 1 3 ample tal/NA
Lab Sample ID: LCSD 680-519 Matrix: Solid Analysis Batch: 519733 Analyte Ignitability Alethod: 2320B-2011 - Alk Lab Sample ID: MB 680-51953 Matrix: Water Analysis Batch: 519530 Analyte Alkalinity Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide Alkalinity Carbon Dioxide, Free Phenolphthalein Alkalinity Bicarbonate ion as HCO3 Lab Sample ID: LCS 680-5195 Matrix: Water Analysis Batch: 519530 Analyte	9733/12 calinity, 1 30/7 M Resu 5 5 5 5 5 5 5 5 5 5 5 5 5	Fotal B MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 1 U	Spike Added 3.12	RL 5.0 5.0 5.0 5.0 5.0 5.0 6.1	LCSD Result 3.118	VDL Un 5.0 mg 5.0 mg 5.0 mg 6.1 mg LCS	C iii j/L j/L j/L j/L j/L j/L	Unit mm/sec D	D Clie Pr	NRec 100 nt San repared	Control Prep Ty %Rec. Limits 75-125 nple ID: M Prep Ty 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18 04/10/18	Samp pe: To 2 ethod pe: To 2 2 ethod pe: To 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40 17:40	Limit RPD Limit 10 Blank tal/NA Dil Fac 1 1 1 1 1 3 ample tal/NA

Page 57 of 73

		QC	Samp	le	Resi	ılts						
Client: Georgia State University Project/Site: Monitoring Well Installation								TestA	America	Job ID: 6	80-150	889-1
Method: 2320B-2011 - Alkalinity,	То	tal (Co	ntinued	d)								3
Lab Sample ID: LCSD 680-519530/16 Matrix: Water						C	Client Sa	ample	ID: Lab	Control Prep Tv	Sampl	e Dup 4
Analysis Batch: 519530			Snike		LCSD	LCSD				%Rec.		RPD 5
Analyte			Added		Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit 6
			230		200		Ing/L		101	00-120		7
Method: 2540C-2011 - Total Diss	olv	ed Soli	ds (Dri	ed a	at 180) °C)						
Lab Sample ID: MB 680-519801/1 Matrix: Water								Clie	nt Sam	ple ID: M Prep Ty	ethod pe: Tot	Blank ⁸ tal/NA
Analysis Batch: 519801	мв	МВ										
Analyte Re:	sult	Qualifier		RL		MDL Unit		D Pr	epared	Analy	zed	Dil Fac 1
Total Dissolved Solids	5.0	U		5.0		5.0 mg/L				04/11/18	12:30	1
Lab Sample ID: LCS 680-519801/2 Matrix: Water							Clie	nt San	nple ID	: Lab Cor Prep Ty	ntrol Sa pe: Tot	ample tal/NA
Analysis Batch: 519801			0		100	1.00				0/ D		
Analyte			Added		Result	Qualifier	Unit	D	% Rec	% Rec. Limits		
Total Dissolved Solids			68.8		71.0		mg/L		103	80 - 120		
Lab Sample ID: LCSD 680-519801/3 Matrix: Water						C	Client Sa	ample	ID: Lab	Control Prep Ty	Sample pe: Tot	e Dup tal/NA
Analysis Batch: 519801												
Analyte			Spike Added		Result	Qualifier	Unit	D	% Rec	% Rec. Limits	RPD	Limit
Total Dissolved Solids			68.8		74.0		mg/L		108	80 - 120	4	25
Lab Sample ID: MB 680-519837/1 Matrix: Water Analysis Batch: 519837								Clie	nt Sam	ple ID: M Prep Ty	ethod pe: Tot	Blank tal/NA
Analyte Re	MB	MB Qualifier		RI		VIDI Unit		D Pr	enared	Analy	zed	Dil Fac
Total Dissolved Solids	5.0	U		5.0		5.0 mg/L			opurou	04/12/18	15:54	1
Lab Sample ID: LCS 680-519837/2 Matrix: Water							Clie	ent San	nple ID	: Lab Cor Prep Ty	ntrol Sa pe: Tot	ample tal/NA
Analysis Batch: 519837			Spike		LCS	LCS				%Rec.		
Analyte			Added		Result	Qualifier	Unit	D	% Rec	Limits		
			50.0		11.0		mg/L		112	00-120		
Lab Sample ID: LCSD 680-519837/3 Matrix: Water						(Client Sa	ample	ID: Lab	Control Prep Ty	Sample pe: Tot	e Dup tal/NA
Analysis Batch: 519837			Spike		LCSD	LCSD				%Rec.		RPD
Analyte			Added		Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Total Dissolved Solids			68.8		73.0		mg/L		106	80 - 120	5	25

Page 58 of 73

			QC	Samp	le	Resi	ults						
Client: Georgia State University Project/Site: Monitoring Well Inst	allation								Test	America	Job ID: 68	0-150	889-1
Method: 9012B - Cyanide,	, Total a	and	lor Am	enable									3
Lab Sample ID: MB 680-51971 Matrix: Solid	14/1 - A								Clie	ent Samp	ole ID: Me Pren Tyn	thod I	Blank 4
Analysis Batch: 519778											Prep Bat	ch: 5'	19714 5
Apolyto	Ba	MB	MB		ы					repored	Apolyza	d	Dil Eas
Cvanide Total		0.13			0.50		0.13 mg/K		04/1	12/18 05:29	04/12/18 1	u 0:56	
			•				ente migni	9	• • • •				
Lab Sample ID: LCS 680-5197 Matrix: Solid	'14/2-A							Clie	nt Sa	mple ID:	Lab Cont Prep Type	rol Sa e: Tot	ample 7 al/NA
Analysis Batch: 519778											Prep Bat	ch: 5′	19714 8
Analyte				Spike		LCS	LCS	Unit	п	% Rec	% Rec.		
Cvanide. Total				4.85		4.81	acuanner	ma/Ka		99	75-125		೨
Lab Sample ID: 680-150889-1	MS									Cli	ent Samp	e ID:	SB04
Matrix: Solid											Prep Type	e: Tot	al/NA
Analysis Batch: 519778	Sample	Sam	anle	Spike		MS	MS				Prep Bat	cn: 5	19/14
Analyte	Result	Qua	lifier	Added		Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total	0.20	J		6.34		6.85		mg/Kg		105	75 - 125		
Lab Sample ID: 680-150889-1	MSD									Cli	ent Sampl	e ID:	SB04
Matrix: Solid Analysis Batch: 519778											Prep Type Prep Bat	e: 100 ch: 5/	ai/NA 10717
Analysis Baten, 515110	Sample	Sam	nple	Spike		MSD	MSD				%Rec.	cn. 5	RPD
Analyte	Result	Qua	difier	Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	0.20	J		6.41		6.60		mg/Kg	— <u>\$</u>	100	75-125	4	30
Mothadi 0024 Culfida A	aid Cal	ubl	o and b	naalub		Tituina	ofrio)						
wethod: 9034 - Suinde, Ad	cia Soi	lau	e and l	nsolup	ie (I Itrim	ietric)						
Lab Sample ID: MB 680-51970)8/1-A								Clie	ent Samp	ole ID: Me	thod	Blank
Matrix: Solid											Prep Type	e: Tot	al/NA
Analysis Batch: 519/10		MB	MB								Prep Bat	ch: 5'	19708
Analyte	Re	sult	Qualifier		RL		MDL Unit		D P	repared	Analyze	d	Dil Fac
Sulfide		60	U		60		60 mg/K	g	04/1	12/18 04:00	04/12/18 0	4:30	1
Lab Sample ID: LCS 680-5197	′08/2-A							Clie	nt Sa	mple ID:	Lab Cont	rol Sa	imple
Matrix: Solid Analysis Batch: 519710											Prop Type	e: 100 ch:5/	ai/NA 10709
Analysis Batch. 515710				Spike		LCS	LCS				%Rec.	un. J	197 00
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits		
Sulfide				1250		1180		mg/Kg		94	50 - 150		
Lab Sample ID: LCSD 680-519	9708/3-A						c	Client Sa	mple	ID: Lab	Control S	ample	e Dup
Matrix: Solid											Prep Type	e: Tot	al/NA
Analysis Batch: 519710				Spike		LCSD	LCSD				Rec.	cn: 5'	RPD
Analyte				Added		Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Sulfide				1250		1170		mg/Kg		93	50 - 150	1	50

Page 59 of 73

	QC Samp	ole Resu	ılts				==	
Client: Georgia State University Project/Site: Monitoring Well Installation					l estA	merica	a Job ID: 680-150889-1	
Method: 9045D - Corrosivity as	рΗ							
Lab Sample ID: LCS 680-520696/1 Matrix: Solid				Clie	nt San	nple ID	: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 520696	Spike	LCS	LCS				%Rec.	5
Analyte corrosivity by pH	Added 7.00	Result 7.1	Qualifier	Unit SU	D	% Rec 101	Limits	6
Lab Sample ID: 680-150889-1 DU						С	lient Sample ID: SB04	
Analysis Batch: 520696	Sampla	DU	DU				Prep Type: Total/NA	
Analyte Result	Qualifier	Result	Qualifier	Unit	D			
	ΠF	5.0		30			4 40	

Page 60 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

Project/Site: Monitorir	ng Well Installation		IE	ID ID	2 2
GC/MS VOA					3
Analysis Batch: 519	398				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 680-519459/1-A	Method Blank	Total/NA	Water	8260B	519459 5
MB 680-519398/9	Method Blank	Total/NA	Water	8260B	
LCS 680-519398/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-519398/5	Lab Control Sample Dup	Total/NA	Water	8260B	•••••••••••••••••••••••••••••••••••••••
Leach Batch: 51945	9				7
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 680-519459/1-A	Method Blank	Total/NA	Water	1311	8
Analysis Batch: 519	536				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MW-01	Total/NA	Water	8260B	10
680-150889-3	MW-02	Total/NA	Water	8260B	
680-150889-4	Trip Blank	Total/NA	Water	8260B	
MB 680-519536/9	Method Blank	Total/NA	Water	8260B	
LCS 680-519536/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-519536/6	Lab Control Sample Dup	Total/NA	Water	8260B	
Prep Batch: 519552					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	5035	
Analysis Batch: 519	580				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	8260B	519552
MB 680-519580/11	Method Blank	Total/NA	Solid	8260B	
LCS 680-519580/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-519580/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
Leach Batch: 51959	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	TCLP	Solid	1311	
LB 680-519599/1-A	Method Blank	TCLP	Solid	1311	
680-150889-1 MS	SB04	TCLP	Solid	1311	
680-150889-1 MSD	SB04	TCLP	Solid	1311	
Analysis Batch: 519	861				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	TCLP	Solid	8260B	519599
LB 680-519599/1-A	Method Blank	TCLP	Solid	8260B	519599
MB 680-519861/9	Method Blank	Total/NA	Solid	8260B	
LCS 680-519861/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-519861/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
680-150889-1 MS	SB04	TCLP	Solid	8260B	519599
680-150889-1 MSD	SB04	TCLP	Solid	8260B	519599

TestAmerica Savannah

Client: Georgia State University Project/Site: Monitoring Well Installation

5
7

GC/MS Semi VOA	i i				
Prep Batch: 519522					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	3546	
MB 680-519522/7-A	Method Blank	Total/NA	Solid	3546	
LCS 680-519522/8-A	Lab Control Sample	Total/NA	Solid	3546	
Leach Batch: 519572					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	TCLP	Solid	1311	
LB 680-519572/1-B	Method Blank	TCLP	Solid	1311	
Prep Batch: 519670					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	TCLP	Solid	3520C	519572
LB 680-519572/1-B	Method Blank	TCLP	Solid	3520C	519572
MB 680-519670/16-A	Method Blank	Total/NA	Solid	3520C	
LCS 680-519670/20-A	Lab Control Sample	Total/NA	Solid	3520C	
Prep Batch: 519677					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MW-01	Total/NA	Water	3520C	
680-150889-3	MW-02	Total/NA	Water	3520C	
MB 680-519677/8-A	Method Blank	Total/NA	W/ater	3520C	
LCS 680-519677/9-A	Lab Control Sample	Total/NA	Water	3520C	
LCSD 680-519677/10-A	Lab Control Sample Dup	Total/NA	Water	3520C	
Analysis Batch: 5197	63				
Lab Sample ID	Client Sample ID	Prop Type	Matrix	Mathod	Prop Batch
MB 680-519522/7-A	Method Blank	Total/NA	Solid	82700	519522
LCS 680-519522/8-A	Lab Control Sample	Total/NA	Solid	8270D	519522
Analysis Batch: 5200	45				
Lab Sample ID	Client Sample ID	Pren Tyne	Matrix	Method	Pren Batch
680-150889-1	SB04	Total/NA	Solid	8270D	519522
Analysis Patch: 5200	40	Total TV	Solid	02100	010022
Analysis Batch. 5200	45				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-51967778-A	Method Blank	I otal/NA	Water	8270D	519677
LCS 680-519677/9-A	Lab Control Sample	Total/NA	Water	8270D	519677
LCSD 680-519677/10-A	Lab Control Sample Dup	Total/NA	Water	8270D	519677
Analysis Batch: 5200	52				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MVV-01	Total/NA	Water	8270D	519677
680-150889-3	MW-02	Total/NA	Water	8270D	519677
Analysis Batch: 5201	85				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	TCLP	Solid	8270D	519670
LB 680-519572/1-B	Method Blank	TCLP	Solid	8270D	519670
MB 680-519670/16-A	Method Blank	Total/NA	Solid	8270D	519670
LCS 680-519670/20-A	Lab Control Sample	Total/NA	Solid	8270D	519670

TestAmerica Savannah

Page 62 of 73

Client: Georgia State University Project/Site: Monitoring Well Installation

HPLC/IC

Analysis Batch: 519736

680-150889-1 MSD

SB04

HPLC/IC					
Analysis Batch: 5197	736				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MVV-01	Total/NA	Water	9056A	
680-150889-2	MVV-01	Total/NA	Water	9056A	
680-150889-3	MVV-02	Total/NA	Water	9056A	
680-150889-3	MW-02	Total/NA	Water	9056A	
MB 680-519736/88	Method Blank	Total/NA	Water	9056A	
LCS 680-519736/89	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-519736/90	Lab Control Sample Dup	Total/NA	Water	9056A	
Metals					
rep Batch: 519479					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	7471B	
MB 680-519479/1-A	Method Blank	Total/NA	Solid	7471B	
LCS 680-519479/2-A	Lab Control Sample	Total/NA	Solid	7471B	
680-150889-1 MS	SB04	Total/NA	Solid	7471B	
680-150889-1 MSD	SB04	Total/NA	Solid	7471B	
Prep Batch: 519520					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	3050B	
MB 680-519520/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 680-519520/2-A	Lab Control Sample	Total/NA	Solid	3050B	
680-150889-1 MS	SB04	Total/NA	Solid	3050B	
680-150889-1 MSD	SB04	Total/NA	Solid	3050B	
Prep Batch: 519560					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MVV-01	Total/NA	Water	7470A	
680-150889-3	MW-02	Total/NA	Water	7470A	
MB 680-519560/13-A	Method Blank	Total/NA	Water	7470A	
LCS 680-519560/14-A	Lab Control Sample	Total/NA	Water	7470A	
_each Batch: 519572					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
000-150889-1		TOLP	Solid	1311	
LB 680-5195/2/1-C	wethod Blank	TOLP	Solid	1311	
LB 680-5195/2/1-D	Method Blank	ICLP	Solid	1311	
680-150889-1 MS	SB04	ICLP	Solid	1311	
680-150889-1 MSD	SB04	TCLP	Solid	1311	
Analysis Batch: 5197	787				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	6010C	519520
MB 680-519520/1-A	Method Blank	Total/NA	Solid	6010C	519520
LCS 680-519520/2-A	Lab Control Sample	Total/NA	Solid	6010C	519520
680-150889-1 MS	SB04	Total/NA	Solid	6010C	519520

6010C

Total/NA

Solid

4/20/2018

519520

TestAmerica Job ID: 680-150889-1

109

Metals (Continue	d)				
Prep Batch: 519887					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	TCLP	Solid	7470A	519572
LB 680-519572/1-C	Method Blank	TCLP	Solid	7470A	519572
MB 680-519887/1-A	Method Blank	Total/NA	Solid	7470A	
LCS 680-519887/2-A	Lab Control Sample	Total/NA	Solid	7470A	
680-150889-1 MS	SB04	TCLP	Solid	7470A	519572
680-150889-1 MSD	SB04	TCLP	Solid	7470A	519572
Analysis Batch: 5199	903				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	7471B	519479
MB 680-519479/1-A	Method Blank	Total/NA	Solid	7471B	519479
LCS 680-519479/2-A	Lab Control Sample	Total/NA	Solid	7471B	519479
680-150889-1 MS	SB04	Total/NA	Solid	7471B	519479
680-150889-1 MSD	SB04	Total/NA	Solid	7471B	519479
Analysis Batch: 519	944				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MW-01	Total/NA	Water	7470A	519560
680-150889-3	MW-02	Total/NA	Water	7470A	519560
MB 680-519560/13-A	Method Blank	Total/NA	Water	7470A	519560
LCS 680-519560/14-A	Lab Control Sample	Total/NA	Water	7470A	519560
Prep Batch: 520055					
Lah Sample ID	Client Sample ID	Pren Type	Matrix	Method	Pren Batch
680-150889-2	MW-01	Total/NA	Water	3010A	
680-150889-3	MW-02	Total/NA	Water	3010A	
MB 680-520055/1-A	Method Blank	Total/NA	Water	3010A	
LCS 680-520055/2-A	Lab Control Sample	Total/NA	Water	3010A	
Analysis Batch: 520	140				
Lah Sample ID	Client Sample ID	Pren Type	Matrix	Method	Pren Batch
680-150889-1	SB04	TCLP	Solid	7470A	519887
LB 680-519572/1-C	Method Blank	TCLP	Solid	7470A	519887
MB 680-519887/1-A	Method Blank	Total/NA	Solid	7470A	519887
LCS 680-519887/2-A	Lab Control Sample	Total/NA	Solid	7470A	519887
680-150889-1 MS	SB04	TCLP	Solid	7470A	519887
680-150889-1 MSD	SB04	TCLP	Solid	7470A	519887
Prep Batch: 520523					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	TCLP	Solid	3010A	519572
LB 680-519572/1-D	Method Blank	TCLP	Solid	3010A	519572
MB 680-520523/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 680-520523/2-A	Lab Control Sample	Total/NA	Solid	3010A	
680-150889-1 MS	SB04	TCLP	Solid	3010A	519572
680-150889-1 MSD	SB04	TCLP	Solid	3010A	519572
Analysis Batch: 5207	707				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2		Total/NA	Water	6010C	520055
680-150889-3	MW-02	Total/NA	Water	6010C	520055

TestAmerica Savannah

Page 64 of 73

Metals (Continued)

Analysis Batch: 520707 (Continued)

Client: Georgia State University Project/Site: Monitoring Well Installation

Lab Sample ID	Client Sample ID	Prep Type	₩atrix	₩ethod	Prep Batch	
MB 680-520055/1-A	Method Blank	Total/NA	Water	6010C	520055	5
LCS 680-520055/2-A	Lab Control Sample	Total/NA	Water	6010C	520055	
Analysis Batch: 5208	374					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	7
680-150889-1	SB04	TCLP	Solid	6010C	520523	1
LB 680-519572/1-D	Method Blank	TCLP	Solid	6010C	520523	
MB 680-520523/1-A	Method Blank	Total/NA	Solid	6010C	520523	
LCS 680-520523/2-A	Lab Control Sample	Total/NA	Solid	6010C	520523	
680-150889-1 MS	SB04	TCLP	Solid	6010C	520523	
680-150889-1 MSD	SB04	TCLP	Solid	6010C	520523	
Analysis Batch: 5208	277					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
680-150889-2	MW-01	Total/NA	Water	2340B-2011		
680-150889-3	MW-02	Total/NA	Water	2340B-2011		
MB 680-520877/1	Method Blank	Total/NA	Water	2340B-2011		

General Chemistry

Analysis Batch: 519530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MW-01	Total/NA	Water	2320B-2011	
680-150889-3	MW-02	Total/NA	Water	2320B-2011	
MB 680-519530/7	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-519530/8	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-519530/16	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

Analysis Batch: 519542

Lab Sample ID 680-150889-1	Client Sample ID SB04	Prep Type Total/NA	Matrix Solid	Method Moisture	Prep Batch
Prep Batch: 519708					
Lab Sample ID 680-150889-1	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 9030B	Prep Batch
MB 680-519708/1-A	Method Blank	Total/NA	Solid	9030B	
LCS 680-519708/2-A	Lab Control Sample	Total/NA	Solid	9030B	
LCSD 680-519708/3-A	Lab Control Sample Dup	Total/NA	Solid	9030B	

Analysis Batch: 519710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	9034	519708
MB 680-519708/1-A	Method Blank	Total/NA	Solid	9034	519708
LCS 680-519708/2-A	Lab Control Sample	Total/NA	Solid	9034	519708
LCSD 680-519708/3-A	Lab Control Sample Dup	Total/NA	Solid	9034	519708

Prep Batch: 519714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	9012B	
MB 680-519714/1-A	Method Blank	Total/NA	Solid	9012B	

TestAmerica Savannah

General Chemistry (Continued)

General Chemist	ry (Continued)				
Prep Batch: 519714	(Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-519714/2-A	Lab Control Sample	Total/NA	Solid	9012B	·
680-150889-1 MS	SB04	Total/NA	Solid	9012B	
680-150889-1 MSD	SB04	Total/NA	Solid	9012B	
Analysis Batch: 519	733				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	1030	·
MB 680-519733/1	Method Blank	Total/NA	Solid	1030	
LCS 680-519733/2	Lab Control Sample	Total/NA	Solid	1030	
LCSD 680-519733/12	Lab Control Sample Dup	Total/NA	Solid	1030	
Analysis Batch: 519	778				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	9012B	519714
MB 680-519714/1-A	Method Blank	Total/NA	Solid	9012B	519714
LCS 680-519714/2-A	Lab Control Sample	Total/NA	Solid	9012B	519714
680-150889-1 MS	SB04	Total/NA	Solid	9012B	519714
680-150889-1 MSD	SB04	Total/NA	Solid	9012B	519714
Analysis Batch: 519	801				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-2	MW-01	Total/NA	Water	2540C-2011	
680-150889-3	MW-02	Total/NA	Water	2540C-2011	
MB 680-519801/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-519801/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-519801/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	
Analysis Batch: 519	837				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-519837/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-519837/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-519837/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	
Analysis Batch: 520	696				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-150889-1	SB04	Total/NA	Solid	9045D	
LCS 680-520696/1	Lab Control Sample	Total/NA	Solid	9045D	
680-150889-1 DU	SB04	Total/NA	Solid	9045D	

TestAmerica Savannah

Lab Chronicle

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: SB04

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-1 Matrix: Solid

oate Collecte Date Receive	ed: 04/09/18 14 ed: 04/10/18 08	4:00 8:00							Ma	atrix: Soli
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
TCLP	Leach	1311			20.05 g	400 mL	519599	04/11/18 16:45	EAB	TAL SAV
TCLP	Analysis Instrument	8260B ID: CMSP2		20	5 mL	5 mL	519861	04/13/18 14:41	JLK	TAL SAV
TCLP	Leach	1311			100.13 g	2000 mL	519572	04/11/18 16:50	EAB	TAL SAV
TCLP	Prep	3520C			205.7 mL	1 mL	519670	04/12/18 15:10	CMJ	TAL SAV
TCLP	Analysis Instrument	8270D ID: CMSN		1			520185	04/17/18 01:31	KNW	TAL SAV
TCLP	Leach	1311			100.13 g	2000 mL	519572	04/11/18 16:50	EAB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	520523	04/18/18 13:16	AJR	TAL SAV
TCLP	Analysis Instrument	6010C ID: ICPF		1			520874	04/19/18 16:53	BCB	TAL SAV
TCLP	Leach	1311			100.13 g	2000 mL	519572	04/11/18 16:50	EAB	TAL SAV
TCLP	Prep	7470A			0.5 mL	50 mL	519887	04/13/18 09:27	NVF	TAL SAV
TCLP	Analysis Instrument	7470A ID: LEEMAN2		1			520140	04/16/18 09:24	NVF	TAL SAV
Total/NA	Analysis Instrument	1030 ID: NOEQUIP		1			519733	04/12/18 07:57	CFJ	TAL SAV
Total/NA	Analysis Instrument	9045D ID: GEpHM2		1	19.91 g	20 mL	520696	04/19/18 13:18	CFJ	TAL SAV
Total/NA	Analysis Instrument	Moisture ID: NOEQUIP		1			519542	04/11/18 09:25	EAB	TAL SAV

Client Sample ID: SB04 Date Collected: 04/09/18 14:00 Date Received: 04/10/18 08:00

Lab Sample ID: 680-150889-1 Matrix: Solid Percent Solids: 76.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.514 g	5 mL	519552	04/11/18 09:15	FES	TAL SAV
Total/NA	Analysis Instrumen	8260B t ID: CMSAB		1	5 g	5 g	519580	04/11/18 18:08	JLK	TAL SAV
Total/NA	Prep	3546			15.51 g	1 mL	519522	04/11/18 08:30	JAM	TAL SAV
Total/NA	Analysis Instrumen	8270D t ID: CMSN		1			520045	04/15/18 21:02	DBM	TAL SAV
Total/NA	Prep	3050B			1.17 g	100 mL	519520	04/11/18 06:50	CDD	TAL SAV
Total/NA	Analysis Instrumen	6010C t ID: ICPF		1			519787	04/11/18 21:10	BCB	TAL SAV
Total/NA	Prep	7471B			0.58 g	50 mL	519479	04/10/18 15:11	NVF	TAL SAV
Total/NA	Analysis Instrumen	7471B t ID: LEEMAN2		1			519903	04/12/18 17:59	NVF	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	519714	04/12/18 05:29	DAM	TAL SAV
Total/NA	Analysis Instrumen	9012B t ID: LACHAT1		1			519778	04/12/18 10:14	DAM	TAL SAV
Total/NA	Prep	9030B			1.05 g	6 mL	519708	04/12/18 04:00	DAM	TAL SAV

TestAmerica Savannah

Page 67 of 73

4/20/2018

				Lab (Chronicl	е				
Client: Georgia Project/Site: N	a State Unive Ionitoring We	ersity Il Installation					T	TestAmerica Jo	ob ID: 68	0-150889-1
Client Sam	ple ID: SB	04					La	ib Sample I	D: 680- M	150889-1 atrix: Solid
Date Receive	d: 04/10/18 0	8:00						P	ercent S	olids: 76.5
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	9034 nt ID: NOEQUIP		1	6 mL	6 mL	519710	04/12/18 04:30	DAM	TAL SAV
Client Sam Date Collecte Date Receive	ple ID: MW d: 04/09/18 (d: 04/10/18 0	/-01 09:00 08:00					La	b Sample I	D: 680- Ma	150889-2 trix: Water
Pren Tyne	Batch	Batch Method	Run	Dil	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	8260B nt ID: CMSP2		1	5 mL	5 mL	519536	04/11/18 15:14	Y1S	TAL SAV
Total/NA Total/NA	Prep Analysis Instrumer	3520C 8270D nt ID: CMST		1	1039.4 mL	1 mL	519677 520052	04/12/18 15:10 04/16/18 00:03	CMJ KNW	TAL SAV TAL SAV
Total/NA	Analysis Instrumer	9056A nt ID: CICK		1	5 mL	5 mL	519736	04/12/18 20:38	CJM	TAL SAV
Total/NA	Analysis Instrumer	9056A nt ID: CICK		5	5 mL	5 mL	519736	04/12/18 20:51	CJM	TAL SAV
Total/NA	Analysis Instrumer	2340B-2011 nt ID: NOEQUIP		1			520877	04/20/18 12:15	BCB	TAL SAV
Total/NA Total/NA	Prep Analysis Instrumer	3010A 6010C nt ID: ICPF		1	50 mL	50 mL	520055 520707	04/14/18 16:02 04/18/18 19:12	AJR BCB	TAL SAV TAL SAV
Total/NA Total/NA	Prep Analysis Instrumer	7470A 7470A nt ID: LEEMAN2		1	50 mL	50 mL	519560 519944	04/11/18 09:42 04/13/18 08:23	NVF NVF	TAL SAV TAL SAV
Total/NA	Analysis Instrumer	2320B-2011 nt ID: MANTECH		1			519530	04/10/18 18:09	BTD	TAL SAV
Total/NA	Analysis Instrumer	2540C-2011 nt ID: NOEQUIP		1	50 mL	100 mL	519801	04/11/18 12:30	BTD	TAL SAV

Client Sample ID: MW-02 Date Collected: 04/09/18 09:55 Date Received: 04/10/18 08:00

Lab Sample ID: 680-150889-3 Matrix: Water

Prep Type Total/NA	Batch Type Analysis Instrument	Batch Method 8260B ID: CMSP2	Run	Dil Factor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 519536	Prepared or Analyzed 04/11/18 18:32	Analyst Y1S	Lab TAL SAV
Total/NA Total/NA	Prep Analysis Instrument	3520C 8270D : ID: CMST		1	1043.9 mL	1 mL	519677 520052	04/12/18 15:10 04/16/18 00:27	CMJ KNW	TAL SAV TAL SAV
Total/NA	Analysis Instrument	9056A : ID: CICK		1	5 mL	5 mL	519736	04/12/18 21:04	CJM	TAL SAV

TestAmerica Savannah

Page 68 of 73

Lab Chronicle

Client: Georgia State University Project/Site: Monitoring Well Installation

Client Sample ID: MW-02

Date Collected: 04/09/18 09:55

TestAmerica Job ID: 680-150889-1

Lab Sample ID: 680-150889-3 Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
otal/NA	Analysis Instrumen	9056A t ID: CICK		5	5 mL	5 mL	519736	04/12/18 21:17	CJM	TAL SAV
Fotal/NA	Analysis Instrumen	2340B-2011 t ID: NOEQUIP		1			520877	04/20/18 12:15	BCB	TAL SAV
Total/NA Total/NA	Prep Analysis Instrumen	3010A 6010C t ID: ICPF		1	50 mL	50 mL	520055 520707	04/14/18 16:02 04/18/18 19:06	AJR BCB	TAL SAV TAL SAV
Total/NA Total/NA	Prep Analysis Instrumen	7470A 7470A t ID: LEEMAN2		1	50 mL	50 mL	519560 519944	04/11/18 09:42 04/13/18 08:33	NVF NVF	TAL SAV TAL SAV
Total/NA	Analysis Instrumen	2320B-2011 t ID: MANTECH		1			519530	04/10/18 18:15	BTD	TAL SAV
Fotal/NA	Analysis Instrumen	2540C-2011 t ID: NOEQUIP		1	50 mL	100 mL	519801	04/11/18 12:30	BTD	TAL SAV

Client Sample ID: Trip Blank Date Collected: 04/09/18 00:00 Date Received: 04/10/18 08:00

Lab Sample ID: 680-150889-4 Matrix: Water

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 519536	Prepared or Analyzed 04/11/18 14:25	Analyst Y1S	Lab TAL SAV
	Instrument	ID: CMSP2								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

	Accreditatio	on/Certificatio	n Summary		
Client: Georgia State Project/Site: Monitorin	University g Well Installation		Tes	tAmerica Job ID: 680-150889-1	
Laboratory: Test	America Savannah ions listed below are applicable to this r	report.			
Authority	Program	EPA Region	Identification Number	Expiration Date	
Georgia	State Program	4	803	06-30-18	5
					9

Page 70 of 73

Method Summary

Client: Georgia State University Project/Site: Monitoring Well Installation

Metals (ICP)

Mercury (CVAA)

Mercury (CVAA)

Ignitability, Solids

Corrosivity as pH

Percent Moisture

TCLP Extraction

Preparation, Total Metals

Preparation, Metals

Microwave Extraction

Preparation, Mercury

Preparation, Mercury

Purge and Trap

Alkalinity, Total

Method Description

Anions, Ion Chromatography

Volatile Organic Compounds (GC/MS)

Semivolatile Organic Compounds (GC/MS)

Total Hardness (as CaCO3) by calculation

Total Dissolved Solids (Dried at 180 °C)

Liquid-Liquid Extraction (Continuous)

Closed System Purge and Trap

Sulfide, Acid Soluble and Insoluble (Titrimetric)

Cyanide, Total andor Amenable

Method

8260B

8270D

9056A

6010C

7470A

7471B

1030

9012B

9045D

Moisture

9034

1311

3010A

3050B

3520C

5030B

5035

7470A

7471B

9012B

9030B

3546

2340B-2011

2320B-2011

2540C-2011

TestAmerica Job ID: 680-150889-1

Laboratory

TAL SAV

Protocol

SW846

EPA

SM

SM

SM

10	
11	

Protocol	References

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

Cyanide, Total and/or Amenable, Distillation

Sulfide, Distillation (Acid Soluble and Insoluble)

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

TestAmerica Savannah																24
5102 LaRoche Avenue Bovanneh, GA 31404 Ponse / 4301 Statz Peter Ex. / 6303 Stor Alee	0	Chain (of Cus	tody R	ecor	-				5	tan	84-2	3		€ST>	20200
Client Information	Sampler:			Lab Pr	Korton Korto					Ca	mer Tra	king No	(s):		COC No:	
Cliant Contact: Dr. Brian Meyer	Phone:			E-Mail						Τ					680-92602-36878 Page:	8.1
Company: Georgia State University				עכמור		Clean	amence	A matu	E 4						Page 1 of 2 Job#:	
Address: Dept of GeoSciences 24 Peachtree Center Avenue Suite 340	Due Date Reques	:ed:					F							-	Preservation Code	
City. Atlanta	TAT Requested (d	ays):													A - HCL B - NaOH	M - Hexane N - None
State, Zip: GA, 30303															C - Zn Acetate D - Nitric Acid E - NaHSO4	0 - AsNaO2 P - Na204S 0 - Na2SO3
Phone: 404-391-3339(Tel)	PO #: Purchase Orde	r not require			6	_					əfe'l				F - MeCH G - Amchlor	R - Na2S203 S - H2S04
Email: bmeyer2@gsu.edu	:# OM				le) or No					_	ng % e			ę	H - Ascorbic Acid 1 - Ice	1 - TSP Dodecahydrate U - Acetone
Project Name: Monitoring Well Installation	Project #: 68019780				6967) (_	tiles D	phold;	E		spiloS	K - EDTA	v - muceo W - pH 4-5 Z - other (specify)
Site:	SSOW#:				anne SD (X0			səlltek		4, 904 (b)	28D - C			pevlos	Other:	
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=orab)	Matrix Wewaterald, Oewastelall,	Sberetu 1 bian M/SM phitethe M/SM phitethe	S60B - VOCs	220D - 2X0D - 2X0C+	S608 - TCLP Vo	A0747, 2010	220D - TCLP Se	MRDRO_A880	2208 - Alfalinity 22.09.02	SODB - AOCS	sid IsloT - Obk	S JOUWIN (B)G	
	X	X	Preserva	BIOTI Code		8 7	8 Z 9 Z	8 3	9 7	8	6 7	5	.8	17	Special Inst	tructions/Note:
5BOA	Alglig	(ACO	I	Solid		-		:		2	2		<	2		
5BOA	419118	141V	J	Solid	-	-		r.		-		+				
				Solid			┢	7	1	-		+		<u>* .</u>		
NW-OI				Water						-	-	-	6	-	4	
MW-OZ				Water			1			╞	-		26			
				Water						+	-	-		-		
				Water			-	†							1	
				Water			-	1								
							-	1								
							-	1 1	680-1	50883	0 Cha	Ú Ú	ustody			
Breakhia Hassed Identification								_	_	_	_	-	_		-	
Non-Hazard Crammable Skin Irriant Coison	1 B []		dintocinal		Sampi	e Disp	osal (A fee /	nay bi	9 2550	ssed	samp	les an	e retal	ned longer than 1 n	nonth)
Deliverable Requested: I, II, III, IV, Other (specify)			innikoioin		Specia	Instru	ctions/	ac Re	quiren	Tents:	Sal B	Lab		AG	hive For	Months
Empty Kit Reinquished by:		Date:			ime:						Metho	d of Ship	ment:			
Kelinquished by	Date/Time:	10	66.6	ompany C	Rec	in the second		R		K		R	STING.	1		~ Auterturo
Relinquighed by:	Date/Time:	7:25		Alenha	VER _	eived by	8	N	1	1			(Time:			Jul U Company
	Date/Time:		<u> </u>	ompany	Rec	d bavit	H	6	2	K	17	Dat	ou//	10	08:00	Company 72
oustudy areats milliard: Uutstody seal No.: ∆ Yes ∆ No					2000	ler Tem	oerature	(s) °C ar	Id Other	Remar		10/.	15	1	1.7/1.2.0	
					•					1	-	1				Ver: 08/04/2016
								12	11						4 5 6	
								2	1							

Page 72 of 73

Login Sample Receipt Checklist

Login Sample Recei	pt Checkl	ist	
Client: Georgia State University		Job Number: 680-150889-1	
Login Number: 150889 List Number: 1 Creator: Edwards, Jessica R		List Source: TestAmerica Savannah	4 5
Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		12
COC is filled out with all pertinent information.	False	No date or time on COC or containers.	12
Is the Field Sampler's name present on COC?	N/A		
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.	
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	False	No date or time on COC or sample containers	
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested $\ensuremath{MS/MSDs}$	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

TestAmerica Savannah

Page 73 of 73

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-159059-1 Client Project/Site: Monitoring Well Installation

For:

Georgia State University Dept of GeoSciences 24 Peachtree Center Avenue Suite 340 Atlanta, Georgia 30303

Attn: Dr. Brian Meyer

Mik Com

Authorized for release by: 10/22/2018 4:05:23 PM Keaton Conner, Project Manager I (813)885-7427

keaton.conner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

Definitions/Glossary

Client: Georg	gia State University TestAmerica Job ID: 680-159059-1	
Project/Site:	Monitoring Well Installation	2
Qualifiers	;	3
HPLC/IC		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	0
Metals		
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	7
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	
General Ch	emistry	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	•
Glossary		. 10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	. 49
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	

- DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision Level Concentration (Radiochemistry) DLC EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) PQL Practical Quantitation Limit Quality Control QC RER Relative Error Ratio (Radiochemistry) Reporting Limit or Requested Limit (Radiochemistry) RL RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Savannah

	Sam	ole Summary		1
Client: Georgia St Project/Site: Moni	ate University toring Well Installation		estAmerica Job ID: 680-15905	⁵⁹⁻¹ 2
Lab Sample ID	Client Samle ID	Matrix	Collected Receive	
680-159059-1	RW - 01	Water	10/07/18 14:00 10/10/18 0	^{99:40} 4
				5
				8
				9

10/22/2018

Page 3 of 14

Case Narrative

Client: Georgia State University Project/Site: Monitoring Well Installation

Job ID: 680-159059-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE Client: Georgia State University Project: Monitoring Well Installation

Report Number: 680-159059-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 10/10/2018; the samples arrived in good condition and properly preserved. The temperature of the coolers at receipt was 21.6° C.

RECEIPT EXCEPTIONS

The following sample was received at the laboratory outside the required temperature criteria: RW - 01 (680-159059-1). The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

METALS (ICP)

Sample RW - 01 (680-159059-1) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 10/13/2018 and analyzed on 10/22/2018.

Aluminum, Calcium and Silver were detected in method blank MB 680-543244/1-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

<u>ALKALINITY</u>

Sample RW - 01 (680-159059-1) was analyzed for alkalinity in accordance with SM 2320B. The samples were analyzed on 10/15/2018.

TOTAL DISSOLVED SOLIDS

Sample RW - 01 (680-159059-1) was analyzed for total dissolved solids in accordance with SM 2540C. The samples were analyzed on 10/11/2018.

9056 ANIONS

Sample RW - 01 (680-159059-1) was analyzed for 9056 Anions in accordance with SW 846 9056. The samples were analyzed on 10/21/2018.

TOTAL HARDNESS (AS CACO3) BY CALCULATION

Sample RW - 01 (680-159059-1) was analyzed for total hardness (as CaCO3) by calculation in accordance with SM 2340B. The samples were analyzed on 10/22/2018.

Page 4 of 14

TestAmerica Savannah 10/22/2018 4

TestAmerica Job ID: 680-159059-

		Client	Sample R	esul	ts				
Client: Georgia State University Project/Site: Monitoring Well Instal	lation					Т	estAmerica .	lob ID: 680-15	9059-1
Client Sample ID: RW - 01						La	b Sample	ID: 680-159	059-1
Date Collected: 10/07/18 14:00 Date Received: 10/10/18 09:40								Matrix	: Water
Method: 9056A - Anions, Ion Cl	hromatogr	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.41	J	0.50	0.20	mg/L			10/21/18 00:40	1
Sulfate	0.40	U	1.0	0.40	mg/L			10/21/18 00:40	1
- Method: 2340B-2011 - Total Hai	rdness (as	CaCO3) by	calculation						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	3.3	U	3.3	3.3	mg/L			10/22/18 15:22	1
Ξ					-				
Method: 6010C - Metals (ICP)	_						_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	68	JB	200	24	ug/L		10/13/18 10:15	10/22/18 14:46	1
Antimony	12	J	20	5.3	ug/L		10/13/18 10:15	10/22/18 14:46	1
Arsenic	6.2	U	20	6.2	ug/L		10/13/18 10:15	10/22/18 14:46	1
Barium	130		10	1.7	ug/L		10/13/18 10:15	10/22/18 14:46	1
Beryllium	0.10	U	4.0	0.10	ug/L		10/13/18 10:15	10/22/18 14:46	1
Cadmium	1.0	U	5.0	1.0	ug/L		10/13/18 10:15	10/22/18 14:46	
Calcium	610	в	500	25	ug/L		10/13/18 10:15	10/22/18 14:46	1
Chromium	1.6	U	10	1.6	ug/L		10/13/18 10:15	10/22/18 14:46	1
Codait	1.0		10	1.0	ug/L		10/13/18 10:15	10/22/18 14:46	1
Copper	7.8	3	20	1.0	ug/L		10/13/16 10.15	10/22/10 14:46	1
lead	48	J	10	30	ug/L		10/13/18 10:15	10/22/18 14:46	1
Magnaaium	120	•	500	3.9	ug/L		10/13/18 10:15	10/22/18 14:46	·····
Magnesium	6.1		10	10	ug/L		10/13/18 10:15	10/22/18 14:46	1
Nickel	21	U U	40	2.1	ug/L		10/13/18 10:15	10/22/18 14:46	1
Potaesium	033		1000	17	ug/L		10/13/18 10:15	10/22/18 14:46	····· 1
Selenium	99	ŭ	20	99	ug/L		10/13/18 10:15	10/22/18 14:46	1
Silver	0.85	JB	10	0.60	ug/L		10/13/18 10:15	10/22/18 14:46	1
Sodium	490	1	1000	480	ua/L		10/13/18 10:15	10/22/18 14:46	
Thallium	6.0	U	25	6.0	ug/L		10/13/18 10:15	10/22/18 14:46	1
Vanadium	1.0	U	10	1.0	ua/L		10/13/18 10:15	10/22/18 14:46	1
Zinc	71		20	7.0	ug/L		10/13/18 10:15	10/22/18 14:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0	5.0	mg/L			10/15/18 11:51	1
Bicarbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/15/18 11:51	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/15/18 11:51	1
Hydroxide Alkalinity	5.0	U	5.0	5.0	mg/L			10/15/18 11:51	1
Carbon Dioxide, Free	5.0	U	5.0	5.0	mg/L			10/15/18 11:51	1
Phenolphthalein Alkalinity	5.0	U	5.0	5.0	mg/L			10/15/18 11:51	1
Bicarbonate ion as HCO3	6.1	U	6.1	6.1	mg/L			10/15/18 11:51	1
Total Dissolved Solids	5.0	U	5.0	5.0	mg/L			10/11/18 07:03	1

Page 5 of 14

light: Coordin State University			QC	Sam	ole	Resi	ults			Ŧ	oot Amoria-		0 150	050 4
roject/Site: Monitoring Well In:	y Istallation									I	estAmerica	00 U. 00	0-108	9009-1
lethod: 9056A - Anions	, Ion Chi	ron	natogra	phy										
Lab Sample ID: MB 680-544	217/65										Client Samp	ole ID: Me	thod	Blank
Matrix: Water												Prep Type	e: To	tal/NA
Analysis Batch: 544217														
		МВ	MB											
Analyte	Re	sult	Qualifier		RL		MDL U	nit		D	Prepared	Analyze	d	Dil Fac
Chloride		0.20	U		0.50		0.20 m	g/L		_		10/20/18 1	9:56	1
Sulfate		0.40	U		1.0		0.40 m	g/L				10/20/18 1	9:56	1
Lab Sample ID: LCS 680-544	4217/66								Cli	ent	Sample ID:	Lab Cont	rol S	ample
Matrix: Water												Prep Typ	e: To	tal/NA
Analysis Batch: 544217														
				Spike		LCS	LCS					%Rec.		
Analyte				Added		Result	Qualifi	er	Unit		D %Rec	Limits		
Chloride				10.0		9.98		<u> </u>	ma/L			90-110		
Sulfate				10.0		9.00 9.00			ma/l		100	90_110		
unuto				10.0		5.55			mg/L		100	50-110		
ab Sample ID: LCSD 680-54	44217/67							C	lient S	am	ple ID: Lab	Control S	ampl	e Dup
Matrix: Water												Prep Type	e: To	tal/NA
Analysis Batch: 544217														
				Spike		LCSD	LCSD					%Rec.		RPD
nalyte				Added		Result	Qualifi	er	Unit		D %Rec	Limits	RPD	Limit
Chloride				10.0		9.92			mg/L		99	90-110	1	15
Sulfate				10.0		9.71			mg/L		97	90-110	3	15
									-					
Lab Sample ID: 680-159059-	-1 DU										Client	t Sample	ID: R	W - 01
Matrix: Water												Pren Typ	e: To	tal/NA
alveis Batch: 544217												i icp i jp		cuntor (
analysis Baten: 544217	Sample	San	nole			DU	DU							RPD
	- and the second	-	lifior			Result	Oualifi	er	Unit		п		RPD	Limit
Analyte	Result	QU2	mmer					•.						45
Analyte	Result	Qua				0 403	J		ma/l				- 3	10
Analyte	0.41	Qua J				0.403	J		mg/L mg/l				3 NC	15
nnalyte Chloride Sulfate	Result 0.41 0.40	Qua J U				0.403 0.40	J U		mg/L mg/L				3 NC	15
Analyte	Result 0.41 0.40 otal Harc	Qua J U	ss (as (CaCO3	3) by	0.403 0.40		on	mg/L mg/L				3 NC	15
Analyte Chloride Sulfate Iethod: 2340B-2011 - To	Result 0.41 0.40 Otal Harc	Qua J U	ss (as (CaCO3	B) by	0.403 0.40 7 calc	U U U	on	mg/L mg/L		Client Same		3 NC	15 15
Analyte Chloride Sulfate lethod: 2340B-2011 - To Lab Sample ID: MB 680-544	Result 0.41 0.40 otal Harc 401/1	Qua J U	ss (as (CaCO3	B) by	0.403 0.40	U U U	on	mg/L mg/L		Client Samp	ole ID: Me	3 NC	15 15 Blank
Analyte Chloride Sulfate lethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water	Result 0.41 0.40 0tal Harc 401/1	Qua J U	ss (as (CaCO3	B) by	0.403 0.40		on	mg/L mg/L		Client Samp	ole ID: Me Prep Type	3 NC thod e: To	Blank tal/NA
Malyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401	Result 0.41 0.40 0tal Harc 401/1		SS (as (CaCO3	B) by	0.403 0.40		on	mg/L mg/L		Client Samp	ble ID: Me Prep Type	3 NC thod e: To	Blank tal/NA
Analyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401	Result 0.41 0.40 0tal Harc 401/1		SS (as (CaCO3	B) by	0.403 0.40		on	mg/L mg/L		Client Samp	ble ID: Me Prep Type	3 NC thod e: To	Blank tal/NA
nalyte hloride sulfate ethod: 2340B-2011 - To .ab Sample ID: MB 680-5444 fatrix: Water \nalysis Batch: 544401 .nalyte	Result 0.41 0.40 0tal Harc 401/1 Re		MB Qualifier	CaCO3	8) by	0.403 0.40		nit	mg/L mg/L	D	Client Samp	ble ID: Me Prep Type Analyze	3 NC thod e: To	Blank tal/NA Dil Fac
Analyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Aatrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate	Result 0.41 0.40 0tal Harc 401/1 Re	MB sult 3.3	MB Qualifier		RL 3.3	0.403 0.40	MDL U 3.3 m	nit g/L	mg/L mg/L	D	Client Samp Prepared	Die ID: Me Prep Type Analyze 10/22/18 1	3 NC thod e: To ed 5:22	Blank tal/NA Dil Fac
Analyte Chloride Sulfate Iethod: 2340B-2011 - To Lab Sample ID: MB 680-544 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate Iethod: 6010C - Metals	Result 0.41 0.40 0tal Harc 401/1 	Qua J U Ine Sult 3.3	MB Qualifier U	CaCO3	RL 3.3	0.403 0.40	MDL U 3.3 m	nit g/L	mg/L mg/L	D	Client Samp Prepared	Die ID: Me Prep Type Analyze 10/22/18 1	3 NC thod e: To ed 5:22	Blank tal/NA Dil Fac
Analyte Chloride Sulfate lethod: 2340B-2011 - To Lab Sample ID: MB 680-544 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate lethod: 6010C - Metals Lab Sample ID: MB 680-543	Result 0.41 0.40 0tal Harc 401/1 Re (ICP) 244/1-A	Qua J U Ine Sult 3.3	MB Qualifier U	CaCO3	RL 3.3	0.403 0.40 calc	MDL U 3.3 m	nit g/L	mg/L mg/L	D	Client Samp Prepared	Die ID: Me Prep Type Analyze 10/22/18 1	thod e: To	Blank tal/NA Dil Fac 1
Analyte Chloride Sulfate lethod: 2340B-2011 - To Lab Sample ID: MB 680-544 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate lethod: 6010C - Metals Lab Sample ID: MB 680-543; Matrix: Water	Result 0.41 0.40 0tal Harc 401/1 	Qua J U Ine MB sult 3.3	MB Qualifier U	CaCO3	RL 3.3	0.403 0.40 7 calc	MDL U	nit g/L	mg/L mg/L	D	Client Samp Prepared Client Samp	Analyze 10/22/18 1 Die ID: Me Prep Type	thod e: To ed 5:22	Blank tal/NA Dil Fac 1 Blank
Analyte Chloride Sulfate Lethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate Lethod: 6010C - Metals Lab Sample ID: MB 680-543; Matrix: Water Natyrix: Water	Result 0.41 0.40 0tal Harc 401/1 	MB sult 3.3	MB Qualifier U	CaCO3	RL 3.3	0.403 0.40 7 calc	MDL U	nit g/L	mg/L mg/L	<u>D</u>	Client Samp Prepared Client Samp	Analyze 10/22/18 1 Die ID: Me Prep Type Prep Type	3 NC thod e: To ed 5:22 thod e: To	Blank tal/NA Dil Fac 1 Blank tal/NA
malyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401 Malyte Hardness as calcium carbonate ethod: 6010C - Metals Lab Sample ID: MB 680-5433 Matrix: Water Analysis Batch: 544400	Result 0.41 0.40 0tal Harc 401/1 	Quaa J U Ine MB sult 3.3	MB Qualifier U	CaCO3	RL 3.3	0.403 0.40 calc	MDL U	nit g/L	mg/L mg/L	D	Client Samp Prepared Client Samp	ole ID: Me Prep Type Analyze 10/22/18 1 Die ID: Me Prep Type Prep Bat	thod e: To ed 5:22 thod e: To tch: 5	Blank tal/NA Dil Fac 1 Blank tal/NA 43244
Analyte Chloride Sulfate Lethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate Lethod: 6010C - Metals Lab Sample ID: MB 680-5433 Matrix: Water Analysis Batch: 544400 Analyte	Result 0.41 0.40 0tal Harc 401/1 	MB MB Sult	MB Qualifier U	CaCO3	RL 3.3	0.403 0.40 calc	MDL U	nit g/L	mg/L mg/L	D	Client Samp Prepared Client Samp	Analyze Analyze 10/22/18 1 Die ID: Me Prep Type Prep Bat	thod e: To sd 5:22	Blank tal/NA Dil Fac 1 Blank tal/NA 43244
Inalyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate ethod: 6010C - Metals Lab Sample ID: MB 680-5433 Matrix: Water Analysis Batch: 544400 Analysis Batch: 544400 Analysis Batch: 544400 Analysis Batch: 544400	Result 0.41 0.40 0tal Harc 401/1 Re (ICP) 244/1-A Re	MB Sult 3.3 MB	MB Qualifier U MB Qualifier	CaCO3	RL 200	0.40 0.40	MDL U	nit g/L	mg/L mg/L	D	Client Sam Prepared Client Sam	Analyze 10/22/18 1 Die ID: Me Prep Type Prep Bat Analyze	thod sid size To thod e: To thod e: To thod e: To thod e: To	Blank tal/NA Dil Fac 1 Blank tal/NA 43244 Dil Fac
Analyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-544 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate ethod: 6010C - Metals Lab Sample ID: MB 680-543; Matrix: Water Analysis Batch: 544400 Analyte Numinum	Result 0.41 0.40 otal Harc 401/1 Re (ICP) 244/1-A	MB Sult 3.3 MB Sult 25.0	MB Qualifier U MB Qualifier J	CaCO3	RL 3.3 RL 200	0.403 0.40 Calc	MDL U 24 up	nit g/L	mg/L mg/L		Client Samp Prepared Client Samp Prepared 10/13/18 10:15	Analyze 10/22/18 1 Die ID: Me Prep Type Prep Type Prep Bat Analyze 10/22/18 1	3 3 NC thod e: To 5:22 thod e: To tch: 5	Blank tal/NA Dil Fac 1 Blank tal/NA 43244 Dil Fac
Analyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-544 Matrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate ethod: 6010C - Metals Lab Sample ID: MB 680-543 Matrix: Water Analysis Batch: 544400 Analyte Numinum Analyte Numinum Analyte	Result 0.41 0.40 otal Harc 401/1	MB sult 3.3 MB sult 5.3	MB Qualifier U MB Qualifier J U	CaCO3	Fill State Stat	0.403 0.40 7 calc	MDL U 3.3 m MDL U 24 u 5.3 u	nit g/L g/L	mg/L mg/L	<u>D</u>	Client Samp Prepared Client Samp Prepared 10/13/18 10:15 10/13/18 10:15	Die ID: Me Prep Type 10/22/18 1 Die ID: Me Prep Type Prep Bat 10/22/18 1 10/22/18 1	3 NC thod e: To 5:22 thod e: To tch: 5 d 4:38 4:38	Blank tal/NA Dil Fac 1 Blank tal/NA 43244 Dil Fac 1
Analyte Chloride Sulfate Lab Sample ID: MB 680-5444 Aatrix: Water Analysis Batch: 544401 Analyte Hardness as calcium carbonate ethod: 6010C - Metals Lab Sample ID: MB 680-5433 Matrix: Water Analysis Batch: 544400 Vinalyte Juminum vitimony visenic	Result 0.41 0.40 otal Harc 401/1 Re (ICP) 244/1-A	Qual J U Ine Sult 3.3 MB sult 25.0 5.3 6.2	MB Qualifier U MB Qualifier J U U	CaCO3	FL 200 20 20 20	0.403 0.40 7 calc	MDL U 3.3 m MDL U 24 u 5.3 u 6.2 u	nit g/L nit g/L	mg/L mg/L		Client Samp Prepared Client Samp Prepared 10/13/18 10:15 10/13/18 10:15	Die ID: Me Prep Type 10/22/18 1 Die ID: Me Prep Type Prep Bat 10/22/18 1 10/22/18 1 10/22/18 1	3 NC thod e: To od 5:22 thod e: To tch: 5 cd 4:38 4:38 4:38	Blank tal/NA Dil Fac 1 Blank tal/NA 43244 Dil Fac 1 1
Analyte Chloride Sulfate Lethod: 2340B-2011 - T(Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401 Analysis Batch: 544401 Analyte Lab Sample ID: MB 680-5433 Matrix: Water Analysis Batch: 544400 Analysis Batch: 54400 Analysis Batch: 5400 Analysis Bat	Result 0.41 0.40 otal Harc 401/1 Re (ICP) 244/1-A Re	MB sult 25.0 5.3 6.2 1.7	MB Qualifier U MB Qualifier J U U U	CaCO3	RL 3.3 RL 200 20 20 10	0.403 0.40 7 calc	MDL U 3.3 m MDL U 24 u 5.3 u 6.2 u 1.7 u	nit g/L nit g/L g/L g/L g/L	mg/L mg/L		Client Samp Prepared Client Samp Prepared 10/13/18 10:15 10/13/18 10:15 10/13/18 10:15	Die ID: Me Prep Type 10/22/18 1 Die ID: Me Prep Type Prep Bat 10/22/18 1 10/22/18 1 10/22/18 1 10/22/18 1	3 NC thod 5:22 thod e: To tch: 5 d 4:38 4:38 4:38	Blank tal/NA Dil Fac 1 Blank tal/NA 43244 Dil Fac 1 1 1
Analyte Chloride Sulfate ethod: 2340B-2011 - To Lab Sample ID: MB 680-5444 Matrix: Water Analysis Batch: 544401 Analyte tardness as calcium carbonate ethod: 6010C - Metals Lab Sample ID: MB 680-5433 Matrix: Water Analysis Batch: 544400 Vinalyte Juminum Analysis Batch: 544400 Vinalyte	Result 0.41 0.40 otal Harc 401/1 Re (ICP) 244/1-A	Qual J U Ince MB sult 3.3 MB sult 25.0 5.3 6.2 1.7 0.10	MB Qualifier U MB Qualifier J U U U U	CaCO3	RL 200 20 20 10 4.0	0.40 0.40 calc	MDL U 24 u 5.3 u 6.2 u 1.7 u 0.10 u	nit g/L g/L g/L g/L g/L g/L	mg/L mg/L		Client Samp Prepared Client Samp Prepared 10/13/18 10:15 10/13/18 10:15 10/13/18 10:15 10/13/18 10:15	Die ID: Me Prep Type 10/22/18 1 Die ID: Me Prep Type Prep Bat 10/22/18 1 10/22/18 1 10/22/18 1	3 NC thod e: To thod e: To tch: 5 tch: 5 ed 4:38 4:38 4:38 4:38	Blank tal/NA Dil Fac 1 Blank tal/NA 43244 Dil Fac 1 1 1 1 1

Page 6 of 14

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-159059-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 680-54324 Matrix: Water	4/1 -A						Client Samp	le ID: Method Prep Type: To	l Blank otal/NA	4
Analysis Batch: 544400	МВ	мв						Prep Batch:	543244	5
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Calcium	26.1	J	500	25	ug/L		10/13/18 10:15	10/22/18 14:38	1	6
Chromium	1.6	U	10	1.6	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Cobalt	1.0	U	10	1.0	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Copper	1.8	U	20	1.8	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Iron	17	U	50	17	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Lead	3.9	U	10	3.9	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Magnesium	33	U	500	33	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Manganese	1.0	U	10	1.0	ug/L		10/13/18 10:15	10/22/18 14:38	1	-
Nickel	2.1	U	40	2.1	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Potassium	17	U	1000	17	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Selenium	9.9	U	20	9.9	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Silver	0.605	J	10	0.60	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Sodium	480	U	1000	480	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Thallium	6.0	U	25	6.0	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Vanadium	1.0	U	10	1.0	ug/L		10/13/18 10:15	10/22/18 14:38	1	
Zinc	7.0	U	20	7.0	ug/L		10/13/18 10:15	10/22/18 14:38	1	

Lab Sample ID: LCS 680-543244/2-A Matrix: Water **Analysis Batc**

Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver

Sodium

Thallium

Vanadium

Zinc

D: LCS 680-543244/2-A				Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA
:h: 544400	Spike	LCS	LCS				Prep Batch: 543244 %Rec.
	Added	Result	Qualifier	Unit	D	%Rec	Limits
	5000	5040		ug/L		101	80 - 120
	50.0	50.4		ug/L		101	80 - 120
	100	107		ug/L		107	80 - 120
	100	102		ug/L		102	80 - 120
	50.0	52.1		ug/L		104	80 - 120
	50.0	51.5		ug/L		103	80 - 120
	5000	5100		ug/L		102	80 - 120
	100	104		ug/L		104	80 - 120
	50.0	51.4		ug/L		103	80 - 120
	100	104		ug/L		104	80 - 120
	5000	5030		ug/L		101	80 - 120
	500	507		ug/L		101	80 - 120
	5000	5040		ug/L		101	80 - 120
	500	525		ug/L		105	80 - 120
	100	103		ug/L		103	80 - 120
	8000	7440		ug/L		93	80 - 120
	100	101		ug/L		101	80 - 120
	50.0	52.3		ug/L		105	80 - 120

5090

38.8

101

104

ug/L

ug/L

ug/L

ug/L

TestAmerica Savannah

102

80-120 97 80-120

101 80-120

104 80-120

Page 7 of 14

5000

40.0

100

100

		ວດ	Samr	ole	Resi	ılts								1
Client: Georgia State University Project/Site: Monitoring Well Installatio	n	40	o ann						Test	America	Job ID: 6	80-15	9059-1	2
Method: 2320B-2011 - Alkalini	ty, To	otal											- 1	
Lab Sample ID: MB 680-543500/8									Clie	ent Sam	ple ID: M	ethod	Blank	
Matrix: Water Analysis Batch: 543500											Prep Ty	pe: To	tal/NA	
Analysis Batem 640000	MВ	МВ												Э
Analyte	Result	Qualifier		RL	I	MDL	Unit		D P	repared	Analy:	zed	Dil Fac	6
Alkalinity	5.0	U		5.0		5.0	mg/L				10/15/18	11:33	1	0
Bicarbonate Alkalinity as CaCO3	5.0	U		5.0		5.0	mg/L				10/15/18	11:33	1	
Carbonate Alkalinity as CaCO3	5.0	U		5.0		5.0	mg/L				10/15/18	11:33	1	
Hydroxide Alkalinity	5.0	U		5.0		5.0	mg/L				10/15/18	11:33	1	•
Carbon Dioxide, Free	5.0	U		5.0		5.0	mg/L				10/15/18	11:33	1	
Phenolphthalein Alkalinity	5.0	U		5.0		5.0	mg/L				10/15/18	11:33	1	
Bicarbonate ion as HCO3	6.1	U		6.1		6.1	mg/L				10/15/18	11:33	1	9
Lab Sample ID: LCS 680-543500/9								Clie	ent Sa	mple ID	: Lab Cor	ntrol S	ample	
Analysis Patch: 542500											гер ту	pe. 10		
Analysis Batch, 545500			Spike		105	LCS					%Rec			
Analyte					Result	Qual	ifior	Unit	п	% Rec	l imits			
Alkalinity			250		250			mg/L		100	80 - 120		— í	
								•						
Lab Sample ID: LCSD 680-543500/3	5						C	lient S	ample	ID: Lab	Control	Samp	le Dup	
Matrix: Water									- T.		Prep Ty	pe: To	tal/NA	
Analysis Batch: 543500														
			Spike		LCSD	LCS	D				%Rec.		RPD	
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit	
Alkalinity			250		267			mg/L		107	80 - 120	6	30	
Method: 2540C-2011 - Total Di	ssolv	ved Soli	ids (Dr	ied a	at 18	0 °C)							
Γ			(/							
Lab Sample ID: MB 680-542992/1									Clie	ent Sam	iple ID: M	ethod	Blank	
Matrix: Water											Prep Ty	pe: To	tal/NA	
Analysis Batch: 542992														
	MВ	MB												
Analyte	Result	Qualifier		RL		MDL	Unit		D P	repared	Analy:	zed	Dil Fac	
Total Dissolved Solids	10	U		10		10	mg/L				10/11/18	07:03	1	
Lab Sample ID: LCS 680-542992/2 Matrix: Water								Clie	ent Sa	mple ID	: Lab Cor Prep Tv	ntrol S	ample tal/NA	
Analysis Batch: 542992														
			Spike		LCS	LCS			_		%Rec.			
Analyte			Added		Result	Qual	itier	Unit	D	% Rec	Limits			
I otal Dissolved Solids			55.0		63.0			mg/L		114	80-120			
Lab Sample ID: LCSD 680-542992/3 Matrix: Water	3						C	lient S	ample	ID: Lab	Control Prep Ty	Samp pe: To	le Dup tal/NA	
Analysis Batch: 542992														
			Spike		LCSD	LCS	D				%Rec.		RPD	
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit	
Total Dissolved Solids			55.0		58.0			mg/L		105	80 - 120	8	25	

Page 8 of 14

Client: Georgia State University Project/Site: Monitoring Well Installation

Project/Site: Monitorin	ng Well Installation		i e	SLAMENCA JOD ID.	2000-109009-1
HPLC/IC					3
Analysis Batch: 544	217				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-159059-1	RW - 01	Total/NA	Water	9056A	· · · · · · · · · · · · · · · · · · ·
MB 680-544217/65	Method Blank	Total/NA	Water	9056A	
LCS 680-544217/66	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-544217/67	Lab Control Sample Dup	Total/NA	Water	9056A	
680-159059-1 DU	RW - 01	Total/NA	Water	9056A	7
Metals					8
Prep Batch: 543244					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-159059-1	RW - 01	Total/NA	Water	3010A	
MB 680-543244/1-A	Method Blank	Total/NA	Water	3010A	
LCS 680-543244/2-A	Lab Control Sample	Total/NA	Water	3010A	
Analysis Batch: 544	400				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-159059-1	RW - 01	Total/NA	Water	6010C	543244
MB 680-543244/1-A	Method Blank	Total/NA	Water	6010C	543244
LCS 680-543244/2-A	Lab Control Sample	Total/NA	Water	6010C	543244
Analysis Batch: 544	401				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-159059-1	RW - 01	Total/NA	Water	2340B-2011	
MB 680-544401/1	Method Blank	Total/NA	Water	2340B-2011	

General Chemistry

Analysis Batch: 542992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-159059-1	RW - 01	Total/NA	Water	2540C-2011	
MB 680-542992/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-542992/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-542992/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	

Analysis Batch: 543500

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-159059-1	RW - 01	Total/NA	Water	2320B-2011	
MB 680-543500/8	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-543500/9	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-543500/35	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

TestAmerica Savannah

Page 9 of 14

Lab Chronicle

Client: Georgia State University Project/Site: Monitoring Well Installation

TestAmerica Job ID: 680-159059-1

lient Sam ate Collecte ate Receive	ple ID: RW - d: 10/07/18 14 d: 10/10/18 09:	• 01 :00 :40					La	b Sample II	D: 680- Ma	159059-1 trix: Water
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	9056A ID: CICK		1	5 mL	5 mL	544217	10/21/18 00:40	UI	TAL SAV
Total/NA	Analysis Instrument	2340B-2011 ID: NOEQUIP		1			544401	10/22/18 15:22	BCB	TAL SAV
Total/NA	Prep	3010A			50 mL	50 mL	543244	10/13/18 10:15	AJR	TAL SAV
Total/NA	Analysis Instrument	6010C ID: ICPE		1			544400	10/22/18 14:46	BCB	TAL SAV
Total/NA	Analysis Instrument	2320B-2011 ID: MANTECH		1			543500	10/15/18 11:51	BTD	TAL SAV
Total/NA	Analysis Instrument	2540C-2011 ID: NOEQUIP		1	200 mL	200 mL	542992	10/11/18 07:03	BTD	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

	Accreditatio	on/Certificatio	n Summary		1
Client: Georgia State Project/Site: Monitorir	University ng Well Installation		Tes	tAmerica Job ID: 680-159059-1	2
Laboratory: Test The accreditations/certifica	America Savannah tions listed below are applicable to this r	eport.			
Authority	Program	EPA Region	Identification Number	Expiration Date	
Georgia	State Program	4	N/A	06-30-19	5
					6
					8
					9

Page 11 of 14

Method Summary

		lai y		
Client: Georg Project/Site:	jia State University Monitoring Well Installation	TestAmerica Jo	b ID: 680-159059-1	
Method	Method Description	Protocol	Laboratory	
9056A	Anions, Ion Chromatography	SW846	TAL SAV	
2340B-2011	Total Hardness (as CaCO3) by calculation	SM	TAL SAV	
6010C	Metals (ICP)	SW846	TAL SAV	
2320B-2011	Alkalinity, Total	SM	TAL SAV	
2540C-2011	Total Dissolved Solids (Dried at 180 °C)	SM	TAL SAV	
3010A	Preparation, Total Metals	SW846	TAL SAV	
Protocol Re	ferences:			
SM = "St SW846 =	andard Methods For The Examination Of Water And Wastewater" "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods",	Third Edition, November 1986 And Its Update	es. 8	
Laboratory	References:		9	
TAL SAV	′ = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404,	TEL (912)354-7858		
			1	U

Laboratory References:

TestAmerica Savannah

Page 12 of 14

annan, GA 31404 ne (912) 354-7858 Fax (912) 352-0165						5	A MARKEN LINE	THE REPORT OF A DESCRIPTION OF A DESCRIP
ant Information	Sampier	Cor	om. ner, Keaton			Carrier Tracking No(s)	COC No 680-97206-386	96.1
r Contact 3rian Meyer	Phone	E-M kea	in conner@	estamerica	inc.com		Page: Page 1 of 1	
aany. rgia State University					Analysis Rec	juested	# qof	
ss t of GeoSciences 24 Peachtree Center Avenue Suite 34	Due Date Requested: 10						Preservation Co	des:
nta .2p .2p	TAT Requested (days):						A - NOL B - NaOH C - Zn Acetate D - Nitre Acid E - NaHSO4	M - FIEXANE N - None D - ASNaO2 P - Na2O4S Q - Na2SO3
e 391-3339(Tel)	PO# Purchase Order not required		(C				F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4 T - TSP Dodecahvdratt
r yer2@gsu.edu	WO#		No)	qe			b J - Di Water	U - Acetone V - MCAA
et Name itoring Well Installation	Project # 68019780 SSOW#		3D - Chlor (Yes or mple (Ye	122 herdo	000 00000		containe L-EDA Other:	W - PH 4-5 Z - other (specify)
ule Identification	Sample Date Time G	Type (www.itr. 5-scill Comp, Comstend.	sertorm MS/MS/ Pertorm MS/MSI SM/SM maaroo SMS/SM maaroo	23208 - Alkalinity 8010C, SM23408			Total Number of	netructions (Moto-
	XX	Preservation Code:	XX	NON			X	insu uctions/mote.
RW-01	00:11 &1/2/01	C Water		-			7	
						680-15	9059 Chain of Custody	
sible Hazard Identification	oison B	iological	Sample	Disposal (A fee may be	assessed if samples a	re retained longer than	1 month) Months
verable Requested: I, II, III, IV, Other (specify)			Special	nstructions	/QC Requireme	nts:	D DEEDE	CITICAL
ty Kit Relinquished by:	Date:		Time:			Method of Shipment		
quished by	Date/Time. 1 c/ 8 / 1 8 14 Date/Time.	H: UC COMPANY	C Rece	ved by	3 10	Date/Time 10/0 Date/Time	040 20-40	Company TOSAV Company
quished by	Date/Time:	Company	Recei	ved by		Date/Time		Company
dy Seals Intact Custody Seal No.			Coole	r Temperature	a(s) °C and Other F	temarks 2115	110	

Page 13 of 14

10/22/2018
Login Sample Receipt Checklist

Login Sample Receipt Checklist			
Client: Georgia State University		Job Number: 680-159059-1	
Login Number: 159059		List Source: TestAmerica Savannah	
List Number: 1 Creator: Nobles, Terry G			5
Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		9
Samples were received on ice.	True		
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.	
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		12
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	N/A		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		

Residual Chlorine Checked.

Page 14 of 14

N/A

Appendix D: GPR Profiles

