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ULTRAFAST PROCESSES IN PHOSPHORENE AND WEYL SEMIMETALS

by

FATEMEH NEMATOLLAHI

Under the Direction of Mark I. Stockman, PhD

ABSTRACT

In this dissertation, we study theoretically the nonlinear response of phosphorene and Weyl

semimetals to an ultrafast laser pulse. We apply a femtosecond pulse and investigate the

electron dynamics of the system in terms of the conduction band population. The optical

pulse induces a finite conduction band (CB) population in the reciprocal space. In case of

phosphorene, which is a semiconductor with a band gap ≈ 2 eV, the electron dynamics is

highly irreversible which means that the residual electron CB population after the pulse is

large and is comparable to the maximum conduction band population during the pulse. The

large CB population appears near the Γ point where the dipole matrix elements between

the valence band and the conduction band is strong. Also, the optical pulse causes both



interband and intraband electron dynamics during the pulse which a combination of both

produces a net current through the system.

The electron dynamics of three-dimensional topological Weyl semimetals in an ultrafast

linearly polarized pulse is coherent and highly anisotropic. For some directions of pulse po-

larization, the electron dynamics is irreversible, while for other directions of polarization, the

electron dynamics is highly reversible. Such high anisotropy in electron dynamics is related

to anisotropy in interband dipole matrix elements. The optical pulse also causes net charge

transfer through the system. The transferred charge has highly anisotropic dependence on

polarization direction with almost zero transferred charge for some directions.

Furthermore, we use the ultrafast pulse to illustrate the topological properties of Weyl

semimetals such as chirality and topological resonance. The femtosecond pulse induces

the topological resonance in Weyl semimetals. The topological resonance manifests itself in

the distribution of the CB population. Such distribution in the conduction band is highly

structured and is determined by the interference of the topological phase and the dynamic

phase. The topological phase originates from the dipole. The topological resonance causes

the Weyl points to be populated selectively, and this could be useful in applications such as

optoelectronic devices.

INDEX WORDS: Ultrafast processes, 2D Material, Phosphorene, Weyl semimetal,
TaAs, Ultrafast laser pulse, Topological resonance, Topological phase,
Berry curvature, Electron dynamics, Current, Transferred charge,
Electric field, Interband transition
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CHAPTER 1

INTRODUCTION

The availability of femtosecond laser sources has made great opportunities to explore the

ultrafast and nonlinear response of matter to the external electric field. The laser pulse

is considered ultrafast if the duration of pulse is shorter than all major relaxation times,

which is typically between 1 to 1000 femtoseconds. Study the ultrafast process in materials,

femtosecond and attosecond response to optical excitation, has been a subject of numerous

theoretical and experimental research recently [3–10]. In relation to potential application of

materials, it is very important to understand how these materials respond to applied external

electric fields. Such strong fields, ∼ 1 V/Å can strongly modify both optical and transport

properties of materials within an optical cycle, resulting, for instance, in metallization of

dielectric at a femtosecond time scale [11; 12]. Such metallization is observed as a finite

charge transfer through a system during the pulse [6; 11]. The electron dynamics in such

materials is highly reversible, i.e. that the residual conduction band (CB) population (the

population of the conduction band at the end of the pulse) is small. Such reversibility is

due to the large band gap, 4 ≈ 10 eV, of dielectric materials and w � 4
~ , where w is the

frequency of the optical pulse.

In contrast, for materials with a small band gap, w � 4
~ , the electron dynamics in a strong

external field is irreversible, which means that the residual CB population is large and is

comparable with the maximum CB population during the pulse. For example, Ref.[4] re-

ported the interaction of graphene with a strong ultrafast optical pulse with a duration of



2

a few femtoseconds. Graphene is a well known two-dimensional (2D) material which has

attracted great attention both experimentally and theoretically due to unique optical and

transport properties. The electron dynamics of graphene in a strong ultrafast field whose

duration τ is less than the electron scattering time ∼ 10− 100 fs [10; 13; 14] is highly nona-

diabatic and irreversible resulting in large CB population near the Dirac points at the end

of the pulse. This irreversibility is related to the singularity of the interband coupling near

the Dirac points. Also, it has been proposed [5] that attosecond strong-field interferometry

in graphene, in the absence of magnetic field, reveals its chirality nature related to the Berry

phase.

Zero band gap in graphene causes a relatively high off-current which limits its application

in electronics devices such as transistor and logic circuits [15; 16]. As a result, significant

effort has been devoted to identify alternative two-dimentional semiconductors. Similar to

graphene, monolayer transition metal dichalcogenides (TMDCs) is a 2D material with hexag-

onal lattices. TMDCs have two sublattices consist of different atoms (metal and chalcogen)

and have direct band gaps of 1.1− 2.1 eV [17; 18]. Ref. [19] theoretically introduces the val-

ley polarization and the topological resonance in TMDCs induced by a circularly-polarized

ultrafast pulse. The presence of valley polarization can be used in data processing in PHz-

band optoelectronics, and the concept of topological resonance stimulates developments in

topological strong-field optics of solids.

Another two-dimensional semiconductor which has attracted considerable attention is a

monolayer of phosphorene. Since phosphorene has a relatively large band gap, it could
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have a potential application in electronic devices. In this dissertation, we theoretically study

the dynamics of electrons in 2D-phosphorene under the interaction of the ultrafast and strong

optical pulses. Also, we studied the ultrafast phenomenon in three-dimensional topological

Weyl semimetals, which can be considered as a three dimensions of graphene, to underestand

how we can modify the electronic properties of graphene in three dimensions.

The dissertation starts with an introduction to the model and equations and then it follows

by introducing the properties of phosphorene and proceeds the study of ultrafast process

in phosphorene. We report the non-linear response of phosphorene to an ultrafast optical

pulse with a duration of a few femtoseconds. The results of this study could pave the way

for experimental studies on optical responses of phosphorene nanodevices. In the following

chapters, we theoretically study the electron dynamics of three dimensional topological Weyl

semimetals in the ultrafast laser field. In chapter four, we employ the effective Hamiltonian

model of Weyl semimetals to describe the behavior of electron near the Weyl points in an

external electric field. We apply both linearly and circularly polarized optical pulse. The

fifth chapter is related to the topological properties of Weyl semimetals. We study the topo-

logical resonance in Weyl semimetals. We apply both linearly and circularly polarized pulse

to induce the conduction band CB population in reciprocal space. We use the topological

phase to describe the texture of the CB population in the momentum space. Finally, using

a circularly polarized optical pulse, we propose self-referenced interferometry in reciprocal

space which reveals the intrinsic chirality of Weyl points in Weyl semimetals.
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CHAPTER 2

METHODS AND EQUATIONS

2.1 Theory of solids in strong ultrashort laser fields

In this dissertation we study the interaction of ultrashort, ultrastrong laser pulses with solids.

Ultrashort laser pulses are considered to be those whose pulse duration is less than a few

picoseconds (10−12s) long. The electric field in an ultrastrong laser pulse is of the order of

volts per angstrom which is comparable to the internal electric fields in solids. The propaga-

tion of the incident pulse in this case is characterized by the angle of incident, θ. We usually

determine the electron dynamics and pulse propagation, and their numerical solution for the

normally incident pulse, (θ = 0). The laser pulse is characterized by the following parame-

ters: the duration of the pulse τ and the amplitude of the pulse F0. In this dissertation we

consider only coherent electron pulse, τ . 10 (fs).

The electron dynamics in the external optical field is described by the time-dependent

Schrödinger equation (TDSE)

i~
dψ

dt
= Hψ, (2.1)

where

H = H0 + eF(t)r. (2.2)

Here, H0 is field free electron Hamiltonian, F is field, e is electron charge and r is a vector po-

sition. The applied optical pulse generates both interband and intraband electron dynamics.

The interband electron dynamics causes redistribution of electrons between the valence and
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conduction bands, while the intraband electron dynamics determines the electron dynamics

within a single band. Such intraband dynamics provides the main contribution to the charge

transfer, which is studied in the following chapters. The intraband electron dynamics is

described by the universal acceleration theorem [20] of the form

~
dk

dt
= eF(t), (2.3)

which has the following solution

kT (q, t) = q +
e

~

∫ t

−∞
F(t1)dt1, (2.4)

where q is the initial wave vector. Such intraband dynamics in the reciprocal space is

incorporated into the corresponding wave functions through the Houston functions [21] of

the form

Φ(H)
αq (r, t) = ψα(kT (q, t))e

− i
~

∫ t

−∞
dt1Eα

(
kT (q, t1)

)
. (2.5)

The Houston functions completely describe the intraband electron dynamics and are used

below as a basis, so that the general solution of the time dependent Schrödinger equation

(2.1) can be described as follows

ψq(r, t) =
∑
α=v,c

βαq(t)Φ
(H)
αq (r, t), (2.6)

where v and c denote the valence band and the conduction bands, respectively.

The expansion coefficients βαq(t) satisfy the following system of differential equations

dβαq
dt

= − i
~

F
∑
α1 6=α

Qαα1(t)βα1q(t), (2.7)
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where α, α1 = 1, 2, 3, ..., n. The time-dependent matrix Qαα1(t) is determined by the com-

ponent of the dipole matrix elements Dαα1(k) between bands α and α1

Qαα1(t) = Dαα1 [kT (q, t)]× e
− i

~

∫ t

−∞
dt1

(
Eα(kT (q, t1))− Eα1(kT (q, t1))

)
, (2.8)

where

Dαα1(k) = 〈ψ(α)
k |er|ψ

(α1)
k 〉 =

~
i

〈Φ(α1)|V̂ |Φ(α)〉
[Eα1(k)− Eα(k)]

. (2.9)

Here V̂ is the matrix element of the velocity operator

V̂ =
1

~
∂H0

∂K
. (2.10)

The system of equations (2.7) describes the interband electron dynamics. We characterize

the interband dynamics, i.e., the solution of the system of equations (2.7), by the time-

dependent conduction band populations |βc,q(t)|2. We also define the time-dependent total

population of the conduction bands

NCB,α(t) =
∑
q,j

|β(j)
α,q(t)|2, (2.11)

where α refers to the conduction bands. The index j corresponds to the initial conditions.

The interband and intraband electron dynamics results not only in redistribution of

electrons between the valence and conduction bands but also in generation of an electric
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current, which can be calculated from the following expression

Jj(t) = e

∫
dq

∑
α1=v,c

∑
α2=v,c

β∗α1q
(t)V α1α2

j βα2q(t), (2.12)

where j = x, y, z and V α1α2
j are the matrix elements of the velocity operator (2.10).

The generated current results in the charge transfer through the system, which is determined

by

Qtr =

∫ ∞
−∞

dtJ(t). (2.13)
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CHAPTER 3

PHOSPHORENE IN ULTRAFAST LASER FIELD

3.1 Introduction

Two-dimensional (2D) materials such as graphene, MoS2 and silicene, are a focus of theoret-

ical and experimental research because of their potential applications into next-generation

electronic devices [22–25]. Graphene has the honeycomb crystal structure with unique rel-

ativistic energy dispersion and chiral electron states and is still the most prominent two-

dimensional crystal. However, the lack of bandgap in graphene, has motivated an intensive

of works on semiconducting 2D materials [26–29] which can have application in electronic de-

vices and photodetectors. For other 2D materials, such as silicene or germanene, which have

crystal structure similar to graphene, a finite but small bandgap is opened due to relatively

large spin-orbit interaction. Such band gap can be controlled by an external electric field.

The discovery of monolayer group-VI transition metal dichalcogenides (TMDs), (M=Mo, W;

X=S, Se) [30; 31] which have been shown to possess direct energy gaps in the near-infrared to

the visible spectral region, has opened up a new window for photonics and optoelectronics.

In this relation, phosphorene has attracted intense attention recently. Phosphorene, an

atomic layer of black phosphorous, was realized by the mechanical exfoliation from the lay-

ered crystal of black phosphorous (BP) in 2014. It is a single component two-dimensional

(2D) crystal following graphene and silicene. Phosphorene has an orthorhombic crystal struc-

ture, where the phosphorous atom is directly bonded to three other neighboring atoms via

covalent bonds thus forming a puckered honeycomb structure because of hybridization, as
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shown in Figure 3.1 [2]. Single-layer black phosphorene is a direct-gap semiconductor with

a predicted band gap of 2 eV [32]. The band gap decreases with an increasing number of

layers and is 0.3 eV for the bulk phase. Unlike the indirect-to-direct band gap transition

in TMDCs, the band topology remains the same with changing thickness and all few-layer

phosphorene samples are direct semiconductors with the conduction band minimum at the

Γ point. The thickness independent band topology of phosphorene is important for its po-

tential photonics and optoelectronics applications. The gap value (0.3 − 2) eV is typically

smaller than those of the TMDC compounds (1.1− 2.5) eV but larger than the semimetal-

lic graphene, enabling phosphorene to possess a moderate on/off current ratio (104 − 105)

[33; 34] while having a sufficiently large carrier mobility (around 1000 (cm2/V.s)) [33] suit-

able for many applications. Based on semiconducting nature, researchers have fabricated

few-layer phosphorene field-effect transistors (FET) with on/off current ratios as high as 104

and carrier mobility levels as high as 1000 (cm2/V.s) at room temperature [34; 35]. In this

chapter we theoretically study the electron dynamics of phosphorene in an ultrafast optical

pulse. The results reveal the potential application of monolayer phosphorene in ultrafast

optoelectronics and electronics devices.
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3.2 Phosphorene four-band tight-binding model

The tight-binding (TB) Hamiltonian proposed for phosphorene is given by [2]

Hk =


0 Ak Bk Ck
A∗k 0 Dk Bk

B∗k D∗k 0 Ak
C∗k B∗k A∗k 0

 , (3.1)

where

Ak = t2 + t5e
−ika , (3.2)

Bk = 4t4e
−i(ka−kb)/2 cos(ka/2) cos(kb/2), (3.3)

Ck = 2eikb/2 cos(kb/2)(t1e
−ika + t3), (3.4)

Dk = 2eikb/2 cos(kb/2)(t1 + t3e
−ika). (3.5)

In each zigzag chain, the connection in the lower or upper layers are represented by t1

hopping integrals, and the connection between a pair of upper and lower zigzag chains are

illustrated by t2 hopping integrals. Further, t3 corresponds to the hopping integrals between

the nearest sites of a pair of zigzag chains in the upper or lower layer, and t4 represents the

hopping integrals between the next nearest neighbor sites of a pair of upper and lower zigzag

chains. Finally, t5 is the hopping integrals between two atoms on the upper and lower zigzag

chains that are farthest from each other. The specific values of these hopping integrals as

suggested in [36] are: t1 = −1.220 eV, t2 = 3.665 eV, t3 = −0.205 eV, t4 = −0.105 eV and
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Figure 3.1 (Color online) (a) Crystal structure and hopping integrals ti of phosphorene for
the TB model. (b) Top view . Note that the gray balls indicate the phosphorus atoms in
the upper (lower) layer. The primitive unit cell containing four atoms is shown by dotted
rectangle. The parameters for the bond angles and unit cell lengths are taken from Ref.[1].
This figure is taken from Ref. [2]

t5 = −0.055 eV.

As shown in Figure 3.1(b) the unit cell of the monolayer phosphorene is a rectangle containing

four phosphorous atoms.

Here ka = k.a and kb = k.b, where a = ax and b = by are the primitive translation

vectors of the structure displayed in Figure 3.2(a).

From the tight-binding Hamiltonian (3.1) we can find the energy spectrum, Eα(k), and

the corresponding wave functions, ψα(k). Here α = 1, 2, 3, 4 where α = 1, 2 correspond to

two valence bands and α = 3, 4 correspond to two conduction bands. The band gap of

phosphorene is ≈ 2 eV.
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Figure 3.2 (Color online) (a) Lattice structure of 2D phosphorene. The red and blue dots
represent phosphorous atoms in the upper and lower layers, respectively. The dashed lines
show the primitive unit cell, which contains four atoms. The primitive vectors a and b are
also shown. The parameters for the unit cell lengths are taken from Ref [1]. (b) Electronic
band structure of phosphorene.

3.3 Phosphorene in an external strong electric field

We assume that an ultrashort optical pulse propagates along kz, where kz is the out of plane

quasimomentum and incident normally on a phosphorene , and has the following profile:

F (t) = F0e
−u2(1− 2u2), (3.6)

where F0 is the amplitude of the pulse, u = t/τ , and τ is the pulse’s duration. The experi-

mentally realized profile of the ultrastrong optical pulse can be found in Ref.[12].

For the shape of the pulse given by Eq.(3.6), the area under the pulse is always zero,∫ t
−∞ F (t)dt = 0. Below we assume that τ = 1 fs, which corresponds to the carrier fre-

quency of w ≈ 1.5 eV/~ . For such ultrashort pulse, the duration of which is less than the
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characteristic electron scattering time ∼ 10− 100 fs, the electron dynamics during the pulse

is coherent and can be described by the time-dependent Schrödinger equation.

The system of equations (2.7) describes the interband electron dynamics. We solve this

system numerically under the following initial conditions: (β1, β2, β3, β4) = (1, 0, 0, 0) and

(β1, β2, β3, β4) = (0, 1, 0, 0), which correspond to initially occupied valence bands, i.e., bands

1 and 2. We characterize the interband dynamics, i.e., the solution of the system of equations

(2.7), by the time-dependent conduction band populations |β3,q|2 and |β4,q|2.

3.4 Results and Discussion

The interband electron dynamics is characterized by electron redistribution between the

valence and conduction bands and finally by finite conduction bands’ populations. Such

CBs populations are mainly determined by the strength of the interband dipole couplings,

while the distribution of the CB population in the reciprocal space depends on the profile

of the interband dipole matrix element in the reciprocal space. For example, in graphene,

the interband dipole coupling is highly nonuniform in the reciprocal space and is singular at

the Dirac points. Such singularities result in highly nonuniform electron distribution in the

reciprocal space with hot spots near the Dirac points. In phosphorene, which has a finite

bandgap, ≈ 2 eV, the interband dipole matrix elements do not have any singularity in the

reciprocal space. The interband dipole coupling is the strongest between the highest valence

band and the lowest conduction band, i.e., between the bands 2 and 3. The corresponding

dipole matrix element, D23, is shown in Figure 3.3 (b) as a function of the reciprocal vector.
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Figure 3.3 (Color online) Interband dipole matrix elements D12 and D23. The dipole matrix
elements are shown as functions of the wave vector k. Here D12 is the dipole matrix element
between two valence bands, 1 and 2, while D23 is the dipole matrix element between the
highest energy valence band (band 2) and the lowest energy conduction band (band 3). The
dipole matrix element |D23| has a maximum at the Γ point.

The dipole matrix element D23 has a well pronounced maximum at the Γ point, (0, 0). The

other dipole matrix elements are almost constant within the whole Brillouin zone, see, for

example, the dipole matrix element D12 shown in Figure 3.3 (a). The maximum of the

dipole matrix element D23 between the lowest CB and the highest VB results in specific

distribution of the CB population in the reciprocal space. This is due to the fact that

the strongest interband mixing occurs only when an electron, which is drifting through the

reciprocal space according to the acceleration theorem, is near the Γ point, (0, 0).

The interband electron dynamics can be characterized in terms of the time evolution of

the total CB populations. The total CB populations of the first and the second CBs are

shown in Figure 3.4 for different amplitudes of the pulse. The data illustrates that the
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Figure 3.4 (Color online) Conduction band population as a function of time. (a) Population
of the first conduction band. (b) Population of the second conduction band. The peak fields
are indicated on the graph.

electron dynamics is highly irreversible, i.e., the maximum CB population during the pulse

is comparable to the residual CB population after the pulse. This dynamics is similar to the

one in gapless graphene. Although the phosphorene monolayer has a finite bandgap, ∆ ≈ 2

eV, the gap is closed at the field amplitude ≈ ∆/a ≈ 0.4 V/Å, where a = 4.43 Å.

The electron dynamics is highly irreversible, i.e., the system does not return to its initial

state, which has zero CB populations, see Figure 3.4. For F0 . 0.7 V/Å, the total population

of the second CB is an order of magnitude smaller than the total population of the first CB,

for example, at F0 = 0.7 V/Å, the residual CB population of the first band is 12 times

lager than the residual CB population of the second band. At higher field amplitudes, the

difference between the CB populations of the two bands becomes less pronounced. For

example, at F0 = 0.9 V/Å, the residual CB population of the first CB becomes only four

times larger than the residual CB population of the second CB.
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Figure 3.5 (Color online) Residual population of the first conduction band as a function of
wave vector k for different amplitudes F0 of the optical pulse, as indicated. The pulse is
polarized along axis x.

In Figure 3.5, the residual CB population, i.e., the electron CB population after the pulse, is

shown for different amplitudes of the optical pulse. The data show that large CB population

is localized near the Γ point. The hot spots near the Γ point are located symmetrically with

respect to ky-axis. The origin of such hot spots is the same as in graphene. They are due to

interference, which happens when an electron passes twice through the Γ point during the
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pulse. The structure shown in Figure 3.5 is similar to the one that was observed in graphene

[4], but with one fundamental difference. In phosphorene, if an electron goes directly through

the Γ point then the corresponding points of the hot spots have a maximum. In graphene,

if an electron goes directly through the Dirac point then the corresponding intensity at the

hot spots is zero. This is because the dipole matrix element has a singularity in graphene

but just a maximum in phosphorene. The CB population of the first CB is shown in Figure

3.5. The CB population of the second band is a few times smaller than the CB population

of the first band. Its distribution in the reciprocal space also shows the hot spots but they

are much less pronounced.

The time evolution of the CB population in the reciprocal space is shown in Figure 3.6.

The emergence of the hot spots as an electron passes through the region with large interband

coupling is clearly visible. This behavior supports the above statement that the hot spots in

the CB population distribution are due to electron passages through the region with large

interband dipole matrix elements. The hot spots are localized due to interference, which

happens after two passages through the region with large interband coupling.

The number of hot spots in the CB population distribution increases with increasing field

amplitude. This is because for a larger field amplitude, an electron travels a longer distance

in the reciprocal space, see Eq. (2.4).

The total residual CB populations for the first and second CBs, N
(res)
1 and N

(res)
2 , re-

spectively, are shown in Figure 3.7 as the functions of the field amplitude. The residual

CB population of the first band monotonically increases with field. Even at small field am-
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Figure 3.6 (Color online) Population of the first conduction band as a function of wave vector
at different moments of time. The amplitude of the optical pulse is F0 = 0.6 V/Å. Different
colors correspond to different values of the conduction band population as shown in the
figure.

plitudes, the residual CB population is relatively large. The residual CB population of the

second band, N
(res)
2 , is almost zero at F0 < 0.4 V/Å and then it strongly increases with pulse

intensity. This behavior is also illustrated in Figure 3.7(b), where the ratio N
(res)
1 /N

(res)
2 is

shown. Here the transition from a large ratio, ∼ 80, to a small ratio, ∼ 5, occurs with

increasing pulse amplitude. Both interband and intraband electron dynamics generate an
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Figure 3.7 (Color online) (a) Residual conduction band population for the first, N
(res)
1 , and

the second, N
(res)
1 , conduction bands as a function of the peak electric field, F0. (b) Ratio

of the residual conduction band populations, N
(res)
1 /N

(res)
2 .

Figure 3.8 (Color online) (a) Electric current density and vector potential,
∫
F (t)dt, as

a function of time. (b) Transferred charge density through phosphorene monolayer as a
function of F0.

electric current through the system. Such current can be found from Eq. (2.12). The electric

current has two contributions: interband current and intraband current. Usually, and also

in our case of phosphorene, the main contribution to the electric current comes from the

intraband term. The time dynamics of the electric current is shown in Figure 3.8(a). The

current follows the time integral of the electric field, i.e., the vector potential,
∫
F (t)dt. This
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behavior supports the above statement that the main contribution to the net electric current

comes from the intraband term. The residual electric current is zero, which corresponds to

residual electron population distribution that is symmetric with respect to ky axis. The area

under the current versus time graph is the charge transferred through the system during the

pulse, see Eq. (2.13). The transferred charge as a function of field amplitude is shown in

Figure 3.8 (b). The transferred charge is positive for all field amplitudes. The positive sign

of Qtr means that the direction of the charge transfer is the same as the direction of the

field maximum. This behavior is different from graphene, for which the transferred charge

changes its sign from positive to negative with increasing pulse’s intensity.

At small field amplitudes the transferred charge behaves as

Qtr ∝ F 3
0 . (3.7)

3.5 Conclusion

The electron dynamics in a single layer of black phosphorus, i.e., phosphorene, in a strong

field of an ultrashort optical pulse is highly irreversible, which means that the residual CB

population is comparable to the maximum CB population during the pulse. Although the

phosphorene has a relatively large bandgap, ≈ 2 eV, the irreversible electron dynamics in

phosphorene is similar to the electron dynamics in other 2D materials, such as gappless

graphene, silicene or germanene. The residual CB population in phosphorene is relatively

large. It is about 20 % at the field amplitude F0 = 0.9 V/Å. Here the population of the

first CB is about 15 % while the population of the second CB band is 4 %. The distribution
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of the CB population in the reciprocal space shows hot spots that are located near the Γ

point. These hot spots are due to two factors. The first one is that the interband dipole

coupling has a maximum at the Γ point. Thus, during an electron field-induced transport

in the reciprocal space the strongest interband coupling occurs when the electron passes the

vicinity of the Γ point. The second factor, which determines the formation of the hot spots,

is that the electron passes twice the Γ point. Such double passage results in formation of

specific interference patterns in the CB population distribution. This behavior shows that,

for a general system, by looking at the CB population distribution in the reciprocal space

we can identify the positions of the maxima of the interband couplings in the system.

The electron dynamics in phosphorene is also characterized by the charge transfer through

the system, which is proportional to the residual polarization of the phosphorene monolayer.

The charge transfer through phosphorene occurs in the direction of the field maximum for

all field amplitudes.



22

CHAPTER 4

NON-LINEAR RESPONSE OF WEYL SEMIMETLAS TO ULTRAFAST
LASER FIELD

4.1 Introduction

In this chapter we theoretically study the electron dynamics of Weyl semimetals in ultrafast

laser pulse. Weyl semimetals are gapless materials whose quasiparticle excitations are Weyl

fermions with definite chirality [37]. Such materials are characterized by linear band crossing

points called Weyl points near the Fermi energy. Due to the no-go theorem [38; 39], Weyl

points appear as a pair with opposite chirality separated in the Brillouin zone and they are

connected through the Fermi arcs. Figure 4.1 shows schematically the Weyl semimetal state

which is including the Weyl points and Fermi arcs. Weyl points behave as a source or sink

of Berry curvature of Bloch wave functions in momentum space. Weyl points with opposite

chirality are mirror symmetric, while those related by rotation and time reversal symmetries

posse the same chirality. Unique characteristics of Weyl semimetals such as energy dispersion

and chirality of Weyl fermions causes interesting optical phenomena. To name, but a few,

vally polarization which is induced by light in nonlinear Weyl semimetals [40], photocurrent

in Weyl semimetals [41] and photoinduced anomalous Hall effects [42].

Here we study the nonlinear response of Weyl semimetals to ultrafast optical pulse. This

study can be used to understand the behavior of electron in high-field devices and generally

can be used to guide optoelectronic applications. We theoretically study the ultrafast dy-

namics of Weyl semimetals in a linearly and circularly-polarized pulse with a duration of a
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Figure 4.1 (Color online) A schematic of the Weyl semimetal state. Weyl points with opposite
chirality separated in momentum space and they are just connected through the Fermi arcs.

few femtoseconds. This study make it possible to investigate basic questions concerning the

out-of equilibrium behavior of Weyl fermions.

4.2 Model and main equations

We assume that the ultrafast optical pulse with a duration of a few femtoseconds propagates

normally on the Weyl semimetal. For the field-free Hamiltonian we use the lower-energy

approximation of the full Hamiltonian of the system in the reciprocal space near the Weyl

points. The corresponding Hamiltonian has the following form [43]

H0 = E0I + v0.q.I + vxqxσx + vyqyσy + vzqzσz, (4.1)

where I is the identity matrix, q = k − k0, k0 is the position of the Weyl point in the

reciprocal space, k is the electron wave vector , and σi are three Pauli matrices. Here v0 =
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(v0,x, v0,y, v0,z), vx, vy, vz, and E0 are the parameters of the Hamiltonian. The corresponding

conduction and valence band energy dispersions are the following

Ec = ~(v0xqx + v0yqy + v0zqz +
√
µ), (4.2)

for the conduction band and

Ev = ~(v0xqx + v0yqy + v0zqz −
√
µ), (4.3)

for the valence band. Here µ = v2xq
2
x + v2yq

2
y + v2zq

2
z .

Substituting the wave functions found from the field-free Hamiltonian (4.1) into Eq. (2.9),

we obtain the following expressions for the dipole matrix elements

Dx(k) =
e

2iµ

−vx√
v2xq

2
x + v2yq

2
y

(
vxqxvzqz + ivyqy

√
µ

)
, (4.4)

Dy(k) =
e

2iµ

−vy√
v2xq

2
x + v2yq

2
y

(
vyqyvzqz − ivxqx

√
µ

)
, (4.5)

Dz(k) =
evz
2iµ

√
v2xq

2
x + v2yq

2
y. (4.6)

The system of equations (2.7) is solved numerically with the following initial conditions

(βvq, βcq) = (1, 0). This condition means that in the initial state, the valence band is occupied

and the conduction band is empty.

The matrix elements of the velocity operator, see Eq. (2.10), calculated between the valence
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and conduction band states are given by the following expressions

V vv
x =

1

~

[
v0x −

v2xqx√
µ

]
, (4.7)

V cc
x =

1

~

[
v0x +

v2xqx√
µ

]
, (4.8)

V vc
x = V ∗

cv

x =
1

~
1√

µ− v2zq2z

vx√
µ
×
[
− vxvzqxqz + i

√
µvyqy

]
, (4.9)

V vv
y =

1

~

[
v0y −

v2yqy√
µ

]
, (4.10)

V cc
y =

1

~

[
v0y +

v2yqy√
µ

]
, (4.11)

V vc
y = V ∗

cv

y =
1

~
1√

µ− v2zq2z

vy√
µ
×
[
− vyvzqyqz − i

√
µvyqy

]
, (4.12)

V vv
z =

1

~

[
v0z −

v2zqz√
µ

]
, (4.13)

V cc
z =

1

~

[
v0z +

v2zqz√
µ

]
, (4.14)

V vc
z = V cv

z =
vz
~

[√
µ− v2zq2z

]
. (4.15)

4.3 Results and discussions

We present the results for TaAs, which is a body-centered tetragonal lattice system, see

Figure 4.2(a), with lattice constants a = b = 3.437 Å along x and y direction, respectively

and c = 11.646 Å along z direction. TaAs has two sets of Weyl points with following

coordinates: (±0.0072, 0.4827, 1.0000) for the first pair, W1 and (±0.0185, 0.2831, 0.6000)

for the second pair, W2. Here the coordinates of the points are given in units of reciprocal

lattice vectors. The energy dispersion of TaAs near the second Weyl point is illustrated in
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Figure 4.2 (Color online) (a) Body-centered tetragonal structure of TaAs. (b) Energy dis-
persion of TaAs near the second Weyl point.

Fig. 4.2 (b) as a function of kx and ky for kz = 0. The reciprocal vector is measured relative

to the Weyl point, i.e., the coordinates of the Weyl point are (0, 0, 0). The parameters of

the effective low-energy Hamiltonian (4.1) can be found from the known velocities in the

conduction and valence bands [43; 44]. The corresponding parameters are shown in Table 1

for two sets of Weyl points. The study of dynamics of TaAs in ultrafast pulse reveals that

after photoexcitation by a short pulse, their relaxation happens in a few-picoseconds [45]

which make these materials to be a suitable candidate for optical switches. Here we study

another aspect of dynamics of these materials in an ultrafast optical pulse. Below we consider

different directions of pulse polarization. We describe the response of the system in terms of

CB population and distribution of CB population in the reciprocal space. Such distribution

is strongly correlated with the profile of the corresponding interband dipole matrix elements.
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Table 4.1 The parameters (velocities) of effective Hamiltonian (4.1) in units of 105 m/s for
two sets of Weyl points.

Velocity W1 W2

v0x −1.35 −0.95
v0y −1 0.9
v0z 0 1.35
vx 3.85 3.35
vy 2.2 2.6
vz 0.2 2.95

4.3.1 Linearly-polarized pulse

4.3.1.1 x-polarized pulse

We apply the x-polarized pulse (the pulse is incident normally on the system along the z

direction), see Figure 4.2 (a). The optical pulse has the following form

F (t) = F0e
−(t/τ)2(1− 2(t/τ)2). (4.16)

Here, τ is the duration of pulse and is set to 2 fs and F0 = 0.075 (V/Å) is the amplitude of

the pulse.

For x-polarized pulse, the coupling between the bands is determined by the x component

of the interband dipole matrix element, Dx. For the first Weyl point, W1, the interband

dipole matrix elements Dx is shown as a function of the reciprocal vector, k, in Figure 4.3.

Considering the dipole matrix element as a function of kx and ky at a fixed value of kz, we

can characterize its behavior as follows. At kz = 0, the dipole matrix element is singular at

the Weyl point. This singularity is exactly of the same type as a singularity of the interband

dipole matrix element in graphene. For nonzero kz the system becomes similar to graphene

with a gap. As a result, the dipole matrix element has two peaks (one is positive and another
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Figure 4.3 (Color online) Interband dipole matrix element Dx as a function of reciprocal
vector (kx, ky, 0.05) near the first Weyl point W1. Both real (a) and imaginary (b) parts of
Dx are shown.

is negative) near the origin (Weyl point). The corresponding distribution of the dipole matrix

element is shown in Figure 4.3. For kz 6= 0, the dipole matrix element has both real and

imaginary parts.

Figure 4.4 shows the conduction band population near Weyl point W1 as a function of

reciprocal vector at different moments of time. The residual conduction band population has

two peaks, the positions of which are correlated with the positions of the peaks of the dipole

matrix element, Dx, shown in Figure 4.3. Initially, for t < −1.5 fs, the field accelerates

the electrons to the left in Figure4.4. During this time the intensity of hot spots which

indicates the population of conduction band near Weyl point is considerable, and this is

because of the interband dipole coupling at this point is strong, and the most transfer from

the valence band to the conduction band occurs near the Weyl point. After t > −1.5 fs the
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Figure 4.4 (Color online) Conduction band population as a function of wave vector near the
first Weyl point, W1, at different moments of time. The results are shown for x polarized
pulse with the amplitude of F0 = 0.075 (V/Å) and for qz = 0.05 (1/Å).

field changes its sign, and as a result, the electrons move in the opposite direction and also

undergo further VB to CB transitions. At t = 0 fs, the electrons return to the initial points,

and continue to move in the same direction before the field changes its sign again at 1.5 fs

and causes electrons to change the direction of their movement and return to the initial state

at the end of the pulse. Passage the two times from the regime with large interband coupling

causes interferences. Although during the pulse there is a large conduction band population

near the origin (at moment of time t = −1.5 fs and 1.5 fs), at the end of the pulse, due to

the destructive interference the conduction band population near the origin becomes almost

zero. For the second set of Weyl points W2, the CB population is illustrated in Figure4.5.

The distribution of the CB population is the same as what we observed for the first set of

Weyl points W1 and the residual CB population is large near the Weyl point.
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Figure 4.5 (Color online) Conduction band population as a function of wave vector near the
second Weyl point, W2, at different moments of time. The results are shown for x polarized
pulse with the amplitude of F0 = 0.075 (V/Å) and for kz = 0.05 (1/Å).

4.3.1.2 y-polarized pulse

In this case, the light, Eq. (4.16), is incident normally on the system along the z direction,

see Figure. 4.2(a). The profile of the dipole matrix element Dy as a function of the reciprocal

vector is similar to the one of Dx. At kz = 0, the dipole matrix element Dy as a function of

kx and ky is singular at the Weyl point. At nonzero kz, the dipole matrix element Dy has

two peaks near the origin [(kx, ky) = (0, 0)] - see Figure 4.6. The only difference between Dy

and Dx is that Dy has a smaller magnitude, by ≈ 50%. The conduction band population
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Figure 4.6 (Color online) Interband dipole matrix element Dy as a function of reciprocal
vector (kx, ky, 0.05) near the first Weyl point W1. Both real (a) and imaginary (b) parts of
Dy are shown.

distribution for the Weyl point W1 is shown in Figure 4.7 at different moments of time.

Similar to x-polarized pule, the residual conduction band population has two well-pronounced

maxima, which are at the same positions as the maxima of the dipole matrix element, Dy.

This behavior is similar to the one observed for x-polarized light. The main difference is that,

the maximum residual conduction band population for y-polarized light is almost two times

smaller than the maximum conduction band population for x-polarized light. This is due to

a smaller value of the corresponding interband dipole matrix element. The distribution of

hot spots which indicates the distribution of CB population in the momentum space for the

second set of Weyl points in y-polarized pulse is shown in Figure4.8. Since the parameters

(velocities) of the Hamiltonian in y direction, see Table.4.1, is similar for both sets of Weyl

points, the pattern of the CB population for both sets of Weyl points is the same.



32

Figure 4.7 (Color online) Conduction band population as a function of wave vector near
the first set of Weyl point, W1, at different moments of time. The results are shown for y
polarized pulse with the amplitude of F0 = 0.075 (V/Å) and for kz = 0.05 (1/Å).

4.3.1.3 z-polarized pulse

I this section, we apply the pulse, see Eq. (4.16), which is incident normally on the system

along the y direction. The dependence of the interband dipole coupling on the reciprocal

vector is determined by parameters of the effective Hamiltonian. The parameters of the

Hamiltonian, corresponding to electron dynamics along x and y directions, are almost the

same (see Table. 4.1), which results in similar response of the system to x and y polarized

pulses. Along z direction, the corresponding parameters of the Hamiltonian (vz and v0z) are
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Figure 4.8 (Color online) Conduction band population as a function of wave vector near the
second set of Weyl point, W2, at different moments of time. The results are shown for y
polarized pulse with the amplitude of F0 = 0.075 (V/Å) and for kz = 0.05 (1/Å).

small, which strongly modifies the dipole matrix elements and the electron dynamics along

z direction. The dipole matrix element Dz for the Weyl point W1 is shown in Figure. 4.9.

The dipole matrix element Dz has a maximum at the Weyl point. This behavior is different

from Dx and Dy, which have two maxima near the Weyl point.

The conduction band population distribution in the reciprocal space is shown in Figure

4.10 for W1 for the field amplitude of F0 = 0.075 (V/Å). During the pulse, there is a large

conduction band population near the Weyl point. Such large population is due to strong

mixing of the valence and conduction band states when an electron passes the region of large
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Figure 4.9 (Color online) Interband dipole matrix element Dz as a function of reciprocal
vector (kx, 0, kz) near the first Weyl point W1. Only imaginary part of Dz is shown. The
real part is zero.

interband coupling, which is near the Weyl point. The first passage of such region results

in large conduction band population, while after the second passage the conduction band

population becomes almost zero. Such cancellation of the conduction band population is the

effect of destructive interference, which was also observed in graphene. Finally the residual

conduction band population becomes almost zero. This is a unique feature of Weyl point W1,

which is due to highly localized nature of the interband dipole coupling near the Weyl point.

The strength of localization of the dipole matrix element depends on the corresponding

parameters of the Hamiltonian. For Weyl point W2, which has order of magnitude larger

velocities vz and v0z (see Table. 4.1), the residual conduction band population is relatively

large and has two maxima near the Weyl point - see Figure. 4.11. Such conduction band

population distribution is similar to the one for x and y- polarized light.
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Figure 4.10 (Color online) Conduction band population as a function of wave vector near
the first Weyl point, W1, at different moments of time. The results are shown for z polarized
pulse with the amplitude of F0 = 0.075 (V/Å) and for ky = 0 (1/Å).

4.3.1.4 Total occupation of the conduction band

Another important characteristic of electron dynamics in the field of the pulse is the total

population of the conduction band, NCB(t), see Eq.(2.11). Such conduction band population

as a function of time is shown in Figure 4.12 for Weyl pointW1 and different pulse amplitudes.

For x and y polarized pulses the electron dynamics is highly irreversible, which means that

the residual conduction band population is comparable to the maximum conduction band

population during the pulse, see Figure 4.12(a,b). Such irreversible dynamics is similar to

the electron dynamics in two dimensional (2D) materials such as graphene and phosphorene
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Figure 4.11 (Color online) Conduction band population as a function of wave vector near the
second Weyl point, W2, at different moments of time. The results are shown for z polarized
pulse with the amplitude of F0 = 0.075 (V/Å) and for ky = 0 (1/Å).

Figure 4.12 (Color online) Total conduction band population as a function of time for the
first Weyl point, W1. The pulse is polarized along (a) x (b) y (c) z directions.
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Figure 4.13 (Color online) Total conduction band population as a function of time for the
second set of Weyl points, W2. The pulse is polarized along (a) x (b) y (c) z directions.

[3; 4]. For z-polarized pulse the behavior is completely different, see Figure 4.12(c). The

electron dynamics in this case is highly reversible - the residual conduction band population

is almost zero, which means that the system returns to its initial state. During the pulse,

the conduction band population is relatively large. In all cases (x, y, and z polarized pulses)

the conduction band population monotonically increases with pulse amplitude.

For the second Weyl point, W2, the electron dynamics for the x and y polarized pulses

is similar to the one for the first Weyl point, W1. The electron dynamics is irreversible

and the residual conduction band population is comparable to the maximum conduction

band population during the pulse. However, for z polarized pulse, the electron dynamics for

Weyl point W2 is completely different from the electron dynamics for Weyl point W1. For

z polarized pulse, the electron dynamics becomes highly irreversible - see Figure. 4.13 (c).

The residual conduction band populations, N
(res)
x , N

(res)
y , and N

(res)
z , for the first Weyl point,

W1 are shown in Figure 4.14 as a function of the pulse amplitude. The residual conduction

band population for z polarized pulse is almost zero for all values of F0, which illustrates

reversibility of electron dynamics along z direction. For the x and y polarized pulses the
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Figure 4.14 (Color online) Residual conduction band population as a function of pulse am-

plitude, F0, for the first Weyl point, W1. The results are shown for the x polarized (N
(res)
x ),

y polarized (N
(res)
y ), and z polarized (N

(res)
z ) pulses.

residual conduction band population monotonically increases with F0.

4.3.1.5 Transferred charge

Interband electron dynamics results in redistribution of electrons between the valence and

conduction bands, while intraband dynamics determines the transport of electrons within a

single band. Combination of these two types of dynamics results in generation of electric

current, which can be found from Eq. (2.12). The current as a function of time is shown in

Figure 4.15. The current itself has two contributions: interband and intraband. Our results

show that the electric current is mainly determined by the intraband contribution. This can

be also seen in Figure 4.15, where both the current and the vector potential are shown. The

results show that the current follows the vector potential. As we discussed before, the in-
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Figure 4.15 (Color online) Current and vector potential ,
∫
F (t)dt, as a function of time for

x polarized pulse with the amplitude of F0 = 0.08 (V/Å). The results are shown for the first
Weyl point, W1.

traband electron dynamics is determined by the acceleration theorem and the corresponding

electron momentum follows the vector potential. Since the total current, shown in Figure

4.15, follows the vector potential, then we can conclude that the total current is mainly de-

termined by the intraband contribution. This is valid for all directions of pulse polarization.

With the known electric current, the charge transferred through the system can be calcu-

lated as an area under the current versus time graph. The transferred charge as a function

of field amplitude, F0, is shown in Figure 4.16 for both set of Weyl points. Here Qx, Qy and

Qz correspond to x, y and z polarized pulses, respectively. For the first Weyl point, W1, for

z polarized pulse, the transferred charge is almost zero but the transferred charges Qx and

Qy monotonically increase with the field amplitude. The transferred charge for y polarized

pulse is almost five times smaller than the transferred charge for x polarized pulse. In all
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Figure 4.16 (Color online) Transferred charge through Weyl semimetal as a function of pulse
amplitude for (a) the first Weyl point, W1 and (b) the second Weyl point W2. The results
are shown for x polarized and y polarized and z polarized pulses.

cases, the transferred charge is positive, which means that the direction of the transfer is

the same as the direction of the field maximum. For the second Weyl point, the transferred

charge for z polarized pulse is nonzero and is almost equal to the transferred charge for

y polarized pulse. For all directions of polarization, the transferred charge is positive and

monotonically increases with field. The data also show that the transferred charges Qx and

Qy for Weyl point W2 is less than the corresponding charges for Weyl point W1. At small

field amplitudes, the transferred charge is proportional to F 3
0 .

Charge transfer as a function of angle between the pulse and x axis is shown in Figure

4.17 for the first Weyl point. Here we consider that the direction of pulse is fixed and the

sample is rotating around the z axis. The data shows that charge transfer component in x

direction, Qx, is maximum at θ = 0 and by increasing the angle, it decreases sharply to zero

at θ = 90. At this point the charge transfer changes its sign and increases to its maximum
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Figure 4.17 (Color online) Charge transfer as a function of angle between pulse and the x
axis for F0 = 0.075 (V/Å) for W1

value in negative direction at θ = 180 and then reverse itself and returns to its maximum

value at θ = 360. As we expected, the charge transfer in y direction, Qy, is zero when the

pulse is totally in x direction. But, by increasing the angle, Qy rises slightly and achieves to

its peak at θ = 45. Then it deeps slightly before it returns to its peak again at θ = 135 and

after that it repeats its behavior but in negative direction.

4.3.1.6 Conclusion

The Weyl semimetals have zero bandgap, which suggests that a femtosecond dynamics of

electrons in such materials should be highly irreversible, i.e., the residual electron population

after the pulse is comparable to the conduction band population during the pulse. Such

dynamics has been observed in graphene, which is a 2D version of Weyl semimetals. Our

results show that the ultrafast electron dynamics is determined by not only the bandgap of
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the material but also by the profile and the magnitude of the interband dipole elements. We

considered the case of TaAs Weyl semimetal, which has two sets of Weyl points. We found

that for the first set of Weyl points, the electron dynamics is highly anisotropic. Namely,

while for x and y polarized optical pulses the electron dynamics is irreversible, for z polarized

optical pulse the electron dynamics is highly reversible. For z polarized optical pulse, the

residual conduction band population is almost zero after the pulse. Such high reversibility

is due to relatively small value of z component of interband dipole matrix element and its

high localization near the Weyl point.

For the second set of Weyl point, the electron dynamics is irreversible for all directions

of polarization of the optical pulse. In all cases, the residual conduction band population is

comparable to the maximum conduction band population. The femtosecond optical pulse

also causes the charge transfer through the system during the pulse. The magnitude of the

charge transfer strongly depends on the direction of polarization. For the first set of Weyl

points, for z polarized pulse, the transferred charge is almost zero. For x and y polarized

pulses the charge is transferred in the direction of the pulse maximum. The magnitude of

the transferred charge for x polarized pulse is almost five times larger than the magnitude

of the transferred charge for y polarized pulse.

For the second set of Weyl points, the charge is transferred through the system for all

directions of polarization. Similar to the first set of Weyl points, the maximum charge is

transferred for x polarized optical pulse.
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Figure 4.18 (Color online) Residual CB population, as a function of kx and ky in the reciprocal
space for (a) the first set of Weyl points at kz = 0.01 1/Å (b) the second set of Weyl points
at kz = 0.001 1/Å. The amplitude of the circularly-polarized optical field is F0 = 0.01 V/Å.

4.3.2 Circularly-polarized pulse

We assume that a circularly-polarized pulse with the duration of τ = 1 (fs) propagates in

the z direction on a Weyl semimetal and has the following form

Fx(t) = F0e
−(t/τ)2(1− 2(t/τ)2), (4.17)

Fy(t) = 2F0e
−(t/τ)2(t/τ), (4.18)

where F0 = 0.01 (V/Å) is pulse amplitude. Such a pulse induces a finite conduction band

(CB) population in the reciprocal space. The residual CB population for both sets of Weyl
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Figure 4.19 (Color online) Residual CB population, as a function of k in reciprocal space for
(a) the first set of Weyl points and (b) second set of Weyl points after circularly-polarized
pulse. The amplitude of the optical field is F0 = 0.01 V/Å

points at a specific kz is illustrated in Figure4.18. Also, Figures 4.19 (a) and (b) show the

electron population of conduction band in x− y plane in the momentum space for different

values of kz for the first and second Weyl point, respectively. The results show that the

electron dynamics for such materials is coherent and highly irreversible, i.e., the residual

conduction band (CB) population is comparable to the maximum CB population during

the pulse. For both Weyl points the largest CB population is located near the Weyl points

and along the separatrix which is defined as a set of the initial points for which electron

trajectories in the reciprocal space pass precisely through (kx, ky) = (0, 0) point. In fact, the

separatrix is a x−z mirror reflection of electron trajectory originating at the (kx, ky) = (0, 0)

point. In order to explain the distribution of CB population in reciprocal space we need to

consider the characteristics of dipole matrix elements as a function of kx and ky at a fix
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Figure 4.20 (Color online) The electron population of the conduction band for (a) the first
and (b) second set of Weyl points, as a function of time for different amplitude of field.

value of kz. For small kz, the dipole matrix element is highly localized near (kx, ky) = (0, 0)

point which results the maximum of electron transfer between valence band and conduction

band in this vicinity. As a result, the intensity of hot spots in the reciprocal space which

indicates CB population, has sharp maximum along the separatrix. However, for large kz

the system behave similar to gapped graphene with delocalized interband coupling and the

transfer of electrons between the valence band and the conduction bands are not confined

within a narrow region. The pattern for both sets of Weyl points are the same. However,

the value of kz for the first and the second sets of Weyl points are different which is related

to different parameters (velocities) of Hamiltonian at two sets of Weyl points. Figure 4.20

show the total occupation of the conduction band , NCB(t), as a function of time for differ-

ent amplitude of fields for both sets of Weyl points. The data illustrates that the electron

dynamics is highly irreversible, which means that the conduction band population at the end
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of the pulse is large and is comparable to the maximum conduction band population during

the pulse. The residual CB population for both cases are in the same order of magnitude

and the population increase as the field become larger.

The optical pulse causes both interband and intraband electron dynamics in a system. In-

terband electron dynamics causes redistribution of electron between the valence and the

conduction bands and intraband electron dynamics describes the motion of electron within

a band. The combination of both electron dynamics causes electric current , Eq. ( 2.12),

through the system during the pulse. The induced charge transfer can be obtained as an

integral of the current, see Eq.2.13. Figures 4.21 (a) and (b) illustrate that for both sets of

Weyl points charge transfer in all directions is negative and the magnitude of ,Qx, is smaller

than Qy. For the first set of Weyl points, for small field, Qx is almost zero and then it

monotonically increases to almost 0.06 C/m2 at F0 = 0.02 V/Å. For the second set of Weyl

points, Qx is almost zero at up to F0 = 0.008 V/Å and then increases slightly with the field

amplitude. For the charge transfer in y direction, Qy, for both sets of Weyl points there is

almost a linear relationship between the field and the charge transfer up to 0.014 V/Å and

the charge transfer increases with the field amplitude.

4.3.2.1 Conclusion

We have demonstrated that the electron dynamics of Weyl semimetals in a circularly-

polarized pulse is highly irreversible which means the CB population of electron at the

end of the pulse is large and is comparable to the maximum CB population during the pulse,

and this behavior is similar to 2D materials such as graphene and phosphorene. The distri-
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Figure 4.21 (Color online) Transferred charge density through TaAs as a function of F0 for
the (a) first and (b) second set of Weyl points. Qx and Qy denote to charge transfer along
x and y directions, respectively.

bution of the CB population in the reciprocal space strongly depends on the profile of the

dipole matrix elements near the Weyl points.

For both sets of Weyl points the distribution of the CB population in the momentum

space follow the same pattern. A circularly-polarized pulse causes an electron to circle in

the momentum space along the closed trajectory. The interband electron dynamics is char-

acterized by redistribution of electrons between the valence and the conduction bands. Such

redistribution is mainly determined by both the profile and strength of the dipole matrix

elements. The electron transition between the valence and the conduction bands occur pre-

dominantly in the vicinity of the Weyl points. At kz = 0 the interband dipole matrix is

singular at the Weyl points, (0, 0, 0). The CB population in the reciprocal space is charac-

terized by hot spots. For small kz these hot spots are located near the Weyl points and along

a thin separatrix, which is due to the fact that the interband coupling is highly localized in
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this area. For nonzero kz the system is similar to graphene with a gap and the interband

dipole matrix is delocalized. Therefore, the transformation of electrons between the valence

band and the conduction band are not confined in a narrow region.

The femtosecond single oscillation pulse also induces charge transfer in both x and y direc-

tions through the system during the pulse. For both sets of Weyl points, charge transfer in

both x and y directions increase with the field.
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CHAPTER 5

TOPOLOGICAL PROPERTIES OF WEYL SEMIMETALS IN ULTRAFAST
OPTICAL PULSES: TOPOLOGICAL RESONANCE AND CHIRALITY

5.1 Introduction

Three-dimensional topological Weyl semimetals [43; 46–49] are characterized by linear band

crossing called Weyl points. In 3D momentum space, a pair of Weyl points have opposite

chirality, i.e., the Weyl points in a pair are sink or source of the Berry flux. In 3D, the obser-

vation of Weyl point requires the breaking of either time reversal symmetry T or inversion

symmetry I. Nontrivial topological properties of Weyl semimetals in momentum space is due

to the Berry curvature Ω(k). In 1984, Berry [50] reported that under adiabatic evolution,

wave function of an electron state accumulates a geometric or Berry phase when encircle

a loop in the momentum space. The Berry phase in the reciprocal space is similar to the

Aharonov-Bohm [51] phase in the real space in the presence of a magnetic field. The Berry

phase of the Bloch wave functions within a single band n is calculated by the line integral of

the Berry connection A. The Berry connection generates the corresponding Berry curvature,

Ω(k), Ω(k) = ∇×A(k).

For a system with I symmetry, Ω(−k)=Ω(k) and a Weyl point k maps to another Weyl

point at −k with reversed chirality. Under T symmetry, k will be mapped to −k and at the

same time reverse the k-space Berry curvature, Ω(−k)=−Ω(k). Therefore, a Weyl point k

under T is mapped to another Weyl point at −k with the same chirality. As a result, if the

system posses both symmetries, the net Berry curvature field must vanish, and so there is
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Figure 5.1 (Color online) Body-centered tetragonal crystal structure of TaAs. (b) Energy
dispersion of TaAs near the Weyl points at kz = 0.

no isolated Weyl points.

Due to the large Berry curvature, Weyl semimetals can have strong non-linear optical re-

sponse to an external electric fields compared to the traditional electro-optic materials [52–

56]. In this chapter, we theoretically study non-linear optical response of Weyl semimetal

TaAs to linear and circularly polarized ultrafast pulses with a duration of a few femtosec-

onds. Such pulses cause topological resonance in Weyl semimetals which is due to strong

Berry curvature which is localized at the Weyl points.

5.2 Model and main equations

In this study, we use a two-band Bloch model of Weyl semimetals [57]. Such Hamiltonian

H0 describes the low-energy excitations near two Weyl’s points located at k±w = (±k0, 0, 0)
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in the reciprocal space. The Hamiltonian has the following form

H0 = A(k)σx +B(k)σy + C(k)σz, (5.1)

where k = (kx, ky, kz) is a vector of the reciprocal space, σx, σy, σz are Pauli matrices, and

A(k), B(k), C(k) are given by the following expressions

A(k) =

[
tx ∗

(
cos(kxa)− cos(k0a)

)
+ ty ∗

(
cos(kyb)− 1

)
+ tz ∗

(
cos(kzc)− 1

)]
,

B(k) = ty ∗ sin(kyb),

C(k) = tz ∗ sin(kzc).

Here a, b and c are lattice constants along x, y and z directions, respectively, see Figure

5.1(a), and tx, ty, and tz are hopping integrals which are related to the Fermi velocities vx,

vy, and vz at the Weyl’s points through the following expressions

vx = −
(
a/~
)
tx sin(±k0a), (5.2)

vy =

(
b/~
)
ty,

vz =

(
c/~
)
tz,

We apply our analysis to TaAs Weyl semimetal, which has a body-centered tetragonal

lattice system, see Figure 5.1(a), with lattice constants a = b = 3.437 (Å) along x and y

directions, respectively and c = 11.646 (Å) along z direction. TaAs has 24 Weyl points: eight
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Weyl points are located at (±0.0072π/a, 0.4827π/b, 1.000π/c) and are called W1 and sixteen

Weyl points are located at (±0.0185π/a, 0.2831π/b, 0.6000π/c) and are called W2 [49; 58].

The projections of all Weyl points on the kz = π/c plane are illustrated in Figure 5.3 (a).

The two band Hamiltonian (5.1) is used to describe the electron dynamics near a pair of

Weyl points, for example, a pair of Weyl points W2, which are shown inside the dashed

region in Figure 5.3 (a). With the known Hamiltonian (5.1), the corresponding energy for

the valence band and the conduction band can be obtained as

Ev(k) = −
√
A(k)2 +B(k)2 + C(k)2, (5.3)

Ec(k) = +
√
A(k)2 +B(k)2 + C(k)2.

The energy dispersion of TaAs near these Weyl points is shown in Figure 5.1 (b). Substituting

the wave functions found from the field-free Hamiltonian (5.1) into Eq. (2.9), we obtain the

following expressions for the dipole matrix elements

Dx(k) =
txa

2i(A2(k) +B2(k) + C2(k))
∗ sin(kxa)√

A2(k) +B2(k)
∗(

A(k)C(k) + iB(k)
√
A2(k) +B2(k) + C2(k)

)
, (5.4)
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Dy(k) =
tyb

2i(A2(k) +B2(k) + C2(k))
∗ 1√

A2(k) +B2(k)

(
C(k)

(
A(k) sin(kyb)−

B(k) cos(kyb)

)
+ i
√
A2(k) +B2(k) + C2(k)

(
A(k) cos(kyb) +B(k) sin(kyb)

))
,

(5.5)

Dz(k) =
tzc

2i(A2(k) +B2(k) + C2(k))

√
A2(k) +B2(k) ∗

(
sin(kzc)

A2(k) +B2(k)(
A(k)C(k) + iB(k)

√
(A2(k) +B2(k) + C2(k)

)
+ cos(kzc)

)
.

(5.6)

The matrix elements of the velocity operator, Eq. (2.10), calculated between the valence

and the conduction band states have the following form

V vv
x = −V cc

x =
txaA(k) sin(kxa)

~
√
A2(k) +B2(k) + C2(k)

, (5.7)

V vc
x = (V cv

x )∗ =
txa

~
√
A2(k) +B2(k) + C2(k)

sin(kxa)√
A2(k) +B2(k)

∗(
A(k)C(k)− iB(k)

√
A2(k) +B2(k) + C2(k)

)
, (5.8)

V vv
y = −V cc

y =
tyb

~
√
A2(k) +B2(k) + C2(k)

×

(
A(k) sin(kyb)−B(k) cos(kyb)

)
, (5.9)
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V vc
y = (V cv

y )∗ =
tyb

~
√
A2(k) +B2(k) + C2(k)

× 1√
A2(k) +B2(k)

(
C(k)

(
A(k) sin(kyb)−

B(k) cos(kyb)

)
− i
√
A2(k) +B2(k) + C2(k)

(
A(k) cos(kyb) +B(k) sin(kyb)

))
,

(5.10)

V vv
z = −V cc

z =
tzc

~
√
A2(k) +B2(k) + C2(k)

×
(
A(k) sin(kzc)−B(k) cos(kzc)

)
, (5.11)

V vc
z = (V cv

z )∗ =
tzc

~

√
A2(k) +B2(k)√

A2(k) +B2(k) + C2(k)

(
cos(kzc) +

sin(kzc)

A2(k) +B2(k)
×

(
A(k)C(k)− iB

√
A2(k) +B2(k) + C2(k)

))
. (5.12)

5.3 Results and discussions

5.3.1 Linearly polarized pulse

Below we report our results for the set of Weyl pointsW2 with the positions of the Weyl points

at (±0.0185π/a, 0, 0). The corresponding hopping integrals are tx = 10.90, eV ty = 0.4917,

eV and tz = 0.1646 eV.

We assume a linearly polarized pulse is incident normally on the sample along the z direction.

The optical electric field has a following form

Fx(t) = F0e
−u2(1− 2u2), (5.13)
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Figure 5.2 (Color online) Residual CB population as a function of (kx, ky) for kz = 0. The
pulse propagates along z direction. The field amplitude is F0 = 0.003 V/Å.

where F0 is field amplitude, u = t/τ and τ = 10 fs is the duration of pulse. For such a pulse

with this characteristics, the area under the pulse is always zero, i.e.
∫∞
−∞ F (t)dt = 0.

For such polarization of the optical pulse the interband electron dynamics is determined by

the x component of the interband dipole matrix element, Dx, which is shown in Figure 5.3

(b) at kz = 0. The dipole matrix element is the largest near the Weyl’s points.

We characterize the electron dynamics in the field of the pulse by the residual conduction

band (CB) population distribution in the reciprocal space. The residual conduction band

(CB) population for TaAs induced by a linearly polarized pulse with the field amplitude of

0.003 V/Å is shown in Figure 5.2. The data show that the large CB population is located
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Figure 5.3 (Color online) (a) A projection of all Weyl’s points on the kz = π/c plane. The
four pairs of Weyl points, which are labeled by ”1”, are called W1 and the other eight pairs
of Weyl’s points, which are labeled by ”2”, are called W2. Black and white dots represent
the opposite topological charges of the Weyl points. (b) Interband dipole matrix element,
Dx as a function of reciprocal vector (kx, ky) for kz = 0.

near the Weyl points. This is correlated with the profile of the interband dipole coupling,

which is also the strongest near the Weyl points, see Figure 5.3 (b)

The CB population distribution is symmetric with respect to both x and y-axes, while

the CB population is exactly zero along the line kx = 0 . This property is similar to what we

have in graphene [4], and is due to singularity of Dx exactly at the Weyl’s points or Dirac

points for graphene.

Figure 5.4 shows the CB population of the system as a function of k at different moments

of time. The applied pulse accelerates an electron with the initial crystal momentum to the

left, −30 < t < −7 fs, then the field changes its sign and the electron moves to the right,

at −7 < t < 7 fs. At t = 7 fs, the pulse changes its sign again and the electron returns

to the initial position. The two passages of an electron through each given point results in
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Figure 5.4 (Color online) The distribution of the CB population as a function of kx, ky for
kz = 0 at different moments of time. The field amplitude is F0 = 0.003 V/Å

interference which manifests itself as hot spots in the reciprocal space.

For a non-zero value of kz, the electron system in kx-ky plane near each Weyl’s point

becomes similar to gapped graphene. The corresponding CB population distribution as a

function of kx and ky and for kz = ±0.03 1/Å is shown in Figure 5.5. The CB population

distribution does not have any axial symmetries and the distributions above and below the

Weyl’s points are quite different. While for the left Weyl’s point, the CB population has

a maximum at ky > 0, for the right Weyl’s point, the CB population has a maximum at

ky < 0. This is quite different from the CB population distribution for kz = 0 and is due
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Figure 5.5 (Color online) Residual CB population, N
(res)
CB (k) , near the Weyl points for (a)

kz = 0.03 1/Å. (b) kz = −0.03 1/Å. The amplitude of the optical field is F0 = 0.003 V/Å.

to the fact that for kz 6= 0, the effective 2D system (in kx − ky plane) becomes similar to

gapped graphene, for which there is the effect of topological resonance. The origin of the

topological resonance can be understood by looking at the expression for the CB population

in the first order of the perturbation theory.

In order to explain what we see in Figure 5.5 we need to introduce the following quantities,

A′cv(q, t) = Acv[k(q, t)] exp
(
iφ(d)
cv (q, t)

)
, (5.14)

φ(d)
cv (q, t) = −1

~

∫ t

−∞
dt1

[
Ec

(
k(q, t1)

)
− Ev

(
k(q, t1)

)]
, (5.15)
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Acv(q) = i
〈
ψ(c)
q |∇qψ

(v)
q

〉
, (5.16)

Dcv(q) = eAcv(q). (5.17)

Here, c and v are the conduction and valence bands, respectively. φ
(d)
cv (q, t) is a dynamic

phase and matrix Aα′α(k) is the non-Abelian k-space gauge potential which is called Berry

connection [50; 59].

In the Schrödinger representation, the dynamics of the system are described by the time-

dependent wave function, ψ(t)S through the Schrödinger equation, Eq. (2.1). However, in

many cases, it is more convenient to work in the interaction representation, expressed by

ψ(t)I = eiĤ0t/~ψ(t)S. (5.18)

In this representation, TDSE can be defined by

i~
∂Bq(t)

∂t
= H ′(q, t)Bq(t), (5.19)

where Bq(t) and Hamiltonian H ′(q, t) are defined as

Bq(t) =

(
βv,q(t)
βc,q(t)

)
, (5.20)

H ′(q, t) = eF(t)Â(q, t), (5.21)
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Â(q, t) =

[
0 A′cv(q, t)

A′∗cv(q, t) 0

]
, (5.22)

We numerically solve differential equation (5.19) with initial conditions (βvq, βcq) = (1, 0).

A general solution can be expressed in terms of the evolution operator Û(q, t) as

Bq(t) = Û(q, t)Bq(−∞), (5.23)

Û(q, t) = T̂ exp

[
i

∫ t

t′=−∞
Â(q, t′)dk(q, t′)

]
, (5.24)

where T̂ denotes the time-ordering operator [60] and the integral is affected along the Bloch

trajectory k(q, t)
(

Eq. (2.4)
)

. At the end of the pulse the residual CB population is

N
(res)
CB (q) = NCB(q,∞).

To get a qualitative insight, consider Eq. (5.24) in the first order of perturbation theory,

where it becomes

Û(q, t) = 1 + i

∫ t

t′=−∞
Â(q, t′)dk(q, t′). (5.25)

The residual CB population correspondingly is

nα =

∣∣∣∣∣
∮ ∣∣∣∣Acv[k(q, t)]n(t)

∣∣∣∣ exp

(
iφ(tot)
cv (q, t)

)
dk(q, t)

∣∣∣∣∣
2

, (5.26)

where n(t) = F(t)/F (t) is the unit vector tangential to the Bloch trajectory and the total

phase φ(tot) is

φ(tot)
cv = φ(T)

cv (q, t) + φ(d)
cv (q, t), (5.27)
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and topological phase is defined as

φ(T)
cv (q, t) = arg

(
Acv(k(q, t))n(t)

)
. (5.28)

Since |Acv[k(q, t)]n(t)| is a smooth function of time, the residual CB population, Eq. (5.26),

is determined by the oscillating phase factor exp[iφ
(tot)
cv (q, t)]. The phase consists of two

parts: the dynamic phase and the topological phase, Eq.(5.27). The sum of these two con-

tributions determines the magnitude of the CB population. If these two parts mutually

cancel each other, then the accumulation of the CB population along the Bloch trajectory is

large. Opposite, if the topological phase and the dynamic phase add together, then the total

phase oscillates fast and the CB population is small. During the pulse, for all trajectories,

the dynamic phase Eq. (5.15) decreases monotonically with time, t, and therefore the CB

population is determined by how the topological phase changes with time. In Figure 5.6 we

show the evolution of the topological phase along the electron trajectory in the reciprocal

space for two different initial wave vectors: in one case the initial wave vector is above the

Weyl’s point, i.e., ky > 0 - blue trajectory in Figure 5.6 (a), while in the other case the initial

wave vector is below the Weyl’s point, i.e., ky < 0 - red trajectory in Figure 5.6 (a). For

each trajectory, the electron passes through the region near the Weyl’s point twice: first,

when it moves in the positive direction of the x-axis and then when it moves in the negative

direction of the x-axis. The corresponding topological phases as a function of time are shown

in Figure 5.6 (b). Along each trajectory there are two large changes of the topological phase.

These two changes correspond to two electron’s passages of the Weyl’s point. Since, at these

two points, an electron moves in the opposite directions, the changes have opposite signs.
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Figure 5.6 (Color online) Bloch trajectories, k(q, t), and the corresponding topological

phases, φ
(T )
cv (q, t), are shown for two initial q-points during the pulse. (a) Electron Bloch

trajectory k(q, t) in the reciprocal space is shown for initial point (−0.019, 0.010, 0.030), by
blue line, while the trajectory for initial point (−0.019,−0.010, 0.030) is shown by red line.

(b) Topological phases, φ
(T )
cv (q, t), along the corresponding Bloch trajectories from panel (a)

are shown by blue and red lines. The black lines correspond to the topological phases along
the trajectories with initial crystal momentum (kx0,−ky0, 0) and (kx0, ky0, 0).

Because the dynamic phase decreases with time, the topological resonance occurs only the

topological phase increases with time, so the changes of these two phases cancel each other.

Then, for the red trajectory, the topological resonance occurs at t ≈ −15 fs, while for the

blue trajectory, the topological resonance occurs at t ≈ 0 fs.



63

The strength of the topological resonance depends on the magnitude of the electric field.

Thus, while the topological resonance occurs for ky = 0.01 V/Å(blue line in Figure 5.6(b))

at around t ≈ −15 fs, it is not pronounced since the electric field at this moment is small.

Therefore for ky = 0.01 V/Å, i.e., below the left Weyl’s point in Figure 5.6(a), the residual

CB population is small. The topological resonance for ky = −0.01 V/Å(red line in Figure

5.6(b)) occurs at t ≈ 0 fs when the electric field is large. In this case the residual CB

population is small for below the Weyl point. The topological resonances in the Weyl’s

semimetals occur because of the finite effective bandgap, ∆, which is determined by the

finite value of kz, ∆ ∝ kz. By changing the sign of kz, we change the sign of the effective

bandgap and, correspondingly, the sign of the topological phase - see Figure 5.7, where the

topological phase is shown for both positive and negative values of kz. As a results, while

for positive kz the topological resonance is realized at ky > 0 for left Weyl’s point and at

ky < 0 for right Weyl’s point (see Figure 5.5 (a)), for negative kz the topological resonance

is realized at ky < 0 for the left Weyl’s point and at ky > 0 for the right Weyl’s point (see

Figure 5.5 (b)). The residual CB population is completely centrosymmetric [61].

5.3.1.1 Conclusion

The topological resonance occurs in systems with nontrivial topology, such as gapped graphene,

TMDC, Weyl’s semimetals, and is due to competition between the topological phase and

the dynamic phase. When these two phases cancel each other, the resonance occurs, which

is visible as large CB population. In Weyl’s semimetals, such resonance has been studied for

circularly-polarized pulse [40] when an electron passes the Weyl’s point only once, resulting
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Figure 5.7 (Color online) Bloch trajectory k(q, t) near the W point and the corresponding

topological phases φ
(T )
cv (q, t). (a) Electron Bloch trajectory k(q, t) in the (kx, ky) plane is

shown for initial points (0.024, 0.011,±0.030). (b) Topological phases φ
(T )
cv (q, t) along the

Bloch trajectory near the W point for initial wave vector (0.024, 0.011,−0.030) is shown by
red line, and for initial wave vector (0.024, 0.011,+0.030) is shown by blue line.

in clear topological resonance for a given direction of passage. Here we report the topolog-

ical resonance for linearly polarized pulse. Although, in this case, an electron passes the

Weyl’s point twice in opposite directions, the topological resonance occurs only when the

electric field is large at the moment of passage. As a results, similar to a circularly polarized

pulse, topological resonance can be observed for a linearly polarized pulse as an asymmetry

distribution of the residual conduction band population in the reciprocal space.
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5.3.2 Circularly polarized pulse

In this part of the study, in order to clearly observe phenomena, we assume that the position

of the Weyl points are (±0.2, 0, 0).

5.3.2.1 Circularly polarized pulse with one single oscillation

We start this section by introducing the dipole matrix elements, D, for TaAs. Dipole matrix

elements are proportional to the Berry connection, see Eq. (5.16), Dcv(q) = eAcv(q). The

dipole matrix elements in the x direction, Dx and in the y direction, Dy as a function of kx,

ky and for kz = 0 are illustrated in Figure 5.8. The dipole coupling near the Weyl points is

strong which results in the largest CB population near this area.

We assume a single oscillation right-handed circularly polarized (RCP) pulse which is

incident normally on the system along the z direction, see Figure 5.1(a), with an amplitude

F0 = 0.01 V/Å.

Fx(t) = F0e
−u2(1− 2u2), Fy(t) = 2uF0e

−u2 , (5.29)

where u = t/τ and τ = 10 fs. We numerically solve TDSE, Eq. (5.19), with the initial

condition (βvq, βcq) = (1, 0). An applied optical field causes transitions of electrons from the

valence band to the conduction band resulting a finite CB population. The distribution of

the residual conduction band population, N
(res)
CB = |βcq(t = ∞)|2, the CB population at the

end of the pulse, as a function of (kx, ky, 0), is illustrated in Figure 5.9.

We call the Weyl point at, (−0.2, 0, 0) (1/Å) W and the Weyl point at (0.2, 0, 0) (1/Å), W
′
.
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Figure 5.8 (Color online) Interband dipole matrix elements (a) Dx and (b) Dy as a function
of reciprocal vector (kx, ky, 0).

At kz = 0, Figure 5.9, the response of both weyl points to an external electric field are

similar which is the same as what we observed for graphene [5]. For graphene the response

of both Dirac points, K and K
′
, to the external electric field are similar. Since the interband

dipole matrix elements are highly localized near the Weyl points, see Figure 5.8, the distri-

bution of electrons has sharp maxima along the separatrix, both outside and inside. The

separatrix, which is shown by a closed black line in Figure 5.11 (a) and (b), is a topological

object which divides the momentum space into two regions. Any electron Bloch trajectory

which originates inside the separatrix encircles the Weyl points, and if the Bloch trajectory

originates outside the separatrix, it does not encircle the Weyl points. The data show that

with an increase of kz in positive direction, the W and W
′
become populated differently. For
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Figure 5.9 (Color online) Residual CB population as a function of (kx, ky) for kz = 0 in
reciprocal space after a single oscillation circularly polarized pulse. The pulse is incident
normally on the system along the z direction. The amplitude of the pulse is F0 = 0.01 V/Å

the W point, the major population occurs inside of the separatrix while the minor population

occurs outside of the separatrix. In contrast, the large CB population is located outside the

separatrix for W
′
, Figure 5.10.

In order to explain the data, we return to Eq. (5.26). Since non-Abelian Berry connection

element Acv(k(q, t)) and topological phase φ
(T)
cv (q, t) are not gauge invariant, they are not

observable. However, the CB population nα is observable. Figure 5.11 (c) and (d) show

the topological phase for Weyl nodes with different chirality. For q outside the separatrix,

change in topological phase is large and close to ±2π, while for the point q inside the separa-
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Figure 5.10 (Color online) Residual CB population as a function of (kx, ky) for different
values of kz in the reciprocal space after a single oscillation circularly polarized pulse. The
pulse is incident normally on the system along the z direction. Field amplitude is F0 = 0.01
V/Å.

trix change in topological phase is much smaller. The dynamic phase φ
(d)
cv (q, t) (Eq. (5.15))

decreases with time t. Significant change (& 2π) in total phase along the Bloch trajectory

prevents accumulation of the conduction band population. In two cases, red line in Fig-

ure 5.11 (c) and black line in (d) topological phase increase and mutual cancellation of the

dynamic phase and the topological phase enhances the conduction band population inside

and outside of the separatrix at W and W
′
, respectively. In contrast, the total phase for

outside and inside the separatrix at W and W
′

points, change dramatically, and as a result,

the conduction band population is almost zero at this region. In fact, the population is
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Figure 5.11 (Color online) Red dashed line shows the electron trajectory in reciprocal space
which start and end at point q. In panel (a) q is inside the separatrix (black solid line) and
its trajectory encircle the Weyl point ,W , but in panel (b) q is outside the separatrix and so

its trajectory does not encircle the Weyl point.(c) Topological phase φ
(T )
cv (q, t) on the Bloch

trajectory for the W point for the initial point q outside of the separatrix (black line) and
inside the separatrix (red line). (d) The same as (c) but for the W ′ point.

determined by the topological phase.

The topological resonances in the Weyl semimetals occur because of the finite effective

bandgap, ∆, which is determined by the finite value of kz, ∆ ∝ kz. By changing the

sign of kz, we change the sign of the effective bandgap and, correspondingly, the sign of the

topological phase. As a results while for positive kz the topological resonance is realized for
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inside the separatrix for W point and outside of the separatrix for W
′

point, for negative kz

the topological resonance is realized outside and inside the separatrix for W and W
′

points,

respectively. For left-handed circularly polarized (LCP) pulse the distribution of the elec-

trons in the conduction band is mirror-symmetric with respect to the yz plane of that RCP

pulse, which is due to the chirality selection rule [41].

5.3.2.2 Circularly polarized pulse with two oscillations

We assume a circularly polarized pulse consisting of two optical cycles is incident normally

on the system along the z direction and has the following form

Fx(t) = F0[−e−u
2

(1− 2u2)∓ αe−(u−u0)2(1− 2(u− u0)2)],

Fy(t) = 2F0[ue
−u2 + α(u− u0)e−(u−u0)

2

], (5.30)

where u = t/τ and τ is set to 10 fs. We solve Eq. (5.19) with the initial condition (βvq, βcq) =

(1, 0). Figure 5.12 shows the momentum space interferogram near the Weyl points for a pulse

consisting of two optical periods with different handedness. The amplitude of the second

cycle is 75%, α = 0.75 , of the first cycle. The distribution is highly chiral and changing the

circularity to the opposite would change the distribution of electron to be mirror-reflected

in the yz plane, see Figure 5.12 (a) and (b). The interferogram at W and W ′ are different,

reflecting the intrinsic chirality related to the Berry phase of Weyl semimetals in reciprocal

space. This behavior is similar to graphene when a circularly polarized pulse consisting of
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Figure 5.12 (Color online) Residual CB population as a function of k in reciprocal space for
kz = 0, after a two oscillations pulse.(a) The first optical cycle is right-handed circularly
polarized with amplitude F0 = 0.01 V/Å, and the second cycle is left-handed circularly
polarized with amplitude 0.75F0. The position of two Weyl nodes in reciprocal space is
(±0.2, 0, 0). (b) Same as (a) but for a pulse with opposite chirality. In the first oscillation,
the electric field rotates clockwise while in the second oscillation it does so counter-clockwise.

two cycles with opposite circularities applied to the system[5]. At the end of the first cycle,

t = 30 (fs), the pulse does populate the conduction band along the separatrix, see Figure.

(5.9), but does not produce any interference fringes. The origin of the fringes is related to the

passage of the second pulse. During the second optical pulse, whose circularity is opposite of

the first optical pulse, gradually the formation of interference fringes starts in the direction

of the electric field rotation along the second separatrix. The origin of chirality is related to
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the different pathways that an electron moves during the two circular pulses. When the first

optical pulse is applied, the electron starts at k0 point in reciprocal space, then moves toward

the Weyl point,W , where the transition between valence and conduction band occurs. At

this point there are two possibilities: 1) the electron transfers to the conduction band with

the corresponding amplitude A1, 2) the electron stays in the valence band and completes the

first cycle in the valence band with amplitude A2 and transfer to the valence band during

the second pulse. Then for both pathways at the end of the first pulse, the electron returns

to the initial point, k0, before continuing in the second cycle in the opposite direction of the

first pulse. If time between the two passages of the W point is minimum, so any dephasing

is small and causes the phase increases fastest along the separatrix. Some part of the fringes

are normal to the separatrix which means phase increases fastest along the separatrix. For

the k0 points whose the time between the first and second passage of the W point increases

up to the optical period, T , there is little phase-difference along the separatrices, and the

fringes tend to be parallel to the separatrices. This interferometer does not need an external

reference source and, therefore, is self-referenced. Figure 5.13 shows the fringes in reciprocal

space for a pulse consisting of two subpulses with the same circularity and amplitude. In

contrast to Figure (5.12), the optical pulse does not cause any interferogram chirality. This is

due to the fact that in this case the time between the first and second passage of the electron

through the W point is large and is exactly the period T , which cause strong dephasing

and as a result the fringes is mostly parallel to the separatrix. Also, the field amplitudes

for two oscillation are equal and so the probability amplitude of two different possibilities
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Figure 5.13 (Color online) Residual CB population as a function of k in reciprocal space for
kz = 0 , after a two oscillations pulse.(a) Both optical cycles have the same chirality and
amplitude, α = 1. The field amplitude of the pulse is F0 = 0.01 (V/Å).

explained above is related as A1 = A∗2, causes the distributions to be a chiral. However, the

distributions for W and W ′ are still different which is due to the intrinsic chirality of Weyl

points in reciprocal space.

5.3.2.3 Conclusion

In summary, we studied the electron dynamics of Weyl semimetals in a circularly polarized

optical pulse with the duration of a few femtoseconds . One single oscillation circularly
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polarized pulse causes the electrons to circle in the momentum space and accumulate both

dynamic phase and topological Berry phase along the separatrix where the maximum transfer

between the valence band and conduction band occur. We calculated the CB population

for two cases: 1) kz = 0 and 2) a non-zero value of kz. For the first case, kz = 0, the

system is similar to graphene and the response of Weyl points to the ultrafast pulses are

the same. In this case the topological phase is constant during the pulse and so both inside

and outside of the separatrix is populated. However, with an increase kz in the momentum

space, the Weyl points behave differently to the external field. The significant property of the

distribution of the electron in momentum space is that for a definite circular pulse, for one

Weyl node the inside of the separatrix populates while for the other Weyl node the outside

of the separatrix does populate. The distribution of CB population for non-zero value of kz

is the same as what we observed for gapped graphene [61]. For the case of gapped graphene

by increasing gap, the response of Dirac points, K and K ′, to the ultrafast pulses with the

definite circularity is different. While the pulse populates the inside of the separatrix in K

point, the majority of the CB population is located outside of the separatriix for the K ′

point. Furthermore, employing a two-cycle circularly polarized pulse with opposite chirality

and different amplitudes causes the formation of interferogram in reciprocal space which is

highly chiral for two Weyl nodes and illustrates the intrinsic chirality of Weyl points in Weyl

semimetals.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we study the interaction of phosphorene, a two-dimensional semicon-

ductor matter with a band gap ≈ 2 eV, and Weyl semimetals, three-dimensional gapless

matter, with an ultrafast laser field. Below I highlighted the most important results whcih

we achieved in this dissertation:

• In chapter three we showed that the electron dynamics of a single layer of black phospho-

rous, phosphorene, in a strong field of an ultrashort optical pulse is highly irreversible. This

irreversibility manifest itself as a finite residual conduction band population in the reciprocal

space. Although the phosphorene has a relatively large bandgap, ≈ 2 eV, the irreversible

electron dynamics in phosphorene is similar to the electron dynamics in other 2D materials,

such as gapless graphene, silicene, or germanene.

• The distribution of the CB population in the reciprocal space shows hot spots that are

located near the Γ point where the dipole coupling between the valence band and the con-

duction band is maximum. Also, during the pulse the electron passes the Γ point two times

which causes the formation of hot spots.

• The external electric field induces the current through the system. The electric current

has two contributions: interband and intraband. In our case of phosphrene, the main con-

tribution to the electric current comes from the intraband.

In chapter four, first we study the interaction of Weyl semimetals in a strong linearly polar-

ized ultrafast pulse. The results show that:
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• The electron dynamics in such materials is coherent and highly anisotropic. For some

directions of pulse polarization, the electric dynamics is irreversible. For other directions

of polarization, the electron dynamic is highly reversible and, after the pulse, the electron

system returns to its initial state with almost zero conduction band population. Such high

anisotropy in electron dynamics is related to anisotropy in interband dipole matrix elements.

• In the reciprocal space, the electron conduction band population density shows hot spots

near the Weyl points where the dipole coupling between the bands are large.

• The optical pulse also causes net charge transfer through the system. The direction of

transfer is the same as the direction of the field maximum. The transferred charge has

highly anisotropic dependence on polarization direction with almost zero transferred charge

for some directions.

• In the next step we applied a circularly polarized pulse. The ultrafast pulse causes a finite

electron conduction band population both during and after the pulse. We show that the

electron dynamics is coherent and highly irreversible.

• For a pulse propagating in the z direction, the large population of electrons is located

near the Weyl points and along the separatrix. For small kz, the system behaves similar

to graphene and, the interband dipole matrix elements are highly localized near the Weyl

points.

• For nonzero kz, the system is similar to graphene with a gap and the interband dipole

matrix is delocalized. Therefore, the transformation of electrons between the valence band

and the conduction band are not confined in a narrow region.
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• The circularly femtosecond single oscillation pulse also induces charge transfer in both x

and y directions through the system during the pulse. For both sets of Weyl points, charge

transfer in both x and y directions increase with the field.

In chapter five we observed topological properties of Weyl semimetals by applying the lin-

early and circularly polarized pulse. The results is summarized as

• For kz = 0, the response of Weyl points to an ultrafast pulse (both linearly and circularly

polarized pulse) is similar and the distribution of the CB population near Weyl points are

the same.

• With an increase kz in the system, an ultrafast laser pulse with a duration of a few fem-

toseconds populates the area near the Weyl points differently which introduces topological

resonances in the momentum space.

• The induction CB population in the reciprocal space is highly structured and is determined

by the topological phase.

• The induction conduction band population by a circularly polarized pulse consisting of two

oscillations with opposite chirality in the reciprocal space is highly chiral which represent

the intrinsic chirality of the Weyl nodes.
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