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Finding densest subgraph in a bi-partite graph

Dhara Shah®, Danial Aghajarian', and Sushil Prasad’

Department of Computer Science, Georgia State University, Atlanta 30303, USA
{dshah8@, daghajarian@cs, sprasad@}gsu.edu

Abstract. Finding the densest subgraph in a bi-partite graph is a poly-
nomial time problem. Also, each bi-partite graph has a densest connected
subgraph. In this paper, we first prove that each bi-partite graph has a
densest connected subgraph. This proof is different than that of an undi-
rected graph, since our definition of the density is different. We then
provide a max-flow min-cut algorithm for finding a densest subgraph of
a bi-partite graph and prove te correctness of this binary search algo-
rithm.

Keywords: densest subgraph - bi-partite - max-flow - densest connected

1 Densest subgraph of a bi-partite graph

We observe that there can be multiple densest bi-partite subgraphs of a bi-partite
graph. We produce the following proof for this.

Theorem 1. Let G(S,,,Sb,, E(Say,5,)), G(Sas, Sbys E(Says Sby)) be bipartite
subgraphs, with Sq, N Say = ¢, 5, N Spy = &, E(Say,5%,) = ¢, E(Say, ) =
¢>E(Sa1’5b1) N E(Saz’ sz) = ¢.

Let |Sa1| =ai, |Sa2| = az, |Sb1| = by, |Sb2‘ = by, |E(Sa1aSb1)| = €1, |E(Sa2’Sb2)| =
€9.

Let the density of this graphs defined by

p(G(Sa17 Sb17 E(Sau Sbl)) = =

\/albl’
p(G(S(IQ!SbQ?E(SaZ?SbQ)) :\/%7
p(G(Sm U Sazs 86, U szﬁE(SaNSln) U E(Sawsbz)) = —ate

(a1+az2)(bi1+b2)
Prove that citcs

- =172 €1 €2
(a1 +a2)(b1+b2) - ax{\/ a1b1’Vazb2 }
Proof. Without loss of generality, let maxz{-=< = , 21 = T m

a2b2

e () < V a2 bo

>

(&
VvV a1b1 _\/ a2b2 1\/ albl

Now, under this assumption,

This implies,

€1 + €3 €s
V(a1 +az2) (b + bz) {\/ a1b1 'V azbs Jasts) @
e1 + ez el

Mt a) bt 0 -~ arh
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Also, LHS of equation (2)=

vang
el + 62 < 61 + el\/albl

V(a1 +az)(by +b2) ~ /(a1 + ag)(by + bo)
_ e1l/a1br +vazba)
Vaibn/ (a1 + az) (b1 + b2)

Because (1)

Hence, if we prove

e1h/a1br +vazbs) . 4

< = RHS of equation (2
\/albl\/(al + az)(by + b2) Vaib @)

we prove (2).
Here,

e1(/a1bi +vagby) <
Vaibn/(a1 +az)(by +b2) ~ Vaiby
& (/a1by +v/azba) <v/(a1 + az)(by + b2)
< (\/E'i- asba)? < (ay + ag) (b1 + be)

< A/arbiasbs < a1by + agby

a1ba + azby
2

= (albg)(agbl) <

This is true since arithmetic mean of two non-negative real numbers is always
greater than or equal to their geometric mean.
Hence

€1+ ez < e1h/a1br +vazba)

\/(111 + az) (b1 + b2) —\/albl\/(al + az) (b1 + b2)

€1 €2
< —— =nmar{—, —
“Vaib V a1by Va2b2}

2 Maxflow Densest Subgraph (MDS)

MDS algorithm finds a densest bi-partite subgraph of a Triple Network in poly-
nomial time. Inspired by [2] and [1], we use the max-flow min-cut strategy to
obtain the densest bi-partite subgraph.

Definition 1. (Mazimum density of a Triple Network) In a Triple Network
G(Va, Vi, Eq, Ey, E.), mazimum density is p* = Sag?/z%igvb%'

Let G.[S4,Sp] be a bi-partite subgraph of the Triple Network G. Consider

the number A for which |E.(Sq, Sp)| — M/[Sal|Ss| = 0. A, thus the density of

this graph, depends on ratio r = ﬂ‘;‘;l‘ and |E.(Sq, Sp)|. Ratio r can take at most




(
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Vp 2m+ M

(a) Construction of the flow graph for find- (b) Finding the minimum cut for given ra-

ing a densest subgraph of the Triple Network tio guess r and iteratively adjusting the

G(Va, W, E.) bounds of maximum density renders a
densest subgraph G(S,, Sp)

Fig. 1. MDS algorithm: Flow construction and iterations

[Vo||V3| different values, and A, the density guess, ranges in (0,4/|Va||V3|]. Tt is
evident from definition 1 that finding a densest subgraph of the Triple Network
is equivalent to finding max  {A|Ec(Sq, Sp)| — M/15||Ss] = 0} over all

5,CVa,S,CVs

subgraphs G,[S,], Gb[Sp]. hence, to find p*, instead of enumerating all possible
subgraphs S, C V, and S, C V3, we can guess A and r. For these guessed values
of A and r, if we can find a subgraph G.[S,, Sp] such that p(S,,Ss) > A, then
p* > p(Sa,Sp) > A In that case, for the same r, the next guess for A would
be higher than the current guess. If no such subgraph exists, then p* < A. In
this case, for the same r, the next guess for A would be lower than the current
guess. The verification that such a subgraph exists or not could be done using
flow networks. Finding a densest bi-partite subgraph for a given r thus could
be viewed as a binary search for A. By enumerating all such r, we guarantee to
obtain the densest subgraph.

Given a Triple Network G and values of A and r, we construct the following
flow network. This flow network yields a subgraph G.[S,, Sp] with p(S,, Sp) > A
if such a subgraph exists in G. Else it yields an empty set.

f1) Initialize weighted directed graph G'(V', E') with V' =V, UV, E' = ¢, and
a constant m = |E,|

) For all edges {vq, vp} € Ee, add (vp, v4) with weight 2 to E’

) Add source node s and sink node ¢ to V'

) For all vertices v € V, UV}, add edge (s,v) with weight 2m to E’

) For all vertices v, € V,, add edge (v, t) with weight 2m + ﬁ to B’

)

For all vertices vy € Vj, add edge (vp,t) with weight 2m ++/rA — 2d(vp) to
E’, where d(vp) is the degree of v, in G

Now, we apply the MDS algorithm 1 to this graph.
Theorem 2. MDS algorithm yields a densest subgraph of the Triple Network.

Proof. Let G(V,,, Vs, Eq, Ep, E.) be a Triple Network with V, # ¢, V}, # ¢. Let
G'(V', E") be the weighted directed flow network constructed from this network
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as mentioned above. Let S, T be the minimum s-t cut of this flow network. From
figure 1(a), if S = {s} and T' = V, UV}, U {t}, then the value this trivial cut is
2m(|Va| +|Vs]). However, if S = {s}US,US, and T = {V\ S} U{W\ Sp} U{t}
then the value of a cut in this flow network is

om|Va| +2m|Vi| = Y 2m— Y 2m+ Z(2m+\27)

Ve EVa\Sa vy €V \Sh V4, ESq
) @mAVEA - 2dw) + Y 2
vpES {'Ubﬂ)a}eE
, 05 €S,
'Uaeva\sa

= 2m(|Va| + [Va]) + AWr[ S| + 2|Ec(Sa; Sb)|

A
ﬁ‘sa‘_

=2m(|Va| 4 [Vs|) = 2(1Ee(Sa, Sb)| — M/|5a|[Ss]) (substitute 7 = |§a||)
b

This non-trivial s-t cut, if exists, is minimal. Hence the value of this cut is less
than the value of trivial cut. In other words,

2m(|Val + Vo)) = 2m(|Va] + [Vo]) = 2(|Ec(Sa, Sb)|
— A/ |[Sa||Sp]). Hence, for a non-trivial s-t cut, |E.(Sq, Sp)|

— MWJS4][S,] < 0.

So if, for given values of A and r, the flow network renders a non-trivial s-t cut
S, T; then the subgraph S\ {s} = G¢[Sa, Ss] has density A such that

|Ec(Say Sp)| — M/|SallSs| = 0. Which implies that p(Sg, Sy) > A. Hence, maxi-
mum density of G has to be higher than the current guess of A\. However, if the
flow network renders a trivial s-t cut, no subgraph of G has density A with given
r. Hence, maximum density of G has to be lower than current guess of A. By
repeating this process as a binary search, eventually we will find the smallest A
with |E.(Sq, Sp)|—A/|Sal|Ss| = 0 for the given r. By iterating on possible values
of r, the maximum value of such A is found. This value is maximum density and
the corresponding subgraph is a densest subgraph of G.

Theorem 3. MDS algorithm is a polynomial time algorithm.
Proof. The density difference of any two subgraphs of a bi-partite graph G.[V,, V3]

is

> |Va\21\Vb|2 with 0 < m7m, < ‘Ec‘al < U1, Uy < ‘Va|71 <

ViR ol
V2, vl2 < |Vp]. This guarantees that the search for maximum density in the range
(0,/|Va||Vs|] can be performed with step size halting in O(|V,|>/2|V,3/?)
iterations.

Within each iteration of this binary search, the minimum cut of the flow graph
is calculated in O(|Vq| 4+ [Vo])2(2(|Val| + [Va]) + | Ec])). Hence, the complexity of
algorithm 1 is
O(|Va|*5|V4|*®). Adding the cost of BFS for finding connected components in
G, and Gy, the upper-bound still remains unchanged.

R S
[Val?[V[?>
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Algorithm 1 Maxflow Densest Subgraph (MDS)

Input: Triple Network G(Vg, Vb, Eq, Ep, E.),with V, # ¢, V, # ¢
Output: A densest bi-partite subgraph G¢[Sa, Sp] of G

. possible_ratios = {§|z el - |Vall,j €L, -V}

1

2: densest_subgraph = ¢, maximum_density = p(Vq, Vb)
3: for ratio guess r € possible_ratios do

4 low + p(Va, Vo), high <—+/|Va||Vsl, g = Ge[Va, Vi)
5

6

7

. . 1
while hzghh.—}fmlu > TARAEL do
mid = hightiow
construct a flow graph G’ as described in (f1) - (fs) and find the
minimum s-t cut S, T
8 g = S\ {source node s}
o: if ¢’ # ¢ then
10: g« g
11: | low = maz{mid, p(g)}
12: else high = mid
13: if maximum_density < low then
14: mazximum-density = low
15: | densest_subgraph = g
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