
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Technical Reports Department of Computer Science

Spring 4-3-2019

Finding densest subgraph in a bi-partite graph
Dhara Shah
dshah8@student.gsu.edu

Sushil Prasad
sprasad@gsu.edu

Danial Aghajarian
daghajarian@cs.gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/
computer_science_technicalreports

Part of the Theory and Algorithms Commons

This Working Paper is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of ScholarWorks @ Georgia State University.
For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Shah, Dhara; Prasad, Sushil; and Aghajarian, Danial, "Finding densest subgraph in a bi-partite graph" (2019). Computer Science
Technical Reports. 1.
https://scholarworks.gsu.edu/computer_science_technicalreports/1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/215176608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science_technicalreports?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science_technicalreports?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science_technicalreports?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science_technicalreports/1?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Finding densest subgraph in a bi-partite graph

Dhara Shah1, Danial Aghajarian1, and Sushil Prasad1

Department of Computer Science, Georgia State University, Atlanta 30303, USA
{dshah8@, daghajarian@cs, sprasad@}gsu.edu

Abstract. Finding the densest subgraph in a bi-partite graph is a poly-
nomial time problem. Also, each bi-partite graph has a densest connected
subgraph. In this paper, we first prove that each bi-partite graph has a
densest connected subgraph. This proof is different than that of an undi-
rected graph, since our definition of the density is different. We then
provide a max-flow min-cut algorithm for finding a densest subgraph of
a bi-partite graph and prove te correctness of this binary search algo-
rithm.

Keywords: densest subgraph · bi-partite · max-flow · densest connected

1 Densest subgraph of a bi-partite graph

We observe that there can be multiple densest bi-partite subgraphs of a bi-partite
graph. We produce the following proof for this.

Theorem 1. Let G(Sa1 , Sb1 , E(Sa1 , Sb1)), G(Sa2 , Sb2 , E(Sa2 , Sb2)) be bipartite
subgraphs, with Sa1 ∩ Sa2 = φ, Sb1 ∩ Sb2 = φ,E(Sa1 , Sb2) = φ,E(Sa2 , Sb1) =
φ,E(Sa1 , Sb1) ∩ E(Sa2 , Sb2) = φ.
Let |Sa1 | = a1, |Sa2 | = a2, |Sb1 | = b1, |Sb2 | = b2, |E(Sa1 , Sb1)| = e1, |E(Sa2 , Sb2)| =
e2.
Let the density of this graphs defined by
ρ(G(Sa1 , Sb1 , E(Sa1 , Sb1)) = e1√

a1b1
,

ρ(G(Sa2 ,Sb2 , E(Sa2 , Sb2)) = e2√
a2b2

,

ρ(G(Sa1 ∪ Sa2 , Sb1 ∪ Sb2 , E(Sa1 , Sb1) ∪ E(Sa2 , Sb2)) = e1+e2√
(a1+a2)(b1+b2)

Prove that e1+e2√
(a1+a2)(b1+b2)

≤ max{ e1√
a1b1

, e2√
a2b2
}

Proof. Without loss of generality, let max{ e1√
a1b1

, e2√
a2b2
} = e1√

a1b1
.

This implies,
e1√
a1b1

≥ e2√
a2b2

⇔ e2 ≤ e1

√
a2b2√
a1b1

(1)

Now, under this assumption,

e1 + e2√
(a1 + a2)(b1 + b2)

≤ max{ e1√
a1b1

,
e2√
a2b2
}

⇔ e1 + e2√
(a1 + a2)(b1 + b2)

≤ e1√
a1b1

(2)

2 Shah et al.

Also, LHS of equation (2)=

e1 + e2√
(a1 + a2)(b1 + b2)

≤
e1 + e1

√
a2b2√
a1b1√

(a1 + a2)(b1 + b2)
Because (1)

=
e1(
√
a1b1 +

√
a2b2)

√
a1b1
√

(a1 + a2)(b1 + b2)

Hence, if we prove

e1(
√
a1b1 +

√
a2b2)

√
a1b1
√

(a1 + a2)(b1 + b2)
≤ e1√

a1b1
= RHS of equation (2)

we prove (2).
Here,

e1(
√
a1b1 +

√
a2b2)

√
a1b1
√

(a1 + a2)(b1 + b2)
≤ e1√

a1b1

⇔ (
√
a1b1 +

√
a2b2) ≤

√
(a1 + a2)(b1 + b2)

⇔ (
√
a1b1 +

√
a2b2)2 ≤ (a1 + a2)(b1 + b2)

⇔ 2
√
a1b1a2b2 ≤ a1b2 + a2b1

⇔
√

(a1b2)(a2b1) ≤ a1b2 + a2b1
2

This is true since arithmetic mean of two non-negative real numbers is always
greater than or equal to their geometric mean.
Hence

e1 + e2√
(a1 + a2)(b1 + b2)

≤ e1(
√
a1b1 +

√
a2b2)

√
a1b1
√

(a1 + a2)(b1 + b2)

≤ e1√
a1b1

= max{ e1√
a1b1

,
e2√
a2b2
}

2 Maxflow Densest Subgraph (MDS)

MDS algorithm finds a densest bi-partite subgraph of a Triple Network in poly-
nomial time. Inspired by [2] and [1], we use the max-flow min-cut strategy to
obtain the densest bi-partite subgraph.

Definition 1. (Maximum density of a Triple Network) In a Triple Network

G(Va, Vb, Ea, Eb, Ec), maximum density is ρ∗ = max
Sa⊆Va,Sb⊆Vb

|Ec(Sa,Sb)|√
|Sa||Sb|

.

Let Gc[Sa, Sb] be a bi-partite subgraph of the Triple Network G. Consider
the number λ for which |Ec(Sa, Sb)| − λ

√
|Sa||Sb| = 0. λ, thus the density of

this graph, depends on ratio r = |Sa|
|Sb| and |Ec(Sa, Sb)|. Ratio r can take at most

Finding densest subgraph in a bi-partite graph 3

(a) Construction of the flow graph for find-
ing a densest subgraph of the Triple Network
G(VA, Vb, Ec)

(b) Finding the minimum cut for given ra-
tio guess r and iteratively adjusting the
bounds of maximum density renders a
densest subgraph G(Sa, Sb)

Fig. 1. MDS algorithm: Flow construction and iterations

|Va||Vb| different values, and λ, the density guess, ranges in (0,
√
|Va||Vb|]. It is

evident from definition 1 that finding a densest subgraph of the Triple Network
is equivalent to finding max

Sa⊂Va,Sb⊂Vb

{λ| |Ec(Sa, Sb)| − λ
√
|Sa||Sb| = 0} over all

subgraphs Ga[Sa], Gb[Sb]. hence, to find ρ∗, instead of enumerating all possible
subgraphs Sa ⊂ Va and Sb ⊂ Vb, we can guess λ and r. For these guessed values
of λ and r, if we can find a subgraph Gc[Sa, Sb] such that ρ(Sa, Sb) ≥ λ, then
ρ∗ ≥ ρ(Sa, Sb) ≥ λ. In that case, for the same r, the next guess for λ would
be higher than the current guess. If no such subgraph exists, then ρ∗ < λ. In
this case, for the same r, the next guess for λ would be lower than the current
guess. The verification that such a subgraph exists or not could be done using
flow networks. Finding a densest bi-partite subgraph for a given r thus could
be viewed as a binary search for λ. By enumerating all such r, we guarantee to
obtain the densest subgraph.

Given a Triple Network G and values of λ and r, we construct the following
flow network. This flow network yields a subgraph Gc[Sa, Sb] with ρ(Sa, Sb) ≥ λ
if such a subgraph exists in G. Else it yields an empty set.

(f1) Initialize weighted directed graph G′(V ′, E′) with V ′ = Va ∪Vb, E′ = φ, and
a constant m = |Ec|

(f2) For all edges {va, vb} ∈ Ec, add (vb, va) with weight 2 to E′

(f3) Add source node s and sink node t to V ′

(f4) For all vertices v ∈ Va ∪ Vb, add edge (s, v) with weight 2m to E′

(f5) For all vertices va ∈ Va, add edge (va, t) with weight 2m+ λ√
r

to E′

(f6) For all vertices vb ∈ Vb, add edge (vb, t) with weight 2m +
√
rλ − 2d(vb) to

E′, where d(vb) is the degree of vb in G

Now, we apply the MDS algorithm 1 to this graph.

Theorem 2. MDS algorithm yields a densest subgraph of the Triple Network.

Proof. Let G(Va, Vb, Ea, Eb, Ec) be a Triple Network with Va 6= φ, Vb 6= φ. Let
G′(V ′, E′) be the weighted directed flow network constructed from this network

4 Shah et al.

as mentioned above. Let S, T be the minimum s-t cut of this flow network. From
figure 1(a), if S = {s} and T = Va ∪ Vb ∪ {t}, then the value this trivial cut is
2m(|Va|+ |Vb|). However, if S = {s}∪Sa∪Sb and T = {Va \Sa}∪{Vb \Sb}∪{t}
then the value of a cut in this flow network is

2m|Va|+ 2m|Vb| −
∑

va∈Va\Sa

2m−
∑

vb∈Vb\Sb

2m+
∑
va∈Sa

(2m+
λ√
r

)

+
∑
vb∈Sb

(2m+
√
rλ− 2d(vb)) +

∑
{vb,va}∈E
,vb∈Sb,
va∈Va\Sa

2

= 2m(|Va|+ |Vb|) + λ
√
r|Sb|+

λ√
r
|Sa| − 2|Ec(Sa, Sb)|

= 2m(|Va|+ |Vb|)− 2(|Ec(Sa, Sb)| − λ
√
|Sa||Sb|)(substitute r =

|Sa|
|Sb|

)

This non-trivial s-t cut, if exists, is minimal. Hence the value of this cut is less
than the value of trivial cut. In other words,

2m(|Va|+ |Vb|) ≥ 2m(|Va|+ |Vb|)− 2(|Ec(Sa, Sb)|

− λ
√
|Sa||Sb|). Hence, for a non-trivial s-t cut, |Ec(Sa, Sb)|

− λ
√
|Sa||Sb| < 0.

So if, for given values of λ and r, the flow network renders a non-trivial s-t cut
S, T ; then the subgraph S \ {s} = Gc[Sa, Sb] has density λ such that
|Ec(Sa, Sb)| − λ

√
|Sa||Sb| ≥ 0. Which implies that ρ(Sa, Sb) ≥ λ. Hence, maxi-

mum density of G has to be higher than the current guess of λ. However, if the
flow network renders a trivial s-t cut, no subgraph of G has density λ with given
r. Hence, maximum density of G has to be lower than current guess of λ. By
repeating this process as a binary search, eventually we will find the smallest λ
with |Ec(Sa, Sb)|−λ

√
|Sa||Sb| = 0 for the given r. By iterating on possible values

of r, the maximum value of such λ is found. This value is maximum density and
the corresponding subgraph is a densest subgraph of G.

Theorem 3. MDS algorithm is a polynomial time algorithm.

Proof. The density difference of any two subgraphs of a bi-partite graphGc[Va, Vb]

is

∣∣∣∣ m√
v1v2
− m′√

v
′
1v

′
2

∣∣∣∣ ≥ 1
|Va|2|Vb|2 with 0 ≤ m,m′ ≤ |Ec|, 1 ≤ v1, v

′

1 ≤ |Va|, 1 ≤

v2, v
′

2 ≤ |Vb|. This guarantees that the search for maximum density in the range
(0,
√
|Va||Vb|] can be performed with step size 1

|Va|2|Vb|2 , halting inO(|Va|3/2|Vb|3/2)
iterations.

Within each iteration of this binary search, the minimum cut of the flow graph
is calculated in O(|Va| + |Vb|)2(2(|Va| + |Vb|) + |Ec|)). Hence, the complexity of
algorithm 1 is
O(|Va|4.5|Vb|4.5). Adding the cost of BFS for finding connected components in
Ga and Gb, the upper-bound still remains unchanged.

Finding densest subgraph in a bi-partite graph 5

Algorithm 1 Maxflow Densest Subgraph (MDS)

Input: Triple Network G(Va, Vb, Ea, Eb, Ec),with Va 6= φ, Vb 6= φ
Output: A densest bi-partite subgraph Gc[Sa, Sb] of G

1: possible ratios = { i
j
|i ∈ [1, · · · |Va|], j ∈ [1, · · · |Vb|]}

2: densest subgraph = φ,maximum density = ρ(Va, Vb)
3: for ratio guess r ∈ possible ratios do

4: low ← ρ(Va, Vb), high←
√
|Va||Vb|, g = Gc[Va, Vb]

5: while high− low ≥ 1
|Va|2|Vb|2

do

6: mid = high+low
2

7: construct a flow graph G′ as described in (f1) - (f6) and find the
minimum s-t cut S, T

8: g′ = S \ {source node s}
9: if g′ 6= φ then

10: g ← g′

11: low = max{mid, ρ(g)}
12: else high = mid

13: if maximum density < low then
14: maximum density = low
15: densest subgraph = g

References

1. Goldberg, A.V.: Finding a maximum density subgraph. University of California
Berkeley, CA (1984)

2. Khuller, S., Saha, B.: On finding dense subgraphs. In: International Colloquium on
Automata, Languages, and Programming. pp. 597–608. Springer (2009)

	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 4-3-2019

	Finding densest subgraph in a bi-partite graph
	Dhara Shah
	Sushil Prasad
	Danial Aghajarian
	Recommended Citation

	tmp.1554331572.pdf.OBROI

