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Cognitive sciences for computing education 
 

Anthony V. Robins, Lauren E. Margulieux, Briana B. Morrison 

 

1 Introduction 
  

Cognitive Science is typically defined as the interdisciplinary study of the mind and its 

processes.  The field emerged in the 1950s, driven largely by progress in cognitive psychology 

and artificial intelligence, see Gardner (1985) for a history.  The disciplines usually included 

within its scope include philosophy, neuroscience, psychology, anthropology, linguistics, and 

artificial intelligence. 

 

The field of Computing Education Research (CEdR)1 is an example of Discipline-Based 

Education Research (Singer, Nielsen & Schweingruber, 2012).  It has developed within the 

context of, and been shaped by, cognitive science and education.  Methodologically, CEdR 

shares the tools and methods of enquiry employed within these disciplines (see Chapters 2.1, 

2.2, 2.3, 2.4).  Empirically, CEdR has been guided and influenced by what we know about 

human cognition and learning.  During the 1970s to 80s the emerging CEdR field was 

characterised by a focus on “the psychology of programming”, and it adopted findings such as 

the limitations of working memory, and the importance of the knowledge structures of schemata 

/ plans (see Chapters 1.2 and 3.1).  Theoretically, CEdR adopted paradigms such as 

cognitivism and (later) constructivism (see Chapters 2.5, 2.7, 3.4).  In recent decades it has 

continued adopting and exploring theoretical frameworks like developmental stages, mental 

models and cognitive load (Chapter 3.1).  

 

Arguably, however, research within CEdR would benefit from further and ongoing exploration of 

foundational cognitive science.  In 2005 the Special Interest Group in Computer Science 

Education (SIGCSE) held a panel discussion on Challenges to Computer Science Education 

Research.  Panellists commented on the “isolation” of CEdR, and that “Too much of the 

research in computing education ignores the hundreds of years of education, cognitive science, 

and learning sciences research that have gone before us” (Almstrum et al., 2005).   Despite 

progress since 2005, this criticism remains relevant today.  This chapter is intended to be a 

                                                
1 Frequently used acronyms are listed at the end of the chapter. 

https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cambridge.org%2F9781108721899&data=02%7C01%7Clmargulieux%40gsu.edu%7C4a7fa6776b614383b6bc08d6a6880a40%7C515ad73d8d5e4169895c9789dc742a70%7C0%7C0%7C636879500550284677&sdata=A3w2p37ZeTBd0weX6fRxcWSlYT8I68u3gp0GGEnxAgE%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.amazon.com%2Fs%3Fk%3Dcambr&data=02%7C01%7Clmargulieux%40gsu.edu%7C4a7fa6776b614383b6bc08d6a6880a40%7C515ad73d8d5e4169895c9789dc742a70%7C0%7C0%7C636879500550294682&sdata=8Z1c9fwFHhUCLZrLvAX%2Fz8GpaIMI%2FOIlZ17vQjeALgo%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fservices%2Fopen-access-policies%2Fintroduction-to-open-access&data=02%7C01%7Clmargulieux%40gsu.edu%7C4a7fa6776b614383b6bc08d6a6880a40%7C515ad73d8d5e4169895c9789dc742a70%7C0%7C0%7C636879500550294682&sdata=NeoSPc%2B3ja4REetOavtK3zMjuE3sYlmiw9tqNYOWQDk%3D&reserved=0


contribution towards addressing it, by summarising some of the findings of these “hundreds of 

years” of research as they pertain to human cognition and learning, and by drawing out the 

implications for CEdR.  This is not an easy task, and readers familiar with particular topics will 

see that we have summarised heavily.  We aim to provide an introduction to foundational 

concepts with a roadmap to the broader literature (sections 2 to 5), and to highlight two areas of 

particular interest (sections 6 and 7). 

 

  

2 Brains, computers and levels of analysis 
 

In the most general sense, both the brain and the computer process information.  In the brain, 

various patterns of neural activation give rise to emergent phenomena that we experience and 

describe as sensations, thoughts, memories and the like.  Our memories are made up of 

overlapping patterns that are approximately recreated in the process of recall, and our 

reasoning is determined by heuristics, expectations, and mental models of real or imagined 

worlds.  In the computer a central processor reads and writes binary patterns that we interpret 

as symbols from and to specified locations in a passive memory.  Various sequences of 

symbolic manipulation give rise to emergent phenomena that we describe as computations, 

processes, and other forms of output behaviour.   

 

Cognitive science generally shares the methods and frameworks of its component disciplines.  

There is, however, one theoretical insight which arose within the field that we should draw 

attention to, that is Marr’s concept of “levels of analysis” (Marr & Poggio, 1976; Marr, 1982).  

Marr proposes that explanations of the functioning of information processing systems should 

consider three distinct but complementary levels: computational, algorithmic, and 

implementational.  The computational level describes what the system does, its purpose and the 

tasks that it performs.  The algorithmic level describes the representations and algorithms that 

system uses to perform its tasks.  The implementational level describes how the system is 

physically implemented.  Marr’s levels have been variously reinterpreted as semantic, syntactic, 

and physical, or content, form, and medium (McClamrock, 1991).  Figure 9.1 shows three levels 

of analysis applied to an example information processing system, a simple calculator2. 

 

 

                                                
2 The CORDIC algorithm(s) used by most calculators were initially developed by Volder (1959). 



Figure 9.1  Levels of analysis and an example of their application to an example 

system.  Calculator image from https://openclipart.org.  

  

Without necessarily committing to any particular formulation, the idea of different levels of 

analysis / description is both general and powerful.  A lot of scientific explanation is reductive, 

accounting for phenomena at one level (e.g. learning) by providing a description at a “lower” 

level (e.g. storage in long-term memory).  Conversely, some of the most interesting phenomena 

are emergent, where factors at one level (e.g. the behaviour of individual students) give rise to 

interesting properties at a “higher” level (e.g. the complex structures and behaviours of a 

classroom).  Each level of explanation has its uses, each affords a language and a set of 

concepts that is distinct from, and difficult or impossible to rephrase in, the other.  Each level is 

self-contained but incomplete; in combination they provide a more thorough understanding.  

These ideas may come naturally to computing educators given that many of the complex 

systems that we use - programming languages, operating systems, applications - make 

extensive use of multiple layers of abstraction (as discussed in Chapter 3.6). 

 

CEdR has not in general been explicit about different levels of analysis.  Consider two examples 

of how they might apply.  First, a hypothetical student appears to have learned a fact one day, 

but not the next.  A low level explanation might be the weakening of certain synapses within a 

hippocampal circuit.  A mid level explanation might identify a failure of recall due to insufficient 

consolidation of the encoded knowledge during sleep.  A high level explanation might note that 

the student was highly anxious and not sleeping well.  Absent a magic pill for selectively 

strengthening synapses, the mid and high level explanations suggest different kinds of 

intervention, from explicit consolidation of material, to sleep management techniques, to 

addressing the underlying anxiety.   

 

For a second example, it is frequently observed in introductory programming courses (when 

compared to other courses) that a larger than usual percentage of the class fail, and a larger 

than usual percentage achieve high grades (this is discussed at length in Chapter 3.1).  

Historically one explanation for this phenomenon has been that some individuals simply have an 

aptitude for programming and some do not - that programmers are “born and not made”.  The 

appeal to an innate capacity (“nature” over “nurture”) sets this explanation in the high level 

framework of evolution.  Consideration at this level makes clear the claim’s implausibility, as the 

idea that evolutionary forces can possibly have selected for programming (or some adaptive 

programming-like analogue) is highly problematic at best.  An alternative account attempts to 

explain the pattern of outcomes using the widely accepted educational observation that we learn 

“at the edges of what we know”.  If programming language concepts have unusually structured 

and interconnected “edges” then early success or failure of learning will lead to momentum 

towards successful or unsuccessful outcomes over all.  Recognising that this explanation is 

framed in specific lower level mechanisms of human learning leads to hypotheses about the 

nature of the process, and testable predictions about programming languages as a domain of 

knowledge and the crucial importance of the early stages of learning to program (see Robins 

(2010) summarised in Chapter 3.1). 

 



In short, recognising and making more explicit use of different levels of analysis may be of some 

benefit to CEdR.  The remaining sections of this chapter attempt to summarise research 

pertaining to human cognition and learning.  If at times the material seems to be too “low level” 

to be of educational use, consider both the popularity of reductive explanations, and that we do 

not know at what level of analysis the most interesting or effective account of a given 

phenomenon might be found. 

 

  

3 Perception and attention 
  

Perception is the process by which we as cognitive agents receive, register, and process stimuli 

from the external world (and from our own bodies).  We begin with this low-level process to 

inform the higher-level process of attention. In perception, the physical or chemical stimulation 

of sense organs is translated into patterns of neural firing which are conducted by the nervous 

system to the brain.  The classical senses are vision, hearing, touch, taste and smell.  We have 

far more than five senses, though, including proprioception (our sense of the positions of parts 

of our body), temperature, balance, vibration, different internal chemoreceptors, and pain.  

  

Each of the senses is a field of study in itself, for overviews see for example Mather (2016) or 

Goldstein and Brockmole (2016).  In educational terms they suggest a focus on good 

ergonomics (Smith, 2007) and human computer interface design, and attention to the obvious 

issues raised by dealing with sensory impairment and equity of access.  While the working of 

individual senses has generally been regarded as too early a stage of processing to be of 

significant interest in the educational literature, there has been some focus on “multisensory 

learning” e.g. Shams and Seitz (2008), see Kátai, Juhász and Adorjáni (2008) for a CEd 

example. 

  

Sensory processes are not a passive “bottom-up” delivery of inputs, they are active processes 

incorporating “top-down” information from higher level systems.  These top-down influences are 

evident in the kinds of artefacts of processing that cause sensory illusions (particularly visual 

illusions), in perceptual effects such as grouping and continuity (“Gestalt laws”), in the influence 

of existing knowledge or current state (e.g. motivation or expectation) on what is perceived, in 

the use of attention (including consciously mediated attentional focus) to select specific stimuli, 

and in the subjective experience of a consistent external world which emerges from complex 

and ever-changing inputs.  Top-down effects are discussed in for example Gregory (1997), 

Engel, Fries and Singer (2001), Gilbert and Sigman (2007), see also the interesting debate 

presented in Firestone and Scholl (2016) and the subsequent commentary. An example in 

CEdR can be found in Hansen, Lumsdaine, and Goldstone (2013) who manipulated the white 

space (e.g. blank lines) in coding examples which caused confusion for both experts and 

novices. 

  

Attention is the ability to select particular information from the vast and continuous array of 

sensory inputs.  The term encompasses a range of complex phenomena, from the pre-

conscious selection of specific stimuli, to overt or covert conscious selection, to the intentional 



direction of high-level processing (“trains of thought”).  The extent to which these are aspects of 

the same, or different underlying cognitive mechanisms is not yet clear.  Historically a central 

question in research was whether sensory inputs are selected and then interpreted for meaning 

(called “early selection”), or whether they are all interpreted before selection (called “late 

selection”).  In practice experimental evidence questions either model individually, and some 

form of compromise appears to be the case (Pashler 2016, p5), see for example the influential 

“feature-integration theory” (Treisman & Gelade, 1980).  Attention has been variously 

conceptualised as: a “spotlight”, a visually based model where the spotlight consists of a focus, 

a margin and a fringe, e.g. Posner, Snyder and Davidson (1980); a “zoom lens”, which can 

trade off the size of the focus and the efficiency of processing, e.g. Eriksen and James (1986); 

or the allocation of limited resources such as working memory. One area of CEdR which studies 

attention within computing education involves using eye-tracking, e.g. Busjahn et al. (2014), 

Klaus-Dieter (2018). 

  

In educational terms the concepts of attention, working memory and cognitive load are closely 

related, and all are discussed further below.  Beyond the perceptual and core cognitive 

mechanisms summarised here, “attention” also has a behavioural and clinical interpretation in 

the guise of attention deficit disorders.  These have significant educational and practical impacts 

(see e.g. Morris, Begel and Wiedermann (2015) on challenges within the technical workforce), 

but are beyond the scope of this review.   

 

 

4 Memory and learning 
  

Our memories are central to how we understand both the world and ourselves as individuals.  

Popularly, a memory is some item of information that we are able to recall to mind, but within 

cognitive science memory is a general term for a variety of mechanisms, including the encoding, 

storage and retrieval of information.  The foundations of current views in memory were set out 

by Atkinson and Shiffrin (1968), who proposed a distinction between different kinds of memory: 

a “sensory register” (now called sensory memory), a “short-term store” (short-term or working 

memory), and a long-term store (long-term memory).   

 

The material presented in this section is widely agreed upon, and rather than referencing each 

claim the reader is referred to some of the classic and contemporary sources, such as Norman 

(1970), Baddeley (1999), Tulving and Craik (2000), Baddeley, Eysenck and Anderson (2015) or 

Radvansky (2016). 

  

 

4.1 Sensory, short-term and working memory 

  

Sensory memory (SM) refers to the automatic and brief retention of sensory phenomena after 

the stimulus itself is gone.  It is usually studied in the visual modality (iconic memory), but also 

includes hearing (echoic memory) and touch (haptic memory).  In typical experiments humans 

are able, for a short time after exposure, to recall some details after an image is briefly seen 



(less than 1 second) and then removed.  As far as we are aware SM has not been explored in 

the context of CEdR. 

  

Short-term memory (STM) refers to the capacity to actively hold a small amount of information 

in conscious focus for a short period of time (Revlin (2012) suggests up to 18 seconds).  The 

retention period can be extended with active strategies such as conscious rehearsal. 

  

A “small amount” of information is generally held to be 4 ± 1 items (Cowan, 2001), refining the 

original famous estimate of 7 ± 2 items by Miller (1956) (“Miller’s Law” or the “magical number” 

of memory).  However this estimate is somewhat complicated by “chunking”, the fact that an 

item can contain other items.  For example humans are generally able to recall a list of four 

single-digit numbers (e.g. 3, 7, 2, 9), but they can also recall four multi-digit numbers (72, 123, 

18, 446) which between them contain many more digits.  The judicious use of chunking 

(grouping individual pieces of information into a meaningful whole) is central to the efficient use 

of STM and it is a strategy which can be taught and learned (see Chapter 3.16 for further 

discussion of chunking). 

  

The term working memory has been, and often still is, used as a synonym for STM.  However 

most researchers accept the distinction proposed by Baddeley and Hitch (1974), that STM 

involves the simple retention of information, while working memory involves additional systems 

for manipulating this information so as to perform such activities as comprehension, problem 

solving, reasoning and learning.  (The systems proposed by Baddeley and Hitch include a 

central executive, a phonological loop, an episodic buffer, and a visuo-spatial sketchpad.)  

  

The capacity of working memory is of significant interest -  why can we only concentrate on a 

few things at a time?  Suggestions include limitations that arise from the competition for some 

underlying cognitive resource such as attention, or that active memory items decay or interfere 

with each other.  It is widely accepted that the concepts of attention (the ability to selectively 

process information) and working memory (the ability to retain information in a useable state) 

are separate but closely linked (Fougnie, 2008), and that mechanisms such as attentional 

capture (implicitly or explicitly attending to a specific stimulus) provide inputs to working 

memory.  Deco and Rolls (2005) describe a unifying theory of attention, short-term memory, and 

action selection.   

 

Programming tasks generally involve working with a lot of information relating to the current 

state of the data represented and the processes being executed, the overall design and goals of 

the program, and also the language and tools being used.  In order to accomplish this with a 

limited working memory programmers must make extensive use of chunking and organising 

knowledge structures such as schemata / plans (see below), and they must hold only parts of 

the overall task / program design in working memory at any given time.  We know very little 

about how this is accomplished, or what individual variations in capacity or strategy exist.  Also 

relevant in this context is the concept of cognitive load discussed below. 

  

 



4.2 Long-term memory  

  

Both sensory memory and short-term memory have a limited capacity and duration.  Long-term 

memory (LTM) is the encoding, storage and retrieval of large amounts of information for 

significant periods of time – up to years or a lifetime.   At a low level of analysis, learning is the 

formation of memories through the processes of encoding, storage and retrieval of information.  

  

The encoding of a memory is the process by which the brain alters its structure so as to create a 

lasting representation of some currently perceived or attended to stimulus or item of information. 

Different brain regions are involved in the initial stages of encoding for different senses, but 

creating representations of different kinds of information (in concrete terms some pattern of 

neural activation) appears to depend on a common mechanism (changes to the strengths of the 

synaptic connections between neurons).  While the hippocampus and associated structures are 

involved in the encoding process, the resulting representations are not (in most cases) strongly 

tied to any particular location in the brain (Tonegawa et al., 2015). 

 

The basic mechanism of encoding was first recognised by Hebb (1949), who proposed that a 

synaptic connection between two neurons is strengthened when the neurons are active at the 

same time.  While the details are complex (depending on issues of timing and recent activity), 

Hebb was essentially correct, synaptic plasticity is recognised as the fundamental neural 

process underlying memory formation (Takeuchi, Duszkiewicz & Morris, 2014).  The resulting 

physical trace of a memory is called an engram: “If the inputs to a system cause the same 

pattern of activity to occur repeatedly, the set of active elements constituting that pattern will 

become increasingly strongly interassociated. … We may call a learned (auto-associated) 

pattern an engram” Allport (1985). 

  

Many issues can affect the success or failure of memory encoding.  These include 

environmental factors (distractors, stressors, context), cognitive and emotional state, and the 

“predicted reward” associated with the stimulus.  Significant events, especially those involving 

emotional content, appear to be strongly encoded.  Encoding typically omits much of the 

richness of a stimulus / sensory experience, and appears to primarily represent semantic 

content (meaning) (Baddeley, 1966).  Consistent with this observation, one of the most reliable 

results in the memory research literature is that encoding can be improved by “elaboration”: 

interacting with the stimulus at the time of encoding, processing it in meaningful ways, and in 

particular relating it to already existing long-term memories.  This finding has had a huge impact 

on education, where much of teaching practice is about timing and scaffolding the introduction 

of content appropriately, and engaging learners actively with the new material. 

  

Consolidation is a mechanism (variously considered either separate from or part of either 

encoding or storage) by which initial encoding of a memory is strengthened.  Processes that 

occur during sleep are important to consolidation (Stickgold, 2005).  These appear to involve the 

re-activation of recently learned information, and (particularly for novel semantic information) a 

transfer from initial storage in the hippocampus (and associated structures) to the cortex, over 

periods ranging from days to years.  Good sleep is important to good learning. 



  

If some memory (pattern of activation) has been encoded and some time later can be retrieved, 

then in between these times the memory is in some sense stored.  Note that what is stored is 

not the pattern itself, but changes to synaptic connection strengths that allow the pattern to be 

recreated.  By analogy the process of remembering a piece of music is more akin to creating a 

musical score than it is to making a recording. 

  

The storage of memories is not a passive or a perfect system.  The synaptic encoding of 

memories can degrade over time, or change as a result of new experiences or new memory 

formation.  It is not currently clear exactly what mechanisms are involved in the maintenance of 

(the encodings of) memories, but once again processes that occur during sleep appear to play a 

role, particularly in protecting existing memories during new learning (Robins, 1996).  One 

mechanism known to be important is re-consolidation.  Every time a memory is retrieved, it 

appears to be (to a certain extent) re-encoded.  Significant experimental evidence shows that 

memories can change over time, often in accordance with various desires, expectations or 

schemata (as discussed below), and the drift that occurs with multiple re-consolidations appears 

to be part of this process.  Our memories change over time. 

  

The retrieval of a memory is the recreation of the pattern of activation (or similar) that encoded 

the original stimulus / item.  It is an active process, reconstructing the pattern from other inputs 

(“cues”) and the encoding synapses.  Two kinds of retrieval are distinguished: recognition, 

where the original stimulus is present again (and thus in effect serves as its own cue), and 

recall, in which the original stimulus is absent (other factors serve as cues).  Recognition 

appears to be automatic, if a stimulus matches a stored memory we experience a sense of 

familiarity / “match”.  Recall can take different forms (free or explicitly cued) and appears to be a 

more complex process, which can involve retrieving different candidate memories and 

evaluating their match to the cues.  Recall is improved if the context in which it is attempted 

(environmental, emotional or physiological) is similar to the context in which it was encoded 

(Tulving & Thomson, 1973).  For example, information learned in a specific room will be better 

recalled in the same room, information learned while under the influence of alcohol will be better 

recalled in the same state. This is relevant to the discussion of transfer below. 

  

At a level of analysis above these underlying mechanisms, learning can be seen as a process of 

forming associations between stimuli and / or behaviours. Associationism featured heavily in 

early animal learning research, such as Thorndike’s “Law of Effect” (Thorndike, 1911), and it 

underlies the behaviourist theories of learning described below.  But associationism has 

developed as a broad and flexible framework which contributes at different levels to various 

theories of thought and learning (Mandelbaum, 2017), including the learning algorithms of 

artificial neural networks (Hinton & Anderson, 1989).  

 

Evidence suggests that more information is stored in the brain than can be successfully 

recalled, and that the phenomenon of forgetting is largely a failure of recall (Tulving, 1974).  This 

has lead to the exploration of techniques (such as hypnotism) to assist recall, and to a popular 

focus on “recovered memories” which has unfortunately proved to be of very mixed validity (yes, 



it is possible to assist recall, but it is also possible to “lead” it).  Much of what we think we recall 

is inaccurate, especially as the time since the original encoding increases, and especially 

because recall is a reconstructive process which incorporates current cues.  This is well known 

in a legal context where the reliability of eyewitness testimony is higher for statements taken 

soon after an event, and where witnesses can be “led” by the phrasing of questions.   

 

To relate these mechanisms to a CEd context, consider for example two concerning 

phenomena observed in novice programmers.  Firstly, the prevalence of “fragile” knowledge, i.e. 

knowledge which appears to be missing (forgotten), inert (learned but not used), or misplaced 

(learned but used inappropriately).  Second, student performance which is significantly worse 

than expected after completion of a course.  (Both of these issues are discussed in Chapter 

3.1.)  We would respond to these issues in different ways if they were shown to arise from 

partial or complete failures of attention, vs. failures of encoding, vs. failures of recall. 

 

 

4.3 Kinds of long-term memory 

  

Many different kinds of information are represented in LTM.  Declarative (or explicit) memory is 

memory for facts or events which can be consciously recalled / “declared”.  It is sometimes 

described as “knowing that”, e.g. knowing that the capital of France is Paris or knowing the 

syntax for a specific statement in a specific programming language.  Procedural (or implicit) 

memory is memory for skills or motor tasks (movements) which are not consciously recalled but 

can be performed.  It is sometimes described as “knowing how”, e.g. knowing how to ride a bike 

or how to debug a program.  Declarative memories are based on information that is consciously 

experienced and can be formed after a single exposure, whereas procedural memories typically 

require repetition / practice. 

  

Declarative memory can be subdivided into episodic memory and semantic.  Episodic memory 

is memory for events, such as a recent holiday.  It is personal and roughly serial, we can locate 

specific episodes within the sequence of personal experiences that make up our lives.  Episodic 

memory, and in particular spatial memory (relating to spatial positioning), depends on the 

hippocampus, and appears to be consolidated and transferred to the neocortex during sleep. In 

CEdR, an example of episodic memory may be when you first learned how to compile a 

program, and spatial memory can apply to where in a program a specific piece of code exists. 

  

In contrast, semantic memory is memory for meanings, concepts or facts, such as the two times 

table.  Semantic memory must be derived from specific learning episodes, but it is abstract and 

can be independent of direct personal experience, e.g. we can learn by being told, by reading, 

or from other indirect sources. An example of semantic memory in programming may be the 

behaviour of specific programming statements.  

 

Our episodic memories generally transition to semantic memories over time, losing detail and 

becoming more abstract.  (Most of us have things that we can “remember” about our childhood 

as facts, but no longer as personal experiences).  Both episodic and semantic memories are 



subject to error and mismatch.  Episodic memories are necessarily subjective (two people may 

remember the same event differently), and can change over time as described above.  

Semantic information must be somewhat common between people, but people also construct 

the world differently (we can all agree on the spelling of “politician”, but not on whether a 

particular politician is good or bad). 

  

While most memory is necessarily retrospective, prospective memory is “remembering to 

remember” / planning for future action (“I must remember to pick up some chocolate on the way 

home”).  Schacter, Addis and Buckner (2007) suggest the concept of the "prospective brain", 

that we can recombine elements of retrospective memories to imagine / predict / simulate future 

events, and that humans can thereby engage in “mental time travel” (Tulving, 1985).  Memory, 

planning, and mental models of future action, are all closely related. 

 

Programming must involve a considerable demand on both memory and prospective memory.  

The programmer must “remember to remember” to close structures at multiple levels, from local 

constructs such as loops, to the functionality of organising structures such as classes, to overall 

program designs / patterns.  In general terms, planning and problem solving requires both 

retrospective and prospective memory, as possible solutions to goals and subgoals are 

explored and discarded or adopted.   

  

 

4.4 Memory structures and representations 

  

How is information organised in memory?  These issues are explored in the context of a higher 

level of analysis, but are assumed to rest on the lower mechanisms just described. 

 

The most fundamental structure is the category, a collection of items that we recognise as being 

instances of the “same thing”, such as a chair, a tree, or a person.  “There is nothing more basic 

to thought and language than our sense of similarity; our sorting of things into kinds” (Quine, 

1969).  There is strong evidence that there exist “basic level categories” characterised by 

obvious similarities, that humans learn first and react to most strongly (Rosch et al., 1976).  For 

example “dog” is a basic level category, with superordinate categories (such as “animal”) and 

subordinate categories (such as “Labrador”) emerging later in development.  The hierarchical 

organisation of categories is sometimes described as a type hierarchy, with instances of a type 

being tokens. 

  

The question of how categories are represented in the brain is a matter of very active debate.  

The probabilistic approach suggests that categories are represented by some measure of the 

central tendencies of instances, such as a set of characteristic features or dimensions, or an 

instance-like “prototype”.  The prototypical dog doesn’t exist, but we all know a lot about it.  The 

exemplar approach proposes that categories are encoded not by a single representation, but by 

the separate representations of salient instances.  Individual instances may be more significant 

than an abstract average, for example our earth is a very influential instance of the category 

“planet”.  Both of these approaches can account for graded category membership (a sparrow is 



a better example of a bird than is a penguin) and fuzzy category boundaries (when does a 

stream become a river?).  Experimental evidence supports both approaches, suggesting that we 

use a mixture of strategies (Medin, Altom & Murphy, 1984; Minda & Smith, 2002, Hampton, 

2016). 

  

One construct that is problematic for standard models of categorisation is the “ad hoc” category 

(Barsalou, 1983).  These are the “categories” that can be created by an arbitrary specification.  

For example consider the category of “things you would rescue if your house was burning 

down”.  It has a similar structure to traditional categories, including graded membership (good 

and bad instances) and prototypical members (rescue other people!), but it appears to emerge 

from an active process, difficult to account for in terms of the structure of long-term memory.   

 

Speculatively, it may be interesting to explore the relationship between programming constructs 

and cognitive categories.  Data types define categories of data which can be treated in the 

same way, we have understandings and expectations about both the type/category and specific 

tokens/examples. Given that object oriented programming was developed as a tool to give us 

"natural" ways of thinking about tasks it is not surprising that object types are hierarchical, and 

can be prototype based.  Where new data types/classes are created these could be seen as 

examples of ad hoc categories. 

  

More specialised kinds of memory structures have been described, within cognitive psychology 

and artificial intelligence, by the related terms schema, frame, script or plan (Schank & Abelson, 

1975, Whitney, 2001; Schank & Abelson, 2013).  A schema is a unit of declarative knowledge 

which organises items of information and the semantic relationships between them.  Examples 

include schemata for objects such as triangle or horse, for scientific constructs such as a 

specific logic or the periodic table, for archetypes / social roles such as teacher or parent, or for 

belief systems such as a religion or “worldview”.  They are “generic representations” of 

“preconceived knowledge” which structure our perception and cognition both individually and 

collectively (a particularly salient example being social schemata such as racial or political 

stereotypes).  Schemata also influence memories over time, as “typical” information not present 

at the time of encoding is added during episodes of recall and re-consolidation.  A frame is a 

structure consisting of “slots” and “fillers”, e.g. the “teacher” frame might consist of slots 

representing subject and school level, with default values such as “maths” and “secondary”.  A 

script or a plan is an “action oriented” schema for some sequence of actions or events, e.g. a 

birthday party script or a restaurant script.  These can be shown to influence the recall of 

descriptions by adding common / script details (e.g. adding birthday presents) which were not 

present in the memorised material. 

 

Schemata / plans were adopted by the CEdR community during the 1970s to 90s, and featured 

heavily in research on the “psychology of programming” that was popular at the time.  Expert 

programmers are characterised by a large library of useful schemata / plans which chunk and 

organise significant amounts of information in a form which reduces cognitive load.  Many of the 

difficulties experienced by novice programmers arise from their lack of such organising 

knowledge structures.  These issues are discussed in some detail in Chapter 3.1. 



 

  

4.5 Memory in practice 

  

Much of what is known about practically improving memory, such as actively engaging with and 

elaborating new material, has been incorporated into standard pedagogical practice and typical 

“study skills” advice to learners (Dunlosky et al., 2013).  Active strategies for remembering date 

back to the Greek use of the “method of loci” (in the context of rhetoric), which draws on well 

practiced spatial memory to organise and help remember other material at need.  Today there 

are many proven mnemonic techniques, and many popular books, websites and other 

resources which explain and promote their use (e.g. Foer, 2012).  We are not aware of any 

specific exploration of study skills or application of mnemonic techniques in CEd. 

 

Similarly, there are many general issues that impact on learning and memory, such as health, 

age, diet, stress, exercise and sleep, which are well known in clinical contexts and widely 

discussed in popular sources.  Various physical and cognitive disorders affect memory, 

including amnesias, agnosias, the effects of brain injury, and conditions associated with ageing 

such as Alzheimer's disease or dementia.  It is not likely that any of these effects would be 

specific to our field.  

 

   

5 Topics in cognition 
 

In this section we give very brief overviews of some of the important topics in cognition.  In the 

remaining sections of the chapter we explore in more detail two topics of particularly practical 

significance to educators, the transfer of learning and cognitive load. 

 

 

5.1 Cognitive development and language acquisition 

 

Humans acquire knowledge, skills and capabilities on different timescales and as a result of 

different processes of physical, neurological and cognitive maturation / development and 

learning.  The field of cognitive development has fundamentally shaped educational theory and 

practice.  It is also of increasing relevance to CEd, as computing makes its way into many early 

school curricula. 

 

Jean Piaget was the first to formalise the observation that growing children pass through 

roughly predictable stages, effectively founding the field of cognitive development with his 

developmental stage theory (Piaget, 1964, 1971a, 1971b). Piaget’s early stages introduced 

such concepts as object permanence and conservation (of volume, number or mass).  The later 

stages are defined largely in terms of the acquisition of logical capacities such as transitive 

inference.  The fundamental unit of knowledge in the theory is the schema, a cohesive, 

repeatable “action sequence” organised around a “core meaning” (Piaget, 1952).  Learning is 

seen as involving assimilation, the integration of new information into schemata, and 



accommodation, the process of adjusting schemata (when existing ones do not suffice).  In a 

large scale meta-analysis of factors influencing educational outcomes (Hattie, 2009; 2012) 

“Piagetian level” of development was identified as one of the “super effects”, the higher a 

student’s assessed level the better their outcomes (Killian, 2016). 

 

Piaget’s framework had a huge impact on curriculum design and educational practice 

internationally.  It introduced concepts which are now taken for granted, such as the active 

engagement of the child with learning, and was one of the major influences on the now 

dominant educational philosophy of constructivism.  His impact on education and the field of 

cognitive development is difficult to overstate (Flavell, 1996; Scholnick et al., 1999).   

 

Aspects of Piaget’s original theory, however, were problematic, particularly the observed 

variation between individuals, and the lack of explanation for the “miraculous” transition between 

stages (Feldman, 2004).  It is not clear what the relationship is between individual differences in 

development and individual differences in IQ, and what exactly is measured by the different 

tests for these attributes (Sternberg, 1982; Cianciolo & Sternberg, 2004).  Attempts to address 

such problems led to various “neo-Piagetian” theories, these are discussed in the context of 

novice programmers in Chapter 3.1.   

 

Other influential ideas in development arose from the work of early psychologist Lev Vygotsky, 

for an overview see Rieber and Robinson (2004).  Vygotsky noted that there was a distance 

between children’s developmental level as determined by their independent performance, and 

their potential level when assisted by a teacher or in a social context.  Vygotsky called this 

space, within which children are capable of learning and making progress, the Zone of Proximal 

Development (ZPD), suggesting that this was the most effective level to target instruction and 

assistance.  The ZPD has become a standard and influential concept in both cognitive 

development and education, see for example Wertsch (1984), Chaikin (2003), and discussion in 

Chapters 2.5 and 3.13. 

 

The term scaffolding (Wood, Bruner & Ross, 1976) refers to the support given to the learner 

within their ZPD.  Such support includes direct instruction or advice, resources, modelling, and 

well designed tasks, and it is reduced / withdrawn as the learner becomes more independent 

(see Chapter 2.5).  In contrast, bootstrapping (Bereiter, 1985) describes the process of learners 

progressing independently, without the assistance of others (Bereiter explores ten possible 

mechanisms which might support this).  For overviews of further topics in cognitive development 

and links with other disciplines, see for example Fischer (1980), Wertsh and Tulviste (1990), 

Flavell (1992) and Bandura (1993). 

 

One major interdisciplinary topic spanning development, linguistics and education, is the 

acquisition of language (McNeill, 1970).  It is widely claimed that there are maturational 

constraints on language learning (Newport, 1990), that there are critical periods in the process 

(Lenneberg, 1967; Singleton & Ryan, 2004), and that children learn languages easily based on 

procedural memory, while adults learn via a more explicit process based on declarative memory 

(Ferman & Karni, 2012).  While we are not aware of any suggestion that children learn 



programming languages more easily than adults, the recent addition of computing in to the 

school curriculum highlights the need to explore children’s learning processes, and the way they 

may differ from adults in this domain. 

 

An examination of the vast field of language is beyond the scope of this chapter, for an overview 

see Crystal (2010).  In the context of CEd, Bonar and Soloway (1989) explore preconceptions 

based on natural language as a source of misconceptions about programming (for more see 

Chapter 3.16), and there has been some discussion of parallels between learning a 

programming language and the acquisition of a second (human) language (Baldwin & Macredie, 

1999; Pandža, 2016).  Ullman (2001, 2004) proposed a model of language learning where 

lexical forms (words) are stored in declarative “rote memory”, and grammar is a set of rule-like 

mental operations that is dependent upon procedural memory.  Do the lexical elements of 

programming languages and the knowledge of how to combine and use them exhibit a similar 

dichotomy? 

 

 

5.2 Behaviourist accounts of learning 

 

Behaviorism was the dominant school of thought within psychology during the first half of the 

20th century.  Methodological behaviourism (Watson, 1913; 1930) holds that the only 

scientifically valid object of study is observable behaviour, any consideration of subjective, 

phenomenological or mental states or processes is excluded.  Behaviour in this framework is 

seen to arise as a result of environmental stimuli interacting with an individual’s history of 

reinforcement or punishment and/or current drives (e.g. hunger).  Radical behaviourism 

(Skinner, 1938; 1953) acknowledges the existence and valid study of “private events” (e.g. 

thoughts, feelings, mental states) but holds that environmental factors control these just as they 

control observable behaviours.  Internal states cannot explain behaviour (such attempts 

circularly presuppose their own explanation), instead they should be understood and translated 

into behavioural terms. 

 

Behaviourism was rooted in earlier work on animal learning, which it developed and applied to 

animals and humans in two main theoretical and practical directions.  Classical conditioning 

involves the association of innate reflexes with new stimuli (the famous example being Pavlov’s 

dog, taught to salivate at the sound of a bell).  Operant conditioning is the modification of 

behaviour using reward (stimuli which increase its frequency) or punishment (stimuli which 

decrease its frequency).  Reward or punishment may be positive (added to the environment) or 

negative (removed from the environment).  Complex behaviours may be shaped by the careful 

reward of sequences of antecedent or partial behaviours.  Rewards or punishments on various 

schedules can result in behaviour with mixed patterns of frequency and robustness.  For a 

review and modern synthesis see Bouton (2016). 

 

Despite the fact that the underlying theory fell out of favour, behaviourism achieved major and 

practical insights into both animal and human learning that are still widely employed today.  

Classical conditioning lead to what are now called behavioural therapies (such as aversion 



therapy, systematic desensitisation and flooding).  Similarly operant conditioning led to applied 

behaviour analysis (“behaviour modification”), the practical modification of behaviour in fields 

such as behavioural interventions for children, criminology, animal training, addiction and 

dependence, health and exercise, and more.  Reinforcement (applied under various schedules) 

is also widely used in the gambling and gaming industries, including video and online games – it 

is no accident that they are “addictive”.  Reinforcement based management of behaviour in 

general is also important in economics, workplace and business management, and education 

(McSweeney & Murphy, 2014), and has made its way into popular culture with the 

understanding that we should “reinforce good behaviour”.   Concepts from this tradition have 

also influenced reinforcement learning, a major topic in the context of machine learning / 

artificial intelligence (Sutton & Barto, 1998). 

 

In the context of education behaviour analysis is a field of interest (Cooper, 1982; Twyman, 

2014), and behavioural tools are an important aspect of classroom management (Emmer & 

Stough, 2001; Woollard, 2010).  We are not aware of any significant exploration of behaviour 

based methods in CEd or CEdR so far, but suggest that there are two emerging topics where 

they could be relevant.  The first of these is the “gamification” of learning (Kapp, 2012), 

especially as this might be applied to the teaching and learning of programming and computing 

topics.  An understanding of reinforcement schedules and behavioural techniques will help to 

maximise the efficacy of game-based teaching and learning. 

 

A second area of potential application is suggested by the field of behaviour informatics / 

behaviour computing (Cao, 2010; Cao & Philip, 2012).  This field encompasses the extraction of 

information about patterns of behaviour from large volumes of data (e.g. financial transactions, 

system use, social media) and its use for understanding, modelling and predicting future 

behaviour (e.g. risk analysis, marketing design, load prediction).  As CEd is now adopting the 

use of learning analytics (Chapter 3.12) and large bodies of data collected from instrumented 

compilers (Chapter 3.10), there is an opportunity to explore these related tools and ideas.  What 

do our datasets tell us about events that make certain behaviours more or less probable?  Can 

we add reinforcement to our tools to shape appropriate behaviours? 

 

 

5.3 Cognitivist accounts of learning 

 

Arising from the late 1950s “cognitive revolution” and superseding behaviourism as the 

dominant paradigm within psychology, cognitivism invited the study of internal / mental states 

and processes (see further discussion in Chapter 2.7).  The underlying assumptions view the 

brain as a processor of information, and thought as a form of computation (Lindsay & Norman, 

1977; Glass, Holyoak & Santa, 1979). 

 

The account of memory and learning set out in Section 4 is cognitivist.  It describes functional 

organisation and internal processes such as attention, and working and long-term memory.  It 

describes learning / memory formation (at a low level of analysis), and (at a higher level) 

knowledge structures such as cognitive categories and schemata.  It explores aspects of 



internal representation such as the prototype vs. exemplar accounts of categories.  This is the 

context within with CEdR has developed, particularly with the focus in the 1970s to 90s on the 

“psychology of programming”.  Aspects of learning theory which have been particularly 

influential within CEdR include the central importance of organised knowledge structures such 

as schemata / plans, and the application of various learning taxonomies (such as the Bloom 

(Bloom et al., 1956) and SOLO (Biggs & Collis, 1982) taxonomies), as described in Chapter 3.1. 

 

Work within the cognitivist tradition has explored a range of specific forms of knowledge 

representation and/or processing, such as semantic networks, frames, decision trees, 

production rules, blackboard models, and more (Brachman & Levesque, 1985; Sowa, 2000).  

From the many formal models of cognitive process, two particularly ambitious examples stand 

out.  The Adaptive Control of Thought (ACT / ACT-R) model (in various iterations) of John 

Anderson (Anderson, 1976; 1982) was based on an associative network model of LTM and 

production rules representing procedural memory.  It encompassed problem solving and a 

model of learning as the compilation of declarative into procedural representations.  The Soar 

Cognitive Architecture (in various iterations) of  Rosenbloom, Laird, Newell and colleagues  

(Rosenbloom et al., 1991; Laird & Rosenbloom, 1996) is based on representations of search 

spaces and operators which can be applied to them.  It encompasses different kinds of memory 

and representation, problem solving, and learning as a process of reinforcement and the 

chunking / organisation of the rules that trigger operators.  Soar remains an ongoing research 

programme (Soar, 2018). 

 

In the CEdR literature, Rist (1995) proposes an example of a comprehensive formal model of a 

complex topic, the process of program generation. Knowledge is represented using indexed 

nodes (encoding actions) in memory (working, episodic, and semantic).   A program is built by 

starting with a search cue such as <find, average, rainfall>, and retrieving and expanding any 

matching nodes.  Outputs are called plans, and common / useful plans are assumed to be 

stored as schema–like knowledge structures.  Experts can retrieve relevant plans from memory, 

but novices must typically create plans through a process of “focal expansion”. 

 

In an exploration of novice programmers, Robins (2010) appeals to the educational principle 

that new learning builds on existing knowledge – we learn at the edges of what we know (e.g. 

the concepts of zone of proximal development, scaffolding and bootstrapping discussed above).   

For some knowledge representations learning can be described as, for example, “a series of 

local repairs of a knowledge structure” involving mechanisms such as adding and adjusting links 

(Chi & Ohlsson, 2005).  Robins suggests that different domains of knowledge have edges and 

interconnections of different complexity, and that in the case of densely connected domains 

(such as programming languages) success or failure in the integration of new knowledge can 

have a compounding “momentum” that significantly affects learning outcomes. 

 

To sum up, of the two major learning frameworks to succeed behaviourism, cognitivism as 

discussed above grew out of psychology and artificial intelligence.  Constructivism (as widely 

discussed elsewhere in the Handbook, see Chapters 1.2, 2.5, 2.7, 2.8, 3.4, 3.13 and 3.18) grew 



out of education and child development.  See Ertmer and Newby (1993), and Cooper (1993) for 

reviews and comparisons of all three frameworks.  

 

 

5.4 Reasoning and problem solving 

 

Reasoning has been variously defined as including thinking, understanding, deciding, making 

sense, evaluating, problem solving, changing beliefs, and other abstract (high level) descriptions 

of aspects of cognitive function.  For an overview of this broad topic see Holyoak and Morrison 

(2005). 

 

Early attempts to formalise reasoning gave rise to logic – rules and principles for drawing valid 

conclusions.  Propositional logic (propositions that can be true or false, logical operators) was 

set out by George Boole (1815 - 1864, now immortalised as a data type).  From this foundation 

a succession of theorists developed further logical systems, and formalised concepts such as 

syntax, semantics, proof, and forms of reasoning such as deduction and induction (see e.g, 

Enderton, 2001).  Logic underlies the theory and practice of computation, early work in Artificial 

Intelligence, approaches to design and verification, forms of economic modelling, and more. 

 

Humans can use logic. It defines some kind of ideal, but human reasoning does not strictly 

adhere to logic.  We are prone to formal fallacies (e.g. affirming a disjunct, denying the 

antecedent, base rate fallacy…), practical fallacies (e.g. gambler’s fallacy, circular reasoning, 

false equivalence…), and a bewildering array of cognitive biases (e.g. confirmation bias, framing 

bias, stereotyping…), see Pohl (2004) for an overview.  Further exploring the impact of known 

fallacies or biases in the context of specific computing topics seems like a productive area for 

future research.  Fallacies so far observed within CEd (mostly relating to programming) have 

been termed misconceptions, as described in Chapter 3.16. 

 

If not logic, what?  Human Problem Solving (Newell & Simon, 1972) sparked a wave of 

cognitivist research into reasoning.  The authors explore problem solving within the constraints 

imposed by the “human information processing system” (serial processing, a small short-term 

memory, a large long-term memory with fast retrieval but slow storage), and stress the 

importance of “simple schemes of heuristic search”.  The topic of heuristics was further 

developed by Tversky and Kahneman (1974).  Noting that most reasoning takes place in the 

context of incomplete / uncertain information, the authors review and present evidence relating 

to three heuristics which pervasively influence human cognition: availability (the ease with which 

relevant information can be recalled); representativeness (the impact of similarity and 

prototypes); and anchoring (the impact of initially stated information).   A subsequent 

programme of research by these and other authors identified and categorised further heuristics.  

These do not appear to have received much attention in CEdR.  Is novice reasoning about 

programming influenced by common cognitive heuristics?  If so, how, and how do we take 

account of this as educators? 



 

Another framework used to explore reasoning is mental models (Gentner & Stevens, 1983; 

Johnson-Laird, 1983; Gentner, 2002).  These are internal models of how some aspect of the 

world works, an iconic representation of selected aspects of external objects and systems.  

Mental models have predictive power, they can be used to understand the observed behaviour 

of the world and reason about future behaviour.  The use of mental models generally, and of a 

particular kind of mental model (the “notional machine”), has been widely adopted in the CEdR 

literature as described in Chapter 3.1. 

 

Problem solving is a pervasive and practical version of the topic of reasoning, discussed in 

contexts from solving mathematical puzzles, to managing businesses, to interpersonal 

relationships.  The range of formalised problem solving strategies includes for example: divide 

and conquer (breaking a problem down into smaller, solvable problems); analogy (adapting the 

solution to a structurally similar problem); and means-ends analysis (choosing an action at each 

step to move towards the goal).  Within the cognitivist framework problem solving is usually 

construed as a process of search within some representation of the problem space. For more 

on this, and a range of perspectives on problem solving, see Schoenfeld (1985), Novice and 

Bassok (2005), Wang and Chiew (2010) and Robertson (2016). 

 

Individuals vary in their capacity to solve problems and perform tasks, which is one of the topics 

explored under the general heading of intelligence, as formalised in various intelligence quotient 

(IQ) measures.  The literature relating to intelligence is diverse, with debate as to whether it 

should be thought of as single general factor “g”, a few major factors (such as verbal and spatial 

intelligence), or multiple factors (such as the logical, linguistic, spatial, musical, kinesthetic, 

naturalist, intrapersonal and interpersonal intelligences proposed by Gardner (1993)).  One of 

the most general results, however, is that performance on one standard psychometric test is 

highly predictive of performance on other such tests, a phenomenon known as “the positive 

manifold” (Jensen, 1998) and sometimes used as an argument for the existence of g.  The 

importance of intelligence in programming and CEd is discussed by Pea and Kurland (1984) 

and reviewed in Robins (2010). 

 

In CEd practice, problem solving is usually introduced, along with algorithms, in a first 

programming course (“CS1”).  Courses vary in the prominence they give the topic, and its order 

in the curriculum, but many CS1 courses are explicitly “problem solving based”, as described in 

the ACM curriculum guidelines (ACM/IEEE-CS, 2013).  An increasing focus on problem solving 

in CEd was noted by Caspersen and Bennedsen (2007), with most (but not all) studies 

suggesting improved outcomes.  Hazzan, Lapidot and Ragonis (2014) set out practical 

guidelines for teaching problem solving.  Many studies relating to problem solving in the CEdR 

literature are reviewed in Chapter 3.1. 

 

One of the most important lessons from the study of problem solving is that it can be a highly 

contextual process.  A widely discussed illustration of this effect is the reported ability of children 

to perform mathematical operations in the context of purchases (e.g. “making change”), but 

performing significantly worse on the same calculations when presented as “maths problems”.  



The classic study on “street maths” is Carraher, Carraher and Schliemann (1985), the many 

follow-up studies include current work in India by Banerjee et al. (2017).  Further important 

examples of the contextualisation of problem solving are discussed in Chapter 3.17.  This is the 

issue underlying the importance of the topic of transfer in teaching and learning, as discussed in 

the next section. 

 

  

6 Transfer  
 

Because of its practical significance to educators, we have chosen to focus in some detail on 

the topic of transfer, which is a major theme within the learning literature. This section will 

illustrate how some of the lower-level processes, such as attention and memory, are applied to 

higher-level phenomena, such as problem solving and learning. 

 

6.1 What is transfer? 

 

For the purposes of CEd, we define transfer as a student’s ability to transfer the knowledge that 

they’ve learned and apply it to solving new problems. For example, if a student learns to write a 

program to find the average of a waiter’s tips, then they should be able to write a program that 

finds the average score on a test. Instructors and content creators tend to think that transfer will 

come naturally to learners, but in reality, learners, especially those who have little knowledge of 

the domain, struggle to apply what they (tenuously) know to novel problems. Trouble with 

transfer is best documented in computing by performance on Soloway’s Rainfall Problem. 

Soloway’s Rainfall Problem has been given to students at the end of introductory programming 

courses to test their knowledge on several concepts. Students commonly perform poorly on this 

problem even though their instructors think that it is a straightforward application of the concepts 

they have learned throughout the semester (Guzdial, 2015). 

 

Before we discuss what makes transfer so difficult for learners and how to promote it in our 

students, let’s consider the various types of transfer. The type of transfer that we want to enable  

is spontaneous transfer. In spontaneous transfer, the student recognises the similarities 

between what they already know and the knowledge required to solve the new problem without 

help or guidance (Bassok & Holyoak, 1989). When spontaneous transfer doesn’t occur, 

students can often be guided to transfer by pointing out the similarities between old and new 

problems or asking the student to find similarities (Gick & Holyoak, 1980). Because instructors 

will not always be around to provide guidance, spontaneous transfer is our ultimate goal. 

Spontaneous transfer is related to transfer distance.  

 

6.1.1 Types of transfer 

 

Barnett and Ceci (2002) provide a comprehensive taxonomy for transfer distance. They created 

the taxonomy to identify dimensions that can be used to describe different types of transfer in a 

more sophisticated manner than only “near” or “far,” which is commonly how it had been 

described in literature. The first dimension of transfer that Barnett and Ceci discuss, which is by 



far the most common dimension that people explore, is knowledge domain. For this reason, it is 

discussed in more depth than the others. 

 

1. Knowledge domain transfer is transfer within or between different disciplines. 

● Near transfer - transfer within a discipline 

○ Isomorphic transfer - the problem-solving context (i.e., cover story) between 

problems is the same, and only the values in the problem are different. The term 

isomorphic comes from the math field (Bassok, 1990), but it has been applied 

(transferred, if you will) to similar scenarios in other fields (e.g. Morrison, 

Margulieux, & Guzdial, 2015).  

○ Contextual transfer - the problem-solving procedure between problems is the 

same, and the contexts of the problem are different. For example, transferring 

knowledge from writing a program to find the average value of a waiter’s tips to 

writing a program to find the average rainfall is contextual transfer. The context 

difference might cause slight variations in the problem solution, but the general 

steps of the procedure are the same. 

○ Procedural transfer - the type of problem is the same, and the problem-solving 

procedures are different. For example, transferring knowledge from writing a 

while loop to find the sum of values to writing a while loop to find the average 

of values is procedural transfer. The steps of the procedure differ based on the 

components of the problem (summing or averaging), but the type of problem 

(using a while loop) is the same. 

● Far transfer - transfer between disciplines 

○ Several shared elements - the domains share several elements that make 

general problem solving procedures applicable to both. For example, learning to 

create algorithms in math can be applied to creating algorithms in computing, 

and the general problem-solving strategies used to achieve both are similar. 

○ Few shared elements - the domains do not share many elements, making 

transfer possible at only an analogical level. For example, writing about a 

sequence of events in English is conceptually similar to writing a program for a 

sequence of events, but the procedures and knowledge required to complete 

each are very different.  

2. Physical context transfer is transfer among spaces (e.g. classroom, dorm room, kitchen 

table at parents’ house). Because information is encoded with the physical context in 

which it was learned, location can affect transfer. 

3. Temporal context transfer is transfer across time (e.g. weeks, months, semesters). 

Because synaptic connections fade over time (i.e., ability to recall information decays), 

the time between solving problems can affect transfer. Time transfer is also commonly 

called retention. 

4. Functional context transfer is transfer among purposes (e.g. authentic web development 

problems, academic exercise to learn concepts used in web development).  

5. Social context transfer is transfer among group compositions (e.g. solving problems 

individually, solving problems in teams). 



6. Modality transfer is transfer between medium of instruction and application at the 

macrolevel (e.g. auditory instructions vs. written assignment) or microlevel (e.g. 

instructing based on tracing, reading, or writing code vs. testing based on tracing, 

reading, or writing code). 

 

6.1.3 Why is transfer so hard? 

 

Reviewing these six dimensions should give you an idea of how contexts can change between 

learning to solve a problem and solving a novel problem. Any contextual differences that make it 

difficult for the learner to recognise similarities between problems will hinder transfer (Gick & 

Holyoak, 1980). The more abstract instruction is, the more easily students can transfer 

knowledge spontaneously (Day & Goldstone, 2012). Abstract instructions, however, are very 

difficult for novices to grasp because they do not have enough knowledge about the domain to 

connect abstract information to their existing cognitive architecture (i.e., connect to prior 

knowledge), making it difficult to retrieve (Jonassen, 2000). Therefore, providing surface details, 

i.e., cover stories, for problems is essential to teaching novices, even though those surface 

details can promote ineffective problem solving schemata and mental models (Eiriksdottir & 

Catrambone, 2011). 

 

Surface details promote ineffective knowledge structures in long-term memory because novices 

have difficulty seeing past surface details to identify structural parts of problem solving 

procedures that apply to all similar problems (Bransford, Brown, & Cocking, 1999). Instead of 

mentally organising information around structural details, they create knowledge structures 

around surface details (Chi, Feltovich, & Glaser, 1981). For example, novice programmers are 

more likely to organise information around an application type, whereas more advanced 

programmers will organise information around an underlying algorithm (Weiser & Shertz, 1983). 

Therefore, novices’ mental organisations of information often suppress spontaneous transfer. 

To fix these issues, we need to help learners identify structural parts of problem solving 

procedures, and enable them to connect them to a variety of problems. 

 

6.2 How to promote transfer within a domain 

 

The best way to help students transfer their knowledge is to teach them how to transfer their 

knowledge. Cognitively speaking, learning content is not the same as learning how to transfer 

content (Bransford et al., 1999; van Merriënboer, Clark, & de Croock, 2002). Too often 

instructors will assume that if students see enough examples and understands the content, 

transfer will come automatically. Instead, instructors should tell students how to recognise 

similarities between novel problems and problems that they know how to solve, and they should 

give students practice and feedback on novel problem solving (Singley & Anderson, 1989). 

 

6.2.1 Frameworks for helping students to see past surface details 

 

One of the biggest problems that keeps students from successfully transferring their knowledge 

is that they don’t recognise similarities between problems that they know how to solve and new 



problems, called the inert knowledge problem (Reed, Ernst, & Banerji, 1974). In one of the 

classic transfer studies, Gick and Holyoak (1980) showed participants a problem in which a 

general was attempting to take a town, but his army was too big and vulnerable to attack to 

march into the town on the main road. The solution was to split the army up and converge on 

the town from multiple directions at once. After Gick and Holyoak taught participants to solve 

this problem, they asked participants to solve Duncker’s radiation problem, a problem in which a 

doctor is attempting to treat a patient with a tumor. The tumor can be destroyed with a laser ray, 

but if the laser is at a high enough intensity to destroy the tumor, it will also destroy all of the 

healthy tissue in the laser’s path. The solution is the same as the army problem, align several 

low intensity lasers to converge on the tumor so that the tumor is destroyed and the healthy 

tissue is not. Despite the similarities in problems and solutions, only 20% of participants were 

able to solve Duncker’s radiation problem, even though they just learned the solution to the 

army problem. When participants were told to find analogies between problems or given hints 

about similarities between problems, 92% of participants successfully solved it. The takeaway 

from this and related studies, is that students need to be guided or told how problems are 

similar, until they have developed a generalised mental model or schema for problem solving 

that can recognise structural similarities between problems.  

 

Helping students to identify structural similarities between problems is important in computing 

education because we typically rely on worked examples to help teach computing concepts. A 

worked example is a problem with a worked out solution that students can study before they are 

able to solve problems independently (Renkl, 2017). We have strong evidence that asking 

students to study worked examples is more effective in the early stages of learning than asking 

them to solve problems from abstract instructions (Renkl, 2017; Sweller, 2010). The problem 

with worked examples is that they show learners how to solve only one problem because 

examples have to include a cover story. Just like in Gick and Holyoak’s (1980) army problem, 

students who study worked examples are able to solve novel problems better when they are 

guided to see past the surface details.  

 

The subgoal learning framework has been used to help students see past surface details of 

worked examples. Subgoals are functional pieces that are inherent in problem solving 

processes (e.g. initiating a loop is a subgoal in a problem that uses loops). The worked example 

is visually broken down into subgoal components, then each subgoal is meaningfully labeled 

(Margulieux, Guzdial, & Catrambone, 2012; Morrison, Margulieux, & Guzdial, 2015). The 

subgoal label, a short instructional explanation of the purpose of the subgoal, is abstract and 

does not contain any of the surface details of the problem, meaning that it can be applied to any 

similar problem. In the subgoal learning framework, students are given multiple examples, each 

with different surface features but with the same subgoal labels, so that they can compare and 

contrast the problem solving steps that achieve the same subgoals across multiple examples 

(Margulieux et al., 2012). For example, in a while loop worked example, one of the subgoal 

labels could be “determine initial values,” in which you would specify values before the loop 

begins (Morrison et al., 2015). Explaining the purpose of steps in a worked example at this low 

level helps novices to transfer their knowledge to solving novel problems and retain the problem 

solving process for longer (Margulieux et al., 2012; Morrison et al., 2015).  



 

Analogical encoding is another strategy that is used to help students recognise the common 

structure between examples (Ferguson, 1994). It is based on analogical reasoning, in which 

people create analogies between fundamentally similar concepts (Gick & Holyoak, 1983). 

Creating analogies helps students to recognise when two examples share the same problem 

solving procedure, promoting development of schemata (see more about schema instruction 

below; Kurtz, Miao, and Gentner (2001)). When students are encouraged to create analogies, 

their transfer to novel problems improves, whether they receive guidance on the similarities or 

not (Gentner, Loewenstein, & Thompson, 2003). Please note that analogical encoding is 

different than using analogies in instruction. In analogical encoding, students are the creators of 

analogies and the analogies are between two examples of the same problem solving process. 

When an instructor gives students an analogy, the student is not creating the analogy and the 

analogy is typically between two disparate examples of similar concepts: the concept that they 

are learning and a concept that they already know (e.g. electricity is like flowing water; Gentner, 

1983).  

 

In contrast to analogical encoding, which helps students to build schemata for themselves, 

schema instruction is a method of explicitly training students on schemata in a field to jumpstart 

their problem solving potential before they have enough experience to develop schemata 

themselves. As discussed earlier, a schema is a framework for solving a class of problems 

(Marshall, 1995), like an abstract recipe. There are two types of schema instruction (Powell, 

2011). The first is schema-based instruction in which instructors teach students a schema or set 

of schemata and also teach students to classify problems to match a problem to the appropriate 

schema. Examples of schema-based instruction in programming education can be found in 

“How to Design Programs: An Introduction to Programming and Computing” by Felleisen et al. 

(2001). The second is schema-broadening instruction, which is more focused on transfer. In 

schema-broadening instruction, instructors help students to match problems that have new 

features (e.g. a different problem structure) to an existing schema (Powell, 2011).  

 

While all of these approaches to improving transfer are very similar, they have some 

differences. They differ in the amount of direct instruction that students receive about underlying 

problem solving structures (e.g. subgoal labels explicitly describe the structure whereas 

analogical encoding asks students to identify the structure). They also differ in the source of 

schemata (e.g. schema instruction provides schemata and analogical encoding asks students to 

create them). Though the approaches have never been empirically compared, their efficacy 

likely depends on the content being taught, the prior knowledge of the student, and the style of 

the instructor. For reasons that will be discussed in the next section, more complex content or 

students with less prior knowledge will probably benefit from more direct instruction approaches, 

such as subgoal labels and schema instruction. For content with less novel information or 

students with significant prior knowledge, more student-driven approaches, such as analogical 

encoding, would probably be more effective.  

 

6.2.2 Helping students to retain knowledge 

 



Recognising structural similarities between problems is likely the biggest barrier to transfer, but 

transfer also suffers when neural connections to relevant prior knowledge decays over time, 

causing a lack of retention, or time transfer. A common retention problem occurs in classes that 

have prerequisites. Instructors often complain that their students do not have the prior 

knowledge that they should have from previous classes. Assuming that students did learn what 

they needed to in previous classes, however, they would have a hard time activating it if their 

neural connections have sufficiently decayed. The good news is that it is much faster to re-learn 

material, i.e., re-strengthen neural connections, than it is to learn it for the first time (Hansen, 

Umeda, & McKinney, 2002). To promote retention, instructors should focus on learning and 

teaching strategies that will develop strong neural connections that will take a long time to 

decay. 

 

A major factor in retention is how students learn knowledge. The default teaching style in higher 

education is direct instruction, meaning that an instructor tells students what they need to know. 

Many argue that this method is more effective and less taxing on learners than constructive 

methods, in which students build knowledge for themselves by exploring the problem solving 

space (Kirschner, Sweller, & Clark, 2006). Constructed knowledge, however, often leads to 

better retention in the long run, when it is successful (Tobias & Duffy, 2009). Learning 

constructively by exploring problem spaces benefits from the generation effect. The generation 

effect states that learners are more likely to remember information when they generate it for 

themselves than when they are told it because the cues that they encounter while encoding 

information are similar to the cues that they encounter when they solve problems (Jacoby, 1978; 

de Winstanley, Bjork, & Bjork, 1996). Therefore, learners are more likely to activate relevant 

prior knowledge to solve problems if they constructed that knowledge while working on 

problems. Constructive learning, however, is not appropriate for all learning situations (e.g. 

when learners have little prior knowledge) and should be carefully conceptualised and planned 

before it is used (Tobias & Duffy, 2009).  

 

When learning constructively is not a good option, consider how learners are practicing using 

the information that they have been told. A large body of research supports that spaced 

practice, in which learners solve problems across several sessions, results in better retention 

than massed practice, in which learners solve problems in one sitting (Donovan & Radosevich, 

1999). Massed practice can be good while students are building schemata and learning to 

recognise similarity between different examples, but spaced practice requires that learners 

devote attention to other tasks and then re-focus on the problem solving procedure, resulting in 

better long-term retention (Donovan & Radosevich, 1999). Most spaced practice studies have 

intervals from minutes to weeks, but spaced practice also explains why students who take 

cumulative final exams retain knowledge better (though students expecting a final exam also 

spend more time integrating information; Szpunar, McDermott and Roediger (2007)). In related 

research, Trafton and Reiser (1993) found that interleaving studying examples and solving 

problems improves retention. In their paradigm, students studied examples, and then applied 

what they had learned to solving a problem before studying a new example. This interleaved 

approach was more effective than studying all examples at once and then solving all problems 

at once (Trafton & Reiser, 1993).  



 

The last technique to improve retention that we will discuss is the timing of feedback on problem 

solving practice. In some cases, immediate feedback is the most effective type of feedback. 

Especially in language learning, which is related to syntax learning in programming, immediate 

feedback to fix errors is most beneficial (Kulik & Kulik, 1988). In more conceptually focused 

problem solving, however, slightly delaying feedback can allow learners to recognise when they 

have made a mistake and fix it for themselves, improving retention (Mathan & Koedinger, 2003). 

Related to the spaced practice effect, delaying feedback by a significant amount of time (i.e., 

enough time to switch tasks) gives the learner another opportunity to encode information about 

correctly implementing the problem solving process (called the delay-retention effect; Smith and 

Kimball (2010)). 

 

6.3 Can we promote transfer between domains?  

 

Sometimes problem solving strategies can be applied in multiple domains. For example, 

students’ knowledge of algorithms should transfer to support problem solving in math and 

science. The difficulty with cross-domain transfer, however, is that it becomes very difficult for 

learners to recognise commonalities among problem solving contexts (Barnett & Ceci, 2002). 

Spontaneous transfer within a domain is already difficult; therefore, some cognitive scientists 

believe that spontaneous transfer across domains is very rare, at least not for novices 

(Anderson, Reder, & Simon, 1996; Brown, 1992; Feldon, 2007; Singley & Anderson, 1989). 

They argue that knowledge is embedded in the context in which it was learned (e.g. in a 

classroom, with an example about averaging a waiter’s tips, in LISP; Anderson et al., 1996; 

Singley and Anderson (1989)). Therefore, if you want to promote transfer across domains, then 

you have to include contexts from all domains in the learning of knowledge (Brown, 1992). 

Including multiple domain-specific sets of information, however, places unreasonable demands 

on learners’ cognitive resources and/or time (Feldon, 2007; Guzdial, 2015).  

 

While some evidence suggests that novices cannot spontaneously transfer their knowledge to 

new domains, some people have had success. For example, Bassok (1990) explored methods 

of highlighting similarities between algebra and physics problems to promote spontaneous 

transfer between those fields. Stieff and Uttal (2015) have had success training students in 

spatial reasoning to improve their performance in STEM fields. In the computing domain, Klahr 

and Carver (1988) found that teaching elementary school children to debug LOGO programs 

over several months helped them to complete a number of tasks in various domains, including 

allocating resources, following a route on a map, and correcting instructions. Computational 

thinking work has found some evidence that teaching students computing concepts can improve 

their performance in other domains, like science (Basawapatna et al., 2011; Koh et al., 2010) 

and math (Schanzer et al., 2015; Schanzer, Fisler, & Krishnamurthi, 2018).  

 

There are many more studies exploring transfer across disciplines, but the research is not 

conclusive and the arguments are too complex to succinctly describe in a section meant to 

introduce the transfer literature. In this section, we highlighted some of the foundational work 

from cognitive science for improving transfer with some examples of how it is applied to CEd. 



Much more work is needed, though, to explore various methods of promoting transfer and the 

conditions in which they are most successful. 

 

 

7 Cognitive Load 
 

Within an educational setting, we wish to focus the student’s attention on the material to be 

learned. Learning occurs when the information from sensory input is attended to, processed 

within working memory, and then committed to long term memory in the form of schemata or 

plans. One interesting theoretical framework that aids the design of effective instructional 

material is called cognitive load. This framework draws together many aspects of cognition, we 

focus in some detail on it and its practical implications for educators.  See also Chapter 3.1 for a 

discussion of cognitive load in programming. 

 

7.1 What is cognitive load? 

 

Cognitive load is the amount of work imposed on a learner’s working memory while learning a 

specific task (van Gog & Paas, 2012). Cognitive Load Theory (CLT) is based on the architecture 

of the human brain, with the brain having both working and long-term memory. Working memory 

is limited in both capacity and duration (Cowan, 2010; Peterson & Peterson, 1959). Learning 

occurs when new information is related to knowledge already stored and organised in long-term 

memory, yielding a new more elaborate and extensive knowledge base (Sweller, 1988). The 

central problem identified by CLT is that learning is impaired when the total amount of 

processing requirements exceeds the limited capacity of working memory (Plass et al., 2010). 

Learning is reliant upon the degree of complexity of the new information to be processed, and 

the way in which that information is presented. Using CLT, instructors attempt to design 

instructional material in a manner that will not overload working memory, so as to maximise 

learning. 

  

As originally defined, CLT was the sum of three individual components: 1) extraneous load, the 

effort used to process information that is not fundamental to the concept or process that is being 

learned; 2) intrinsic load, the innate difficulty of the material being learned combined with the 

learner's characteristics (Leppink et al., 2013); and 3) germane load, the effort used to learn the 

actual material or concept. Recently however, several researchers have questioned whether 

germane load is a separate component or is actually a piece of the intrinsic load (Kalyuga, 

2011). The overall goal behind CLT is to reduce extraneous and intrinsic load, so as to not 

overload the cognitive process of working memory and impair learning. 

 

Extraneous cognitive load is any information presented to the learner that is not strictly 

necessary for learning the material or concept. Having redundant information in both text and 

presented auditorily would be extraneous cognitive load. Extraneous load becomes a problem 

only when intrinsic load is high (Sweller, 1994).  If there is minimal demand on cognitive 

resources there is ample working memory to handle any extraneous load and learning can still 



occur. Worked examples, for instance, contain extraneous information, but if presented 

correctly, they can aid overall learning. 

 

A topic is considered to have a high intrinsic load if the material being learned is interconnected; 

that is, learning requires processing several elements simultaneously to understand their 

relations and interactions (Sweller & Chandler, 1994). In CEd, simply learning the reserved 

words of a programming language represents a very low interactivity (each is a separate 

memorisable token), as opposed to understanding all of the elements in a program, where all of 

the tokens may potentially interact with each other (high interactivity).   

 

Because intrinsic load is essential for comprehending the material and constructing knowledge 

structures, the instructional material must provide all the components necessary to 

accommodate this load without exceeding the limits of working memory. Intrinsic load can also 

vary with the domain expertise and previous knowledge of the learner (Sweller et al., 2011), in 

that learners with a higher level of previous knowledge may chunk the material differently than 

novices (Bransford, 2000), allowing them to hold more information in working memory. Thus, 

the intrinsic load can change based on the learner. An element or a chunk of information for a 

learner and specific task is determined by the organised knowledge structures or schemata in 

that learner’s long-term memory. With the development of expertise, the size of a person's 

chunks increases, and many interacting elements for a novice become encapsulated into a 

single element for an expert. The magnitude of the intrinsic cognitive load experienced by a 

learner is determined by the degree of interactivity of the essential elements relative to the level 

of learner expertise within the domain (Kalyuga, 2011). This helps to begin to explain the 

difference between novice and expert programmers. 

 

Sweller now defines germane load in terms of the working memory resources devoted to 

dealing with intrinsic cognitive load (Sweller, 2018). If, in the material to be learned, the 

interacting elements are intrinsic to the information being processed, then an intrinsic load is 

imposed. If multiple elements interact because of an instructional design choice, then 

extraneous cognitive load is imposed. Germane load is defined in terms of the resources of 

working memory that are devoted to dealing with the intrinsic load. The more resources that are 

devoted to intrinsic load, the fewer resources are available for extraneous factors, and higher 

germane load results. Using this definition, germane cognitive load is dependent on the 

relationship between the intrinsic and extraneous loads, and is not an independent source of 

load.  
  

7.2 Empirical Evidence 

 

Research findings supporting CLT principles come from four distinct types of measures: 

(1) indirect measures of cognitive load through task performance or accuracy (Ayres, 2001; 

Cooper & Sweller, 1987) or the time needed for task performance (Chandler & Sweller, 

1991, 1992), 

(2) dual-task performance measures (Brünken et al., 2004, 2002), 



(3) direct physiological measures such as fMRI (Whelan, 2007) or electroencephalographic 

(EEG) (Antonenko et al., 2010) or eye-tracking variables (van Gog & Scheiter, 2010), 

and 

(4) subjective measurement rating scales (Leppink et al., 2014, 2013; Paas, 1992). 

For a thorough treatise on measuring cognitive load, see (Zheng, 2018).  

 

The implications of CLT have led to several different known “effects” that a learner can 

experience during the learning process. Empirical studies have found that by altering the 

instructional design materials, learning can be facilitated or impeded. These changes in learning 

are known as effects. All known effects can be explained using the CLT framework. For a full list 

and explanation of the effects attributed to cognitive load, see Sweller et al. (2011).  

 

Found effects that have implications in CEd include: 

● worked example (problem completion) effect - students produce fewer errors and take 

less time to completion when they study expert solutions, or worked-out solutions, than 

when they solve the same problems from scratch with no sample solution to follow 

(Cooper & Sweller, 1987). The same is true for partially solved problems (problem 

completion) (Paas & van Merriënboer, 1994). 

● split-attention effect - information should be presented in a way which is as integrated as 

possible, both spatially and temporally (Sweller et al., 1990). Examples should imbed 

explanations rather than separate them into their own text. 

● modality effect - this occurs when multiple sources of information that cannot be 

understood in isolation are needed to be processed simultaneously, usually presented 

using spoken rather than written text (Tindall-Ford et al., 1997). 

● redundancy effect - when unnecessary, additional information is presented to the learner 

(Chandler & Sweller, 1991). This can occur when duplicate information is presented in 

both text and verbally. 

● expertise reversal effect - occurs when learning material gets in the way of learning for 

those with prior knowledge (Kalyuga et al., 2003). 

● guidance fading effect - states that novices should be provided with many worked 

examples, followed by completion problems and then full problems (Renkl & Atkinson, 

2003; Renkl et al., 2004). 

● self-explanation effect - requiring the learner to self-explain new procedures or concepts 

to enhance learning (Chi et al., 1989; Renkl, 1997). 

● element interactivity effect - if intrinsic cognitive load is low, other cognitive load effects 

cannot be observed; however, if elements are highly interactive, variations in element 

interactivity can have profound effects on other load effects dependent on extraneous 

load (Sweller & Chandler, 1994; Tindall-Ford et al., 1997). 

  

7.3 Cognitive Load in Computing 

 

Incorporating CLT into computing education research occurs in the following forms: (1) use of 

worked examples; (2) use of subgoals; (3) Parsons problems (a specific question format); and 

(4) attempts to measure cognitive load.  The first three of these are all intended to reduce load. 



  

7.3.1 Worked Examples 

 

The first research involving cognitive load in computing was the use of worked examples (Pirolli 

& Recker, 1994; Recker & Pirolli, 1995) for LISP. In a series of studies designed for 

implementing and testing a cognitive tutor, they used a form of worked examples to test student 

knowledge and learning capabilities. The result of the studies showed that students who studied 

the worked examples, especially with self-explanation skills, performed better than those who 

simply solved problems or had poor self-explanation skills. 

 

The first extensive study on using a worked example completion format was conducted by van 

Merriënboer, using introductory computer programming problems (van Merriënboer & Krammer, 

1990). A follow-up study (van Merriënboer & De Croock, 1992) examined students who 

generated programs from scratch compared to those who completed partially constructed 

programs. For students in the completion group, the presentation of new information and 

programming practice were linked to incomplete programs, and learners were only required to 

complete the partial solutions. In the generation group, both model programs and generation 

assignments were presented, with the model programs serving as the worked example, 

however, the students were not required to study the model program before beginning 

generation. The completion group had better post performance. 

  

Casperson and Bennedsen (2007) present a case for using worked examples in computing but 

provide no empirical evidence validating their use. Skudder and Luxton-Reilly (2014) present 

sample worked examples that might be used in an introductory programming class with 

reasoning on why it might be beneficial, but no empirical evidence on use within an actual class. 

Gray et al. (2007) present a detailed set of suggestions for implementing faded worked 

examples (similar to program completion) for an introductory programming course in C++. They 

decompose the task of programming into components whose cognitive load can be adequately 

handled by the students. The decomposition is based on the abstract algorithmic dimensions 

and the associated concrete programming constructs. The authors provide fully worked 

examples for all design construct and implementation-construct pairs. However, once again, no 

empirical evidence exists on using the examples with students in either a laboratory or 

classroom based study. 

  

Finally, Garner (2002) designed and implemented a Code Restructuring Tool (CORT) to 

implement code completion tasks based on cognitive load theory and worked examples. The 

tool was designed to teach the Visual Basic programming language. A quasi-experimental study 

showed that students receiving the intervention spent less time solving problems, but had no 

learning gains over the control group. 

  

7.3.2 Subgoals  

 

Another way CEd researchers have attempted to lower the cognitive load of learners is through 

the use of subgoal labels (see Section 6.2.1 in this chapter). The first known work using 



subgoals in computing is (Margulieux et al., 2012). This work used subgoal labels to teach 

learners how to develop a mobile application using MIT's Android AppInventor. Participants 

were given a video using subgoal labels as callouts to provide structure to the solution process. 

The subgoal group attempted and completed successfully more subgoal steps of the 

assessment tasks, in addition to completing the tasks quicker than the control group. The 

subgoal group also successfully completed more tasks on a retention task tested one week 

later. In a second study involving a think-aloud protocol while completing the app-building task 

the subgoal group outperformed the control group. In addition, Margulieux et al. found that the 

student vocabulary included the subgoals. 

  

Morrison et al. (2015) expanded the use of subgoals to learning with a text programming 

language using loops. The findings indicated that students who learned using subgoals 

performed better than those who learned without subgoals. 

  

7.3.3 Parsons Problems 

 

One interesting approach to the teaching and assessment of programming is Parsons problems 

(Parsons & Haden, 2006), in which correct code is broken into code fragments that have to be 

put in the correct order with the correct indentation. There are several variants, such as 

including unnecessary code as distractors (Denny et al., 2008). (See Chapter 3.4 for additional 

information on Parsons Problems.) 

 

Work in this area has found that Parsons problems scores correlate significantly with code 

writing scores. Parsons problems are simpler than writing code, in particular because students 

cannot get syntax errors, which lowers cognitive load. Students are more able to focus on 

issues like meaning and sequencing within problem solving. This means that Parsons problems 

might be a more efficient way to engage with programming than traditional code writing tasks 

(Morrison et al., 2016). 

  

7.4 Measuring Cognitive Load  

 

Initial work in this area within CEd was done by Mason et al. (2012), and Mason and Cooper 

(2012). In this work, Mason and colleagues surveyed students in introductory programming 

courses offered by Australian universities and asked about mental effort. Participants were 

asked to rate their own levels of mental effort on each of the three components of cognitive load 

using a 9 point Likert scale. They were also asked to estimate the levels of mental effort on 

each component experienced by an average student in their introductory programming course 

and that experienced by a student in the “bottom 10% of performance” in their course; however, 

the survey questions were never published or validated. 

  

In Morrison et al. (2014), the authors adapted an existing cognitive load measurement (Leppink 

et al., 2013) to computing. They attempted to measure cognitive load components (intrinsic, 

extraneous, and germane) of learners in a computing environment. The instrument had good 

internal reliability, but has yet to be replicated. 



  

  

8 Discussion   
 

This chapter has briefly summarised a range of important topics from cognitive science, noting 

links with the CEdR literature and speculating about further avenues for research where 

possible.  Apart from the inevitable conclusion that more work is needed, we will return to the 

concept of levels of analysis (Section 2), and recommend a general framework for describing 

CEdR: 

 

Pedagogical:  This level describes the aims, methods, subject matter and theory of CEd in the 

abstract.  Questions that fall into this level include: What are we trying to achieve?  What is 

known about how individuals, groups and communities construct knowledge?  What is the 

current curriculum and the intended learning outcomes, and what pedagogical methods will best 

deliver them?  What target knowledge, skills and mental models do learners need to be 

successful?  What social and cultural factors affect learning outcomes?  What educational 

concepts and frameworks usefully apply?  Research relevant to this level will be being 

conducted in many disciplines and contexts, but may include specific disciplinary (CEd) topics. 

 

Functional:  This level describes the application and interaction of pedagogical and cognitive 

factors in practical CEd contexts, i.e. as they occur in real classrooms, institutions or other 

learning environments.  Are we achieving our goals?  How are learners constructing and 

sharing their knowledge?  Are they making progress with the intended curriculum and 

outcomes?  Are they developing sound mental models?  Are techniques for promoting transfer 

and reducing cognitive load working?  What range of variation exists within a given group / 

population, why, and how can we influence it?  How does the particular subject matter and tools 

of our field impact on teaching and learning?  How do institutional context and policy settings 

affect outcomes?  Research relevant to this level is specific to CEd.  It is guided, shaped and 

constrained by both the pedagogical cognitive levels. 

 

Cognitive: This level describes phenomena relating to the cognition and behaviour of 

individuals.  How do individuals represent and acquire knowledge and skills, and how do they 

develop correct (and incorrect) mental models?  What constraints arise from the nature of our 

learning and memory systems?  How do attitudes, motivation and specific behaviours affect 

learning outcomes?  What factors promote transfer and reduce cognitive load?  What is the 

range of variation, and how (and how much) can individuals change or improve?  Research 

relevant to this level will be being conducted generally in the cognitive sciences, but may include 

specific topics suggested by work at the functional level. 

 

The functional level is the main and characteristic level of our field, but it is informed and 

constrained by both higher level pedagogical and lower level cognitive factors.  When exploring 

a particular research topic within CEd, we suggest that all levels should be considered.  

Relevant factors, insights or mechanisms might be found at any level. 



 
 

 ____________________________________________________________ 

Acronyms 

  

CEd  Computing Education 

CEdR  Computing Education Research 

CLT  Cognitive Load Theory 

LTM  Long-Term Memory 

SM  Sensory Memory 

STM  Short-Term Memory  
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