
Georgia State University
ScholarWorks @ Georgia State University
Learning Technologies Division Faculty
Publications Department of Learning Sciences

4-2019

Learning Sciences for Computing Education
Lauren Margulieux
Georgia State University, lmargulieux@gsu.edu

Brian Dorn
University of Nebraska at Omaha, bdorn@unomaha.edu

Kristin Searle
Utah State University, kristin.searle@usu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/ltd_facpub

Part of the Instructional Media Design Commons

This Book Chapter is brought to you for free and open access by the Department of Learning Sciences at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Learning Technologies Division Faculty Publications by an authorized administrator of ScholarWorks @ Georgia
State University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Margulieux, Lauren; Dorn, Brian; and Searle, Kristin, "Learning Sciences for Computing Education" (2019). Learning Technologies
Division Faculty Publications. 21.
https://scholarworks.gsu.edu/ltd_facpub/21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/215176591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub/21?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

This document is a pre-publication draft of:
Margulieux, L. E., Dorn, B., & Searle, K. A. (2019). Learning sciences for computing education. In S. A. Fincher & A. V.
Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge, UK: Cambridge University
Press, [208-230].

The published version has been further edited, please obtain and cite the published version from:
http://www.cambridge.org/9781108721899
https://www.amazon.com/s?k=cambridge+handbook+computing+education

This draft has been made available (in an institutional archive or document repository) with permission, under the
Cambridge University Press Green Open Access policy:
https://www.cambridge.org/core/services/open-access-policies/introduction-to-open-access

Keywords: learning sciences, constructivism, cognitive apprenticeship, sociocultural theory, design-

based research, project lifecycle

Abstract: This chapter discusses potential and current overlaps between the learning sciences and

computing education research in their origins, theory, and methodology. After an introduction to

learning sciences, the chapter describes how both learning sciences and computing education research

developed as distinct fields from cognitive science. Despite common roots and common goals, the

authors argue that the two fields are less integrated than they should be and recommend theories and

methodologies from the learning sciences that could be used more widely in computing education

research. The chapter selects for discussion one general learning theory from each of cognition

(constructivism), instructional design (cognitive apprenticeship), social and environmental features of

learning environments (sociocultural theory), and motivation (expectancy-value theory). Then the

chapter describes methodology for design-based research to apply and test learning theories in

authentic learning environments. The chapter emphasizes the alignment between design-based

research and current research practices in computing education. Finally, the chapter discusses the four

stages of learning sciences projects. Examples from computing education research are given for each

stage to illustrate the shared goals and methods of the two fields and to argue for more integration

between them.

Learning sciences for computing education

Lauren E. Margulieux, Brian Dorn, Kristin A. Searle

1 Introduction
The learning sciences is an amalgamation of fields that study learning and learning
environments. When learning sciences emerged in the 1990s, learning scientists were people
who had been training in other disciplinary fields and wanted to apply their skills in
multidisciplinary teams to improve learning environments. Some of the fields under the purview
of the learning sciences are education, psychology, computer science, educational technology,
linguistics, and data analytics. At the time that this book was published, learning scientists are
still primarily trained in one of these component disciplines (Yoon & Hmelo-Silver, 2017), though
many universities now offer learning-sciences-oriented programs, and some even offer a
Masters or Ph.D. in Learning Sciences (Sommerhoff et al., 2018). This shift in training
represents a shift in infrastructure for learning sciences work. Many universities have centers for
learning sciences in which researchers from various fields can find resources to work together.
The professional society, International Society of the Learning Sciences, was founded in 2002

https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cambridge.org%2F9781108721899&data=02%7C01%7Clmargulieux%40gsu.edu%7C4a7fa6776b614383b6bc08d6a6880a40%7C515ad73d8d5e4169895c9789dc742a70%7C0%7C0%7C636879500550284677&sdata=A3w2p37ZeTBd0weX6fRxcWSlYT8I68u3gp0GGEnxAgE%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.amazon.com%2Fs%3Fk%3Dcambr&data=02%7C01%7Clmargulieux%40gsu.edu%7C4a7fa6776b614383b6bc08d6a6880a40%7C515ad73d8d5e4169895c9789dc742a70%7C0%7C0%7C636879500550294682&sdata=8Z1c9fwFHhUCLZrLvAX%2Fz8GpaIMI%2FOIlZ17vQjeALgo%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fservices%2Fopen-access-policies%2Fintroduction-to-open-access&data=02%7C01%7Clmargulieux%40gsu.edu%7C4a7fa6776b614383b6bc08d6a6880a40%7C515ad73d8d5e4169895c9789dc742a70%7C0%7C0%7C636879500550294682&sdata=NeoSPc%2B3ja4REetOavtK3zMjuE3sYlmiw9tqNYOWQDk%3D&reserved=0

and organizes annual conferences and supports high-quality publications. Most importantly,
learning scientists have developed relationships with places of learning (e.g., K-12 schools,
colleges, and museums) so that we can study learning in authentic environments while
simultaneously improving the experience of learners right now.

One of the first things that learning scientists discovered when they started working together is
that they all have different definitions of learning (Alexander, Schallert, & Reynolds, 2009).
Those from cognitive psychology and neuropsychology tend to define learning as a change in
the brain - a development of neural architecture and synapses. Those from computer science
and educational technology tend to define learning as mastery of a sequence of concepts - a list
of rules that builds upon each other to allow the learner to understand. Those from education
and linguistics tend to define learning as a change in experience - a change in what learners
can accomplish and their attitudes about topics or situations, especially as it relates to a socio-
cultural context. All of these perspectives are considered equal in learning sciences, and
learning scientists intentionally attend to each perspective. For example, a computer scientist
might build software based on a sequence of concepts that needs to be learned. If the computer
scientist was also a learning scientist, they would design the learning experience around how
these concepts connect to the existing cognitive architecture that the learner has and the
identity, motivations, and experience of the learner. A learning sciences perspective would
mean that to evaluate the software, we need to not only measure how learners progressed
through the sequence but also what they thought as they progressed and how they applied their
knowledge outside of the system.

Among various definitions of learning and among various fields that contribute to the learning
sciences, there are a few common tenets that define learning science research. Learning
sciences research has the following components (derived from Nathan, Rummel, & Hay, 2016,
and Nathan & Sawyer, 2014):

• Design of learning environments and practices based on learning theories (see section 2
on theoretical foundations),

• Application-focused basic research typically involving mixed methods and design-based
research (see section 3 on methodology),

• Authentic practices and settings to test hypotheses and build upon learning theories (see
section 3 on methodology),

• An engineering ethos to design and develop new practices and resources (see section 4
on project stages).

These tenets emerged from several central, field-building movements. These movements
demonstrated the importance of authenticity and interdisciplinarity (Kolodner, 2004), design-
based research (Brown, 1992), computer-supported collaborative learning (Stahl, 2005),
technology-enhanced learning environments (Pea, 1994), a broad definition of learning (Yoon &
Hmelo-Silver, 2017), and accepting only evidence-based findings to build learning theories
(Nathan & Sawyer, 2014). From these tenets and movements, some general research foci that
learning scientists share include anchoring learning in prior knowledge, the role of expert
knowledge in instruction, learning through social interaction, designing to scaffold levels of
understanding, and designing technological supports for knowledge building (Sawyer, 2014).

1.1 Learning Sciences and Computing Education: Twins Separated at Birth
The learning sciences and computing education can trace their roots back to a related field:
cognitive science. Cognitive science emerged in the 1960s from a combination of fields (see
chapter 2.6). The two that are relevant here are cognitive psychology and computer science. As
these fields grew together, they forged a connection between how humans learn and how

machines learn. Herb Simon was among the first group of researchers to model human
cognition using computers by making analogies between the human brain and computing
processes (Newell & Simon, 1972). By the early 1990s, the field had made great progress in
understanding how humans and machines learned, creating learning theories and the
foundations of artificial intelligence.

Around this time, a group led by Roger Schank and then Janet Kolodner started to become
disillusioned with the epistemology followed in cognitive science. For example, during the late
1980s and early 1990s John Anderson developed a cognitive tutor, to teach LISP, and
ultimately the ACT-R theory (seen also in chapter 2.6), concluding that human problem solving
boiled down to the mastery and aggregation of production rules. Anderson (1996) stated that
learning to solve problems was simply the sum of its parts, but there were a lot of parts. The first
learning scientists, in contrast, argued that this view of learning and the research in cognitive
science was too sterile to be applied to authentic learning. Authentic learning includes not only
cognitive factors, but also the environment, the instructor, fellow learners, personal attitudes and
beliefs, and use of technology (Kolodner, 2004). Therefore, the learning sciences broke from
traditions in cognitive science of highly-controlled experiments in lab settings to embrace new
practices of application-minded design experiments that are less controlled (and less
scientifically rigorous) but more generalizable to authentic learning environments (Hoadley,
2004).

The balance in the learning sciences between the scientific study of learning and the design of
environments to support learning is similar to the balance that computing education has
embraced since the late 1960s (see chapter 1.2). Some computing education researchers from
then until now would be considered learning scientists, whether they would describe themselves
that way or not. Computer scientists in computing education bring a valuable skill set to learning
sciences, the skills to design and develop learning technologies and environments to support
learning. For example, Papert (1980) used Logo, a programming language that allows users to
draw using a turtle and makes it easier for the learner to map between the written program and
the output, as a technological tool to teach math and problem-solving skills. His work expanded
our knowledge of how children learn using an authentic environment that still echoes in how we
teaching children programming today. Many introductory programming experiences still use
drawing with a turtle (e.g., Code.org and PencilCode), and Logo informed the development of
Scratch (Resnick & Ocko, 1990; Maloney et al., 2004), the most widely used and researched
programming environment for children in primary school (e.g., Kafai & Burke, 2014). The aspect
of Papert’s work that qualifies it as learning sciences work is that it drew attention to the
multitude of epistemological approaches to programming (Turkle & Papert, 1990), emphasizing
the importance of social context, including culture, and personal attitudes towards learning a
discipline.

Despite overlapping values and some overlapping researchers between computing education
and learning sciences, the two fields have not been as integrated as would be beneficial
(Almstrum et al., 2005; Robins, 2015). Computing education researchers tend to focus primarily
on developing and evaluating the instruction and tools used in computing education without
emphasizing the context of learning (e.g., social factors or personal beliefs) or making
connections to more general theories of learning. Of course there are exceptions (e.g., Ben-
David Kolikant & Ben-Ari, 2008; Guzdial & Tew, 2006), but this focus limits the generalizability
of computing education research. Without examining the context of learning, educators who
want to implement the instruction or tools in their own learning environments have very little
information about how to be successful. In contrast, learning scientists focus more broadly on

the design of the learning environment and emphasize development of knowledge about
mechanisms and theories of learning, sometimes while contributing only shallowly to discipline-
specific education knowledge. These differences play to each group’s skills, but both sets of
skills are valuable in both fields.

In recent decades, computing education and learning sciences have made significant steps
towards integration. Computing education research has more diligently incorporated learning
theory, use of mixed methods, and testing with rigorous statistical analyses (Lishinski et al.,
2016; Malmi et al., 2014), which are all common in learning sciences research. In turn,
computing education, especially around computational thinking, has become present in learning
sciences conferences and journals more regularly (e.g., Margulieux et al., 2016; Orton et al.,
2016). Both fields are taking on issues related to equity and bias, particularly concerning
learners who are of color, female, from low SES families, or with limited access to resources
(see chapter 3.5 of this volume on equity and diversity). This reciprocal relationship benefits
both fields and should continue to grow. This chapter provides an introduction to the theories,
methods, and practices of the learning sciences, particularly as they relate to computing
education, to help those who are unfamiliar with learning sciences discover the connections
between these fields.

2 Theoretical Foundations

In this section, we introduce some of the underlying theoretical foundations of the learning
sciences to discuss what the computing education research community can learn about theory
from the learning sciences. The four theories discussed here have long histories of empirical
work and represent major components of learning and learning environments. Constructivism
addresses how learners cognitively build knowledge; cognitive apprenticeship addresses how
instruction scaffolds learners’ emerging skills and knowledge; sociocultural theory addresses the
social and environmental aspects of learning environments; and expectancy-value theory
addresses the role of motivation in learning. Of course, these components do not exist in
isolation in the learning environment, and, similarly, these theories interact with each other. We
will discuss these interactions at the end of this section.

2.1 Constructivism
Constructivism is a commonly used theory, both inside and outside of computing education (see
chapter 2.8 and 3.4) about how people cognitively acquire knowledge. In essence,
constructivism states that people learn best when they construct knowledge for themselves
rather than being told explicitly what to know and how to learn it (Tobias & Duffy, 2009). There is
a lot to unpack in that definition. “Construct knowledge for themselves” means that learners are
making sense of new information through reasoning and invoking their prior knowledge rather
than being told how to interpret and organize new information, as is common in more direct
instruction (i.e., instruction in which the instructor explicitly tells the students everything that they
need to know). It also means that students are learning concepts and skills through exploration
that is guided by an instructor but not prescribed by an instructor, as it would be in more direct
instruction. The instructor can still have learning objectives, but there are multiple paths to
achieve them. In this definition, “learn best” has several different meanings. It means that
constructivist approaches help learners perform better on tasks and tests by increasing their
depth of thought and connections to prior knowledge, resulting in better retention and transfer of
knowledge (Bruner, 1973; see more about transfer in chapter 2.6). It also means improving
motivation and emotion by increasing student agency in learning and helping them connect
knowledge to their lives (Searle & Kafai, 2015).

The theory of constructivism stems from Piaget’s work in cognitive development (as described
in chapter 2.6). Constructivism became refined, popularized, and applied to instructional
strategy in Vygotsky’s and Bruner’s work starting in the 1960s (as stated in chapter 2.7). Unlike
the author of chapter 2.7, who believes that current work on constructivist pedagogy is non-
scientific, the authors of this chapter would call this work scientific even though it does not meet
the standards of control found in the hard sciences. We are hardly the first group of people to
disagree on this topic. The debate between constructivist and direct instructionist pedagogies
reached its peak in the 2000s when Kirschner, Sweller, and Clark (2006) published a paper
arguing that all types of minimally guided and unguided learning, which roughly equates to
approaches that are fundamentally aligned with constructivism, has not been as effective as
direct instruction. Hmelo-Silver, Duncan, and Chinn (2007) and Schmidt, Loyens, van Gog, and
Paas (2007) published papers in response to make counterarguments that constructivist
learning methods are effective when sufficient guidance is provided by the instructor to the
student. In turn, Sweller, Kirschner, and Clark (2007) responded with criticisms of the scientific
validity of their evidence, leading to a book edited by Tobias and Duffy (2009) that includes
authors from both sides of the debate and allowed them to criticize and respond to criticisms of
each other’s chapters.

At the center of this debate is a fundamental difference in the definition of learning. The direct
instructionists view learning as a change in the brain caused by the storage of new information
and, therefore, argue that direct instruction is the most efficient and easiest method for learning.
The constructivists view learning as a change in knowledge that is not worth much without a
concomitant change in professional skills (e.g., solving authentic problems) and soft skills (e.g.,
working collaboratively). The latter is much harder to study in true experiments than the former,
leading to criticism of scientific rigor by the direct instructionists. Constructivists argued,
however, that scientific rigor is not worth research that is conducted in sterile environments (i.e.,
labs) that are fundamentally different from the authentic environments (e.g., classrooms) in
which the research will be applied (discussed further in section 3.1 on design-based research,
Brown, 1992). As with most debates, many researchers and educators fall in the middle,
recognizing the contributions of both types of instruction and treating them as two ends of a
spectrum. Therefore, instruction can be more direct or more constructive depending on the
needs of the learner and what is most appropriate. For example, when novice programmers are
first introduced to Java, they will likely learn more efficiently by being told exactly how to write an
assignment statement than they will from being asked to come up with their own ideas about
how to write an assignment statement. This type of instruction will likely lead to more shallow
learning than a less direct approach, but the balance between depth of knowledge and learning
efficiency must be considered. If the Java learners were already experienced with Python,
though, including less direct instruction and a constructivist activity to scaffold the connection
between new Java knowledge to prior Python knowledge will likely help them to learn Java
more deeply without significantly impacting efficacy. A core question in the research on
constructivism, and learning sciences more generally, is how much guidance is optimal to
support learning.

This section only scratches the surface of constructivism as a theory and the instructional
strategies that are based upon it, but there are many other places in this book to learn more,
especially in the context of computing education.

• Chapter 1.2 discusses Papert’s work on constructionism. Constructionism and
constructivism are related, but they are not the same and should not be used
interchangeably. Constructionism is based upon constructivism, but it stipulates that the

learner should externally construct artifacts to aid the internal construction of knowledge
structures.

• Chapter 2.6 discusses some of the cognitive science theories that relate to
constructivism.

• Chapter 3.13 and 3.18 discuss the critical social aspects of constructivist pedagogies.

2.2 Cognitive Apprenticeship
Early work in the learning sciences drew inspiration from a variety of places, including non-
school environments where successful learning has been taking place for centuries. Collins,
Brown and Newman (1989) noted that the vast majority of learning throughout history was
structured as a relationship between a master who is an expert in the domain knowledge and
skills to be learned and an apprentice who aspires to become a master. The apprentice learns
through observation and deliberate practice under the guidance of the master. Tasks are
sequenced to gradually increase in complexity in line with the apprentice’s emerging skills.
Traditional apprenticeships are often associated with trades like carpentry or midwifery, but
many academic private tutoring models share similar properties.

There are two primary challenges with apprenticeship-style learning when viewed in a modern
school context (Collins & Kapur, 2014; Lave & Wenger, 1991). First, traditional apprenticeships
rely on a small student-teacher ratio with one master supervising at most a handful of
apprentices at any one time. This level of individualized attention is impractical in a typical
classroom setting, and thus it is easy to see how schools evolved direct instruction pedagogies
to address the scale of universal education. Secondly, the knowledge and skills acquired in a
traditional apprenticeship are narrowly scoped to one specific work domain. The goal of
developing generalizable knowledge and skills that is central to modern education seems, at
first glance, incompatible with apprentice-style pedagogy (for more information about knowledge
transfer, see the transfer section of chapter 2.6).

Cognitive apprenticeship was proposed as a means to integrate the successful practices of
traditional apprenticeships with the more general knowledge and cognitive skills sought by
traditional school settings (Collins, Brown, & Newman, 1989). This approach to orchestrating a
learning environment holistically considers four unique components: content, method, sequence
and sociology (Collins & Kapur, 2014). Content in this sense is concerned not only with domain
knowledge but also with the heuristic strategies used by experts within the domain to solve
problems, the metacognitive control strategies used to monitor one’s progress while completing
a task, and the more general strategies to learn new things.

A myopic focus on domain knowledge in a learning environment often leaves tacit these
strategic components of content, and cognitive apprenticeships seek to avoid this by
externalizing both novice and expert strategies explicitly in the learning environment. A
hallmark of a cognitive apprenticeship is employing a variety of pedagogical methods to
synergistically to achieve this goal. Expert modeling is used by a teacher to demonstrate a
particular task while voicing one’s inner thought process for direct observation by the
learners. While modeling often precedes the learner’s attempt at a task, learning sciences
researchers continue to research when and how to model tasks for maximum impact (see
section 2.2.1 in this chapter on productive failure). A variety of coaching techniques are
employed by the instructor as students carry out tasks, and the instructor provides scaffolding
(Wood, Bruner, & Ross, 1976) artifacts to aid learners along the way. Also central to cognitive
apprenticeships is that learners engage in deliberately articulating their knowledge and
reasoning, and they have multiple opportunities to reflect on how their approaches compare to

those of the experts and other learners. Lastly, learners are encouraged to engage in
independent exploration of the problem space. It is important to distinguish this exploration from
the type of completely unstructured inquiry criticized by Kirschner, Sweller, and Clark (2006), as
described in the previous section. The other strategies must be used carefully in concert to help
guide the learning and mitigate demands on a learner’s working memory during exploration
(Hmelo-Silver, Duncan, & Chinn, 2007).

Consistent with Vygotsky’s constructivist Zone of Proximal Development (1978), cognitive
apprenticeship learning environments consider the careful sequencing of learning activities to
increase the task complexity and diversity of skills learners alongside their growing
abilities. Additionally, considering global skills (rather than local skills) first helps orient the
learner towards the big picture task to be addressed (Collins & Kapur, 2014). Scaffolding can
be provided to abstract away the local skills early on, and learners gradually see more detail as
they progress.

Lastly, these learning environments embrace the socially embedded and cooperative nature of
learning seen in traditional apprenticeship environments. Content is situated in real-world
contexts and explored by communities of learners (see section 2.2.2 of this chapter), while
fostering learners’ intrinsic motivation (see chapter 3.17 of this volume).

At a high level, the elements of cognitive apprenticeship outlined here stake out the multifaceted
and holistic research endeavor that is the learning sciences. Each component, like instructor
modeling and coaching techniques, learner self-explanation/reflection, and social influences on
learning, carries with it a rich body of knowledge and a set of ongoing open research questions
to be explored empirically. Indeed, many of these ideas are only just now finding their way into
the computer science education researcher literature (see, e.g., Morrison, Decker, and
Margulieux, 2016; section 4 of this chapter), but adopting the systems-level viewpoint that
cognitive apprenticeship suggests may both strengthen the theoretical soundness and practical
impacts of our work. In the sub-sections to follow, we explore additional theories that underpin
some of the practices of cognitive apprenticeship described here.

2.2.1 Productive failure
Productive failure is a learning design that formalizes the process of learning from one’s
mistakes. Most productive failure research has been carried out in math and science contexts in
which many problems have canonical solutions, but a growing body of literature examines how
to design for productive failure in less-structured contexts, including computing and engineering
tasks, such as debugging. Productive failure has four central mechanisms: activating learners’
prior knowledge and experience, drawing attention to critical features of the concept, elaborating
on critical features, and integrating critical features into a unified understanding of the targeted
concept (http://manukapur.com/productive-failure/). These four, interrelated mechanisms are
embedded in two phases, a generation phase and a consolidation phase (Kapur, 2015; Kapur &
Bielaczyc, 2012). Learners first work in small groups to generate and explore multiple
representations and solution methods (RSMs) to an ill-structured problem that is beyond their
current problem-solving abilities. Thus, prior knowledge is activated but failure is encountered
because the problem is beyond learners’ current problem-solving abilities. In the second phase
the RSMs generated by the learners are compared and contrasted with canonical RSMs and
learners consolidate knowledge, integrating the solutions they generated with the targeted
concepts. Ultimately, learners who initially experienced failure when faced with an ill-structured
problem are better equipped to solve a well-structured problem as well as subsequent ill-
structured problems (Kapur, 2008). Further, the more solutions generated in the first generation

http://manukapur.com/productive-failure/

and exploration phase, the more knowledge gained, in what Kapur (2015) has called the
solution generation effect. Over a series of studies, Kapur and colleagues (2008, 2012, 2014,
2015) have shown similar levels of procedural fluency to direct instruction in addition to
significantly better gains in terms of conceptual knowledge and knowledge transfer (Collins &
Kapur, 2014).

2.3 Sociocultural Theory
In addition to many theoretical approaches embraced by learning scientists that focus on
individual-level cognitive factors, sociocultural theories of learning take a situative perspective
on learning. They emphasize learning as an activity that is embedded within social, cultural, and
historical context and occurs in interaction with others and with available tools and resources.
Sociocultural theory is not a single theory, but rather a group of theories largely growing out of
the work by Russian psychologists, including Vygotsky, Luria, and Leont’ev (Sannino, Daniels,
& Gutierrez, 2009). Sociocultural theories emphasize the importance of studying learning in
real-world contexts rather than laboratories and are uniquely suited to addressing issues of
power and equity in learning environments (Esmonde, 2017). Due to space constraints, here we
address situated learning (Lave & Wenger, 1991) and activity theory (Engeström, 1987; Greeno
& Engeström, 2014).

Exploring professional communities in tailoring, butchering, midwifery, and other trades, Lave
and Wenger (1991) argued that learning occurs as an individual moves from being on the edges
of a community (legitimate peripheral participation) to more full participation in a community of
practice. A community of practice can be understood as a group of people who have in common
some form of “practice” such as a type of work or a hobby (Wenger, 1998). As learners move
from legitimate peripheral participation to fuller participation in the community, they begin to act
like a member of that community, understanding what constitutes community membership, what
members of the community do, and how members of the community talk and interact with
others, both inside and outside of the community. In other words, learners begin to identify with
that community. In such a view, learning is identity construction. As learners become full-fledged
participants in a community of practice (an academic discipline), they take up new habits and
practices associated with that group of people.

In computing education, ideas of legitimate peripheral participation and communities of practice
matter in terms of both recognizing the social, cultural, and historical contexts in which
computing is situated (Margolis & Fisher, 2003; Margolis et al., 2008) and providing
opportunities for learners to take on the identity of a computer scientist (see Chapter 3.5). For
instance, there is a body of work that examines how scaffolding computing education for
novices by providing a context for doing computing (Cooper & Cunningham, 2010; Guzdial,
2003, 2010) and fostering opportunities for learners to work together (Porter et al., 2013).
Another significant strand of computing education research focuses on addressing the “identity
gaps” that exist for women and non-dominant individuals entering into computer science (Tan et
al., 2013) and finding ways to mitigate those through more approachable introductions to
programming, such as storytelling (Kelleher, Pausch, & Kiesler, 2007), game design (Kafai,
1995), and fashion (Kafai et al., 2014).

Like situated learning, activity theory emphasizes the study of learning at the level of activity
systems (e.g., a small group of students working together or an individual learner interacting
with tools and materials to make something). Activity systems are comprised of interactions
between a subject (or group of subjects), an object or overarching goal, and the available tools
and resources (Vygotsky, 1978). Further, “tools are created and transformed during the

development of the activity itself and carry with them a particular culture--the historical evidence
of their development” (Kaptelinin & Nardi, 2006). In this way, tools represent an accumulation of
social knowledge and its transmission. For example, if we look at laptop computers or tools for
teaching computing to young children, the tools themselves represent an accumulation of
knowledge about where, when, and how the tool is used an activity. Individuals or groups of
individuals learn at least some of this knowledge through interaction with the tool.

Engeström’s (1987) cultural-historical activity theory (CHAT) further elaborated Vygotsky’s
model of an activity system to include subject, object, instruments, rules, community, and
division of labor. Learning within an activity system is not about individual identity shifts, as is
the case in a situated learning perspective, but rather about how the practices of the system as
a whole change as a result of a conflict within the system and how that change was
accomplished. Further, effective change, according to Engeström requires an expanded
understanding of the object that takes into account both temporal (taking a long view) and socio-
spatial elements (Engeström & Sannino, 2010). Activity theory is particularly prevalent in
human-computer interaction (Kaptelinin & Nardi, 2006) as a way to understand the role of
technology within meaningful activities.

2.4 Expectancy value theory
Related to sociocultural theory, much research in learning sciences includes motivational
factors, such as learner experience, attitude, values, dispositions, mindsets, and identity. Much
more about these factors can be found in chapter 3.17. In this section, which is intended to give
high-level overviews of theory, we will describe one popular theory of motivation: expectancy-
value theory.

Expectancy-value theory is a motivation theory to explain choice, persistence, and performance.
Originally developed outside of an education context, it expanded into education in the 1980s
with work by Eccles (1983, 1987). It continues to be a prominent theory for motivation in
education today (Wigfield, Tonks, & Klauda, 2009). Expectancy-value theory is primarily applied
in K-12 education, but no research suggests that age or developmental stage impacts the
predictive value of the theory (Wigfield & Eccles, 2000).

The two components of expectancy-value theory, unsurprisingly, are a learner’s expectancy and
subjective task value. Expectancy is a learner’s belief about whether they can produce a
successful outcome for a task. Task value is a learner’s subjective assessment of the value of
success or failure of a task’s outcome. Task value has four components: attainment value or
importance (i.e., importance for self, identity, or community), intrinsic value (i.e., interest and
enjoyment), utility value (i.e., usefulness), and cost (i.e., time to achieve, effort to achieve,
emotional and physical toll, and trade-off with other valued alternatives (e.g., spending nights at
college courses or with family; Wigfield, 1994).

Expectancy and value interact with each other to predict motivation. When expectancy and
value are both high, the learner is highly motivated to successfully complete the task. When
expectancy and value are both low, the learner is unmotivated to successfully complete the
task. When expectancy and value do not match, they can affect each other in interesting ways
to affect motivation.

• When expectancy is high but task value is low, motivation will generally be low unless
task value increases. In some cases, high expectancy can increase the task value,
especially for intrinsic value, which is related to enjoyment and interest.

• When task value is high but expectancy is low, motivation will generally be low unless
task value is extremely high or expectancy increases. In some cases, low expectancy
can decrease the task value by changing subjective evaluation of any of the four
components of value (e.g., decrease intrinsic interest or decrease perceived usefulness).

Most interventions related to expectancy-value theory aim to increase motivation, and ultimately
achievement, by increasing expectancy or increasing task value, especially by decreasing cost
and increasing utility by connecting learning to students’ lives (Blackwell, 2002; Blackwell,
Trzesniewski, & Dweck, 2007; Hulleman & Harackiewicz, 2009; Wigfield & Eccles, 2000).
Though expectancy-value theory seems highly relevant to computing education, it has largely
not been used to predict motivation in computing education. More about motivation in computing
education can be found in chapter 3.17.

2.5 Summary

In this section, we have introduced four theories that are part of the foundation of learning
sciences work. It is not uncommon to find one or more of these theories discussed in a learning
sciences paper, even if the main contribution of the paper does not expand upon them. These
theories, and others like them, feed into each other. For example, constructivism is a theory
about the nature of knowledge and how learners build knowledge, and it influences how
instruction and learning is implemented in cognitive apprenticeship. Both theories aim to predict
the types of scaffolding that help students learn and perform well. Sociocultural theories
consider this cognitive development of knowledge and skill as one aspect of the learning
environment and examine the impact of social, cultural, and historical context on performance
and other critical components of learning, such as a change in identity or experience. Cognitive,
social, cultural, and historical components of learning both impact and are impacted by
expectancy and value, the parts of expectancy-value theory, and contribute to motivation.
Therefore, learning sciences research considers these interwoven connections among theories
to design learning environments and the methods used to evaluate them.

3 Methodology
In this section, we explore common methodology used in the learning sciences to discuss what
computing education research can learn about methods from the learning sciences. The
methods used in learning sciences research are as diverse as the fields that contribute to it.
Much like in computing education research, it is common in conferences and journals to find all
kinds of research designs (see chapter 2.1) that are analyzed with both qualitative (see chapter
2.4) and quantitative (see chapter 2.2 and 2.3) approaches. The most frequently used methods
in learning sciences reflect the origins of the field. That means that researchers pay attention to
different definitions of learning and measure both the process of learning (i.e., the experience
during and the steps of learning) and the product of learning (i.e., the change in knowledge or
experience caused by learning). Research methods and measurements in learning sciences
also make sure to capture the learning environment and its effects. The environment includes
features of the immediate surroundings, such as teachers, peers, technology, room, and time, in
addition to the more abstract context, such as culture, identity, and family and friend
relationships. Not every learning sciences study measures all of these environmental factors,
but they do recognize and consider the potential impact that environment might have on the
results.

3.1 Design-Based Research

A particularly common research method that is used to capture the complexities in learning
sciences research is design-based research (DBR). DBR is an evolving research methodology
with origins in design experiments (Brown, 1992; Collins, 1992) that is well suited and
increasingly used in computing education research (Kelly et al., in press; Shapiro et al., 2017).
Using a DBR protocol, a team of researchers will identify a learning problem and potential
solution. The learning problem could be a social problem, such as underrepresentation of
certain groups in computing, a motivation problem, such as students dropping out of certain
types of classes, a knowledge problem, such as students performing poorly on assignments, a
cultural problem, such as students (or their teachers) not identifying as someone who could do
well in computing, and much more. The team will then identify a group of learners, such as a
classroom of students, who are representative of the population that experiences the learning
problem. The team will then develop an intervention to address the problem specifically
designed for the selected group of learners. If the intervention does not work as intended at first,
the team will adjust it and iterate as needed. Once the intervention has successfully addressed
the learning problem for the first group of learners, the team will identify a new group of learners
and adapt and iterate the intervention until it works for the next group. Through several
iterations, the team eventually develops an intervention that addresses the learning problem for
the entire population of interest.

DBR is based on several ontological viewpoints. First, DBR is rooted in the premise that
cognition is inseparable from context, and, therefore, it is used to design new kinds of learning
environments and to research their implementation in the complexity of real-world-settings, such
as classrooms. Second, it is based on the stance that to understand the effect of a variable, that
variable must be manipulated while the effects are measured. Therefore, DBR is explicitly
interventionist. As a result of these two viewpoints, DBR interventions are studied in design
experiments that are positioned to balance the internal validity of experiments, in which
researchers attribute differences among groups to the intervention, and the ecological validity of
naturalistic settings, in which the manipulated intervention might not be implemented as planned
but the context represents a real learning environment. By working within this balance, DBR is
particularly useful for helping researchers to develop theories that explain why something is
happening, the conditions under which a particular type of learning or interaction can take place,
and the ways in which an individual’s mind interacts with the environment and available tools.
As a result, DBR sees interventions that change features of environments, activities, or tools as
part of the process to be studied.

Studying the process of design experiments in crucial because DBR is both prospective and
reflective. Designs are initially implemented based upon some hypothesized learning trajectory
and means of supporting it through a particular design or design feature. However, as the
design is implemented, new features of the environment emerge as salient and both design and
implementation may be refined. As a result, iteration is necessary in design to allow designers
and researchers to deal with multiple aspects of a learning ecology (Brown, 1992; Collins,
1992). Both design and research take place through cycles of design, implementation, analysis,
re-design, re-implementation, and analysis. Therefore, methods and measurements must be
able to document all of these phases in order to adequately capture the dynamics of the
learning ecology (Cobb et al., 2003).

To capture these dynamic components, DBR uses a collection of methodological approaches
that share some common features (Barab & Squire, 2004; Cobb et al., 2003; Design-Based
Research Collective, 2003; Edelson, 2002). DBR has two goals that are intertwined: the design
of learning environments and the development of pedagogical theories. This means that

theories are often mid-level and populations are typically more narrow than in psychological
research. For example, instead of attempting to create an theory-based intervention that would
work for all novice programmers, as psychological research would, DBR would focus on 9-10th
grade novice programmers in a particular region or using a particular curriculum. As Cobb et al.
(2003) elaborate, “Rather than grand theories of learning that may be difficult to project into
particular circumstances, design experiments tend to emphasize an intermediate theoretical
scope (DiSessa, 1991) that is located between a narrow account of a specific system (e.g., a
particular school district, a particular classroom) and a broad account that does not orient
design to particular contingencies” (p.11). Theories developed through DBR must do real work
in the world, facilitating sharing with practitioners and other designers while improving
educational outcomes for participants. As Hermes, Bang, and Marin (2012) articulate in thinking
through an Ojibwe language revitalization project, “DBR...has the affordance of engaging
educational researchers in developing immediate solutions for critical, timely, and practical
problems in education” (p. 384).

By focusing on design, DBR positions itself to focus on innovation. Edelson (2002) argues that
one of the main benefits of design-based research is that it puts researchers in real learning
situations with a somewhat open-ended focus on improvement, opening the door to learn
unique lessons and develop original interventions. In other words, much DBR demands a break
from business as usual in classrooms, schools, and other educational contexts. For this reason,
DBR research must have buy-in from everyone who is invested in the educational context. DBR
is typically carried out by teams of researchers working in partnership with administrators,
teachers, students, parents, and other community members. It also demands active, engaged
participation from the team of researchers to refine theories and measurement as the work
progresses.

If creating real change within educational contexts in a relatively rapid time period is one of
DBR’s greatest strengths, it is also one of its greatest weaknesses. The theories and designs
generated through DBR are often critiqued as being too formative in nature, the time-scale too
condensed (Barab, 2014). Further, in spite of its focus on situating learning in context, DBR has
been relatively silent about the role that culture and sociohistorical context play in schooling and
design more generally. Ironically, “the lessons involved in DBR often uncover the sociohistoric
foundations in which learning, education, and language are deeply entrenched” (Hermes et al.,
2012). In other words, while DBR has not historically focused on issues of culture and power,
these sociohistoric issues are uncovered as a result of DBR.

3.2 Lessons to Learn from DBR for Computing Education Research

DBR is very relevant to computing education research, and computing education research is
well suited to using DBR (see section 4 below). Aligned with the goals of DBR, computing
education research often focuses on innovation. With a relatively short history, learning
environments in computing are open to changes in instruction and tools. Moreover, researchers
in computing education often have interdisciplinary backgrounds and form teams to aggregate
expertise around a research question. Perhaps the most important shared feature between DBR
and computing education research in general is that it is conducted in authentic learning
environments with students who are learning computing.

Given that computing education research is conducted in authentic learning environments, often
computing courses, it is important that the community recognize the difference between DBR
and Scholarship of Teaching and Learning (SOTL). SOTL is the practice of integrating teaching

with research about teaching (Hutchings & Schulman, 1999). In SOTL, the instructor of a course
will test instructional design, tools, and activities within their own courses and collect data on
their efficacy. Though this evidence-based approach is reminiscent of DBR, SOTL focuses on
advancing the practice of teaching (Bender & Gray, 1999) while DBR balances advancing the
practice of teaching with building learning theory.

DBR, therefore, is in the middle of the spectrum between methods that focus on improving
practice, such as SOTL, and methods that focus on building theory, such as psychological
research. It maintains this balance by employing experimental methodology, but only as far as it
fits within the authentic learning environment. In addition, the research team might include the
instructor, but the instructor is not the sole researcher in DBR. In DBR, outside perspectives of
the learning environment, especially as an intervention is tested in multiple environments, help
to distinguish between generalizable features of the intervention and context-specific features. A
larger research team also helps implement multiple methods of collecting and analyzing data. A
mixed methods approach (i.e., using both qualitative and quantitative methods and analyses) is
common in DBR because it captures multiple aspects of learning and the environment, which is
a central feature of learning sciences work.

DBR is a good neutral point for researchers in computing education who are developing the
methods for a study. It will not be the best approach for every research question, but its basic
tenets are valuable across many types of projects. Of course, research that is more practically-
driven or more theoretically-driven will be more appropriate for some studies, depending on the
goals or the strengths of the research team. In any case, though, DBR is a good starting point
that will push the community to think about both the rigor and impact of our research.

4 Stages of Learning Sciences Projects

We have introduced the learning sciences as a field that embraces constructivist pedagogies,
values holistic exploration of learning environments, and engages in design innovation in
systematic ways to understand and co-evolve educational interventions. This often means that
empirical projects in the learning sciences are made up of four stages: (1) conducting studies
to better understand a learning context and its learners, (2) designing initial interventions based
on these findings, (3) iterating on the designs based on lessons learned during empirical trials,
and (4) scaling up a well-tested intervention beyond the local context in which it was refined to
contribute to theory. In this section, we will highlight three recent research projects that are
comfortably situated between the learning sciences and computing education communities
while also exemplifying these core stages.

Stage 1: Prior to designing something learning scientists engage in studies that aim to inform
the intervention, regardless of whether that intervention is a piece of educational software, a set
of classroom activities, or an entire informal learning environment. In addition to a thorough
literature search, this exploration includes qualitative and/or quantitative studies that uncover
details about the targeted content, the attitudes and dispositions of learners, and other socio-
technical elements in the learning environment. These studies are often motivated by
observable opportunities in the world, but might also be theoretically-driven.

DiSalvo’s early work on the Glitch project illustrates many of these elements. Her work initially
sought to explore the relationship between video game play and participation in undergraduate
computing majors, with a particular eye toward differences connected to learners’ race and
gender (DiSalvo & Bruckman, 2009). This early work identified a curious pattern that young

Black and Hispanic men were the most frequent game players, despite being traditionally
underrepresented in computing fields. Additional studies (DiSalvo, Crowley & Norwood, 2008;
DiSalvo & Bruckman, 2010; DiSalvo, Yardi & Bruckman, 2011) about the unique gaming
attitudes, play practices, and cultural values of young African American men directly shaped the
initial Glitch Game Tester program. The intervention competitively engaged participants as
beta-testers for forthcoming games related to their passions while learning about programming
so that they could provide more actionable bug reports to the professional developers (DiSalvo
et al., 2013). The extensive formative work to understand the important variables and
opportunities for the learners was a crucial element in ensuring the experience was both
effective and perceived as authentic.

Stage 2: Having distilled insights about the design space from prior literature and formative
studies, the learning scientist then seeks to reify these observations in a way that will positively
impact one or more aspects of the learning environment. Consistent with DBR practices, initial
interventions are often collaboratively devised by teams of researchers and teachers with the
intent to be deployed in a particular educational context. Generalizability is not of great concern
at this stage, but rather the goal is to pilot a proof of concept for the intervention and explore the
pros and cons of its affordances for learning.

The work of Shapiro and colleagues on BlockyTalky provides a helpful example of this second
stage. Their initial explorations around learning environments involving creative engineering
tasks raised questions about what and how we assess student learning in these settings
(Deitrick, O'Connell & Shapiro, 2014). They then created a programming environment and
physical computing platform called BlockyTalky that provides a rich toolkit for creation of
projects using distributed computational elements, while also abstracting away technical details
like network protocols and explicit data transfer between computational nodes. The initial
version was piloted in a computer music summer camp experiences where middle school
students designed and built novel musical instruments (Deitrick et al., 2015; Shapiro et al.,
2017). These early deployments of BlockyTalky sought to explore both the affordances of the
technical system and also the rich creative and social learning environment in which it was
used. For example, distributed cognition theory (Deitrick et al., 2015) was used as a lens to
understand how knowledge is shared, offloaded, and transformed in the classroom.

Stage 3: As indicated in the discussion of DBR, learning scientists regularly engage in the
iterative refinement of an intervention in order to "get it right" in the desired context. Rarely (if
ever) do initial deployments meet all of the design objectives, and both empirical data and
formative feedback from project stakeholders are vital in making improvements. At this stage
the context of investigation might still be quite limited, focusing on a single teacher's class or a
single institution. Alternatively, researchers might explore deployment in a handful of carefully
selected contexts. The overarching goal is to carefully hone the intervention over time while
collecting evidence about its effectiveness in particular contexts. Some efforts also engage in
initial theory-building work at this stage so as to begin rising above a particular context.

Continuing the prior example, work on BlockyTalky demonstrates how the research team has
iterated to expand the system's capabilities and its applicability to a much wider range of making
tasks beyond musical computing. Subsequent iterations explored its use in more general
makerspace classrooms while also refining the pedagogical practices and classroom routines
employed while students create their projects (Deitrick, Shapiro, & Gravel, 2016; Kelly et al., in
press). Formative feedback from learners and facilitators highlighted important and unexpected
downsides of abstracting network communication, and new versions of BlockyTalky feature

language structures that are more explicit about the flow of control between decentralized
components to help learners better understand where and when their code is executing (Kelly et
al., in press). At the same time the researchers have identified opportunities to provide
BlockyTalky integration with the rich set of computational tools that were also being used by
their partner teachers and students, thus spurring ongoing development work.

Stage 4: Once learning scientists have found an effective intervention, they turn their attention
to generalization. Generalization can take many forms, such as scaling up in similar learning
contexts or replicating results with new populations, content, or learning environment. This
stage is critical to building theory, but it is often overlooked in learning sciences and computing
education research. Many times we do a great job with the first three stages, building a great
tool or design an effective learning environment, but then we move on the next project before
we test their boundaries. This last stage, however, is crucial to the science of learning sciences.

Margulieux and Morrison’s work on subgoal labels illustrates one way to approach
generalization. Margulieux started exploring the efficacy of subgoal labeled worked examples in
undergraduate programming education in a lab, not classroom, to carefully control the learning
environment and learners’ prior knowledge (i.e., stage 3; Margulieux, Guzdial, & Catrambone,
2012). Because participants in the lab would not know anything about programming, she used a
block-based programming language and gave participants 30 minutes of instruction at a time,
neither of which are typical in undergraduate programming education. When the results of these
lab studies were positive, Morrison recommended that they try out subgoal labeled worked
examples in a more authentic environment with real introduction to programming students
(Morrison, Margulieux, & Guzdial, 2015). They then went on to replicate their results at three
universities, each with unique characteristics, to ensure that their findings would replicate with
new populations (Margulieux et al., 2016; Morrison, Decker, & Margulieux, 2016). Morrison,
Decker, and Margulieux are continuing their work at the time of writing this chapter to develop
subgoal labeled worked examples for an entire introduction to programming curriculum and
evaluate their efficacy in universities across the US. By doing so, they are contributing to theory
on subgoal learning, cognitive load, and development of problem solving skill.

5 Conclusion

Learning sciences and computing education research have a lot in common, yet the two
communities can still learn from each other and benefit from a closer relationship. Computing
education researchers should draw from the rich literature, general learning theories, and
methodologies that learning sciences offers to guide our research, increasing the rigor within
our community and contributing to education outside of computing. In turn, computing education
research can inform big challenges in education, such as cognitive development of skill in other
technical and complex disciplines, sociocultural development of identify in disciplines with
underrepresentation issues, integration of computing and computational thinking throughout
other disciplines, and much more. Perhaps the most pressing problem right now is that
computing is becoming ubiquitous, but computing education is not. More connections between
computing education researchers and learning scientists would contribute to the integration of
computing into the education of other disciplines. Integration with other disciplines not only
increases the impact of our work, but it serves to increase computing literacy for everyone.

REFERENCES

Alexander, P. A., Schallert, D. L., & Reynolds, R. E. (2009). What is learning anyway? A topographical
perspective considered. Educational Psychologist, 44(3), 176-92.

Almstrum, V. L., Hazzan, O., Guzdial, M. & Petre, M. (2005). Challenges to computer science education
research. Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (pp.
191-2). New York, NY: ACM.

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51(4), 355.

Barab, S. (2014). Design-based research: A methodological toolkit for engineering change. In R. Keith
Sawyer, ed., The Cambridge Handbook of the Learning Sciences, 2nd edn., Cambridge University Press.
pp. 151-70.

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the
Learning Sciences, 13(1), 1-14.

Ben-David Kolikant, Y., & Ben-Ari, M. (2008). Fertile zones of cultural encounter in computer science
education. The Journal of the Learning Sciences, 17(1), 1-32.

Bender, E., & Gray, D. (1999). The scholarship of teaching. Research and Creative Activity, 12(1).
Retrieved from http://www.indiana.edu/~rcapub/v22n1/p03.html

Blackwell, A. F. (2002). First steps in programming: A rationale for attention investment models. In Human
Centric Computing Languages and Environments (pp. 2-10). IEEE.

Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict
achievement across an adolescent transition: A longitudinal study and an intervention. Child
Development, 78(1), 246-63.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex
interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141-78.

Bruner, J. S. (1973). Beyond the information given. In J. M. Anglin, ed., Beyond the Information Given:
Studies in the Psychology of Knowing. New York: W.W. Norton & Company.

Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational
research. Educational Researcher, 32(1), 9-13.

Collins, A. (1992). Toward a design science of education. In New directions in Educational Technology
Springer. pp. 15-22.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of
reading, writing, and mathematics. Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser,
18, 32-42.

Collins, A., & Kapur, M. (2014). Cognitive apprenticeship. In R. Keith Sawyer, ed., The Cambridge
Handbook of the Learning Sciences, 2nd edn., Cambridge University Press. pp. 109-27.

Cooper, S., & Cunningham, S. (2010). Teaching computer science in context. ACM Inroads, 1(1), 5-8.

Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for
educational inquiry. Educational Researcher, 32(1), 5-8.

Deitrick, E., O’Connell, B., & Shapiro, R. B. (2014). The Discourse of Creative Problem Solving in
Childhood Engineering Education. In Proceedings of the International Conference of the Learning
Sciences (pp. 591-8). ICLS.

Deitrick, E., Shapiro, R. B., Ahrens, M. P., Fiebrink, R., Lehrman, P. D., & Farooq, S. (2015). Using
distributed cognition theory to analyze collaborative computer science learning. In Proceedings of the
Eleventh Annual Conference on International Computing Education Research (pp. 51-60). New York, NY:
ACM.

Deitrick, E., Shapiro, R. B., & Gravel, B. (2016). How do we assess equity in programming pairs?.
Singapore: In Proceedings of the International Conference of the Learning Sciences (pp. 370-7). ICLS.

DiSessa, A. A. (1991). Local sciences: Viewing the design of human-computer systems as cognitive
science. In Designing Interaction. Cambridge University Press. pp. 162-202.

DiSalvo, B. J., & Bruckman, A. (2009). Questioning video games' influence on CS interest. In
Proceedings of the 4th International Conference on Foundations of Digital Games (pp. 272-8). New York,
NY: ACM.

DiSalvo, B., & Bruckman, A. (2010). Race and gender in play practices: young African American males. In
Proceedings of the Fifth International Conference on the Foundations of Digital Games (pp. 56-63). New
York, NY: ACM.

DiSalvo, B.J., Crowley, K. and Norwood, R. (2008). Learning in context: Digital games and young black
men. Games and Culture, 3(2), 131-41.

DiSalvo, B., Guzdial, M., Meadows, C., Perry, K., McKlin, T., & Bruckman, A. (2013). Workifying games:
successfully engaging african american gamers with computer science. In Proceedings of the 44th ACM
Technical Symposium on Computer Science Education (pp. 317-22). New York, NY: ACM.

DiSalvo, B., Yardi, S., Guzdial, M., McKlin, T., Meadows, C., Perry, K., & Bruckman, A. (2011). African
American men constructing computing identity. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 2967-70). New York, NY: ACM.

Eccles, J. S. (1983). Expectancies, Values, and Academic Behaviors. In J. T. Spence, ed., Achievement
and Achievement Motives, San Francisco: Freeman. pp. 75-146.

Eccles, J. S. (1987). Gender roles and women's achievement-related decisions. Psychology of Women
Quarterly, 11(2), 135-72.

Edelson, D. C. (2002). Design research: What we learn when we engage in design. The Journal of the
Learning Sciences, 11(1), 105-21.

Engeström, Y. (1987). Learning by Expanding. Cambridge University Press.

Engeström, Y., & Sannino, A. (2010). Studies of expansive learning: Foundations, findings and future
challenges. Educational Research Review, 5(1), 1-24.

Esmonde, I. (2017). Power and sociocultural theories of learning. In I. Esmonde and A. Booker, eds.,
Power and Privilege in the Learning Sciences: Critical and Sociocultural Theories of Learning. New York:
Routledge. pp. 6.

Greeno, J.G. & Engeström, Y. (2014). Learning in activity. In R. Keith Sawyer, ed., The Cambridge
Handbook of the Learning Sciences, 2nd edn., Cambridge University Press. pp. 128-50.

Guzdial, M. (2003). A media computation course for non-majors. ACM SIGCSE Bulletin, 35(3), 104-8.

Guzdial, M. (2010). Does contextualized computing education help?. ACM Inroads, 1(4), 4-6.

Guzdial, M., & Tew, A. E. (2006). Imagineering inauthentic legitimate peripheral participation: An
instructional design approach for motivating computing education. In Proceedings of the Second
International Workshop on Computing Education Research (pp. 51-58). New York: NY. ACM.

Hermes, M., Bang, M., & Marin, A. (2012). Designing Indigenous language revitalization. Harvard
Educational Review, 82(3), 381-402.

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-
based and inquiry learning: a response to Kirschner, Sweller, and Clark. Educational Psychologist, 42(2),
99-107.

Hoadley, C. M. (2004). Methodological alignment in design-based research. Educational Psychologist,
39(4), 203-12.

Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school
science classes. Science, 326, 1410-2.

Hutchings, P., & Shulman, L. S. (1999). The scholarship of teaching: New elaborations, new
developments. Change: The Magazine of Higher Learning, 31(5), 10-5.

Kafai, Y. B. (1995). Minds in Play. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kafai, Y. B., & Burke, Q. (2014). Connected Code: Why Children Need to Learn Programming.
Cambridge, MA: MIT Press.

Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A crafts-oriented approach to
computing in high school: Introducing computational concepts, practices, and perspectives with electronic
textiles. ACM Transactions on Computing Education, 14(1). doi: 10.1145/2576874

Kaptelinin, V., & Nardi, B. A. (2006). Acting with Technology: Activity Theory and Interaction Design.
Cambridge, MA: MIT Press.

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379-424.

Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008-22.

Kapur, M. (2015). The preparatory effects of problem solving versus problem posing on learning from
instruction. Learning and Instruction, 39, 23-31.

Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1),
45-83.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice motivates middle school girls to learn
computer programming. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 1455-64). New York, NY. ACM.

Kelly, A., Finch, L., Bolles, M., & Shapiro, R.B. (in press). BlockyTalky: New programmable tools to
enable students learning networks. International Journal of Child-Computer Interaction.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75-86.

Kolodner, J. L. (2004). The learning sciences: Past, present, and future. Educational Technology: The
Magazine for Managers of Change in Education, 44(3), 37-42.

Lave, J. & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge
University Press.

Lishinski, A., Good, J., Sands, P., & Yadav, A. (2016). Methodological rigor and theoretical foundations of
CS education research. In Proceedings of the 2016 ACM Conference on International Computing
Education Research (pp. 161-9). New York, NY: ACM.

Malmi, L., Sheard, J., Bednarik, R., Helminen, J., Kinnunen, P., Korhonen, A., ... & Taherkhani, A. (2014).
Theoretical underpinnings of computing education research: what is the evidence?. In Proceedings of the
Tenth Annual Conference on International Computing Education Research (pp. 27-34). New York, NY:
ACM.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A sneak preview
[education]. In Creating, Connecting and Collaborating through Computing. (pp. 104-9). IEEE.

Margolis, J. & Fisher, A. (2002). Unlocking the Clubhouse. Cambridge, MA: MIT Press.

Margolis, J., Estella, R., Goode, J., Holme, J., & Nao, K. 2008. Stuck in the Shallow End: Education,
Race, and Computing. Cambridge, MA: MIT Press.

Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-labeled instructional material improves
performance and transfer in learning to develop mobile applications. In Proceedings of the Ninth Annual
International Conference on International Computing Education Research (pp. 71-8). New York, NY:
ACM.

Margulieux, L., Morrison, B. B., Guzdial, M., & Catrambone, R. (2016). Training learners to self-explain:
Designing instructions and examples to improve problem solving. In Proceedings of the International
Conference of the Learning Sciences (pp. 98-105). ICLS.

Morrison, B. B., Decker, A., & Margulieux, L. E. (2016). Learning loops: A replication study illuminates
impact of HS courses. In Proceedings of the Twelfth Annual International Conference on International
Computing Education Research (pp. 221-30). New York, NY: ACM.

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, context, and worked examples in
learning computing problem solving. In Proceedings of the Eleventh Annual International Conference on
International Computing Education Research (pp. 21-29). New York, NY: ACM.

Nathan, M. J., Rummel, N., & Hay, K. E. (2016). Growing the learning sciences: Brand or big tent?
Implications for graduate education. In M. A. Evans, M. J. Packer, & R. K. Sawyer, eds., Reflections on
the Learning Sciences. Cambridge University Press. pp. 191–209.

Nathan, M. J., & Sawyer, R. K. (2014). Foundations of the learning sciences. In R. Keith Sawyer, ed., The
Cambridge Handbook of the Learning Sciences, 2nd edn., Cambridge University Press. pp. 21-43.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

Orton, K., Weintrop, D., Beheshti, E., Horn, M., Jona, K., & Wilensky, U. (2016). Bringing computational
thinking into high school mathematics and science classrooms. In Proceeding of the International
Conference of the Learning Sciences (pp. 705-12). ICLS.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc.

Pea, R. D. (1994). Seeing what we build together: Distributed multimedia learning environments for
transformative communications. The Journal of the Learning Sciences, 3(3), 285-99.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory programming: What
works? Communications of the ACM, 56(8), 34-6.

Resnick, M., & Ocko, S. (1990). LEGO/LOGO--Learning through and about Design. Cambridge, MA:
Epistemology and Learning Group, MIT Media Laboratory.

Robins, A. (2015). The ongoing challenges of computer science education research. Computer Science
Education, 25(2), 115-9.

Sannino, A., Daniels, H., & Gutiérrez, K. (Eds.). (2009). Learning and Expanding with Activity Theory.
Cambridge University Press.

Sawyer, R. K. (2014). The future of learning: Grounding educational innovation in the learning science. In
R. Keith Sawyer, ed., The Cambridge Handbook of the Learning Sciences, 2nd edn., Cambridge
University Press. pp. 1-19.

Schmidt, H. G., Loyens, S. M., Van Gog, T., & Paas, F. (2007). Problem-based learning is compatible
with human cognitive architecture: Commentary on Kirschner, Sweller, and Clark. Educational
Psychologist, 42(2), 91-7.

Searle, K. A., & Kafai, Y. B. (2015). Boys' needlework: Understanding gendered and indigenous
perspectives on computing and crafting with electronic textiles. In Proceedings of the Eleventh Annual
Conference on International Computing Education Research (pp. 31-39). ACM.

Shapiro, R. B., Kelly, A., Ahrens, M., Johnson, B., Politi, H., & Fiebrink, R. (2017) Tangible distributed
computer music for youth. The Computer Music Journal, 41(2), 52-68.

Sommerhoff, D., Szameitat, A., Vogel, F., Chernikova, O., Loderer, K., & Fischer, F. (2018). What do we
teach when we teach the learning sciences? A document analysis of 75 graduate programs. Journal of
the Learning Sciences, 27(2), 319-51.

Stahl, G. (2005). Group cognition in computer‐assisted collaborative learning. Journal of Computer
Assisted Learning, 21(2), 79-90.

Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimally guided teaching techniques do not
work: A reply to commentaries. Educational Psychologist, 42(2), 115-21.

Tan, E., Kang, H. O’Neill, T. & Calabrese Barton, A. (2013). Desiring a career in STEM-related fields:
How middle school girls articulate and negotiate between their narrated and embodied identities in
considering a STEM trajectory. Journal of Research in Science Teaching, 50(10), 1143-79.

Tobias, S., & Duffy, T. M. (Eds.). (2009). Constructivist Instruction: Success or Failure?. Routledge.

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the computer culture.
Signs: Journal of Women in Culture and Society, 16(1), 128-57.

Vygotsky, L.S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.

Wenger, E. (1998). Communities of Practice: Learning, Meaning, and Identity. Cambridge University
Press.

Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental perspective.
Educational Psychology Review, 6(1), 49-78.

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary
Educational Psychology, 25(1), 68-81.

Wigfield, A., Tonks, S., & Klauda, S. L. (2009). Expectancy-value theory. In K. Wentzel and D. Miele,
eds., Handbook of Motivation at School. New York, NY: Routledge, pp. 55-75.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child
Psychology and Psychiatry, 17(2), 89-100.

Yoon, S. A., & Hmelo-Silver, C. E. (2017). What do learning scientists do? a survey of the isls
membership. The Journal of the Learning Sciences, 26(2), 167-83.

	Georgia State University
	ScholarWorks @ Georgia State University
	4-2019

	Learning Sciences for Computing Education
	Lauren Margulieux
	Brian Dorn
	Kristin Searle
	Recommended Citation

	tmp.1552496854.pdf.rIVRH

