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Abstract: This chapter discusses potential and current overlaps between the learning sciences and 

computing education research in their origins, theory, and methodology. After an introduction to 

learning sciences, the chapter describes how both learning sciences and computing education research 

developed as distinct fields from cognitive science. Despite common roots and common goals, the 

authors argue that the two fields are less integrated than they should be and recommend theories and 

methodologies from the learning sciences that could be used more widely in computing education 

research. The chapter selects for discussion one general learning theory from each of cognition 

(constructivism), instructional design (cognitive apprenticeship), social and environmental features of 

learning environments (sociocultural theory), and motivation (expectancy-value theory). Then the 

chapter describes methodology for design-based research to apply and test learning theories in 

authentic learning environments. The chapter emphasizes the alignment between design-based 

research and current research practices in computing education. Finally, the chapter discusses the four 

stages of learning sciences projects. Examples from computing education research are given for each 

stage to illustrate the shared goals and methods of the two fields and to argue for more integration 

between them. 

Learning sciences for computing education 

 
Lauren E. Margulieux, Brian Dorn, Kristin A. Searle  

 

1 Introduction 
The learning sciences is an amalgamation of fields that study learning and learning 
environments. When learning sciences emerged in the 1990s, learning scientists were people 
who had been training in other disciplinary fields and wanted to apply their skills in 
multidisciplinary teams to improve learning environments. Some of the fields under the purview 
of the learning sciences are education, psychology, computer science, educational technology, 
linguistics, and data analytics. At the time that this book was published, learning scientists are 
still primarily trained in one of these component disciplines (Yoon & Hmelo-Silver, 2017), though 
many universities now offer learning-sciences-oriented programs, and some even offer a 
Masters or Ph.D. in Learning Sciences (Sommerhoff et al., 2018). This shift in training 
represents a shift in infrastructure for learning sciences work. Many universities have centers for 
learning sciences in which researchers from various fields can find resources to work together. 
The professional society, International Society of the Learning Sciences, was founded in 2002 
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and organizes annual conferences and supports high-quality publications. Most importantly, 
learning scientists have developed relationships with places of learning (e.g., K-12 schools, 
colleges, and museums) so that we can study learning in authentic environments while 
simultaneously improving the experience of learners right now. 
 
One of the first things that learning scientists discovered when they started working together is 
that they all have different definitions of learning (Alexander, Schallert, & Reynolds, 2009). 
Those from cognitive psychology and neuropsychology tend to define learning as a change in 
the brain - a development of neural architecture and synapses. Those from computer science 
and educational technology tend to define learning as mastery of a sequence of concepts - a list 
of rules that builds upon each other to allow the learner to understand. Those from education 
and linguistics tend to define learning as a change in experience - a change in what learners 
can accomplish and their attitudes about topics or situations, especially as it relates to a socio-
cultural context. All of these perspectives are considered equal in learning sciences, and 
learning scientists intentionally attend to each perspective. For example, a computer scientist 
might build software based on a sequence of concepts that needs to be learned. If the computer 
scientist was also a learning scientist, they would design the learning experience around how 
these concepts connect to the existing cognitive architecture that the learner has and the 
identity, motivations, and experience of the learner. A learning sciences perspective would 
mean that to evaluate the software, we need to not only measure how learners progressed 
through the sequence but also what they thought as they progressed and how they applied their 
knowledge outside of the system.  
 
Among various definitions of learning and among various fields that contribute to the learning 
sciences, there are a few common tenets that define learning science research. Learning 
sciences research has the following components (derived from Nathan, Rummel, & Hay, 2016, 
and Nathan & Sawyer, 2014): 

• Design of learning environments and practices based on learning theories (see section 2 
on theoretical foundations), 

• Application-focused basic research typically involving mixed methods and design-based 
research (see section 3 on methodology), 

• Authentic practices and settings to test hypotheses and build upon learning theories (see 
section 3 on methodology), 

• An engineering ethos to design and develop new practices and resources (see section 4 
on project stages). 

These tenets emerged from several central, field-building movements. These movements 
demonstrated the importance of authenticity and interdisciplinarity (Kolodner, 2004), design-
based research (Brown, 1992), computer-supported collaborative learning (Stahl, 2005), 
technology-enhanced learning environments (Pea, 1994), a broad definition of learning (Yoon & 
Hmelo-Silver, 2017), and accepting only evidence-based findings to build learning theories 
(Nathan & Sawyer, 2014). From these tenets and movements, some general research foci that 
learning scientists share include anchoring learning in prior knowledge, the role of expert 
knowledge in instruction, learning through social interaction, designing to scaffold levels of 
understanding, and designing technological supports for knowledge building (Sawyer, 2014).  
 

1.1 Learning Sciences and Computing Education: Twins Separated at Birth  
The learning sciences and computing education can trace their roots back to a related field: 
cognitive science. Cognitive science emerged in the 1960s from a combination of fields (see 
chapter 2.6). The two that are relevant here are cognitive psychology and computer science. As 
these fields grew together, they forged a connection between how humans learn and how 



machines learn. Herb Simon was among the first group of researchers to model human 
cognition using computers by making analogies between the human brain and computing 
processes (Newell & Simon, 1972). By the early 1990s, the field had made great progress in 
understanding how humans and machines learned, creating learning theories and the 
foundations of artificial intelligence.  
 
Around this time, a group led by Roger Schank and then Janet Kolodner started to become 
disillusioned with the epistemology followed in cognitive science. For example, during the late 
1980s and early 1990s John Anderson developed a cognitive tutor, to teach LISP, and 
ultimately the ACT-R theory (seen also in chapter 2.6), concluding that human problem solving 
boiled down to the mastery and aggregation of production rules. Anderson (1996) stated that 
learning to solve problems was simply the sum of its parts, but there were a lot of parts. The first 
learning scientists, in contrast, argued that this view of learning and the research in cognitive 
science was too sterile to be applied to authentic learning. Authentic learning includes not only 
cognitive factors, but also the environment, the instructor, fellow learners, personal attitudes and 
beliefs, and use of technology (Kolodner, 2004). Therefore, the learning sciences broke from 
traditions in cognitive science of highly-controlled experiments in lab settings to embrace new 
practices of application-minded design experiments that are less controlled (and less 
scientifically rigorous) but more generalizable to authentic learning environments (Hoadley, 
2004). 
 
The balance in the learning sciences between the scientific study of learning and the design of 
environments to support learning is similar to the balance that computing education has 
embraced since the late 1960s (see chapter 1.2). Some computing education researchers from 
then until now would be considered learning scientists, whether they would describe themselves 
that way or not. Computer scientists in computing education bring a valuable skill set to learning 
sciences, the skills to design and develop learning technologies and environments to support 
learning. For example, Papert (1980) used Logo, a programming language that allows users to 
draw using a turtle and makes it easier for the learner to map between the written program and 
the output, as a technological tool to teach math and problem-solving skills. His work expanded 
our knowledge of how children learn using an authentic environment that still echoes in how we 
teaching children programming today. Many introductory programming experiences still use 
drawing with a turtle (e.g., Code.org and PencilCode), and Logo informed the development of 
Scratch (Resnick & Ocko, 1990; Maloney et al., 2004), the most widely used and researched 
programming environment for children in primary school (e.g., Kafai & Burke, 2014). The aspect 
of Papert’s work that qualifies it as learning sciences work is that it drew attention to the 
multitude of epistemological approaches to programming (Turkle & Papert, 1990), emphasizing 
the importance of social context, including culture, and personal attitudes towards learning a 
discipline. 
 
Despite overlapping values and some overlapping researchers between computing education 
and learning sciences, the two fields have not been as integrated as would be beneficial 
(Almstrum et al., 2005; Robins, 2015). Computing education researchers tend to focus primarily 
on developing and evaluating the instruction and tools used in computing education without 
emphasizing the context of learning (e.g., social factors or personal beliefs) or making 
connections to more general theories of learning. Of course there are exceptions (e.g., Ben-
David Kolikant & Ben-Ari, 2008; Guzdial & Tew, 2006), but this focus limits the generalizability 
of computing education research. Without examining the context of learning, educators who 
want to implement the instruction or tools in their own learning environments have very little 
information about how to be successful. In contrast, learning scientists focus more broadly on 



the design of the learning environment and emphasize development of knowledge about 
mechanisms and theories of learning, sometimes while contributing only shallowly to discipline-
specific education knowledge. These differences play to each group’s skills, but both sets of 
skills are valuable in both fields.  
 
In recent decades, computing education and learning sciences have made significant steps 
towards integration. Computing education research has more diligently incorporated learning 
theory, use of mixed methods, and testing with rigorous statistical analyses (Lishinski et al., 
2016; Malmi et al., 2014), which are all common in learning sciences research. In turn, 
computing education, especially around computational thinking, has become present in learning 
sciences conferences and journals more regularly (e.g., Margulieux et al., 2016; Orton et al., 
2016). Both fields are taking on issues related to equity and bias, particularly concerning 
learners who are of color, female, from low SES families, or with limited access to resources 
(see chapter 3.5 of this volume on equity and diversity). This reciprocal relationship benefits 
both fields and should continue to grow. This chapter provides an introduction to the theories, 
methods, and practices of the learning sciences, particularly as they relate to computing 
education, to help those who are unfamiliar with learning sciences discover the connections 
between these fields. 
 

2 Theoretical Foundations 
 
In this section, we introduce some of the underlying theoretical foundations of the learning 
sciences to discuss what the computing education research community can learn about theory 
from the learning sciences. The four theories discussed here have long histories of empirical 
work and represent major components of learning and learning environments. Constructivism 
addresses how learners cognitively build knowledge; cognitive apprenticeship addresses how 
instruction scaffolds learners’ emerging skills and knowledge; sociocultural theory addresses the 
social and environmental aspects of learning environments; and expectancy-value theory 
addresses the role of motivation in learning. Of course, these components do not exist in 
isolation in the learning environment, and, similarly, these theories interact with each other. We 
will discuss these interactions at the end of this section. 
 

2.1 Constructivism 
Constructivism is a commonly used theory, both inside and outside of computing education (see 
chapter 2.8 and 3.4) about how people cognitively acquire knowledge. In essence, 
constructivism states that people learn best when they construct knowledge for themselves 
rather than being told explicitly what to know and how to learn it (Tobias & Duffy, 2009). There is 
a lot to unpack in that definition. “Construct knowledge for themselves” means that learners are 
making sense of new information through reasoning and invoking their prior knowledge rather 
than being told how to interpret and organize new information, as is common in more direct 
instruction (i.e., instruction in which the instructor explicitly tells the students everything that they 
need to know). It also means that students are learning concepts and skills through exploration 
that is guided by an instructor but not prescribed by an instructor, as it would be in more direct 
instruction. The instructor can still have learning objectives, but there are multiple paths to 
achieve them. In this definition, “learn best” has several different meanings. It means that 
constructivist approaches help learners perform better on tasks and tests by increasing their 
depth of thought and connections to prior knowledge, resulting in better retention and transfer of 
knowledge (Bruner, 1973; see more about transfer in chapter 2.6). It also means improving 
motivation and emotion by increasing student agency in learning and helping them connect 
knowledge to their lives (Searle & Kafai, 2015). 



 
The theory of constructivism stems from Piaget’s work in cognitive development (as described 
in chapter 2.6). Constructivism became refined, popularized, and applied to instructional 
strategy in Vygotsky’s and Bruner’s work starting in the 1960s (as stated in chapter 2.7). Unlike 
the author of chapter 2.7, who believes that current work on constructivist pedagogy is non-
scientific, the authors of this chapter would call this work scientific even though it does not meet 
the standards of control found in the hard sciences. We are hardly the first group of people to 
disagree on this topic. The debate between constructivist and direct instructionist pedagogies 
reached its peak in the 2000s when Kirschner, Sweller, and Clark (2006) published a paper 
arguing that all types of minimally guided and unguided learning, which roughly equates to 
approaches that are fundamentally aligned with constructivism, has not been as effective as 
direct instruction. Hmelo-Silver, Duncan, and Chinn (2007) and Schmidt, Loyens, van Gog, and 
Paas (2007) published papers in response to make counterarguments that constructivist 
learning methods are effective when sufficient guidance is provided by the instructor to the 
student. In turn, Sweller, Kirschner, and Clark (2007) responded with criticisms of the scientific 
validity of their evidence, leading to a book edited by Tobias and Duffy (2009) that includes 
authors from both sides of the debate and allowed them to criticize and respond to criticisms of 
each other’s chapters.  
 
At the center of this debate is a fundamental difference in the definition of learning. The direct 
instructionists view learning as a change in the brain caused by the storage of new information 
and, therefore, argue that direct instruction is the most efficient and easiest method for learning. 
The constructivists view learning as a change in knowledge that is not worth much without a 
concomitant change in professional skills (e.g., solving authentic problems) and soft skills (e.g., 
working collaboratively). The latter is much harder to study in true experiments than the former, 
leading to criticism of scientific rigor by the direct instructionists. Constructivists argued, 
however, that scientific rigor is not worth research that is conducted in sterile environments (i.e., 
labs) that are fundamentally different from the authentic environments (e.g., classrooms) in 
which the research will be applied (discussed further in section 3.1 on design-based research, 
Brown, 1992). As with most debates, many researchers and educators fall in the middle, 
recognizing the contributions of both types of instruction and treating them as two ends of a 
spectrum. Therefore, instruction can be more direct or more constructive depending on the 
needs of the learner and what is most appropriate. For example, when novice programmers are 
first introduced to Java, they will likely learn more efficiently by being told exactly how to write an 
assignment statement than they will from being asked to come up with their own ideas about 
how to write an assignment statement. This type of instruction will likely lead to more shallow 
learning than a less direct approach, but the balance between depth of knowledge and learning 
efficiency must be considered. If the Java learners were already experienced with Python, 
though, including less direct instruction and a constructivist activity to scaffold the connection 
between new Java knowledge to prior Python knowledge will likely help them to learn Java 
more deeply without significantly impacting efficacy. A core question in the research on 
constructivism, and learning sciences more generally, is how much guidance is optimal to 
support learning. 
 
This section only scratches the surface of constructivism as a theory and the instructional 
strategies that are based upon it, but there are many other places in this book to learn more, 
especially in the context of computing education.  

• Chapter 1.2 discusses Papert’s work on constructionism. Constructionism and 
constructivism are related, but they are not the same and should not be used 
interchangeably. Constructionism is based upon constructivism, but it stipulates that the 



learner should externally construct artifacts to aid the internal construction of knowledge 
structures. 

• Chapter 2.6 discusses some of the cognitive science theories that relate to 
constructivism. 

• Chapter 3.13 and 3.18 discuss the critical social aspects of constructivist pedagogies. 

 

2.2 Cognitive Apprenticeship 
Early work in the learning sciences drew inspiration from a variety of places, including non-
school environments where successful learning has been taking place for centuries.  Collins, 
Brown and Newman (1989) noted that the vast majority of learning throughout history was 
structured as a relationship between a master who is an expert in the domain knowledge and 
skills to be learned and an apprentice who aspires to become a master.  The apprentice learns 
through observation and deliberate practice under the guidance of the master.  Tasks are 
sequenced to gradually increase in complexity in line with the apprentice’s emerging skills.  
Traditional apprenticeships are often associated with trades like carpentry or midwifery, but 
many academic private tutoring models share similar properties. 
 
There are two primary challenges with apprenticeship-style learning when viewed in a modern 
school context (Collins & Kapur, 2014; Lave & Wenger, 1991).  First, traditional apprenticeships 
rely on a small student-teacher ratio with one master supervising at most a handful of 
apprentices at any one time.  This level of individualized attention is impractical in a typical 
classroom setting, and thus it is easy to see how schools evolved direct instruction pedagogies 
to address the scale of universal education.  Secondly, the knowledge and skills acquired in a 
traditional apprenticeship are narrowly scoped to one specific work domain.  The goal of 
developing generalizable knowledge and skills that is central to modern education seems, at 
first glance, incompatible with apprentice-style pedagogy (for more information about knowledge 
transfer, see the transfer section of chapter 2.6). 
 
Cognitive apprenticeship was proposed as a means to integrate the successful practices of 
traditional apprenticeships with the more general knowledge and cognitive skills sought by 
traditional school settings (Collins, Brown, & Newman, 1989).  This approach to orchestrating a 
learning environment holistically considers four unique components: content, method, sequence 
and sociology (Collins & Kapur, 2014).  Content in this sense is concerned not only with domain 
knowledge but also with the heuristic strategies used by experts within the domain to solve 
problems, the metacognitive control strategies used to monitor one’s progress while completing 
a task, and the more general strategies to learn new things.   
 
A myopic focus on domain knowledge in a learning environment often leaves tacit these 
strategic components of content, and cognitive apprenticeships seek to avoid this by 
externalizing both novice and expert strategies explicitly in the learning environment.  A 
hallmark of a cognitive apprenticeship is employing a variety of pedagogical methods to 
synergistically to achieve this goal.  Expert modeling is used by a teacher to demonstrate a 
particular task while voicing one’s inner thought process for direct observation by the 
learners.  While modeling often precedes the learner’s attempt at a task, learning sciences 
researchers continue to research when and how to model tasks for maximum impact (see 
section 2.2.1 in this chapter on productive failure). A variety of coaching techniques are 
employed by the instructor as students carry out tasks, and the instructor provides scaffolding 
(Wood, Bruner, & Ross, 1976) artifacts to aid learners along the way.  Also central to cognitive 
apprenticeships is that learners engage in deliberately articulating their knowledge and 
reasoning, and they have multiple opportunities to reflect on how their approaches compare to 



those of the experts and other learners.  Lastly, learners are encouraged to engage in 
independent exploration of the problem space.  It is important to distinguish this exploration from 
the type of completely unstructured inquiry criticized by Kirschner, Sweller, and Clark (2006), as 
described in the previous section.  The other strategies must be used carefully in concert to help 
guide the learning and mitigate demands on a learner’s working memory during exploration 
(Hmelo-Silver, Duncan, & Chinn, 2007). 
 
Consistent with Vygotsky’s constructivist Zone of Proximal Development (1978), cognitive 
apprenticeship learning environments consider the careful sequencing of learning activities to 
increase the task complexity and diversity of skills learners alongside their growing 
abilities.  Additionally, considering global skills (rather than local skills) first helps orient the 
learner towards the big picture task to be addressed (Collins & Kapur, 2014).  Scaffolding can 
be provided to abstract away the local skills early on, and learners gradually see more detail as 
they progress.   
 
Lastly, these learning environments embrace the socially embedded and cooperative nature of 
learning seen in traditional apprenticeship environments.  Content is situated in real-world 
contexts and explored by communities of learners (see section 2.2.2 of this chapter), while 
fostering learners’ intrinsic motivation (see chapter 3.17 of this volume). 
 
At a high level, the elements of cognitive apprenticeship outlined here stake out the multifaceted 
and holistic research endeavor that is the learning sciences.  Each component, like instructor 
modeling and coaching techniques, learner self-explanation/reflection, and social influences on 
learning, carries with it a rich body of knowledge and a set of ongoing open research questions 
to be explored empirically.  Indeed, many of these ideas are only just now finding their way into 
the computer science education researcher literature (see, e.g., Morrison, Decker, and 
Margulieux, 2016; section 4 of this chapter), but adopting the systems-level viewpoint that 
cognitive apprenticeship suggests may both strengthen the theoretical soundness and practical 
impacts of our work.  In the sub-sections to follow, we explore additional theories that underpin 
some of the practices of cognitive apprenticeship described here.   
 

2.2.1 Productive failure 
Productive failure is a learning design that formalizes the process of learning from one’s 
mistakes. Most productive failure research has been carried out in math and science contexts in 
which many problems have canonical solutions, but a growing body of literature examines how 
to design for productive failure in less-structured contexts, including computing and engineering 
tasks, such as debugging. Productive failure has four central mechanisms: activating learners’ 
prior knowledge and experience, drawing attention to critical features of the concept, elaborating 
on critical features, and integrating critical features into a unified understanding of the targeted 
concept (http://manukapur.com/productive-failure/). These four, interrelated mechanisms are 
embedded in two phases, a generation phase and a consolidation phase (Kapur, 2015; Kapur & 
Bielaczyc, 2012). Learners first work in small groups to generate and explore multiple 
representations and solution methods (RSMs) to an ill-structured problem that is beyond their 
current problem-solving abilities. Thus, prior knowledge is activated but failure is encountered 
because the problem is beyond learners’ current problem-solving abilities. In the second phase 
the RSMs generated by the learners are compared and contrasted with canonical RSMs and 
learners consolidate knowledge, integrating the solutions they generated with the targeted 
concepts. Ultimately, learners who initially experienced failure when faced with an ill-structured 
problem are better equipped to solve a well-structured problem as well as subsequent ill-
structured problems (Kapur, 2008). Further, the more solutions generated in the first generation 

http://manukapur.com/productive-failure/


and exploration phase, the more knowledge gained, in what Kapur (2015) has called the 
solution generation effect. Over a series of studies, Kapur and colleagues (2008, 2012, 2014, 
2015) have shown similar levels of procedural fluency to direct instruction in addition to 
significantly better gains in terms of conceptual knowledge and knowledge transfer (Collins & 
Kapur, 2014). 
 

2.3 Sociocultural Theory 
In addition to many theoretical approaches embraced by learning scientists that focus on 
individual-level cognitive factors, sociocultural theories of learning take a situative perspective 
on learning. They emphasize learning as an activity that is embedded within social, cultural, and 
historical context and occurs in interaction with others and with available tools and resources. 
Sociocultural theory is not a single theory, but rather a group of theories largely growing out of 
the work by Russian psychologists, including Vygotsky, Luria, and Leont’ev (Sannino, Daniels, 
& Gutierrez, 2009). Sociocultural theories emphasize the importance of studying learning in 
real-world contexts rather than laboratories and are uniquely suited to addressing issues of 
power and equity in learning environments (Esmonde, 2017). Due to space constraints, here we 
address situated learning (Lave & Wenger, 1991) and activity theory (Engeström, 1987; Greeno 
& Engeström, 2014). 
 
Exploring professional communities in tailoring, butchering, midwifery, and other trades, Lave 
and Wenger (1991) argued that learning occurs as an individual moves from being on the edges 
of a community (legitimate peripheral participation) to more full participation in a community of 
practice. A community of practice can be understood as a group of people who have in common 
some form of “practice” such as a type of work or a hobby (Wenger, 1998). As learners move 
from legitimate peripheral participation to fuller participation in the community, they begin to act 
like a member of that community, understanding what constitutes community membership, what 
members of the community do, and how members of the community talk and interact with 
others, both inside and outside of the community. In other words, learners begin to identify with 
that community. In such a view, learning is identity construction. As learners become full-fledged 
participants in a community of practice (an academic discipline), they take up new habits and 
practices associated with that group of people. 
 
In computing education, ideas of legitimate peripheral participation and communities of practice 
matter in terms of both recognizing the social, cultural, and historical contexts in which 
computing is situated (Margolis & Fisher, 2003; Margolis et al., 2008) and providing 
opportunities for learners to take on the identity of a computer scientist (see Chapter 3.5). For 
instance, there is a body of work that examines how scaffolding computing education for 
novices by providing a context for doing computing (Cooper & Cunningham, 2010; Guzdial, 
2003, 2010) and fostering opportunities for learners to work together (Porter et al., 2013). 
Another significant strand of computing education research focuses on addressing the  “identity 
gaps” that exist for women and non-dominant individuals entering into computer science (Tan et 
al., 2013) and finding ways to mitigate those through more approachable introductions to 
programming, such as storytelling (Kelleher, Pausch, & Kiesler, 2007), game design (Kafai, 
1995), and fashion (Kafai et al., 2014). 
 
Like situated learning, activity theory emphasizes the study of learning at the level of activity 
systems (e.g., a small group of students working together or an individual learner interacting 
with tools and materials to make something). Activity systems are comprised of interactions 
between a subject (or group of subjects), an object or overarching goal, and the available tools 
and resources (Vygotsky, 1978). Further, “tools are created and transformed during the 



development of the activity itself and carry with them a particular culture--the historical evidence 
of their development” (Kaptelinin & Nardi, 2006). In this way, tools represent an accumulation of 
social knowledge and its transmission. For example, if we look at laptop computers or tools for 
teaching computing to young children, the tools themselves represent an accumulation of 
knowledge about where, when, and how the tool is used an activity. Individuals or groups of 
individuals learn at least some of this knowledge through interaction with the tool.  
 
Engeström’s (1987) cultural-historical activity theory (CHAT) further elaborated Vygotsky’s 
model of an activity system to include subject, object, instruments, rules, community, and 
division of labor. Learning within an activity system is not about individual identity shifts, as is 
the case in a situated learning perspective, but rather about how the practices of the system as 
a whole change as a result of a conflict within the system and how that change was 
accomplished. Further, effective change, according to Engeström requires an expanded 
understanding of the object that takes into account both temporal (taking a long view) and socio-
spatial elements (Engeström & Sannino, 2010). Activity theory is particularly prevalent in 
human-computer interaction (Kaptelinin & Nardi, 2006) as a way to understand the role of 
technology within meaningful activities.  
 

2.4 Expectancy value theory 
Related to sociocultural theory, much research in learning sciences includes motivational 
factors, such as learner experience, attitude, values, dispositions, mindsets, and identity. Much 
more about these factors can be found in chapter 3.17. In this section, which is intended to give 
high-level overviews of theory, we will describe one popular theory of motivation: expectancy-
value theory. 
 
Expectancy-value theory is a motivation theory to explain choice, persistence, and performance. 
Originally developed outside of an education context, it expanded into education in the 1980s 
with work by Eccles (1983, 1987). It continues to be a prominent theory for motivation in 
education today (Wigfield, Tonks, & Klauda, 2009). Expectancy-value theory is primarily applied 
in K-12 education, but no research suggests that age or developmental stage impacts the 
predictive value of the theory (Wigfield & Eccles, 2000). 
 
The two components of expectancy-value theory, unsurprisingly, are a learner’s expectancy and 
subjective task value. Expectancy is a learner’s belief about whether they can produce a 
successful outcome for a task. Task value is a learner’s subjective assessment of the value of 
success or failure of a task’s outcome. Task value has four components: attainment value or 
importance (i.e., importance for self, identity, or community), intrinsic value (i.e., interest and 
enjoyment), utility value (i.e., usefulness), and cost (i.e., time to achieve, effort to achieve, 
emotional and physical toll, and trade-off with other valued alternatives (e.g., spending nights at 
college courses or with family; Wigfield, 1994).  
 
Expectancy and value interact with each other to predict motivation. When expectancy and 
value are both high, the learner is highly motivated to successfully complete the task. When 
expectancy and value are both low, the learner is unmotivated to successfully complete the 
task. When expectancy and value do not match, they can affect each other in interesting ways 
to affect motivation. 

• When expectancy is high but task value is low, motivation will generally be low unless 
task value increases. In some cases, high expectancy can increase the task value, 
especially for intrinsic value, which is related to enjoyment and interest. 



• When task value is high but expectancy is low, motivation will generally be low unless 
task value is extremely high or expectancy increases. In some cases, low expectancy 
can decrease the task value by changing subjective evaluation of any of the four 
components of value (e.g., decrease intrinsic interest or decrease perceived usefulness). 

Most interventions related to expectancy-value theory aim to increase motivation, and ultimately 
achievement, by increasing expectancy or increasing task value, especially by decreasing cost 
and increasing utility by connecting learning to students’ lives (Blackwell, 2002; Blackwell, 
Trzesniewski, & Dweck, 2007; Hulleman & Harackiewicz, 2009; Wigfield & Eccles, 2000). 
Though expectancy-value theory seems highly relevant to computing education, it has largely 
not been used to predict motivation in computing education. More about motivation in computing 
education can be found in chapter 3.17. 
 

2.5 Summary 
 
In this section, we have introduced four theories that are part of the foundation of learning 
sciences work. It is not uncommon to find one or more of these theories discussed in a learning 
sciences paper, even if the main contribution of the paper does not expand upon them. These 
theories, and others like them, feed into each other. For example, constructivism is a theory 
about the nature of knowledge and how learners build knowledge, and it influences how 
instruction and learning is implemented in cognitive apprenticeship. Both theories aim to predict 
the types of scaffolding that help students learn and perform well. Sociocultural theories 
consider this cognitive development of knowledge and skill as one aspect of the learning 
environment and examine the impact of social, cultural, and historical context on performance 
and other critical components of learning, such as a change in identity or experience. Cognitive, 
social, cultural, and historical components of learning both impact and are impacted by 
expectancy and value, the parts of expectancy-value theory, and contribute to motivation. 
Therefore, learning sciences research considers these interwoven connections among theories 
to design learning environments and the methods used to evaluate them. 
 

3 Methodology 
In this section, we explore common methodology used in the learning sciences to discuss what 
computing education research can learn about methods from the learning sciences. The 
methods used in learning sciences research are as diverse as the fields that contribute to it. 
Much like in computing education research, it is common in conferences and journals to find all 
kinds of research designs (see chapter 2.1) that are analyzed with both qualitative (see chapter 
2.4) and quantitative (see chapter 2.2 and 2.3) approaches. The most frequently used methods 
in learning sciences reflect the origins of the field. That means that researchers pay attention to 
different definitions of learning and measure both the process of learning (i.e., the experience 
during and the steps of learning) and the product of learning (i.e., the change in knowledge or 
experience caused by learning). Research methods and measurements in learning sciences 
also make sure to capture the learning environment and its effects. The environment includes 
features of the immediate surroundings, such as teachers, peers, technology, room, and time, in 
addition to the more abstract context, such as culture, identity, and family and friend 
relationships. Not every learning sciences study measures all of these environmental factors, 
but they do recognize and consider the potential impact that environment might have on the 
results. 
 

3.1 Design-Based Research 
 



A particularly common research method that is used to capture the complexities in learning 
sciences research is design-based research (DBR). DBR is an evolving research methodology 
with origins in design experiments (Brown, 1992; Collins, 1992) that is well suited and 
increasingly used in computing education research (Kelly et al., in press; Shapiro et al., 2017). 
Using a DBR protocol, a team of researchers will identify a learning problem and potential 
solution. The learning problem could be a social problem, such as underrepresentation of 
certain groups in computing, a motivation problem, such as students dropping out of certain 
types of classes, a knowledge problem, such as students performing poorly on assignments, a 
cultural problem, such as students (or their teachers) not identifying as someone who could do 
well in computing, and much more. The team will then identify a group of learners, such as a 
classroom of students, who are representative of the population that experiences the learning 
problem. The team will then develop an intervention to address the problem specifically 
designed for the selected group of learners. If the intervention does not work as intended at first, 
the team will adjust it and iterate as needed. Once the intervention has successfully addressed 
the learning problem for the first group of learners, the team will identify a new group of learners 
and adapt and iterate the intervention until it works for the next group. Through several 
iterations, the team eventually develops an intervention that addresses the learning problem for 
the entire population of interest. 
 
DBR is based on several ontological viewpoints. First, DBR is rooted in the premise that 
cognition is inseparable from context, and, therefore, it is used to design new kinds of learning 
environments and to research their implementation in the complexity of real-world-settings, such 
as classrooms. Second, it is based on the stance that to understand the effect of a variable, that 
variable must be manipulated while the effects are measured. Therefore, DBR is explicitly 
interventionist. As a result of these two viewpoints, DBR interventions are studied in design 
experiments that are positioned to balance the internal validity of experiments, in which 
researchers attribute differences among groups to the intervention, and the ecological validity of 
naturalistic settings, in which the manipulated intervention might not be implemented as planned 
but the context represents a real learning environment. By working within this balance, DBR is 
particularly useful for helping researchers to develop theories that explain why something is 
happening, the conditions under which a particular type of learning or interaction can take place, 
and the ways in which an individual’s mind interacts with the environment and available tools. 
As a result, DBR sees interventions that change features of environments, activities, or tools as 
part of the process to be studied. 
 
Studying the process of design experiments in crucial because DBR is both prospective and 
reflective. Designs are initially implemented based upon some hypothesized learning trajectory 
and means of supporting it through a particular design or design feature. However, as the 
design is implemented, new features of the environment emerge as salient and both design and 
implementation may be refined. As a result, iteration is necessary in design to allow designers 
and researchers to deal with multiple aspects of a learning ecology (Brown, 1992; Collins, 
1992). Both design and research take place through cycles of design, implementation, analysis, 
re-design, re-implementation, and analysis. Therefore, methods and measurements must be 
able to document all of these phases in order to adequately capture the dynamics of the 
learning ecology (Cobb et al., 2003).  
 
To capture these dynamic components, DBR uses a collection of methodological approaches 
that share some common features (Barab & Squire, 2004; Cobb et al., 2003; Design-Based 
Research Collective, 2003; Edelson, 2002). DBR has two goals that are intertwined: the design 
of learning environments and the development of pedagogical theories. This means that 



theories are often mid-level and populations are typically more narrow than in psychological 
research. For example, instead of attempting to create an theory-based intervention that would 
work for all novice programmers, as psychological research would, DBR would focus on 9-10th 
grade novice programmers in a particular region or using a particular curriculum.  As Cobb et al. 
(2003) elaborate, “Rather than grand theories of learning that may be difficult to project into 
particular circumstances, design experiments tend to emphasize an intermediate theoretical 
scope (DiSessa, 1991) that is located between a narrow account of a specific system (e.g., a 
particular school district, a particular classroom) and a broad account that does not orient 
design to particular contingencies” (p.11). Theories developed through DBR must do real work 
in the world, facilitating sharing with practitioners and other designers while improving 
educational outcomes for participants. As Hermes, Bang, and Marin (2012) articulate in thinking 
through an Ojibwe language revitalization project, “DBR...has the affordance of engaging 
educational researchers in developing immediate solutions for critical, timely, and practical 
problems in education” (p. 384). 
 
By focusing on design, DBR positions itself to focus on innovation. Edelson (2002) argues that 
one of the main benefits of design-based research is that it puts researchers in real learning 
situations with a somewhat open-ended focus on improvement, opening the door to learn 
unique lessons and develop original interventions. In other words, much DBR demands a break 
from business as usual in classrooms, schools, and other educational contexts. For this reason, 
DBR research must have buy-in from everyone who is invested in the educational context. DBR 
is typically carried out by teams of researchers working in partnership with administrators, 
teachers, students, parents, and other community members. It also demands active, engaged 
participation from the team of researchers to refine theories and measurement as the work 
progresses. 
 
If creating real change within educational contexts in a relatively rapid time period is one of 
DBR’s greatest strengths, it is also one of its greatest weaknesses. The theories and designs 
generated through DBR are often critiqued as being too formative in nature, the time-scale too 
condensed (Barab, 2014). Further, in spite of its focus on situating learning in context, DBR has 
been relatively silent about the role that culture and sociohistorical context play in schooling and 
design more generally. Ironically, “the lessons involved in DBR often uncover the sociohistoric 
foundations in which learning, education, and language are deeply entrenched” (Hermes et al., 
2012). In other words, while DBR has not historically focused on issues of culture and power, 
these sociohistoric issues are uncovered as a result of DBR.  
  

3.2 Lessons to Learn from DBR for Computing Education Research 
 
DBR is very relevant to computing education research, and computing education research is 
well suited to using DBR (see section 4 below). Aligned with the goals of DBR, computing 
education research often focuses on innovation. With a relatively short history, learning 
environments in computing are open to changes in instruction and tools. Moreover, researchers 
in computing education often have interdisciplinary backgrounds and form teams to aggregate 
expertise around a research question. Perhaps the most important shared feature between DBR 
and computing education research in general is that it is conducted in authentic learning 
environments with students who are learning computing. 
 
Given that computing education research is conducted in authentic learning environments, often 
computing courses, it is important that the community recognize the difference between DBR 
and Scholarship of Teaching and Learning (SOTL). SOTL is the practice of integrating teaching 



with research about teaching (Hutchings & Schulman, 1999). In SOTL, the instructor of a course 
will test instructional design, tools, and activities within their own courses and collect data on 
their efficacy. Though this evidence-based approach is reminiscent of DBR, SOTL focuses on 
advancing the practice of teaching (Bender & Gray, 1999) while DBR balances advancing the 
practice of teaching with building learning theory.  
 
DBR, therefore, is in the middle of the spectrum between methods that focus on improving 
practice, such as SOTL, and methods that focus on building theory, such as psychological 
research. It maintains this balance by employing experimental methodology, but only as far as it 
fits within the authentic learning environment. In addition, the research team might include the 
instructor, but the instructor is not the sole researcher in DBR. In DBR, outside perspectives of 
the learning environment, especially as an intervention is tested in multiple environments, help 
to distinguish between generalizable features of the intervention and context-specific features. A 
larger research team also helps implement multiple methods of collecting and analyzing data. A 
mixed methods approach (i.e., using both qualitative and quantitative methods and analyses) is 
common in DBR because it captures multiple aspects of learning and the environment, which is 
a central feature of learning sciences work.  
 
DBR is a good neutral point for researchers in computing education who are developing the 
methods for a study. It will not be the best approach for every research question, but its basic 
tenets are valuable across many types of projects. Of course, research that is more practically-
driven or more theoretically-driven will be more appropriate for some studies, depending on the 
goals or the strengths of the research team. In any case, though, DBR is a good starting point 
that will push the community to think about both the rigor and impact of our research. 
 

4 Stages of Learning Sciences Projects 
 
We have introduced the learning sciences as a field that embraces constructivist pedagogies, 
values holistic exploration of learning environments, and engages in design innovation in 
systematic ways to understand and co-evolve educational interventions.  This often means that 
empirical projects in the learning sciences are made up of four stages: (1) conducting studies 
to better understand a learning context and its learners, (2) designing initial interventions based 
on these findings, (3) iterating on the designs based on lessons learned during empirical trials, 
and (4) scaling up a well-tested intervention beyond the local context in which it was refined to 
contribute to theory.  In this section, we will highlight three recent research projects that are 
comfortably situated between the learning sciences and computing education communities 
while also exemplifying these core stages.   
 
Stage 1: Prior to designing something learning scientists engage in studies that aim to inform 
the intervention, regardless of whether that intervention is a piece of educational software, a set 
of classroom activities, or an entire informal learning environment.  In addition to a thorough 
literature search, this exploration includes qualitative and/or quantitative studies that uncover 
details about the targeted content, the attitudes and dispositions of learners, and other socio-
technical elements in the learning environment.  These studies are often motivated by 
observable opportunities in the world, but might also be theoretically-driven. 
 
DiSalvo’s early work on the Glitch project illustrates many of these elements.  Her work initially 
sought to explore the relationship between video game play and participation in undergraduate 
computing majors, with a particular eye toward differences connected to learners’ race and 
gender (DiSalvo & Bruckman, 2009).  This early work identified a curious pattern that young 



Black and Hispanic men were the most frequent game players, despite being traditionally 
underrepresented in computing fields.  Additional studies (DiSalvo, Crowley & Norwood, 2008; 
DiSalvo & Bruckman, 2010; DiSalvo, Yardi & Bruckman, 2011) about the unique gaming 
attitudes, play practices, and cultural values of young African American men directly shaped the 
initial Glitch Game Tester program.  The intervention competitively engaged participants as 
beta-testers for forthcoming games related to their passions while learning about programming 
so that they could provide more actionable bug reports to the professional developers (DiSalvo 
et al., 2013).  The extensive formative work to understand the important variables and 
opportunities for the learners was a crucial element in ensuring the experience was both 
effective and perceived as authentic. 
 
Stage 2:  Having distilled insights about the design space from prior literature and formative 
studies, the learning scientist then seeks to reify these observations in a way that will positively 
impact one or more aspects of the learning environment.  Consistent with DBR practices, initial 
interventions are often collaboratively devised by teams of researchers and teachers with the 
intent to be deployed in a particular educational context.  Generalizability is not of great concern 
at this stage, but rather the goal is to pilot a proof of concept for the intervention and explore the 
pros and cons of its affordances for learning. 
 
The work of Shapiro and colleagues on BlockyTalky provides a helpful example of this second 
stage.  Their initial explorations around learning environments involving creative engineering 
tasks raised questions about what and how we assess student learning in these settings 
(Deitrick, O'Connell & Shapiro, 2014). They then created a programming environment and 
physical computing platform called BlockyTalky that provides a rich toolkit for creation of 
projects using distributed computational elements, while also abstracting away technical details 
like network protocols and explicit data transfer between computational nodes.  The initial 
version was piloted in a computer music summer camp experiences where middle school 
students designed and built novel musical instruments (Deitrick et al., 2015; Shapiro et al., 
2017).  These early deployments of BlockyTalky sought to explore both the affordances of the 
technical system and also the rich creative and social learning environment in which it was 
used.  For example, distributed cognition theory (Deitrick et al., 2015) was used as a lens to 
understand how knowledge is shared, offloaded, and transformed in the classroom.    
 
Stage 3: As indicated in the discussion of DBR, learning scientists regularly engage in the 
iterative refinement of an intervention in order to "get it right" in the desired context.  Rarely (if 
ever) do initial deployments meet all of the design objectives, and both empirical data and 
formative feedback from project stakeholders are vital in making improvements.  At this stage 
the context of investigation might still be quite limited, focusing on a single teacher's class or a 
single institution.  Alternatively, researchers might explore deployment in a handful of carefully 
selected contexts.  The overarching goal is to carefully hone the intervention over time while 
collecting evidence about its effectiveness in particular contexts.  Some efforts also engage in 
initial theory-building work at this stage so as to begin rising above a particular context. 
 
Continuing the prior example, work on BlockyTalky demonstrates how the research team has 
iterated to expand the system's capabilities and its applicability to a much wider range of making 
tasks beyond musical computing.  Subsequent iterations explored its use in more general 
makerspace classrooms while also refining the pedagogical practices and classroom routines 
employed while students create their projects (Deitrick, Shapiro, & Gravel, 2016; Kelly et al., in 
press).   Formative feedback from learners and facilitators highlighted important and unexpected 
downsides of abstracting network communication, and new versions of BlockyTalky feature 



language structures that are more explicit about the flow of control between decentralized 
components to help learners better understand where and when their code is executing (Kelly et 
al., in press).  At the same time the researchers have identified opportunities to provide 
BlockyTalky integration with the rich set of computational tools that were also being used by 
their partner teachers and students, thus spurring ongoing development work.  
 
Stage 4:  Once learning scientists have found an effective intervention, they turn their attention 
to generalization. Generalization can take many forms, such as scaling up in similar learning 
contexts or replicating results with new populations, content, or learning environment. This 
stage is critical to building theory, but it is often overlooked in learning sciences and computing 
education research. Many times we do a great job with the first three stages, building a great 
tool or design an effective learning environment, but then we move on the next project before 
we test their boundaries. This last stage, however, is crucial to the science of learning sciences. 
 
Margulieux and Morrison’s work on subgoal labels illustrates one way to approach 
generalization. Margulieux started exploring the efficacy of subgoal labeled worked examples in 
undergraduate programming education in a lab, not classroom, to carefully control the learning 
environment and learners’ prior knowledge (i.e., stage 3; Margulieux, Guzdial, & Catrambone, 
2012). Because participants in the lab would not know anything about programming, she used a 
block-based programming language and gave participants 30 minutes of instruction at a time, 
neither of which are typical in undergraduate programming education. When the results of these 
lab studies were positive, Morrison recommended that they try out subgoal labeled worked 
examples in a more authentic environment with real introduction to programming students 
(Morrison, Margulieux, & Guzdial, 2015). They then went on to replicate their results at three 
universities, each with unique characteristics, to ensure that their findings would replicate with 
new populations (Margulieux et al., 2016; Morrison, Decker, & Margulieux, 2016). Morrison, 
Decker, and Margulieux are continuing their work at the time of writing this chapter to develop 
subgoal labeled worked examples for an entire introduction to programming curriculum and 
evaluate their efficacy in universities across the US. By doing so, they are contributing to theory 
on subgoal learning, cognitive load, and development of problem solving skill. 
 

5 Conclusion 
 
Learning sciences and computing education research have a lot in common, yet the two 
communities can still learn from each other and benefit from a closer relationship. Computing 
education researchers should draw from the rich literature, general learning theories, and 
methodologies that learning sciences offers to guide our research, increasing the rigor within 
our community and contributing to education outside of computing. In turn, computing education 
research can inform big challenges in education, such as cognitive development of skill in other 
technical and complex disciplines, sociocultural development of identify in disciplines with 
underrepresentation issues, integration of computing and computational thinking throughout 
other disciplines, and much more. Perhaps the most pressing problem right now is that 
computing is becoming ubiquitous, but computing education is not. More connections between 
computing education researchers and learning scientists would contribute to the integration of 
computing into the education of other disciplines. Integration with other disciplines not only 
increases the impact of our work, but it serves to increase computing literacy for everyone. 
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