
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Spring 5-6-2019

High Performance Frequent Subgraph Mining on
Transactional Datasets
Bismita Jena

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Jena, Bismita, "High Performance Frequent Subgraph Mining on Transactional Datasets." Dissertation, Georgia State University, 2019.
https://scholarworks.gsu.edu/cs_diss/147

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

HIGH PERFORMANCE FREQUENT SUBGRAPH MINING ON TRANSACTIONAL

DATASETS

by

Bismita Jena

Under the Direction of Rajshekhar Sunderraman, PhD

ABSTRACT

Graph data mining has been a crucial as well as inevitable area of research. Large

amounts of graph data are produced in many areas, such as Bioinformatics, Cheminformatics,

Social Networks, and Web etc. Scalable graph data mining methods are getting increasingly

popular and necessary due to increased graph complexities. Frequent subgraph mining is one

such area where the task is to find overly recurring patterns/subgraphs. To tackle this problem,

many main memory-based methods were proposed, which proved to be inefficient as the data

size grew exponentially over time. In the past few years several research groups have attempted

to handle the frequent subgraph mining (FSM) problem in multiple ways. Many authors have

tried to achieve better performance using Graphic Processing Units (GPUs) which has multi-fold

improvement over in-memory while dealing with large datasets. Later, Google's MapReduce

model with the Hadoop framework proved to be a major breakthrough in high performance large

batch processing. Although MapReduce came with many benefits, its disk I/O and non-iterative

style model could not help much for FSM domain since subgraph mining process is an iterative

approach. In recent years, Spark has emerged to be the De Facto industry standard with its

distributed in-memory computing capability. This is a right fit solution for iterative style of

programming as well. In this work, we cover how high-performance computing has helped in

improving the performance tremendously in the transactional directed and undirected aspect of

graphs and performance comparisons of various FSM techniques are done based on experimental

results.

INDEX WORDS: Frequent Subgraphs, Isomorphism, Spark, Scala, Hadoop MapReduce, DB4O

HIGH PERFORMANCE FREQUENT SUBGRAPH MINING ON TRANSACTIONAL

DATASETS

by

Bismita Jena

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

PhD

in the College of Arts and Sciences

Georgia State University

2019

Copyright by

Bismita Srichandan Jena

2019

HIGH PERFORMANCE FREQUENT SUBGRAPH MINING ON TRANSACTIONAL

DATASETS

by

Bismita Jena

Committee Chair: Rajshekhar Sunderraman

Committee: Yanqing Zhang

Anu Bourgeois

Hendricus van der Holst

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2019

iv

DEDICATION

There are many people who have influenced me during this phase. I would like to

dedicate this to a few key people in my life. My academic advisor Dr. Sunderraman, without his

trust and support I could not have imagined this happening. My Husband Axaya, who has been

my support system throughout the journey. He handled the kids and family very nicely, I barely

had to think how my family was managed. My kids Asmit and Ankit, these two have been very

supportive children and I could do multiple things while raising them. My Mother, who was

always ready to extend help whenever I needed her the most.

v

ACKNOWLEDGEMENTS

I would like to thank my committee members Dr. Yanqing Zhang, Dr. Anu Bourgeois,

and Dr. Hendricus van der Holst for giving their precious time and serving as the review

committee members. I thank the entire computer science department faculties and staffs who

have educated me and made me eligible to reach this level.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. V

LIST OF TABLES .. IX

LIST OF FIGURES ... X

LIST OF ABBREVIATIONS .. XII

1 INTRODUCTION .. 1

1.1 Problem Statement.. 3

1.2 Motivation .. 4

1.3 Our Contribution .. 5

2 REVIEW OF FREQUENT SUBGRAPH MINING TECHNIQUES 5

2.1 Memory-based Single Machine Techniques ... 9

2.1.1 Apriori Approach ... 9

2.1.2 Pattern Growth Approach .. 15

2.2 Disk-based Techniques ... 19

2.2.1 Partition-based Approach .. 20

2.2.2 Traditional Database Approach .. 22

2.2.3 Parallel and Distributed Approach ... 25

2.3 Distributed In-memory Techniques .. 29

3 OBJECT-ORIENTED APPROACH TO FREQUENT SUBGRAPH MINING

(OO-FSG) 30

vii

3.1 Background ... 30

3.2 Related Work .. 31

3.3 An OO-approach to Mine FSGs .. 32

3.3.1 Subgraph Construction and FSG Determination 34

3.3.2 Optimization Techniques ... 42

3.3.3 DB-FSG vs OO-FSG Implementation .. 43

3.4 Details of OO-FSG Algorithm ... 44

3.5 Experimental Details .. 47

4 A MAPREDUCE-BASED FREQUENT SUBGRAPH MINING (MRFSM) 48

4.1 Background ... 49

4.2 Related Work .. 49

4.3 MapReduce Overview .. 50

4.3.1 Map Function ... 51

4.3.2 Reduce Function .. 51

4.4 Frequent Subgraph Mining Using MapReduce ... 52

4.4.1 FSG Determination .. 53

4.5 Subgraph Construction .. 54

4.5.1 Map Function for Gathering Subgraphs with Similar Graph ID 54

4.5.2 Reducer for Constructing Subgraphs ... 55

4.5.3 Map Function for Gathering Subgraph Structures 55

viii

4.5.4 Reducer for Determining Frequent Subgraphs .. 55

4.6 Details of MapReduce-FSG .. 56

4.6.1 Canonical Ordering of Elements ... 58

4.6.2 Illustrative Example ... 58

4.7 Experimental Details .. 62

4.7.1 Synthetic Datasets .. 62

4.7.2 Biological Datasets ... 64

5 A HIGHLY SCALABLE FREQUENT SUBGRAPH MINING APPROACH

USING APACHE SPARK (SPARKFSM) .. 66

5.1 Background ... 67

5.2 Related Work .. 67

5.3 FSM on Undirected Transaction Graphs ... 68

5.4 FSM on Directed Transaction Graphs .. 72

5.5 Experimental Details .. 76

6 CONCLUDING REMARKS ... 80

BIBLIOGRAPHY ... 83

ix

LIST OF TABLES

Table 2.1 Composition Relation ... 13

Table 2.2 Vertex table ... 24

Table 2.3 Edge table ... 25

Table 2.4 Example transaction/itemsets ... 26

Table 3.1 Vertex table ... 38

Table 3.2 Edge Table .. 38

Table 3.3 Single-edge Table ... 39

Table 3.4 DB-FSG [84] vs OO-FSG Performance ... 47

Table 4.1 Performance of MapReduce-FSG (time in seconds) .. 63

Table 4.2 Performance on Biological datasets using a support of 50% and clusters of size 2 and 4

(in seconds) ... 65

Table 5.1 SparkFSM [90] performance analysis on biological graphs (time in seconds, threshold

frequency: 50%) .. 77

Table 5.2 MRFSM [80] performance analysis on biological graphs (time in seconds, threshold

frequency: 50%) .. 78

Table 5.3 SparkFSM [90] performance analysis on large undirected datasets (time in minutes) 79

file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563981
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563982
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563983
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563984
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563985
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563986
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563988

x

LIST OF FIGURES

Figure 1.1 LinkedIn, Facebook, and Twitter graphs ... 2

Figure 1.2 Program flow and Chemical compound [42] .. 3

Figure 1.3 Internet and Yeast protein network ... 3

Figure 2.1 Undirected and directed labeled graphs .. 6

Figure 2.2 A sample graph dataset [41] .. 7

Figure 2.3 Frequent subgraphs (left: support 2, right: support 3) ... 8

Figure 2.4 Apriori-based extension... 9

Figure 2.5 AGM [41] .. 11

Figure 2.6 FSG [41] .. 11

Figure 2.7 Graph and 3 edge-disjoint paths .. 12

Figure 2.8 Example Graphs [33] ... 14

Figure 2.9 Canonical adjacency matrices [33] .. 14

Figure 2.10 Example graphs G1, G2 and their join [33] .. 14

Figure 2.11 Pattern Growth-based Extension ... 15

Figure 2.12 DFS code [32].. 17

Figure 2.13 Rightmost Expansion [32] ... 18

Figure 2.14 Database graphs ... 19

Figure 2.15 Embedding ... 19

Figure 2.16 An ADI structure [37] ... 20

Figure 2.17 PartMiner partition method [35] .. 21

Figure 2.18 Data Partition Scheme for PartGraphMining [36] ... 22

Figure 2.19 DB-FSG Example Graph [84] ... 24

Figure 3.1 All Major Classes .. 33

Figure 3.2 An Example Subgraph ... 34

Figure 3.3 Representation of graphs in the dataset ... 36

Figure 3.4 Objects of SingleEdge Class ... 37

Figure 3.5 Objects of Subgrpah_1 class (satisfying min_sup) ... 40

Figure 3.6 Objects of Single-edge After Pruning ... 41

Figure 3.7 Objects of TwoEdge class (Before pruning) ... 41

Figure 3.8 Objects of Subgrpah_2 class (satisfying min_sup) ... 42

file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563993
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563994
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563995
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563996
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563997
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563998
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536563999
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564000
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564001
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564002
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564003
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564004
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564005
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564006
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564007
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564008
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564009
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564010
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564011
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564012
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564013
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564015
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564016
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564017
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564018
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564020

xi

Figure 3.9 Comparison with 1% and 3% minimum support .. 48

Figure 3.10 Comparison with 5% and 7% minimum support .. 48

Figure 4.1 A MapReduce Model .. 51

Figure 4.2 Frequent Subgraph mining using MapReduce .. 52

Figure 4.3 Example graphs in the Dataset .. 53

Figure 4.4 Single edge subgraphs that meet support .. 59

Figure 4.5 Double edge subgraphs that meet support ... 61

Figure 4.6 Triple edge subgraphs that meet support (the subgraph strings show on the top) 62

Figure 4.7 Comparison with 1%, 4% and 7% Support ... 64

Figure 4.8 Results of Biological datasets. Each graph shows the runtimes for active and inactive

outcomes on both clusters of size 2 and 4... 66

Figure 5.1 Isomorphic Structures .. 68

Figure 5.2 Undirected Graphs ... 69

Figure 5.3 Retained Structures .. 69

Figure 5.4 Pruned subgraphs... 70

Figure 5.5 a G1, G2 Figure 5.5 b G1, G2, and G3 ... 72

Figure 5.6 a G1, G3 Figure 5.6 b G2, G3 ... 72

Figure 5.7 Directed graphs .. 73

Figure 5.8 Four-edge directed subgraphs.. 74

Figure 5.9 Five-edge directed subgraphs .. 74

Figure 5.10 Box and Whisker plot showing time required to compute each undirected graph size

at the varying frequencies ... 79

Figure 5.11 Performance Comparison between Directed and Undirected on Biological Graph

Dataset... 80

file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564023
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564024
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564025
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564026
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564027
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564028
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564029
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564030
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564031
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564032
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564032
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564033
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564034
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564035
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564036
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564037
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564038
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564039
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564040
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564041
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564042
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564042
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564043
file://///Users/hersheda/Downloads/Jena_Bismita_201905_PhD_1.docx%23_Toc536564043

xii

LIST OF ABBREVIATIONS

FSM: Frequent Subgraph Mining

GPU: Graphic Processing Unit

Transactions: A group of moderate size graphs

1

1 INTRODUCTION

Frequent pattern mining has become one of the major research areas since the appearance of the

seminal paper [1] published by Agrawal and Srikant on item sets. The problem was initially

defined for market-basket analysis, where given a database consisting of a set of transactions and

a user provided frequency threshold, the goal is to find the frequently occurring items in the

entire dataset.

The problem is defined as follows:

Let D be a transaction database consisting of a set of transactions, D = {T1, T2, T3,….,Tn}.

Let I be a set of items, I = {i1, i2, i3,....…,im}.

Each transaction Ti consists of a subset of items from I.

Let X be a subset of I called an itemset, X ={i1, i2, i3,…,ik}.

An itemset consisting of k items is called a k-itemset.

The Support of an itemset X is the number of transaction containing X.

An itemset is called frequent if the support is greater than or equal to the given minimum support

determined by the user.

Frequent itemset mining has provided a lot of insight to data mining researchers. Due to the

improved computing capability and storage availability, vast amount of data are generated from

many different applications. In order to model the generated complicated structures, graphs are

considered as the most useful format. Graphs are prevalent in many domains such as protein-

protein interaction network in biological networks, chemical compound structures, semi

structured XML data, web data, RDF (semantic web), wired/wireless interconnection networks,

program traces from software engineering [40]. Graphs are chosen as a common structure in all

these domains as modelling complicated structures via graphs are easy. Mining these graphs to

2

extract knowledge has become the real challenge. Graphs are everywhere. As the social

networking sites like Facebook, Twitter, and LinkedIn see member growth, so as the graphs

become massive day by day. Figure 1.1 shows the social network graphs, figure 1.2 shows a

caller/callee program flow graph and a chemical compound structure, and figure 1.3 shows a

yeast protein interaction network and internet network graph. The area of frequent pattern mining

from graphs is divided into two categories, one category belongs to a dataset consisting of

moderate size graphs, and the second category belongs to single graphs where the dataset

contains a single large graph. In the single graph setting (second approach), the purpose is to find

the embedding which could be edge-disjoint or share edges (having at least one edge different)

with another in the entire graph. There are several solutions proposed for single graph mining in

either sequential [2, 3, 4, 25, 26, 27, 28] or parallel computing [5, 6, 7] areas. Our focus is on the

first category where the exact counting is done to find the frequent subgraphs on the dataset

containing a set of graphs [29, 30, 31, 32, 33, 34].

Figure 1.1 LinkedIn, Facebook, and Twitter graphs

3

1.1 Problem Statement

While the complex graphs contain a wealth of knowledge, all that information would

merely be a sunken treasure without proper and efficient mining techniques to extract meaning

out of these complex structures. Therefore, the technique must be such that not only it produces

accurate result, but also does so in a reasonable amount of time. However, with the exponential

growth of the size of dataset, this task is becoming increasingly challenging. The problem is

defined as follows: given a dataset (D) consisting of a set of graphs G1, G2, G3, G4…Gn, and a

minimum support threshold min_sup, the goal is to find all frequent hidden substructures (g). A

subgraph (g) is frequent if its support is no less than the minimum threshold level. The minimum

Figure 1.2 Program flow and Chemical compound [42]

Figure 1.3 Internet and Yeast protein network

4

support is provided by the user as a percentage. Basically, support of a subgraph is the number of

graphs that contain the subgraph. When we discuss about graphs, the graph isomorphism and

subgraph isomorphism are the major aspects that needs to be discussed which is known to be an

NP-complete [24] problem.

1.2 Motivation

Rapid improvement in automated data collection tools have made it possible to generate

and collect massive data. Large amount of data is generated from areas such as bioinformatics,

cheminformatics, social networks, semantic web, computer vision, etc. Graph pattern mining is

an established area of research and we have abundant graph data to mine knowledge from.

Knowledge extracted from these data can then be used to develop or model various applications.

In software engineering area, bugs in programs can be identified through differential analysis of

classification accuracy in program flow graphs [8]. In bioinformatics domain, frequently

occurring patterns are introduced as functional building blocks in transcriptional regulatory

networks [9, 10]. In the field of cheminformatics, the frequent patterns could potentially help to

study the molecules for new drug discovery and chemical synthesis success prediction where the

purpose is to find molecular features that inhibit a specific reaction [11]. In social networks

finding the frequent patterns can help in understanding the social behavior and relationship

among groups. There are many main memory-based approaches which assume data to be

contained entirely in memory and computation is done at the same time. As the data grows

exponentially, we cannot rely solely on memory-based methods. Memory becomes a bottleneck

as the entire data cannot fit in memory. To solve this problem, we proposed to use disk-based

approaches which help in large-scale data processing. During our experiments, we found the disk

5

I/O and non-iterative style of computing of OO-FSG [50] and MRFSM [80] were the major

drawbacks and this provided us insight to apply the distributed in-memory Spark engine.

1.3 Our Contribution

The following are our contributions:

(a) We have provided an extensive survey on FSM.

(b) Since our research is on the same line, we have conducted several different experiments

on real life datasets, and

(c) Provided performance comparisons between them using different types of high-

performance computing methods.

We categorize our research into two types, the first category [50, 80] is disk-based where we

used the object-oriented database db4o [12] and the Hadoop’s MapReduce model [13, 51]. The

second category [90] is highly distributed but in-memory processing, for which we used Apache

Spark engine. All our approaches are based on the industry standards during the time of

publication of the work.

2 REVIEW OF FREQUENT SUBGRAPH MINING TECHNIQUES

In this chapter we present various existing frequent subgraph mining techniques. We begin our

discussion by providing some notations and definitions used throughout the text.

Definition 1 (Graph) A graph is defined as an ordered pair G = (V, E).

V is a set of vertices (nodes)

E ⊆ V × V is a set of edges (links)

Definition 2 (Labeled Graph) A labeled graph is represented by four tuples G = (V, E, L, I),

where

6

V is a set of vertices (nodes)

E ⊆ V × V is a set of edges, where edges can be directed or undirected

L is a set of labels

l: V U E → L , l is a function assigning labels to the vertices and the edges.

Examples of labeled directed and undirected graphs are shown in figure 2.1. A, B, C, D are the

node labels, and a, b, c, d, e are the edge labels.

We discuss directed and undirected type of transaction graphs and performance analysis

comparison on both the categories. The nature of directed graphs varies from undirected, for

example, airline flight information graphs are directed, and it has a source and a destination, but

the chemical compound structures are undirected. Since atoms share bonds with each other,

direction has no meaning for chemical compounds. Our approach to handle isomorphism varies

due to the different nature of the two categories. These will be explained in detail while covering

each approach.

Definition 3 (Subgraph) Given a graph G (V, E), a graph g (Vg, Eg) is a subgraph of G

if Vg ⊆ V and Eg ⊆ E.

Definition 4 (Induced Subgraph) Given a graph G (V, E), a graph g (Vg, Eg) is an induced

subgraph of G if Vg ⊆ V and Eg contains all the edges of E that connect vertices in Vg.

Figure 2.1 Undirected and directed labeled graphs

7

Definition 5 (Isomorphism) Two graphs Ga = (Va, Ea) and Gb = (Vb, Eb) are isomorphic if they

are topologically identical to each other. In other words, there is a mapping from Va to Vb and

each edge of Ea is mapped to an edge of Eb and vice versa.

Definition 6 (Automorphism) Two graphs Ga = (Va, Ea) and Gb = (Vb, Eb) are said to satisfy the

automorphism property if there is an isomorphism mapping where Ga = Gb.

Definition 7 (Subgraph Isomorphism) Given two graphs Ga = (Va, Ea) and Gb = (Vb, Eb), the

problem is to find if Ga contains a subgraph which is isomorphic to Gb.

Definition 8 (Transaction Graph) A given graph database G is called a transaction graph

database, if it contains a set of moderate sized graphs.

G = {g1, g2, g3, g4,…,gn} where g1, g2 etc. are individual graphs

Definition 9 (Frequent Subgraph Structure) Given a graph database D = {G1, G2, G3,…,Gn},

let a subgraph g is contained in |Dg| number of graphs. Then support of g is defined as sup(g) =

|Dg|/|D|, where |D| is the total number of graphs in D and |Dg| is the number graphs in D which

contain g. The subgraph g is said to be frequent if its support is not less than the minimum

support threshold provided by the user. The following example figure 2.2 shows a database

consisting of 3 chemical compounds which comes under the undirected labeled graph category.

If we take support as 2, then we find two subgraphs shown in figure 2.3 as the frequent

structures.

 Figure 2.2 A sample graph dataset [41]

8

Frequent pattern mining became a very popular topic after the invention of several scalable and

efficient techniques in the areas of item set mining. To mention a few, the very first association

rule mining [1, 14] introduced the area of frequent pattern mining. Subsequently, several item-set

mining methods [15, 16, 17, 18, 53], sequential patterns [19, 20, 21], and trees [22, 23, 52] were

developed. With the motivation from apriori algorithm [1], Inokuchi et al. [31] proposed AGM

which mines the association rules among the frequently occurring subgraphs. Following the

apriori model, FSG [91], PATH [26] algorithms were developed. Another group of researchers

used a non- apriori-based approach [Mofa, gSpan, FFSM, GASTON] where the subgraphs were

extended by adding a single edge each time. With the growing size of databases and availability

of larger disk space and cloud-based technologies, some researchers proposed traditional

database-based and cloud- based approaches for scalability. The following subsections are

grouped into 3 categories. The first category covers memory-based single machine techniques

(Apriori-based methods and pattern-growth approaches). The category describes the disk-based

techniques (partition-based approach, traditional database approach, and parallel and distributed

approach). The third category is the new generation techniques which is based on the highly

distributed but computation happens inside memory.

Figure 2.3 Frequent subgraphs (left: support 2, right: support 3)

9

2.1 Memory-based Single Machine Techniques

The algorithms developed around early 2000’s didn’t have much flexibility except running in

single machine setting. There are many major algorithms developed around this time. We

categorize them into apriori and pattern-growth approaches.

2.1.1 Apriori Approach

Most apriori-based approaches follow the breadth-first method of traversal. Figure 2.4

shows the growth pattern of apriori method. P, Q, and R are three n-edge subgraphs, the

apriori algorithm merges two n-edge subgraphs if they share shame (n-1)-edge core and

the resulting (n+1)-edge subgraphs are G1, G2, G3, …, Gn. The apriori-based frequent

subgraph algorithms follow the downward closure property which states that if a graph is

frequent then all its subgraphs must be frequent. The “Apriori” algorithm is given in

algorithm 2.1 which is adapted from [41].

Figure 2.4 Apriori-based extension

10

Algorithm 2.1 Apriori

Input: A graph dataset Gs, min_sup

Output: Frequent subgraphs Fk

1. Populate F1 by removing all infrequent edges and vertices from Gs

2. k = 1

3. While (Fk != 0)

4. forall frequent Si ∈ Fk

5. forall frequent Sj ∈ Fk

6. forall size(k+1) subgraph (s) generated from merging Si and Sj

7. If support(s) ≥ min_sup and s ∉ Fk+1

8. add s to Fk+1

9. k = k+1

10. return

The above algorithm works as follows: in the beginning, all the infrequent edges and

vertices are removed from the database. In each iteration, the frequent subgraphs of size k

are merged which have common size (k-1) cores. The generated size (k) structure is

checked for frequency and added to the frequent subgraph set. Those that do not comply

with the frequency are pruned from the input dataset. The algorithm terminates when

there are no more newly formed subgraphs.

 We will discuss four very well-known apriori-based algorithms AGM [30], FSG

[91], PATH [26] and FFSM [33]. AGM [30] takes a vertex-oriented approach, in each

iteration of the above apriori algorithm, AGM adds a new node. The newly formed

11

structure of size(k+1) contains the core which is (k-1) vertices and two new vertices from

the merged structures. Figure 2.5 shows the candidate generation of AGM.

Kuramochi et al. [3, 91] developed the frequent subgraph mining algorithm “FSG” in

which they took an edge-based approach where the size of the subgraph represents the

number of edges it contains. They followed the same approach as shown in the “Apriori”

algorithm. In FSG, a new size (k+1) structure is formed by merging two size-k structures

which share a common core. Here core means both the subgraphs have same size (k-1)

edges. The newly formed subgraph contains the core size (k-1) and two new edges from

the merged subgraphs. Figure 2.6 illustrates the candidate generated when two subgraphs

with common cores are merged.

Vanetik et al. [26] proposed a path approach in which candidate generation follows

Apriori strategy where the building blocks are edge-disjoint paths. Two paths of length

+

+

Figure 2.5 AGM [41]

Figure 2.6 FSG [41]

12

(k) are joined if they share the same core. The following figure 2.7 shows three paths of

graph G to the right.

The pseudocode of PATH [26] is given in algorithm 2.2. Initially, all frequent single edge

paths are found. Size-2 edge-disjoint paths are constructed from size-1 edges, they

proposed a table structure which stores paths as columns and the vertices as the rows. A

few paths together build a composition relation.

Algorithm 2.2 PATH

 Find all frequent single edge paths.

 Construct k+1-th candidate path by joining two k-th candidates which share the same core.

 Evaluate the frequency of the newly formed path and add that to the candidate set if that

satisfy the support threshold.

 Repeat the process until there is no new frequent paths.

An example of composition relation for figure 2.7 is given in table 2.1. Two composition

relations are joined if they have (n-1) paths in common.

a3

1

 a
2

b
3

b
1

b
2

c
3

c
2

c
1
 v

6

v
7

v
5
 v

3

v
2

v
1
 v

4

Figure 2.7 Graph and 3 edge-disjoint paths

13

Table 2.1 Composition Relation

Node P1 P2 P3

V1 a1 0 0

V2 a2 b2 0

V3 a3 0 0

V4 0 b1 0

V5 0 b3 c3

V6 0 0 c1

V7 0 0 c2

The subgraph extension is described in two different ways. The first approach is a

bijective sum on two composition relations having k paths where both share k-1 paths.

The other method is splice method, which is defined as a merger of two nodes belonging

to two different paths in a graph into a single node. Let C1 and C2 be two composition

relations. A splice of two composition relations C1(P1, P2, P3, ..., Pn) and C2(Pi,Pj), 1 ≤ i

, j ≤ n, is a composition relation that turns every node common to Pi and Pj in C2, into the

node common to Pi and Pj in C1 as well.

 Huan et al. proposed [33] a novel data structure called Canonical Adjacency

Matrix (CAM) to store the graph. The rows and columns in a CAM represent the vertices

in the graph. The diagonal entries represent the node labels, all other entries are the edge

entries. Figure 2. 8 represents two graphs and figure 2. 9 represents their canonical

adjacency matrices.

14

Figure 2.8 Example Graphs [33]

Figure 2.9 Canonical adjacency matrices [33]

Figure 2.10 Example graphs G1, G2 and their join

[33]

15

The paper has discussed several cases for joining and extension. Here, we show one case.

Figure 2.10 shows joining of two CAMs (corresponding to graphs G1, G2) both of size m

x m, all the edge entries are same except the last edge. The resultant matrix shown to

right of figure 2.10 is also of size m x m. FFSM [33] defines a canonical code for the

adjacency matrix as the sequence formed by concatenating lower triangular entries of the

matrix. It the matrix M is of m x m size, then the sequence of lower triangular entries will

constitute m1,1m2,1m2,2...mn,1mn,2...mn,n−1mn,n where mi,j is the entry of the ith row and jth

column in M assuming the rows and columns are numbered 1 through n.

2.1.2 Pattern Growth Approach

We broadly categorized all non-apriori based algorithms as pattern growth-based

approach. The general idea in these algorithms are to add an additional edge to the

existing frequent subgraph. The newly added edge may or may not add a new vertex.

Figure 2.11 shows the pattern growth graph.

Figure 2.11 Pattern Growth-based Extension

16

In this category, there are quite a few efficient algorithms, which are nearly comparable

to each other w.r.t. efficiency. We will discuss three significant algorithms [32, 34, and

11]. In pattern growth algorithms, the subgraph extension can be both breadth-first and

depth-first, whereas the DFS approach is best suited for better memory usage. Algorithm

2.3 gives a general idea of pattern growth approach adapted from Han and Kamber book.

Algorithm 2.3 Pattern_Growth(s, GDB, min_sup, G)

Input: A frequent subgraph s, graph dataset GDB, Minimum

Support (min_sup)

Output: A frequent subgraph set G

1. if s ϵ G then return

2. else add s to G

3. scan GDB once to find all edges e where s can be extended to s <> e

4. forall frequent s <> e

5. call Pattern_Growth(s <> e, GDB, G)

6. return

The first algorithm in this category is known as MoFa [11], in which the candidate

generation happens by adding a new edge. Extension is restricted to the fragments that

actually appear in the database. Embedding are stored for faster support calculation.

Second algorithm in this category is popularly known as “gSpan” [32, 42]. The authors

have proposed a DFS lexicographic ordering and minimum DFS code to support DFS

search. The figure 2.12 shows three graphs b, c, and d isomorphic to a, but only one of

them have the potential to grow.

17

Given the DFS codes for different DFS trees gSpan algorithm chooses the minimum

code. From figure 2.12, following the minimum DFS code rule, a < b < c. In order to

eliminate duplicate generation, gSpan approach adapts a similar methodology like

TreeMinerV’s equivalence class extension [23] and FREQT’s rightmost expansion [22]

in frequent tree discovery. Rightmost extension for the candidates follows a preorder of

tree traversal and restricts the expansion to only the nodes in the rightmost path for

forward edges and rightmost vertex for the back edges. Forward edges are the edges

which add a new vertex to the DFS tree. Back edges only add an edge which connects the

rightmost vertex to an existing vertex in the rightmost path. Back edges are not included

in the DFS tree [45]. Figure 2.13 shows the rightmost expansion of graphs.

Figure 2.12 DFS code [32]

18

The last algorithm in this category is GASTON [34]. They define a partial order

consisting of paths, free trees and cyclic graphs. Path is on top of the partial order in

which two nodes have degree 1, while all other nodes have degree 2. A graph without

cycles is considered as a free tree. A free tree becomes a cyclic graph when an edge is

added between two existing nodes. They propose an efficient data structure to store the

embedding of a structure and its ancestors in the partial order. The embedding list

consists of all occurrences of a particular label in the database. The embedding tuple

consists of (1) a pointer to an embedding tuple of the parent structure, (2) the identifier

graph in the graph database and (3) a node in that graph. Figure 2.14 shows two example

graphs in the database and figure 2.15 shows the embedding of the ancestors. Individual

row in the embedding lists table denotes the embedding list of an ancestor of the database

graphs shown in figure 2.15.

Figure 2.13 Rightmost Expansion [32]

19

2.2 Disk-based Techniques

The major drawback of memory-based technique is that data must be small to fit into main

memory. We have reached a time where we have plenty of data available, but we cannot process

all of them at one time in main memory. We categorized the disk-based approaches into three

categories. The first category belongs to disk-based approach where the data is partitioned such

that the chunks will fit in memory, after which the memory-based algorithms are applied on the

chunks to find frequent patterns. The second category belongs to the traditional database-based

approach where the entire data is stored in databases such as relational databases (DB2, Oracle,

Figure 2.14 Database graphs

Figure 2.15 Embedding

20

MySQL) and object-oriented databases like db4o [12]. The third approach consists of

parallelizing the data mining process. In summary, the idea is to partition the data between the

worker nodes and find the frequent subgraphs at each node.

2.2.1 Partition-based Approach

A horizontal data partitioning approach on transaction databases was first introduced by

Savasere et al [38]. Wang et al. proposed a partition-based approach, ADI-Mine [37], in

which they created an index structure ADI (adjacency index). For each edge, they

maintain the graph ids in a linked list. A graph id is entered once per edge irrespective of

multiple occurrence of same edge. Figure 2.16 shows the example of the graph and its

adjacency index. They adapted the famous gSpan [32] algorithm methodology for

frequent subgraph-mining.

 Figure 2.16 An ADI structure [37]

21

In [35], Wang et al. proposed a partitioning algorithm called PartMiner, which takes the

transaction database, the number of partitions k and minimum support as input. PartMiner

works in two phases - in the first phase, the database is divided into k subunits such that

each unit data fits in memory, the memory- based algorithm GASTON [34] is called on

all subunits. The minimum support threshold used in their approach is the fraction of user

provided support divided by k. After local mining is complete, a merge-join procedure is

called to combine the results. Figure 2.17 shows the phase1 and phase2 of their

procedure.

Nguyen and Orlowska [36] proposed to use data partition technique on graphs that are an

extension of their previous work, which was applied on frequent item sets [39]. In their

work [36], K-means algorithm is used to partition the data. Figure 2.18 shows the general

idea behind their partitioning approach. Their algorithm is given below in algorithm 2.4.

Figure 2.17 PartMiner partition method [35]

22

Algorithm 2.4 PartGraphMining

Input: Graph database GDB, Minimum support, Number of partitions (k)

Output: Frequent subgraph set

1. Partition the graph database into k fragments (G1, G2, G3…Gn) such that every

fragment can be loaded into memory

2. Call GASTON or gSpan on each fragment and find the locally frequent subgraphs

f(Gi) where i = 1,2, 3, …, k

3. Compute the union of all f(Gi), add them to LG

4. Compute the intersection for all Globally frequent sets, add to GG

5. Scan the database again to verify if (LG-GG) is frequent or not, output all frequent

subgraphs

2.2.2 Traditional Database Approach

Traditional databases such as relational databases and object- oriented databases became

the second choice for large data storages. DB-subdue [47] is the very first attempt using

relational database approach for subgraph mining. DB-subdue implements the idea of

Figure 2.18 Data Partition Scheme for PartGraphMining [36]

23

SUBDUE [46], which is one of the early frequent subgraph mining algorithms on single

graph that detects the best structure using minimum description length principle [48]. The

minimum description length principle states that the best theory to describe a set of data is

a theory which minimizes the description length of the whole data set. DB- subdue [47]

stores graphs as relations in database. Evaluation of best structures are done by counting

the frequency of the instances of the substructure within the single graph. It uses standard

SQL where subgraph expansion is done by the join operation and counting is performed

by the group by operation. Enhanced DB-Subdue [83] and HDB-Subdue [49] is an

improvement over DB-Subdue. They handle cycles in graph and multiple edges between

vertices. HDB-Subdue allow unconstrained expansion of substructures. The drawback of

unconstrained expansion is that it generates duplicates as the same structure is generated

from instances in different order. HDB-Subdue keeps track of the duplicates and eliminates

them by maintaining an order of vertex numbers and connectivity map. Frequency counting

is done by arranging the vertex labels and their connectivity maps. All the above traditional

database approaches are based on SUBDUE [46] idea. These implementations surely

provided some ideas to apply on transaction graphs.

DB-FSG [84] is the first relational database-based approach which implements

frequent subgraph-mining algorithm on a set of transaction graphs. Graphs are

represented in relational databases as relations. All the vertices and edges of the

individual graphs are stored in the vertex and edge table maintaining their graph id as the

identifier. Initially vertex and edge table are constructed with corresponding vertex/edge

labels, numbers assigned to them and the graph id that contains them. Figure 2.19 shows

24

the example graph based on which table 2 is constructed. Table 2.2 shows the vertices,

their labels and graph id. Table 2.3 contains the edges, their labels and graph id.

Figure 2.19 DB-FSG Example Graph [84]

Table 2.2 Vertex table

25

Once the vertex and edge tables are formed, an edge table is created by joining both

vertex and edge tables at the matching vertex numbers and keeping the graph id the same.

Two-edge substructures are formed by joining single edges with itself. Similarly, size-k

subgraphs are generated by joining size (k-1) subgraphs with single-edge subgraphs.

Since the expansion is unconstrained, a particular substructure could be generated

multiple times from two different instances joined in different manner. Hence, duplicates

are handled carefully. As multiple edges and cycles are considered, DB-FSG [84]

imposes that the edge new that is added should not have same edge number as in the

instance edges. Frequency counting is done based the node label, edge label, graph id and

the connectivity map. DB-FSG encouraged us to implement frequent subgraph mining on

object-oriented databases (db4o). Our method [50] is discussed in subsequent section.

2.2.3 Parallel and Distributed Approach

With the advancement of multi-core technologies, graphic processing units (GPUs) and

Google’s MapReduce model [51], many researchers tried to apply the parallel and

distributed approach to data mining. There are quite a few parallel computing-based

approaches in the area of frequent itemset mining. Li et al. [55] used bitmap to represent

the itemsets. Each item is represented as ‘0’ or ‘1’ based on the appearance in the

Table 2.3 Edge table

26

transaction set. To explain it briefly let us consider the table 2.4. Item ‘a’ is represented as

{11000} which means ‘a’ appears in transactions T1 and T2. In [54], the items are

organized in a tri-based structure which is basically the prefix tree. Li [56] presented an

inverse tree structure with bitmap representation to find frequent maximal itemset over

stream data.

A novel data structure is introduced by Amossen and Pagh [57] called BATMAP, which

provides all advantages of bitmap along with space compression for sparse data sets using

hash tables. Teodoro et al. [58] use tree-projection based structure. Instead of bitmaps, the

authors have proposed to store the transactions in a vector. Cheung et al. proposed FDM

[59] to mine association rules using distributed approach. They find locally frequent items

on each machine and broadcasts them to all machines. Both local and global pruning are

applied to have lesser number of candidates at individual sites. Li et al. [60] proposed a

parallel version of FP-Growth [17], a memory-based algorithm on multi-core system. They

propose a cache- conscious frequent pattern array and a lock-free dataset tiling

parallelization mechanism. A MapReduce based parallel FP- Growth is proposed in [61].

In their approach, data is partitioned, and each machine performs the mining task

Table 2.4 Example transaction/itemsets

27

independently. This way they reduce the communication cost between machines. Instead

of depending on user support, they find top-k frequent patterns. Miliaraki et al. proposed

MG-FSM [62] a sequence pattern mining using MapReduce. Their partitioning approach

is based on the concept of “projected database”.

After the development of many memory-based algorithms in the area of frequent

subgraph mining, the focus is on parallelizing the algorithms to increase the efficiency

and handle large-scale graph data. Wu et al. [7] implemented a parallel subgraph mining

algorithm using MapReduce framework where motif network diameter and degrees of

vertices are taken as standard for motif matching. Liu et al. [63] proposed a MapReduce-

based pattern-finding algorithm MRPF for network motif detection from complex

networks. Reinhardt and Karypis proposed [6] an algorithm using OpenMP that finds

connected edge-disjoint embedding. Wang et al. [66] presented parallel algorithm for

their previously developed Motif Miner Toolkit [68] that mines structural motifs in a

wide range of bio-molecular datasets. SUBDUE [28] system has been improved a lot

since it was developed. The parallel version [65] applies three partitioning schemes such

as functional parallel approach (FP-SUBDUE), dynamic partitioning (DP- SUBDUE) and

static partitioning (SP-SUBDUE). FP- SUBDUE divides the search for candidates among

processors, a second functional parallel approach called dynamic partitioning (DP-

SUBDUE) in which each processor evaluates a disjoint set of the input data, and SP-

SUBDUE uses a static data partitioning approach. Meinl et al. [67] parallelized the

memory-based algorithm MoFa [11] with a substantial speed- up gain. Kang et al. [5]

presents “PEGASUS”, an open source graph mining library built using MapReduce

framework on Hadoop platform. PEGASUS handles typical mining tasks such as

28

connected component [71, 72, 73], diameter of the graph [70], and computing the radius

of node. Zhao et al. [69] proposed “SAHAD” a MapReduce-based algorithm, which is in

fact a Hadoop version of the color-coding algorithm [74, 75]. Afrati et al. [76] proposed a

MapReduce-based approach for finding all instances of a given sample graph in a larger

graph. They use the techniques from their paper [77] for computing multiway joins to

reduce communication cost. Xiang et al. [78] present a MapReduce-based scalable and

fault-tolerant solution for the maximum clique problem. They use a graph coloring- based

partitioning approach which recursively partition the data into smaller units while

maintaining load balance. The maximum cliques of different partitions are computed

independently.

Fatta et al. [44] use a search tree partitioning strategy, along with dynamic load

balancing and a peer-to-peer communication framework for efficient mining. Luo et al.

[79] proposed a MapReduce-based subgraph query search method. The idea is: given a

subgraph find all graphs containing that particular query graph. Buehrer et al. [64]

proposed parallelizing FSG algorithms on CMP architecture. We proposed [80] a

MapReduce-based FSG which is covered in chapter 4. A few more works are published

following our implementation on MapReduce. Aridhi et al. [43] proposed a density-based

data partitioning approach on MapReduce framework. Bhuiyan and Hasan [81] proposed

MIRAGE, a MapReduce-based approach in which they have adopted idea from gSpan

[32] for right-most extension to prevent duplicate generation and a gSpan style dfs code

for counting and isomorphism checks. Lin et al. [82] makes use of a memory-based

algorithm GASTON [34] for their mining task. Data is partitioned between the machines

and GASTON is applied to find locally frequent substructures. Then they perform a final

29

scan to find all globally frequent subgraphs. Next two chapters will describe our disk-

based methods towards frequent subgraph mining in transaction databases.

2.3 Distributed In-memory Techniques

MapReduce model had a few drawbacks like disk I/O, and especially due to the iterative style

requirement for subgraph mining, it proved to be inefficient. Spark evolved based on the

shortcomings of MapReduce model (though MR model is still one of the best models for huge

batch processing). Over the past years, Spark [87] has become the major industry standard for its

in-memory processing of big data. As per our knowledge and findings, there are not many

publications utilizing the power of Spark. Authors in [88] have used Spark to find the frequent

subgraphs from single large graphs, which is not the major focus of the paper. In this study, our

focus is on the transactional setting. Authors in DIMSpan [85] have used Apache Flink, which is

similar to Spark but mostly used for real-time processing. In their paper, their focus is on

directed multi-graphs. To the best of our knowledge for the first time, we have introduced the

ability of Spark engine on undirected transactional graphs. Leveraging the same utility, we could

see tremendous improvement on our previous MapReduce-based [80] approach on directed

graphs. Algorithm 2.5 describes DIM Span’s distributed dataflow.

Algorithm 2.5 Distributed FSM Dataflow

30

3 OBJECT-ORIENTED APPROACH TO FREQUENT SUBGRAPH MINING (OO-

FSG)

This chapter covers our object-oriented database approach towards FSG. We chose the db4o

[12], an open-source object database for java and .NET applications. The interesting aspect of

db4o is that the user does not need to create a separate data model, the applications class model

defines the structure of the data in db4o database. Db4o database provides persistence to objects

automatically. Object persistence is the capability of the system to hold objects even after the

system stops running unlike main memory applications which dies when the program stops.

There are a few other options exist to make persistence objects. Serialization is one among them

where the object is converted into a sequence of bits that is written to a file. However, the

drawback of serialization is you need to retrieve the entire information to a file even if all of

them are not needed. That’s the reason databases are given preference as they are independent of

any application that use them.

3.1 Background

Frequent subgraph mining (FSG) has always been an important issue in data mining. Several

frequent subgraph mining have been developed for mining graph data. However, most of these

are main memory algorithms in which scalability is a bigger issue. A few algorithms have opted

for a relational approach that stores the graph data in relational tables. However, relational

databases have their own style of storing data in table format and we need multiple tables to store

different aspects of the data. Additionally, multi-valued objects such as collections objects are

not easy to map into relational tables. Inheritance, which is a key aspect of object-oriented

approach is not supported by relational model. Db4o stores objects directly as is without splitting

the components, which is a flexibility to store semantic information.

31

3.2 Related Work

There are a few works which deals with relational database management system (RDBMS).

Chakravarthy et al. [47] first introduced the FSG using DB2 database. In this paper, they

implemented the idea of SUBDUE [28] on databases. In subsequent efforts, they improved upon

[47] and implemented Enhanced DB-Subdue [83] and HDB-Subdue [49]. Both [83] and [49] use

oracle DBMS. Our method is largely related to DB-FSG [84]. In their work, they have used

relational tables to store graph data and subgraphs. Their approach is briefly as follows: the

method has two tables to begin with: one for the vertices and other for the edges which contain

individual vertices and edges. The individual tables are joined to obtain size-1 subgraphs. Each

time the candidates are generated, the columns in the table grow depending on the size of the

graphs. This will eventually place a limit on the size of the maximum substructure that can be

detected, as there is a limit on the number of columns a relation can have in a relational database.

The algorithm described in DB-FSG can discover substructures of size 165 at the most. After

implementing their algorithm, we figured out that it poses many difficulties for larger datasets,

and efficiency is the major drawback when the dataset size is large. Another issue related to

relational database is storing semantic information. As graph databases, like chemical

compounds and protein-protein interactions, have explicit relations between elements, semantic

information must be taken care of by the data model.

We implemented the algorithm by Chakravarthy et al. [84] using the same datasets to

analyze the pros and cons of both approaches. The algorithm is as follows:

32

Algorithm 3.1 DB-FSG [84]

1. Create oneedge (instance 1) table by joining vertex table and edge table

2. Remove the edges with instance count less than support from the oneedge table

3. for n=2 to MaxSize do

a. Join instance (n-1) with oneedge table to generate instance n

b. Eliminate pseudo duplicates from instance n table

c. Canonically order instance n table on vertex labels

d. Project distinct vertex label, edge label and gid to obtain one instance per

substructure for each graph and store in dist n table.

e. Group dist n table by vertex label and edge label to obtain substructures and its

count

f. Retain only the instances of substructure satisfying support and store it in

instance n table

g. If there are no instances of substructure satisfying support then stop

4. End for

3.3 An OO-approach to Mine FSGs

We propose to use db4o to store the graph dataset. The advantage of using db4o as the data

storage is because it’s highly scalable and do not put burden on memory. To begin with, our

approach includes the following basic classes: Vertex, Edge, SingleEdge and Subgraph−1 shown

in figure 3.1. The classes are extended as the size of subgraphs increase. For example, for size-2

subgraphs, TwoEdge and Subgraph−2 classes are used. Note that the paper focuses on directed

labeled graphs where the direction is assumed to be from a smaller vertex number to the larger

33

vertex number. For example, if the vertices are given the numbers as 0, 1, 2, 3 etc., then the

direction of the edges are considered to be from 0 to 1, 1 to 2 or 2 to 3 but not 3 to 1. Hence our

method does not need any specific field to keep track of direction between the vertices. The

Vertex class represents nodes in the graph. In the Vertex class, each object has a unique object

identity which is ‘VertexNo’ and label as ‘VertexLabel’. Figure 3.2 shows a simple subgraph

where the numbers 1 and 2 represent vertex numbers which are allocated for ease of use, but

these do not have any significance for subgraph mining. A and B represent labels of the vertices

and C is the edge label. Each vertex object represents a node of the given graph; the Edge class is

similar to the Vertex class. Each edge object represents an edge of the given graph. The

SingleEdge class is the combination of the Vertex and Edge classes. It contains all the single-

edged subgraphs The Vertex and Edge classes are constructed separately as the Edge class does

not contain the label details of the vertices.

Figure 3.1 All Major Classes

34

The Subgraph−1 class includes all the subgraphs satisfying minimum support which is described

in the subsequent sections. The Subscript ‘1’ in Subgraph−1 represents the size-1 subgraphs. As

the sizes of the subgraphs increase the subscript changes.

3.3.1 Subgraph Construction and FSG Determination

This section describes on subgraph construction starting from a single edge. Our focus is

on labeled directed graph. In order to make each chapter self-contained, we provide some

definitions as per necessity.

Definition (labeled graph): A labeled graph G is represented by a 4-tuple,

G = (V, E, L, I) where

V is a set of vertices (or nodes)

E ⊆ V × V is a set of edges, they can be directed or undirected

L is a set of labels

l: V ∪ E → L, l is a function assigning labels to the vertices and the edges

Definition (Subgraph Support): Let nGraph be the total number of graphs in the dataset

and nSubGraph be the number of times a particular sub-graph appears in the dataset.

Then, the support ‘Sup’ of a particular subgraph is defined as: Sup = nSubGraph ÷

nGraph

In figure 3.3, three transaction graphs are shown. The numbers 0, 1, 2 and 3 are

the numbers assigned for programming purpose. The labels (names) A, B, C, D, E, F and

Figure 3.2 An Example Subgraph

35

G are important to the algorithm. Graph isomorphism problem needs to be tackled while

counting the support of subgraphs in the dataset. Two instances are isomorphic if the

vertex and edge labels are same and directions are same. In our experiment, the direction

is assumed to be from the lower numbered vertex to the higher numbered vertex. For

example, if we count the number of occurrences of subgraph A-E-B in the three graphs,

the count is 3, but in reality it is 2. Graph 1 contains the subgraph A-E-B twice. That

must be counted once. This problem is eliminated by finding the distinct subgraphs per

graph. Note that though we count only one instance of the subgraph per graph, we do not

discard the other instances before pruning. The problem could be the instance omitted

might have significance in the discovery of the subgraph of size 2. If we remove the pair

0-1 (vertex numbers) from graph 1 instead of 0-3, then in the next level, construction of

subgraph−2 would not generate the subgraph A-B-C (0-1-2). So we store the other

instances too.

36

3.3.1.1 Subgraph Construction

This section elaborates the process of subgraph construction. To begin with, we

save the vertices and edges in different classes named Vertex and Edge classes.

Since Edge class does not have information on the labels of the vertices, we join

the Vertex and Edge classes based on the vertex numbers and the graph id to

create the size-1 subgraphs stored in SingleEdge class. The graph id must be same

during joining as the expansion happens in the same graph. SingleEdge class

contains all the information on the vertices and edge labels. Considering the

graphs shown in figure 3.4, the size-1 edges are shown in the diagrams.

Figure 3.3 Representation of graphs in the dataset

37

In order to provide a detailed view of the relational method DB-FSG [84] and

object-oriented method, we have provided the tables along with the graph

structures. Subsequent stages of construction are also shown in the figures. The

edges are assigned a number to keep track of the edges joined during candidate

generation. Actually, they are stored as objects in the db4o database. Table 3.1

contains all the objects in the Vertex class where each row represents the

individual objects of the Vertex class. Vertex and Edge classes are not shown in

graphical format.

Figure 3.4 Objects of SingleEdge Class

38

Similarly, table 3.2 has all the objects which are individual edge objects. After

joining the Vertex and Edge classes, we obtained the SingleEdge class shown in

figure 3.4 and in table 3.3. In order to generate size-2 subgraphs, each object of

SingleEdge class is joined with itself. Similarly, size-3 subgraphs are constructed

by joining size-2 subgraphs with size-1 subgraphs. In all cases, joining happens

within the same graph. Unlike, relational databases where there is a defined join

query using SQL; db4o does not have such join queries. Instead, it supports a

Table 3.2 Edge Table

Table 3.1 Vertex table

39

query called ’Native Query’ which constrains the class to be joined and has a

keyword called ’descend’ which goes down to the field level to query the data.

We provide the details of construction of subgraphs of sizes more than one under

fsg determination though they belong here.

3.3.1.2 FSG Determination

Frequent subgraphs are determined based on the number of times it appears in the

whole dataset. If we consider the single-edge subgraphs shown in figure 3.4, there

are eleven of them, but AEB (Graphs 1 and 2), CGB (Graphs 1 and 3) and BFC

(Graph 1, 2 and 3) appear more than once. Hence it is obvious that the other

subgraphs except AEB, CGB and BFC are insignificant. Our purpose is to find

the subgraphs which occur more than a specific number of times (min−sup

provided by the user) in the dataset. Let’s consider the minimum support as 2,

which mean a subgraph must be appearing in at least two graphs. Subgraph−1

class contains the following size-1 subgraphs shown in the figure 3.5. Notice that

the Subgraph_1 class does not have the numbers of the vertices. Only significant

Table 3.3 Single-edge Table

40

details, the labels are stored. Though while counting, we do not consider the

duplicate substructures, we do preserve them in order to ensure that we do not

miss out any new substructure generation. Figure 3.6 shows the size-1 subgraphs

which preserves the duplicates. After determining the frequent subgraphs in the

first round, we move to generate size-2 substructures with the help of frequent

size-1 subgraphs. Note that, we use substructures and subgraphs interchangeably,

but they mean the same. Figures 3.7 shows the size-2 subgraphs after

unconstrained expansion of size-1 subgraphs. Due to unconstrained expansion, we

obtain many duplicate structures. Those duplicate structures are handled by

keeping track of edge numbers. Figure 3.8 shows the subgraphs with only labels

after pruning which are required for counting purposes.

Figure 3.5 Objects of Subgrpah_1 class (satisfying min_sup)

41

Figure 3.7 Objects of TwoEdge class (Before pruning)

Figure 3.6 Objects of Single-edge After Pruning

42

Figure 3.8 Objects of Subgrpah_2 class (satisfying min_sup)

3.3.2 Optimization Techniques

This section discusses various optimization techniques used in object-oriented approach.

We have used available data structures across the application to avoid frequent querying

of the object database and hence increasing efficiency. Though data structures are used to

make the processes faster, the applications are independent of each other, in other words,

the graph dataset is always in db4o store. In order to retrieve the distinct instances (to

tackle graph isomorphism), we used the data structure “hash sets”. In many places,

common Java data structures are used to make application process faster. Subgraph

counting time has been dramatically improved by using “MultiKey” and

“MultiValueMap” common collections data structure available from apache.org.

MultiKey can store the same sub-structure instances more than once; in other words, the

43

keys do not need to be unique. For example, considering figure 3.5 we can save the sub-

structure A-E-B from both the graphs 1 and 2.

3.3.3 DB-FSG vs OO-FSG Implementation

The coding of Algorithm 1 was done in Java using Oracle 11g. The tables have the same

name as the classes in db4o. We tried to optimize the relational method as much as

possible by using indexes, and prepared statements for the insert statements. We noticed

a significant time delay while inserting millions of records, whereas in db4o database it

takes significantly less time. Initial data loading was quite time consuming, so we used

Perl script to minimize the time by separating raw input data to Vertex, Edge and

SingleEdge files to load into the relational database. For small sized datasets, the

efficiency of relational and db4o approach are nearly same, but as the dataset size

increases, the performance of db4o over relational increases dramatically. The only

problem with db4o approach is it needs strong programming skills whereas relational

approach solves things with simple queries. But, at the same time manipulating millions

of database records through queries has a huge drag on efficiency. Also the join queries

of SQL get messy when we join more than 2 tables. The queries of db4o database are

quite simple. A comparison of both queries is given below.

The following is an example of a query used to join the matching vertices of the

SingleEdge class/table with itself in order to obtain TwoEdge class/table objects/rows. In

the SODA (db4o query) query the “vertexFrom” from the SingleEdge class is joined with

the matching “vertexTo” of the same SingleEdge class. In the second statement of the

code snippet the keyword “constrain” constrains the SingleEdge class. In the third

statement the “descend” keyword means starting from the class level the query goes

44

down to one level to the “VertexFrom” field and ”constrain” keyword is used to match

the “VertexTo” of the SingleEdge class. VertexFrom and VertexTo are the fields in the

SingleEdge class and they are named so to indicate the direction of the edges. The last

statement executes the query which retrieves all the matching objects in the class. We

have also shown the SQL version of the query.

3.4 Details of OO-FSG Algorithm

OO-FSG algorithm has two major aspects. One is generating candidates and another one is

pruning the insignificant edges from the graphs. Each step of the algorithm is discussed in detail.

In the algorithm, first step is for the construction of SingleEdge class from Vertex and Edge

classes. In the second step, the distinct single edges are separated to get rid of isomorphic

structures and stored in Subgraph−1 class.

45

Algorithm 3.2 OO-FSG

Input: A graph dataset Gs and min−sup

Output: The frequent subgraph set S

Method:

1. construct SingleEdge class by joining Vertex and

Edge class.

2. select distinct single edges and store the subgraphs

which satisfies min−sup in Subgraph−1

class.

3. remove the edges with count less than the

min−sup from SingleEdge.

4. repeat steps a through e until a candidate subgraph

of size-N with min−sup is generated.

(a) join (N-1) Edge class with SingleEdge class

to generate *(N)Edge.

(b) eliminate the redundant subgraphs from (N)Edge and store the size-N

subgraphs in Subgraph−Distinct−N class.

(c) count the unique vertex and edge labels in the Subgraph−Distinct−N class.

(d) eliminate the subgraphs from Subgraph−Distinct−N with count less than

min−sup and store it in Subgraph−N class.

(e) remove the edges with count less than min−sup from (N)Edge class.

5. end loop.

*(N) Edge: represents the TwoEdge, ThreeEdge, FourEdge and FiveEdge classes etc.

46

Counting of the distinct edges is done using MultiKey and MultiValueMap on the whole dataset

with the user provided minimum support (min−sup). In the third step, we remove the edges which

fail to satisfy the minimum support value from the SingleEdge class. Step 4 is the looping

condition, looping occurs from steps 4 (a) through 4 (e) until size-n which is 5 for our experiment.

Step 4 (a) combines the SingleEdge class with itself based on the matching vertices and graph id.

Step 4 (b) removes the redundant subgraphs to find the distinct instances and stores in the

temporary class Subgraph−Distinct−2 class. In Step 4 (c), we count the subgraphs. When we say

subgraphs, means only the edge labels and vertex labels not the numbers given to the nodes and

edges. Steps 4 (d) and 4 (e) are self-explanatory. In the second iteration of the loop, we combine

TwoEdge class with SingleEdge class and follow the steps accordingly. We keep repeating the

loop until we get a subgraph of size-5.

Candidate Generation: this process is same as the subgraph construction described in section

3.3.1. First time the SingleEdge class is combined with itself. In subsequent iterations it is

combined with TwoEdge, ThreeEdge and FourEdge classes as we are running the loop until size-

5 subgraphs are generated.

Frequency Counting and Pruning: The subgraphs from the Subgraph−Distinct−1 class are

searched for frequency counting on the vertex labels, edge labels. The subgraphs which meet the

support value (user defined) are stored in a class called Subgraph−1. Edges are retained in the

SingleEdge class where there is a matching; all other edges are pruned from the SingleEdge

class. Similarly, for subsequent edge sizes the pruning is done based on minimum support

threshold.

47

3.5 Experimental Details

The experiments were conducted on a Linux machine with 2 GB memory. The OO-FSG

algorithm was coded in Java. The experimental results are shown in table 3.4 as well as in

graphical format. The graphs in the figures 3.9 and 3.10 show the efficiency comparison DB-

FSG and OO-FSG w.r.t minimum supports 1, 3, 5 and 7 respectively. We observed that using

db4o database, efficiency is much higher than relational database. Also, scalability of db4o is

higher than relational database.

Table 3.4 DB-FSG [84] vs OO-FSG Performance

Dataset size Min_sup DB-FSG OO-FSG

50K 1% 357 353

100K 1% 1349 731

100K 3% 1220 656

100K 5% 1061 563

100K 7% 827 484

200K 1% 2439 1331

200K 3% 2002 1206

200K 5% 1717 1117

200K 7% 1622 1030

300K 1% 5887 2221

300K 3% 5394 2141

300K 5% 5137 2019

300K 7% 4164 1863

400K 1% 9502 2879

400K 3% 8228 2457

400K 5% 7156 2426

400K 7% 6962 2313

48

4 A MAPREDUCE-BASED FREQUENT SUBGRAPH MINING (MRFSM)

This chapter focuses on our approach to FSG based on MapReduce-based technique on

transaction graphs. Parallel and distributed computing has taken a center stage as large-scale data

processing has become almost impossible with main memory. Though traditional database-based

approaches have provided some relief on processing large-scale databases, but we still reach at a

bottleneck when we need to handle very large data. To solve this purpose, we need to make use

of available hardware and software resources in an effective manner so that we can divide the

Figure 3.9 Comparison with 1% and 3% minimum support

Figure 3.10 Comparison with 5% and 7% minimum support

49

work between machines for independent processing. MapReduce framework by Google [51]

motivated us to implement the frequent subgraph mining method on graph databases. There are a

few research that have applied MapReduce for graph mining, which provided us with some

motivation that we can apply the framework on frequent subgraph mining area.

4.1 Background

Finding frequent substructures from transaction databases in particular has a typical pattern, in

the first step, we find all frequent subgraphs of size-1 and then step into subsequent iterations.

While analyzing the compatibility of MapReduce model with this particular mining method, we

figured out that the process of counting the frequency of isomorphic structures can be easily

done with the help of key-value pairs. With respect to one key, which is a particular subgraph in

our case, the respective values are the graph ids that contain the subgraph. Since we have so

many machines available for our use, we can easily handle large amount of data in each step

which used to be a bottleneck in our previous traditional database approach.

4.2 Related Work

There are several work aiming graph data mining using MapReduce model. We provide some of

the related articles for reference before going into the detail of our approach. Luo et al. [79]

proposed a subgraph query search method using MapReduce. Afrati et al. [76] proposed a

MapReduce-based approach for finding all instances of a given sample graph in a large graph.

Wu et al. [7] proposed a parallel subgraph mining algorithm using MapReduce where they took

motif diameter and degrees of vertices are taken into consideration for motif matching. Liu et al.

[63] proposed a MapReduce-based pattern finding algorithm MRPF for network motif detection

from complex networks. Zhao et al. [69] proposed “SAHAD” a MapReduce-based color coding

algorithm. Xiang et al. [78] present a MapReduce-based solution to the maximum clique

50

problem. PEGASUS [5] is an open source graph mining library developed by Kang et al. using

MapReduce model. Aridhi et al. [43] proposed a density-based data partitioning approach on

MapReduce framework. Bhuiyan and Hasan [81] proposed MIRAGE, a MapReduce-based

approach in which they have adopted idea from gSpan [32] for right-most extension to prevent

duplicate generation and a gSpan like dfs code for counting and isomorphism checks. Lin et al.

[82] makes use of a memory-based algorithm GASTON [34] for their mining task. Data is

partitioned between the machines and GASTON is applied to find locally frequent substructures.

Then they perform a final scan to find all globally frequent subgraphs.

4.3 MapReduce Overview

MapReduce, proposed by Google, is a distributed model for processing large-scale data. Users

specify a map function and a reduce function. MapReduce takes in a list of key-value pairs, splits

them among the possible map tasks, and then each map function produces any number of

intermediate key-value pairs. Pairs with similar keys are gathered together at the reduce tasks,

and then each reduce function performs computations before outputting values, which are either

the final results, or possibly input for the next iteration. Ideally, MapReduce frameworks consist

of several computers, usually referred to nodes, on the scale of tens to thousands. Processing

occurs on data stored in the filesystem. Computation should be parallelized across the cluster,

fault tolerant, and scheduled efficiently. We now go into some of specifics of the map and reduce

functions. Figure 4.1 shows the MapReduce model.

51

4.3.1 Map Function

The mapper’s job is to take in a key-value pair. This key-value pair often comes from a

partition of data specified by the MapReduce architecture. After processing, the map

function will emit another key-value pair. An added bonus comes in the form of an in-

mapper combiner, which can do local computations to lessen the burden on the filesystem

by acting as a mini-reducer. After all mappers have finished, all of the results are

shuffled, sorted, and sent to the reducers.

4.3.2 Reduce Function

The reducer takes in a list of values corresponding to a specific key. Here, the reduce

function can perform many operations, such as aggregations and summations. Since all

Figure 4.1 A MapReduce Model

52

the values we need have been grouped, bulk computations on those values becomes

trivial.

4.4 Frequent Subgraph Mining Using MapReduce

We use Apache Hadoop [13], an open source framework derived from Google’s MapReduce and

Google File System, to generate the frequent subgraphs. Hadoop has become a popular approach

for distributed and parallel computing due its top-level status within Apache, as well as being

widely supported by the community. Computations through Hadoop are highly scalable and

reliable, making Hadoop a very powerful tool for processing large datasets, or in the context of

this chapter, large graph datasets. Using Hadoop iteratively, we can construct all isomorphic

subgraphs that exceed a user defined support. We have two heterogeneous MapReduce jobs per

iteration: one for gathering subgraphs for the construction of the next generation of subgraphs,

and the other for counting these structures to remove irrelevant data. Figure 4.2 shows this

workflow. We describe the process in more detail.

Figure 4.2 Frequent Subgraph mining using MapReduce

53

4.4.1 FSG Determination

This section provides the frequent subgraph determination with respect to our example

graph database. In figure 4.3, three transaction graphs are shown. The numbers 1, 2, 3, 4,

and 5 are numbers assigned for programming purposes. The labels A, B, C, D, E, F, G, H,

and J are important to the algorithm. Let nGraph be the total number of graphs in the

dataset and nSubGraph be the number of times a particular subgraph appears in the

dataset. Then the support Sup of a particular subgraph is defined as:

Sup = nSubGraph/nGraph

Figure 4.3 Example graphs in the Dataset

54

The graph isomorphism problem needs to be tackled while counting the support of

subgraphs in the dataset. Two instances are isomorphic if the vertex and edge labels are

same and the directions are the same. In our method, graphs can be directed and

undirected, and the node numbers help identify cases of repeated labels. For example, if

we count the number of occurrences of the subgraph E-D-C in the three graphs, the count

is 4, but we only take the unique counts, so it’s actually 3. Graph 2 contains the subgraph

E-D-C twice. Do note that although we count it as one instance of the subgraph, we do

not discard the other instance before pruning. Omitting that instance could be a potential

problem when we construct the next generation of subgraphs. If the user support is taken

as 2, then E-D-C/A-B-C are frequent subgraphs whereas E-R-J is not.

4.5 Subgraph Construction

This section elaborates on the process of subgraph construction. We explain in detail the process

of map functions and reducer functions within each job of each iteration.

4.5.1 Map Function for Gathering Subgraphs with Similar Graph ID

Hadoop sends single lines from the input file to the mappers, to which each applies a map

function to those lines. This initial map function will have the responsibility of sending

the subgraph encoded in the input string to the correct reducer using the graph id. For the

first iteration, the encoded input string will represent a single edge of the graph. For all

other iterations, we have an encoded input string representing a subgraph of size k − 1.

input key : offset of the input file for the string

input value : string representing a subgraph of size-(k − 1) and graph id

output key : graph id

output value : string representing the input subgraph

55

4.5.2 Reducer for Constructing Subgraphs

All of the subgraphs of size k-1 with the same graph id are gathered for the reducer

function. We note all of the single edges in these subgraphs and use that information to

generate the next generation of possible subgraphs of size k. We encode this subgraph as

a string just as was outputted from the previous map function. We keep all labels

alphabetized and use special markers to designate differing nodes with the same labels.

The results of this step are written out to the Hadoop File System.

input key : graph id

input values : list of subgraphs of size-(k − 1) encoded with graph id

output key : encoded subgraph of size-k and graph id

output value : none

4.5.3 Map Function for Gathering Subgraph Structures

Similar to the process involving the first map function, Hadoop sends lines of input to the

mappers. This second map function will have the responsibility of outputting the label-

only subgraph encodings as a key and the node identification numbers and graph ids as

values.

input key : offset of the input file for the string

input value : encoded string representing subgraph of size-k and graph id

output key : label-only string encoding subgraph

output value : corresponding node ids and graph id

4.5.4 Reducer for Determining Frequent Subgraphs

The last reducer function per iteration will gather on label-only subgraph structures. The

main task is to count the unique instances of the specific subgraph, which is done by

iterating through the input values, incrementing a count, and ignoring subgraphs with

previously seen graph ids. The label markers are removed at this point. At the end, if the

count agrees with the given user defined support, it is written out to the Hadoop File

56

System for the next iteration, and otherwise it is ignored, effectively pruned. The output

of iteration k is all subgraphs of size k that meet the support.

input key : label-only string encoding subgraph of size-k

input values : list of corresponding node ids and graph ids

output key : the encoded subgraph and graph id

output value : none

4.6 Details of MapReduce-FSG

MapReduce-FSG is an iterative algorithm that relies on two heterogeneous MapReduce Jobs.

The first job (denoted as Ak) constructs size-k subgraphs from size-(k−1) subgraphs, while the

second job (denoted as Bk) will check whether or not a subgraph meets the user defined support.

The algorithm starts with single edges, and runs until there are no longer any frequent subgraphs

constructed. Algorithms 4.1 and 4.2 highlight the tasks of Ak. Algorithms 4.3 and 4.4 outline the

important steps of Bk. These algorithms are essential for pruning unnecessary subgraphs for the

next iteration. Without them, we would quickly weigh down the disk and network.

Algorithm 4.1 Map Ak

Input: (offset, subgraph)

parse subgraph for graph id

EMIT: (graph id, subgraph)

Algorithm 4.2 Reduce Ak

Input: (graph id, subgraphs s1, s2, s3, · · ·)

Edges ← φ

new Subgraphs ← φ

for all s ∈ subgraphs do

Retrieve all edges from s and add to Edges end for

57

for all s ∈ subgraphs do

Construct k-sized subgraphs from (k − 1)-sized s using edges from E dges that are

eligible and add the new subgraph to newS ubgraphs

end for

for all s ∈ newS ubgraphs do

EMIT: (encoding for subgraph, empty text)

 end for

Algorithm 4.3 Map Bk

Input: (offset, encoded subgraph)

parse encoded subgraph for label-only subgraph

EMIT: (label-only subgraph, subgraph)

Algorithm 4.4 Reduce Bk

Input: (label-only subgraph, subgraphs s1, s2, s3, · · ·)

GraphI Ds ← φ

count ← 0

for all s ∈ subgraphs do

if s.graphid ∈(GraphI Ds then

 count ← count + 1

GraphI Ds ← GraphI Ds ∪ s.graphid

end if

end for

58

if count ≥ user support then

for all s ∈ subgraphs do

EMIT: (subgraph, empty text)

end for

end if

4.6.1 Canonical Ordering of Elements

As we are using Hadoop’s Text to encapsulate a string object representing a subgraph, it

is important to be able to differentiate between repetitive labels. We sort the outgoing

nodes lexicographically based on label, and then use the unique id numbers if there still

remains ambiguity. The sorting will help us with key matching, which is essential for our

MapReduce approach. Reducer A will dynamically mark all node labels in the encoding

Text so that we may distinguish between identical labels that belong to different nodes

during Reducer B.

4.6.2 Illustrative Example

Here we illustrate our implementation of the MapReduce-FSG algorithm by showing

outputs generated in various steps. We use the three sample graphs of figure 4.3. We will

assume user-support is 2, meaning that we want all subgraphs that appear in at least 2

different graphs. The strings generated by the both the Ai and Bi steps are coded as three-

part strings separated by”-”. The first part represents the graph id, the second part

represents a label-only subgraph, such as (A:B-C) standing for ”node A has an edge B to

node C”, and the third part represents the subgraph using node id numbers, such as (1:3)

standing for ”node with id 1 has an edge to node with id 3.”

59

4.6.2.1 Step B1

As we are using single edges as the initial input, we do not need an A1, and can

proceed directly to B1. We show the output below, represented in Figure 4.4 and

the subgraph strings.

4.6.2.2 Step A2

The worker for A2 will read input from the filesystem corresponding to the job of

B1. The output strings are follows:

1_(A^1:B-C^1)(C^1:H-G^1)_(1:2)(2:4)

1_(C^1:H-G^1)(E^1:F-G^1)_(2:4)(3:4)

2_(A^1:B-C^1)(E^1:D-C^1)_(1:3)(2:3)

2_(E^1:D-C^1,D-C^2)_(2:3,5)

Figure 4.4 Single edge subgraphs that meet support

60

2_(E^1:D-C^1,F-G^1)_(2:3,4)

2_(E^1:D-C^1,F-G^1)_(2:5,4)

3_(A^1:B-C^1)(C^1:H-G^1)_(1:3)(3:4)

3_(A^1:B-C^1)(E^1:D-C^1)_(1:3)(2:3)

3_(C^1:H-G^1)(E^1:D-C^1)_(3:4)(2:3)

3_(C^1:H-G^1)(E^1:F-G^1)_(3:4)(2:4)

3_(E^1:D-C^1,F-G^1)_(2:3,4)

Notice the ”ˆ” used above. These are markers for the correct placement of labels.

Dealing with repetitive labels and subgraphs, we have to deal with a lot of

ambiguity. In graph 2, we have 2 (Eˆ1:D-Cˆ1,D-Cˆ2) (2:3,5). Without the marker,

we would have (E:D-C,D-C). To make sure we are following the substructure

through multiple graph ids, we need those markers to remove confusion.

4.6.2.3 Step B2

The worker for B2 will read input from the filesystem corresponding to the job of

A2. This input is an unfiltered group of size-2 subgraphs, and B2 will filter out

results that do not agree with the user-support, as well as remove special markers.

As a result, we obtain the subgraphs shown in figure 4.5 along with the subgraph

strings.

61

4.6.2.4 Step A3 and B3

Similar to A2, we read from the results from the preceding B2 step. We arrive at

the final result (represented in figure 4.6).

Figure 4.5 Double edge subgraphs that meet support

62

The left and right set of strings represent before and after minimum support

calculation.

4.7 Experimental Details

The experiments were conducted on 4 Linux machines, each with 16 GB of memory and 2-4

quad core processors. The MapReduce-FSG algorithm was coded in Java as to work with

Hadoop.

4.7.1 Synthetic Datasets

The experimental results are shown in Table 4.1 as well as in graphical format. The

graphs in figures 4.7 shows the scalability of our method by comparing 2 and 4 sized

clusters with varying supports. Even with our minimal setup, we managed to make

Figure 4.6 Triple edge subgraphs that meet support (the subgraph

strings show on the top)

63

substantial gains. For our method, we performed experiments on datasets ranging from

100,000 to 1,000,000 transaction graphs. Each graph contains 30-50 edges and 30-50

vertices. The synthetic datasets were generated using a graph generator provided by the

authors1. Test were conducted with varying minimum support values 1%, 4%, and 7%.

The maximum substructures is taken as four, and so we only iterate four times. Jumping

from 2 nodes to 4 scaled very well for both increases in datasets, as well as number of

nodes. Although we only have access to a modest cluster, it is easy to see the potential

gains from large-scale clusters.

1http://www.cse.ust.hk/graphgen/

Table 4.1 Performance of MapReduce-FSG

(time in seconds)

64

4.7.2 Biological Datasets

The real datasets are taken from an online source2, which contains data extracted from the

PubChem website3. The dataset essentially contains the bioassay records for anti-cancer

screen tests with different cancer cell lines, the outcome of which was either active or

Figure 4.7 Comparison with 1%, 4% and 7% Support

65

inactive. We first ran our method on a cluster of size 2, and then again on a cluster of 4 to

show the scalability. Results are shown in table 4.2, and graphically in figure 4.8.

2http://www.cs.ucsb.edu/~xyan/dataset.htm
3http://pubchem.ncbi.nlm.nih.gov

Table 4.2 Performance on Biological datasets using a support of 50% and clusters of size 2 and

4 (in seconds)

Dataset active: 2 active: 4 inactive: 2 inactive: 4

MCF-7

8
33 587 1092 683

MOLT-4
9

22 556 1279 815

NCI-H23
8

15 516 1537 889

OVCAR-8
8

61 552 1257 844

P388
7

43 483 976 683

PC-3
8

57 546 1150 752

SF-295
9

36 528 1217 817

SN12C
8

13 502 1474 883

SW-620
9

59 568 1454 898

UACC257
8

36 536 1333 883

Yeast
7

10 607 1282 812

66

5 A HIGHLY SCALABLE FREQUENT SUBGRAPH MINING APPROACH USING

APACHE SPARK (SPARKFSM)

Our major focus in this chapter is on mining frequent subgraphs from undirected transaction

graphs using Apache Spark. A major part of our preliminary research focused on the directed

graphs in chapter 3 and 4. Directed and undirected graphs are very different semantically. When

we consider airline flight information graphs, those are directed and isomorphism detection is

different in them than the chemical compound structures. Isomorphism plays a little different

role here, for example, water (H2O), two hydrogen, atoms share one electron each with the

Figure 4.8 Results of Biological datasets. Each graph shows the

runtimes for active and inactive outcomes on both clusters of size 2 and 4.

67

oxygen atom forming the single covalent bond structure, and if we remove one H-O structure,

then essence will be lost and we may lose many expected subgraphs. This is the reason we

preserve the isomorphic structure during the first iteration while creating the single-edge

structures, but do not count while determining frequency in undirected biological graphs. We

provide the analysis in detail in the next sections.

5.1 Background

Based on our previous experiments using MapReduce, we noticed a few drawbacks specific to

FSG mining algorithms. FSG process is normally an iterative style as subsequent steps use the

result of the previous result. MapReduce does not offer this flexibility and two-steps of disk I/O

are involved to read and write the same set. Spark with its distributed in-memory capability, we

could achieve the iterative requirement on the fly. The Resilient Distributed Dataset (RDD) of

Spark has the capability for lazy evaluation, so it helps in evaluation of a particular

transformation at a later stage. Every step result RDD can be easily passed to the next step and

based on the requirement the action is performed.

5.2 Related Work

Over the past years, Spark [87] has become the major industry standard for its distributed but in-

memory processing of big data. As per our knowledge and findings, there are not many

publications utilizing the power of Spark. Authors in [88] have used Spark to find the frequent

subgraphs from single large graphs, which is not the major focus of our work. In this study, our

focus is on the transactional setting. Authors in DIMSpan [85] have used Apache Flink, which is

similar to Spark but mostly used for real-time processing. In their paper, their focus is on

directed multi-graphs. To the best of our knowledge for the first time, we have introduced the

ability of Spark engine on undirected transactional graphs. Leveraging the same utility, we could

68

see tremendous improvement on our previous MapReduce-based [80] approach on directed

graphs.

5.3 FSM on Undirected Transaction Graphs

Frequent subgraph mining on undirected transaction graphs has a little different approach than

the directed ones. While considering isomorphic structures, in the directed graphs, direction

makes a subgraph different than the other even though it has same labels, but for undirected

graph it is not the same. Since there is no direction, both the subgraphs indicated as 1 and 2 in

figure 5.1 are identical and hence isomorphic.

We provide three example graphs in figure 5.2 to explain the undirected subgraph features and

the pruning methodologies used. For the three example graphs, we have set the frequency

threshold as 50%, so a subgraph needs to appear in at least two graphs. The subgraph B-b-C-b-B

from figure 5.3 is retained in undirected graphs as it satisfies the support. Note here that even

though B-b-C and C-b-B are isomorphic structures, we still keep it for undirected graphs, but

count the frequency as one occurrence. The reason for this approach is very specific to the nature

of chemical compound structures. We are providing a small comparison here to guide the readers

through the process, in chemical compounds, ex. water (H2O), two hydrogen atoms share one

Figure 5.1 Isomorphic Structures

69

electron each with the oxygen atom forming the single covalent bond structure, and this is

preserved in our experiment in undirected biological graphs. Similar is the case with NH3, a

compound consisting of Nitrogen and three Hydrogen atoms.

Similarly, pruning is done if a subgraph does not satisfy minimum threshold frequency level.

Consider the 3-edge subgraphs shown in figure 5.4, both the subgraphs are pruned before we

Figure 5.2 Undirected Graphs

Figure 5.3 Retained Structures

70

reach the four-edge structure. They don’t satisfy the minimum threshold criteria and appear only

in one graph.

As we noticed from figure 5.3, the structures are retained during single and double edge

formations due to the nature of chemical compounds. For isomorphic structure determination,

instead of pruning subgraph 1 or 2 from figure 5.1, it is retained. At this level it becomes a little

tricky to decide which one to keep and which one to eliminate from next computation. If 1 is

pruned, the entire next generation will be lost. Instead of pruning, we decided to keep both the

structures and their unique codes. While considering for the number of occurrences, we counted

this as one. This way the next generation structures are not impacted. The unique code is the key

factor for the undirected graphs. Each node and edge has been assigned a specific weight for

programming purposes. In the algorithm 1, step 5 explains on the core components of the

undirected algorithm.

Algorithm 5.1 Undirected Graphs

Input: Graph (G1), Frequency (f)

Output: Qualified Subgraph Edge list

Process:

1) G1.map => Load RDD1

Figure 5.4 Pruned subgraphs

71

2) RDD1.filter(count >= f) => RDD_1

3) RDD_1.map => SingleEdgeRDD (For each single edge in RDD_1, append

reverse_single_edge to RDD_1)

4) Assign unique code to each unique node label

5) k EdgeRDD.join(SingleEdgeRDD) => k+1_EdgeRDD

 Unidirection – join RDDA.secondNode === RDDB.firstNode

 Filter (RDDA.graphID === RDDB.graphID)

 Generate unique code for each edge

 Filter isomorphic structures

6) k+1_EdgeRDD.groupby(code).count()

7) k+1_EdgeRDD.filter(count >= f) => k+1EdgeEDD

8) Repeat steps 5 – 7 for k+1EdgeRDD

9) Repeat step 8 for 1 to n edge subgraphs

*RDDA and RDDB represent the alias for SingleEdgeRDD for initial round, and it

represents the future n-egde RDDs as RDDA and SingleEdgeRDD as RDDB for

subsequent steps.

As per our observation, the intermediate subgraphs meeting frequency threshold are very high. It

is because of the isomorphic structure retention in the early stages like stage 1 and 2. We are not

showing all the intermediate frequent subgraphs. There are many four-edge subgraphs, but we

show only the important subgraphs that are unique for the undirected structures. From our

observation, there are many subgraphs common across undirected and directed, but the directed

72

graphs do not produce the four-edge substructure shown in figure 5.5. Five edge frequent

subgraphs are shown in figure 5.6.

5.4 FSM on Directed Transaction Graphs

This section describes the algorithm for directed graphs. The isomorphic structure determination

for directed graphs are a little straight forward as it is based on the direction. As per our

observation, many subgraphs that appear in the undirected results, don’t appear in the directed

structure. Many structures are pruned at very early stage. Figure 5.7 shows the directed graphs

with the same three graphs used in undirected section, having direction attached to the nodes and

edges.

Figure 5.5 a G1, G2 Figure 5.5 b G1, G2, and G3

Figure 5.6 a G1, G3 Figure 5.6 b G2, G3

73

One important thing to note here is, in the very early stage, single-edge filter prunes the C-b-B

directed edge as part of isomorphic structure elimination. When we go to the next level

subgraphs, the structure generated in figure 5.3 for undirected graphs does not exist. We

observed that many substructures get pruned in the directed graphs. The graphs shown in figure

5.5 don’t appear in directed graphs. Figure 5.8 shows the four-edge subgraphs from the directed

structures (these graphs also appear in undirected structures as well, but it is not shown it in

figure 5.5). We found a very interesting pattern from the three example graphs; both directed and

undirected graphs yield the same five-edge subgraphs shown in figure 5.9.

Figure 5.7 Directed graphs

74

Parent graphs: G1, G3 Parent graphs: G2, G3

Algorithm 5.2 describes the directed graph subgraph finding process. Step 4 provides the helper

methods used in the process. The converge keyword represents the structures where both

subgraphs meet at one node w.r.t. their direction pointing to the node. Diverge keyword is used

to represent the subgraphs whose edges depart from a node and point in opposite directions.

Unidirection is used for the subgraphs whose edges form a path.

Figure 5.8 Four-edge directed subgraphs

Figure 5.9 Five-edge directed subgraphs

75

Algorithm 5.2 Directed Graphs

Input: Graph (G1), Frequency (f)

Output: Qualified Subgraph Edge list

Process:

1) G1.map => Load RDD1

2) RDD1.filter(count >= f) => RDD_1

3) RDD_1.filter(duplicate edges) => SingleEdgeRDD

4) kEdgeRDD.join(SingleEdgeRDD) => k+1_EdgeRDD

 Unidirection - join RDDA.secondNode === RDDB.firstNode

 Converge – join RDDA.secondNode === RDDB.secondNode

 Diverge – join RDDA.firstNode === RDDB.firstNode

 Filter(RDDA.graphID === RDDB.graphID)

 Eliminate isomorphic structures

 Eliminate duplicates within same graphID

 Assign Node labels according to the orientation of the join to maintain directional

pattern

5) k+1_EdgeRDD.groupBy(NodeLabel and edge pattern).count()

6) k+1_EdgeRDD.filter(count >= f) => k+1EdgeRDD

7) Repeat steps 4 – 7 for k+1EdgeRDD

8) Repeat step 7 for 1 to n edge subgraphs

*RDDA and RDDB represent the alias for SingleEdgeRDD for initial round, and it

represents the future n-Edge RDDs as RDDA and SingleEdgeRDD as RDDB for

subsequent steps.

76

5.5 Experimental Details

All the tests were conducted on AWS EMR [92] with 1 master node and 2 slave nodes with m4

large configuration. Spark 2.3 was used for all the experiments. Both directed and undirected

jobs ran in parallel on the same cluster and this was an evaluation criterion to have parallel

processing for all the experiments.

Dataset Preparation: We used the chemical compound dataset retrieved from the repository

[89]. The dataset contains the bioassay records for anti-cancer screen tests with different cancer

cell lines; they are categorized as active and inactive. Our initial round of experiments is

conducted on the graphs as they appear on the site. Later, the data preparation was the most

important criteria to test the scalability. A few authors concatenated the graphs from biological

set to produce the larger sizes. After our analysis, we found that the graph sizes would not help

much for proper evaluation if concatenated as it reads the last graph number and generates the

next generation single edges and produce equal number of graphs. This way we can make sure

that the evaluation is accurate for frequency determination. In addition, as the biological graphs

contain only vertices, edge numbers and labels, we have written a Perl script that helps with the

preprocessing steps to create the single edges. After the initial load, the data load is not required

for the several runs, so the time taken by the initial load is ignored (approx. 15-20 seconds).

Comparison: Exact comparison with DIMSpan [85] would not be appropriate, as we have covered

the undirected graphs in this research. The graphs generated for our evaluation are very complex

due to the way they are created. It is not mere concatenation, rather every graph has millions of

unique edges and the frequencies of new undirected graphs are massive. We did one level

comparison with the biological directed graphs that shows somewhat comparable results.

However, we see improvements over DIMSpan. Since the original biological graph sizes are not

77

very large, the time between DIMSpan and SparkFSM [90] would not differ much. Matching the

MRFSM [80] computation time with the SparkFSM would not be fair as the technologies are

different and Spark is in-memory computation. The table 5.2 below provides the computation time

in seconds, size of graphs, number of approximate edges present. As observed, the original graphs

take a few seconds for frequencies 10%, 20%, 25% and 50%. The comparison is based on both the

undirected and directed implementations.

Table 5.1 SparkFSM [90] performance analysis on biological graphs (time in seconds, threshold

frequency: 50%)

MRFSM vs SparkFSM: We skipped the synthetic graphs’ performance evaluation for this work,

as those graph generators do not produce proper transaction after a certain point. As we

observed, beyond 1000K limit, the number of new edge and vertices combination was very

limited. The minimum support level was not able to match beyond 7%, which is not very

practical in real life graph scenarios. Table 5.2 indicates our previous evaluation MRFSM [80]

on the biological graphs with 2/4 node cluster using MapReduce model. It is evident from table

Graph Size Graph

Nos.

Edge Time(s)

undirected

Time(s)

Directed

MCF7A 1.3M 2293 18 5 30

MCF7HA 2.3M 2293 31 34 49

MCF7I 12M 25475 36 40 74

MCF7HI 20M 25475 59 91 77

MOLT4A 1.7M 3139 43 33 55

MOLT4HA 3M 3139 60 76 37

MOLT4I 17M 36624 36 84 63

MOLT4HI 29M 36624 59 74 75

NCIH23I 18M 38295 36 78 65

NCIH23HI 31M 38295 59 73 86

OVCAR8I 18M 38436 36 56 56

OVCAR8HI 20M 38436 48 45 33

78

7, with similar number of nodes (3 nodes) in SparkFSM, the time has reduced to 5 seconds

compared to the 587 seconds in the MRFSM approach.

Table 5.2 MRFSM [80] performance analysis on biological graphs (time in seconds,

threshold frequency: 50%)

Dataset Active: 2 Active: 4 Inactive: 2 Inactive: 4

MCF-7 833 587 1092 683

MOLT-4 922 556 1279 815

NCI-H23 815 516 1537 889

OVCAR-8 861 552 1257 844

DIMSpan vs SparkFSM: We used DIMSpan [85] as one of our evaluation standards, but DIMSpan

has focused on the multi directed graphs as opposed to our SparkFSM [90], which is more focused

on undirected graphs. From their Data Sets section 5.2, we noticed that they are simply copying

the graphs several times to create the larger volume. For this reason, the comparison between

DIMSpan and SparkFSM will not provide any valuable insight.

The table 5.3 shows the evaluation on undirected graphs. As described in the dataset

preparation section, the graphs span from 50-100 edges. It became more complex after the graphs

were duplicated with a new number assigned to each graph. We created graphs up to 4 million and

captured the time in minutes. Graph sizes range from 124MB to 2.1GB.

79

Table 5.3 SparkFSM [90] performance analysis on large undirected datasets (time in

minutes)

Graph Support Graph Nos. Time (min)

OVCAR8HI 75% 153,180 2.2

OVCAR8HI 90% 153,180 0.7

OVCAR8HI 75% 306,366 4.0

OVCAR8HI 90% 306,366 0.96

OVCAR8HI 75% 1,225,465 13

OVCAR8HI 90% 1,225,465 2

OVCAR8HI 75% 2,450,931 26

OVCAR8HI 90% 2,450,931 4

Figure 5.10 and 5.11 shows the graph plots for undirected and directed performance comparisons.

Figure 5.10 Box and Whisker plot showing time required to compute each

undirected graph size at the varying frequencies

80

6 CONCLUDING REMARKS

Graphs are everywhere. Knowledge mining from graph data has been a major focus with the

evolution of computer technology, social networking sites, and web logs as these generate a lot

of graphs. Only proper mining methods can dig deep into the abundance of knowledge hidden

inside these graphs. Since the graphs are huge in size, there is a need for high performance

technology to find the frequent substructures. During my research journey, the goal was to

develop high performance mining methods to find useful frequent patterns from the transactional

graphs. A very good review is also provided for the readers starting with FSM’s inception and on

the status until writing this work. With the rapid progress in big data technologies many issues

are easily handled. Some analysis are provided based on the experience while experimenting

Figure 5.11 Performance Comparison between Directed and

Undirected on Biological Graph Dataset

81

different approaches on transactional FSM. Recently the entire research work is compiled into a

journal and getting ready for publication [93].

Single machine memory-based vs RDBMS: the major difference between these two are that

RDBMS can contain more data during processing making it more scalable. Memory based

approaches are very efficient if the dataset size is small enough to fit to the data structure in use.

Certain built-in functions such as groupBy and distinct can help to a greater extent, the problem

can be solved via SQL query and can potentially reduce the programming. Intermediate results

can be available even after the job is no longer active which not the case for memory-based

approach is where if the job is complete, the results will be removed from memory.

RDBMS vs Object Oriented Approach: being motivated by the RDBMS based paper [84], we

used Db4o while experimenting on FSM, and it is an open source object db. The interesting

aspect of db4o is that the user does not need to create a separate data model, the applications

class model defines the structure of the data in db4o database. Db4o database provides

persistence to objects automatically. Object persistence is the capability of the system to hold

objects even after the system stops running. We observed improvement with our Db4o approach

over the RDBMS based approach DB-FSG [84].

Object Oriented Approach vs Hadoop MapReduce: Our second experiment on FSM was

motivated by Hadoop/MapReduce which came as a savior for very big data processing with its

additional benefit of the reducer concept in MapReduce model. The reduce function has in-built

capability of accumulating all the key-value pairs and summing it on the go, and this helped us

with the frequency counting. Since then cluster computing has become a normal standard and

comparing the database-oriented approach with the MapReduce model felt like comparing apples

with oranges. We could work on the real life complicated anti-cancer datasets and tremendous

82

improvement gain was observed.

Hadoop MapReduce vs Spark/Scala: during the experiment with MapReduce model, we faced

some drawbacks of disk I/O due to the intermediate results being written to disk and then read

again, which added two extra layers of I/O. All our issues are easily resolved with the Spark

engine using Scala language. Many benefits are achieved by this: 1) it is distributed computing

which happens in-memory, 2) the need for iterative style of algorithm for FSM comes as a well-

built functionality with the concept of Spark’s RDD (Resilient Distributed Dataset). 3) Scala,

being a functional style language, it has many advantages over any verbose programming and

being the language base for Spark, it comes with many compatible functions that make several

lines of code to a few lines. Performance improvements are multifold as observed from our

experiments. The same graph with 3 nodes with MapReduce took ~500 seconds, but the

Spark/Scala implementation took about 5 seconds.

83

BIBLIOGRAPHY

[1] Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules.

In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).

[2] Jiang, X., Xiong, H., Wang, C., & Tan, A. H. (2009). Mining globally distributed frequent

subgraphs in a single labeled graph. Data & Knowledge Engineering, 68(10), 1034-1058.

[3] Kuramochi, M., & Karypis, G. (2005). Finding frequent patterns in a large sparse graph*.

Data mining and knowledge discovery, 11(3), 243-271.

[4] Kuramochi, M., & Karypis, G. (2004, November). Grew-a scalable frequent subgraph

discovery algorithm. In Data Mining, 2004. ICDM'04. Fourth IEEE International Conference on

(pp. 439-442). IEEE.

[5] Kang, U., Tsourakakis, C. E., & Faloutsos, C. (2009, December). Pegasus: A peta-scale

graph mining system implementation and observations. In Data Mining, 2009. ICDM'09. Ninth

IEEE International Conference on (pp. 229-238). IEEE.

[6] Reinhardt, S. P., & Karypis, G. (2007, March). A Multi-Level Parallel Implementation of a

Program for Finding Frequent Patterns in a Large Sparse Graph. In IPDPS (pp. 1-8).

[7] Wu, B., & Bai, Y. (2010). An efficient distributed subgraph mining algorithm in extreme

large graphs. In Artificial Intelligence and Computational Intelligence (pp. 107-115). Springer

Berlin Heidelberg.

[8] Liu, C., Yan, X., Yu, H., Han, J., & Philip, S. Y. (2005). Mining Behavior Graphs for"

Backtrace" of Noncrashing Bugs. In SDM (pp. 286-297).

[9] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002).

Network motifs: simple building blocks of complex networks. Science, 298(5594), 824-827.

[10] Milo, R., Kashtan, N., Itzkovitz, S., Newman, M. E. J., & Alon, U. (2003). On the uniform

generation of random graphs with prescribed degree sequences. arXiv preprint cond-

mat/0312028.

[11] Borgelt, C., & Berthold, M. R. (2002). Mining molecular fragments: Finding relevant

substructures of molecules. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE

International Conference on (pp. 51-58). IEEE.

[12] http://www.db4o.com/

[13] http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

http://www.db4o.com/
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

84

[14] Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between

sets of items in large databases. In ACM SIGMOD Record (Vol. 22, No. 2, pp. 207-216). ACM.

[15] Burdick, D., Calimlim, M., & Gehrke, J. (2001). MAFIA: A maximal frequent itemset

algorithm for transactional databases. In Data Engineering, 2001. Proceedings. 17th

International Conference on (pp. 443-452). IEEE.

[16] Bayardo Jr, R. J. (1998, June). Efficiently mining long patterns from databases. In ACM

Sigmod Record (Vol. 27, No. 2, pp. 85-93). ACM.

[17] Han, J., Pei, J., & Yin, Y. (2000, May). Mining frequent patterns without candidate

generation. In ACM SIGMOD Record (Vol. 29, No. 2, pp. 1-12). ACM.

[18] Zaki, M. J., & Hsiao, C. J. (2002, April). CHARM: An Efficient Algorithm for Closed

Itemset Mining. In SDM (Vol. 2, pp. 457-473).

[19] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. C. (2001,

April). Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In

2013 IEEE 29th International Conference on Data Engineering (ICDE) (pp. 0215-0215). IEEE

Computer Society.

[20] Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in

event sequences. Data Mining and Knowledge Discovery, 1(3), 259-289.

[21] Agrawal, R., & Srikant, R. (1995, March). Mining sequential patterns. In Data Engineering,

1995. Proceedings of the Eleventh International Conference on (pp. 3-14). IEEE.

[22] Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., & Arikawa, S. (2001). Efficient Substructure

Discovery from Large Semi-structured Data.

[23] Zaki, M. J. (2002, July). Efficiently mining frequent trees in a forest. In Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp.

71-80). ACM.

[24] Fortin, S. (1996). The graph isomorphism problem. Technical Report 96-20, University of

Alberta, Edomonton, Alberta, Canada.

[25] Ghazizadeh, S., & Chawathe, S. S. (2002, January). SEuS: Structure extraction using

summaries. In Discovery science (pp. 71-85). Springer Berlin Heidelberg.

[26] Vanetik, N., Gudes, E., & Shimony, S. E. (2002). Computing frequent graph patterns from

semistructured data. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International

Conference on (pp. 458-465). IEEE.

[27] Yoshida, K., Motoda, H., & Indurkhya, N. (1994). Graph-based induction as a unified

learning framework. Applied Intelligence, 4(3), 297-316.

85

[28] Holder, L. B., Cook, D. J., & Djoko, S. (1994, July). Substucture Discovery in the SUBDUE

System. In KDD workshop (pp. 169-180).

[29] Dehaspe, L., Toivonen, H., & King, R. D. (1998, August). Finding Frequent Substructures

in Chemical Compounds. In KDD (Vol. 98, p. 1998).

[30] Inokuchi, A., Washio, T., & Motoda, H. (2000). An apriori-based algorithm for mining

frequent substructures from graph data. In Principles of Data Mining and Knowledge Discovery

(pp. 13-23). Springer Berlin Heidelberg.

[31] Inokuchi, A., Washio, T., Nishimura, K., & Motoda, H. (2002). A fast algorithm for mining

frequent connected subgraphs. IBM Research, Tokyo Research Laboratory, Tech. Rep.

[32] Yan, X., & Han, J. (2002). gspan: Graph-based substructure pattern mining. In Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on (pp. 721-724). IEEE.

[33] Huan, J., Wang, W., & Prins, J. (2003, November). Efficient mining of frequent subgraphs

in the presence of isomorphism. In Data Mining, 2003. ICDM 2003. Third IEEE International

Conference on (pp. 549-552). IEEE.

[34] Nijssen, S., & Kok, J. N. (2004, August). A quickstart in frequent structure mining can

make a difference. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 647-652). ACM.

[35] Wang, J., Hsu, W., Lee, M. L., & Sheng, C. (2006, April). A partition-based approach to

graph mining. In Data Engineering, 2006. ICDE'06. Proceedings of the 22nd International

Conference on (pp. 74-74). IEEE.

[36] Nguyen, S. N., Orlowska, M. E., & Li, X. (2008, January). Graph mining based on a data

partitioning approach. In Proceedings of the nineteenth conference on Australasian database-

Volume 75 (pp. 31-37). Australian Computer Society, Inc..

[37] Wang, C., Wang, W., Pei, J., Zhu, Y., & Shi, B. (2004, August). Scalable mining of large

disk-based graph databases. In Proceedings of the tenth ACM SIGKDD international conference

on Knowledge discovery and data mining (pp. 316-325). ACM.

[38] Savasere, A., Omiecinski, E., & Navathe, S. B. (1995, September). An Efficient Algorithm

for Mining Association Rules in Large Databases. In Proceedings of the 21th International

Conference on Very Large Data Bases (pp. 432-444). Morgan Kaufmann Publishers Inc..

[39] Nguyen, S. N., & Orlowska, M. E. (2005). Improvements in the data partitioning approach

for frequent itemsets mining. In Knowledge Discovery in Databases: PKDD 2005 (pp. 625-633).

Springer Berlin Heidelberg.

86

[40] Liu, C., Yan, X., Fei, L., Han, J., & Midkiff, S. P. (2005). SOBER: statistical model-based

bug localization. ACM SIGSOFT Software Engineering Notes, 30(5), 286-295.

[41] Jiawei, H., & Kamber, M. (2001). Data mining: concepts and techniques. San Francisco,

CA, itd: Morgan Kaufmann, 5.

[42] Yan, X. (2006). Mining, indexing and similarity search in large graph data sets, Comp sci

dissertation.

[43] Aridhi, S., d'Orazio, L., Maddouri, M., & Mephu Nguifo, E. (2013). Density-based data

partitioning strategy to approximate large-scale subgraph mining. Information Systems.

[44] Di Fatta, G., & Berthold, M. R. (2006). Dynamic load balancing for the distributed mining

of molecular structures. Parallel and Distributed Systems, IEEE Transactions on, 17(8), 773-

785.

[45] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to

algorithms (Vol. 2, pp. 531-549). Cambridge: MIT press.

[46] Cook, D. J., & Holder L. B. (2000). Graph-based data mining. IEEE Intelligent Systems,

vol. 15, no. 2, pp. 32–41.

[47] Chakravarthy, S., Beera, R., & Balachandran, R. (2004). DB-Subdue: Database approach to

graph mining. In Advances in Knowledge Discovery and Data Mining (pp. 341-350). Springer

Berlin Heidelberg.

[48] Rissanen, J. (1989). Stochastic complexity in statistical inquiry theory. World Scientific

Publishing Co., Inc..

[49] Padmanabhan, S., & Chakravarthy, S. (2009). HDB-Subdue: A Scalable Approach to Graph

Mining. Data Warehousing and Knowledge Discovery, 325-338.

[50] Srichandan, B., & Sunderraman, R. (2011, December). Oo-fsg: An object-oriented approach

to mine frequent subgraphs. In Proceedings of the Ninth Australasian Data Mining Conference-

Volume 121 (pp. 221-228). Australian Computer Society, Inc..

[51] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1), 107-113.

[52] Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V. (2001). A tree projection algorithm for

generation of frequent item sets. Journal of parallel and Distributed Computing, 61(3), 350-371.

[53] Zaki, M. J., & Gouda, K. (2003, August). Fast vertical mining using diffsets. In Proceedings

of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining

(pp. 326-335). ACM.

87

[54] Fang, W., Lu, M., Xiao, X., He, B., & Luo, Q. (2009, June). Frequent itemset mining on

graphics processors. In Proceedings of the fifth international workshop on data management on

new hardware (pp. 34-42). ACM.

[55] Li, H., & Zhang, N. (2010, August). Mining maximal frequent itemsets on graphics

processors. In Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International

Conference on (Vol. 3, pp. 1461-1464). IEEE.

[56] Li, H. (2010, June). A GPU-based maximal frequent itemsets mining algorithm over stream.

In Computer and Communication Technologies in Agriculture Engineering (CCTAE), 2010

International Conference On (Vol. 1, pp. 289-292). IEEE.

[57] Amossen, R. R., & Pagh, R. (2011, May). A new data layout for set intersection on gpus. In

Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International (pp. 698-708).

IEEE.

[58] Teodoro, G., Mariano, N., Meira, W., & Ferreira, R. (2010, October). Tree projection-based

frequent itemset mining on multicore cpus and gpus. In Computer Architecture and High

Performance Computing (SBAC-PAD), 2010 22nd International Symposium on (pp. 47-54).

IEEE.

[59] Cheung, D. W., Han, J., Ng, V. T., Fu, A. W., & Fu, Y. (1996, December). A fast

distributed algorithm for mining association rules. In Parallel and Distributed Information

Systems, 1996., Fourth International Conference on (pp. 31-42). IEEE.

[60] Liu, L., Li, E., Zhang, Y., & Tang, Z. (2007, September). Optimization of frequent itemset

mining on multiple-core processor. In Proceedings of the 33rd international conference on Very

large data bases (pp. 1275-1285). VLDB Endowment.

[61] Li, H., Wang, Y., Zhang, D., Zhang, M., & Chang, E. Y. (2008, October). Pfp: parallel fp-

growth for query recommendation. In Proceedings of the 2008 ACM conference on

Recommender systems (pp. 107-114). ACM.

[62] Miliaraki, I., Berberich, K., Gemulla, R., & Zoupanos, S. (2013, June). Mind the gap: large-

scale frequent sequence mining. In Proceedings of the 2013 international conference on

Management of data (pp. 797-808). ACM.

[63] Liu, Y., Jiang, X., Chen, H., Ma, J., & Zhang, X. (2009). Mapreduce-based pattern finding

algorithm applied in motif detection for prescription compatibility network. In Advanced

Parallel Processing Technologies (pp. 341-355). Springer Berlin Heidelberg.

[64] Buehrer, G., Parthasarathy, S., & Chen, Y. K. (2006, December). Adaptive parallel graph

mining for cmp architectures. In Data Mining, 2006. ICDM'06. Sixth International Conference

on (pp. 97-106). IEEE.

88

[65] Cook, D. J., Holder, L. B., Galal, G., & Maglothin, R. (2001). Approaches to parallel graph-

based knowledge discovery. Journal of Parallel and Distributed Computing, 61(3), 427-446.

[66] Wang, C., & Parthasarathy, S. (2004, June). Parallel algorithms for mining frequent

structural motifs in scientific data. In Proceedings of the 18th annual international conference on

Supercomputing (pp. 31-40). ACM.

[67] Meinl, T., Fischer, I., & Philippsen, M. (2005). Parallel Mining for Frequent Fragments on a

Shared-Memory Multiprocessor-Results and Java-Obstacles. In In LWA 2005-Beitrge zur

GIWorkshopwoche Lernen.

[68] Coatney, M., & Parthasarathy, S. (2003, March). Motifminer: A general toolkit for

efficiently identifying common substructures in molecules. In Bioinformatics and

Bioengineering, 2003. Proceedings. Third IEEE Symposium on (pp. 336-340). IEEE.

[69] Zhao, Z., Wang, G., Butt, A. R., Khan, M., Kumar, V. A., & Marathe, M. V. (2012, May).

Sahad: Subgraph analysis in massive networks using hadoop. In Parallel & Distributed

Processing Symposium (IPDPS), 2012 IEEE 26th International (pp. 390-401). IEEE.

[70] Kang, U., Tsourakakis, C. E., Appel, A. P., Faloutsos, C., & Leskovec, J. (2011). Hadi:

Mining radii of large graphs. ACM Transactions on Knowledge Discovery from Data (TKDD),

5(2), 8.

[71] Shiloach, Y., & Vishkin, U. (1982). An< i> O</i>(log< i> n</i>) parallel connectivity

algorithm. Journal of Algorithms, 3(1), 57-67.

[72] Awerbuch, B., & Singh, T. (1983, August). New Connectivity and MSF Algorithms for

Ultracomputer and PRAM. In ICPP (Vol. 83, pp. 175-179).

[73] Hirschberg, D. S., Chandra, A. K., & Sarwate, D. V. (1979). Computing connected

components on parallel computers. Communications of the ACM, 22(8), 461-464.

[74] Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., & Sahinalp, S. C. (2008).

Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13),

i241-i249.

[75] Alon, N., Yuster, R., & Zwick, U. (1995). Color-coding. Journal of the ACM (JACM),

42(4), 844-856.

[76] Afrati, F. N., Fotakis, D., & Ullman, J. D. (2013, April). Enumerating subgraph instances

using map-reduce. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on

(pp. 62-73). IEEE.

[77] Afrati, F. N., & Ullman, J. D. (2011). Optimizing multiway joins in a map-reduce

environment. Knowledge and Data Engineering, IEEE Transactions on, 23(9), 1282-1298.

89

[78] Xiang, J., Guo, C., & Aboulnaga, A. (2013, April). Scalable maximum clique computation

using mapreduce. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on

(pp. 74-85). IEEE.

[79] Luo, Y., Guan, J., & Zhou, S. (2011). Towards efficient subgraph search in cloud computing

environments. In Database Systems for Adanced Applications (pp. 2-13). Springer Berlin

Heidelberg.

[80] Hill, S., Srichandan, B., & Sunderraman, R. (2012, October). An iterative MapReduce

approach to frequent subgraph mining in biological datasets. In Proceedings of the ACM

Conference on Bioinformatics, Computational Biology and Biomedicine (pp. 661-666). ACM.

[81] Bhuiyan, M. A., & Hasan, M. A. (2013). MIRAGE: An Iterative MapReduce based

FrequentSubgraph Mining Algorithm. arXiv preprint arXiv:1307.5894.

[82] Lin, W., Xiao, X., & Ghinita, G. (2014, March). Large-scale frequent subgraph mining in

MapReduce. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on (pp.

844-855).

[83] Balachandran, R., Padmanabhan, S., & Chakravarthy, S. (2006). Enhanced DB-subdue:

Supporting subtle aspects of graph mining using a relational approach. In Advances in

Knowledge Discovery and Data Mining (pp. 673-678). Springer Berlin Heidelberg.

[84] Chakravarthy, S., & Pradhan, S. (2008, January). Db-fsg: An sql-based approach for

frequent subgraph mining. In Database and Expert Systems Applications (pp. 684-692). Springer

Berlin Heidelberg.

[85] A. Petermann, M. Junghanns, and E. Rahm. DIMSpan - transactional frequent subgraph

mining with distributed in-memory dataflow systems. BDCAT '17 Proceedings of the Fourth

IEEE/ACM International Conference on Big Data Computing, Applications and Technologies,

2017.

[86] C. H. Teixeira et al. Arabesque: a system for distributed graph mining. In Proc. of the 25th

Symposium on Operating Systems Principles, pages 425–440. ACM, 2015.

[87] https://databricks.com/spark

[88] Qiao, F.; Zhang, X.; Li, O.; Ding, Z.; Jia, S.; Wang, H. A parallel approach for frequent

subgraph mining in a single large graph using Spark. Appl. Sci. 2018, 8, 230.

[89] http://www.cs.ucsb.edu/*xyan/dataset.htm

[90] Bismita S. Jena, Cynthia Khan, Rajshekhar Sunderraman. SparkFSM: A Highly Scalable

Frequent Subgraph Mining Approach using Apache Spark, ICDM 2018, Singapore

https://databricks.com/spark
http://www.cs.ucsb.edu/*xyan/dataset.htm

90

[91] Kuramochi, M., & Karypis, G. (2001). Frequent subgraph discovery. In Data Mining, 2001.

ICDM 2001, Proceedings IEEE International Conference on (pp. 313-320).

[92] https://aws.amazon.com/emr/

[93] Bismita S. Jena, Cynthia Khan, Rajshekhar Sunderraman. High Performance Frequent

Subgraph Mining on Transactional Datasets: A Survey and Performance Comparison (Accepted

at Tsighua University Journals - https://mc03.manuscriptcentral.com/bdma)

https://aws.amazon.com/emr/

	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 5-6-2019

	High Performance Frequent Subgraph Mining on Transactional Datasets
	Bismita Jena
	Recommended Citation

	MANUSCRIPT TITLE

