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TWO DIMENSIONAL NANO-STRUCTURES

by

H. M. THAKSHILA M. HERATH

Under the Direction of Vadym M. Apalkov, PhD

ABSTRACT

The properties of a step-like defect on the surface of ultrathin topological insulator nanofilm

have been studied. The reflectance of an electron from such a defect for different parameters

of the nanofilm and the different parameters of the defect has been calculated. An electron

incident on a steplike defect not only produces reflected and transmitted waves but also

generates the modes, which are localized at the steplike defect. Such modes result in an

enhancement of electron density at the defect by ≈ 60%. The magnitude of the enhancement

depends on the parameters of the nanofilm and the height of the step and is the largest in the

case of total electron reflection. Next, the quantum dots in 2D materials such as topological

insulator nanofilm, germanene and phosphorene were introduced. In topological insulator,

We introduce a quantum dot as a bump at a surface of nanofilm. Such quantum dot can

localize an electron if the size of the dot is large enough, ∼ 5 nm. The other type of

quantum dot is created in germanene. The band gap of buckled graphene-like materials

such as germanene, depends on the external electric field. Then a specially design profile of

electric field can produce trapping potential for electrons. Another type of quantum dot can

be designed using phosphorene. Phosphorene itself has a band gap. By considering the piece



of cylindrical phosphorene layer, an electron can be confined. We study the energy spectra

of such defined quantum dots. The intraband and interband optical transitions within the

dots have also been studied. The effects of the temperature and the substrate modify the

model parameters and should not change the results considerably.

INDEX WORDS: Topological Insulators, Silicene, Germanene, Black phospho-
rous, Phosphorene, Quantum dot, Nanofilm, Band gap, Spin-
orbit coupling, Interband, Intraband, Step-like defects
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numbers next to the lines are the values of the thickness L2. In panel

(a), the electron reflectance is exactly one at L2 = 10 Å and 20 Å. 35
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optical lines correspond to the labels of transitions in Fig. 3.3. The

optical spectra have one strong line with small satellites. . . . . . 52

Figure 3.6 The electron charge density distribution is shown for quantum dot of
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CHAPTER 1

INTRODUCTION

1.1 Overview

Discovery of new 2D materials has emerged thanks to graphene’s exciting electronic,

optical, thermal and mechanical properties. Subsequently, graphene-like materials such as

silicene, germanene and phosphorene were discovered. Moreover ultrathin topological insu-

lator nanofilm has been identified as another 2D material which has remarkable properties.

In this thesis, I study the energy spectra and optical properties of nano-structures in

ultrathin TI nanofilms, graphene like-materials, and phosphorene monolayer. First a one-

dimensional step-like defect on TI nanofilm is considered and the electron transport along

the surface of TI nanofilm is studied. Then the energy spectra and optical transitions

of a confined Dirac electron in TI nanofilm, graphene-like materials such as silicene and

germanene and phosphorene are studied. To confine an electron in Dirac materials, a band

gap needs to be opened. For TI nanofilms, such a gap can be opened through hybridization of

the states at two opposite surfaces of the nanofilm. The band gap of graphene-like materials,

such as silicene or germanene, can be tuned by applying an electric field perpendicular to

silicene or germanene sheet. Monolayer or few layers of black phosphorus (BP) has an

intrinsic band gap and it can be controlled with the thickness of the BP sheet. In the

next section I discuss the general properties of quantum dots. Then the properties of TIs

and TI nanofilms, silicene/germanene and black phosphorus are studied. In Chapter 2, the

electron propagation along the step-like defect on TI nanofilm is considered. The results

are published in Physical Review B [1]. In Chapters 3, 4, and 5 I discuss the electronic

and optical properties of a confined Dirac electron in TI nanofilm, silicene/germanene and

phosphorene quantum dots, respectively. The results in Chapters 3 and 4 are published in

Journal of Physics : Condensed Matter [2, 3] respectively.
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1.2 Quantum dots

Quantum dots are nanocrystals and often referred to as artificial atoms because the

confining potential replaces the potential of a nucleus. Usually a quantum dot can trap 2-200

electrons and the dot size varies from 10nm to 100nm [4]. Unique properties of quantum dots

are determined by their discrete energy spectrum, which can be tuned externally through the

nature and the strength of the confinement potential [5]. Such zero dimensional systems show

both specific electron transport with nonlinear features and controllable optical properties.

The main interest in quantum dots is related to their potential for applications, ranging from

novel lasers, light-emitting diodes, diode lasers, and photodetectors to quantum information

processing.

In conventional semiconductor systems, quantum dots are introduced either by plac-

ing one nano-sized material into another material, e.g., by the Stranski-Krastanow growth

technique, or by applying specially designed electrostatic confinement potential to low-

dimensional systems. In both cases a confinement potential is introduced, which results

in electron localization within the quantum dot region. The key concept here is to local-

ize an electron through a confinement potential. Recently, a new type of quantum dots,

graphene quantum dots [6–8] with electrostatic confinement potential, were considered. The

electrons in graphene behave as massless Dirac fermions. In graphene quantum dots due to

Klein paradox (Fig. 1.1), the electrons cannot be localized but can be only trapped for a

long time [7]. The longest trapping time is realized in a confinement potential with smooth

boundaries [8]. Such non-conventional behaviour of electrons in graphene is determined by

their unique low-energy dispersion, which is gapless and relativistic, while the corresponding

states are chiral [9, 10].

Other systems which have a dispersion law similar to graphene and corresponding local-

ization properties are 3D topological insulators (TI) [11–17], BixSb1−x, Bi2Te3, Sb2Te3, and

Bi2Se3 materials. The unique features of 3D TIs are gapless surface states with low-energy

dispersion, which is similar to the dispersion law of a massless Dirac fermion. More details
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will be presented in the next section.

Similar to graphene, the conventional quantum dots, which can localize an electron,

cannot be realized in TIs through electrostatic confinement potential. To introduce a quan-

tum dot in TI, one can consider a TI of a finite nano-scale size [18, 19] or introduce a gap

in the dispersion law of coupled surface states of TI nanofilm [1, 20, 21]..Due to the finite

extension of the surface states into the bulk, the surface states at two surfaces of TI nanofilm

are coupled. Such coupling introduces a gap in the energy dispersion law. The magnitude

of the gap depends on the film thickness. Thus the trapping potential in this case can be

realized through modulation of the film thickness [2], which results in modulation of the

band gap. The schematic illustration of quantum dot in TI nanofilm is shown in Fig. 1.2.

Since TI nanofilm itself has a bandgap, an electron, confined in TI nanofilm QD, has no

energy states in the continuum to escape from the quantum dot.

In Chapter 3, we consider a quantum dot in TI nanofilm. A quantum dot is introduced

as a finite region of TI nanofilm with a larger thickness. Due to a gapped structure of the

energy dispersion in TI nanofilm, such quantum dot can localize an electron. We consider

only a single electron problem and for a single electron, both the energy spectra and the

optical transitions within TI quantum dot were calculated.

Other Dirac 2D materials, in which the gap can be opened, are buckled graphene-like

materials, such as silicene and germanene [22–30]. The main difference between silicene/ger-

manene and graphene is that due to a larger radius of a Si/Ge atom compared to a C atom,

the corresponding hexagon lattice in silicene/germnene has buckled structure [27] consisting

of two sublattices that are displaced vertically by a finite distance Lz ∼ 0.5 Å. As a result,

silicene has large spin-orbit(SO) interaction, which opens up band gaps at the Dirac points

(the band gap is ≈ 1.55 − 7.9 meV for silicene [31, 32] and ≈ 24 − 93 meV for germanene

[31, 32]). For graphene, the corresponding spin-orbit-induced gap is very small, 25 µeV [33].

The buckled structure of silicene/germanene lattice allows the band gap to be tuned almost

linearly by an external electric field applied perpendicular to the film [34]. Therefore in the

case of silicene/germanene, application of nonuniform perpendicular electric field results in
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Figure (1.1) Tunnelling through potential barrier in graphene. The dashed line represents
the Fermi energy level, E. Here V0(> E) is the height of the potential barrier. σ is the
pseudospin. (a) The gapless linear dispersion of graphene is shown here. The blue filled
areas indicate the occupied states. k and q are wave vectors of the electron outside and
inside of the potential barrier respectively. (b) D is the width of the potential barrier.
Outside the potential barrier, the electron is in the conduction band and inside it is in the
valence band. The gapless states allows the electrons to be in any quantum state regardless
of the energy of the electron. Due to that, electron penetrates through the potential barrier
which is known as Klein tunneling. Figure is taken from Ref. [35]

a spatially dependent bandgap, which can produce electron localization.

In chapter 4, we study silicene/germanene quantum dots, which have cylindrical sym-

metry and are characterized by radius R. Such quantum dots are produced by a special

distribution of external perpendicular electric field, which has different values in two regions:

ρ < R and ρ > R where ρ is the radial distance. The results are published in Ref. [3]

1.3 Evolution of topological insulators

Conventionally solid state materials can be divided into conductors, insulators, and

semiconductors. Such classification is mainly based on transport properties of solids. Finding
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No statesNo states

V
o

Figure (1.2) (color)Schematic illustration of quantum dot in topological insulator nanofilm.
The red and blue color bands are conduction and valence band states respectively. TI
nanofilm has gapped energy dispersion. V0 is the potential barrier. Outside the potential
barrier, the electron’s energy is in the conduction band. Inside the potential barrier, the elec-
tron has no energy states to transit from valance to conduction due to the gapped dispersion.
The electron is trapped inside the TI nanofilm with potential barrier.
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Figure (1.3) (a) Electron backs off from the edge and keeps moving in the same direction.
The edge is in between the vacuum and the bulk which are insulators. (b) conduction band
and valence band touch as edge state becomes metallic. Figure is taken from Ref. [38]

new quantum states of matter is one of the most attractive topics in condensed matter

physics. Two-dimensional electron systems at low temperatures and high magnetic fields

have metallic edge states and insulating bulk properties. This new quantum state was

discovered in 1980 and is called the quantum Hall (QH) state [36]. In this QH state, electrons

in the bulk follow quantized circular orbits due to the strong magnetic field. However,

electrons on the edge cannot complete a circular orbit. They hit the boundary, reflect, and

keep propagating along the edge. This is a drift motion, the direction of which depends

on the direction of the magnetic field. The quantum Hall system(QHS) has gapless edge

states and insulating bulk, see - Fig. 1.3. Only ”one-way” edge state exists due to external

magnetic field. The corresponding Hall conductivity is a multiple integer of e2/h independent

of material [37].

In Mathematics there is a branch called topology. If two objects can be smoothly trans-

formed into each other through continuous deformation without changing their properties,

they are called topologically equivalent, i.e., they are in the same topological class. For

example, an orange and a ball are in one class as they both have zero number of holes or

genus(g) and one object can be transformed into another one without changing the number

of genus. Moreover, a doughnut and a coffee cup are in the same class. A doughnut can be
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deformed into a coffee cup while preserving its property a number of genus, a single hole.

In quantum mechanics, the main object of topology is a Hamiltonian. The two quantum

systems are called topologically equivalent if the Hamiltonian of the first system can be

continuously transformed into the Hamiltonian of the second system without closing the

bulk energy band gap. Similar to genus in Mathematics, topological classes in quantum

mechanics can be distinguished by a topological invariant called the Chern invariant n.

If the Chern invariant remains constant when the Hamiltonian is deformed, it is called

topologically invariant. This is valid only for gapped materials such as insulators and gapped

superconductors. Topological classes are protected by the symmetry of a system.

A new quantum state, which belongs to a new topological class of materials called 2D

topological insulator (TI) or QSH state, has been theoretically predicted in 2006 [39] and

experimentally observed in HgTe/CdTe quantum wells in 2007, base temperature T < 30mK

[40]. 2DTI or QSH state is invariant under TR symmetry and has strong intrinsic spin-orbit

coupling. Electrons with spin-up move in one direction and spin-down electrons move in the

opposite direction and no backscattering is allowed - see Fig. 1.4. The QH system requires

a magnetic field to create edge state while spin-orbit interaction plays the role of magnetic

field in QSH. The energy dispersions of different quantum states are shown in Fig. 1.5. In

QH system and QSH system, there is a ’one-way’ edge current while the bulk material has

a band gap. The difference in two systems is that QSH edge states are spin-split due to the

spin-orbit coupling. This splitting is called the Rashba splitting.

The trivial insulator and 2D TI cannot be transformed into each other without closing

a gap, i.e., they belong to two different topological classes. Let us consider the HgTe/CdTe

quantum well system. HgTe and CdTe are II-VI semiconductors which have strong spin-orbit

interactions. In CdTe s-states on the group II atom contribute to the conduction band and

p-states of VI atom contribute to the valence bands. In HgTe, p-states rise above s-states and

2D band inversion occurs. When HgTe is sandwiched in between CdTe layers, the 2D electron

structure can be tuned with the quantum well thickness d - see Fig. 1.6. If d < dc = 6.3nm

the quantum well has the normal band structure. The band structure is inverted when
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Figure (1.4) (a) Quantum Hall system : applied magnetic field makes electrons to flow
around the edge of the material (b) Quantum Spin Hall system : The direction of the flow
depends on the spin direction. Spin-orbit interaction induces spin dependent magnetic field
here. Figure is taken from Ref. [41].

d > dc. The band structure gets inverted as the well thickness increases. At d = dc the

quantum well has a gapless band structure which indicates the phase transition from trivial

insulator to quantum spin Hall insulator or 2D topological insulator. The experiments have

shown that if d > dc the quantum hall system has helical edge states [39, 43]. The significant

idea here is that a normal insulator becomes a topological insulator when the band structure

is inverted, so that they do not belong to the same topological class.

Soon after the discovery of 2D TI, three-dimensional TIs were predicted theoretically

and observed experimentally in BixSb1−x, Bi2Te3, Sb2Te3, and Bi2Se3 materials [11–17]. The

unique feature of 3D TI is the gapless surface states with low-energy dispersion, which is

similar to the dispersion law of massless Dirac fermions. Such a relativistic dispersion law has

been observed experimentally by angle-resolved photoemission spectroscopy [13, 14, 16, 17,

44], oscillations in the local density of states [45], magnetoconductivity measurements[46],

quantum oscillations of magnetization [47], Aharonov-Bohm oscillations in TI nanoribbons

[48], Landau level spectroscopy [49, 50], optical processes [51, 52] and quantum Hall effect
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(a)

(b)

(c)

Figure (1.5) (a) Electrons are localized in the bulk of the material and there are gapped
surface states. (b) Due to a magnetic field, electrons in the bulk move in quantized orbits.
The electrons near the edge bounce off from the boundary as they are not able to complete
circles. However they keep moving forward and result in edge states. (c) Due to spin
degeneracy, electrons with spin up move in one direction and spin down electrons move in
the opposite direction. Two edge states are gapless while the bulk has a finite gap. Figure
is taken from Ref. [42].

Figure (1.6) (a) HgTe quantum well structure. Here d is the thickness of the HgTe layer.
(b) 2D band inversion is shown here as d increases. Figure is taken from Ref. [38].
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[53].

Thus, topological insulators, 2D or 3D, should have strong spin-orbit interaction, which

creates band inversion. The largest bulk gap of 3D TI is realized in Bi2Se3 TI with the bulk

band gap of 0.3 eV. The crystal structure of well known real 3D topological insulator mate-

rial, Bi2Se3, is shown in Fig. 1.7. The crystal structure has inversion symmetry I, three fold

rotation symmetry C3 along the z-axis and time-reversal symmetry T. There are five atoms

in a unit cell. Five-atom layers stack on top of each other, and this combined layer is called

a quintuple layer. A quintuple layer has two Bi layers, two Se layers and another Se layer

which acts as an inversion center. Though there is a weak interaction between two quintuple

layers, there is a strong SO coupling within a single quintuple layer. This strong SO coupling

can invert bands near the Γ point which makes this material a topological insulator.

The growing interest in 3D TI systems is related to the unique relativistic massless energy

dispersion law of their surface states. The surface states also have chiral spin texture, i.e.,

the direction of electron spin is correlated with direction of its momentum. The low energy

dispersion is of relativistic Dirac type. In general TIs can have an odd number of Dirac

cones, but in experimentally realized 3D TI systems, there is only one Dirac cone. Such a

Dirac cone is described by an effective Hamiltonian of relativistic type.

The relativistic massless dispersion law is also realized in another system - graphene [54].

Although the low energy dispersions in TI and graphene are similar, there is a fundamental

difference between these systems. Namely, TIs have only one Dirac cone (or odd number of

Dirac cones), while graphene has two Dirac cones, corresponding to two valleys. The states

of each Dirac cone in graphene are chiral, but chirality corresponds to pseudospin, not the

real spin, while the states of TI are spin chiral, where the real electron spin is correlated

with its momentum. Thus, each state in graphene has double spin degeneracy, whereas the

states in TI have no spin degeneracy.

Another fundamental difference between graphene and TI is that the surface states in

graphene are purely two-dimensional, whereas the surface states of TI are three-dimensional

with finite spatial extension into the bulk of TI. The finite spatial width of the surface states
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of TI brings additional features to TI systems. For example, for TI nanofilm of small thick-

ness, the surface states at two boundaries of the nanofilm are coupled due to the 3D nature

of TI surface states [20, 55, 56]. Such coupling of the states of two TI surfaces opens a gap in

otherwise gapless surface relativistic dispersion, resulting in an energy dispersion similar to

the dispersion of narrow-gap semiconductors. The value of the gap depends on the thickness

of TI nanofilm. Studying surface states provides better understanding of TI nanofilm.

We consider Bi2Se3 TI thin film grown along z-direction. The atomic p orbitals of Bi(6s26p3)

and Se(4s24p4) contribute to the Hamiltonian. Formation of the band structure of 3D TI

is illustrated in Fig. 1.8 and can be explained as follows. (1) Coupling of Bi and Se layers

makes Bi energy levels higher than Se energy levels due to the level repulsion. The p orbitals

of Bi and Se are hybridized and result in new states Bx,y,z, B
′

x,y,z, Sx,y,z, S
′

x,y,z and SO−
x,y,z.

(2) The bonding and anti-bonding states, P1±x,y,z and P2
±
x,y,z are created due to the inversion

symmetry. (3) The crystal has a layered structure which results in energy splitting between

pz and px,y. (4) The coupling between spin and orbital angular momentum leads to cross-

ing of the levels P1+z and P2−z . It transforms the system into a topological insulator phase

[57, 58]. So P1+z , ↑ (↓) and P2−z , ↑ (↓) are the closest energy levels to the Fermi level and

are considered as the basis of the effective Hamiltonian. The corresponding basis states can

be written as [ϕ(A1), 0]
T , [0, χ(−A1)]

T , [χ(A1), 0]
T and [0, ϕ(−A1)]

T . With this basis states,

we can write down the effective Hamiltonian for bulk Bi2Se3 following Ref.

citeshan2010effective:

H(k) = ǫ0(k)I4×4 +




M(k) A1kz 0 A2k−

A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k),




, (1.1)

where I4×4 is 4 × 4 unit matrix, ǫ0(k) = C + D1k
2
z + D2k

2, M(k) = M − B1k
2
z − B2k

2,

k± = kx ± iky and k2 = k2x + k2y. Here k is the finite wave vector. Model parameters

can be found in Ref. [57] ; M = 0.28eV , A1 = 2.2eV Å, A2 = 4.1eV Å, B1 = 10eV Å2,
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B2 = 56.6eV Å2, C = −0.0068eV , D1 = 1.3eV mathrmÅ, D2 = 19.6eV mathramÅ.

We solve the eigenvalue problem following Ref. [21]

H(k, kz)ψ = Eψ, (1.2)

using the four component trial wave function ψ = ψλe
λz. The secular equation gives four

solutions of λ(E) , ±λ1 and ±λ2. We label them as βλα(E) with α ∈
{
1, 2

}
and β ∈

{
+,−

}
.

λα(E) =

[
− F

2D+D−
+ (−1)α−1

√
R

2D+D−

]1/2
, (1.3)

where

F = A2
1 +D+(E − L1) +D−(E − L2),

R = F 2 − 4D+D−[(E − L1)(E − L2)− A2
2k+k−],

D± = D1 ±B1,

L1 = C +M + (D2 −B2)k
2,

L2 = C −M + (D2 +B2)k
2.

Due to the double degeneracy each wave function can be written as

ψαβ1 =




D+λ
2
α + L2 + E

−iA1(βλα)

0

A2k+




, (1.4)

ψαβ2 =




A2k−

0

iA1(βλα)

D−λ
2
α − L1 + E




. (1.5)
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The general wave function is a linear combination of these eight functions

Ψ(E, k, z) =
∑

α=1,2

∑

β=±γ

∑

γ=1,2

Cαβγψαβγe
βλαz, (1.6)

where Cαβγ is the superposition coefficient. Using the semi infinite boundary conditions

Ψ(z = 0) = 0 and Ψ(z → +∞) = 0, the energy dispersion of the surface states can be

written as

E± = C +
D1M

B1
± A2

√
1− (

D1

B1
)2k + (D2 −

B2D1

B1
)k2. (1.7)

The Fermi velocity near the Γ point is,

vF =
1

~

dE

dk
(1.8)

= (A2/~)
√
1− (D1/B1)2. (1.9)

For real roots λ1,2, the edge states decay near the surface (z = 0) and the decay length is of

the order of the characteristic length 1/λ1,2. For a film of finite thickness, if the thickness is

∼ 1/λ1,2, then two states at opposite surfaces are coupled and a finite energy gap is opened.

If λ1,2 is real, the gap ∆ = E+ − E− at the Dirac point can be approximated by

∆ ≃ 4|A1D+D−M |√
B3

1(A
2
1B1 + 4D+D−M)

e−λ1L, (1.10)

with the finite-thickness boundary conditions Ψ(z = ±L/2) = 0 where two boundaries are

located at z = L/2 and z = −L/2. If λ1,2 are complex conjugates, then the gap can be

written as [21]

∆ ≃ 8|A1D+D−M |√
−B3

1(A
2
1B1 + 4D+D−M)

e−aL sin bL, (1.11)

where λ± = a± ib and

a ≃ A1

2
√−D+D−

, (1.12)

b ≃
√
M

B1

+
A2

1

4D+D−
. (1.13)
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The energy band gap decays exponentially as a function of the thickness of TI film. If the

thickness of the nanofilm is small, i.e., L≪ 1/λ, then

tanh(
λ1L

2
) = 0 =⇒ λ1 = i

π

L
, (1.14)

and

H = D1
π2

L2
+D2

p̂2

~2
+
A2

~
(σ̂xp̂y − σ̂yp̂x) + (B1

π2

L2
+B2

p̂2

~2
)τ̂z ⊗ σ̂z. (1.15)

where σ̂i (i = x, y, z) are Pauli matrices corresponding to spin degrees of freedom, and

τ̂z(= ±1) is the Pauli matrix corresponding to electron pseudospin. We use this effective

continuous Hamiltonian in Chapter 2.

In Chapter 2, we introduce the step-like defect by changing the thickness of the nanofilm.

The thickness of the film changes the energy band gap. We study how electron reflectance

and transmittance depend on the parameters of the step-like defect and properties of TI

nanofilm. The results are published in Ref. [1]

1.4 Graphene like materials : Silicene/Germanene

Graphene is a monolayer of Carbon(C) atoms. The unique properties of graphene lead

scientists to study other elements in the same group of periodic table. As a result, other

monolayer materials such as Silicene and Germanene have been discovered [22–27]. Silicene

and Germanene are single layers of Si and Ge atoms, respectively. The main difference

between silicene/germanene and graphene is that due to a larger radius of a Si/Ge atom

compared to a C atom, the corresponding hexagonal lattice in silicene/germanene has a

buckled structure [27], consisting of two sublattices that are displaced vertically by a finite

distance l ∼ 0.5 Å Fig. 1.10. As a result, silicene has a large spin-orbit interaction, which

opens up a band gap at the Dirac points (∆so ≈ 1.55−7.9 meV for silicene and ∆so ≈ 24−93

meV for germanene [31, 32]). For graphene, the corresponding spin-orbit-induced gap is very

small, 25 µeV [33]. This buckled nature brings interesting electronic properties and many

attractive applications. Silicon based electronic devices are everywhere and it is convenient
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(a)

(b)

Figure (1.7) (a) Crystal structure of Bi2Se3 topological insulator. The inset shows the en-
larged version of an quintuple layer. (b) Band inversion of Bi and Se atoms. Figure is copied
from [59].
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Figure (1.8) Band structure formation of Bi2Se3. (I) Coupling of Bi and Se layers. (II)
Creation of bonding and anti-bonding states (III) Energy splitting between p orbitals. (IV)
Crossing of the levels due to spin orbit interaction. Figure is copied from Ref. [58].
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to incorporate silicene/germanene into current devices and to create new spintronic devices.

The growth temperature for silicene on a Ag(1 1 1) surface ranges from 220 to 260◦C [60].

Germanene can be grown on Au(1 1 1) at ∼200◦C [29].

The lattice geometry of low-buckled monolayers of Silicene and Germanene is shown in

Fig. 1.9. The low-buckled structure with sp3-like hybridization is stable.

Silicene/Germanene are expected to be topological insulators as they have strong in-

trinsic spin-orbit coupling. Additionally these materials have properties similar to graphene

as they reside in the same group IV. First-principle calculations demonstrated QSHE in Sil-

icene/Germanene and showed a gap opening at the Dirac points due to spin-orbit coupling

[61].

The low energy effective Hamiltonian with SOC of planar silicene at the Dirac point K

has the following form

H
[K]
eff ≈


 −ξσz vF

(
kx + iky

)

vF
(
kx − iky

)
ξσz


 , (1.16)

where vF is the Fermi velocity near the Dirac point and σz is the Pauli matrix. The effective

SOC ξ for the planar silicene is [61]

ξ ≈ 2ξ20|∆ǫ|/
(
9V 2

spσ

)
,

where ∆ǫ is the energy difference between the 3s and 3p orbitals, ξ0 is half the intrinsic

spin-orbit coupling, and Vspσ is the parameter that corresponds to the σ bond. The σ bond

is created by the 3s and 3p orbits. The energy spectrum can be obtained from Eq. (1.16) as

E(
−→
k ) = ±

√
(vFk)2 + ξ2. (1.17)

The energy gap is 2ξ at the Dirac points. Due to its fascinating buckled structure, the

charge will be transferred from one sub-lattice to the other sub-lattice and will open the

band gap. By applying an electric field normal to the silicene/germanene sheet the band
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gap can be controlled. When we apply electric field, Ez normal to silicene/germanene sheet,

the low-energy effective Hamiltonian is

Hη = ~vF (kxτx − ηkyτy) + ητzh11 + lEzτz , (1.18)

where

h11 = −λSOσz − aλR(kyσx − ηkxσy). (1.19)

vF =
√
3
2
at = 5.5 × 105ms−1 is the Fermi velocity, a = 3.86 Åis the lattice constant of the

sublattice and τa is the Pauli matrix corresponding to pseudospin. The Hamiltonian (1.18)

will be discussed more in Chapter 4. The energy dispersion corresponding to the Hamiltonian

(1.18) is

εη = ±
√

(~vFk)2 + (lEz − s
√
λ2SO + (aλRk)2)2,

where s = ηsz and sz = ±1 is the electron spin and η = ±1 corresponds to the K or K’

Dirac points. The energy band gap at the Dirac points is

∆(Ez) = 2|lEz − ηszλSO|. (1.20)

According to Eq. (1.20) the gap closes at Ez = ηszEc where Ec = λSO/l. At the critical

electric field Ec, the gap closes and silicene becomes semimetal. Elsewhere the gap is opened

and silicene is an insulator. If |Ez| < Ec it is a topological insulator, while if |Ez| >

Ec, silicene is a band insulator. Fig. 1.10 shows the change of the band gap as electric

field increases. Therefore in the case of silicene/germanene, application of a nonuniform

perpendicular electric field results in a spatially dependent bandgap. This property can be

used to design silicene-based quantum dots.

In Chapter 4, we study silicene/germanene quantum dots, which have cylindrical sym-

metry. Such quantum dots are created by the spatial distribution of an external perpendic-

ular electric field, which has different values in two regions: ρ < R and ρ > R where ρ is the

radial distance and R is the radius of the quantum dot. We study both energy spectra and
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(a)

(b)

(c)

(d)

Figure (1.9) Crystal structure of low-buckled Silicene and Germanene. (a),(b) The side view
and top view of Silicene. Atoms of two sublattices are denoted by red and yellow color.(c),(d)
The side and top view of Ge. Yellow and blue color atoms are used to represent atoms in
two sublattices. Figures are taken from Ref. [61, 62].

optical transitions of such silicene/germanene quantum dots. The results are published in

Ref. [3].

1.5 Black Phosphorous

A well known phosphorus allotrope is white phosphorus (WP), P4. The molecule has a

tetrahedron structure with six single bonds and it has sp3 hybridization. Each atom has 3

bonds with its neighbors. White phosphorus is not a stable material. When WP undergoes

high pressure, it forms a tripod shape by breaking three bonds in P4. Instead of becoming

a fully flat layer, it has a puckered surface due to sp3 hybridization. It is the most stable

phosphorus allotrope which is called black phosphorus (BP). The structure of monolayer

black phosphorus is shown in Fig. 1.11. Due to the puckered honeycomb structure, each

phosphorene layer consists of two atomic layers which are separated by 2.244Åvertically. In

BP the puckered layers are stacked on top of each other and stay together by weak van

der Waals interactions. Phosphorene has two different orientations, namely ”armchair” and
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(a)

(b)

(c)

Figure (1.10) (a),(b) Top and side view of Silicene structure. A and B atoms are on two
sublattices which separate by a perpendicular distance 2l. Electric field Ez is applied per-
pendicular to the sheet (c) The band gap ∆ as a function of Ez. As Ez increases topological
phase transition occurs between topological insulating phase to band insulating mode. Figure
is taken from [34]
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Figure (1.11) (Color) The 3D view of monolayer lattice structure of black phosphorous. A
single layer consists of two sub lattices. Figure is copied from [69].

”zigzag” on two sides of the structure - see Fig. 1.12. Due to the different orientations, BP

has highly anisotropic properties. BP has different Young’s modulus and ultimate strain

values for the armchair direction and zig-zag directions [63]. According to first principle cal-

culations, Young’s modulus along the armchair direction is 21.9N.m−1 while it is 56.3N.m−1

for the zig-zag direction. By solving the phonon Boltzman transport equation (BTE), the

thermal conductivity at 300 K is 30.15Wm−1K−1 in the zigzag direction and 13.65Wm−1K−1

in the armchair direction [64]. Similar to graphene, the mechanical exfoliation method can

be used to prepare a single to few BP layers [65–68]. Phosphorene is a 2D semiconcuctor

with a finite band gap, while graphene is a semi-metal with zero band gap.

A monolayer BP has a gap of 1.5−2 eV around the Γ point which is greater than the gap

of 0.3 eV of bulk BP. This gap depends on the thickness of the BP layer [71]. In addition to

the relatively large band gap, BP has other unique properties, such as carrier mobility up to

1000cm2V−1s−1. These properties can be tuned by the thickness of phosphorene. Moreover

few-layer phosphorene can be used for field effect transistors at room temperature [67].

The effective low-energy Hamiltonian of phosphorene can be obtained from k.p theory
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(c)

Figure (1.12) (a) Bulk BP consists with three stacked layers. (b) Side view shows the
armchair orientation. (c) Top view of BP in x-y plane shows orientations of armchair and
zigzag. Figure is copied from [70].

[69] and is in the following form [72]

H =


 Ec + ηck

2
x + νck

2
y γkx + βk2y

γkx + βk2y Ev − ηvk
2
x − νvk

2
y


 . (1.21)

where Ec and Ev are the lowest energy of conduction band and the highest energy of valence

band. Then the band gap is ∆ = Ec − Ev ≈ 2 eV. The band parameters ηc,v and νc,v

are related to the in-plane effective masses and γ and β represent the coupling between

the conduction and valence bands. The parameters have the following values [72]: ηc,v =

~
2/0.4m0 = 19.0763 eV Å2,νc = ~

2/1.4m0 = 5.4504eV Å2,νv = ~
2/2.0m0 = 3.8153 eV

Å2,γ = 4a/π = 2.8393 eV Å, β = 2a2/π2 = 1.0077eVÅ2 and a = 2.23 Å. Here m0 is the free

electron mass. From the Hamiltonian (1.21) we can find the corresponding energy dispersion

for both the conduction and valence bands:
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Figure (1.13) (Color) Energy dispersion of CB for phosphorene QD Eq. 1.22.

E+ =
1

2
(p+

√
p2 − 4q), (1.22)

E− =
1

2
(p−

√
p2 − 4q), (1.23)

where

p = Ec + Ev + (νc − νv)k
2
y ,

q = (Ec + ηck
2
x + νck

2
y)(Ev − ηvk

2
x − νvk

2
y)− (γkx + βk2y)

2.

The energy of the conduction band is shown in Fig. 1.13. We can see that the energy

dispersion is highly anisotropic. We can create a finite phosphorene quantum dot by using a

piece of phosphorene itself or by trapping potential. Here we consider a piece of phosphorene

monolayer of a circular shape, which is characterized by radius R. In Chapter 5, first we find
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the energy levels and the corresponding wave functions of such a quantum dot. Then we

calculate the interband and intraband optical transitions within the quantum dot.
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CHAPTER 2

ELECTRON SCATTERING BY STEP-LIKE DEFECT IN TOPOLOGICAL

INSULATOR NANOFILM

By changing the thickness of the TI nanofilm one can control the gap in the dispersion

law and introduce the defects into the system. The simplest defect is a step-like defect,

which divides two regions of TI nanofilm with different thicknesses. Such type of defect with

the height of a step ∼ 30.5 Å was introduced on a surface of Bi2Te3 to study experimentally

the oscillations of the local density of states due to the step defect. The step-like defect was

also considered theoretically in Refs. [73, 74] within a 2D model of surface states of TI. The

defect was introduced into the 2D effective Hamiltonian of the surface states as a δ-function

potential.

Here we consider the properties of a one-dimensional step-like defect on a surface of TI

nanofilm. An electron, propagating along the surface of TI nanofilm, can be scattered by the

defect, which results in generation of reflected and transmitted electron waves. We study how

electron reflectance and transmittance depend on the parameters of the defect. Although

some properties of the electron reflection can be explained within a picture of reflection

from a step-like barrier, there are properties which are specific to TI system. Namely, the

scattering of an electron by a step-like defect generates not only reflected and transmitted

electron waves, but also localized (evanescent) modes. Such modes are localized at the defect,

which results in an increase of the electron density at the defect.

2.1 Model and Main Equations

We consider a TI nanofilm with a step-like singularity, which means that the TI nanofilm

consists of two regions with different thicknesses – see Fig. 2.1(a). We assume that the linear

step-like defect is described by an equation x = 0 with axis y parallel to the step-like defect
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and axis z perpendicular to the nanofilm – see Fig. 2.1(a). In two regions, determined by

the defect, the thickness of the nanofilm is L1 at x < 0 (region 1) and L2 at x > 0 (region

2). Below we consider both L1 < L2 and L1 > L2 cases.

We study the reflection (scattering) of an electron by the step-like defect. The electron,

propagating in region 1 in the positive direction of axis x, is incident on the defect and is

partially reflected (transmitted) by the defect. The specific feature of TI system is that the

scattering of the incident electron by the defect produces not only the propagating (reflected

and transmitted) electron waves but also the evanescent (localized) waves as schematically

illustrated in Fig. 2.1(b).

To study the scattering of an electron by the step-like defect, we employ the effective

low energy model of TI nanofilm, which is described by 4 × 4 matrix Hamiltonian of the

following form [21]

H =


 H+ 0

0 H−




= D1
π2

L2
+D2

p̂2

~2
+
A2

~
(σ̂xp̂y − σ̂yp̂x) + (B1

π2

L2
+B2

p̂2

~2
)τ̂z ⊗ σ̂z . (2.1)

where σ̂i (i = x, y, z) are Pauli matrices corresponding to spin degrees of freedom, and τ̂z is

the Pauli matrix corresponding to electron pseudospin, which determines the block diagonal

Hamiltonian matrix with H+ (for τz = 1) and H− (for τz = −1). Here p̂i = −~∂/∂ri

(i = x, y) is the electron 2D momentum, L is the thickness of the nanofilm, and A2, B1,

B2, D1, D2 are parameters of 3D model of TI. Below we consider Ti2Se3 TI, for which

these parameters takes the following values [57] A2 = 4.1 eV · Å, B1 = 10 eV · Å2 , B2 =

56.6 eV · Å2, D1 = 1.3 eV · Å2, D2 = 19.6 eV · Å2. The third term in Hamiltonian (2.1),

which is determined by constant A2, describes the spin-orbit interaction in the effective

Hamiltonian of TI.

Since the electron dynamics for two components of pseudospin are decoupled, we con-

sider scattering of an electron with only one component of pseudospin, for example, τz = 1.



27

For such a component of pseudospin, the scattering is described by a 2×2 Hamiltonian, where

the two components of the wave function correspond to two spin components, σz = ±1. The

scattering amplitudes for pseudospin component τz = −1 are the same as for τz = 1.

Within each region (1 or 2) the nanofilm thickness is constant. Then the electron wave

functions corresponding to Hamiltonian (2.1) have the plane wave form Ψ ∝ ei(kxx+kyy),

where (kx, ky) is an electron wave vector. The corresponding energy spectrum, which is

given by expression

E±(k, L) =

(
D1

π2

L2
+D2k

2

)
±

√(
B1

π2

L2
+B2k2

)2

+ A2
2k

2, (2.2)

has a gap ∆g(L) = 2B1
π2

L2 , which is determined by the thickness of the nanofilm. Here

k =
√
k2x + k2y. For a given wave vector (kx, ky) there are two energy bands, E+(k) and

E−(k), which can be identified as ”conduction” and ”valence” bands of TI nanofilm. The

two component wave function, corresponding to wave vector (kx, ky) and energy E±(kx, ky)

have the following form

Ψ̂kx,ky,L =
1√

A2
2|k|2 + (F1 +N1k2 −E±)

2
×


 −A2(ikx + ky)

F1 +N1k
2 − E±(k, L)


 ei(kxx+kyy). (2.3)

where we introduced the following notations F1 =
(
D1 +B1

)
π2/L2 and N1 =

(
D2 +B2

)
.

For the reflection (elastic electron scattering) problem, we need to identify the reflected

and transmitted states for a given incident electron wave. Such states are determined by the

condition that the energy of the reflected (transmitted) electron is equal to the energy of the

incident electron.

A specific feature of TI system is the existence of four different wave vectors, k, which

have the same energy. Namely, at a given energy E there are four solutions of an equation
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E = E±(k). These solutions are given by the following expressions

k1,±(E,L) = ±

√
β +

√
β2 + 4αγ

2α
, (2.4)

k2,±(E,L) = ±

√
β −

√
β2 + 4αγ

2α
, (2.5)

where α = B2
2 −D2

2, β =
(
B1B2−D1D2

)
2π2

L2 +2ED2+A
2
2, γ = E

(
E−D1

2π2

L2

)
+(D2

1−B2
1)

π4

L4 .

If energy E is not in the energy gap of TI nanofilm, then wave vectors k1,± are real and

correspond to two propagating waves, whereas the wave vectors k2,± are purely imaginary

and describe decaying and growing modes. If energy E is in the gap, i.e., E−(k = 0) < E <

E+(k = 0), then all solutions, k1,± and k2,±, are imaginary, which means that there are no

in-gap propagating modes and all the modes are either decaying or growing modes.

The existence of four different wave vectors with the same energy introduces an additional

features in electron scattering by a defect in TI nanofilm. For a step-like defect the problem

of scattering (reflection) is formulated as follows. An electron with wave vector (kx > 0, ky)

and energy E±(k) is propagating in the positive direction of axis x and is incident on the

step-like defect. The direction of electron propagation is characterized by the angle of inci-

dence, π/2 ≥ ϕ ≥ 0, defined as tanϕ = ky/kx. The scattering of an electron by the defect

results in generation of two reflected and two transmitted propagating or evanescent waves,

see Fig. 2.1(b). Such waves are determined by the condition that the energy of the reflected

or transmitted wave is equal to the energy of the incident electron and the y component of

the wave vector, ky, of the incident electron is equal to the y component of the transmitted

and reflected waves. Here for the reflected (transmitted) waves we need to choose the waves,

which propagate or decay in the negative (positive) direction of axis x.

The corresponding wave functions are described by Eq. (2.3) and are characterized by the

following parameters:

(i) the incident wave is Ψ̂kx,ky,L1
, where k = k1,+(E,L1) and E is the energy of the incident

electron,
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(ii) the reflected waves are Ψ̂−kx,ky,L1
(propagating wave) and Ψ̂−iλ,ky,L1

(evanescent wave),

where λ > 0 and −λ2 + k2y = [k2,+(E,L1)]
2.

(iii) transmitted waves are Ψ̂k′x,ky,L2
(propagating or evanescent wave) and Ψ̂iλ′,ky,L2

(evanes-

cent wave), where (k′x)
2 + k2y = [k1,+(E,L2)]

2, λ′ > 0, and −(λ′)2 + k2y = [k2,+(E,L2)]
2.

Then the electron wave function is

Ψ̂0 =





Ψ̂kx,ky,L1
+ r1Ψ̂−kx,ky,L1

+ r2Ψ̂−iλ,ky,L1
, x < 0,

t1Ψ̂k′x,ky,L2
+ t2Ψ̂iλ′,ky,L2

, x > 0,
(2.6)

where r1, r2 are amplitudes of the reflected waves and t1, t2 are amplitudes of the transmit-

ted waves. The amplitudes r1, r2, t1, and t2 are found from the boundary condition, i.e.,

continuity of the wave function, Ψ̂0, and its derivative, ∂xΨ̂0, at x = 0, which is equivalent

to continuity of the current (electron flux). Then the reflection and transmission coefficients

are R = |r21| and T = 1− R, respectively. Since the evanescent modes do not contribute to

electron current, there is no contribution of the evanescent modes into the reflectance and

transmittance.

2.2 Results and Discussion

2.2.1 Reflectance

Since the evanescent waves produce zero current, only the propagating waves contribute

to the electron reflectance. Thus, if the energy of the incident electron, which is in the region

1 of the nanofilm with thickness L1, is in the energy gap of the TI nanofilm in region 2 with

thickness L2, then there are no propagating transmitted waves and the transmittance in this

case is 0, i.e., the reflectance is exactly 1. Such total internal reflection can be realized only

if ∆g(L1) = 2B1
π2

L2
1

< ∆g(L2) = 2B1
π2

L2
2

, i.e. L1 > L2.

If the energy of the incident electron is not in the gap of TI nanofilm in region 2 then

there is a finite reflectance of the incident electron. In Fig. 2.2 the reflectance is shown

as a function of thickness L2 [see Fig. 2.1(a)] for different wave vectors k of the incident
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        L1                            L2

            Reflected      Transmitted

             Incident

         

             (a)

          (b)

                                        localized modes
            x           0

    Region 1         Region 2

Figure (2.1) (a) Schematic illustration of a step-like defect on a surface of topological insulator
nanofilm. The step-like defect at x = 0 divides TI nanofilm into two regions: region 1 with
nanofilm thickness L1 and region 2 with nanofilm thickness L2. (b) Schematic illustration of
electron reflection from the step-like defect. Incident, reflected, and transmitted propagating
waves are shown by arrows. The localized modes, generated by electron reflection, are also
shown. The modes are localized at the defect.
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Figure (2.2) Electron reflectance is shown as a function of the thickness L2 (see Fig. 2.1) of
nanofilm in region 2 for different values of electron energy. The thickness of TI nanofilm in
region 1 is L1 = 40 Å and the angle of incidence is ϕ = 0. The numbers next to the lines

are the wave vectors of the incident electron in units of Å
−1
.



32

  0 0.02 0.04 0.06 0.08 0.10
  0

0.2

0.4

0.6

0.8

1.0 L2 = 10 Å

                                                                     L1= 40 Å

             20                                                   j = 0°     30 

  

     50             100

R
ef

le
ct

an
ce

    k(Å-1
)

Figure (2.3) Electron reflectance is shown as a function of the wave vector, k, of the incident
electron for different thicknesses L2 of TI nanofilm in region 2. The thickness of TI nanofilm
in region 1 is L1 = 40 Å and the angle of incidence is ϕ = 0. The numbers next to the lines
are the values of the thickness L2.

electron, i.e., for different energies of the incident electron. The thickness of the nanofilm

in region 1 is fixed and is equal to L1 = 40 Å. The reflectance is zero at L2 = L1 = 40

Å, which corresponds to homogeneous TI nanofilm with constant thickness. At L2 6= L1

the reflectance is not zero, but it shows different behaviours for L2 > L1 and L2 < L1. At

L2 > L1 the reflectance monotonically increases with L2, reaching some asymptotic values

at large L2, which are around 20% - 40 % depending on the electron energy.

At L2 < L1, within a narrow interval of thickness L2, the reflectance shows very strong

dependence on L2. At each value of electron energy (or wave vector), there is a critical

thickness L
(cr)
2 so that at L2 ≤ L

(cr)
2 an electron experiences total internal reflection with

reflectance equal to one. This corresponds to the condition that the electron energy E is

in the energy gap of TI nanofilm in region 2. The critical thickness is determined by an

equation E+(0, L
(cr)
2 ) = E, which gives L

(cr)
2 =

√
π2(D1 +B1)/E. Near the critical thickness

the reflectance shows very strong dependence on L2 with sharp increase from zero to one
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within a narrow interval of thicknesses L2.

The reflectance as a function of electron wave vector (energy) is shown in Fig. 2.3 for different

values of L2. At L2 > L1 = 40 Å, the reflectance is large within narrow interval of wave

vectors near k = 0 and becomes one at k = 0. At L2 < L1, there a range of wave vectors,

which satisfy the condition of total reflection, i.e. the energy E is in the gap of nanofilm

of thickness L2. The total reflection occurs at small wave vectors (small energies), i.e., at

k < k(cr)(L2). The critical wave vector is determined by the condition that the electron

energy is exactly at the edge of the ”conduction” band dispersion for the nanofilm of region

2. Thus, the critical wave vector satisfies an equation E = E+(k
(cr), L2). The dependence

of the reflectance on the wave vector (energy) is strong near the critical value, k ≈ k(cr).

Within a good accuracy, one can say that the reflectance is one within a finite range of wave

vectors, k < k(cr)(L2), and zero at k > k(cr)(L2).

This property can be used to design an electron filter to select electrons within a given

range of energies. Namely, if an electron beam with a broad energy distribution is incident

on a step-like singularity with the known values of L1 and L2 < L1, then only the electrons

with k < k(cr)(L2) will be totally reflected.

In Fig. 2.4 we show the dependence of the reflectance on the angle of incidence, ϕ, for

different wave vectors (energies) of the incident electron and different thicknesses, L2, of TI

nanofilm in region 2. The total internal reflection, which can be realized only at L2 < L1,

occurs at ϕ > ϕ(cr). The critical angle is determined by condition E = E+(k sinϕ
(cr), L2),

i.e., kx in region 2 is zero at the critical angle and the y component of the wave vector is

k sinϕ(cr). Comparing small [Fig. 2.4(a)] and large electron energies [Fig. 2.4(b)], one can see

that the critical angle ϕ(cr) increases with electron energy. The critical angle also increases

with the thickness L2. If the thickness L2 of the nanofilm in region 2 satisfies an inequality

E+(0, L2) ≤ E, then even at zero angle of incidence the electron experiences total reflection.

In this case for all angles there is total internal reflection of the incident electron [see L2 = 10

and 20 Å in Fig. 2.4(a) and L2 = 10 Å in Fig. 2.4(b)]. Near the critical angle ϕ ≈ ϕ(cr) (at

L2 < L1), the reflectance shows strong dependence on the angle ϕ with sharp increase from
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zero to one within small interval of angles. Comparing the results for L2 = 100 Å in Fig.

2.4(a) and Fig. 2.4(b), one can conclude that the dependence of the reflectance on the angle

becomes stronger with increasing electron energy. At L2 > L1, the total internal reflection

cannot be realized and the reflectance shows a monotonic dependence on the angle ϕ.

The above data on the reflectance from the step-like defect show that the total reflection can

be realized only at L2 < L1. At such values of nanofilm thickness L2, by varying parameters

of the system, e.g., angle of incidence or electron energy, one can change the reflectance from

small value (almost zero) to one within narrow interval of parameters. Thus, the reflectance

shows strong dependence on the parameters of the system near their critical values.

2.2.2 Evanescent modes

The scattering of an electron by a step-like defect generates localized evanescent modes.

Such modes are shown schematically in Fig. 2.1(b). The evanescent modes are localized at

the step-like defect and exponentially decay in both directions away from the defect (in both

negative and positive directions of axis x) – see Fig. 2.1(b). The evanescent modes do not

directly contribute to electron reflectance, but they increase the electron density near the

step-like defect.

The amplitudes of the evanescent modes are strongly correlated with electron re-

flectance. The amplitudes of the evanescent modes are large only when the electron ex-

periences total reflection, otherwise the amplitudes are relatively small. Typical spatial

distributions of electron density in the evanescent modes are shown in Fig. 2.5 for different

values of electron wave vector (electron energy) and different thicknesses L2 of nanofilm in

region 2. Here ρ1 and ρ2 in Fig. 2.5 correspond to two components of the electron wave func-

tion in TI nanofilm – see Eq. (2.3). The two components of the wave function correspond to

two directions of electron spin, i.e., spin-up and spin-down. The figure illustrates two cases:

weak reflection [Fig. 2.5(a) and (c)] and strong total reflection [Fig. 2.5(b) and (d)].

For weak reflection, the amplitudes of the evanescent modes are small. The correspond-

ing increase of the local electron density near the step-like defect is less than 1 %. The wave
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Figure (2.4) Electron reflectance is shown as a function of angle of incidence, ϕ, for different
values of the nanofilm thickness, L2, in region 2. The thickness of the nanofilm in region 1 is
L1 = 40 Å and the wave vector of the incident electron is (a) k = 0.02 Å−1 and (b) k = 0.1
Å−1. The numbers next to the lines are the values of the thickness L2. In panel (a), the
electron reflectance is exactly one at L2 = 10 Å and 20 Å.
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Figure (2.5) Spatial distribution of electron density in the evanescent (localized) modes is
shown for different parameters of the nanofilm and different electron energies (wave vectors).
Two densities ρ1 and ρ2 correspond to two components of the wave function. The parameters
of the system (thicknesses L1 and L2 and electron wave vector k) are shown in corresponding
panels.
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function of the evanescence modes is almost continuous function of the position – see Fig.

2.5(a) and (c), where the density of the evanescent mode is continuous at x = 0.

For total reflection [see Fig. 2.5(b) and (d)], the typical amplitude of the evanescent

mode is large, which results in strong increase, by up to 60 %, of local electron density near

the defect. The amplitudes of the evanescent modes are large in region 1 only, whereas

they are small in region 2. The localization length of the evanescent modes is around 10

Å. The wave function, which describes the localized evanescent mode, is discontinuous at

x = 0. Note, that the continuity of the electron wave function is satisfied for the total wave

function, which includes both propagating and evanescent modes. Figures 2.5(b) and (d)

also show that with decreasing electron energy, i.e., when the energy becomes further away

from the edge of the ”conduction” band, the amplitude of the evanescent mode increases.

Under the condition of total reflection, the density ρ1 (or ρ2) of the evanescent modes

is the largest in the region 1, whereas the density in region 2 is almost order of magnitude

smaller. Below we describe the evanescent modes in terms of their densities at the step-like

defect in region 1, i.e., at point x = 0−.

In Fig. 2.6, two components of electron density of evanescent modes at x = 0− are shown

as the functions of nonofilm thickness, L2, in region 2. The electron density in evanescent

mode is large for small thickness L2 and monotonically decreases with L2. Both in Fig. 2.6

(a) and (b) there are singularities in the dependence of electron density on thickness L2.

These singularities occur at L2 ≈ 19 Å in Fig. 2.6 (a) and at L2 ≈ 11 Å in Fig. 2.6 (b) and

correspond to critical points of transition from total reflection at small L2 to weak reflection

at large L2 – see Fig. 2.2. Thus, the data, shown in Fig. 2.6, illustrate that large amplitudes

of evanescent modes are realized only in the case of total electron reflection. The farther

the system from the critical point, i.e., the transition point from total reflection to small

reflection, the larger the amplitudes of evanescent modes.

In Fig. 2.7 the densities of evanescent modes, ρ1(0−) and ρ2(0−), are shown as the

functions of the angle of incidence, ϕ. The system is in the regime of total reflection. The

densities of evanescent modes have nonmonotonic dependence on the angle ϕ with maximum
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Figure (2.6) The electron density in the evanescent mode near the step-like defect in region 1,
i.e. at x = 0−, is shown as a function of the nanofilm thickness L2 in region 2. Two densities
ρ1 and ρ2 correspond to two components of the wave function. The nanofilm thickness in
region 1 is L1 = 40 Å and the wave vector of the incident electron is (a) k = 0.05 Å−1 and
(b) k = 0.1 Å−1. Singularities in the graphs at L2 ≈ 18 Å [panel (a)] and L2 = 12 Å [panel
(b)] correspond to transition from total electron reflection at small L2 to small reflection at
large L2.
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Figure (2.7) The electron density in the evanescent mode near the step-like defect in region
1, i.e. at x = 0−, is shown as a function of the angle of incidence. Two densities ρ1 and
ρ2 correspond to two components of the wave function. The nanofilm thicknesses in region
1 is L1 = 100 Å and in region 2 is L2 = 10 Å. The wave vector of the incident electron is
k = 0.05 Å−1.

values at some finite values of ϕ, e.g., ρ2 has maximum at ϕ ≈ 180. At ϕ = 900, i.e., an

electron is propagating parallel to the defect, the reflectance is 1 (see Fig. 2.4) and no

evanescent mode is generated at the defect.

The above results are shown for pseudospin τz = 1. In this case the densities ρ1 and ρ2

correspond to up and down directions of electron spin, respectively. For pseudospin τz = −1,

the results for electron reflectance and transmittance, and intensity of evanescent modes will

be exactly the same as for τz = 1 with only difference that for τz = −1 the densities ρ1 and

ρ2 correspond to down and up directions of electron spin.

The decaying states at the surface of 3D TI near the linear defect have been discussed

in Refs. [75–77], where the decaying modes are due to warping terms in the effective TI

Hamiltonian.
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2.3 Conclusion

Scattering of an electron propagating on a surface of TI nanofilm is determined by

specific energy dispersion law of TI system. Namely, the electron dispersion in TI nanofilm

has a gap, the magnitude of which depends on the thickness of TI nanofilm, ∆g ∝ L−2. The

gapped structure of electron energy dispersion introduces two types of electron states on a

surface of TI nanofilm. If electron energy is in the energy gap, then there are only decaying

(evanescent) and growing electron modes in the nanofilm. Whereas if electron energy is not

in the energy gap, then there are both propagating and evanescent (and growing) modes.

Coexistence of both propagating and evanescent modes is a specific feature of TI nanofilm.

Due to such coexistence of different types of modes, the scattering of an electron by a step-

like defect produces not only reflected and transmitted electron waves, but also modes, which

are localized at the defect.

The amplitude of the reflected electron wave strongly depends on the position of electron

energy relative to the energy gap in region 2 of the nanofilm, i.e., in the transmitted region.

If electron energy is in the energy gap of region 2, then the reflectance is exactly one, which

corresponds to total internal reflection. If the electron energy is not in the energy gap, then

the reflectance is small and the electron is almost totally transmitted to region 2. The critical

points, dividing these two regimes, are defined by the condition that the electron energy is

at the band edge of energy dispersion in region 2. Near the critical points, the dependence of

the electron reflectance on the parameters of the system, such as thickness of the nanofilm or

electron energy, is strong. The reflectance changes from one (total reflection) to zero (small

reflection) within a narrow interval of parameters.

The amplitudes of the generated evanescent modes, which are localized at the step-like

defect, are large in the case of total internal reflection and small if the reflectance is small.

Thus, if an electron with a given energy E is incident on a region of TI nanofilm, which does

not support electron propagating waves at energy E, then there is a strong enhancement

of local electron density near the boundary of such region. The electron density near the
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boundary (defect) increases by up to 60 %. Such strong increase of the local electron density

can be observable in many electron system, when the scattering of many electrons by the

defect is studied. The inter-electron interactions combined with the local increase of the

electron density near the defect can introduce additional scattering potential near the step-

like defect. Such additional potential can modify the scattering properties of many electron

systems.

In the analysis of electron scattering from a step-like defect we assumed that the width

w of the step is infinitely small. For a finite width of the step, the above results are valid as

long as the width is much smaller than the electron wavelength, i.e., kw ≪ 1. For example,

for k = 0.05 Å−1 the limitations on the width of the step is w ≪ 20 Å. For larger values of

w ≥ 20 Å, the scattering amplitude and formation of evanescent modes are expected to be

suppressed.
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CHAPTER 3

QUANTUM DOT IN TOPOLOGICAL INSULATOR NANOFILM

In this chapter we consider a quantum dot in TI nanofilm. We introduce a quantum dot

as a finite region of TI nanofilm with a larger thickness. Due to a gapped structure of the

energy dispersion in TI nanofilm, such a quantum dot can localize an electron. We consider

only a single electron problem and for a single electron calculate both the energy spectra

and the optical transitions within a TI quantum dot. The main results in this chapter has

been published in Journal of Physics : Condensed Matter [2]

3.1 Model and Main equations

We employ a TI nanofilm, which is characterized by nanoscale thickness L, to design a

TI quantum dot. A quantum dot in such nanofilm is introduced as a region of the nanofilm

of larger thickness. We assume that the quantum dot has cylindrical symmetry and is

characterized by its height h and radius R – see Fig. (3.1). Thus the quantum dot can be

described as topological insulator nanofilm with thickness L at ρ > R and thickness L+h at

ρ < R, where ρ is the 2D distance from the center of the quantum dot. Below we consider

only one set of thicknesses of the system, i.e., L = 20 Å and h = 20 Å, and we vary the

radius R of the quantum dot.

To find the energy spectrum of the quantum dot system and corresponding optical

transitions, we introduce a 4 × 4 matrix Hamiltonian which represents the effective low

energy model of topological insulator nanofilm. The Hamiltonian describes the 2D in-plane
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Figure (3.1) (a)Schematic illustration of TI quantum dot of cylindrical symmetry. The TI
nanofilm has a thickness L2. The quantum dot is introduced as region of nanofilm with
thickness L1 and is characterized by its height h = L1 − L2 and radius R. (b) Band edge
profile of TI quantum dot is shown schematically for conduction and valence bands of the
system. The bandgaps ∆g,1 and ∆g,2 are the bandgaps of TI nanofilm with thickness L1 and
L2, respectively.
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electron dynamics in TI nanofilm and has the following form [21]

H =



 H+ 0

0 H−





= D1
π2

L2
+D2

p̂2

~2
+
A2

~
(σ̂xp̂y − σ̂yp̂x) +

(
B1

π2

L2
+B2

p̂2

~2

)
τ̂z ⊗ σ̂z. (3.1)

where σ̂i (i = x, y, z) are Pauli matrices corresponding to spin degrees of freedom, and τ̂z is

the Pauli matrix corresponding to electron pseudospin, which describes the block diagonal

Hamiltonian matrix with H+ (for τz = 1) and H− (for τz = −1). Here p̂i = −~∂/∂ri

(i = x, y) is the electron 2D momentum, L is the thickness of the nanofilm, and A2, B1,

B2, D1, D2 are parameters of 3D model of TI. Below we consider Ti2Se3 TI, for which these

parameters are [57] A2 = 4.1 eV · Å, B1 = 10 eV · Å2 , B2 = 56.6 eV · Å2, D1 = 1.3 eV · Å2,

D2 = 19.6 eV · Å2.

For homogeneous TI nanofilm, the electron states are characterized by a 2D wave vector,

(kx, ky) = (px, py)/~, and the corresponding energy spectrum,

E±(k, L) =

(
D1

π2

L2
+D2k

2

)
±

√(
B1

π2

L2
+B2k2

)2

+ A2
2k

2, (3.2)

has two bands (branches): (i) ”conduction” band with energy E+ and positive effective mass

at p = 0 and (ii) ”valence” band with energy E− and negative effective mass. The band

edges for TI nanofilm of thickness L are at Ec(L) = (D1+B1)
π2

L2 for conduction band and at

Ev(L) = (D1 − B1)
π2

L2 for valence band. The corresponding bandgap is ∆g = 2B1
π2

L2 . Thus

the variable thickness of TI nanofilm [Fig. (3.1)] introduces variation of the conduction and

valence band edges, which generates confinement potential for both conduction and valence

bands – see Fig. (3.1)b.

To find the energy spectrum of a quantum dot we determine at a given energy E the gen-

eral solution of the Schrödinger equation with Hamiltonian (3.1) in two regions ρ < R and

ρ > R. Then the continuity condition at the boundary ρ = R determines the discrete energy
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spectrum of the quantum dot. From the eigenvalue equation, derived from the matrix Hamil-

tonian (3.1), one can obtain that for a given energy E there are four values of wave vectors,

corresponding to decaying and propagating waves in the nanofilm of a given thickness. These

wave vectors are

k1,±(E,L) = ±

√
β +

√
β2 + 4αγ

2α
, (3.3)

k2,±(E,L) = ±

√
β −

√
β2 + 4αγ

2α
, (3.4)

where α = B2
2 −D2

2, β =
(
B1B2−D1D2

)
2π2

L2 +2ED2+A
2
2, γ = E

(
E−D1

2π2

L2

)
+(D2

1−B2
1)

π4

L4 .

If E > E+ or E < E−, i.e., the energy is not in the energy gap of TI nanofilm, then k1,±

are real and correspond to two propagating waves, whereas k2,± are purely imaginary and

determine decaying and growing modes. If E+ > E > E−, i.e., the energy is in the band

gap, then all solutions, k1,± and k2,±, are imaginary and describe either decaying or growing

modes.

The localized modes of a quantum dot exist only in the following energy range E−(L+

h) > E > E−(L) (valence band states) and E+(L) > E > E+(L + h) (conduction band

states). In this energy range, the wave vector k1,±(E,L + h) is real and corresponds to a

propagating mode inside the quantum dot, while k2,±(E,L + h), k1,±(E,L), k2,±(E,L) are

imaginary and correspond to decaying modes both inside and outside the quantum dot. A

specific feature of TI quantum dot is that inside quantum dot there are both propagating

and decaying modes simultaneously.

Due to a double pseudospin degeneracy of electronic states, below we calculate the

energy spectra of TI quantum dot for one component, e.g., τz = 1, of pseudospin only. In

two regions (ρ < R and ρ > R) the electron wave function with z-component of angular

momentum m has the following form

ψ(ρ < R) =


 a1Q1Jm(κρ) + a2M1Im(qρ)e

imϕ

a1Q2Jm+1(κρ) + a2M2Im+1(qρ)e
imϕ


 , (3.5)
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for ρ < R and

ψ(ρ > R) =


 a3Λ1Km(q1ρ) + a4F1Km(q2ρ)e

imϕ

a3Λ2Km+1(q1ρ) + a4F2Km+1(q2ρ)e
i(m+1)ϕ


 , (3.6)

for ρ > R, where the constants aj , j = 1, . . . , 4, are determined from continuity of the wave

function and its derivative and from a normalization condition. Here κ = k1,+(E,L + h),

q = k2,+(E,L + h)/i, q1 = k1,+(E,L)/i, and q2 = k2,+(E,L)/i. We also introduced the

following notations

Q1 = −A2κ,

Q2 = (D1 +B1)π
2/(L+ h)2 + (D2 +B2)κ

2 − E,

M1 = −A2q,

M2 = (D1 +B1)π
2/(L+ h)2 − (D2 +B2)q

2 − E,

Λ1 = A2q1,

Λ2 = (D1 +B1)π
2/L2 − (D2 +B2)q

2
1 −E,

F1 = A2q2,

F2 = (D1 + B1)π
2/L2 − (D2 +B2)q

2
2 − E.

In Eqs. (3.5)-(3.6), Jm is the Bessel function of the first kind, Im and Km are modified Bessel

functions of the first and the second kind, respectively.

The energy spectrum is determined by the boundary conditions, which are the continuity

of wave function and that of its derivative at the boundary of the quantum dot, i.e.,

ψ |ρ=R+0= ψ |ρ=R−0, (3.7)

∂ψ

∂ρ

∣∣∣∣
ρ=R+0

=
∂ψ

∂ρ

∣∣∣∣
ρ=R−0

. (3.8)

From these conditions we obtain the matrix equation, M(E)a = 0, on coefficients aj , where
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M(E) is a 4 × 4 matrix, the elements of which depend on energy E. Then the energy

spectrum is determined from numerical solution of nonlinear equation detM(E) = 0.

The optical transitions between the localized states of the quantum dot are determined

by a velocity operator, vi ∝ ∂H/∂pi, which, for example, for y-polarized light has the form

vy =



−2N1ky −A2

−A2 −2N2ky



 , (3.9)

where we consider only one component of the pseudospin, τz. Then the intensity of optical

transitions between the initial state i and the final state f is

Iif ∝ | < ψi|vy|ψf > |2. (3.10)

This expression determines the intensities of both interband and intraband optical transi-

tions. The above expressions (3.9)-(3.10) also define the selection rule for optical transitions,

which is

∆m = mf −mi = ±1, (3.11)

where mi is the angular momentum of an electron in the initial state and mf is the angular

momentum of an electron in the final state. The selection rule (3.11) is the same for both

interband and intraband transitions.

3.2 Results and Discussion

3.2.1 Energy spectrum

Below we consider only a single particle energy spectrum. For many electron systems in

the quantum dot, this means that we disregard the electron-electron interactions. At a given

radius R, a TI quantum dot has a finite number of localized energy levels in the conduction

and valence bands. The number of levels in the quantum dot increases with radius R. In

Fig. 3.2 the energy levels with angular momentum m = 0, 1, and 2 are shown as functions
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Figure (3.2) Energy levels of conduction band (positive energies) and valence band (negative
energies) are shown as a function of quantum dot radius R. Only the levels with angular
momentum m = 0, 1, and 2 are shown.

of quantum dot radius. The energy levels follow the general tendency: with increasing R the

absolute value of level’s energy decreases. The interlevel energy separation also decreases

with increasing R.

For a given angular momentumm there is a critical size of the quantum dot R
(cr)
m , so that

the energy levels with angular momentum m exist only if the radius of the dot is larger than

the critical one, R > R
(cr)
m . For the conduction band, the critical radii for angular momentum

m = 0, 1, and 2 are R
(cr)
0 = 15 Å, R

(cr)
1 = 55 Å, and R

(cr)
2 = 88.5 Å. For the valence band,

the corresponding critical radii are R
(cr)
0 = 53 Å, R

(cr)
1 = 84 Å, and R

(cr)
2 = 111.5 Å.

The data shown in Fig. 3.2 illustrate that the quantum dot system does not have

symmetry between the conduction and valence band energy spectra. The critical radii for

conduction and valence band are also different.

In Fig. 3.3 the whole energy spectra are shown for four radii of TI quantum dot: 50
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Figure (3.3) Energy spectra of TI quantum dot are shown as a function of angular momentum
m for different radii R of quantum dot: (a) 50 Å, (b) 100 Å, (c) 150 Å, and (d) 200 Å. At
R = 50 Å there is only one energy level in the conduction band. The dotted lines with
arrows show the main intraband (labels by letters ”A”) and interband (labeled by letters
”B”) optical transitions.
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Å, 100 Å, 150 Å and 200 Å. For a small quantum dot, R = 50 Å, there is only one energy

level. This level belongs to the conduction band and has angular momentum m = 0, while

no energy levels exist in the valence band. With increasing the size of the dot more levels

appear both in the conduction band and in the valence band.

3.2.2 Optical transitions

We consider two types of optical transitions: (i) interband transitions between the states

of valence and conduction bands and (ii) intraband optical transitions between the states of

conduction band. In both cases we consider a non-interacting electron system, i.e., the TI

quantum dot is occupied by a single electron, which can be in different initial (valence or

conduction band) state. For interband and intraband optical transitions the selection rule,

which is given by Eq. (3.11), is the same.

The main optical transitions with the largest intensities are shown by dashed lines in

Fig. 3.3 for TI quantum dots of different radii. The interband transitions are labeled by letter

A, while intraband transitions are labeled by letter B. The optical transitions mainly occur

between the lowest energy states at a given angular momentum. Although other optical

transitions are allowed by the selection rule, their intensities are small.

In Fig. 3.4 interband optical spectra are shown for different sizes of TI quantum dot.

The spectra show multi-peak structure. The main transitions occur from the highest energy

states at a given angular momentum, mi, in the valence band to the lowest energy state at

momentum mf = mi + 1 in the conduction band. The number of the peaks is equal to the

number of different angular momentum cases in the valence band. For example, at R = 100

Å, the states in the valence band exist at only two different angular momentum, mi = 0 and

1. In this case there are two main peaks B1 and B2 in the interband absorption spectra.

Similarly, at R = 200 Å, there are three main peaks B1, B2, and B3. There are also peaks

B4 and B5, which have almost the same frequency as B1 and B2 but smaller intensity. The

intensities of the peaks of the multi-peak absorption spectra decrease with increasing angular

momentum of the initial state.
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Figure (3.4) Absorption interband optical spectra are shown for different radii R of quantum
dot: (a) 100 Å, (b) 150 Å, and (c) 200 Å. The labels of optical lines correspond to the labels
of transitions in Fig. 3.3. The optical spectra have multi-peak structure.
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Figure (3.5) Absorption intraband optical spectra are shown for different radii R of quantum
dot: (a) 100 Å, (b) 150 Å, and (c) 200 Å. The labels of optical lines correspond to the labels
of transitions in Fig. 3.3. The optical spectra have one strong line with small satellites.
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In Fig. 3.5 the intraband optical spectra are shown for three different quantum dot sizes

100 Å, 150 Åand 200 Å. The optical spectra consist of one main peak A1, which corresponds

to the transition from the lowest state in the conduction band with angular momentum

mi = 0 to the lowest state in the conduction band with angular momentum mf = 1. There

is also a higher energy satellite optical line A2 with low intensity, which corresponds to the

transition from the lowest state with mi = 1 to the lowest state with mf = 2. Thus, the

intraband optical spectra have mainly a single peak structure with the frequency, which

varies with the radius of quantum dot and is in the range of 30 - 70 meV.

3.2.3 Electron density

At a given value of pseudospin, for example, τz = 1, the electron wave functions in TI

quantum dot have two components, ψ(ρ) = [φ1(ρ), φ2(ρ)] – see Eqs. (3.5)-(3.6). These two

components correspond to two directions of electron spin, e.g., spin-up and spin-down. In

this case we can introduce two characteristics of the wave function: spatial distributions of

charge density and spin density. They are defined through the following expressions :

Ξcharge(ρ) = |ψ1(ρ)|2 + |ψ2(ρ)|2, (3.12)

for electron charge density and

Ξspin(ρ) = |ψ1(ρ)|2 − |ψ2(ρ)|2, (3.13)

for electron spin density.

The electron charge density for a quantum dot of radius R = 150 Å is shown in Fig.

3.6 for the states with angular momentum m = 0 and 1. For each angular momentum the

charge density is shown for two lowest energy states of the conduction band. The density

profile shows the general tendency, which is expected for localized modes of semiconductor

quantum dots. The density is finite at ρ = 0 only for the states with m = 0, while for m > 0

the electron density is zero at ρ = 0. With increasing energy of the state, the electron density
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shows more oscillations and an electron becomes more localized near the center (ρ = 0) of

the quantum dot.

The specific feature of a TI quantum dot is the existence of two waves in region ρ < R

: propagating waves with a real wave vector and decaying waves with an imaginary wave

vector. Similarly, in region ρ > R there are also two waves, both of them are decaying waves.

For the reflection of electron wave from a step-like defect at the surface of TI nanofilm, the

existence of two types of waves results in enhancement of electron density near the step-like

defect[1]. For the localized modes in TI quantum dots, as follows from Fig. 3.6, there is no

any enhancement or any singularity near the boundary of quantum dot.

In regular semiconductor quantum dots without spin-orbit interaction, the charge and

spin densities are equal to each other, Ξcharge(ρ) = Ξspin(ρ). With spin-orbit interaction

the charge and spin densities are different [78, 79]. In topological insulators, it is a strong

spin-orbit interaction that results in such unique gapless surface states. Therefore, in TI

quantum dots, the spin-orbit interaction, which is already included implicitly in the effective

Hamiltonian (3.1), is expected to be strong. In this case, the electron charge density and

spin density should be strongly different. In Fig. 3.7 the electron spin density is shown for

quantum dot of radius R = 150 Å for two lowest energy levels of conduction band with

angular momentum m = 0. In Fig. 3.7(a) and (b) the electron spin density is shown for

spin-up and spin-down, respectively. The data show that the electron density with spin-down

is almost 6 times smaller than the corresponding density with spin-up. The spin density,

which is shown in Fig. 3.7(c), is positive at almost all ρ points. Thus, in a TI quantum dot

the spin-orbit interaction does not affect strongly the electron spin, and the electron has

almost the same orientation of spin at all points within quantum dot. The spin density is

also close to the charge density [see Fig. 3.6(a)].

3.3 Conclusion

The gap in the energy dispersion of surface states of TI can be opened for a TI nanofilm.

The coupling of surface states at opposite boundaries of TI nanofilm introduces conduction
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and valence bands in the energy spectrum of TI nanofilm. The bands are separated by

a bandgap, which is proportional to 1/L2. In this case the quantum dot can be realized

as a region of nanofilm of a larger thickness. Such a quantum dot is characterized by its

height and radius. The quantum dot can be grown experimentally by the droplet epitaxy

method [80], which allows one to design nanostructures of different types. We calculated,

within an effective model of TI nanofilm, an energy spectrum and optical transitions in a

single-electron system of TI quantum dot.

The electron states are characterized by z-component of angular momentum, m. For

each value of m, there is a critical size (radius) of quantum dot, which depends on the height

of the quantum dot, so that the states with angular momentum m exist only in quantum

dots with radius larger than the critical radius, R(cr).

The selection rule for the optical transitions is ∆m = ±1, which is the same rule for

both interband and intraband transitions. The interband optical absorption occur mainly

between the lowest energy states of the valence and conduction bands with increasing angular

momentum by 1. The interband absorption spectra have multi-peak structure with the

number of peaks equal to the number of different angular momentum cases at which the

states in the valence band exist.

The intraband absorption spectra consist of one main peak and small high frequency

satellites. The main peak corresponds to optical transition between the lowest energy state

with angular momentum m = 0 and the lowest energy state with angular momentum m = 1.

The charge and spin density distributions for electron states in a TI quantum dot show

that electron spin has almost the same direction at all points inside the quantum dot. Thus

the spin density almost coincides with the charge density.
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CHAPTER 4

QUANTUM DOTS IN BUCKLED GRAPHENE-LIKE MATERIALS

The band gap of buckled graphene-like materials, such as silicene and germanene, de-

pends on the external perpendicular electric field. Then specially design profile of electric

field can produce trapping potential for electrons. We study theoretically the energy spec-

trum and optical transitions for such designed quantum dots in graphene-like materials.

The energy spectra depend on the size of the quantum dot and applied electric field in the

region of the quantum dot. The number of the states in the quantum dot increases with

increasing the size of the dot and the energies of the states have almost linear dependence

on the applied electric field with the slope which increases with increasing the dot size. The

optical properties of the quantum dots are characterized by two type of absorption spec-

tra: interband (optical transitions between the states of the valence and conduction bands)

and intraband (transitions between the states of conduction/valence band). The interband

absorption spectra have triple-peak structure with peak separation around 10 meV, while

intraband absorption spectra, which depend on the number of electrons in the dot, have

double-peak structure. The results are published in Journal of Physics : Condensed matter

[3].

4.1 Model and Main equations

We design a silicene/germanene quantum dot by applying nonhomogeneous electric field

perpendicular to silicene/germanene sheet. The quantum dot has cylindrical symmetry and

its size is determined by radius R – see Fig. (4.1). Constant perpendicular electric field, Ezi,

is applied to the inner region of the quantum dot, ρ < R, where ρ =
√
x2 + y2. Outside of

this region, a weaker electric field, Ezo is applied. As illustrated in Fig. (4.1), if Ezo < Ezi,

then such distribution of electric field generates a trapping potential, which can localize an
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electron within the QD region, ρ < R. For concreteness, below we use the parameters of

germanene [34] and study the germanene QDs. Qualitatively similar results are expected for

selecene QDs.

The honeycomb lattice of germanene has a buckled structure, which consists of two

sublattices A and B that are displaced vertically by finite distance l. Similar to graphene,

the low energy spectrum of germanene is localized near two non-equivalent valleys, K and

K ′. Strong spin-orbit interaction in germanene opens a gap at K and K ′ points. Below

we consider the energy spectrum and corresponding optical transitions for one valley, e.g.,

valley K, only. The results for valley K ′ will be exactly the same, i.e., the energy levels have

double degeneracy and the intensities of all optical transitions should be multiplied by 2.

In the basis (φA,↑, φB,↑, φA,↓, φB,↓), where φη,s is the electron state of sublattice η = A,B

with spin s =↑, ↓, the effective low energy model of germanene near the K valley is described

by a 4× 4 matrix Hamiltonian, which has the following form [32, 34]

H =




−λso + lEz υFk+ iaλRk− 0

υFk− λso − lEz 0 −iaλRk−
−iaλRk+ 0 λso + lEz υFk+

0 iaλRk+ υFk− −λso − lEz




, (4.1)

where k± = kx ± iky = e±iϕ(±1
ρ
∂ϕ − i∂ρ) is the electron wave vector, expressed in polar

coordinate system (ρ, ϕ), υF =
√
3
2
at is the Fermi velocity, which can be expressed in terms

of lattice constant a = 4.13Åand nearest neighbor transfer integral t = 1.3 × 103meV. The

transfer integral describes the hopping between the nearest neighbor sites of two sublattices

A and B. Due to buckled structure of germanene, there is finite spin-orbit coupling, which

is characterized by two constants λso = 43meV and λR = 10.7meV, where λR describes

the spin-orbit interaction of Rashba type. Due to the finite relative shift of two sublattices

A and B by distance l = 0.33Åin the z direction, there is sensitivity of the system to the

perpendicular electric field Ez.

The energy spectrum of a germanene QD can be found from the solution of the
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Figure (4.1) (a) Schematic illustration of silicene/germanene quantum dot. Two sublattices
A and B of silicene/germanene are shifted in z-direction by distance l. The quantum dot has
a shape of a circle with radius R. The quantum dot is created by applying nonhomogeneous
electric field, which has different strength inside (ρ < R) and outside (ρ > R) quantum dot.
Arrows show the direction and magnitude of applied electric field. (b) Magnitude of applied
electric field as a function of polar coordinate ρ. (c) Band diagram of silicene/germanen
monolayer. The band gap, ∆, depends on z component of electric field, Ez. Such dependence
is shown schematically.
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Schrödinger equation corresponding to the Hamiltonian (4.1) with electric field Ez = Ezi

at ρ < R (region I) and Ez = Ezo at ρ > R (region II). Due to cylindrical symmetry

of the system, the states of the QD are characterized by angular momentum m and the

corresponding wavefunctions have the following form

ψκ =




C1(κ)Jm(κρ)e
imϕ

C2(κ)Jm−1(κρ)e
i(m−1)ϕ

C3(κ)Jm+1(κρ)e
i(m+1)ϕ

C4(κ)Jm(κρ)e
imϕ




, (4.2)

where C1, C2, C3, C4 are constant coefficients, the radial part of the wavefunction is expressed

in terms of the Bessel functions of the first kind, Jm, and κ is the radial component of the

wave vector. The radial component of the wave vector satisfies the following equation

κ4
(
v2 + λ2a2

)2
+ 2κ2

[
(v2 + a2λ2)(λ2SO − E2) + E2

z l
2(v2 − a2λ2)

]
=

E4
z l

4 − 2E2λ2SO − (E2 − E2
z l

2)2 − (λ2SO + E2
z l

2)2 (4.3)

where E is the energy of the state. At a given energy, E, there are 4 solutions of Eq. (4.3),

i.e., 4 different values of wave vector κ. If the energy E is in the band gap, then all 4 wave

vectors are imaginary, while if energy E is either in the conduction band or in the valence

band then there are 2 real and 2 imaginary wave vectors κ. We are looking for electron

states, which are localized within the QD region. In this case the energies of such states

should be within the conduction or valence bands in region ρ < R and within the band gap

in region ρ > R. Under this condition, solution of the Schrödinger equation with eigenenergy

E takes the following form

Ψin(ρ) = A1ψκ1
+ A2ψκ2

, (4.4)

in region ρ < R and

Ψout(ρ) = B1ψκ̃1
+B2ψκ̃2

, (4.5)



62

in region ρ > R. Here κ1 is real and κ2 is imaginary, while κ̃1 and κ̃2 are both imaginary. In

the case of imaginary κ, the Bessel functions in Eq. (4.2) becomes modified Bessel functions

of the second kind.

The continuity of the wavefunction (4.4)-(4.5), at ρ = R, i.e.,

Ψin |ρ=R+0
= Ψout |ρ=R−0

, (4.6)

determines the energy spectrum of germanene QDs and corresponding coefficients A1, A2,

B1, and B2. Below we study the dependence of QD energy spectrum on electric field Ezi (in

region ρ < R) keeping electric field Ezo (in region ρ > R) constant.

In addition to energy spectra, we also study the interband (between the states of valence

and conduction bands) and intraband (between the states of conduction band) optical tran-

sitions. For the light polarized along y-direction, the intensity of optical transitions between

the states Ψi and Ψf is determined by the following expression

Iif ∝ | < Ψi|v̂y|Ψf > |2, (4.7)

where the velocity operator, v̂y, defined as vy = ~
−1∂H/∂ky has the matrix form

v̂y =




0 iυF aλR 0

−iυF 0 0 −aλR
aλR 0 0 iυF

0 −aλR −iυF 0




. (4.8)

Selection rules for the optical transitions are

∆m = mf −mi = ±1, (4.9)

where mi and mf are the angular momenta of states Ψi and Ψf , respectively. The selection

rule (4.9) is valid for both interband and intraband optical transitions.
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Figure (4.2) Energy spectra of the conduction (positive energies) band and the valence band
(negative energies) of germanene quantum dot. The states are characterized by angular
momentum m. The energy spectra are shown for different values of electric field in the
region of quantum dot, Ezi, and different sizes of the quantum dot, R: (a) R = 700 Å,
Ezi = 90 meVÅ−1; (b) R = 1100 Å, Ezi = 90 meVÅ−1; (c) R = 700 Å, Ezi = 120 meVÅ−1;
(d) R = 1100 Å, Ezi = 120 meVÅ−1. The electric field outside quantum dot is Ezo = 10
meVÅ−1. The arrows, labeled as Ai, show allowed intraband optical transitions between the
states of the conduction band. The arrows, labeled as Bi, show allowed interband optical
transitions between the states of the valence and conduction bands.
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4.2 Results and Discussion

4.2.1 Energy spectrum

We fixed the electric field in the region outside the QD, i.e., ρ > R, at the value Ezo = 10

meVÅ−1. Such a small electric field corresponds to large bandgap, 79.4 meV. At fixed Ezo

we study the dependence of the energy spectrum both on electric field Ezi in the region

of the QD, i.e., at ρ < R, and on the size of the QD. The corresponding electron states

are characterized by electron angular momentum, m. The energy spectra corresponding to

angular momentum m = 1, 2, 3 and 4 are shown in Fig.4.2 for two values of QD size, R, and

two values of electric field Ezi.

The number of QD levels increases with increasing the size of the dot - see e.g. Fig.4.2(a)

and (b), which is a general tendency of any nanoscale system. The number of localized states

in the QD decreases with increasing electron angular momentum, which is due to the fact

that localization region effectively decreases with increasing the angular momentum.

With increasing electric field Ezi, the band gap decreases, which increases the energy

interval within which the electron state can be localized. In this case the number of QD

states increases with Ezi - see Fig.4.2(b) and (d). The corresponding wave functions become

also more localized with increasing Ezi. The energies of the corresponding levels also depend

on the magnitude of Ezi. With increasing Ezi the energies decrease. The dependence of

the energies on Ezi is shown in Fig. 4.3 for m = 1 states and different sizes of QD. The

energies of the states decrease almost linearly with electric field Ezi. This dependence can

be characterized by effective spreading of the wavefunction in z-direction. Such spreading is

due to buckled structure of germanene with two sublattices shifted in z-direction by distance

lz = 0.33 Å. The wave functions of localized electron states in QD occupy two sublattices,

resulting in spreading of the state in z-direction. The maximum spreading corresponds to

inter-sublattice distance in z-direction, i.e. lz. The width, leff , of the wave function in z-

direction can be characterized by the value of the slope of energy of the state as a function

of electric field, Ezi. In Fig. 4.3 the corresponding length, leff , is shown for different states
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of the QD. The length, leff , changes from 0.12 Åto 0.31 Åand increases with decreasing the

energy of the state. With increasing the QD size, R, the slope, i.e., characteristic length

leff , increases, approaching asymptotically the value 0.33 Å, corresponding to intersubband

separation in z-direction (see Fig. 4.3). For example, for the lowest energy state, length leff

increases from 0.25 Åat R = 400 Åto 0.31 Åat R = 1000 Å.

For larger values of angular momentum (see Fig. 4.4, where the results for m = 2 are

shown) the dependence of energies on electric field Ezi becomes weaker. The corresponding

slope and characteristic length leff become smaller. For example, at R = 700 Å, while for

m = 1 [see Fig. 4.3(c)] length leff is 0.26 Åfor the lowest energy states, it becomes 0.25 Åfor

m = 2. Similar tendency is observed for other QD sizes, R.

4.2.2 Optical transitions

In Fig. 4.5 we shown the optical absorption spectra corresponding to interband optical

transitions, assuming that in the initial state all the valence band states are occupied and

all the conduction band states are empty. The selection rules for optical transitions are

mf = mi ± 1. The allowed optical transitions with the largest intensities are shown in Fig.

4.2 and labeled as Bi. The corresponding intensities of the optical absorption lines are shown

in Fig. 4.5. The lines B1, B2, and B3, which satisfy selection rule mf = mi+1 (see Fig. 4.2),

have the largest intensities. The typical energy of inter band optical transitions is around

50 meV.

The absorption spectra have a clear three-peak structure with inter-peak separation

around 10 meV. The arrangement of the peaks by intensity changes with increasing the size

of QD. At small QD radius, R = 700 nm [Fig. 4.5(a,c)], the high energy peak has the largest

intensity, while at large QD radius, R = 1000 nm [Fig. 4.5(b,d)], the lowest energy peak has

the largest intensity. The whole absorption spectrum is red-shifted with increasing the QD

size. The inter-peak separation also decreases with increasing the dot radius.

The interband optical spectra show also the dependence on electric field Ezi, which is the

field in the region of the QD. The spectra as whole are strongly red-shifted with increasing
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Figure (4.3) Energies of m = 1 levels as function of applied electric field Ezi in the region of
quantum dot. The size of the quantum dot is (a) R = 200 Å, (b) R = 400 Å, (c) R = 700 Å,
and (d) R = 1000 Å. The effective distance, leff , characterizes the slope of the corresponding
line. The electric field in the region of the quantum dot is Ezi = 90 meVÅ−1. The electric
field outside quantum dot is Ezo = 10 meVÅ−1.
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Figure (4.4) Energies of m = 2 levels as function of applied electric field Ezi in the region
of quantum dot. The size of the quantum dot is (a) R = 400 Å, (b) R = 700 Å, and (c)
R = 1000 Å. The effective distance, leff , characterizes the slope of the corresponding line.
The electric field in the region of the quantum dot is Ezi = 90 meVÅ−1. The electric field
outside quantum dot is Ezo = 10 meVÅ−1.
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Figure (4.5) Absorption interband optical spectra. The radius, R, of the quantum dot the
electric field, Ezi, in the region of the quantum dot are: (a) R = 700 Å, Ezi = 90meV Å−1

(b) R = 1100 Å, Ezi = 90 meVÅ−1 (c) R = 700 Å, Ezi = 120 meVÅ−1, and (d) R = 1100
Å, Ezi = 120 meVÅ−1. The electric field outside quantum dot is Ezo = 10meVÅ−1. The
labels, Bi, near the optical lines correspond to the labels of transitions shown in Fig. 4.2.

electric field Ezi, which is consistent with the behavior of the energy spectra shown in Fig.

4.2. Although the position of the spectra strongly depends on electric field Ezi, its structure,

e.g., energy separations between peaks [see Fig. 4.5], has a weak dependence on Ezi.

In the case when the conduction band of the QD is partially occupied by electrons, there

are also intraband optical transitions within the conduction band states. The allowed optical

transitions, which have selection rule mf = mi ± 1, are shown in Fig. 4.2. They are labeled

as Ai. The actual absorption spectrum (optical transitions by Pauli exclusion principle) is

determined by the number of electrons present in the QD, i.e., by the number of occupied

states. For concreteness we consider only one spin polarization and assume that the QD can

be occupied by Ne = 1, 2 or 3 electrons.
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The corresponding absorption spectra are shown in Fig. 4.6 for two sizes of QD: R = 700

Åand 1100 Å. The electric field in the QD region is Ezi = 120 meV/Å. The typical frequency

of intraband optical transitions is around 10-20 meV. The absorption spectra show a two-

peak structure with separation between the peaks ≈ 15 meV. With increasing the size of

the QD, the absorption spectra become red-shifted, while the energy separation between the

peaks becomes smaller, i.e., the width of the absorption spectra decreases with increasing the

dot size. With increasing the number of electrons in the QD, more absorption lines appear

in the optical spectrum.

The above analysis of germanene QDs has been done for an ideal circular shape of the

QD and a step-like profile of electric field. Deviation from such ideal structure results in

shift of the optical lines or, in the system of many quantum dots, in finite broadening of

the absorption lines. For example, for a germanene QD of radius 1100 Å, the variation of

the dot size by 5% changes the energy of the intraband optical transitions by ≈ 2 meV (or

introduces broadening of the absorption lines by ≈ 5 meV). For the interband transitions,

the variation of the dot radius by 5% changes the position of the optical lines by ≈ 3 meV or

introduces the broadening of the lines by 5%. This also means that if the boundary of the

quantum dot is not sharp but smooth, i.e., the electric field changes from Ezi to Ezo within

some range ∆R, then for ∆R/R ≈ 0.05 the position of the optical line changes from the

sharp boundary value by ≈ 2 meV for intraband transitions and by ≈ 3 meV for interband

transitions.

The electric field inside of the quantum dot is assumed to be constant. If the electric

field Ezi is not a constant but varies within the dot, then the positions of the optical lines

change compared to the case of constant electric field. For example, a 5% variation of the

electric field shifts the intraband optical lines by ≈ 1.5 meV and interband optical lines by

≈ 4 meV.

Both graphene and silicene are grown on a substrate. The type of substrate determines

the values of the parameters of the low energy Hamiltonian Eq.(4.1), i.e., the energy and

optical spectra change quantitatively but not qualitatively with the type of substrate.
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Figure (4.6) Absorption intraband optical spectra for different number of electrons in the
quantum dot. The radius of the quantum dot is: (a),(b),(c) R = 700 Åand (d),(e),(f)
R = 1100 Å. The electric field inside and outside quantum dot is Ezi = 120 meVÅ−1 and
Ezo = 10 meVÅ−1, respectively. Ne is the number of electrons in the quantum dot. The
labels, Ai, near the optical lines correspond to the labels of transitions shown in Fig. 4.2.
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4.3 Concluding remarks

The bandgap in buckled graphene-like materials, such as silicene and germanene, can

be controlled by an external perpendicular electric field. In this case specially designed

profile of electric field can produce a trapping potential, which forms a quantum dot of

a finite size. The electrons are localized in the region of the QD. This is different from

graphene monolayer, where the electron localization cannot be achieved for any confinement

potential. In buckled graphene-like materials, if the electric field outside of the quantum

dot is less than the electric field in the region of the dot then the electron can be localized

within the quantum dot region. For a circular QD with radius R, the electron states in the

QD are characterized by angular momentum, m. The energy spectra of silicene/germanene

QDs depend on the size of the dot and on the magnitude of the electric field applied in the

region of the QD. With increasing the size of the dot the number of localized energy states

increases and correspondingly the interlevel energy separation decreases. The energies of the

localized levels of QD almost linearly decrease with increasing the magnitude of electric field

applied in the QD region. The dependence is the strongest for the lower energy levels, which

are near the band edge.

There are two types of optical transitions in silicene/germanene quantum dots: in-

terband (transitions between the states of conduction and valence bands) and intraband

(transitions between the states of conduction/valence band) transitions. For both types of

transitions the selection rule is formulated in terms of the change of angular momentum as

∆m = ±1. The interband absorption spectra have triple peak structure with separation

between the peaks around 10 meV. With increasing the size of the dot and increasing the

applied electric field in the dot region, the absorption spectra becomes red-shifted. The

strongest absorption lines correspond to condition ∆m = 1. The intraband absorption

spectra depend on the number of electrons in the dot and have a double-peak structure

with separation between the peaks around 15 meV. With increasing the size of the dot, the

intraband absorption spectra become red-shifted.
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CHAPTER 5

ELECTRON CONFINEMENT IN BLACK PHOSPHORUS

We consider a phosphorene QD as a piece of phosphorene of a circular shape of radius

R, placed on a substrate, see Fig. 5.1. First we find the energy spectrum and corresponding

wave functions of such a QD. The spectrum consists of both conduction and valence band

states. Then we calculate the corresponding absorption spectra for such a QD. Such spectra

consist of both intraband and interband transitions.

The effective low-energy Hamiltonian of phosphorene can be obtained from k.p theory

[69]. We assume that R ≫ a. i.e., γkx ≫ βk2y and we neglect βk2y in the Hamiltonian Eq.

(1.21). The new effective Hamiltonian has the following form

H =


 Ec + ηck

2
x + νck

2
y γkx

γkx Ev − ηvk
2
x − νvk

2
y


 , (5.1)

where Ec and Ev are the lowest energy of the conduction band and the highest energy of the

valence band, respectively. Then the band gap is ∆ = Ec−Ev ≈ 2eV. The band parameters

ηc,v and νc,v are related to the in-plane effective masses, and γ represents the coupling between

the conduction and the valence bands. The parameters have the following values [72] :

ηc,v = ~
2/0.4m0 = 19.0763 eV Å2, νc = ~

2/1.4m0 = 5.4504 eV Å2, νv = ~
2/2.0m0 = 3.8153

eV Å2, γ = 4a/π = 2.8393 eV Åand a = 2.23 Å. Here m0 is the free electron mass.

5.1 Energy spectrum

It is convenient to rewrite the Hamiltonian H as the sum of two terms, H0 and HI :

H = H0 +HI , (5.2)
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R
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Figure (5.1) Monolayer black phosphorous quantum dot with radius R and thickness of one
atomic layer.

where

H0 =


 Ec + ηc(k

2
x + k2y) 0

0 Ev − ηv(k
2
x + k2y)


 , (5.3)

and

HI =


 (νc − ηc)k

2
y γkx

γkx −(νv − ηv)k
2
y


 . (5.4)

First we find the eigenfunctions and eigenvalues of Hamiltonian H0:

H0ϕn = E0,nϕn. (5.5)

The Hamiltonian H0 has azimuthal symmetry and the corresponding eigenfunctions ϕn can

be characterized by the z-component of angular momentum. Using a finite number of ϕn as



74

a basis, we can expand eigenfunctions of the complete Hamiltonian H in terms of ϕn as

ψn = ΣjAnjϕj , (5.6)

ThenHψn = Enψn, (5.7)

(H0 +HI)ΣjAnjϕj = EnΣjAnjϕj . (5.8)

We multiply the right and left hand sides of Eq.(5.8) by ϕi and obtain

ϕi(H0 +HI)ΣjAnjϕj = ϕiEnΣjAnjϕj,

ϕiH0ΣjAnjϕj + ϕiHIΣjAnjϕj = ϕiEnΣjAnjϕj,

ΣjAnj(E0δi,j +HI,ij) = EnAni,

where HI,ij = ϕiHIϕj .

Thus the Hamiltonian matrix in the basis of ϕi takes the form

Hi,j = ϕj(H0 +HI)ϕi

= ϕjH0ϕi + ϕjHIϕi

= E0,iδi,j +HI,ij.

The eigenfunctions of the Hamiltonian H0 have the following form

ϕ
(c)
i (x, y) =


ϕ̃c,i(x, y)

0


 , (5.9)

for conduction band states, and

ϕ
(v)
i (x, y) =


 0

ϕ̃v,i(x, y)


 , (5.10)
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for valance band states. The functions ϕ̃c,i and ϕ̃v,i satisfies the following eigenvalue equations

[Ec + ηc(k
2
x + k2y)]ϕ̃c,i(x, y) = Ec,iϕ̃c,i(x, y), (5.11)

[Ev − ηv(k
2
x + k2y)]ϕ̃v,i(x, y) = Ev,iϕ̃v,i(x, y), (5.12)

where k2x+k
2
y = −∆ = −∂2x−∂2y . In polar coordinates the above equations (5.11) and (5.12)

become :

− ηc[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2
∂2

∂ϕ2
]ϕ̃c,i(ρ, ϕ) = (Ec,i − Ec)ϕ̃c,i(ρ, ϕ), (5.13)

ηv[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2
∂2

∂ϕ2
]ϕ̃v,i(ρ, ϕ) = (Ev,i − Ev)ϕ̃v,i(ρ, ϕ). (5.14)

We are looking for solutions of these equations in the form :

ϕ̃c,i(ρ, ϕ) = χc,i(ρ)e
imϕ, (5.15)

ϕ̃v,i(ρ, ϕ) = χv,i(ρ)e
imϕ. (5.16)

Then equations (5.13) and (5.14) become

ρ2
∂2χc,i

∂ϕ2
+ ρ

∂χc,i

∂ρ
+ (ρ2κ2c,i −m2)χc,i = 0, (5.17)

ρ2
∂2χv,i

∂ϕ2
+ ρ

∂χv,i

∂ρ
+ (ρ2κ2v,i −m2)χv,i = 0, (5.18)

where we introduce parameters κ2c,i and κ
2
v,i as

Ec,i = Ec + ηcκ
2
c,i,

Ev,i = Ev − ηvκ
2
v,i.
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The solutions of Eqs.( 5.17) and (5.18) are Bessel functions of the first kind :

χc,i(ρ) ∼ Jm(κc,iρ), (5.19)

χv,i(ρ) ∼ Jm(κv,iρ). (5.20)

We consider hard wall boundary conditions, which means that the wave function is zero at

ρ = R. This leads to

Jm(κc,iR) = Jm(κv,iR) = 0. (5.21)

Then

κc,i =
αm,i

R
, (5.22)

κv,i =
αm,i

R
, (5.23)

where αm,i is the i-th zero of Jm, i.e., Jm(αm,i) = 0. For example, for m = 0 ,

α0,i are 2.40, 5.52, 8.65, 11.79, 14.93 and so on. The first few zeros for m = 1 are at

3.83, 7.02, 10.17, 13.32, 16.47. Then the wave function of the electron in the i-th energy state

in the conduction and valance bands can be written as

ϕ̃c,i = CiJm(κc,iρ) exp(imϕ), (5.24)

ϕ̃v,i = CiJm(κv,iρ) exp(imϕ), (5.25)

where the Cis are normalization constants. Then the conduction band and the valence band

energy spectra of the Hamiltonian H0 are

Ec,i = Ec + ηc(
αm,i

R
)2, (5.26)

Ev,i = Ev − ηv(
αm,i

R
)2. (5.27)
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The energy band of phosphorene is 2eV , then below we choose Ec = 2 eV and Ev = 0 eV.

In our numerical analysis we consider the lowest 20 energy levels per each band. For a QD

of radius 5 nm, they are in the energy range of [-1.3 eV,3.3 eV] and are shown in Fig. 5.2.

This energy range varies with the quantum dot size. These lowest states form the basis in

our calculations. Then, within this basis, we calculate the Hamiltonian matrix of the full

Hamiltonian, H0 +HI . The Hamiltonian matrix has the following structure:

H =


H

cc Hcv

Hvc Hvv


 , (5.28)

where Hcc, Hcv, Hvc, Hvv are 20 × 20 matrices and Hvc = (Hcv)†. These matrices can be

found from the following expressions:

Hcc
ii = Ec,i,

Hcc
ij =

∫ R

0

∫ 2π

0

ϕ∗
c,i(ρ, ϕ)HIϕc,j(ρ, ϕ) dϕρ dρ, i 6= j,

Hvv
ii = Ev,i

Hvv
ij =

∫ R

0

∫ 2π

0

ϕ∗
v,i(ρ, ϕ)HIϕv,j(ρ, ϕ) dϕρ dρ, i 6= j,

Hcv
ij =

∫ R

0

∫ 2π

0

ϕ∗
c,i(ρ, ϕ)HIϕv,j(ρ, ϕ) dϕρ dρ.

The matrix elements between the energy levels of the conduction band, Hcc
ij , and levels of

the valance band, Hvv
ij , are non-zero only if mj = mi ± 2, where mi and mj are the angular

momenta of states i and j, respectively. The matrix elements between the conduction band

and the valance band states, Hvc
ij , are non-zero only if mj = mi ± 1. Here mi and mj are

the angular momenta of the i and j states in the conduction and valence bands, respectively.

The Hamiltonian matrix elements Hcc
ij and Hvv

ij have the following form :

Hcc
ij = −CiCjπ(νc − ηc)

∫ R

0

Jmi
(κiρ)

[
mj

ρ2
(1± 1)Jmj

(κjρ)−
m2

j

ρ2
(1± 1)Jmj

(κjρ)

−κc,j
ρ

(1∓m)Jmj+1(κjρ) +
κ2c,j
2
Jmj

(κjρ)

]
ρ dρ, (5.29)
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Figure (5.2) Energy spectrum of Hamiltonian H0 as a function of angular momentum. The
positive energies correspond to the CB and the negative energies correspond to the VB.

Hvv
ij = CiCjπ(νv − ηv)

∫ R

0

Jmi
(κiρ)

[
mj

ρ2
(1± 1)Jmj

(κjρ)−
m2

j

ρ2
(1± 1)Jmj

(κjρ)

−κv,j
ρ

(1∓m)Jmj+1(κjρ) +
κ2v,j
2
Jmj

(κjρ)

]
ρ dρ. (5.30)

Here the ′+′ sign corresponds to mj = mi + 2 and the ′−′ sign corresponds to mj = mi − 2.

The Hamiltonian matrix element, Hvc
ij is

Hvc
ij = iγπCiCj

∫ R

0

Jmi
(κiρ)

[
mj

ρ
(∓1− 1)Jmj

(κjρ) + κc,jJmj+1(κjρ)

]
ρ dρ. (5.31)

Here the ′−′ sign corresponds to mj = mi + 1 and ′+′ sign corresponds to mj = mi − 1.

By diagonalizing the matrix H, we can obtain the eigenvalues and corresponding eigenfunc-

tions of the full Hamiltonian. Then the corresponding wave functions of an electron in a

phosphorene QD is

ψn =
20∑

j=1

Anjϕ
c
j +

40∑

j=21

Anjϕ
v
j−20, (5.32)
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Figure (5.3) Complete energy spectrum of (a) the conduction band and (b) the valance band.
Each plot contains energy levels corresponding to Hamiltonian H0 and total Hamiltonian H.

where Anj is the n-th eigenfunction of the Hamiltonian matrix (5.28). The complete energy

spectrum of a phosphorus QD is shown in Fig. 5.3 for R=5 and 10 nm. The energy spectrum

of H0 is also shown in Fig. 5.3. We see that for full Hamiltonian H the inter-level energy

separation is larger than for Hamiltonian H0.

5.2 Intranband and Interband optical transitions

There are two types of optical transitions in phosphorene quantum dots. The intraband

optical transitions correspond to electron transitions between the states of the conduction

band. If an electron is excited to conduction band from valance band, the corresponding

transition is the interband optical transition. Below we neglect the electron-electron inter-

actions. We calculate optical transitions for x and y polarized light. For y-polarized light,

the optical transitions are determined by the matrix elements of the corresponding velocity

operator as

Iyij = ψiv̂yψj
2, (5.33)
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where

v̂y =
1

~

∂H
∂ky

(5.34)

=
2

~



 νcky βky

βky −νvky



 (5.35)

= −2

~


 νc∂y β∂y

β∂y −νv∂y


 , (5.36)

is the velocity operator. We substitute Eq. (5.32) into Eq. (5.33) and obtain

Iyij =

∣∣∣∣
20∑

k=1

20∑

p=1

A∗
ikAjpϕ

c
kv̂yϕ

c
p +

20∑

k=1

40∑

p=21

A∗
ikAjpϕ

c
kv̂yϕ

v
p−20

+

40∑

k=21

20∑

p=1

A∗
ikAjpϕ

v
k−20v̂yϕ

c
p +

40∑

k=21

40∑

p=21

A∗
ikAjpϕ

v
k−20v̂yϕ

v
p−20

∣∣∣∣
2

. (5.37)

With the known basis eigenfunctions ϕc
i and ϕ

v
j , see Eqs. (5.9) and (5.10), the matrix elements

of the velocity operator can be found from the following expressions :

ϕc
kv̂yϕ

c
p =

2π

~
νcCkCpκpc

∫ R

0

Jmk
(κkρ)Jmk

(κpρ)ρ dρ,

ϕv
kv̂yϕ

v
p = −2π

~
νvCkCpκpv

∫ R

0

Jmk
(κkρ)Jmk

(κpρ)ρ dρ,

ϕc
kv̂yϕ

v
p =

2π

~
βCkCpκpv

∫ R

0

Jmk
(κkρ)Jmk

(κpρ)ρ dρ. (5.38)

Here mp = mk ± 1. In the above expressions we calculated the integral over angle, ϕ.

For x-polarized light, the optical transitions are calculated as

Ixij = ψiv̂xψj
2, (5.39)
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where

v̂x =
1

~

∂H
∂kx

(5.40)

=
1

~



 2ηckx γ

γ −2ηvkx



 , (5.41)

is the x-component of the velocity operator. We substitute Eq. (5.32) into Eq. (5.39) and

obtain

Ixij =

∣∣∣∣
20∑

k=1

20∑

p=1

A∗
ikAjpϕ

c
kv̂xϕ

c
p +

20∑

k=1

40∑

p=21

A∗
ikAjpϕ

c
kv̂xϕ

v
p−20

+
40∑

k=21

20∑

p=1

A∗
ikAjpϕ

v
k−20v̂xϕ

c
p +

40∑

k=21

40∑

p=21

A∗
ikAjpϕ

v
k−20v̂xϕ

v
p−20

∣∣∣∣
2

. (5.42)

The matrix elements of the velocity operator between the basis functions are

ϕc
kv̂xϕ

c
p = ∓2πi

~
ηcCkCpκpc

∫ R

0

Jmk
(κkρ)Jmk

(κpρ)ρ dρ,

ϕv
kv̂xϕ

v
p = ±2πi

~
ηvCkCpκpv

∫ R

0

Jmk
(κkρ)Jmk

(κpρ)ρ dρ, (5.43)

where mp = mk ± 1, and

ϕv
pv̂xϕ

c
k = ϕc

kv̂xϕ
v
p =

2π

~
γCkCp

∫ R

0

Jmk
(κkρ)Jmk

(κpρ)ρ dρ,

where mp = mk.

The intraband optical transitions exist between the conduction band states only when

the conduction band is partially occupied. The intraband optical absorption spectra for the

y-polarized light is shown in Fig. 5.4 for quantum dot of radius R= 5 nm (blue lines) and 10

nm (red lines). The spectra have a single peak structure. The intensity of the peak becomes

smaller when the size of the dot is increased. The spectrum is also red shifted when we

increase the quantum dot size. Figures 5.4 (a), (b), (c), (d) and (e) show intraband optical
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spectra for 1, 3, 5, 7 and 9 electrons in the dot, respectively. The number of electrons in the

QD is counted by taking into account the Pauli exclusion principle. The frequency of the

photon increases till it has 7 electrons and then decreases. The relative intraband optical

spectra for x-polarized light is illustrated in Fig. 5.5. Similar to the intraband spectra for

y-polarized light, the peak intensity decreases as the quantum dot size increases. Never-

theless we see multipeak structure for intraband spectra for x-polarized light. Due to the

highly anisotropic properties of phosphorene, the intraband optical transitions are sensitive

to the light polarization. The comparison of the intraband optical transition for x- and

y-polarizations is shown in Fig. 5.6. The intensity of optical transitions for x-polarized light

is ∼ 10 times larger than the corresponding intensity for y-polarized light.

The interband optical transitions from the valence band to the conduction band for dif-

ferent radii of QD are shown in Fig. 5.7. They have a multipeak structure with many allowed

transitions. To show such spectra it is convenient to introduce the Lorentzian broadening

for each line. The optical spectra in this case are described by the following expression :

I(∆E) = ΣiIi
1

π

Γ/2

(∆E −∆Ei)2 + (Γ/2)2
, (5.44)

where ∆E is the photon energy, Ii and ∆Ei are intensity and energy corresponding to

absorption line i, and Γ is the broadening. We use Γ = 0.01 and Γ = 0.02 for x and y

polarized light respectively.

The intensity of interband optical transition for x-polarized light is 1000 times higher

than the corresponding intensity for y-polarized light. Each plot in Fig. 5.7 is normalized

for illustration purposes. The width of optical spectra depends on the size of the QD. As

the dot size increases the width decreases - see Fig. 5.7.

Interband optical transitions for x and y polarized light are shown in Fig. 5.8 for R=5

nm. The intensity of interband optical spectrum for x-polarized light is 1000 times larger

than the corresponding intensity for y-polarized light. The data also show that the first

moment of the absorption spectrum (central frequency of the spectrum) increases when the
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Figure (5.4) Intraband optical transitions for y-polarized light of monolayer black phospho-
rous quantum dot with radius R=5 nm and 10 nm. The intraband transitions are shown for
(a) 1 electron, (b) 2 electrons, (c) 3 electrons, (d) 4 electrons and (5) 5 electrons in the QD.
Here Ne is the number of electrons.



84

R
el

at
iv

e 
In

te
ns

it
y

Energy(eV)

(a) N
e
=1 (b)N

e
=3

(c)N
e
=5 (d)N

e
=7

(e)N
e
=9

Figure (5.5) Intraband optical transitions for x-polarized light of monolayer black phospho-
rous quantum dot with radius R=5 nm and 10 nm. The intraband transitions are shown for
(a) 1 electron, (b) 2 electrons, (c) 3 electrons, (d) 4 electrons and (e) 5 electrons in the QD.
Here Ne is the number of electrons.
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Figure (5.6) Intraband optical transitions of QD for x-polarized light and y-polarized light.
The radius of QD is 5nm. The number of electron in QD is (a) 1 electron, (b) 2 electrons,
(c) 3 electrons, (d) 4 electrons and (e) 5 electrons.
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Figure (5.7) Interband optical transitions in phosphorous QD. The spectra are shown for (a)
x-polarized light and QD of radius 5 nm, (b) x-polarized light and QD of radius 10 nm, (c)
y-polarized light and QD of radius 5 nm, (d) y-polarized light and QD of radius 10 nm.
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Figure (5.8) Interband optical transitions for x-polarized (black line) and y-polarized (dashed
color line) light in a phosphorene QD. The radius of the QD is 5nm.
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polarization of light changes from x to y.
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CHAPTER 6

CONCLUSIONS

6.1 Conclusions

Scientists have started to pay great attention to two-dimensional materials after signif-

icant success in studies of graphene. Graphene has remarkable electronic, mechanical and

thermal properties. However, its zero band gap limits its applications in real world devices.

Recently, scientists have found a few remarkable 2D materials such as ultrathin topological

insulator nanofilm, silicene, germanene and phosphorene. Due to their finite band gap, they

are good candidates for quantum dots. The applications of quantum dots range from so-

lar cells, FETs, quantum computing to medical applications. In this thesis, I have studied

energy spectra and optical transitions of quantum dots in these 2D materials.

The surfaces of topological insulators are metallic. If the thickness of TI film is in

the range of nano-scale, the states at the two surfaces on the opposite sides of the film are

coupled, which opens a gap in the energy dispersion, i.e., TI nanofilm has a gapped energy

dispersion. The energy band gap depends on the thickness of the nanofilm, as ∆g ∼ 1/L2.

One of the natural defects in TI nanofilm system is a step-like defect, which is characterized

by different thicknesses of the nanofilm in different regions. The electron propagating through

the step-like defect in a TI nanofilm produces not only transmitted and reflected waves, but

also localized modes. Due to these localized modes, there is a high electron density near the

boundary of a step like defect. This electron density depends on the parameters of the TI

nanofilm and the size of the step like defect. By introducing step-like defects in TI nanofilm,

one can manipulate the local electron density at the surface of the nanofilm.

As TI nanofilm is a gapped system, electron confinement is possible. Such confinement

can be realized, for example, in a cylindrical quantum dot. The energy levels in such a QD

are characterized by z-component of angular momentum, m. I study the energy spectrum
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of a TI quantum dot and optical transitions within the QD, both interband and intraband

optical transitions. The selection rule for optical transitions is ∆m = ±1. The interband

optical transitions show multipeak structure, while the intraband transitions show a single

peak structure.

The QD can be also introduced in graphene-like materials such as silicene or germanene.

They have a buckled structure due to their heavy atoms. The buckled structure creates two

sub-lattices, and an external electric field perpendicular to the sheet is able to change the

band gap. By applying a spatially dependent electric field, we can create a trapping potential

for electrons, i.e., a quantum dot. I studied the energy spectrum and optical transitions in

such a quantum dot. The number of energy states linearly depends on the applied electric

field and the size of the dot. The interband transitions between the valence band and the

conduction band show a triple-peak structure, while the intraband spectra have a double-

peak struture. Moreover the optical spectra depend on the number of trapped electrons.

Another type of QD, which has been discussed in the thesis, is a QD in monolayer

black phosphorous. Black phosphorous is the most stable allotrope of phosphorus with

interesting properties such as a gap of 1.5 − 2 eV around the Γ point and high carrier

mobility, etc. The energy gap depends on the thickness of the phosphorene sheet. Due to

finite energy band gap, electron confinement by a piece of phosphorene sheet is possible.

I created a QD by considering a cylindrical isolated piece of a monolayer phosphorene of

size ∼ 10nm. I studied both the energy and optical absorption spectra of such QDs. Due

to highly anisotropic properties of phosphorene, the absorption spectra strongly depend on

light polarization. The intensities of intraband optical transitions are comparable for x and

y polarized light, while the intensity of interband transitions for x-polarized light is 1000

times larger than for y-polarized light. Moreover, interband spectra for x-polarized light

show triple-peak structure while the spectra have a single peak for y-polarized light.
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an unexplored 2d semiconductor with a high hole mobility,” ACS nano, vol. 8, no. 4,

pp. 4033–4041, 2014.

[68] F. Nematollahi, V. Apalkov, and M. I. Stockman, “Phosphorene in ultrafast laser field,”

Physical Review B, vol. 97, no. 3, p. 035407, 2018.

[69] A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black

phosphorus,” Physical review letters, vol. 112, no. 17, p. 176801, 2014.

[70] H. Du, X. Lin, Z. Xu, and D. Chu, “Recent developments in black phosphorus transis-

tors,” Journal of Materials Chemistry C, vol. 3, no. 34, pp. 8760–8775, 2015.

[71] V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic

excitons in few-layer black phosphorus,” Physical Review B, vol. 89, no. 23, p. 235319,

2014.

[72] T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plas-

mons and screening in monolayer and multilayer black phosphorus,” Physical review

letters, vol. 113, no. 10, p. 106802, 2014.

[73] R. R. Biswas and A. V. Balatsky, “Scattering from surface step edges in strong topo-

logical insulators,” Physical Review B, vol. 83, no. 7, p. 075439, 2011.

[74] D. Zhang and C. Ting, “Impact of step defects on surface states of topological insula-

tors,” Physical Review B, vol. 85, no. 11, p. 115434, 2012.

[75] K. Kobayashi, “Electron transmission through atomic steps of bi 2 se 3 and bi 2 te 3

surfaces,” Physical Review B, vol. 84, no. 20, p. 205424, 2011.



98
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