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UNDERSTANDING INTEGRASE-DNA INTERACTIONS IN RETROVIRUSES 

THROUGH 3’-PROCESSING 

 

by 

 

ZACHARY E. FERRIS 

 

Under the Direction of Markus W. Germann, PhD 

 

ABSTRACT 

Retroviral integrase is one of the key enzymes needed to integrate viral DNA into a host 

cell’s genome for many retroviruses including HIV. Integrase’s role is three-fold. It prepares the 

ends of the DNA so that they can successfully bind to the target genomic DNA via 3’-processing, 

it creates a complex with the viral DNA that is capable of transporting it into the nucleus, and it 

facilitates the insertion of the viral DNA into the host genome. The goal of this research is to 

help determine what sequence and structural characteristics of the viral DNA terminus are 

responsible for successful integrase binding and 3’-processing. Through the use of 

polyacrylamide gel electrophoresis (PAGE) and 32P end labeling, different substrates are 

introduced to integrase and the effectiveness of the enzyme in binding to the DNA and carrying 

out 3’-processing is observed. The importance of terminal structural characteristics as well as 

individual nucleotides are then determined through a combination of PAGE results, modeling, 

and NMR-based structural comparisons. 
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1 INTRODUCTION 

1.1 Retroviruses 

Retroviruses are single stranded positive sense RNA viruses (+ssRNA viruses). This 

means that their genetic information is stored in the form of RNA instead of DNA. Retroviruses 

insert their genetic information into a host cell’s genome which then causes the cell to produce 

more of the virus. In the case of HIV, virions contact the outside of the cell membrane via CD4 

receptors (typically T4 helper cells) and inject their genetic material into the cytoplasm. In the 

case of a retrovirus this will consist of two copies of single stranded RNA as well as a host of 

proteins including reverse transcriptase and integrase (1,13). Reverse transcriptase uses host 

nucleotides to produce a single strand of viral cDNA from each RNA strand. This is the reverse 

order of a typical DNA virus thus the name retrovirus (retro is Latin for ‘backwards’). The single 

stranded cDNA is then reverse transcribed into double stranded cDNA (dsDNA). 

Once the dsDNA is created, it works as a substrate for the enzyme integrase. Integrase 

forms a pre-integration complex (PIC), which is capable of transporting the viral DNA through a 

nuclear pore where it makes contact with the host DNA (13). The integrase then creates a nick in 

one strand of the host DNA that allows the viral DNA to insert itself. Host repair enzymes then 

fully integrate the viral DNA into the genome. This integration of the viral DNA into the genome 

is what allows the virus to potentially establish lifelong infection. To complete the lifecycle, 

RNA polymerase will create viral mRNA from the inserted sequence. These mRNA encode for 

various viral proteins and will result in the production and maturation of new virions. 

1.2 Human Immuno Deficiency Virus 

The Human Immuno Deficiency Virus (HIV) is a retrovirus that infects human cells and 

leads to Acquired Immunodeficiency Syndrome (AIDS). AIDS is a condition caused by the 
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weakening and eventual failure of the immune system due to critically low levels of CD4+ T 

cells, allowing the proliferation of various infections and cancers. This drop in CD4+ T cells is 

caused by a combination of programmed cell death, direct viral death, and death by CD8+ 

cytotoxic lymphocytes, all of which are caused by the progressive spread of HIV (14). HIV is 

classified as a lentivirus, which is a subgroup of retroviruses characterized by long incubation 

periods. HIV infects immune system cells such as helper T cells (CD4+ T cells), dendritic cells, 

and macrophages. There are two known species of HIV called HIV-1 and HIV-2. HIV-1 is the 

more prevalent form and has higher virulence and infectivity.  

 

1.3 HIV Integrase and 3’-processing 

Integrase contains 288 amino acids and is divided into 3 domains: a Zn2+-stabilized three-

helix bundled domain called the N-terminal, a central catalytic core domain that coordinates two 

divalent magnesium or manganese ions essential for DNA substrate processing, and the C-

terminal domain which is responsible for both viral DNA binding and non-specific host DNA 

binding (1, 2). Integrase forms a tetramer (dimer-of-dimers), which binds viral DNA upon 

recognition of characteristic blunt-ended long terminal repeat (LTR) sequences (3). These 

sequences are imperfect mirror images of each other (inverted repeats) and contain a highly 

conserved CA sequence preceding the terminal 2-3 nucleotides (4, 5). This is the beginning of an 

essential step in the HIV life cycle called 3’-processing. 
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3’-processing is the process by which integrase prepares the viral DNA for integration 

into the host genome. It does this by cleaving 2-3 nucleotides off of each 3’ end of the LTR. It 

cleaves by using metal ions to hydrolize a phosphodiester bond. Although manganese has been 

shown to sufficiently manage this function, magnesium is generally considered to be the metal 

ion used in vivo. The enzyme cleaves between the highly conserved CA motif and the terminal 

nucleotides, which leaves a 5’ overhang and an exposed hydroxyl group on each of the terminal 

3’ adenosines. This hydroxyl group is critical later on for a transesterification reaction with the 

host genome (3, 6, 7). Integrase, with the help of other viral and host proteins, forms a pre-

integration complex (PIC). The PIC carries out 3’-processing in the cytoplasm and then 

transports the viral DNA into the nucleus where it will start the integration process (6, 7).  

 

 

Figure 1: Wild Type Viral DNA Sequence 
This figure shows the terminus of a representative wild type sequence. The CA and GT 
shown in blue are consistently maintained (conserved) between different variations of the 
viral DNA sequence. During 3’-processing the nucleotides after the conserved A are 
removed (red arrow).  
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1.4 Purpose of the Study  

3’-processing is a key step in the replication of HIV and other retroviruses. This makes it an 

excellent target for retroviral drugs. This is hindered by the fact that the specifics of 3’-

processing are poorly understood. Previous studies on this subject have discovered important 

motifs within each domain that help the integrase perform its functions, however details 

concerning how the DNA-binding C-domain interact with the viral DNA are limited. One of the 

bigger discoveries in this area was the existence of a highly conserved CA sequence at the 3’ 

ends of the viral DNA (1,8,9,10). This is a major clue to how 3’-processing works, but the reasons 

why these nucleotides are important and exactly how the enzyme interacts with them remains 

elusive.  

One of the better ways to get an actual look at how integrase is performing 3’-processing is 

by seeing the crystal structure of the enzyme. HIV integrase however, has proven very difficult 

to crystallize due mostly to low stability. Individual domains have been crystallized to a limited 

extent, but there is no successful crystallization of HIV integrase in complex with viral DNA 

before the enzyme has carried out 3’-processing (pre-cleaved DNA). The crystal structure of 

prototype foamy virus (PFV) integrase, however, was solved in 2010 and shows the uncut DNA 

in complex with the enzyme (5). By looking at how the highly similar PFV integrase interacts 

with the DNA, insight into how HIV integrase performs 3’-processing can be gained. This is 

done through the creation of a homology model and through sequence alignment that allows for 

the comparison of matching residues at points of contact between the enzyme and the DNA. 

Other features of HIV integrase-DNA interactions including the actual source of LTR 

recognition, the substrate’s structural limitations, and the terminal and non-terminal binding 

characteristics of integrase are all still being debated. In order to shed some light on these traits, 
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this project aims to determine what basic structural substrate characteristics are required for 

efficient 3’-processing. To do this many different DNA substrates, each with a variation of some 

unique physical structure at the terminus (see results section), are allowed to react with integrase. 

By studying the extent to which the integrase is able to process the substrates relative to a 

standard, the preferences and limitations of integrase can be found. The combination of these two 

methods allows for a clarification of the effects of both general structural features and individual 

nucleotide preference in the terminal sequence of the viral substrate. 

 Previous studies on sequence specificity have shown that both single-point mutations and 

multi-point mutations have the greatest effect on 3’-processing rates when either the conserved C 

or A is affected (1,8,9,10). It has also been shown that if the conserved C-G and A-T pairs are both 

flipped at the same time then 3’-processing is drastically reduced (8). Due to the proven 

sensitivity of these 4 nucleotides and the lack of consistent sensitivity elsewhere near the 

terminus, many of the substrates tested will focus either specifically on these 4 nucleotides or on 

the area around them. 
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2 MATERIALS AND METHODS 

Table 1.1 Buffers for the Purification of HIV Integrase 
Buffers I II III IV V VI 

NaCl  
(M) 

1 1 1 1 0.5 1 

HEPES 
 (20mM, pH=7.5) 

✓ ✓ ✓ ✓ ✓ ✓ 

EDTA 
(mM) 

0 0 0 0 2 1 

Imidazole 
(mM) 

20 60 60 1000 300 0 

Glycerol  
(10%) 

  ✓ ✓ ✓ ✓ 

DTT  
(2mM) 

     ✓ 

β-Mercaptoethanol 
(2mM) 

✓ ✓ ✓ ✓ ✓  

PMSF  
(1mM) 

✓      

ZnCl2 
(100µM) 

     ✓ 

Total Volume 
(mL) 

500 500 500 500 1000 1000 

 

2.1 Synthesis and Purification of DNA Substrates 

The U5 terminus of the HIV-1 genome was used as a template for the chemical structure 

during synthesis of the oligodeoxyribonucleotides. Standard synthesis protocols were used.  

Once deprotected, purification of the oligonucleotides was achieved by ion exchange using a 

Pharmacia 15Q PE column. They were then desalted using a GE HiTrap desalting column (gel 

filtration). Oligonucleotide concentrations were found using extinction coefficients calculated 

from the sum of its mononucleotides. The 5’ ends of the oligonucleotides were labeled with T4 

DNA kinase and γ-32P ATP (Dupont-NEN, Boston, MA).  
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2.2 DNA Substrate Labeling 

32P ATP labeling of the 5’ termini was achieved using T4 polynucleotide kinase. The 

reaction mixture contained 0.05 mg/mL BSA, 25 pmol hot/cold ATP mixture, 50 pmol DNA 

substrates, 1x T4 kinase reaction buffer, and 10 units of T4 kinase. The reaction mixture had a 

total volume of 20 µl. It was incubated at 37 °C for 1 hour followed by being held at 85 °C for 15 

minutes (to stop the enzyme).  

 

2.3 Integrase Expression and Purification 

HIV-1 integrase (F185H/C280S) was expressed in the Escherichia coli BL-21 (DE3) cell 

with a hexahistidine-tag in the plasmid pET15. A 3 ml start culture was grown overnight before 

being transferred to a 300 ml LB medium. At a culture OD of 0.6-0.8 1 mM IPTG was added. It 

was then left for 3 hours. Next, the culture was spun at 6,000 rpm for 30 minutes and the pellet 

was washed with 10 ml of buffer I. Then the cell was sonicated for 5 seconds (pause), 10 seconds 

(pause), and finally for 3 minutes. It was then put in a centrifuge set at 13,000 rpm for 30 

minutes. The supernatant was removed and put onto a 5 ml Ni-NTA affinity column, and washed 

with 50 ml of buffer II. The protein was then washed out with a gradient of 10 mM to 1 M 

imidazole. The resulting product was checked with a 12% SDS-PAGE before being dialyzed 

with 1 L of buffer V overnight. The 300 ml culture yielded roughly 3 mg of ~11.8 µM protein 

with an extinction coefficient of 50,670. Thrombin was added (10 units/mg protein) and then 

allowed to react overnight at 4 °C. This separated the his-tag and was check via 12% SDS-PAGE. 

The thrombin was then removed by passing the mixture through a 1 ml benzamidine sepharose 

column. The resulting protein was dialyzed with buffer VI and stored at -20 °C. 
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2.4 3’-Processing 

Each 3’-processing reaction contained 2 µM integrase, 10 mM β-mercaptoethanol, 10% 

glycerol, 25 mM MOPS (pH 7.2), 7.5 mM MnCl2, 50 nM 32P-radiolabeled substrates (hairpin 

and duplex DNA), and 0.1 mg/ml BSA. The total volume for each reaction mixture was 20 µl. 

The DNA was reacted for 3.5 hours at 37 °C. The reactions were stopped by placing them in a  

-20 °C freezer. The reaction products were separated using 15% polyacrylamide denaturing gels 

(8 M Urea). They were then detected using a phosphor storage screen and imaged using the GE 

Healthcare Typhoon 9400. 

 

2.5 Modeling 

The homology model between PFV and HIV integrase was created using the online 

SWISS-MODEL program from Biozentrum. The model was created based on target-template 

alignment using ProMod3. The template structure file for the PFV intasome was taken from 

www.rcsb.org and is classified as 4E7H (DOI: 10.2210/pdb4E7H/pdb). The model was 

visualized using VMD software. 
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3 RESULTS AND DISCUSSION 

3.1 Homology Model  

 

Figure 2: HIV/PFV Homology Model 
Here HIV integrase (red) is aligned with PFV integrase (blue) in complex with viral DNA 
(grey). The model on the right has been rotated about 90°. Both enzymes share the helix 
shown sitting between terminal sections of the two DNA strands. The homology model 
was created using SWISS-MODEL and visualized using VMD. 
 

 

 

 

 

 

 



10 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: PFV Integrase (Paired Down) 
Here the PFV Integrase residues that push between the DNA strands are shown. The 
integrase forms a pocket for the conserved A, which is kept in close proximity to the 
conserved C and G. The conserved T is not found nearby. 
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Figure 4: PFV Integrase (Full) 
All integrase residues near the DNA ends are shown here. The 3’ strand containing the 
cleavage site (red arrow) is pushed to the side by a proline and a tyrosine (image on left). 
The 5’ strand containing the conserved T is wrapped around the back (image on right) 
and stabilized separately.  
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3.2 List of Substrates 

 

  

 

 
Table 2.1.1 Substrates with Terminal Structural Changes 

Substrate Name Full Sequence 

 

Wild Type 

 
3’-CACCTTTTAGAGATCGTCA-5’ 
5'-GTGGAAAATCTCTAGCAGT-3' 
 

 

5’-Overhang 

 
3’-CACCTTTTAGAGATCGTCATTTTT-5’ 
5'-GTGGAAAATCTCTAGCAGT-3' 
 

 

3’-Overhang 

 
3’-CACCTTTTAGAGATCGTCA-5’ 
5'-GTGGAAAATCTCTAGCAGTTTTTT-3' 
 

 

24-mer T-tails 

 
3’-CACCTTTTAGAGATCGTCATTTTT-5’ 
5'-GTGGAAAATCTCTAGCAGTTTTTT-3' 
 

 

22-mer T-tails 

 
3’-CACCTTTTAGAGATCGTTTTTT-5’ 
5'-GTGGAAAATCTCTAGCATTTTT-3' 
 

 

3T-Hairpin                     
 

T 
 T 
T 

 
3'- C A C C T T T T A G A G A T C G T C A 
5'- G T G G A A A A T C T C T A G C A G T 
 

 

6T-Hairpin                     
 
 3'- C A C C T T T T A G A G A T C G T C A T T T 

5'- G T G G A A A A T C T C T A G C A G T T T T 

                    
  

 

Bulge 

 
3’-CACCTTTTAGAGATCGTCATTTTTCACC-5’ 
5'-GTGGAAAATCTCTAGCAGTTTTTTGTGG-3' 

 

 

Blue = Conserved WT Sequence 
Red = Mutation 
I = Inosine 
X = 2-Aminopurine 
D = 7-Deaza-2’-Deoxyadenosine 
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Table 3.1.2 Substrates with Base Substitutions 
Substrate Name Full Sequence 

 
Wild Type 

 
3’-CACCTTTTAGAGATCGTCA-5’ 
5'-GTGGAAAATCTCTAGCAGT-3' 
 

 
Inosine 

 
3’-CACCTTTTAGAGATCITCA-5’ 
5'-GTGGAAAATCTCTAGCAGT-3' 
 

 
2-Aminopurine 

 
3’-CACCTTTTAGAGATCXTCA-5’ 
5'-GTGGAAAATCTCTAGCAGT-3' 
 

 
G/C Switch 

 
3’-CACCTTTTAGAGATCCTCA-5’ 
5'-GTGGAAAATCTCTAGGAGT-3' 
 

 
A/T Switch 

 
3’-CACCTTTTAGAGATCGACA-5’ 
5'-GTGGAAAATCTCTAGCTGT-3' 
 

 
CT T-tails 

 
3’-CACCTTTTAGAGATCGTTTTT-5’ 
5'-GTGGAAAATCTCTAGCTTTTT-3' 
 

 
Deaza Bot w/ T 

 
3’-CACCTTTTAGAGATCGTCA-5’ 
5'-GTGGAAAATCTCTAGCDGT-3' 
 

 
Deaza Top w/ T 

 
3’-CACCTTTTAGAGATCGDCA-5’ 
5'-GTGGAAAATCTCTAGCTGT-3' 
 

 
Deaza Bot w/ C 

 
3’-CACCTTTTAGAGATCGCCA-5’ 
5'-GTGGAAAATCTCTAGCDGT-3' 
 

 
Deaza Top w/ C 

 
3’-CACCTTTTAGAGATCGDCA-5’ 
5'-GTGGAAAATCTCTAGCCGT-3' 
 

 
C Top w/ A 

 
3’-CACCTTTTAGAGATCGCCA-5’ 
5'-GTGGAAAATCTCTAGCAGT-3' 
 

 
G Bot w/ T 

 
3’-CACCTTTTAGAGATCGTCA-5’ 
5'-GTGGAAAATCTCTAGCGGT-3' 
 

 
Terminal G 

 
3’-CACCTTTTAGAGATCG-5’ 
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5'-GTGGAAAATCTCTAGCAGT-3' 
 

 
AàC 

 
3’-CACCTTTTAGAGATCG-5’ 
5'-GTGGAAAATCTCTAGCCGT-3' 
 

 
AàG 

 
3’-CACCTTTTAGAGATCG-5’ 
5'-GTGGAAAATCTCTAGCGGT-3' 
 

 
AàT 

 
3’-CACCTTTTAGAGATCG-5’ 
5'-GTGGAAAATCTCTAGCTGT-3' 
 

 
GA-5’ 

 
3’-CACCTTTTAGAGATCGA-5’ 
5'-GTGGAAAATCTCTAGCTGT-3' 
 

 
GT-5’ 

 
3’-CACCTTTTAGAGATCGT-5’ 
5'-GTGGAAAATCTCTAGCTGT-3' 
 

 

 

3.3 Base References 

 

Figure 5: Altered Bases Used 
Altered bases used are shown here next to the adenine and guanine bases they mimic. 
Base references were made using MarvinSketch. 
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3.4 Gel Results 

The left lane of each gel contains labeled substrate but no enzyme. The right lane is 

exactly the same but with added enzyme. All reactions were incubated for the same period of 

time, which yields about 50% cleavage on the WT as shown on the left in each figure. Each 

substrate was tested multiple times to ensure consistency. Note that there is a very light third 

band present below the cleaved product in the WT that may be visible in the mutations as well. 

 

 
Figure 6: Results Key 
The red arrow indicates the location of 3’-cleavage by integrase (just after the conserved 
adenosine). The red numbers on top of the WT sequence are position references. 
 

 
Figure 7: Terminal Structure Mutations - T-overhangs 
T-overhangs located on either strand did not affect 3’-processing in any major way. 
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Figure 8: Terminal Structure Mutations - T-tails 
T-tails located either on the ends of the WT strands or directly after the conserved 
dinucleotide pairs do not have any major effect on 3’-processing. 

 

 
Figure 9: Terminal Structure Mutations - Closed Ends 
Unlike the T-tails and T-overhangs, the hairpin and bulge substrates substantially reduce 
the amount of cleaved product. This is likely due to the closed or blocked off nature of the 
strand ends in these substrates, which may hinder any attempt to force the strands apart. 
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Figure 10: Base Mutations and Substitutions - Side Specificity 
Flipping either pair of conserved nucleotides resulted in a dramatic loss of cleaved 
product. 
 

 
Figure 11: Base Mutations and Substitutions - Importance of the G 
In order to test the importance of the functional groups on the conserved G, the base was 
replaced with a 2-Aminopurine (lacking a carbonyl and imino proton) and a 
Hypoxanthine (lacking the amino group). As shown the amount of cleaved product was 
reduced only when the amino group was missing.  
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Figure 12: Base Mutations and Substitutions - Importance of the A 
The CT T-tails substrate contains the same sequence as the 22-mer T-tails substrate 
except the conserved A is replaced by a T. Cleavage was drastically reduced when the A 
was not present. 

 
 

 
Figure 13: Base Mutations and Substitutions - The Importance of N7 on the A 
The deaza compound was tested in both complementary and non-complementary 
scenarios in both the top and bottom strands as shown. The Deaza-Bot w/ T substrate is 
an exact copy of the WT sequence but without the N7 on the A. The success of this 
substrate suggests that the N7 is not required for 3’-processing.  
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Figure 14: Non-complementary Bases 
These substrates are designed to test whether substituting the conserved A-T pair for a 
non-complementary pair has a detrimental effect on 3’-processing. The enzyme was able 
to cleave the substrate even better than the standard when the 3’ base was an adenine 
and just as well as the standard when it was a guanine. 

 
 

 
Figure 15: Terminal G Substrates 
These substrates contain 5’-ends that stop after the conserved G. The success of the 
Terminal G substrate indicates that the conserved T is likely not very important. The 
other 3 substrates test the same scenario but with different bases in place of the A. Of the 
3 substitutions, only the T is comparable to the WT. 
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Figure 16: GA-5' and GT-5' Film Results 
Gel lanes shown are in pairs with the negative (no enzyme) on the left and the positive 
(enzyme added) on the right. Substrates used for this gel from left to right are WT, A/T 
Switch, GA-5’, and GT-5’. The results show a dramatic decrease in cleaved product for 
the A/T Switch compared to the GA-5’ which is identical except for the lack of 2 
terminal nucleotides on the 5’-side after the A. The GT-5’ produced more cleaved 
product than either of the other 2 which is expected since it is a non-complementary pair. 
This gel has a blue tint because it was imaged on film instead of a GE Typhoon 9400.  
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Figure 17: Summarized Gel Results 
All substrate results are shown with corresponding sequences and gel results.  
 

3.5 Discussion 

The first set of substrates tested with integrase was designed to test the effect of having a 

bulky sequence on the end of the WT substrate. This was accomplished by adding T-sequence(s) 

onto the end of the substrate in a variety of ways. Figure 7 shows that substrates containing an 

individual T-sequence on either side does not majorly affect substrate cleavage. Figure 8 shows a 

similar result when T-sequences are present on both sides at once both after the typical terminal 

dinucleotides and when occurring directly after the conserved dinucleotides (shown in blue in 

each figure). These results would suggest that having a bulky object on the end of either strand or 

both simultaneously does not significantly affect DNA binding or 3’-processing. However, all of 
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these cases involve open-ended termini and do not necessarily block access to the conserved 

nucleotides any more than the WT.  

The next set of substrates was designed with this in mind. They include one with a small 

3-T hairpin, one with a larger 6-T hairpin, and one with a 9-mer sequence containing a 5-T non-

complimentary bulge after the representative WT sequence. These sequences and their 

corresponding results can be seen in Figure 9. They show that with a closed end the amount of 

cleaved product is severely reduced. Even when comparing the 3-T and 6-T substrates, the 6-T, 

which has a larger more open loop has more cleaved product than the smaller 3-T loop. This 

would make sense if the enzyme needed to force the ends apart in order to cleave.  

 

Figure 18: PFV with Pre-cleaved DNA 
PFV integrase is shown forcing the DNA ends apart using the helix shown in 
orange. The DNA is shown in dark grey with the conserved CA dinucleotide 
shown in red.  
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PFV integrase, a very similar enzyme to HIV integrase, has actually been crystallized in 

complex with pre-cleaved viral DNA, and in the case of PFV the ends of the DNA are indeed 

forced apart by the insertion of a helix between the two strands by the integrase. An example of 

this is shown in Figure 15. In order to further investigate the extent of the similarities between 

PFV and HIV integrase, a homology model was made between the unbound HIV integrase and 

the PFV integrase in complex with the pre-cleaved DNA as shown in Figure 2.  

 The similarities between PFV and HIV integrase including the helix positioned between 

the two DNA strands support the idea that the closed-end substrates are reducing the 3’-

processing efficiency by making it harder for the enzyme to separate the DNA ends. The 

difference in the results between the T-tail substrates and the hairpin substrates also support this 

theory.  

 Subsequent substrate sets focus more on the effects of individual base substitutions or 

mutations. Figure 10 shows the result of flipping the conserved GC or TA. In both cases 3’-

processing is abolished. This confirms the importance of certain characteristics within these 

nucleotides and suggests possible side specificity. The next step then is to investigate why the 

individual bases are important. The substrates shown in Figure 11 aim to discover the importance 

of the G. The strategy here was to figure out if either side group on the G or the imino proton 

were essential at this position. This was tested by replacing the G with both 2-Aminopurine and 

Inosine. 2-Aminopurine contains the amino group but not the carbonyl or the imino proton while 

Inosine contains the carbonyl group and the imino proton but not the amino group. The results 

clearly show a drastic reduction in cleaved product if the amino group is missing and almost no 

change in cleaved product when the amino group is present but the carbonyl and imino group are 

not.  
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 After the G, the conserved A was tested. This was done by comparing a substrate that is 

known to work with the same substrate containing a T in place of the conserved A. This is shown 

in Figure 12 and demonstrates that the A is important in some way. The reason for the 

importance of the A is a matter of some debate. One theory is that the N7 on the A is an 

important point of contact between the integrase and the DNA.  A structure analysis and photo-

crosslinking study done by Dr. Robert Craigie suggests that Lys159 creates one of the final 

points of contact along the DNA strand and is partly responsible for stabilizing one of the two 

separated DNA ends (9). In addition, it has been shown in other studies that the positively charged 

amino group on lysine can form a hydrogen bond with the N7 on adenine (11). For this reason, a 

series of substrates were made containing 7-Deaza-2’-Deoxyadenine in place of the conserved A. 

This base is identical to adenine except it has a carbon in place of the N7.  

The deaza compound was tested on both DNA strands in both complementary and non-

complementary base pairs. The results, shown in Figure 13, reveal that the N7 is not crucial for 

binding and 3’-processing. When the deaza is on the 3’-side (the same position as the A in the 

WT) and across from a complementary base, there is cleaved product comparable to the WT. 

When those two bases are flipped, there is virtually no cleaved product, which is consistent with 

the A/T Switch substrate in Figure 10. Interestingly, when the bases are non-complementary the 

relative amount of cleaved product increased regardless of which side the deaza is on. This raises 

the question of how important the bases are at this position if they are non-complementary. 

Work done by Dr. Patrick Brown shows some examples of non-complementary pairs being 

substituted (Figure 19) for the conserved pairs. At position 3 (the conserved A-T) the non-

complementary pairs show successful cleavage even when the 3’ residue is not an A. The 

complementary pairs shown are consistent with our data (little or no cleavage when there is no A 
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on the 3’-side). To further test non-complementary pairs more combinations were tried (Figure 

14). In all cases non-complementary pairs at this position lead to successful cleavage. It is worth 

noting that among the combinations shown in Figures 14 and 19, the one with an A on the 3’-

side still cleaves the best even when they are non-complementary. This ability to work with 

mismatched bases is not shared by position 4 (the conserved G-C) as shown in Figure 19.  

The next batch of substrates was designed to test whether the base on the 3’-side at position 

3 (the conserved A in the WT) needs anything across from it at all in order to work. Figure 15 

shows that 3’-processing is still successful even when the 5’-strand ends after the conserved G. 

The amount of cleaved product is slightly reduced if the A is then replaced by a T and noticeably 

reduced if it is replaced by a G or C. However, in all cases it is able to cleave to some extent. 

 

 

Figure 19: Non-complementary pairs 
Numbers along the top indicate the base pair position starting from the end as shown on 
the WT sequence in the lower left corner. The control is shown on the left. Successful 3’-
processing is marked by the appearance of a second lower band. The red box indicates 
the position of interest that contains the conserved A. At this position both non-
complementary pairs show successful cleavage while both of the complementary pairs 
that differ from the WT show a lack of cleaved product. This figure is adapted from 
Disruption of the terminal base pairs of retroviral DNA during integration (12). Figure 
adapted from P. Brown (12). 
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4 CONCLUSIONS 

 The main initiative in this project is to elucidate structure and sequence-related features 

on viral DNA substrate termini necessary for successful binding and 3’-processing by HIV 

integrase. The initial substrate sets were designed to test the ability of the enzyme to overcome 

large obstructive structural features on the terminus of the DNA. The idea was to see whether or 

not HIV integrase mimics the strand separation of PFV integrase and how resilient the process is 

to varying structural features on the end of the DNA. These bulky features on the end also reveal 

the effect of placing the conserved CA motif farther from the end. The results (Figures 7-9) show 

that moving the CA motif 5 base pairs farther from the end does not hurt the enzyme’s ability to 

bind and cleave. In addition, having a bulky object on the end of the substrate did not reduce the 

amount of cleaved product in and of itself. Reduced cleavage was only seen when the ends of the 

DNA had a closed nature such as a hairpin ending (Figure 9).  

The negative effect of having a closed end supports the idea that like PFV integrase, HIV 

integrase wants to separate the two DNA strands at the end before cleaving the 3’-side. Even 

among the hairpin substrates, the one with a larger (looser) end produced more cleaved product 

than the one with a smaller (tighter) loop. The homology model shown in Figure 2 also showed 

that both PFV and HIV integrase have a glycine residue in very close proximity to the conserved 

G’s amino group. Given these similarities and the results from Figures 7-9, it is likely that HIV 

integrase uses a similar method to PFV integrase, which is to separate and stabilize the DNA 

ends individually before cleaving the 3’-side.  

For substrates with sequence mutations the focus was on the importance of the conserved 

CA and corresponding GT since this has been shown to be the most important motif for 

successful 3’-processing.  The G/C and A/T switch substrates (Figure 10) show a complete lack 
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of cleaved product. This could indicate a strong side preference for these bases. It also shows the 

importance of these 4 bases by demonstrating the process’s sensitivity to their placement. So 

why are they so important? For the G, the amino group is a strong possibility as shown in Figure 

11. Since both PFV integrase and HIV integrase contain a glycine in close proximity to this 

amino group and since the lack of the amino group leads to a lack of cleaved product, it is likely 

an important point of contact with the integrase. 

When it comes to the A, the N7 is ruled out as an essential feature of the DNA (Figure 

13), but there is something about the A that makes it key for 3’-processing as evidenced by the 

CT T-Tails substrate (Figure 12). It is possible that the N7 is still a typical point of contact with 

Lys159, but that the lack of an N7 does not prevent the lysine from interacting with the adenine. 

Other research has shown that lysine commonly interacts with adenine through both hydrogen 

bonds with the N7 and cation-pi interactions with the ring (12). It is possible that these cation-pi 

interactions (possibly in conjunction with other interactions) are enough to maintain the proposed 

Lys159 contact and thereby facilitate 3’-processing even without the N7. It has also become 

clear that even though complementary bases at position 3 are required to be the conserved A-T in 

order to produce 3’-processing comparable to the WT, non-complementary bases will also work 

even when there is no A present (Figure 14 and 19). This would support the theory that the 

importance of the A has to do with the ability of the enzyme to separate the DNA strands, but if 

this were the only reason the A were important then you would expect to see roughly equal 

cleavage among non-complementary pairs. Looking at Figure 14, it is clear that even among 

non-complementary pairs there is a preference for an A on the 3’-side at this position. The deaza 

substrates in Figure 13 also show a preference for the deaza on the bottom when the bases are 

non-complementary. In addition, the Terminal G substrates shown in Figure 15 show that there is 
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a hierarchy of base preference even when there is nothing across from position of the conserved 

A and that the A is most preferred. So even if the A is used in separating the strands, there is 

something else causing the A to be desired for 3’-processing. 
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Substituting Inosine for Guanosine in DNA;  

Structural and Dynamic Consequences 

 
ABSTRACT 

 Inosine differs from guanosine only by the absence of the N2 amino group. In addition, 

both bases have similar electrostatic potentials. Therefore, substituting I for G has been used to 

probe various properties of nucleic acids and to facilitate the interpretation of binding studies.  In 

particular, the absence of the N2 amino group permits the assessment of its importance in the 

binding of ligands to the minor groove of duplex DNA. It has been known for some time that an 

I-C base pair is of lower stability than a regular G-C base pair, which needs to be considered 

when making DNA constructs containing inosine.  However, it is generally assumed that both 

base pairs are structurally highly similar. In order to test this assumption, we have determined the 

fine structure of two hairpin DNA substrates that differ only in the substitution of an I-C base 

pair for a G-C base pair. The structures have been solved using NOESY-NMR data in 

conjunction with molecular dynamics. The structural data will be compared and complemented 

with thermodynamic and dynamic information to get a more comprehensive appraisal of G-C vs. 

I-C base pair substitutions. 
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1   INTRODUCTION 

Inosine is a nucleotide with a hypoxanthine base. It is chemically identical to guanosine 

with only one exception. It does not have an amino group attached to C2. This allows for the 

comparison of duplex DNA structures that differ only by the lack of an N2 group in the minor 

groove. By studying substrate binding behavior when the amino group is both present and not 

present, evidence for the importance of the amino group and for potential binding strategies via 

inosine substitutions can be found.  

This does not however, take into account any structural or dynamic changes that might 

occur when an inosine is substituted for guanosine. So before this strategy can be used the 

broader effects of an inosine substitution must be studied. This project compares two 18-mer 

DNA hairpins that differ only in the substitution of an inosine for a guanosine. The structure for 

each hairpin was solved from NOESY spectra using Sparky, AMBER, MARDIGRAS, and 

CORMA software. Final structures were then analyzed visually using VMD. RMSD values were 

obtained through the VMD RMSD trajectory tool and helical analysis was performed using 

Curves+. Each structure also underwent 1 𝜇s of free MD followed by RMSD calculations on the 

resulting trajectories.  In addition, the base pair lifetimes, Tm values, imino proton spectra, and 

phosphorous spectra were obtained for each structure. The visual and analytical structure 

comparisons were then paired with the dynamic and thermodynamic data in order to get a more 

complete picture of the effects of the G→I substitution.  

 

Figure 20: Hairpin Sequences 
The complete hairpin sequences differ only by the I/G substitution at position 4 shown in 
red. The G and the I differ only by the N2 amino group present on the G. 
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2   MATERIALS AND METHODS 

 

2.1 – Using NMR to Obtain NOESY Distance Restraints 

All NMR experiments were performed using a Bruker Avance 600 spectrometer with 

IDTG triple resonance and QXI probe heads. NMR samples were loaded in D2O with 10 mM 

NaP, 50 mM NaCl, 0.1 mM EDTA, and had a pH* of 6.86. The temperature was set to 298K. 

Distance restraints were determined using NOESY data, which was collected using mixing times 

of 75 ms, 150 ms, and 250 ms with 50 mM samples. The NOESY data was then used to compile 

a list of cross peak volumes using Sparky software. This was done by first assigning the peaks 

manually and then integrating the peaks using Gaussian fit and sum over box integration 

methods. Distance restraints were then computed from the cross-peak volumes using 

MARDIGRAS software. NOESY experiments and cross peak assignments were performed by 

Qiushi Li. 

 

2.2 –Initial Structure and Equilibration 

A perfect B form version of the hairpin structure was created using NAB in AMBER. 

This was used with LEaP in AMBER to create a topology file, a starting coordinate file, and a 

starting structure file. This was done using the PARMBSC0 force field and a TIP3P water model 

in a 10 Å truncated octahedral periodic box. A total of 3,452 solvent molecules were present in 

the box. The DNA was then held rigid while the solvent and counter-ions were minimized. The 

entire system including the DNA was then minimized. 

 

 

 



34 

 

2.3 – Implementation of NOESY Distance Restraints 

Before the NOESY distance restraints were added, the system was first restrained with 

broad and qualitative restraints such as Watson-Crick base pairing restraints, broad backbone 

torsion angles, and qualitative restraints for the hairpin loop. Because these restraints are all 

fairly broad they were all implemented at the same time. All non-NOESY restraints used are 

shown in the appendix. NOESY distance restraints were added after this in small batches starting 

with the most intense and least ambiguous peaks. 

 

2.4 – The AMBER/MARDIGRAS/CORMA Cycle 

 

Figure 21: Solving the Structures 
Here a diagram of the overall process used to solve each structure from NMR NOESY 
data is given. 
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As a preface to this section a basic description of the function of each of these programs 

will be given. AMBER (Assisted Model Building with Energy Refinement) is a software suite 

that includes many tools used for running molecular dynamics on nucleic acid and protein 

systems. It includes the MD engine used here called Sander. MARDIGRAS (Matrix Analysis of 

Relaxation for Discerning the Geometry of an Aqueous Structure) calculates proton-proton 

distances and error-bounds from cross-peak intensities produced by a 2D NOE experiment. The 

distance bounds produced can then be implemented as distance restraints. MARDIGRAS also 

narrows existing restraints using an AMBER output structure file and an intensity file. CORMA 

(Complete Relaxation Matrix Analysis) is a program used to calculate a dipole-dipole relaxation 

matrix for a group of protons. It translates this into intensities expected of a 2D NOE experiment. 

Initial intensities were converted into distance restraints using MARDIGRAS. For each 

batch of restraints, the system went through at least one cycle of AMBER, MARDIGRAS, and 

CORMA. In AMBER, the structure underwent an initial minimization, a 100 ps rMD step, and a 

final minimization. The resulting output file was converted to a pdb and used for both CORMA 

and MARDIGRAS. MARDIGRAS uses the structure file to produce narrower bounds for the 

restraints. This allows for the improvement of the structure after each cycle, and because it uses 

an iterative process called RANDMARDI it is able to account for spin diffusion that would 

normally affect longer mixing times (such as 250 ms here). The resulting output file from 

MARDIGRAS was then used as the initial structure for the next AMBER cycle. CORMA was 

used to validate the structure once per cycle. It creates a theoretical NOESY intensity file based 

on your AMBER structure and then compares it to your experimental data. Structures in this 

project were validated using CORMA-derived Rx values with a correlation time of 3.5 ns for 
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base and sugar protons. This correlation time was chosen because it typically produces the 

lowest Rx values (closest agreement with experimental data) (2). 

This cycle was repeated for data obtained using mixing times of 75 ms, 150 ms, and 250 

ms. In each case the cycle was repeated until all restraints were incorporated. If individual 

restraints caused abnormally large distance or torsion penalties in AMBER or caused a spike in 

the Rx value then they were investigated in Sparky. If the peak in question was found to be 

abnormal in some way such as hiding another peak inside of it, having a particularly bizarre 

shape, or overlapping too heavily with another peak then it was either turned into a qualitative 

restraint or removed entirely depending on the severity of the abnormality.  

 

2.5 – Obtaining a Final Structure 

After the structure for each mixing time was solved independently the restraints were 

combined and used to create an average set of restraints.  This was done using MARDIGRAS 

and AMBER. MARDIGRAS can combine a series of bounds files (one from each mixing time) 

to create an average bounds file. This was then implemented in AMBER using the 250 ms 

(NOESY mixing time) structure file to create an average structure. The average structure then 

underwent additional AMBER/MARDIGRAS/CORMA cycles. The final cycle performed ran 

rMD for 10 ns in order to allow for any changes that might occur on a longer time scale. Using 

cpptraj in AMBER, 10 structures were taken from the final 100 ps (one structure every 10 ps) 

after the rMD. These structures were minimized with restraints and run through CORMA. A 

final structure was chosen from these based on their total AMBER distance penalties and 

CORMA Rx values. 
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2.6 – Helical Analysis 

Helical analysis was performed on each final structure using Curves+. The output file 

will not include base opening parameters if the hairpins are run as a single strand of DNA. So, 

the hairpin loop was first removed from each structure file and the residue names were made 

contiguous so that Curves+ would read the nucleotides in the correct order. An example input 

file is shown in Figure A2 in the appendix. 

 

2.7 – RMSD 

Trajectory RMSD Calculations were done for each final trajectory. In each case the final 

trajectories (10 ns) were loaded into VMD. The RMSD trajectory tool was then used to perform 

RMSD calculations with an atom selection that specified residues 1-7 and 12-18 (the whole 

structure minus the hairpin loop). The noh selection modifier was used which excludes 

hydrogens from the atom selection. The calculation used every frame along the entire trajectory. 

This was repeated using only residues 3, 4, 5, 14, 15, and 16 and also one with only residues 4 

and 15. Structures were aligned according to the atom selection in each case prior to RMSD 

calculations. 

Comparative RMSD calculations were also done for the two final (static) structures. One 

calculation specified atoms in residues 3, 4, 5, 14, 15, and 16 while another specified only 

residues 4 and 15. Keep in mind that residue 4 is the I/G substitution and residue 15 is the 

cytosine base pairing with it. The numbering for the entire structure is shown in Figure 1. For 

each calculation the structures were first aligned according to the residues specified for the 

RMSD calculation. For comparative RMSD calculations the atoms must match exactly, so for 
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residue 4 the H2 on the inosine and the N2 and its hydrogens on the guanosine were purposefully 

excluded from the atom selection. 

 

2.8 – Free MD 

Each structure also underwent free MD. In each case the structure and solvent were 

equilibrated as described in section 2.2 followed by a 1 𝜇s fMD (no restraints). The resulting 

trajectories were loaded into VMD and trajectory RMSD calculations were performed as 

described in section 2.7. 

 

2.9 – Base Pair Opening 

The base pair lifetimes for the I and G hairpins were measured by monitoring the T1 

relaxation times of samples containing an ammonium catalyst at different concentrations. The 

relaxation time was determined by measuring the intensity of the peaks with different delay 

times and curve fits. This was done at both 278 K and 293 K. Once the T1 was determined, the 

formula 1/T1 = 1/𝜏ex + 1/T1° was used find the base pair exchange rate, 𝜏ex. T1° represents T1 

without any added catalyst. 
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3   RESULTS AND DISCUSSION 

 

3.1 – AMBER Distance Penalties and CORMA Scores for the Final 10 Structures 

I-HP AMBER CORMA 

Structure # 

Total Distance 

Penalty 

(kcal/mol) 

Intra-residue 

Rx Value 

(%) 

Inter-residue 

Rx Value 

(%) 

Total 

Rx Value 

(%) 

1 77.662 3.85 6.02 4.64 

2 79.710 3.85 6.27 4.73 

3 73.549 4.16 6.48 5.01 

4 74.778 3.90 6.02 4.67 

5 77.988 4.02 6.18 4.81 

6 74.461 3.83 5.97 4.61 

7 72.854 4.05 6.52 4.95 

8 77.245 3.87 6.28 4.75 

9 75.035 3.52 5.82 4.36 

10 74.239 3.75 6.08 4.60 

Figure 22: Final 10 Structures for the I-HP 
Structure 9 was selected as the final structure due to having the lowest CORMA score 
and a normal AMBER distance penalty. Total AMBER torsion penalties were less than 
2.1 kcal/mol and total angle penalties were less than 1.0 kcal/mol. 
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G-HP AMBER CORMA 

Structure # 

Total Distance 

Penalty 

(kcal/mol) 

Intra-residue 

Rx Value 

(%) 

Inter-residue 

Rx Value 

(%) 

Total 

Rx Value 

(%) 

1 64.108 4.00 6.04 4.73 

2 66.790 4.05 6.23 4.82 

3 64.665 4.17 5.87 4.78 

4 66.525 4.07 6.00 4.75 

5 64.926 4.05 6.29 4.85 

6 64.326 4.10 6.06 4.80 

7 64.558 4.10 6.06 4.80 

8 66.296 4.10 6.06 4.80 

9 65.115 4.10 6.06 4.80 

10 65.030 3.97 5.84 4.63 

Figure 23: Final 10 Structures for the G-HP 
Structure 10 was selected as the final structure due to having the lowest CORMA score 
and a normal AMBER distance penalty. Total AMBER torsion penalties were less than 
1.5 kcal/mol and total angle penalties were less than 1.0 kcal/mol. 
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3.2 – RMSD Calculations 

 

Figure 24: Trajectory RMSD Values 
RMSD values were calculated for each structure along the entire free MD trajectory. 
Structures were aligned prior to RMSD calculations according to the atom selection 
shown. 2 nt RMSD values were calculated only using residues 4 and 15 for alignment 
and RMSD calculations. 6 nt values used residues 3, 4, 5, 14, 15, and 16. Results show 
little difference between the structures with similar averages, low standard deviations, 
and low maximum values. 
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Figure 25: RMSD Values Shown Graphically 
Here the trajectory RMSD values are shown with respect to time, indicated by the frame 
number which progress chronologically. Each frame represents a snapshot of the 
structure during the trajectory. The band widths between the graphs (compare left to 
right) are very similar. 
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3.3 – Helical Analysis 

 

Figure 26: Backbone angle and sugar puckering definitions 
Picture from the Curves+ web server: http://curvesplus.bsc.es/bbpar 
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Figure 27: Helical Analysis: Difference in Backbone Parameters 
Values over 20° are highlighted in yellow. The I/G substitution is highlighted in red. 
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Figure 28: Helical Analysis: Difference in Intra-BP Parameters 
Values more than twice the average value were highlighted in yellow. The I/G 
substitution is shown in red. 
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Figure 29: Aligned Full Structure 
Here the 2 final structures are shown minus the hairpin loop. The blue structure is the 
inosine hairpin and the red structure is the guanosine hairpin. The model has been 
rotated so the area around the substitution is most visible. The two structures were 
aligned using the RMSD calculator in VMD and were aligned by residues 3, 4, 5, 14, 15, 
and 16 (those in the area of the substitution). 
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Figure 30: Side by Side Comparison of I/G Local Effects 
Here the IC and GC nucleotides are shown with their neighboring nucleotide pairs in the 
final structures. No major differences were observed in the position or orientation of the 
nucleotides. The comparative RMSD value was found using the two final structures. 
Residues 3, 4, 5, 14, 15, and 16 (shown) were used for alignment and RMSD calculations. 
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Figure 31: Aligned I/G Nucleotides 
The IC and GC base pairs were aligned using the RMSD calculator in VMD and were 
aligned by residues 3, 4, 5, 14, 15, and 16 (those in the area of the substitution). 
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Figure 32: Tm Values and Enthalpy 
The inosine structure is shown in blue and the guanosine structure is shown in red. This 
graph shows the derivative of the absorbance with respect to temperature. The apex of 
the peaks represents the Tm of each structure and the width at half height is proportional 
to the enthalpy. Tm data was derived from UV melting curves at different DNA 
concentrations and was calculated using a 6-parameter fit. Figure adapted from data 
collected by Qiushi Li (15). 
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Figure 33: Imino Proton Spectra 
The imino proton spectrum for the guanosine HP is shown on the left and the inosine HP 
is shown on the right. The peaks shown represent imino proton peaks which typically 
result from the formation of a stable base pair formation suggesting that the nucleotides 
labeled above are in a stable base pair. Figure by Qiushi Li and Marina Evich (15). 
 

 

Figure 34: Phosphorous Spectra 
The phosphorous spectrum of the inosine hairpin is shown on the left and the differences 
in chemical shifts between the two hairpins is shown on the right. None of the chemical 
shift differences were particularly large. The greatest differences were in the immediate 
vicinity of the I4/G4 substitution site. This would suggest that there is no major change in 
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the backbone of the structure caused by the substitution and that the torsions in the 
backbone are relatively normal. Figure by C. Johnson (14). 
Figure 35: Base Pair Lifetimes 
Base pair lifetimes for the I4/G4 and the G14 of each structure. “B” on the x-axis 
represents the ammonia catalyst and 𝜏ex represents the base pair lifetime on the y-axis. 
The base pair lifetimes were slower for the G than the I. This makes sense since the I only 
has 2 hydrogen bonds connecting it to the C and the G has 3 hydrogen bonds. The bp 
opening rate of G14 is faster when an I is present suggesting a minor destabilization 
caused by the presence of the I. Figure by Qiushi Li and Marina Evich (15). 
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3.4 - Discussion: 

The final structures each achieved a total CORMA Rx value of less than 5% indicating a 

strong agreement with the NMR data. AMBER penalties were negligible for torsions and angles. 

The distance penalty for the I-HP totaled 75.0 kcal/mol with no individual penalty greater than 

3.5 kcal/mol. The G-HP had a total distance penalty 65.0 kcal/mol with no individual penalty 

greater than 6.3 kcal/mol. Based on this data it is then reasonable to assume that the final 2 

structures are good representations of the actual structures. 

The trajectory-based RMSD values shown in Figure 24 and 25 show that the structures 

are very consistent throughout the trajectory with average values below 0.3 Å  and standard 

deviations below 0.05 Å. The maximum values reached for each structure are fairly close to the 

average suggesting there is no point during the trajectory that the structure changes drastically 

from the final structure. The results of the free MD show that those two structures are nearly 

identical.  

Helical analysis was done using Curves+ software on the final hairpin structures. The 

results are shown in Figure 27 and 28. The highlighted values for A7 and T12 are likely due to 

their proximity to the hairpin loop. It is interesting however that the sheer distance and two of the 

backbone angles (zeta and delta) are noticeably different for residue 4, the I/G substitution. This 

could be indicative of slightly different dynamics or stability. 

The visual structural comparisons between the two hairpins in Figure 29, 30, and 31 show 

very little difference in position or orientation of the bases, sugars, or backbone components. 

Any broad structural changes would really stand out here so despite the lack of the N2 amino 

group on the inosine, and therefore the third hydrogen bond, it is likely that structures of the two 
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hairpins do not differ in any fundamental way. This missing hydrogen bond could also explain 

the lower Tm. With fewer bonds between the I and the C, it would make sense then that the 

overall stability of the base pair would be lower. This was further investigated by looking at the 

base pair lifetimes (Figure 35).  

Base pair lifetimes allow us to study the dynamics of individual base pairs on a 

millisecond timescale. By introducing a catalyst for the exchange of the imino proton with water, 

a reduction in signal intensity can be seen for base pairs that are farther apart. This is because 

base pairs achieve an open state before exchanging protons with water. The catalyst is necessary 

because the rate limiting step of this mechanism is normally the proton exchange itself. The 

catalyst introduces a proton acceptor that accelerates the proton exchange to conditions that are 

at or close to opening-limited conditions. The results shown in Figure 35 show a great difference 

between the rate at which the I4 and G4 are opening. The I4 is able to open and close much 

faster than the G4 at both temperatures. This agrees with the idea that the stability is lower for 

the IC than the GC. The base pair lifetimes are also shown for the G14 in each hairpin to give an 

idea of how the substitution affects the adjacent nucleotides. The G14 at 278/298 K has a base 

pair lifetime of 86/14 ms in the I-HP and 100/31 ms in the G-HP. This difference suggests that 

the inosine substitution does have a destabilizing effect on the surrounding base pairs although it 

is significantly muted compared to the IC vs GC (14% decrease for G14 vs 94% decrease for 

I/G4 at 278 K). 
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4   CONCLUSIONS 

From the overlays and side by side comparisons of the final I and G hairpin structures it 

is clear that there is no major difference in nucleotide position or orientation of I4 and G4 and 

that the overall structure of the hairpins are nearly identical. In addition, the position and 

orientation of nucleotides across from and on either side of the I/G nucleotide seem unperturbed 

by the substitution despite the slight drop in base pair lifetime.  

Although they are structurally similar, Figure 32 (Tm) and 35 (bp lifetime) show a 

sizeable difference in the stability and dynamics of the I/G4. This is further supported by the 

difference in sheer and backbone parameters for residue 4. This should be considered when using 

inosine as a substitute for guanosine. If these factors don’t play a major role in a given 

experiment then all other indications given here would suggest that it is acceptable to make this 

substitution. 
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APPENDIX 

 

Full Gel Examples 

 

Figure A1: Sample Gel 1 
This is an 8M urea 15% PAGE gel. Each substrate contains a lane with no enzyme (left) 
and one with enzyme (right). From left to right this gel contains the WT, Deaza Bot w/ C, 
Deaza Top w/ C, and C Top w/ A substrates.  
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Figure A2: Sample Gel 2 
This is an 8M urea 15% PAGE gel. Each substrate contains a lane with no enzyme (left) 
and one with enzyme (right). From left to right this gel contains the WT, 3T HP, 6T HP, 
and the Bulge substrates. 

 
 

 

Figure A3: Sample Gel 3 
This is an 8M urea 15% PAGE gel showing an example of a substrate check. These 
samples were run after the labeling process but before 3’-processing. It allows you to 
check the success of the labeling process, shows if anything besides the substrate is 
getting labeled, and lets you know if a particular substrate has poor labeling efficiency. 
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Figure A4: Sample NOESY Spectrum 
 

 

Figure A5: Sample Curves+ Input File 
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Figure A6: Sample LEaP Input File 
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#Qualitative restraints for loop B-> H1' B->H2'1  B->H2'2  

# distance constraint number   1 

 &rst  iat =  8,  8, iresid = 1, atnam(1)='H1''',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   2 

 &rst  iat =  9,  9, iresid = 1, atnam(1)='H1''',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   3 

 &rst  iat =  10,  10, iresid = 1, atnam(1)='H1''',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   4 

 &rst  iat =  11,  11, iresid = 1, atnam(1)='H1''',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   5 

 &rst  iat =  8,  8, iresid = 1, atnam(1)='H2''1',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   5 

 &rst  iat =  8,  8, iresid = 1, atnam(1)='H2''2',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   6 

 &rst  iat =  9,  9, iresid = 1, atnam(1)='H2''1',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 
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       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   6 

 &rst  iat =  9,  9, iresid = 1, atnam(1)='H2''2',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   7 

 &rst  iat =  10,  10, iresid = 1, atnam(1)='H2''1',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   8 

 &rst  iat =  10,  10, iresid = 1, atnam(1)='H2''2',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   9 

 &rst  iat =  11,  11, iresid = 1, atnam(1)='H2''1',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   10 

 &rst  iat =  11,  11, iresid = 1, atnam(1)='H2''2',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   11 

 &rst  iat =  8,  9, iresid = 1, atnam(1)='H2''1',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   12 

 &rst  iat =  8,  9, iresid = 1, atnam(1)='H2''2',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 
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       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   13 

 &rst  iat =  9,  10, iresid = 1, atnam(1)='H2''1',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

# distance constraint number   14 

 &rst  iat =  9,  10, iresid = 1, atnam(1)='H2''2',atnam(2)='H6', 

       r1 = 1.5, r2 = 2.0, r3 = 5.0, r4 = 5.5, 

       rk2 =30.000, rk3 =30.000, &end 

 

#==================================================================== 

 

# 10935 atoms read from pdb file ../HIV-I-EZmin2.pdb.  (Sugar Restraints) 

# 1 ADE NU0:  (1 DA5 C4')-(1 DA5 O4')-(1 DA5 C1')-(1 DA5 C2') -40.2 -10.2 

 &rst     iat =     6,     8,     9,    27, 

   r1 = -41.2, r2 = -40.2, r3 = -10.2, r4 =  -9.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 1 ADE NU1:  (1 DA5 O4')-(1 DA5 C1')-(1 DA5 C2')-(1 DA5 C3')  18.1  48.1 

 &rst     iat =     8,     9,    27,    25, 

   r1 =  17.1, r2 =  18.1, r3 =  48.1, r4 =  49.1, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 1 ADE NU2:  (1 DA5 C1')-(1 DA5 C2')-(1 DA5 C3')-(1 DA5 C4') -38.5  -6.7 

 &rst     iat =     9,    27,    25,     6, 

   r1 = -39.5, r2 = -38.5, r3 =  -6.7, r4 =  -5.7, 

   rk2 =   50.0, rk3 =   50.0,                           &end 
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# 1 ADE NU3:  (1 DA5 C2')-(1 DA5 C3')-(1 DA5 C4')-(1 DA5 O4') -16.9  31.1 

 &rst     iat =    27,    25,     6,     8, 

   r1 = -17.9, r2 = -16.9, r3 =  31.1, r4 =  32.1, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 1 ADE NU4:  (1 DA5 C3')-(1 DA5 C4')-(1 DA5 O4')-(1 DA5 C1') -11.8  34.0 

 &rst     iat =    25,     6,     8,     9, 

   r1 = -12.8, r2 = -11.8, r3 =  34.0, r4 =  35.0, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 2 CYT NU0:  (2 DC C4')-(2 DC O4')-(2 DC C1')-(2 DC C2') -39.8  -9.8 

 &rst     iat =    38,    40,    41,    57, 

   r1 = -40.8, r2 = -39.8, r3 =  -9.8, r4 =  -8.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 2 CYT NU1:  (2 DC O4')-(2 DC C1')-(2 DC C2')-(2 DC C3')  19.8  49.8 

 &rst     iat =    40,    41,    57,    55, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 2 CYT NU2:  (2 DC C1')-(2 DC C2')-(2 DC C3')-(2 DC C4') -43.9 -13.9 

 &rst     iat =    41,    57,    55,    38, 

   r1 = -44.9, r2 = -43.9, r3 = -13.9, r4 = -12.9, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 2 CYT NU3:  (2 DC C2')-(2 DC C3')-(2 DC C4')-(2 DC O4')  -4.0  31.1 

 &rst     iat =    57,    55,    38,    40, 

   r1 =  -5.0, r2 =  -4.0, r3 =  31.1, r4 =  32.1, 
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   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 2 CYT NU4:  (2 DC C3')-(2 DC C4')-(2 DC O4')-(2 DC C1') -11.8  25.8 

 &rst     iat =    55,    38,    40,    41, 

   r1 = -12.8, r2 = -11.8, r3 =  25.8, r4 =  26.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 3 THY NU0:  (3 DT C4')-(3 DT O4')-(3 DT C1')-(3 DT C2') -38.1  -8.1 

 &rst     iat =    68,    70,    71,    89, 

   r1 = -39.1, r2 = -38.1, r3 =  -8.1, r4 =  -7.1, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 3 THY NU1:  (3 DT O4')-(3 DT C1')-(3 DT C2')-(3 DT C3')  19.8  49.8 

 &rst     iat =    70,    71,    89,    87, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 3 THY NU2:  (3 DT C1')-(3 DT C2')-(3 DT C3')-(3 DT C4') -47.9 -17.9 

 &rst     iat =    71,    89,    87,    68, 

   r1 = -48.9, r2 = -47.9, r3 = -17.9, r4 = -16.9, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 3 THY NU3:  (3 DT C2')-(3 DT C3')-(3 DT C4')-(3 DT O4')   3.6  33.6 

 &rst     iat =    89,    87,    68,    70, 

   r1 =   2.6, r2 =   3.6, r3 =  33.6, r4 =  34.6, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 3 THY NU4:  (3 DT C3')-(3 DT C4')-(3 DT O4')-(3 DT C1') -12.2  17.8 
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 &rst     iat =    87,    68,    70,    71, 

   r1 = -13.2, r2 = -12.2, r3 =  17.8, r4 =  18.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 4 DI NU0:  (4 DI C4')-(4 DI O4')-(4 DI C1')-(4 DI C2') -39.8  -9.8 

 &rst     iat =   100,   102,   103,   120, 

   r1 = -40.8, r2 = -39.8, r3 =  -9.8, r4 =  -8.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 4 DI NU1:  (4 DI O4')-(4 DI C1')-(4 DI C2')-(4 DI C3')  19.8  49.8 

 &rst     iat =   102,   103,   120,   118, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 4 DI NU2:  (4 DI C1')-(4 DI C2')-(4 DI C3')-(4 DI C4') -43.9 -13.9 

 &rst     iat =   103,   120,   118,   100, 

   r1 = -44.9, r2 = -43.9, r3 = -13.9, r4 = -12.9, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 4 DI NU3:  (4 DI C2')-(4 DI C3')-(4 DI C4')-(4 DI O4')  -4.0  31.1 

 &rst     iat =   120,   118,   100,   102, 

   r1 =  -5.0, r2 =  -4.0, r3 =  31.1, r4 =  32.1, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 4 DI NU4:  (4 DI C3')-(4 DI C4')-(4 DI O4')-(4 DI C1') -11.8  25.8 

 &rst     iat =   118,   100,   102,   103, 

   r1 = -12.8, r2 = -11.8, r3 =  25.8, r4 =  26.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 
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# 5 CYT NU0:  (5 DC C4')-(5 DC O4')-(5 DC C1')-(5 DC C2') -39.8  -9.8 

 &rst     iat =   131,   133,   134,   150, 

   r1 = -40.8, r2 = -39.8, r3 =  -9.8, r4 =  -8.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 5 CYT NU1:  (5 DC O4')-(5 DC C1')-(5 DC C2')-(5 DC C3')  19.8  49.8 

 &rst     iat =   133,   134,   150,   148, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 5 CYT NU2:  (5 DC C1')-(5 DC C2')-(5 DC C3')-(5 DC C4') -43.9 -13.9 

 &rst     iat =   134,   150,   148,   131, 

   r1 = -44.9, r2 = -43.9, r3 = -13.9, r4 = -12.9, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 5 CYT NU3:  (5 DC C2')-(5 DC C3')-(5 DC C4')-(5 DC O4')  -4.0  31.1 

 &rst     iat =   150,   148,   131,   133, 

   r1 =  -5.0, r2 =  -4.0, r3 =  31.1, r4 =  32.1, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 5 CYT NU4:  (5 DC C3')-(5 DC C4')-(5 DC O4')-(5 DC C1') -11.8  25.8 

 &rst     iat =   148,   131,   133,   134, 

   r1 = -12.8, r2 = -11.8, r3 =  25.8, r4 =  26.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 6 THY NU0:  (6 DT C4')-(6 DT O4')-(6 DT C1')-(6 DT C2') -38.1  -8.1 

 &rst     iat =   161,   163,   164,   182, 
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   r1 = -39.1, r2 = -38.1, r3 =  -8.1, r4 =  -7.1, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 6 THY NU1:  (6 DT O4')-(6 DT C1')-(6 DT C2')-(6 DT C3')  19.8  49.8 

 &rst     iat =   163,   164,   182,   180, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 6 THY NU2:  (6 DT C1')-(6 DT C2')-(6 DT C3')-(6 DT C4') -47.9 -17.9 

 &rst     iat =   164,   182,   180,   161, 

   r1 = -48.9, r2 = -47.9, r3 = -17.9, r4 = -16.9, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 6 THY NU3:  (6 DT C2')-(6 DT C3')-(6 DT C4')-(6 DT O4')   3.6  33.6 

 &rst     iat =   182,   180,   161,   163, 

   r1 =   2.6, r2 =   3.6, r3 =  33.6, r4 =  34.6, 

   rk2 =   50.0, rk3 =   50.0,                           &end 

 

# 6 THY NU4:  (6 DT C3')-(6 DT C4')-(6 DT O4')-(6 DT C1') -12.2  17.8 

 &rst     iat =   180,   161,   163,   164, 

   r1 = -13.2, r2 = -12.2, r3 =  17.8, r4 =  18.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE NU0:  (7 DA C4')-(7 DA O4')-(7 DA C1')-(7 DA C2') -40.2 -10.2 

 &rst     iat =   193,   195,   196,   214, 

   r1 = -41.2, r2 = -40.2, r3 = -10.2, r4 =  -9.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 
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# 7 ADE NU1:  (7 DA O4')-(7 DA C1')-(7 DA C2')-(7 DA C3')  11.1  41.1 

 &rst     iat =   195,   196,   214,   212, 

   r1 =  10.1, r2 =  11.1, r3 =  41.1, r4 =  42.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE NU2:  (7 DA C1')-(7 DA C2')-(7 DA C3')-(7 DA C4') -38.5  10.0 

 &rst     iat =   196,   214,   212,   193, 

   r1 = -39.5, r2 = -38.5, r3 =  10.0, r4 =  11.0, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE NU3:  (7 DA C2')-(7 DA C3')-(7 DA C4')-(7 DA O4') -29.9  31.1 

 &rst     iat =   214,   212,   193,   195, 

   r1 = -30.9, r2 = -29.9, r3 =  31.1, r4 =  32.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE NU4:  (7 DA C3')-(7 DA C4')-(7 DA O4')-(7 DA C1') -11.8  38.4 

 &rst     iat =   212,   193,   195,   196, 

   r1 = -12.8, r2 = -11.8, r3 =  38.4, r4 =  39.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY NU0:  (12 DT C4')-(12 DT O4')-(12 DT C1')-(12 DT C2') -38.1  -8.1 

 &rst     iat =   345,   347,   348,   366, 

   r1 = -39.1, r2 = -38.1, r3 =  -8.1, r4 =  -7.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY NU1:  (12 DT O4')-(12 DT C1')-(12 DT C2')-(12 DT C3')  19.8  49.8 

 &rst     iat =   347,   348,   366,   364, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 
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   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY NU2:  (12 DT C1')-(12 DT C2')-(12 DT C3')-(12 DT C4') -47.9 -17.9 

 &rst     iat =   348,   366,   364,   345, 

   r1 = -48.9, r2 = -47.9, r3 = -17.9, r4 = -16.9, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY NU3:  (12 DT C2')-(12 DT C3')-(12 DT C4')-(12 DT O4')   3.6  33.6 

 &rst     iat =   366,   364,   345,   347, 

   r1 =   2.6, r2 =   3.6, r3 =  33.6, r4 =  34.6, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY NU4:  (12 DT C3')-(12 DT C4')-(12 DT O4')-(12 DT C1') -12.2  17.8 

 &rst     iat =   364,   345,   347,   348, 

   r1 = -13.2, r2 = -12.2, r3 =  17.8, r4 =  18.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE NU0:  (13 DA C4')-(13 DA O4')-(13 DA C1')-(13 DA C2') -38.1  -8.1 

 &rst     iat =   377,   379,   380,   398, 

   r1 = -39.1, r2 = -38.1, r3 =  -8.1, r4 =  -7.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE NU1:  (13 DA O4')-(13 DA C1')-(13 DA C2')-(13 DA C3')  19.8  49.8 

 &rst     iat =   379,   380,   398,   396, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE NU2:  (13 DA C1')-(13 DA C2')-(13 DA C3')-(13 DA C4') -47.9 -17.9 
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 &rst     iat =   380,   398,   396,   377, 

   r1 = -48.9, r2 = -47.9, r3 = -17.9, r4 = -16.9, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE NU3:  (13 DA C2')-(13 DA C3')-(13 DA C4')-(13 DA O4')   3.6  33.6 

 &rst     iat =   398,   396,   377,   379, 

   r1 =   2.6, r2 =   3.6, r3 =  33.6, r4 =  34.6, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE NU4:  (13 DA C3')-(13 DA C4')-(13 DA O4')-(13 DA C1') -12.2  17.8 

 &rst     iat =   396,   377,   379,   380, 

   r1 = -13.2, r2 = -12.2, r3 =  17.8, r4 =  18.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA NU0:  (14 DG C4')-(14 DG O4')-(14 DG C1')-(14 DG C2') -38.1  -8.1 

 &rst     iat =   409,   411,   412,   431, 

   r1 = -39.1, r2 = -38.1, r3 =  -8.1, r4 =  -7.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA NU1:  (14 DG O4')-(14 DG C1')-(14 DG C2')-(14 DG C3')  19.8  49.8 

 &rst     iat =   411,   412,   431,   429, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA NU2:  (14 DG C1')-(14 DG C2')-(14 DG C3')-(14 DG C4') -47.9 -17.9 

 &rst     iat =   412,   431,   429,   409, 

   r1 = -48.9, r2 = -47.9, r3 = -17.9, r4 = -16.9, 

   rk2 =   50.0, rk3 =   50.0,    &end 
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# 14 GUA NU3:  (14 DG C2')-(14 DG C3')-(14 DG C4')-(14 DG O4')   3.6  33.6 

 &rst     iat =   431,   429,   409,   411, 

   r1 =   2.6, r2 =   3.6, r3 =  33.6, r4 =  34.6, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA NU4:  (14 DG C3')-(14 DG C4')-(14 DG O4')-(14 DG C1') -12.2  17.8 

 &rst     iat =   429,   409,   411,   412, 

   r1 = -13.2, r2 = -12.2, r3 =  17.8, r4 =  18.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT NU0:  (15 DC C4')-(15 DC O4')-(15 DC C1')-(15 DC C2') -39.8  -9.8 

 &rst     iat =   442,   444,   445,   461, 

   r1 = -40.8, r2 = -39.8, r3 =  -9.8, r4 =  -8.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT NU1:  (15 DC O4')-(15 DC C1')-(15 DC C2')-(15 DC C3')  19.8  49.8 

 &rst     iat =   444,   445,   461,   459, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT NU2:  (15 DC C1')-(15 DC C2')-(15 DC C3')-(15 DC C4') -43.9 -13.9 

 &rst     iat =   445,   461,   459,   442, 

   r1 = -44.9, r2 = -43.9, r3 = -13.9, r4 = -12.9, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT NU3:  (15 DC C2')-(15 DC C3')-(15 DC C4')-(15 DC O4')  -4.0  31.1 

 &rst     iat =   461,   459,   442,   444, 
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   r1 =  -5.0, r2 =  -4.0, r3 =  31.1, r4 =  32.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT NU4:  (15 DC C3')-(15 DC C4')-(15 DC O4')-(15 DC C1') -11.8  25.8 

 &rst     iat =   459,   442,   444,   445, 

   r1 = -12.8, r2 = -11.8, r3 =  25.8, r4 =  26.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE NU0:  (16 DA C4')-(16 DA O4')-(16 DA C1')-(16 DA C2') -38.1  -8.1 

 &rst     iat =   472,   474,   475,   493, 

   r1 = -39.1, r2 = -38.1, r3 =  -8.1, r4 =  -7.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE NU1:  (16 DA O4')-(16 DA C1')-(16 DA C2')-(16 DA C3')  19.8  49.8 

 &rst     iat =   474,   475,   493,   491, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE NU2:  (16 DA C1')-(16 DA C2')-(16 DA C3')-(16 DA C4') -47.9 -17.9 

 &rst     iat =   475,   493,   491,   472, 

   r1 = -48.9, r2 = -47.9, r3 = -17.9, r4 = -16.9, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE NU3:  (16 DA C2')-(16 DA C3')-(16 DA C4')-(16 DA O4')   3.6  33.6 

 &rst     iat =   493,   491,   472,   474, 

   r1 =   2.6, r2 =   3.6, r3 =  33.6, r4 =  34.6, 

   rk2 =   50.0, rk3 =   50.0,    &end 
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# 16 ADE NU4:  (16 DA C3')-(16 DA C4')-(16 DA O4')-(16 DA C1') -12.2  17.8 

 &rst     iat =   491,   472,   474,   475, 

   r1 = -13.2, r2 = -12.2, r3 =  17.8, r4 =  18.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA NU0:  (17 DG C4')-(17 DG O4')-(17 DG C1')-(17 DG C2') -38.1  -8.1 

 &rst     iat =   504,   506,   507,   526, 

   r1 = -39.1, r2 = -38.1, r3 =  -8.1, r4 =  -7.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA NU1:  (17 DG O4')-(17 DG C1')-(17 DG C2')-(17 DG C3')  19.8  49.8 

 &rst     iat =   506,   507,   526,   524, 

   r1 =  18.8, r2 =  19.8, r3 =  49.8, r4 =  50.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA NU2:  (17 DG C1')-(17 DG C2')-(17 DG C3')-(17 DG C4') -47.9 -17.9 

 &rst     iat =   507,   526,   524,   504, 

   r1 = -48.9, r2 = -47.9, r3 = -17.9, r4 = -16.9, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA NU3:  (17 DG C2')-(17 DG C3')-(17 DG C4')-(17 DG O4')   3.6  33.6 

 &rst     iat =   526,   524,   504,   506, 

   r1 =   2.6, r2 =   3.6, r3 =  33.6, r4 =  34.6, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA NU4:  (17 DG C3')-(17 DG C4')-(17 DG O4')-(17 DG C1') -12.2  17.8 

 &rst     iat =   524,   504,   506,   507, 

   r1 = -13.2, r2 = -12.2, r3 =  17.8, r4 =  18.8, 
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   rk2 =   50.0, rk3 =   50.0,    &end 

 

 

#==================================================================== 

# 10935 atoms read from pdb file ../HIV-I-EZmin2.pdb. (Backbone Restraints) 

# 1 ADE EPSILN:  (1 DA5 C4')-(1 DA5 C3')-(1 DA5 O3')-(2 DC P) 175.6 215.6 

 &rst     iat =     6,    25,    30,    31, 

   r1 = 174.6, r2 = 175.6, r3 = 215.6, r4 = 216.6, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 3 THY EPSILN:  (3 DT C4')-(3 DT C3')-(3 DT O3')-(4 DI P) 181.0 201.0 

 &rst     iat =    68,    87,    92,    93, 

   r1 = 180.0, r2 = 181.0, r3 = 201.0, r4 = 202.0, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 4 DI EPSILN:  (4 DI C4')-(4 DI C3')-(4 DI O3')-(5 DC P) 156.6 216.6 

 &rst     iat =   100,   118,   123,   124, 

   r1 = 155.6, r2 = 156.6, r3 = 216.6, r4 = 217.6, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 5 CYT EPSILN:  (5 DC C4')-(5 DC C3')-(5 DC O3')-(6 DT P) 181.1 201.1 

 &rst     iat =   131,   148,   153,   154, 

   r1 = 180.1, r2 = 181.1, r3 = 201.1, r4 = 202.1, 

   rk2 =   50.0, rk3 =   50.0,     &end 

 

# 6 THY EPSILN:  (6 DT C4')-(6 DT C3')-(6 DT O3')-(7 DA P) 172.4 212.4 

 &rst     iat =   161,   180,   185,   186, 

   r1 = 171.4, r2 = 172.4, r3 = 212.4, r4 = 213.4, 
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   rk2 =   50.0, rk3 =   50.0,      &end 

 

# 13 ADE EPSILN:  (13 DA C4')-(13 DA C3')-(13 DA O3')-(14 DG P) 168.2 208.2 

 &rst     iat =   377,   396,   401,   402, 

   r1 = 167.2, r2 = 168.2, r3 = 208.2, r4 = 209.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA EPSILN:  (14 DG C4')-(14 DG C3')-(14 DG O3')-(15 DC P) 179.3 199.3 

 &rst     iat =   409,   429,   434,   435, 

   r1 = 178.3, r2 = 179.3, r3 = 199.3, r4 = 200.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE EPSILN:  (16 DA C4')-(16 DA C3')-(16 DA O3')-(17 DG P) 169.1 209.1 

 &rst     iat =   472,   491,   496,   497, 

   r1 = 168.1, r2 = 169.1, r3 = 209.1, r4 = 210.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA EPSILN:  (17 DG C4')-(17 DG C3')-(17 DG O3')-(18 DT3 P) 183.8 203.8 

 &rst     iat =   504,   524,   529,   530, 

   r1 = 182.8, r2 = 183.8, r3 = 203.8, r4 = 204.8, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 10935 atoms read from pdb file ../HIV-I-EZmin2.pdb. 

# 1 ADE ZETA:  (1 DA5 C3')-(1 DA5 O3')-(2 DC P)-(2 DC O5') 150.0 315.0 

 &rst     iat =    25,    30,    31,    34, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 
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# 2 CYT ZETA:  (2 DC C3')-(2 DC O3')-(3 DT P)-(3 DT O5') 150.0 315.0 

 &rst     iat =    55,    60,    61,    64, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 3 THY ZETA:  (3 DT C3')-(3 DT O3')-(4 DI P)-(4 DI O5') 150.0 315.0 

 &rst     iat =    87,    92,    93,    96, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 4 DI ZETA:  (4 DI C3')-(4 DI O3')-(5 DC P)-(5 DC O5') 150.0 315.0 

 &rst     iat =   118,   123,   124,   127, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 5 CYT ZETA:  (5 DC C3')-(5 DC O3')-(6 DT P)-(6 DT O5') 150.0 315.0 

 &rst     iat =   148,   153,   154,   157, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 6 THY ZETA:  (6 DT C3')-(6 DT O3')-(7 DA P)-(7 DA O5') 150.0 315.0 

 &rst     iat =   180,   185,   186,   189, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE ZETA:  (7 DA C3')-(7 DA O3')-(8 DC P)-(8 DC O5') 150.0 315.0 

 &rst     iat =   212,   217,   218,   221, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 
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   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY ZETA:  (12 DT C3')-(12 DT O3')-(13 DA P)-(13 DA O5') 150.0 315.0 

 &rst     iat =   364,   369,   370,   373, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE ZETA:  (13 DA C3')-(13 DA O3')-(14 DG P)-(14 DG O5') 150.0 315.0 

 &rst     iat =   396,   401,   402,   405, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA ZETA:  (14 DG C3')-(14 DG O3')-(15 DC P)-(15 DC O5') 150.0 315.0 

 &rst     iat =   429,   434,   435,   438, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT ZETA:  (15 DC C3')-(15 DC O3')-(16 DA P)-(16 DA O5') 150.0 315.0 

 &rst     iat =   459,   464,   465,   468, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE ZETA:  (16 DA C3')-(16 DA O3')-(17 DG P)-(17 DG O5') 150.0 315.0 

 &rst     iat =   491,   496,   497,   500, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA ZETA:  (17 DG C3')-(17 DG O3')-(18 DT3 P)-(18 DT3 O5') 150.0 315.0 



78 

 

 &rst     iat =   524,   529,   530,   533, 

   r1 = 140.1, r2 = 150.0, r3 = 315.0, r4 = 325.1, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 10935 atoms read from pdb file ../HIV-I-EZmin2.pdb. 

# 2 CYT ALPHA:  (1 DA5 O3')-(2 DC P)-(2 DC O5')-(2 DC C5') 270.0 330.0 

 &rst     iat =    30,    31,    34,    35, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 3 THY ALPHA:  (2 DC O3')-(3 DT P)-(3 DT O5')-(3 DT C5') 270.0 330.0 

 &rst     iat =    60,    61,    64,    65, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 4 DI ALPHA:  (3 DT O3')-(4 DI P)-(4 DI O5')-(4 DI C5') 270.0 330.0 

 &rst     iat =    92,    93,    96,    97, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 5 CYT ALPHA:  (4 DI O3')-(5 DC P)-(5 DC O5')-(5 DC C5') 270.0 330.0 

 &rst     iat =   123,   124,   127,   128, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 6 THY ALPHA:  (5 DC O3')-(6 DT P)-(6 DT O5')-(6 DT C5') 270.0 330.0 

 &rst     iat =   153,   154,   157,   158, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 
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   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE ALPHA:  (6 DT O3')-(7 DA P)-(7 DA O5')-(7 DA C5') 270.0 330.0 

 &rst     iat =   185,   186,   189,   190, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY ALPHA:  (11 DC O3')-(12 DT P)-(12 DT O5')-(12 DT C5') 270.0 330.0 

 &rst     iat =   337,   338,   341,   342, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE ALPHA:  (12 DT O3')-(13 DA P)-(13 DA O5')-(13 DA C5') 270.0 330.0 

 &rst     iat =   369,   370,   373,   374, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA ALPHA:  (13 DA O3')-(14 DG P)-(14 DG O5')-(14 DG C5') 270.0 330.0 

 &rst     iat =   401,   402,   405,   406, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT ALPHA:  (14 DG O3')-(15 DC P)-(15 DC O5')-(15 DC C5') 270.0 330.0 

 &rst     iat =   434,   435,   438,   439, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE ALPHA:  (15 DC O3')-(16 DA P)-(16 DA O5')-(16 DA C5') 270.0 330.0 
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 &rst     iat =   464,   465,   468,   469, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA ALPHA:  (16 DA O3')-(17 DG P)-(17 DG O5')-(17 DG C5') 270.0 330.0 

 &rst     iat =   496,   497,   500,   501, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 18 THY ALPHA:  (17 DG O3')-(18 DT3 P)-(18 DT3 O5')-(18 DT3 C5') 270.0 330.0 

 &rst     iat =   529,   530,   533,   534, 

   r1 = 260.2, r2 = 270.0, r3 = 330.0, r4 = 340.2, 

   rk2 =   50.0, rk3 =   50.0,    &end 

#=================================================== 

# 10935 atoms read from pdb file ../HIV-I-EZmin2.pdb. (Backbone Restraints) 

# 1 ADE BETA:  (2 DC P)-(1 DA5 O5')-(1 DA5 C5')-(1 DA5 C4') 135.0 215.0 

# &rst     iat =    31,     2,     3,     6, 

#   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

#   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 2 CYT BETA:  (2 DC P)-(2 DC O5')-(2 DC C5')-(2 DC C4') 135.0 215.0 

 &rst     iat =    31,    34,    35,    38, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 3 THY BETA:  (3 DT P)-(3 DT O5')-(3 DT C5')-(3 DT C4') 135.0 215.0 

 &rst     iat =    61,    64,    65,    68, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 
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   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 4 DI BETA:  (4 DI P)-(4 DI O5')-(4 DI C5')-(4 DI C4') 135.0 215.0 

 &rst     iat =    93,    96,    97,   100, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 5 CYT BETA:  (5 DC P)-(5 DC O5')-(5 DC C5')-(5 DC C4') 135.0 215.0 

 &rst     iat =   124,   127,   128,   131, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 6 THY BETA:  (6 DT P)-(6 DT O5')-(6 DT C5')-(6 DT C4') 135.0 215.0 

 &rst     iat =   154,   157,   158,   161, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE BETA:  (7 DA P)-(7 DA O5')-(7 DA C5')-(7 DA C4') 135.0 215.0 

 &rst     iat =   186,   189,   190,   193, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY BETA:  (12 DT P)-(12 DT O5')-(12 DT C5')-(12 DT C4') 135.0 215.0 

 &rst     iat =   338,   341,   342,   345, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE BETA:  (13 DA P)-(13 DA O5')-(13 DA C5')-(13 DA C4') 135.0 215.0 
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 &rst     iat =   370,   373,   374,   377, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA BETA:  (14 DG P)-(14 DG O5')-(14 DG C5')-(14 DG C4') 135.0 215.0 

 &rst     iat =   402,   405,   406,   409, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT BETA:  (15 DC P)-(15 DC O5')-(15 DC C5')-(15 DC C4') 135.0 215.0 

 &rst     iat =   435,   438,   439,   442, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 16 ADE BETA:  (16 DA P)-(16 DA O5')-(16 DA C5')-(16 DA C4') 135.0 215.0 

 &rst     iat =   465,   468,   469,   472, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA BETA:  (17 DG P)-(17 DG O5')-(17 DG C5')-(17 DG C4') 135.0 215.0 

 &rst     iat =   497,   500,   501,   504, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 18 THY BETA:  (18 DT3 P)-(18 DT3 O5')-(18 DT3 C5')-(18 DT3 C4') 135.0 215.0 

 &rst     iat =   530,   533,   534,   537, 

   r1 = 125.3, r2 = 135.0, r3 = 215.0, r4 = 225.3, 

   rk2 =   50.0, rk3 =   50.0,    &end 
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# 10935 atoms read from pdb file ../HIV-I-EZmin2.pdb. 

# 1 ADE GAMMA:  (1 DA5 O5')-(1 DA5 C5')-(1 DA5 C4')-(1 DA5 C3')  30.0  90.0 

 &rst     iat =     2,     3,     6,    25, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 2 CYT GAMMA:  (2 DC O5')-(2 DC C5')-(2 DC C4')-(2 DC C3')  30.0  90.0 

 &rst     iat =    34,    35,    38,    55, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 3 THY GAMMA:  (3 DT O5')-(3 DT C5')-(3 DT C4')-(3 DT C3')  30.0  90.0 

 &rst     iat =    64,    65,    68,    87, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 4 DI GAMMA:  (4 DI O5')-(4 DI C5')-(4 DI C4')-(4 DI C3')  30.0  90.0 

 &rst     iat =    96,    97,   100,   118, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 5 CYT GAMMA:  (5 DC O5')-(5 DC C5')-(5 DC C4')-(5 DC C3')  30.0  90.0 

 &rst     iat =   127,   128,   131,   148, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 6 THY GAMMA:  (6 DT O5')-(6 DT C5')-(6 DT C4')-(6 DT C3')  30.0  90.0 
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 &rst     iat =   157,   158,   161,   180, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 7 ADE GAMMA:  (7 DA O5')-(7 DA C5')-(7 DA C4')-(7 DA C3')  30.0  90.0 

 &rst     iat =   189,   190,   193,   212, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 12 THY GAMMA:  (12 DT O5')-(12 DT C5')-(12 DT C4')-(12 DT C3')  30.0  90.0 

 &rst     iat =   341,   342,   345,   364, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 13 ADE GAMMA:  (13 DA O5')-(13 DA C5')-(13 DA C4')-(13 DA C3')  30.0  90.0 

 &rst     iat =   373,   374,   377,   396, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 14 GUA GAMMA:  (14 DG O5')-(14 DG C5')-(14 DG C4')-(14 DG C3')  30.0  90.0 

 &rst     iat =   405,   406,   409,   429, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 15 CYT GAMMA:  (15 DC O5')-(15 DC C5')-(15 DC C4')-(15 DC C3')  30.0  90.0 

 &rst     iat =   438,   439,   442,   459, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 
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# 16 ADE GAMMA:  (16 DA O5')-(16 DA C5')-(16 DA C4')-(16 DA C3')  30.0  90.0 

 &rst     iat =   468,   469,   472,   491, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 17 GUA GAMMA:  (17 DG O5')-(17 DG C5')-(17 DG C4')-(17 DG C3')  30.0  90.0 

 &rst     iat =   500,   501,   504,   524, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

 

# 18 THY GAMMA:  (18 DT3 O5')-(18 DT3 C5')-(18 DT3 C4')-(18 DT3 C3')  30.0  90.0 

 &rst     iat =   533,   534,   537,   556, 

   r1 =  20.4, r2 =  30.0, r3 =  90.0, r4 =  100.4, 

   rk2 =   50.0, rk3 =   50.0,    &end 

#============================================== 

 

# WATSON CRICK DISTANCES FOR WC (AT) BONDS BETWEEN 1 18 

 &rst  iat =  1,  18, iresid = 1, atnam(1)='N1',atnam(2)='N3', 

       r1 = 0, r2 = 2.72, r3 = 2.92, r4 = 3.42, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  1,  18, iresid = 1, atnam(1)='N6',atnam(2)='O4', 

       r1 = 0, r2 = 2.85, r3 = 3.05, r4 = 3.55, 

       rk2 =25.00, rk3 =25.00, &end 

 

# Watson Crick angles for WC (AT) bonds between 1 18 

 &rst  iat =  1,  18, 18, iresid = 1, atnam(1)='N1',atnam(2)='H3', 

       atnam(3)='N3', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 
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       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  1,  1, 18, iresid = 1, atnam(1)='N6',atnam(2)='H61', 

       atnam(3)='O4', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 

# Watson Crick distances for WC (CG) bonds between 2 17 

 &rst  iat =  17,  2, iresid = 1, atnam(1)='O6',atnam(2)='N4', 

       r1 = 0, r2 = 2.81, r3 = 3.01, r4 = 3.51, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  17,  2, iresid = 1, atnam(1)='N1',atnam(2)='N3', 

       r1 = 0, r2 = 2.85, r3 = 3.05, r4 = 3.55, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  17,  2, iresid = 1, atnam(1)='N2',atnam(2)='O2', 

       r1 = 0, r2 = 2.76, r3 = 2.96, r4 = 3.46, 

       rk2 =25.00, rk3 =25.00, &end 

 

# Watson Crick angles for WC (CG) bonds between 2 17 

 &rst  iat =  17, 2, 2, iresid = 1, atnam(1)='O6',atnam(2)='H41', 

       atnam(3)='N4', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  17,  17, 2, iresid = 1, atnam(1)='N2',atnam(2)='H21', 

       atnam(3)='O2', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  17,  17, 2, iresid = 1, atnam(1)='N1',atnam(2)='H1', 

       atnam(3)='N3', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 

# Watson Crick distances for WC (TA) bonds between 3 16 
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 &rst  iat =  16,  3, iresid = 1, atnam(1)='N1',atnam(2)='N3', 

       r1 = 0, r2 = 2.72, r3 = 2.92, r4 = 3.42, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  16,  3, iresid = 1, atnam(1)='N6',atnam(2)='O4', 

       r1 = 0, r2 = 2.85, r3 = 3.05, r4 = 3.55, 

       rk2 =25.00, rk3 =25.00, &end 

 

# Watson Crick angles for WC (TA) bonds between 3 16 

 &rst  iat =  16,  3, 3, iresid = 1, atnam(1)='N1',atnam(2)='H3', 

       atnam(3)='N3', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  16,  16, 3, iresid = 1, atnam(1)='N6',atnam(2)='H61', 

       atnam(3)='O4', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 

# Watson Crick distances for WC (IC) bonds between 4 15 

 &rst  iat =  4,  15, iresid = 1, atnam(1)='O6',atnam(2)='N4', 

       r1 = 0, r2 = 2.81, r3 = 3.01, r4 = 3.51, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  4,  15, iresid = 1, atnam(1)='N1',atnam(2)='N3', 

       r1 = 0, r2 = 2.85, r3 = 3.05, r4 = 3.55, 

       rk2 =25.00, rk3 =25.00, &end 

# &rst  iat =  4,  15, iresid = 1, atnam(1)='N2',atnam(2)='O2', 

        r1 = 0, r2 = 2.76, r3 = 2.96, r4 = 3.46, 

        rk2 =25.00, rk3 =25.00, &end 

 

# Watson Crick angles for WC (IC) bonds between 4 15 

 &rst  iat =  4, 15, 15, iresid = 1, atnam(1)='O6',atnam(2)='H41', 
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       atnam(3)='N4', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

# &rst  iat =  4,  4, 15, iresid = 1, atnam(1)='N2',atnam(2)='H21', 

        atnam(3)='O2', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

        rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  4,  4, 15, iresid = 1, atnam(1)='N1',atnam(2)='H1', 

       atnam(3)='N3', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 

# Watson Crick distances for WC (CG) bonds between 5 14 

 &rst  iat =  14,  5, iresid = 1, atnam(1)='O6',atnam(2)='N4', 

       r1 = 0, r2 = 2.81, r3 = 3.01, r4 = 3.51, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  14,  5, iresid = 1, atnam(1)='N1',atnam(2)='N3', 

       r1 = 0, r2 = 2.85, r3 = 3.05, r4 = 3.55, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  14,  5, iresid = 1, atnam(1)='N2',atnam(2)='O2', 

       r1 = 0, r2 = 2.76, r3 = 2.96, r4 = 3.46, 

       rk2 =25.00, rk3 =25.00, &end 

 

# Watson Crick angles for WC (CG) bonds between 5 14 

 &rst  iat =  14, 5, 5, iresid = 1, atnam(1)='O6',atnam(2)='H41', 

       atnam(3)='N4', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  14,  14, 5, iresid = 1, atnam(1)='N2',atnam(2)='H21', 

       atnam(3)='O2', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  14,  14, 5, iresid = 1, atnam(1)='N1',atnam(2)='H1', 
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       atnam(3)='N3', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 

# Watson Crick distances for WC (TA) bonds between 6 13 

 &rst  iat =  13,  6, iresid = 1, atnam(1)='N1',atnam(2)='N3', 

       r1 = 0, r2 = 2.72, r3 = 2.92, r4 = 3.42, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  13,  6, iresid = 1, atnam(1)='N6',atnam(2)='O4', 

       r1 = 0, r2 = 2.85, r3 = 3.05, r4 = 3.55, 

       rk2 =25.00, rk3 =25.00, &end 

 

# Watson Crick angles for WC (TA) bonds between 6 13 

 &rst  iat =  13,  6, 6, iresid = 1, atnam(1)='N1',atnam(2)='H3', 

       atnam(3)='N3', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  13,  13, 6, iresid = 1, atnam(1)='N6',atnam(2)='H61', 

       atnam(3)='O4', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 

# Watson Crick distances for WC (AT) bonds between 7 12 

 &rst  iat =  7,  12, iresid = 1, atnam(1)='N1',atnam(2)='N3', 

       r1 = 0, r2 = 2.72, r3 = 2.92, r4 = 3.42, 

       rk2 =25.00, rk3 =25.00, &end 

 &rst  iat =  7,  12, iresid = 1, atnam(1)='N6',atnam(2)='O4', 

       r1 = 0, r2 = 2.85, r3 = 3.05, r4 = 3.55, 

       rk2 =25.00, rk3 =25.00, &end 

 

# Watson Crick angles for WC (AT) bonds between 7 12 
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 &rst  iat =  7,  12, 12, iresid = 1, atnam(1)='N1',atnam(2)='H3', 

       atnam(3)='N3', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 &rst  iat =  7,  7, 12, iresid = 1, atnam(1)='N6',atnam(2)='H61', 

       atnam(3)='O4', r1 = 150, r2 = 170, r3 = 190, r4 = 210, 

       rk2 =10.00, rk3 =10.00, &end 

 

#=============================================== 

# IMINO SEQUENTIAL 

 

# distance constraint number   1 

 &rst  iat =  4,  3, iresid = 1, atnam(1)='H1',atnam(2)='H3', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   2 

 &rst  iat =  14,  6, iresid = 1, atnam(1)='H1',atnam(2)='H3', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   3 

 &rst  iat =  14,  4, iresid = 1, atnam(1)='H1',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   4 

 &rst  iat =  3,  17, iresid = 1, atnam(1)='H3',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   5 

 &rst  iat =  13,  6, iresid = 1, atnam(1)='H2',atnam(2)='H3', 
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       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   6 

 &rst  iat =  13,  14, iresid = 1, atnam(1)='H2',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.50, r4 = 6.50, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   7 

 &rst  iat =  16,  3, iresid = 1, atnam(1)='H2',atnam(2)='H3', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   8 

 &rst  iat =  16,  4, iresid = 1, atnam(1)='H2',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   9 

 &rst  iat =  2,  17, iresid = 1, atnam(1)='H42',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   10 

 &rst  iat =  2,  17, iresid = 1, atnam(1)='H41',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   11 

 &rst  iat =  5,  14, iresid = 1, atnam(1)='H42',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   12 

 &rst  iat =  5,  14, iresid = 1, atnam(1)='H41',atnam(2)='H1', 
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       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   13 

 &rst  iat =  15,  4, iresid = 1, atnam(1)='H42',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   14 

 &rst  iat =  15,  4, iresid = 1, atnam(1)='H41',atnam(2)='H1', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   15 

 &rst  iat =  16,  3, iresid = 1, atnam(1)='H62',atnam(2)='H3', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   16 

 &rst  iat =  16,  3, iresid = 1, atnam(1)='H61',atnam(2)='H3', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   17 

 &rst  iat =  2,  2, iresid = 1, atnam(1)='H5',atnam(2)='H42', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   18 

 &rst  iat =  2,  2, iresid = 1, atnam(1)='H5',atnam(2)='H41', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   19 

 &rst  iat =  5,  5, iresid = 1, atnam(1)='H5',atnam(2)='H42', 
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       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   20 

 &rst  iat =  5,  5, iresid = 1, atnam(1)='H5',atnam(2)='H41', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   21 

 &rst  iat =  15,  15, iresid = 1, atnam(1)='H5',atnam(2)='H42', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

# distance constraint number   22 

 &rst  iat =  5,  5, iresid = 1, atnam(1)='H5',atnam(2)='H41', 

       r1 = 1.50, r2 = 2.00, r3 = 5.00, r4 = 6.00, 

       rk2 =30.000, rk3 =30.000, / 

 

Figure A7: Non-NMR Restraints 
Restraints added prior to the NMR restraints. These include WC base pair restraints, 
sugar restraints, qualitative restraints for the HP loop, backbone restraints, and imino 
sequential restraints. 
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