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SIGN PATTERNS THAT ALLOW DIAGONALIZABILITY

by

CHRISTOPHER ZAGRODNY

Under the Direction of Zhongshan Li, Ph. D.

ABSTRACT

A sign pattern matrix is a matrix whose entries in the set {+,−, 0}.These matrices are

used to describe classes of real matrices with matching signs. The study of sign patterns

originated with the need to solve certain problems in economics where only the signs of

the entries in matrix are known. Since then applications have been found in areas such as

communication complexity, neural networks, and chemistry. Currently much work has been

done in identifying shared characteristics of real matrices having the same sign pattern. Of

particular interest is sign patterns that allow or require particular properties. In this paper I

study sign patterns that allow diagonalizabily, as well as the characteristics of certain types

of sign patterns.
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PART 1

INTRODUCTION

1.1 Description and Motivation

The study of sign pattern matrices comes from the need to solve certain problems

when all that is known is the signs of the entries. Sign patterns were first mentioned in

Paul Samuelson’s text, Foundations of Economic Behavior. Since then there have been

applications found in other areas such as biology, computer science, neural networks, oriented

matroid theory, and convex polytopes theory (see [1],[2], as well as other cited papers). Sign

Patterns Matrices are formed from real matrices by replacing positive entries with ‘+’s,

negative entries with ‘−’s and leaving 0’s as they are. A formal definition is as follows:

Definition 1.1.1. An m×n matrix with entries in {+,−, 0}is called a sign pattern matrix.

Alternatively, a sign pattern matrix can have entries in {+1,−1, 0}

A sign pattern matrix with only positive and zero entries is a non-negative sign-pattern.

A generalized sign pattern is a matrix with entries in {+,−, 0,#}, with the # entry having

an undetermined sign. Given a real matrix B, A = sgnB is a sign pattern matrix with each

entry aij equal to the sign of its corresponding entry, bij, in B.

The focus of this dissertation concerns sign patterns that allow diagonalizability. That

is, sign patterns for which there is a diagonalizable real matrix with the same signs. This

has been previously studied in [3], [4], [5], and [6].

1.2 Definitions and Notation

Most of the following definitions and notations can be found in [3], [6], and [2].

Definition 1.2.1 (Sign Pattern Class). Given a real matrix B = (bij), let A = sgn(B) be the

sign pattern matrix with entries aij = sgn bij. For a given sign pattern, A, The sign pattern
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class Q(A) is the set of all real matrices B such that sgn(B) = A.

Definition 1.2.2. A sign pattern A allows property P if there exists B ∈ Q(A) with property

P . A sign pattern A requires property P if all real matrices B ∈ Q(A) have property P .

For instance, a sign pattern A requires non-singularity if all B ∈ Q(A)) are non-singular.

We say that A is sign non-singular. Note that a sign pattern is sign non-singular if and only if

it has at least one non-zero term and every non-zero term in the expansion of its determinant

has the same sign.

Given a sign pattern matrix A

ρ(A): term rank of A

mr(A): minimum rank of matrices in Q(A)

MR(A): maximum rank of matrices in Q(A)

The digraph of an n × n sign pattern A = [aij], denoted by D(A), is the digraph with

vertex set {1, 2, · · · , n}, where (i, j) is an arc if and only if aij 6= 0. A sign pattern’s digraph

is strongly connected if and only if it is irreducible.

Example 1.2.3. For example, the SPM below has mr(A) = 2, MR(A) = 4, and c(A) = 4.
+ + 0 0

− − 0 0

0 0 + +

0 0 + +


A simple cycle λ = ai1i2ai2i3 . . . aik−1ikaiki1 in a sign pattern A = [aij] is a product of

non zero entries where the indices i1, . . . , ik are distinct. Note that a simple cycle in A

corresponds to a directed cycle in the digraph D(A). A composite cycle is a collection of

simple cycles, all of which have distinct index sets.

Definition 1.2.4. The maximal cycle length, c(A), of A is the length of the largest cycle in

A.
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Note that the term rank of a sign pattern is equal is maximum rank which is greater

than or equal to the maximal cycle length (ρ(A) = MR(A) ≥ c(A)) (see [7] and [2]).

Definition 1.2.5. A signature sign pattern is a sign pattern of a non-singular diagonal

matrix. A permutation sign pattern is a sign pattern of a permutation matrix.

Since several results in this paper deal with minimum and maximum rank, it can be

helpful to work with equivalent and similar sign patterns.

Definition 1.2.6. Let S1andS2 be signature sign patterns and A1 and A2 be two sign pat-

terns. A1 and A2 are signature similar if A1 = S1A2S1. They are signature equivilent if

A1 = S1A2S2. If P is a permutation sign pattern, than A1 and A2 are permutationally

similar if A1 = P TA2P

One concept related to diagonalization that will be referred to frequently in this paper

is rank principality.

Definition 1.2.7 (Rank Principality). A real matrix B is said to be rank-principle if

rankB = k and B has a non-singular k × k principle submatrix. This principle subma-

trix of B is called a rank-principal certificate of B. For a composite cycle γ of a square sign

pattern A, we say γ supports a rank-principal certificate of A if there exists a real matrix

B ∈ A that is rank principle and γ has the same row index set as a rank-principal certificate

of B

In general, a composite cycle λ supports a principle submatrix Â of A if they have the

same index set.

1.3 Outline of this paper

The preceding definitions and concepts are meant to provide an background for the

next several sections. Further definitions and basic concepts will be presented as needed

later on. Each part of this paper represents an area of research and study under Drs. Li

and Hall focusing on Sign pattern matrices allowing diagonalizability, ranks of realization
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diagonalizability occurs, as well as other concepts related to diagonalizability. In part two

we will discuss some known necessary and sufficient conditions for allowing diagnalizability,

as well as possible ranks where diagonalizability can be achieved. In parts three and four we

will cover some new results on matrices allowing diaganolizability, some of these results will

be published in [8].
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PART 2

NECESSARY AND SUFFICIENT CONDITIONS FOR ALLOWING

DIAGONALIZABLITY

2.1 Rank Principle

The following theorems dealing with the maximal cycle length come from [3] and [4].

Theorem 2.1.1 ([3, 4]). If a square sign pattern A satisfies c(A) = MR(A), then A allows

diagonalizability with rank MR(A)

Since a combinatorially symmetric matrix’s maximal cycle length is equal to its maximal

rank, we have the following corollary.

Corollary 2.1.2 ([4]). If a square sign pattern is combinatorially symmetric, thenA allow

diagonalizability with rank MR(A)

Theorem 2.1.3 ([3, 4]). If a sign pattern A allows diagonalizability then c(A) ≥ mr(A)

We know that every diagonal matrix is rank principle [9] . It has also been shown

that every rank principle matrix is diagonally equivalent to a diagonalizable matrix [6]. The

following result from the same paper gives a way to generate sign pattern matrices that allow

diagonalizability .

Theorem 2.1.4 ([6]). A square sign pattern A allows diagonalizability if and only if A

allows rank-principality. Also, A square sign pattern A allows diagonalizability with rank k

if and only if there is a rank-principle matrix B ∈ Q(A) of rank k if and only if A has a

composite cycle of length k that supports a rank principle certificate of A.

So the sign patterns that allow diagonalizability are the sign patterns of square, rank-

principal real matrices. Also, up to permutation similarity, every real rank-principal matrix



6

can be written as

B C

D DB−1C

, where B is a nonsingular matrix of order k while C and D

are arbitrary real matrices of appropriate sizes. In theory, it would be possible to describe

every n× n sign pattern matrix that allows diagonalizablity with rank k this way. However

it would difficult to find a finite number of matrices B,C and D to generate all patterns.

Instead this dissertation will focus mostly on combinatorical descriptions of sign patterns

that allow diagonalizability.

The following result will be useful later.

lemma 2.1.5. Let B be a square matrix with rank k over a field. Suppose that B has exactly

k nonzero eigenvalues. Then B is rank-principal.

Proof. Note that Sk(B) = Ek(B), where Sk(B) is the kth elementary symmetric function of

the eigenvalues of B and Ek(B) is the sum of all principal minors of order k of B (see [9]).

Since B has exactly k nonzero eigenvalues, Sk(B) 6= 0. Thus Ek(B) 6= 0. It follows that B

has at least one nonsingular k × k principal matrix, and hence, B is rank-principal.

Observe that if a square sign pattern with minimum rank 1 has a composite cycle γ

of length k, then the principal submatrix of A supported by γ has no zero entries, so one

can easily construct a rank-principal matrix of rank k in Q(A), which ensures that Q(A)

contains a diagonalizable matrix with rank k by the preceding theorem. This produces the

following result on sign patterns with minimum rank 1.

Theorem 2.1.6. Let A be a square sign pattern such that mr(A) = 1. Then A allows

diagonalizability if and only if A has at least one nonzero diagonal entry; in this case, for

each integer k with 1 ≤ k ≤ c(A), A allows diagonalizability with rank k.

A result involving chordless composite cycles found in [4] is stated below.

Theorem 2.1.7 ([4]). If a square sign pattern A has a chordless composite cycle γ of length

k such that k ≥

mr(A), then A allows diagonalizability with rank k.
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We note that the length k of the chordless composite cycle γ in the preceding theorem

actually must be equal to mr(A), as the principal submatrix of A supported by γ is sign

nonsingular and hence mr(A) ≥ k. Since every chordless composite cycle supports a principal

sign nonsingular submatrix, the following result is a generalization of Theorem 2.1.7.

Theorem 2.1.8. Suppose a square sign pattern A has minimum rank k > 0 and A has a

sign nonsingular k × k principal submatrix. Then A allows diagonalizability with rank k.

Proof. Every matrix B ∈ Q(A) with rank k is clearly rank-principal due to the presence of a

sign nonsingular k × k principal submatrix of A. Thus A allows diagonalizability with rank

k by Theorem 2.1.4.

We now give a characterization of the square sign patterns that require a unique rank

and allow diagonalizability.

Theorem 2.1.9. Let A be a square sign pattern such that mr(A) = MR(A) = k. Then A

allows diagonalizability if and only if c(A) = k.

Proof. The necessity follows from Theorem 2.1.3 and the fact that c(A) ≤ MR(A). The

sufficiency is a consequence of Theorem 2.1.1.

A characterization of upper triangular sign patterns that allow diagonalizability is given

next.

Theorem 2.1.10. Let A be an upper triangular square sign pattern. Then A allows diago-

nalizability if and only if c(A) = mr(A).

Proof. Since A is an upper triangular square sign pattern, every matrix B ∈ Q(A) has

precisely c(A) nonzero eigenvalues, so mr(A) ≥ c(A).

Suppose that A allows diagonalizability. Then c(A) ≥ mr(A). In view of the opposite

inequality above, we get c(A) = mr(A).

Conversely, assume that c(A) = mr(A). Let B ∈ Q(A) be such that rank(B) = mr(A).

Clearly there is a diagonal matrix D with positive diagonal entries such that all the nonzero
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diagonal entries of DB ∈ Q(A) are distinct. Thus every nonzero eigenvalue of DB has

algebraic and geometric multiplicity 1. If 0 is an eigenvalue of DB, then its algebraic and

geometric multiplicities are both equal to n− c(A) = n− rank(B) = n− rank(DB). Hence,

DB ∈ Q(A) is diagonalizable, so that A allows diagonalizability.

A square sign pattern is said to be idempotent if A2 is unambiguously defined, and

A2 = A. More generally, we say a sign pattern is k-potent [10] (where k is a positive

integer) if A1+k is unambiguously defined and A1+k = A. Such sign patterns always allow

diagonalizability.

Theorem 2.1.11. Every sign k-potent sign pattern A allows diagonalizability with rank

mr(A).

Proof. Let A be a k-potent sign pattern and let B ∈ Q(A) be such that rank(B) = mr(A).

On the one hand, clearly rank(B1+k) ≤ rank(B). On the other hand, since rank(B) = mr(A)

and B1+k ∈ Q(A1+k) = Q(A), we also have rank(B1+k) ≥ rank(B). Thus, rank(B1+k) =

rank(B). It follows that rank(B) = rank(B2) = · · · = rank(B1+k). By considering the Jordan

canonical form of B, we see that either B is nonsingular or the eigenvalue 0 of B has index

1. Thus rank(B) is equal to the number of nonzero eigenvalues of B, which ensures that B is

rank-principal (see [6]). By Theorem 2.1.4, A allows diagonalizability with rank mr(A).

2.2 Symmetrically Partitioned

A square sign pattern A is in Frobenius normal form if

A =


A11 A12 . . . A1p

0 A22 . . . A2p

...
...

. . .
...

0 0 . . . App


where each diagonal block,Aii is irreducible [2]. Note that every square sign pattern is per-

mutationally similar to one in Frobenius form, and also permutation similarity preserves
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diagonalizabilty. Therefore we could just consider sign patterns in Frobenius normal form.

However, we will look at a more general form of block upper triangular matrices, symmetri-

cally partitioned block upper triangular sign patterns(block upper triangular matrices where

the diagonal blocks are square)

Theorem 2.2.1. A square sign pattern in symmetrically partitioned block upper triangular

form,

A =


A11 . . . A1p

...
. . .

...

0 . . . App


allows diagonalizability if an only if there exists a real matrix

B =


B11 . . . B1p

...
. . .

...

0 . . . Bpp


where Bii ∈ Q(Aii) for each i = 1, . . . , p, such that all of B11, B22, · · · , Bpp are rank-principal

and rank(B) = rank(B11) + rank(B22) + · · · + rank(Bpp). As a result, if A allows diagonal-

izability , then each of of A11, A22, · · · , App allows diagonalizability.

Proof. Suppose that rank(B) = rank(B11) + rank(B22) + · · · + rank(Bpp), and all of

B11, B22, · · · , Bpp are rank-principal. Then there is a composite cycle γi of Aii that supports

a rank-principal certificate of Bii. As rank(B) = rank(B11) + rank(B22) + · · · + rank(Bpp),

it follows that the composite cycle γ1 . . . γp supports a rank-principal certificate of B. By

Theorem 2.1.4, A allows diagonalizability.

Suppose that A allows diagonalizability. Let B =


B11 . . . B1p

...
. . .

...

0 . . . Bpp

 ∈ Q(A) be di-

agonalizable, where Bii ∈ Q(Aii) for each i = 1, . . . , p. Because a square real matrix is

diagonalizable if and only if its minimal polynomial is a product of distinct monic linear

factors and the minimal polynomial of each diagonal block of a matrix in symmetrically
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partitioned block upper triangular form is a factor of the minimal polynomial of the entire

matrix, we see that each Bii is diagonalizable and hence rank-principal. Since the rank

of a diagonalizable matrix is equal to its total number of nonzero eigenvalues, we see that

rank(B) = rank(B11) + rank(B22) + · · ·+ rank(Bpp).

From the equation rank(B) = rank(B11) + rank(B22) + · · · + rank(Bpp) in Theorem

2.2.1, a combinatorial necessary condition for the matrix A in symmetrically partitioned

block upper triangular form as in Theorem 2.2.1 to allow diagonalizability is that mr(A) ≤

MR(A11)+· · ·+MR(App).We are interested in identifying additional combinatorial conditions

which when combined with the necessary condition that each Aii allows diagonalizability

would ensure that the symmetrically partitioned block upper triangular sign pattern A allows

diagonalizability.

We now phrase an interesting open combinatorial sufficient condition for a symmetrically

partitioned block upper triangular sign pattern to allow diagonalizability.

Problem 2.2.2. Let A be a sign pattern in symmetrically partitioned block upper triangular

form

A =


A11 . . . A1p

...
. . .

...

0 . . . App

 . Suppose that for each i = 1, . . . , p, mr(Aii) = mr([Aii · · · Aip])

and each Aii allows diagonalizability. Does it then necessarily follow that A allows diagonal-

izability?

A related open problem is the following.

Problem 2.2.3. Let A1 be a square sign pattern that allows rank-principality. Is it true that

for every sign pattern A = [A1 A2] such that mr(A1) = mr(A), A allows rank-principality?

We note that an affirmative answer to Problem 2.2.3 implies an affirmative answer to

Problem 2.2.2.
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PART 3

FURTHER PROPERTIES OF MATRICES THAT ALLOW

DIAGONALIZABILITY

In this chapter some additional properties of sign pattern matrices that allow diagonal-

izability and rank-principality are explored. In particular we have an interest in what ranks

can diagonaizability can be realized.

Note that the Kronecker product of two diagonalizable matrices is diagonalizable and

signature equivalence preserves rank-principality. Thus it can be seen that the set of sign

patterns that allow diagonalizability is closed under the following operations: negation, trans-

position, permutation similarity, signature similarity, signature equivalence, and Kronecker

product.

Note that for every real matrix B there is a permutation matrix P such that BP and PB

are both rank-principle this, along with our work in the previous chapter gives the following.

Theorem 3.0.1. Let A be any square sign pattern, then there exists a permutation sign

pattern P such that AP and PA both allow diagonalizibilty,

For example, consider A =


0 + +

0 0 +

0 0 0

.This does not allow diagonalizability, since any

matrix in Q(A) has zero as an eigenvalue with algebraic multiplicity 3, but geometric multi-

plicity 1. But with permutation sign pattern P =


0 0 +

+ 0 0

0 + 0

, we have PA =


0 0 0

0 + +

0 0 +



and AP =


+ + 0

0 + 0

0 0 0

, both of which allow diagonalizability.
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We now further explore the possible ranks of the diagonalizable matrices in the qualita-

tive class of a sign pattern that allows diagonalizability. By Theorem 2.1.4, a sign pattern A

allows diagonalizability with rank k (of course, k ≥ mr(A)) if and only if A has a composite

cycle of length k that supports a rank-principal certificate for A. A natural question is: for

a sign pattern A that allows diagonalizability, can every composite cycle γ of A with length

at least mr(A) support a rank-principal certificate? The answer is negative, as the following

two examples show.

Example 3.0.2. Consider the reducible sign pattern A =


+ + 0

+ + 0

0 0 +

. Note that mr(A) =

2, MR(A) = 3. The maximum length composite cycle γ1 = a11a22a33 supports a rank-

principal certificate. The composite cycle γ2 = a22a33 supports a rank-principal certificate

of order 2. But the composite cycle γ3 = a11a22 cannot support a rank-principal certificate,

since the third row of any matrix in Q(A) cannot be in the span of the first two rows.

Example 3.0.3. Consider the irreducible sign pattern

A =



0 + + 0 +

0 + + 0 +

0 0 0 + 0

0 + + 0 +

+ 0 0 0 0


.

Note that mr(A) = 3 and c(A) = MR(A) = 5, so A allows diagonalizability with rank 5.

Observe that A has several composite cycles of length 3 (such as a23a34a42), but no composite

cycle of length 3 can support a rank-principal certificate. Indeed, for every matrix in Q(A),

the third and fifth rows are not in the span of the other rows, so every composite cycle that

supports a rank-principal certificate must contain the indices 3 and 5; similarly, by exam-

ining the columns 1 and 4, we see that every composite cycle that supports a rank-principal

certificate must contain the indices 1 and 4. Thus every composite cycle that supports a
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rank-principal certificate must contain the indices 1,3,4, and 5, and hence must have length

at least 4. Therefore, A does not allow diagonalizability with rank mr(A) = 3.

As illustrated in the preceding example, a sign pattern A that allows diagonalizabil-

ity may not allow diagonalizability with rank mr(A), even when mr(A) is the length of a

composite cycle.

But for symmetric bipartite sign patterns, we have the following interesting result.

Theorem 3.0.4. Let A be a symmetric sign pattern whose digraph is bipartite. Then

mr(A),MR(A), and the length of every composite cycle of A are even, and for every even

integer k with mr(A) ≤ k ≤ MR(A), there is a symmetric (and hence diagonalizable) matrix

B ∈ Q(A) with rank k, and thus, there is a composite cycle of A of length k that supports a

rank-principal certificate for A.

However, even for a symmetric irreducible bipartite sign pattern A, not every composite

cycle of A of length at least mr(A) can support a rank-principal certificate for A, as the

following example shows.

Example 3.0.5. Consider the symmetric irreducible bipartite sign pattern

A =



0 0 0 + + 0

0 0 0 + + 0

0 0 0 + + +

+ + + 0 0 0

+ + + 0 0 0

0 0 + 0 0 0


.

Clearly, mr(A) = 4. But for every real matrix B ∈ Q(A) with rank 4, the first two rows

as well as the first two columns must be linearly dependent. Thus the composite cycle

(a14a41)(a25a52) cannot support a rank-principal certificate of A.

Hall et al. also shows that for some symmetric sign patterns A, mr(A) cannot be

achieved by any symmetric matrix B ∈ Q(A). The following two natural questions arise.
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Problem 3.0.6. Does every symmetric sign pattern A allow diagonalizability with rank

mr(A)?

Problem 3.0.7. Is it true that for every irreducible symmetric sign pattern A and every

integer k that is the length of some composite cycle of A with k ≥ mr(A), there is a composite

cycle of A of length k that supports a rank-principal certificate for A?

We point out that if symmetry is relaxed to combinatorial symmetry, the answers to

the two preceding problems are negative, as the following example shows.

Example 3.0.8. Consider the combinatorially symmetric irreducible bipartite sign pattern

A =



0 0 0 + + + +

0 0 0 + + + +

0 0 0 + + + +

+ + + 0 0 0 0

− + + 0 0 0 0

+ − + 0 0 0 0

+ + − 0 0 0 0


.

Observe that the 4× 3 submatrix in the lower left corner has minimum rank 3 (seeBrua95),

so mr(A) = 4. Assume that a rank 4 matrix B ∈ Q(A) is rank-principal. Then there is a

composite cycle γ of length 4 that supports a rank-principal certificate of B. Since the first

three columns of B are linearly independent and are not linear combinations of the remaining

columns, we see that the index set of γ must contain {1, 2, 3}. It follows that the principal

submatrix supported by γ would have row indices {1, 2, 3, i} for some i ∈ {4, 5, 6, 7}. Thus

the principal submatrix of B supported by γ, B[{1, 2, 3, i}], contains a 3× 3 zero submatrix

and has rank 2, contradicting the fact that it is a rank-principal certificate of B. Thus A

does not allow diagonalizability with rank 4. Therefore, no composite cycle of length 4 can

support a rank-principal certificate for A. Note, however, that A does have composite cycles

of length 4, such as (a34a43)(a25a52).
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It is easy to see that the answer to Problem 3.0.7 is negative if irreducibility is dropped,

as can be seen from the following example.

Example 3.0.9. For the reducible symmetric sign pattern

A =



0 + + 0 0 0 0

+ 0 + 0 0 0 0

+ + 0 0 0 0 0

0 0 0 0 0 + +

0 0 0 0 0 + +

0 0 0 + + 0 0

0 0 0 + + 0 0


,

mr(A) = 5, and there exist composite cycles of length 6 (such as (a12a21)(a46a64)(a57a75)).

Clearly, every composite cycle that supports a rank-principal certificate for A must contain

the indices 1, 2 and 3. But there is no composite cycle of length 6 containing the indices 1,

2, and 3.

Note that if c(A) = MR(A) = k for a square sign pattern A, then as shown in there

is a matrix B ∈ Q(A) such that rank(B) = k and B has k distinct nonzero eigenvalues. It

follows that B is diagonalizable, so A allows diagonalizability with rank MR(A). Of course,

it follows from Theorem 2.1.4 that if a square sign pattern A satisfies c(A) < MR(A), then

A does not allow diagonalizability with rank MR(A). Thus we arrive at the following result.

Theorem 3.0.10. A square sign pattern A allows diagonalizability with rank MR(A) if and

only if c(A) = MR(A).

But a square sign pattern A satisfying c(A) < MR(A) may allow diagonalizability with

some smaller rank, as illustrated by the next example.
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Example 3.0.11. Let A =


0 + + 0

+ 0 0 0

0 0 0 0

0 + + 0


. Note that mr(A) = 2 = c(A), MR(A) = 3, and

every rank 2 matrix B ∈ Q(A) has two distinct nonzero real eigenvalues (which are negatives

of each other) and hence is diagonalizable. But there is no composite cycle of length 3 in A,

so A does not allow diagonalizability with rank MR(A) = 3.

Concerning composite cycles that support rank-principal certificates, we have the fol-

lowing interesting result.

Theorem 3.0.12. Suppose that γ1 and γ2 are composite cycles of a square sign pattern A

such that γ1 ⊂ γ2. If γ1 supports a rank-principal certificate for A, then γ2 also supports a

rank-principal certificate for A.

Proof. Without loss of generality, we may assume that the sign pattern A has the following

form

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

, where A11 is supported by γ1 and

A11 A12

A21 A22

 is supported by γ2.

Since γ1 ⊂ γ2, there is a composite cycle β2 of A such that γ2 = γ1β2, where the index sets

of γ1 and β2 are disjoint. It follows that A22 is supported by β2. Suppose that γ1 supports a

rank-principal certificate of B =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 ∈ Q(A). Let k1 and k2 denote the lengths

of γ1 and β2, respectively. By performing type III elementary row and column operations on

B, we can get the following matrix of rank k1:


B11 0 0

0 0 0

0 0 0

 .
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Let B22(β2) be the (1,−1, 0)-matrix of order k2 whose only nonzero entries occur in the

positions of the entries of β2 and have the same sign as the corresponding entries of β2.

Clearly, B22(β2) is nonsingular. Let B̃ be the matrix obtained from B by replacing B22 with

B22 + B22(β2) while keeping the other blocks unchanged. Note that B̃ ∈ Q(A). It can be

seen that via type III elementary row and column operations, B̃ may be transformed to the

following matrix: 
B11 0 0

0 B22(β2) 0

0 0 0

 .
It follows that B̃ is rank-principal, with a rank-principal certificate supported by γ2.

Repeated applications of the preceding theorem yield the following generalization.

Corollary 3.0.13. Suppose that a square sign pattern A has k composite cycles γ1, · · · , γk

such that γ1 ⊂ γ2 ⊂ · · · ⊂ γk. If γ1 supports a rank-principal certificate for A, then each of

γ2, · · · , γk also supports a rank-principal certificate for A.

However, the following problem remains open.

Problem 3.0.14. Suppose that γ1 and γ2 are composite cycles of a square sign pattern A

such that γ1 supports a rank-principal certificate for A, and the index set of γ1 is a subset of

that of γ2. Does it follow that γ2 also supports a rank-principal certificate for A?

It can be seen from Theorem 3.0.12 that for every n× n sign pattern with all diagonal

entries nonzero, if A allows diagonalizability with rank k, then it also allows diagonalizability

with rank t for each integer t with k ≤ t ≤ n. The following intriguing question arises.

Problem 3.0.15. Does every square sign pattern A with all diagonal entries nonzero allow

diagonalizability with rank mr(A)?
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PART 4

SIGNPATTERNS WITH mr(A) = 2 AND NO ZERO LINE

In [18] it is shown that for each k ≥ 4 there exists an irreducible sign pattern A such

that c(A) ≥ mr(A) = k and A does not allow diagonalization.

Example 4.0.1 (18). For example, Let

A =



0 + + 0 + 0

0 + + 0 + 0

0 0 0 + 0 0

+ 0 0 0 0 0

0 0 0 0 0 +

+ 0 0 0 0 0


.

Figure (4.1) Digraph of A in Example 4.0.1

The digraph of A is strongly connected and therefore A is irreducible.Also, mr(A) =

c(A) = 4 and MR(A) = 5. However A does not allow diagonizability. Note that the entries

a34 = + and a56 = + are the only nonzero entries in their rows and columns, so if there

is a composite cycle γ that supports a rank-principal certificate for A, then γ must contain

the entries a34 = + and a56 = +, and hence the index set of γ would contain {3, 4, 5, 6}.
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But a look at the digraph D(A) shows that there is no composite cycle in A whose index set

contains {3, 4, 5, 6}. Thus A does not allow diagonalizability.

Note that there is a way to construct irreducible sign patterns A such that mr(A) =

2 + t ≥ 4 and c(A) ≤ 3 (and hence A does not allow diagonalizability). For each integer

t ≥ 2, the nonnegative sign pattern A = [aij] of order 2t + 1 whose only nonzero entries

are the entries of the 3-cycles a1,2ia2i,2i+1a2i+1,1, i = 1, . . . , t satisfies mr(A) = 2 + t ≥ 4 and

c(A) = 3. In contrast, the following remarkable property of irreducible sign patterns with

minimum rank 3 is worth mentioning.

Observation 4.0.2. Every irreducible sign pattern A with mr(A) = 3 satisfies c(A) ≥ 3.

Proof. If A has a simple cycle of length at least 3, then of course c(A) ≥ 3. Now assume

that the maximum simple cycle length of A is 2. Since D(A) is strongly connected, we see

that A is combinatorially symmetric and the underlying undirected graph of A is a tree. If

this tree is not a star, then we get a composite cycle of length 4 consisting of two simple

2-cycles. If this tree is a star, then mr(A) = 3 ensures that there is a 1-cycle at a vertex

that is not the center of the star, thus we get a composite cycle of length 3 consisting of this

1-cycle and a 2-cycle.

Thus we have the following problem.

Problem 4.0.3. Does every irreducible sign pattern A with mr(A) = 3 allow diagonalizabil-

ity?

This is a very challenging problem that awaits further research. The irreducible sign

patterns with minimum rank 3 that we have examined so far all allow diagonalizability. But

note that as shown in Example 3.0.3, irreducible sign patterns with minimum rank 3 may

not allow diagonalizability with rank 3.

If we relax the irreducibility to the weaker condition of having no zero line, then it is

easy to find a square sign pattern with minimum rank 3 and with no zero line that does not

allow diagonalizability, as the next example shows.
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Example 4.0.4. The reducible sign pattern A =

[
+ + 0 0
0 0 + 0
0 0 0 +
0 0 0 +

]
has no zero line, mr(A) = 3,

and c(A) = 2. By Theorem 2.1.3, A does not allow diagonalizability.

We now concentrate on sign patterns with minimum rank 2. If the irreducibility condi-

tion is dropped completely, it is easy to see that there exists a reducible sign pattern A such

that mr(A) = 2 and A does not allow diagonalizability. For example, the sign pattern

A =


+ + 0 0

+ + 0 0

0 0 0 +

0 0 0 0


satisfies c(A) = mr(A) = 2, but A does not allow diagonalizability (as its lower right 2 × 2

diagonal block does not allow diagonalizability).

In the following theorems, we establish that every square sign pattern A satisfying the

two conditions mr(A) = 2 and A has no zero line (where the second condition is weaker than

irreducibility) allows diagonalizability with various ranks including 2 and MR(A).

Theorem 4.0.5. Let A be a square sign pattern with mr(A) = 2 and no zero line. Then A

allows diagonalizability with rank 2.

Proof. Since the set of sign patterns that allow diagonalizability is closed under permutation

similarity and signature equivalence, using similar methods as in [15], by replacing the sign

pattern A with a sign pattern obtained from A via permutation similarity and signature

equivalence if necessary, we may assume that a real matrix B ∈ Q(A) with rank(B) = 2 can

be written as

B =


1 x1

1 x2
...

...

1 xn


−y1z1 −y2z2 · · · −ynzn

z1 z2 · · · zn

 ,

where x1 ≤ x2 ≤ · · · ≤ xn, z1 > 0, z2 > 0, · · · , zn > 0, not all of the xi are equal, and not all



21

the yi are equal. Regard x1, x2, · · · , xn, y1, y2, · · · , yn, and z1, z2, · · · , zn as real variables. For

each i, j, whenever bij = 0, we identify yj with xi. Furthermore, whenever bi1j = bi2j = 0,

we also identify xi1 with xi2 . Consider the 2× 2 matrix

C =

−y1z1 −y2z2 · · · −ynzn
z1 z2 · · · zn




1 x1

1 x2
...

...

1 xn


,

the negative of whose determinant is p = (
∑n

i=1 xizi)(
∑n

i=1 yizi)− (
∑n

i=1 zi)(
∑n

i=1 xiyizi).

Observe that if C is nonsingular, then C has two nonzero eigenvalues, hence B has

exactly two nonzero eigenvalues. It follows that the second elementary symmetric function of

the eigenvalues of B is nonzero. But since this number is equal to the sum of all 2×2 principal

minors of B (see [12]), we see that B is rank-principal, and hence, A allows diagonalizability.

Thus it remains to show that the independent variables can be assigned suitable values so

that C is nonsingular, namely, p 6= 0.

Since rank(B) = 2 > 1, at least two of the xi are independent, and at least two of the yi

are independent. Suppose that there is no zero entry in row 1 of B. Then x1 is distinct from

x2, . . . , xn and no yj is identified as x1. Hence, if y1 is not identified with any xi, then the

coefficient of x1y1 in the polynomial p is z21 − (
∑n

i=1 zi)z1 6= 0, so p 6= 0. If y1 = xi1 = · · · =

xik = yj2 = · · · = yjt , then the coefficient of x1xi1 in p is z1(
∑k

j=1 zij)− (
∑n

i=1 zi)z1 6= 0.

Now assume that row 1 of B has exactly t (> 0) zero entries, with column indices

j1 < j2 < · · · < jt. Suppose that the j1th column of B has k 0 entries. Since each column

of B is nondecreasing (as the row indices increase), we have b1j1 = b2j1 = · · · = btj1 = 0 and

the remaining entries in the column are positive. Since mr(A) = 2 = rank(B) and A has no

zero line, we have 1 ≤ k < n and 1 ≤ t < n and B[{1, · · · , k}, {j1, · · · , jt}] is a maximal zero

submatrix such that all entries of B[{1, · · · , k}, {j1, · · · , jt}c] are nonzero and all the entries

of B[{1, · · · , k}c, {j1, · · · , jt}] are nonzero. Suppose that there are s elements in {j1, · · · , jt}

that are at most k, that is, B[{1, · · · , k}, {j1, · · · , jt}] contains s diagonal entries of B. Note
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that x1 = x2 = · · · = xk = yj1 = yj2 = · · · = yjt . Further xk+1, · · · , xn and yj for any

j /∈ {j1, · · · , jt} are independent of x1. Thus the coefficient of x21 in p is

(
k∑

i=1

zi)(
t∑

i=1

zji)− (
n∑

i=1

zi)(
s∑

i=1

zji) 6= 0

(with
∑s

i=1 zji understood to be 0 when s = 0).

Therefore, the polynomial p is never identically zero. Thus, subject to the required

identifications, we can find a rational value of each free variable within a sufficiently small

neighborhood of the initial value such that p 6= 0, so the perturbed rational matrix B̃ ∈ Q(A)

satisfies rank(B̃) = 2 and B̃ is rank-principal. It follows that A allows diagonalizability with

rank 2.

As an immediate consequence, we get the following result.

Theorem 4.0.6. Every irreducible sign pattern A with mr(A) = 2 allows diagonalizability

with rank 2.

Note that in the proof of Theorem 4.0.5, if A[X, Y ] is a maximal zero submatrix of

the square sign pattern A such that mr(A) = 2 and A has no zero line, then A[X, Y c] and

A[Xc, Y ] are full sign patterns. Hence, for any other maximal zero submatrix A[X1, Y1] of

A, we must have X ∩X1 = ∅ and Y ∩ Y1 = ∅. Thus the maximal zero submatrices of A are

strongly disjoint. It is easy to see that this holds even when A is not square. We record this

fact as follows.

Observation 4.0.7. Let A be a sign pattern such that mr(A) = 2 and A has no zero line.

Then the maximal zero submatrices of A are strongly disjoint.

It turns out every square sign pattern whose maximal zero submatrices (if any) are

strongly disjoint allows diagonalizability with rank equal to its maximum rank, as shown

below.

Theorem 4.0.8. Let A be an n × n sign pattern whose maximal zero submatrices (if any)

are strongly disjoint. Then c(A) = MR(A) and A allows diagonalizability with rank MR(A).
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Furthermore, for every n× n permutation sign pattern P , c(PA) = MR(PA) = MR(AP ) =

c(AP ) = MR(A).

Proof. In view of Theorem 3.0.10, it suffices to show that c(A) = MR(A), as the last state-

ment of the theorem follows from this fact applied to the matrices PA and AP (and the

obvious fact that the maximum rank is invariant under permutation equivalence). Clearly,

c(A) = MR(A) when MR(A) = n.

Now assume that MR(A) < n. Then there are s rows, with row index set S, and t

columns, with column index set T , that cover all the nonzero entries of A, where s + t =

|S| + |T | = MR(A). Then A[Sc, T c] = 0 is a maximal zero submatrix. Since the maximal

zero submatrices of A are strongly disjoint, A[S, T c] and A[Sc, T ] are full. Let k = |S ∩ T |.

Note that each element z ∈ (S\T ) ∪ (T\S) gives a 1-cycle azz, so we have |S| + |T | − 2k

disjoint 1-cycles of A arising this way.

For each y ∈ (S∪T )c and x ∈ S∩T , we have axy 6= 0 and ayx 6= 0, so axyayx is a 2-cycle.

Since |(S ∪ T )c| = n− (|S|+ |T | − k) = k+n− (|S|+ |T |) ≥ k, we obtain k disjoint 2-cycles

using k disjoint pairs of vertices xi ∈ S ∩ T and yi ∈ (S ∪ T )c, i = 1, . . . , k. Together with

the |S| + |T | − 2k disjoint 1-cycles mentioned above, we obtain a composite cycle of length

2k + (|S|+ |T | − 2k) = |S|+ |T | = MR(A). Thus c(A) = MR(A).

As a consequence of Theorem 4.0.8 and Observation 4.0.7, we get the following result.

Theorem 4.0.9. Let A be an n × n sign pattern such that mr(A) = 2 and A has no zero

line. Then c(A) = MR(A) and A allows diagonalizability with rank MR(A). Furthermore, for

every n×n permutation sign pattern P , c(PA) = MR(PA) = MR(AP ) = c(AP ) = MR(A).

In the proof of Theorem 4.0.5, the presence of zero entries in A imposes restrictions on

some of the variables in a full rank factorization of a matrix B ∈ Q(A). However, for any

n× n full sign pattern A and any B ∈ Q(A), there are no such restrictions on the variables

arising from a full rank factorization of B. Hence, using a full rank factorization as in the

proof of Theorem 4.0.5, we can show the following result.
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Theorem 4.0.10. Every n × n full sign pattern A allows diagonalizability with each rank

from mr(A) to n.

Sign patterns whose maximal zero submatrices are strongly disjoint may be viewed as

a generalization of full sign patterns, but it could happen that such a square sign pattern A

may not allow diagonalizability with any rank less than its maximum rank, as the following

example shows.

Example 4.0.11. The maximal zero submatrices of the square sign pattern A =

[
0 0 + +
0 0 + −
+ + 0 0
+ + 0 0

]
are strongly disjoint, and A allows diagonalizability with rank c(A) = 4. But mr(A) = 3 and

A does not have any composite cycle of length 3 (as D(A) is bipartite), so A does not allow

diagonalizability with rank 3.

We now show another striking composite cycle property of square sign patterns whose

maximal zero submatrices are strongly disjoint.

Theorem 4.0.12. Let A be an n× n nonzero sign pattern whose maximal zero submatrices

(if any) are strongly disjoint. Then A has a composite cycle of length c(A) consisting of

disjoint simple cycles of lengths up to 3, at most one of which is a 3-cycle.

Proof. We proceed by induction on n.

The result is clear for n ≤ 3.

Note that for n = 3, such as for the sign pattern
[

0 − −
+ 0 −
+ + 0

]
, it is possible that the only

composite cycle of length 3 is a simple 3-cycle.

Now, assume that n ≥ 4 and suppose that the result holds for all orders less than n.

If A has no zero submatrices, then clearly A has a composite cycle of length n consisting

of n 1-cycles.

Now assume that A has m ≥ 1 strongly disjoint maximal zero submatrices and without

loss of generality, suppose that the row index sets of the maximal zero submatrices of A are

the pairwise disjoint subsets S1, . . . , Sm, and their column index sets are the pairwise disjoint

subsets T1, . . . , Tm, where |S1|+ |T1| ≥ |S2|+ |T2| ≥ · · · ≥ |Sm|+ |Tm|.
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Case 1. |S1|+ |T1| > n.

Then fewer than n lines of A (such as rows and columns of A not intersecting A[S1, T1])

can cover all the nonzero entries of A, so MR(A) < n. As in the proof of Theorem 4.0.8 when

MR(A) < n, there is a composite cycle of length c(A) consisting of 1-cycles and 2-cycles.

Case 2. |S1|+ |T1| = n.

Since the total size of any zero submatrix of A is at most n, we have MR(A) = n. Clearly,

Sc
1 6= ∅ and T c

1 6= ∅. Note that every zero submatrix of A strongly disjoint with A[S1, T1]

is a submatrix of A[Sc
1, T

c
1 ]. By avoiding using any possible nonzero entries in A[Sc

1, T
c
1 ] in

forming a composite cycle of length n, we may assume that S2 = Sc
1, and T2 = T c

1 (and hence

m = 2). Note that we then have |S2|+ |T2| = n− |S1|+ n− |T1| = 2n− (|S1|+ |T1|) = n.

Subcase 2.1. S1 = T1.

Take i ∈ S1 = T1, j ∈ S2 = T2. Then aijaji is a 2-cycle in A. Upon deleting ith and jth

rows and columns of A, each of the two maximal zero submatrices of A loses one row and one

column, and the principal submatrix A′ = A[{i, j}c] is of order n−2 and MR(A′) = n−2, as

every zero submatrix of A′ has total size at most n− 2. By the induction hypothesis, A′ has

composite cycle γ of length c(A′) = n − 2 consisting of 1-cycles, 2-cycles, and at most one

3-cycle. Thus (aijaji)γ is a composite cycle of A of length n = c(A) consisting of 1-cycles,

2-cycles, and at most one 3-cycle.

Subcase 2.2. S1 6= T1.

Then (S1\T1) ∪ (T1\S1) 6= ∅. Without loss of generality, assume that (S1\T1) 6= ∅ and

take k ∈ S1\T1. Then akk 6= 0, as it is an element of A[S1, T
c
1 ] = A[S1, T2]. Upon deleting

the kth row and kth column of A, each of the two maximal zero submatrices of A loses one

line, and we get a principal submatrix A′ of order n− 1 with MR(A′) = n− 1, since A′ does

not have any zero submatrix of total size greater than n − 1. By the induction hypothesis,

A′ has a composite cycle γ of length c(A′) = n − 1 consisting of 1-cycles, 2-cycles, and at

most one 3-cycle. Thus (akk)γ is a composite cycle of A of length n = c(A) consisting of

1-cycles, 2-cycles, and at most one 3-cycle.

Case 3. |S1|+ |T1| ≤ n− 1.
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Then A does not have any zero submatrix with total size greater than n, so MR(A) = n.

By avoiding using possible nonzero entries in a suitable submatrix of A[Sc
1, T

c
1 ] of total size

less than n if necessary, we may assume that m ≥ 2. Since the sum of the total sizes of all

the maximal zero submatrices of A is at most 2n and n ≥ 4, there are at most two maximal

zero submatrices of A with total size n− 1.

Subcase 3.1. S1 = T1. Note that |Sk|+ |Tk| ≤ n− 1, for each k = 1, . . . ,m. Take i ∈ S1

and j ∈ T2 ⊆ T c
1 = Sc

1. Since aij is an element of the full matrix A[S1, T
c
1 ] and aji is an

element of the full matrix A[Sc
1, T1], we see that aijaji is a 2-cycle of A. Note that A has at

most two maximal zero submatrices of total size n− 1. Upon deleting ith and jth rows and

columns of A, each of the two maximal zero submatrices A[S1, T1] and A[S2, T2] (with largest

total sizes) loses at least one line, and the principal submatrix A′ = A[{i, j}c] of order n− 2

satisfies MR(A′) = n − 2, as every zero submatrix of A′ has total size at most n − 2. By

the induction hypothesis, A′ has a composite cycle γ of length c(A′) = n − 2 consisting of

1-cycles, 2-cycles, and at most one 3-cycle. Thus (aijaji)γ is a composite cycle of A of length

n = c(A) consisting of 1-cycles, 2-cycles, and at most one 3-cycle.

Subcase 3.2. S1 6= T1. With the obvious modification that m ≥ 2 instead of m = 2, the

argument in Subcase 2.2 also works here .

Therefore, A has a composite cycle of length n = c(A) consisting of 1-cycles, 2-cycles,

and at most one 3-cycle.

The next result follows from Theorem 4.0.12 and Observation 4.0.7

Theorem 4.0.13. Let A be an n × n sign pattern such that mr(A) = 2 and A has no zero

line. Then A has a composite cycle of length c(A) consisting of disjoint simple cycles of

lengths up to 3, at most one of which is a 3-cycle.

Obviously, in the two preceding theorems, if c(A) is odd and A has no 1-cycle, then A

has a composite cycle of length c(A) consisting of 2-cycles and exactly one 3-cycle.

In view of Theorem 4.0.13 and Theorem 3.0.12, we obtain the following result on the

ranks achieved by diagonalizable matrices in the qualitative class of sign pattern matrix A



27

such that mr(A) = 2 and A has no zero line.

Theorem 4.0.14. Let A be a square sign pattern.

(a). Suppose that γ1γ2 . . . γk (k ≥ 2) is a composite cycle of A of length c(A) such

that γ1 is a composite cycle of length 2 that supports a rank-principal certificate for A,

γ2 is a 1-cycle, and for each 2 ≤ i ≤ k, γi is a 1-cycle or 2-cycle. Then {r |

A allows diagonalizability with rank r} = {2, 3, . . . , c(A)}.

(b). More generally, suppose that γ1γ2 . . . γk (k ≥ 2) is a composite cycle of A where γ1 is a

composite cycle of length l1 that supports a rank-principal certificate for A, and γ2 . . . γk are

simple cycles. Then

{l1+
∑

j∈S length(γj) | S ⊆ {2, . . . , k}} ⊆ {r | A allows diagonalizability with rank r}.

Example 4.0.15. The sign pattern A =

[
0 − − − −
+ 0 − − −
+ + 0 + +
+ + 0 + +
+ + 0 + +

]
satisfies mr(A) = 2 and A has

no zero line. Note that the 2-cycle a23a32 supports a rank-principal certificate for A and

(a23a32)(a15a51)a44 is a composite cycle of length c(A) = 5. By the preceding theorem, the set

of the ranks of the diagonalizable matrices in Q(A) is equal to {2, 3, 4, 5}.

Example 4.0.16. The sign pattern A =

 0 0 0 − − −
0 0 0 − − −
0 0 0 − − −
+ + + 0 0 0
+ + + 0 0 0
+ + + 0 0 0

 satisfies mr(A) = 2 and A has

no zero line. Note that the 2-cycle a34a43 supports a rank-principal certificate for A and

(a34a43)(a25a52)(a16a61) is a composite cycle of length c(A) = 6. By the preceding theorem,

the set of the ranks of the diagonalizable matrices in Q(A) contains {2, 4, 6}. But since the

digraph of A is bipartite, every composite cycle of A has even length. Thus the set of the

ranks of the diagonalizable matrices in Q(A) is equal to {2, 4, 6}.

Example 4.0.17. The sign pattern A =

[
0 − − − −
+ 0 − − −
+ + 0 − −
+ + + 0 −
+ + + + 0

]
satisfies mr(A) = 2 since the poly-

nomial sign change number of each row is 1. Note that the 2-cycle a12a21 supports a rank-

principal certificate for A and (a12a21)(a34a43) is a composite cycle of A. By the preceding

theorem, the set of the ranks of the diagonalizable matrices in Q(A) contains {2, 4}. Also,

the 3-cycle a12a23a31 supports a rank-principal certificate for A and (a12a23a31)(a45a54) is a

composite cycle of A. By the preceding theorem, the set of the ranks of the diagonalizable
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matrices in Q(A) contains {3, 5}. Thus the set of the ranks of the diagonalizable matrices

in Q(A) is equal to {2, 3, 4, 5}.
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PART 5

CONCLUSION

In this dissertation, there is much that still could be done l on the topic of sign patterns

that allow and require diagonalizability. This work covered some types of sign patterns that

allow diagonalizability as well as conditions for requiring diagonalizability. I will continue

to work on diagonalizability problems, including rank realizations, irreducible matrices, and

distinct eigenvalues.

The following are some open problems.

Problem 5.0.1. Irreducible sign pattern A with minimum rank 3 allows diagonalizability.

Problem 5.0.2. Suppose that A allows diagonalizability. Is every composite cycle length

that is at least equal to mr(A) achievable as the rank of a diagonalizable matrix B ∈ Q(A)?

Problem 5.0.3. Does every symmetric sign pattern allow diagonalizability with minimum

rank?

Other areas of further study include characterizing irreducible sign patterns that allow

diagonalizability.
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