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ABSTRACT 

Bacterial biofilms are a structured population of bacteria adhered to a biotic or abiotic 

surface. Bacteria establish a biofilm by encasing themselves in a self-secreted matrix of extra 

polymeric substance. The matrix, composed primarily of polysaccharides and protein, confers to 

the individual bacterium enhanced protection from environmental insults.  These insults would 

otherwise be detrimental to the bacteria if they were not part of the biofilm. To properly time 

when it is most beneficial to establish a biofilm and carry out other process, bacteria have 

developed a means to communicate using signaling molecules termed autoinducers. These 

signaling molecules help bacteria to make coordinated decisions. 

 One such decision is phenotype switching, where some bacteria in the colony change 

their phenotypes to ensure their survival or the survival of an entire colony.  Some species of 



bacteria exhibit a clear delineated spatiotemporal pattern of changing their phenotype. In 

particular, Bacillus Subtilis forms a biofilm that exhibits spatiotemporal patterning during its 

development. Using an agent-based model that includes thresholds on environmental cues we 

reproduced the spatiotemporal behavior observed from experiments. Specifically, we incorporate 

thresholds on the concentration on the level of nutrient and autoinducer to reproduce the 

experimental pattern. This model represents the first attempt using an agent-based model to 

reproduce the spatiotemporal pattern exhibited experimentally where phenotype switching is 

induced by both nutrient and the autoinducer. The model allows us to gain an understand of the 

interrelatedness between autoinducer levels and nutrient availability.      

 The end stage of biofilm development inevitably leads to some members of the 

community dying or leaving through a variety of dispersal mechanisms.  We developed another 

agent-based model to study biofilm dispersal. Dispersal is caused by the weakening of cohesive 

bonds within the biofilm.  We study dispersal under the condition where cohesive forces are 

weakened to induce dispersion. The weakening of cohesive force allows us to gain insight on the 

benefits if any dispersal has on the development of a biofilm.  
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1 INTRODUCTION  

1.1 Motivation  

A biofilm is defined as an assemblage of microbial cells irreversible attached to a surface 

encased in a extra polymeric substance (EPS) [1]. The EPS plays a central role in the 

development of a biofilm first aiding in the initial attachment of the biofilm to a surface and later 

providing protection and hydration to the cells within the biofilm[2]. The protection provided by 

the EPS leads to the recalcitrant property often exhibited by biofilms. Gaining an understanding 

of biofilms is an active area of study in many different fields. Of particular interest, is the study 

of biofilms as they relate to biomedicine and human well-being. Biofilms forming on indwelling 

medical devices cause  bloodstream and urinary tract infections [3].  In addition to forming on 

medical devices, biofilm are often formed on chronic wounds causing delayed healing and 

further infections[4]. Patients suffering from cystic fibrosis are susceptible to biofilms formed by 

Pseudomonas aeruginosa leading to lung infections in these patients[5]. According to the World 

Health Organization 30% of all diseases and 40% of all deaths throughout the world is due to 

polluted water, leading to waste water treatment plants using biofilms to aid in bioremediation 

[6]. The use of biofilm as another tool in water treatment is crucial Given the wide range of 

fields and application of biofilms it seems imperative to gain a better understanding of the 

mechanism underlying its development. 

Despite many models developed in the past few decades that aim to better understand 

biofilms there is still a lot unknown about the spatial and temporal dynamics that govern the 

phenotypic heterogeneity exhibit in developing biofilms, [7]. Specifically, the interactions 

between a biofilm and signal in its environment that lead to the dynamics observed in vitro. 

Bacteria are known to use many different environmental ques such Quorum sensing (QS), 
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nutrient, and Ph levels that are threshold dependent to control their behavior. Yet, the interaction 

of the different thresholds and how they lead to spatiotemporal heterogeneity have not been 

incorporated into models.     

Mature biofilms are known to disperse once certain thresholds on environmental ques are 

reached [8]. Specifically, environmental ques that suggest low nutrient availability or 

autoinducer levels above or below a given threshold can lead to dispersal. Models of dispersal 

have focused on detachment mechanism due to outside forces, cell lysis or detachment 

dependent on the thickness of a biofilm or other pre-specified functions. Most models do not 

include QS or the effect of cohesion on the dispersal exhibited in biofilms.  

1.2 Biofilm Review 

1.2.1 Biofilm Formation.  

For millions of years bacteria constituted the only life on earth. The biofilm mode of 

growth is said to have evolved has a means for bacteria to survive the harsh environment they 

must have encountered [9]. A biofilm is defined as a multicellular community of bacteria that is 

held together by a self-produced extracellular polymeric substance (EPS) [2]. Within the biofilm 

bacteria form a community where they are able to respond to changing environmental conditions 

by communicating through QS [10]. QS is used by bacteria to regulate gene expression as a 

response to cell-density [10, 11]. The regulation of genes as a response to environmental ques 

enables bacteria to switch to different phenotypes as a survival mechanism [12, 13].  
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Biofilm are ubiquitous and can be found in medical devices, sewage bioremediation, plant 

growth promotion, chronic infections and industrial biofouling [14]. For the aforementioned 

reasons, it is important that we gain a better understanding of the development process that 

occurs during the establishment of a biofilm. I will discuss some of the important features and 

implications of bacteria and their associated biofilms.  

Biofilm formation is a multi-stage process as illustrated in figure 1.2-1. The first step in the 

formation of a biofilm is the forming of a conditioning layer. The conditioning layer forms on a 

surface that is either biotic or abiotic facilitates the attachment of cells to a substratum. The 

conditioning layer is created by organic or inorganic material from the environment. The process 

of biofilm formation continues as bacterium in their planktonic state becoming irreversible 

attaching to the condition surface. The attachment is mediated by secretion of adhesins and 

appendages located on the surface of the bacterium. The adhesins used are target specific 

allowing the bacterium to colonize a wide variety of surfaces. Planktonic bacterium use 

appendages located on their surface to form an initial attachment to the condition layer. The 

appendages are species specific and can include flagella, fimbriae and pili. Other environmental 

factors contribute to bacterial adhesion, these include available energy, surface functionality, 

bacterial orientation, temperature and pressure conditions [15]. 

Once bacterium attach to a surface they rapidly start to proliferate and secrete EPS to 

increase cell-cell cohesion. At this stage of development, the bacteria have formed a biofilm and 

start to take on the mushroom like structure associated with biofilms. The formation of the 

biofilm now confers enhanced protection against environmental insults allowing for the cells in 

the biofilm to communicate with each other using QS to regulate their gene expression. The final 

stage of development is dispersal where cells are released from within. The dispersal is due to 
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enzymes released by the cells that break down the cohesive forces within the biofilm. Due to the 

importance of QS and EPS production in the development of a biofilm, each will be discussed in 

more detail.  

 

Figure 1.2-1 Stages of Biofilm Formation.  

The stages of biofilm development begin with the pre-conditioning of a substratum followed by 

attachment to the surface. Bacteria then reach a quorum and start producing an extracellular 

matrix to encase the bacteria and form a biofilm. Within the biofilm the cells consume nutrient 

and proliferate until a mature biofilm if formed. The next step is the dispersal of some cells from 

the biofilm in order recolonize.  Figure reproduced [16]with the permission of the authors. 

 

1.2.2 The Role of EPS. 

EPS encasing bacteria are mostly composed of polysaccharides, proteins and Extracellular 

genomic DNA (eDNA) [17].  Although the polysaccharides, proteins and eDNA can vary across 

species and environment the function of the EPS does not change. Across species EPS provides 

not only structural integrity to the biofilm but also serves as a protective layer [14]. A complete 
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list of the functions of EPS is provided in figure 1.2-2.  A central role of EPS is to improve 

adhesive and cohesive forces within the biofilm. Specifically, EPS enhances adhesion to solid 

surfaces and the cohesive forces between microbes to increase their accumulation leading to the 

formation of a mature biofilm[18]. The increased adhesive and cohesive force conferred by EPS 

has been proven as one of the reasons biofilms are difficult to remove[19]. The increased 

cohesive and adhesive forces caused by secreted EPS also contributes to the mushroom like 

structures associated with biofilms [20, 21]. EPS occupies a majority of the space in a biofilm. 

The occupancy affects the diffusion of signals that in turn produce chemical and nutrient 

gradients within the biofilm. The gradients lead to distinct environmental niches in the biofilm. 

The microenvironments in turn lead to spatial organized gene expression and  spatial 

heterogeneity[18].  
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Figure 1.2-2 Function of EPS. 

 The EPS serves many roles in the biofilm from the initial adhesion on a surface, to building the 

biofilm by forming the needed architecture and protective barrier.   Once the biofilm has formed 

the EPS recruits and aids in the digestion of nutrients. In the later stage of the biofilm the EPS 

weakens allowing the release of cells from within the biofilm. Figure reproduced with permission 

from [22].  

 

1.2.3 Quorum Sensing Molecules.   

QS is the language used by microbes to communicate and regulate gene expression. 

Specifically, it is a form of density dependent cell-cell signaling mediated by an autoinducer.  

Bacteria are able to secrete autoinducers, which are small molecules that freely diffuse through 

the environment.  The autoinducers then accumulate in the environment until a “quorum” is 
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reached. Once the threshold determining a “quorum” is reached the cells become up-regulated 

and produce autoinducer at an increased rate.  Once an autoinducer threshold is reached, genes 

under control of a particular QS system become activated or deactivated [23].  QS systems in 

bacteria have been generally divided into three classes: (1) LuxI/LuxR–type QS in Gram-

negative bacteria, which use acyl-homoserine lactones (AHL) as signal molecules; (2) 

oligopeptide-two-component-type QS in Gram-positive bacteria, which use small peptides as 

signal molecules; and (3) luxS-encoded autoinducer 2 (AI-2) QS in both Gram-negative and 

Gram-positive bacteria[11]. QS is necessary to multiple stages of biofilm development since QS 

allows a bacterium to change its phenotype  [24]. In particular, during the early stage of 

development, bacteria are able to switch to different phenotypes to establish a biofilm. For 

example, B. Subtilis express the 𝑡𝑎𝑝𝐴 − 𝑠𝑖𝑝𝑊 − 𝑡𝑎𝑠𝐴 operon and start secreting matrix 

encasing the bacteria and increasing the adhesive force to the substratum[25].  At a later stage 

QS is responsible for dispersal by altering genes as a response to environmental ques or chemical 

signals produced by an aging biofilm [26].  

Bacteria also use QS to collectively produce virulence factors in eukaryotic hosts causing 

a myriad of biofilm related diseases and infection [23]. Biofilm related diseases and infection 

such as cystic fibrosis, bacterial endocarditis and corneal ulcers are notoriously difficult to treat 

because of the matrix [27], which confers enhanced protection against antibiotics and other 

environmental insults that would kill a bacterium in a planktonic state.  Several mechanisms 

have been put forth to explain the resistance exhibited by biofilms. One such mechanism is that 

resistance to antibiotics is due to slow or incomplete penetration of antibiotic into the biofilm due 

to the presence of EPS[27]. Another is that within a biofilm they are altered microenvironments 

of low metabolic substrate. In these environments, cells do not grow and are therefore immune to 
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penicillin that cannot act on such cells. It is also been proposed that a subpopulation within the 

biofilm form a protected phenotype that enable them to survive treatment with antibiotics [28]. 

This enhanced protection from antibiotics makes biofilm associated diseases such as cystic 

fibrosis, periodontitis and other biofilm associated diseases difficult to treat. Due to the 

recalcitrant behavior of biofilm researchers are searching for alternative methods to remove 

biofilms. These alternative strategies include bactericidal, the use of antiadhesion agents, and the 

manipulation of dispersal signals.  

 

 

 

Figure 1.2-3 Threshold and Quorum Sensing.  

Schematic representation of switching resulting from signaling molecules reaching threshold. 

Once a signaling molecule reaches a threshold concentration. Bacterium can express genes 

leading to the formation of biofilm by switching to an EPS secreting phenotype. The phenotypes 

under the control of QS varies from species to species and include biolumiscense, toxin 

production, and motility. Figure reproduced with permission from [29].   
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1.3 Models of Biofilm Development 

Mathematical and computational models have become complementary to lab experiments. 

Mathematical models of biofilms are used to study many of the process in the development of a 

biofilm. Specifically, mathematical and computational models of detachment, chemical 

signaling, competition, cooperation, EPS production and other properties of biofilm growth have 

been developed [30-34]. Models of biofilms are categorized as either discrete or continuum 

models. Figure 1.3-1 gives a graphical illustration of the difference and similarities between the 

two approaches used when modeling biofilm. We will briefly discuss both types of models and 

do not attempt to give a full review since an up to date and recent review already exist [7].   

The earliest models of biofilm were 1-D continuum models were the processes involved 

in the evolution of the biofilm were modelled using ordinary or partial differential equations. 

Specifically, early attempts at describing the development of the biofilm modelled. However, the 

1-D models could not reproduce the morphology observed in experiments. This led to the 

development of multidimensional continuum models that gave modelers a closer representation 

of the complex morphology observed in experiments. Continuum models were modified to 

include a wide variety of biofilm phenomena that include detachment, antimicrobial penetration, 

the viscoelastic properties of biofilms, chemical signaling and pattern formation.  An advantage 

of this modelling approach for researchers is that they are deterministic allowing for easy 

interpretation. Although multidimensional models gave a better representation of biofilm 

morphology than a 1-D model.  Multidimensional continuum models could not account for the 

contribution of individual cells to the morphology of a biofilm or how cell-cell interactions led to 

the complex morphology of biofilms. 
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 To overcome the shortcomings of continuum modeling researchers developed discrete 

models. Discrete models improved on the shortcomings of continuum models by enabling the 

modeler to assign properties and rules to individual cells. This approach allowed a researcher to   

interpret the morphology of a biofilm, as a consequence of a cell’s interaction with its 

environment or its interaction with other cells. Discrete models are classified as either cellular 

automata, hybrid (discrete and continuous) or individual based. Although broadly classified 

together as discrete models, the approach used to represent biomass differ in each modelling 

framework.  

Briefly, In CA models, the biomass is represented in an array of small compartments, as 

opposed to the agent-based representation of the individual based models that use particles 

located anywhere in space and characterized by essential state variables like cell mass and 

volume[35]. CA models are grouped in to three classes: (1) deterministic or Eulerian automata; 

(2) lattice gas models; and (3) solidification models[36]. With each class having a slightly 

different approach when it comes to modeling.  In Eulerian automata, the evolution of the 

biofilm is modelled on a fixed lattice with each lattice point having a state associated with and 

the following state determined by the earlier state of a cell and its neighbor[35].   Lattice gas 

models are suited for modelling at the mesoscopic scale since each cell is large enough to contain 

a considerable number of microscopic particles but small compared to  the macroscopic length 

scale in the system [37]. The solidification model takes a similar modeling approach as the lattice 

gas model with the exception that the cells can be in a bound state. Although, the cellular 

automata models give a more realistic model of cells these models cannot account for the 

contribution a cell’s shape might have on the formation of a biofilm. To overcome the limitation 

of the CA models we use the Cellular Potts Model.  
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1.4 Cellular Potts Model (CPM)  

We choose the Cellular Potts Model since it is able to describe an individual cell and its 

contribution to the overall development of the biofilm. Furthermore, we would like to account 

for the contribution if any the cells shape has on the patterning and spatiotemporal distribution of 

cells during the development of the biofilm.   The CPM also called the Glazier-Graner-Hogeweg 

model takes an approach to modeling biological system that is most similar to the individual 

based model in its representation of biomass.   
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Figure 1.4-1 Continuum and Discrete Approaches Modeling Biofilms.  

In (a) the biomass can only spread in one direction vertical to the substratum (b) the biomass is 

can spread in both the vertical and horizontal directions giving a better understanding of its 

morphology. (c) A discrete cellular automata representation of biomass. The biomass is 

represented as rectangles (d) takes the approach of the individual based model representing 

biomass as spherical agents each having a set of attributes. Figure reproduced with permission 

from [35]. 

  

The CPM model is a lattice-based model that combines the individual representation of cells 

with molecular level behaviors. The CPM model was first used to study cell sorting due to 

different cohesive or adhesive forces between different types of cells[38]. The objects in the 

CPM model are either discrete or continuous, therefore the CPM model can be thought of as a 

hybrid model. The domains is a d-dimensional lattices  Ω ⊆ ℝ𝑑, where d =1,2,3 [39]. A cell in 
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the CPM model is made up of a collection of lattice site 𝑖  with a unique index 𝜎(𝑖) ∈ ℕ. In the 

CPM, the border between different indices represent the cell membrane and 𝜎 is interpreted as a 

degenerate spin from the original Ising approach[40]. 

Each cell in the GGH model has an associated cell type denoted by 𝜏(𝜎) and a set of 

attributes, including a cells volume, surface, cell-cell and cell-environment interactions. These 

cell attributes along with the cell-cell and cell-environment interactions are implemented in the 

effective energy of the system through a Hamiltonian H: 

𝐻(𝑡) = 𝐻𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛(𝑡) + 𝐻𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑡) + 𝐻𝑓𝑜𝑟𝑐𝑒(𝑡) 

𝐻𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 models the adhesive/cohesive forces between cells based on Steinberg's Differential 

Adhesion Hypothesis[41]. The Differential Adhesion Hypothesis states that different cell types 

adhere to each other with different strengths. The GGH model accounts for differential adhesion 

by including the term below. The adhesion term 𝐻𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 is at the core of the GGH approach 

and is usually included in every model.  

𝐻𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = ∑ 𝐽(𝜏(𝜎(𝒊)), 𝜏(𝜎(𝒋)))(1 − 𝛿(𝜎(𝒊), 𝜎(𝒋))(𝒊,𝒋)𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ) 

The energy coefficients 𝐽(𝜏(𝜎(𝒊)), 𝜏(𝜎(𝒊))) are symmetric and represent the binding forces per 

unit area, (𝒊, 𝒋) represent a pair adjacent lattice sites. The summation takes place over a 

predefined neighbor order that is typically set between 1st and 4th nearest neighbors. The 

Kronecker delta function 𝛿(𝜎(𝒊), 𝜎(𝒋)) = 1 𝑖𝑓 𝜎(𝒊) = 𝜎(𝒋), 0 𝑖𝑓 𝜎(𝒊) ≠ 𝜎(𝒋) assures that only 

links between different objects contribute to the energy.  

The constraint term 𝐻𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑡) incorporates an agent’s geometric attributes such as volume 

and surface area or length in the general form:  

𝐻𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = ∑ ∑ 𝜆𝜎
𝑖 (𝑡)[𝑎𝜎

𝑖 (𝑡) − 𝐴𝜎
𝑖 (𝑡)]2

𝑖−𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝜎 , 
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where 𝑎𝜎
𝑖 (𝑡) and  𝐴𝜎

𝑖 (𝑡) represents the actual and target value of an attribute respectively. The 

term  𝜆𝜎
𝑖 (𝑡) ∈ ℝ+  is the Lagrange multiplier, corresponding to elastic modulus of the cell.  For 

low values of 𝜆𝜎
𝑖 (𝑡), the actual and target values are allowed to deviate more from values 

satisfying the constraint, for high values the penalty is large for deviations.  

𝐻𝑓𝑜𝑟𝑐𝑒(𝑡) describes the point force 𝑭𝑘acting on a lattice site i with strength 𝑢𝜎
𝑘 at a certain 

position 𝒓𝑥 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)
𝑇 on the lattice.  

𝐻𝑓𝑜𝑟𝑐𝑒(𝑡) = − ∑ ∑ 𝑢𝜎
𝑘(𝑡)𝑭𝑘(𝑡) ∙ 𝒓𝑥

𝑘−𝑓𝑜𝑟𝑐𝑒𝑖∈𝜎

 

The GGH model seeks to minimize the energy of the total effective energy on the lattice by 

using the Metropolis algorithm[42]. The steps in the algorithm are. 

1. At each simulation time step, select a lattice site i belonging to 𝜎(𝑖) and call it the source 

voxel.  

2. Then select another site in its neighbor list at random and call it the target voxel. 

3. Calculate the current configuration energy of the system 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and the energy if the 

source voxel were changed to the target voxel 𝐻𝑓𝑖𝑛𝑎𝑙 . 

4. Calculate change ∆𝐻 = 𝐻𝑓𝑖𝑛𝑎𝑙 − 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

5. Accept change with the probability: 

𝑃 (𝜎(𝑖) → 𝜎(𝐽)) =  {
𝑒−Δ𝐻/𝑇 𝑖𝑓  ∆𝐻 > 0
1       𝑖𝑓       ∆𝐻 ≤ 0

 

6. Then go to step 1 

In the GGH model, 𝑇 ∈ ℝ+ represents the Boltzmann temperature and simulates the 

membrane fluctuations due to cell activity. T determines the probability of a configuration in the 

GGH model. For example, for very large values of T, all copy attempts are accepted while for 

very small values the system will almost not change. The unit of time in the GGH model is the 
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MCS, where one MCS is denoted as N copy attempts.  In the CPM a MCS has to be translated 

into an actual unit of time. Making a direct correspondence between the model and the actual 

time scale not be straightforward.  However, a realistic correspondence is usually set by fitting a 

posteriori the temporal dynamics of the simulated phenomenon with the relative experimental 

counterparts[43]. 

 

Figure 1.4-2 Illustration Valid and Invalid Pixel Copy Attempts. 

 A successful pixel copy attempt 𝛥𝐻 < 0 will lead to the source pixel replacing the target pixel.  

Figure reproduced with permission from authors. 

 

In the CPM framework, continuous objects such chemical signals that lie within discrete 

objects (as DNA, RNA, cytosolic ions, and proteins) or its external environment (as nutrients, 
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growth factors, matrix proteins, matrix metalloproteinases) are modeled using reaction diffusion 

equations[43], which have the general form  

𝜕𝑐(𝑖,𝑡)

𝜕𝑡
= ∇ ∙ [𝐷𝑐(𝑖, 𝑡)∇𝑐(𝑖, 𝑡)] + 𝐹(𝑐). 

In the equation, 𝑐(𝑖, 𝑡) denotes the concentration at a site i on the lattice of a chemical species, 

𝐷𝑐 represents the diffusion coefficient and F the reaction term. The equation can either apply to 

the entire domain or selected regions in the domain.  

 The CPM models are implemented in the open-source software modeling environment 

CC3D.  The software allows users to easily develop multiscale models that are reusable and 

shareable. The ease of modeling is due to the use of XML and python scripting to control 

attributes of the cells.  CC3D also integrates subcellular modelling by using the system biology 

markup language (SBML). 

In this dissertation, we present two novel methods to study biofilm formation using the 

CPM modeling framework. We first present a CPM model that incorporates threshold on 

environmental signals to study the spatiotemporal distribution of specific phenotypes in a 

developing biofilm. To the best of our knowledge this has not been done before and presents 

some insight on the factors that lead to phenotypic differentiation. We next use the CPM to 

model the final stage of biofilm development. Specifically, dispersal in our model is a result of 

QS and weakening of cohesion within the biofilm using the CPM. Our model presents the first 

attempt at incorporating QS and weakening of cohesive forces to model dispersal. 
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2 MODELING SPATIOTEMPORAL DYNAMICS 

2.1 Spatiotemporal Dynamics of Bacillus Subtilis 

In their planktonic state, bacteria are susceptible to being treated with antibiotics allowing 

for the reversal of harmful effects caused by bacterial infection[44]. Bacteria can however form a 

biofilm as a defense mechanism against antibiotic treatment and other environmental insults[16, 

28, 44, 45]. A meaningful definition of a biofilm is that they are a community of tightly 

associated bacteria encased in an extracellular matrix[17, 46, 47]. Once bacteria switch from the 

planktonic mode to form a biofilm their protection to treatment of antibiotics increase by a factor 

of 1000 [48]. The biofilm mode of growth provides more resistant to antimicrobials and physical 

removal[19]. It is this recalcitrant property of biofilm that leads to them being one of the leading 

causes of infection in medical devices, injured tissue and costly to a myriad of industries due to 

biofouling[49, 50].   

Matrix production is one of the many mechanisms used by bacteria to ensure their 

survival[28, 47, 51]. Another mechanism is phenotypic heterogeneity[52-54]. This allows for 

what are termed “nonconformist” cells to coexist within an isogenic population[53]. Phenotypic 

heterogeneity affects many aspects of the bacterial lifestyles, and is assumed to increase bacterial 

fitness and survival of the whole population or smaller subpopulations in unfavorable 

environments[53, 55]. The Gram-positive Bacterium B. Subtilis has been shown to exhibit 

multiple phenotypes during colony development. In particular, B. Subtilis is capable of 

differentiating into motile, matrix producing cells, spores, competent, surfactin producing, miner, 

and cannibal cells [12, 56, 57]. Differentiation into the distinct cell types is in response to 

extracellular signaling molecules produced either by itself, or present in its environment[13].  

Although B. Subtilis exhibits a wide variety of phenotypes, the majority of cells in a colony of B. 
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Subtilis are comprised of three cell types: motile, matrix producing, and spore forming cells [58-

61]. Each of these phenotypes play a crucial role ensuring the success of the biofilm. 

 

Figure 2.1-1 B. Subtilis Phenotypes. 

 Each cell type has a critical role and occur at different times during the development of the 

biofilm. However, the majority of cells in the biofilm are either matrix producers, motile or 

endospore cells. The different phenotypes follow a defined spatiotemporal pattern of occurrence. 

Early in the development of the biofilm most cells are motile, this is then followed by a switch to 

matrix producing cells that establish the biofilm. When the biofilm becomes mature some of the 

cells die or become endospores. Figure reproduced with permission from [62]. 

 

 Motile cells are responsible for the initial attachment to a substrate [46, 63]. Later in the 

development process, matrix producing cells produce and secrete EPS composed of protein and 

exopolysaccharides providing structural integrity to the biofilm [46, 61, 63-66].  Later in the 

development as the biofilm matures and nutrients become scarce, certain members of the biofilm 

community initiate the process of sporulation and form endospores [46, 61, 63-65]. Endospore 

formation allows the bacterium to become resistant to additional external stresses, ensuring 

survival until more favorable conditions occur[67].  

Microbiologist have used several methods to study the phenotypic differentiation 

exhibited in B. Subtilis and other microbe species[13]. The methods allow for the analysis of a 

biofilm but with disadvantages. For example, flow cytometry although fast and able to track a 
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large number of cells it does not offer spatial information[58]. Another method is the thin 

sectioning of colonies, which offers a limited 2D view of the spatial organization[58, 61]. These 

methods have proving useful but with the disadvantage that neither is capable of tracking a 

single colony’s development over time. Furthermore, they have fluorescent reporters on no more 

than two phenotypes[58]. 

 

Figure 2.1-2 Spatiotemporal Dynamics Experiment.  

Images captured using the non-destructive method. The colors represent fluorescent reporters 

for motile (yellow), matrix (green), spore forming (blue) and low fluorescent(purple) at different 

time periods. Time increases from left to right. The first image represents the early stage of 

biofilm development where most of the cells are motile. The second image represents a later 

stage in the development where the motile cells are localized to the center of the biofilm and the 

outer layer. In the final stage the biofilm is comprised mostly of spore forming cells and low 

fluorescent material. Used with permission of authors. 

 

Therefore, the methods are not able to capture the diverse composition of a biofilm and 

the spatiotemporal dynamics during development.  Recently, Wang et al, develop a 

nondestructive method for the analysis of biofilm growth based on optical transmission and 

fluorescence microscopy using a triple-labeled B. subtilis strain NCIB3610[58]. This method is 

capable of revealing the spatial and temporal distribution of the motile, matrix, and spore 

forming phenotypes within the biofilm. This method presents an advancement in the study of 

biofilm colonies since researchers can now track the distribution of the three different 

phenotypes over space and time.  
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Although an improvement on current methodology, the method developed in [58] does 

not give insight on the microenvironment factors that lead to phenotype differentiation during the 

colony development.  Furthermore, it does not distinguish between dead cells and extracellular 

polymeric substance and instead groups them into one class of low fluorescent material. The 

method is valid for time intervals less than six hours. Specifically, early in the colony 

development the fluorescence signal is too weak for the method to accurately determine the 

composition. While, later in the colony development the method is not able to classify the 

different phenotypes with great accuracy due to the amount of material with low or no 

fluorescence becomes significant making estimates based solely on fluorescence become 

increasingly worse[58]. To gain further understanding of the morphology of the biofilm we use a 

computational model to simulate the whole process biofilm formation. 

The practice of using mathematics and computation to study bacteria and their associated 

biofilms have been used for decades especially for model species such as B. Subtilis.  There have 

been studies on the genetic networks leading to sporulation, matrix production, virulence and 

competence [68-73]. Computational and mathematical models have also been proposed to study 

phenotypic differentiation in B. Subtilis[74-76],  and colony patterns [77]. However, to the best 

of our knowledge there does not exist a model that explains the spatiotemporal organization of B. 

Subtilis due to changing microenvironmental inputs.   

As pointed out in [62]  spatiotemporal structures within bacterial communities exhibit 

diverse morphologies and functions. Studies of self-organization mechanisms and microbial 

population control strategies have reported on gene networks supporting cell differentiation[46]. 

Conversely, isolated features of community morphology have been examined to assess the roles 

of individual genes in community development[78]. However, morphological responses of 
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bacterial communities to environmental variations are too diverse to be understood only at the 

molecular and cellular levels. In this work, we use an agent-based modeling approach to 

elucidate possible environmental cues that lead to the spatiotemporal dynamics demonstrated 

during the formation and growth of a B. Subtilis biofilm. We use a threshold on the 

environmental signals to study the dynamics of B. Subtilis. The threshold mechanism serves as a 

proxy for cellular behavior and allows for cells to switch their phenotypes based on 

environmental cues such as nutrient and autoinducer levels.   

A biofilm, like any other complex system, interacts at multi-scales. Therefore, to gain a 

comprehensive understanding of the organization of B. Subtilis, it is imperative that we 

incorporate the useful interactions that take place on different scales. Our model includes 

molecular scale behaviors such as chemical secretions. At the cellular scale, we examine cell 

level behaviors such as adhesion/cohesion, growth and division that affects the organization and 

development of the colony. At the multicellular scale, we examine the overall spatiotemporal 

dynamics of the biofilm as a consequence of individual agent behavior.  
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Figure 2.1-3  Hierarchical Description of Microbial Systems. 

The lowest level of description the focus is on biochemical reaction networks and involves 

modelling the genetic networks that lead to the emergent multi-cellular properties. At a higher 

level than modeling the genetic network, is modelling single cell and their behavior that result in 

multicellular properties. Single cell modelling is often done using cellular automaton or 

individual agent based models. We can then use the single cell models to study uniclonal 

populations to determine how their interactions lead to multi-cellular properties. Figure 

reproduced with permission from [79]. 

 

In the experiments carried out in [58], B. Subtilis demonstrates a clear pattern of 

spatiotemporal organization figure 2.1-2. It is observed that motile cells differentiate to matrix-

producing cells as the biofilm matures. The motile and matrix producing cells then go on to 

differentiate to either endospores or dead cells as indicated by the low fluorescent at the end of 

the experiment. Furthermore, these cell types localize to specific area in the biofilm. Motile cells 

form at the center, while matrix producing cells are distributed throughout the biofilm and spore 

forming cells that form later are located at the interior[61].  

In our model, we focus on two environment signals, QS and nutrient, to aid in 

understanding of the observed dynamics.  We focus on QS since QS has a well-established and 

central role in establishing a biofilm and controlling the phenotype within through gene 

networks. For example, the PhrA-RapA QS system controls sporulation in B. Subtilis by 
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stabilizing the master regulon Spo0A in its phosphorylated form Spo0A~P [56, 80, 81]. 

Similarly, the matrix producing phenotypes is also under the control of QS through paracrine 

signaling [82]. Paracrine signaling in B. Subtilis is governed in a sequential manner. Specifically, 

ComX a peptide pheromone is sensed by a membrane kinase ComP, which then phosphorylates 

a response regulator ComA [56, 83-85]. Once phosphorylated ComA activates the expression of 

the operon responsible for surfactin production[56, 83-86]. Surfactin then triggers matrix 

production in a subpopulation of cells [82, 87]. Matrix production then leads to the establishment 

of the biofilm. 

Likewise, nutrient availability also leads to phenotypic changes and the initiating of 

matrix producing and sporulation phenotypes[88-90].  In B. Subtilis and other Gram-positive 

bacteria, CodY, a global transcriptional regulator, is responsible for the adaptive mechanism of 

cells in response to different levels of nutrient availability[91-93]. The importance of nutrient 

and QS as signals, which control behavior make them an ideal candidate to investigate the 

environmental signals that lead to phenotypic heterogeneity. Using these two environmental 

factors, we aim to reproduce the morphological development observed in[58] and shed some 

light on the biofilm formation at the mesoscopic level. 
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2.2 Model 

2.2.1 Model Description 

Our model of biofilm growth employs the CPM model implemented in CompuCell3D 

software environment[94, 95]. In this model, as previously described the Hamiltonian 𝐻 

describes the interactions and constraints of the cellular system as a total effective energy. 

𝐻 = ∑ 𝐽(𝜏(𝜎(𝒊)), (𝜏(𝜎(𝒋))))(1 − 𝛿(𝜎(𝒊), 𝜎(𝒋))
(𝒊,𝒋)𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

) + ∑ 𝜆𝑣𝑜𝑙(𝜎)(𝑣(𝜎) − 𝑉𝑡  (𝜎))2

𝜎

+ ∑ 𝜆𝑠𝑢𝑟𝑓(𝜎)(𝑠(𝜎) − 𝑆𝑡 (𝜎))2

𝜎

 

 

The first term describes phenomenologically the cell type dependent adhesion between two cells, 

where 𝜎(𝑖) is the cell index of a cell occupying pixel 𝑖, 𝜏(𝜎(𝑖)) the cell type, and  𝛿 is the 

Kronecker delta function. The second and third terms represent the volume and surface 

constraints respectively. The Lagrange multiplier 𝜆 determines the constraint strength.  

In CPM, the default dynamical algorithm is the modified Metropolis algorithm in which 

we evaluate the changes in H due to the attempted index copy and accept the index-copy attempt 

with probability: 

𝑃 (𝜎(𝑖) → 𝜎 (𝑖′⃑⃑ ⃑⃑⃑)) =  {
𝑒−Δ𝐻/𝑘𝑇 𝑖𝑓  ∆𝐻 > 0
1       𝑖𝑓       ∆𝐻 ≤ 0

 

where T represents the effective amplitude of cell-membrane fluctuations.  
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Model Assumptions 

 In our model cells can be either motile, matrix producers capable of producing EPS, 

sporulating cells capable of forming endospores or dead. Depending on their phenotype cells in 

our model are capable of (i) growing due to available nutrient, (ii) dividing once a target volume 

is reached, (iii) producing and excreting EPS into their environment, (iv) responding to 

autoinducers and nutrient, and (v) switching their phenotypes.   

Cell growth, division, and death 

We model each cell’s growth by increasing the cell’s target volume by a constant 𝜌 

proportional to the concentration of nutrient 𝑐 in the microenvironment.  

𝑑𝑉𝑡(𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎)

𝑑𝑡
= 𝜌 ∗ 𝑐 

In our model, a cell performs binary fission when its volume 𝑉𝑑 doubles.  When division occurs, 

the cell divides in two equal sized cells along a randomly chosen division axis and assign a new 

index value to either one of the newly created cells. The cells in our simulation can also die when 

the nutrient in their microenvironment are depleted. This corresponds to 𝑐 = 0.0. When a cell 

dies in our simulation it becomes immobile and does not participate in index copy attempts.  

EPS production 

The EPS in our simulation are represented as a generalized cell type with varying cell 

size proportionally to the target volume of a cell in our simulation. Experimental values of  

EPS:Bacteria ratio varies widely from 10:1 to 1:2 [96]. To examine the effect EPS production 

has on the biofilm, we varied the production rate from 12 𝜇𝑚2 (low) to 25 𝜇𝑚2 (medium) to 

100 𝜇𝑚2(high).  

The production rate of EPS is: 

𝑟𝐸𝑃𝑆 = 𝛼 ∗ 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 
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The production of EPS is simulated as follows: a boundary pixel is randomly selected from a 

cell, the location of that pixel is then used as a new EPS cell type with a predetermined target 

volume and surface area constraints.  This process is illustrated in figure 2.2-1.  

 

Figure 2.2-1 Illustration of EPS Production in CPM.  

A random boundary pixel is selected from a cell that has reached the necessary threshold. Once 

a random pixel is selected it then becomes the center of the EPS cell type with a predetermined 

cell with a predetermined cell volume and surface constraints.   

 

Reaction Diffusion Dynamics of Extracellular Molecules 

Cells interact with the biochemical signals in their microenvironment by regulating 

cellular behavior due to environmental ques. Cells in our simulation interact with glucose the 

nutrient used in our model and the autoinducers released by cells. The spatiotemporal dynamics 

of nutrient and autoinducer signals are governed by the reaction-diffusion equations below:  

𝜕𝐺

𝜕𝑡
= 𝐷1∇2𝐺 − 𝜆1𝐺            

𝜕𝐴

𝜕𝑡
= 𝐷2∇2𝐴 − 𝜆2𝐴 + 𝛾𝐴 

 

Where 𝐺 = 𝐺(𝑥, 𝑡)is the glucose concentration at location x at time t.  𝐷1 is the diffusion 

coefficient for glucose and 𝜆1 is the rate of glucose consumption. Similarly, 𝐴 = 𝐴(𝑥, 𝑡) denotes 
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the concentration of an autoinducer, 𝜆2 the decay rate of A, and 𝛾 gives the secretion rate. The 

values for these parameters are in table 2.2.1. 

Table 2.2-1 Simulation Values 

Parameter Symbol  Model Value Reference 

Glucose Diffusion 𝐷𝐺𝑙𝑢𝑐 6.7 × 10−6𝑐𝑚2/𝑠 [97] 

Glucose Uptake 𝜆1  2 Estimated 

Autoinducer Diffusion 𝐷𝐴.𝐼. 2.2 × 10−6𝑐𝑚2/𝑠 [98] 

Decay Autoinducer 𝜆2 0.693/ℎ [98] 

Secretion Autoinducer 𝛾 1 × 103𝑛𝑀/ℎ [98] 

Cell-Cell adhesion for 

each microbe phenotype 

𝐽𝐵𝑎𝑐,𝐵𝑎𝑐 4 Estimated 

Cell-EPS adhesion for 

each microbe 

𝐽𝐵𝑎𝑐,𝐸𝑃𝑆  4 Estimated 

Medium-All other cell 

Types Adhesion 

𝐽𝑀𝑒𝑑,𝐸𝑃𝑆 or 𝐽𝑀𝑒𝑑,𝐵𝑎𝑐  0 Estimated 

EPS production rate 𝑟𝐸𝑃𝑆 varies [96] 

 

Model Parameters and Simulation Domain 

The simulation domain corresponds to the 2-D lattice allowing us to make comparison to the 

experiments[58].  The parameter values used in our simulations are listed in Table 2.2.1.  They 

were obtained from literature or fitted by fine-tuning the model to the observed morphology 

exhibited in the experiment.  Specifically, we estimated the glucose uptake rate so that at the 

later stage of biofilm development the amount of nutrient on the lattice is zero. This is done to 

ensure that the biofilm doesn’t grow into the boundaries of the domain. We set the surface 

energies based on the empirical evidence and the accepted current understanding that cell-EPS 

cohesion is stronger than cell-cell cohesion[15, 99-103]. This led us to choose values of 

𝐽𝐵𝑎𝑐,𝐸𝑃𝑆 < 𝐽𝐵𝑎𝑐,𝐵𝑎𝑐. Using the generation time of B. Subtilis 2 h and equating to the time a cell in 
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our simulation takes to divide [104], we obtained that one MCS in our simulation is equal to 12 

minutes (720s) under conditions of optimal nutrient. The values of 𝜆 and the effective membrane 

fluctuation 𝑇 were chosen to prevent the cells from disappearing or freezing during the 

simulation [39]. We set 1 pixel to 2𝜇𝑚,  the initial cell occupies a 5 × 5 grid on the lattice. The 

simulation domain is 350 × 350  pixels, corresponding to 700𝜇𝑚  x 700um.  In both the vertical 

and horizontal directions we impose no flux boundary conditions to reproduce the conditions of a 

biofilm grown on a agar. The lattice is initially saturated with glucose to simulate an agar 

surface, with an initial concentration set to 15 𝑚𝑔 𝑐𝑚3⁄  as in the experiments[105].  

Threshold Conditions   

We control phenotypic changes due to environmental ques by placing thresholds on 

nutrient and autoinducer. The threshold represent a cell-fate decision mechanism and can be used 

to discriminate between different hypotheses regarding the mechanistic basis of decisions[80]. 

Figure 2.2-2 illustrates the flow chart of the model. Initially, a motile cell is placed at the center 

of the lattice.  At each Monte Carlo step, the cell consumes nutrient and secretes an autoinducer. 

A check is made to examine if the cell has reached 𝑉𝑑 the doubling volume; if so it divides. In 

addition, the cell senses its local environment to determine the level of nutrient and autoinducer.  

If a threshold is reached the cell will switch its phenotype accordingly.  

Four different thresholds are used in our model 𝑇1, 𝑇2, 𝑇3, 𝑎𝑛𝑑 𝑇4. The first three of these 

threshold couple nutrient and autoinducer while 𝑇4is based only on nutrient. 𝑇1 corresponds to a 

threshold when reached causes a motile cell to switch to the matrix producing phenotype. 𝑇2 is 

used by matrix producing cells to determine whether the conditions warrant the production of 

EPS. 𝑇3 corresponds to either a motile or matrix producing cell switching phenotypes to a spore 

cell. While 𝑇4 is the condition necessary for cells to die.   
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Figure 2.2-2 Flow Chart Model.  

Schematic of the different decisions made during the establishment of a colony. Each cell 

initially starts as a motile cell, their fate during the establishment of the colony is determined by 

the thresholds on nutrient and autoinducer. The decision to produce EPS is also dependent on a 

threshold value.  

 

Table 2.2-2 Parameter Values for Thresholds 

Cell Type Glucose  

(G) 

Autoinducer 1  

(A1) 

Autoinducer 2 

(A2) 

Threshold 

 

Matrix 14 𝑚𝑔 𝑐𝑚3 ≤ 𝐺⁄  3.75𝜇𝑀 ≤ 𝐴1   𝑇1 

Spore 4 𝑚𝑔 𝑐𝑚3 ≤ 𝐺 ≤ 5 𝑚𝑔 𝑐𝑚3⁄⁄  4 𝜇𝑀 ≤ 𝐴1 ≤ 6 𝜇𝑀 𝐴2 ≥ 3.5𝜇𝑀 𝑇3 

EPS 7.0 𝑚𝑔 𝑐𝑚3 ≤ 𝐺⁄  𝐴1 ≥ 4.0𝜇𝑀  𝑇2 

Dead 0.0 = G   𝑇4 
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2.3 Results  

The baseline model utilizing one autoinducer and low EPS production is capable of 

reproducing the spatiotemporal dynamics exhibited in[58]. Specifically, a subpopulation of 

motile cells differentiates to matrix producing cells. The matrix producing cells then produce 

EPS throughout the biofilm. The development of the biofilm then concludes with spore cells, 

EPS and dead cells composing the biofilm.  

To reproduce this spatiotemporal sequence of biofilm development, we start with a single 

motile cell at the center of the simulation domain. As illustrated in the flow-chart Figure 2.2-2, 

the cell then grows and divides, forming a colony of motile cells. The growth and division 

continues altering the cell’s microenvironment.  Once the local threshold 𝑇1is reached, a cell then 

differentiates and become matrix-producing cells. The matrix producing cells grow and divide 

until threshold condition 𝑇2 is reached, when matrix producing cells start to produce EPS.  From 

the baseline simulations, we observe that EPS starts being produced by the matrix producing 

cells closest to the center of the colony at t=29 hours. The onset of matrix producing cells occurs 

later than the observation time of 25 hours in the experiment[58].  We next observe the 

emergence of spore forming cells at t=34 hours as 𝑇3 is reached a value in agreement with what 

was observed in experiments. Spores continues to radially expand until t=36 hours. After t=36, 

some motile cells start to become either spores or dead cells. In the later stages of development, 

cells within the matured biofilm start to die due to depleted glucose leaving a small cluster of 

dead cells at the center and spore forming cells throughout the biofilm. The spatial and temporal 

dynamics of the biofilm is illustrated in figure 2.3-1.  
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Figure 2.3-1 Spatial and Temporal Dynamics Using One Autoinducer.  

For the case of low, medium, and high EPS production. Initially, the motile cells (yellow) occupy 

the center of the biofilm and is solely responsible for the expansion of biofilm until t=12 hrs. 

Once the matrix producing phenotype is introduced they become responsible for the expansion of 

the colony. At t= 28 hrs, we can see that most of the expansion is due to the matrix producing 

phenotype with the motile (yellow) phenotype still residing at the center of the biofilm. The result 

holds for all three EPS production levels. The expansion of the colony due to matrix producing 

cells continues until the threshold to sporulate is reached or the level of nutrient is depleted 

leading to dead cells. The case of high EPS production leads to patterning not consistent with 

the experimental results. Specially, the EPS is not distributed equally throughout the biofilm but 

localized in certain areas. The difference in patterning suggest that the level of EPS production 

plays a role in the dynamics of the biofilm development.  

 

To quantify the temporal dynamics, we measured the fractional composition of the 

different cell types over time figure 2.3.5 The ratios obtain from the simulation agree with the 

experimental ratios and follow the temporal dynamics observed in the experiments. Specifically, 

motile cells occupy the largest fraction of cells in the biofilm during the early stage of 

development. As the biofilm grow matrix producing cells occupy a higher fraction of the biofilm. 
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When matrix producing cells reach their highest value spore forming cells and cells belonging to 

the group of low fluorescent material (EPS and dead cells) start to appear in the biofilm. At the 

end of the simulation low fluorescent material occupy the highest fraction. It should be noted that 

there are some discrepancies in the simulation motile cells occupy close to zero percent whereas 

in the experiments the number of motile cells is close to ten percent. 

 

 

Figure 2.3-2 Chemical Gradient Using One Autoinducer Low EPS Production. 

 A-C show the gradient of autoinducer over the course of the biofilm development for the case of 

low EPS production. In A-B there is a well established gradient of AI with the center having the 

highest value.  From B-D, the radius of high concentration (i.e, the red area) decreases, since 

the matrix producing cell type starts producing EPS. The EPS cells occupying the lattice do not 

secrete AI, therefore radius of AI decreases. E-H, shows the nutrient gradient. The nutrient is 

initial evenly distributed throughout the matrix and as the biofilm matures a gradient is 

established. At the final stage H the concentration of nutrient is lowest at the center leading to 

the observe dead cells as in figure 2.3-1.  
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Figure 2.3-3 Chemical Gradient Using One Autoinducer Medium EPS Production.  

 A-C show the gradient of autoinducer over the course of the biofilm development for the case of 

Medium EPS production. The dynamics of the autoinducer is similar to what was observed in the 

case of low EPS production. Specifically, the concentration of autoinducer is highest in the 

center and the radius of highest concentration increases until EPS production begins then the 

highest level becomes localized to a smaller radius. The gradient is similar to what was observed 

in the case of low EPS production. 
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Figure 2.3-4 Chemical Gradient Using One Autoinducer High EPS Production. 

 A-C shows the gradient of autoinducer for the case of high EPS production. Initially the 

gradient is similar to what was observe in the case of low and medium EPS production. 

However, in C the gradient of high EPS production is different once EPS production occurs. 

Since in the case of high EPS production the EPS is localized to only certain areas of the biofilm. 

The other areas where the EPS is not present has matrix producing cells still producing AI but 

have not reached the necessary threshold to produce EPS. This leads to a higher concentration 

of AI throughout the biofilm. 

 

EPS production rate influences spatial distribution but not temporal dynamics 

From the simulations, we observe that the production rate of EPS has an effect on the 

biofilm. To examine the effects of the EPS production rate on the spatiotemporal dynamics, we 

varied the amount of EPS produced by matrix-producing cell once they reach 𝑇2 the threshold. 

Figure 2.3-1 shows the snapshots for the simulated biofilm formation with low, medium and high 

EPS production rates.  In figure 2.3.1, at t=44 hours, the compositions at the center of the biofilm 

once occupied by motile cells differ depending on the EPS production rate: at low EPS 
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production rate, the center is comprised of a cluster of dead cells and spore forming cells; at 

medium EPS production rate, the center of the biofilm is comprised of spore forming cells; at 

high EPS production rate, the center shows no clear delineation, instead EPS and spore forming 

cells are interspersed throughout.  

The fractional compositions of the different phenotypes over time in figure 2.3-5 show 

that all three EPS production rates reproduce the phenotype transition points. The fractional 

composition differs slightly in the case of high EPS production rate. Specifically, the fraction of 

spore cells is greater at the end of the simulation for high EPS production rate. In our simulation 

the colony initially consist of only motile cells. In [58] the initially composition is hard to 

determine due to weak fluorescence. Once the method developed in[58] is able to identify the 

different phenotypes (t > 18 hrs) we observe the majority of the biofilm consist of motile cells. 

The matrix producing cells then become the majority phenotype in the colony and occupying 

more than half of the biofilm.  

Later in the development of the biofilm the proportion of spore cells and low-fluorescent 

material form most of the biofilm. At the end of the experiment there is still a small proportion of 

motile and matrix producing cells. However, if the experiment were carried out longer we would 

expect all cells would die due to insufficient nutrition. Qualitatively the results obtained from the 

simulation and experiment agree. Specifically, motile cells form the majority of the young 

colony , in the case of the experiments the initial proportion is not represented graphically but 

stated in[58] and[61]. Most of the colony is later comprised of matrix producing cells that arise 

from motile cells. The proportion is slightly higher in the simulations than experiment.  
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As the biofilm matures an increase in spores and low-fluorescence material is observed. 

In the experiments there is a small proportion of spore cells and low-fluorescence material early 

in the development of the colony. The observed small proportion could be a result of the method 

not being able to accurately determine the phenotypes for t < 18 hours. In the simulation the 

proportion of spore cells is less than the experiment while the proportion of low-fluorescence 

material is higher than the values obtain from the experiment. This suggest that the thresholds on 

EPS and Spore could be improved.  

We also observe for matrix producing cells the decline is not smooth as the experiment. 

The lack of smooth decline is likely due to the production of EPS. Since a pixel from each matrix 

producing cell is selected to produce EPS. If a large proportion of matrix producing cells reach 

the threshold simultaneously the overall proportion will decrease. Figures 2.3-1-2.3-5, suggest 

that the spatial dynamic of the biofilm is affected by the EPS production rate but the temporal 

dynamics is not. 
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Figure 2.3-5 Fractional Composition of Different Phenotypes Using One Autoinducer. 

 A-C represent the fractional composition of the motile(red), matrix producing(blue), 

spore(black) and low-fluorescent material (green) for the low, medium and high levels of EPS 

production respectively. The line chart represents the average of n=5 simulations. The graph 

labeled Experiment, gives a comparison of the fractional composition of experiment results from 

[58] (line chart)and [61] (bar chart). The results obtain from the simulations are in qualitatively 

agreement with the results of the line chart. In A-C we observe that the colony is initially 

comprised of motile cells. As the biofilm develops the majority of cells become matrix producing 

phenotypes. As the biofilm matures it is comprised of low fluorescence material. In the 

experiment the value of the matrix and motile cells never reach zero. However, in the simulations 

the value of the phenotypes drops to zero. We would expect this to happen if the experiment was 

monitored further. The experiment is not able to reproduce the dynamics of spore cells. In the 

experiment the value of spore cells gradually increases where as in the simulation the rise is 

sharper. The sharp rise is due to the threshold being reached simultaneously by a large 

proportion of cells. 

 

Two autoinducers capture cell lineage and reorganize spatial location of dead cells.  

Experimental evidence[46, 61] suggests a defined cell lineage exists within the B. 

Subtilis colony. Time-lapse microscopy revealed that motile cells switch to become matrix-

producing cells and during further development sporulating cells were derived from matrix-
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producing cells[61]. In addition to capturing the spatiotemporal dynamics we wanted to test if 

our model could reproduce the defined cell lineage. In our baseline simulations figure 2.3.1, 

spore forming cells developed from motile and matrix producing phenotypes, the proportion of 

spore forming cells that arise from motile and matrix phenotypes is listed in figure 2.3-7. 

         
 

Figure 2.3-6  Spatial and Temporal Dynamics Using Two Auto Inducers. 

With the addition of the second autoinducer the spatial and temporal dynamics of the biofilm 

observed in the case of one autoinducer is preserved. However, with the addition of the second 

autoinducer the center of the biofilm at the t=44 is now comprised of dead cells in the case of 

low and medium EPS production instead of a mixture of spores and dead cells. However, the 

case of high EPS production we still observe a patch distribution of EPS and spore cells 

throughout the biofilm.  

 

To explain the discrepancy in the linage distribution between simulation and empirical 

observations, we carried out a parameter scan of the threshold values.  However, the thresholds 

values obtained from the parameter scan that were able to reproduce the desired cell lineage 
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could not produce the correct spatiotemporal dynamics of the biofilm. This result suggested that 

an additional mechanism would be necessary to reproduce the observed cell lineage. It has been 

demonstrated that changes in phenotypes is caused by different autoinducers and often involve 

more than one autoinducers[13, 46, 57, 61, 106]. For example, sporulation is known to be under 

the control of at least two QS peptides[86].  Based on experimental evidence presented in[12, 13, 

75] we hypothesize that adding a second autoinducer to our baseline model may reproduce the 

defined cell lineage. 

 

Figure 2.3-7 Cell Lineage Using One and Two Autoinducers.  

The proportion of spore cells arising from motile cells in figure A when only one autoinducer is 

used is not in agreement with experiments in[61]. Specially in[61], presents strong evidence of a 

defined cell lineage where spore form from matrix producing cells. However, in the simulation 

where only one autoinducer is used we observe a spore cells forming from motile cells for all 

three levels of EPS production. After a parameter scan of threshold values we could not 

reproduce the distinct cell lineage discussed in[61] and also reproduce the spatiotemporal 

dynamics in[58]. We next decided to use a second autoinducer since it has been observed that 

different phenotypes are under the control of different signals during the development of a 

biofilm[56]. The second autoinducer in the model was produced by matrix producing cells. We 

then used the second autoinducer to establish the threshold concentration where cells would 

become spores ( 𝑇3). With the addition of the second autoinducer the spore forming cells arising 

from motile cells was highest at the low EPS production at less than two percent of the overall 

spore forming cells. When the EPS production is at the medium or high level. The spore forming 

cells that arise from motile cells are zero. This is in strong agreement with the cell lineage 

observed in[61].   
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To test this hypothesis, we allow the matrix producing cells to produce an additional 

autoinducer (A2). With the addition of A2, the threshold 𝑇3 (spore threshold) now depends on 

the previous nutrient level and the level of A2. We found that in the simulations with the addition 

of A2, the spatial distribution of the phenotypes within the biofilm is affected (figure2.3-6): the 

center of the biofilm is now comprised of dead cells in the cases of low and medium EPS 

production rate. When the EPS production rate is high, the simulation reproduces the distribution 

observed in the case of one autoinducer. 

 
Figure 2.3-8 Fractional Composition Using Two Autoinducers. 

The addition of a second autoinducer does not affect the dynamics of the fractional composition. 

The relative proportions remain the same as in the case of one autoinducer. Specifically, the 

relative proportion of the different cell types remain the same as in the experiment and the 

simulation with one autoinducer. 
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Figure 2.3-8 gives the fractional composition of the biofilm using two autoinducers at the low, 

medium and high EPS production rate. The dynamics as exhibited in A-C of the biofilm remains 

the same as the case of one autoinducer and the experiment. Specifically, the proportion exhibit 

the same qualitative behavior.  Figure 2.3-8 of the simulations with two autoinducers at three 

different EPS production rate replicates the same proportions as the case with one autoinducer.  

When we examine the cell’s lineage plotted in figure 2.3-7 the case with low EPS production 

rate, a small proportion (< 2%) of the cells arise from motile cells. Furthermore, when the EPS 

production rate is medium or high, no spore forming cells emerge from motile cells. The lower 

rate of spore forming cells arising from motile cells suggest that the cell lineage observed 

experimentally is a consequence of more than one autoinducers. 

The gradient of the two autoinducers and nutrient concentration is plotted in figure 2.3-9. 

Plots (A)-(D) represent the first autoinducer, (E)-(F) represents the nutrient and (I)-(L) represents 

the second autoinducer. From the plot, we observe that the inclusion of the second autoinducer 

produces a distinct chemical gradient. Specifically, the matrix producing cells establish a 

gradient of autoinducer independent of motile cells since motile cells are not capable of 

producing the second autoinducer but can only responded to it. By establishing a second gradient 

with the additional autoinducer. We are able to establish a threshold that will allow the majority 

of cells that become spores to arise from matrix producing cells while still exhibiting the 

spatiotemporal dynamics observed in the first simulation and experiment. 
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Figure 2.3-9  Chemical Gradient Using Two Autoinducers  Low EPS Production.  

The addition of a second autoinducer establishes a second gradient (I-L). The addition of the 

gradient allows us to establish a distinct region where the level of autoinducer and nutrient can 

reproduce the cell lineage, spatial and temporal dynamics observed in experiments. 

 

Expansion of Biofilm Colony 

We next examine the spatiotemporal dynamics of the biofilm expansion.  From figures 

2.3-1 and 2.3-6, we observe that in the simulation, the leading front of the expanding biofilm is 

occupied by different phenotypes.  To better understand the contribution of the different 

phenotypes to the expansion of the biofilm, we examine the spatiotemporal distribution of 

phenotypes in the expanding biofilm using the model with two autoinducers. In figure 2.3-10 we 
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plot the average maximum distance from the center of the biofilm for all cells of a given 

phenotype, using the average of five replications. Panels A-C represent low, medium and high 

cases of EPS production, respectively. 

For all three rates of EPS production we observe that the expansion of the colony is 

initially due to motile cells. Since early in the development phase, the levels of autoinducer and 

nutrient is below the threshold values required for the motile cells to differentiate to any of the 

other phenotypes. The expansion of the colony continues until the first set of thresholds is 

reached for differentiating to matrix producing cells. The expansion of the colony at all three 

levels of EPS production is then attributed to matrix producing cells. We reach this conclusion 

since the average of the maximum distance from the center of the biofilm is greater for the 

matrix-producing phenotype than the motile phenotype.   

In case of low EPS production (A) the matrix producing phenotype has the greatest 

average distance until the threshold for spore formation is reached. Once the cells start forming 

spores, the average maximum distance from the center of the colony of the matrix-producing cell 

type becomes equal to the average max distance of the spore forming phenotype. From figure 

2.3-6 and figure 2.3-10 we infer the equality of the distance between the two cell types is caused 

by matrix cell becoming spores. Once the distance becomes equal, we observe that a second 

expansion of the colony occurring due to the matrix-producing phenotype. Again, we make this 

assumption since the average maximum distance from the center of the colony is greatest for the 

matrix producing phenotype. The matrix producing cells remain furthest from the center until the 

end of the simulation. The spore cells have an average maximum distance that lies between the 

motile and matrix producing cells. The average maximum distance of the motile cells from the 
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center increase slightly from the beginning of the simulation until the end of the simulation when 

all nutrients are consumed.  

In the case of medium EPS production panel B in figure 2.3-10, a similar development 

pattern is observed for the colony. Specifically, we have the matrix producing cells being furthest 

on average from the center of the colony. Followed by the average maximum distance of spore 

forming cells and matrix-producing cells being equal. Once this occurs the average maximum 

distance of the matrix producing cells is greater than the average maximum distance of the spore 

forming cells suggesting that the expansion of the colony is again due to matrix producing cells.  

When the EPS production is set to the highest level the initial colony expansion occurs due to 

motile cells and then is followed by an expansion due to matrix producing cells once the required 

threshold is reached. However, in the case of large EPS production a similar inference cannot be 

made. Figure 2.3-6 shows that, in the case of high EPS production, the spore forming cells are 

distributed in a few concentrated patches throughout the biofilm. Therefore, we are not able to 

make a similar inference as we did as in the case of low and medium EPS production. 

From figure 2.3-6 and 2.3-10, we infer for EPS production at low or medium levels the 

spreading of the biofilm colony is first due to motile cells. Once the threshold for matrix 

producing cells is reached the expansion of the colony is due to the matrix producing phenotype. 

Expansion of the colony by the matrix-producing cells continues until another threshold is 

reached inducing cells to become spores. Once spore form from matrix-producers, a second 

expansion of the colony occurs. Specifically, the second expansion of the colony is a result of 

matrix-producing cells that did not become spore.  
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Figure 2.3-10  Distance from the Center of Biofilm of the Three Major Phenotypes.  

Figure A-B represents the maximum distance of each cell type from the center of the colony for 

n=5 replications at the low, medium and high EPS level of production. We observe the initial 

expansion of the colony by motile once the threshold 𝑇1 to form matrix producing cells is 

reached. The matrix cells now have the maximum distance from the center of the colony. The 

biofilm develops until matrix producing cells become spore cells. At which time the we see an 

intersection of the lines for spore forming and matrix cells. We make the inference from figures 

2.3-6 and the defined cell lineage established using two autoinducers. Once the spore forming 

cells arise from the matrix producing cells that have reached the necessary threshold. The matrix 

producing cells that have not become spores now lead the expansion of the biofilm. 

 

  

 

 

 

 

.  
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Discussion 

Phenotype switching is ubiquitous in microbes and is a strategy for ensuring the survival 

of the colony [89, 107]. A recent nondestructive method allows one to track the spatiotemporal 

dynamics of phenotype emergence, in B. Subtilis biofilm [58]. Despite the advantages over 

previous destructive methods, the new method cannot distinguish between dead cells and EPS. 

The non-destructive method instead groups them into one class of low fluorescent material, 

giving no information concerning the spatial distribution of them within the biofilm.  

Furthermore, the method gives no information on the early development of the colony and has 

poor predictive power later in the colony development [58].  To address these issues, we 

presented a mathematical and computational model to study phenotype switching exhibited by a 

B. Subtilis colony. 

 Our 2D agent-based model of colony formation is based on the GGH model with 

thresholds on two environment signals, nutrient and an autoinducer. The model used for the 

simulations reproduced the spatiotemporal dynamics observed in [58]. In addition, our 

simulations can distinguish the spatial distribution of EPS and dead cells. From the simulations, 

we observe dead cells are localized to the center or edge of the biofilm. The dead cells arise from 

cells that were either motile or matrix producing cells and did not become spore forming cells. 

From our simulations, we draw a few important conclusions.  

First, to reproduce the spatiotemporal dynamics, it is necessary to couple QS and nutrient 

availability. Simulations that used a threshold on a single environmental que did not reproduce 

the spatiotemporal dynamics observed in the experiments. Previous results show that both QS 

and nutrient limitation play a role in initiating sporulation [108, 109]. Here we demonstrate that 
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the interdependence can explain spatial and temporal phenotypic differentiation throughout the 

development of a biofilm. 

Second, to reproduce the cell lineage as well as the spatiotemporal patterning observed 

experimentally, a second autoinducer is required. When one autoinducer is present, we have 

spore cells arising from motile cells, contradicting the cell lineage from experiments[56]. Using a 

second autoinducer can be viewed as an evolutionary strategy of a microbe to ensure that only 

cells that are matrix producers and contribute to EPS production become spores that are able to 

become active under favorable conditions.  

Finally, matrix-producing cells are responsible for the expansion of the biofilm. In figure 

2.3-10 the average maximum distance of the matrix-producing cells from the center of the 

colony is greatest. The observation that the average maximum distance of matrix producing cells 

are furthest from the center along with the observation in figure 2.3-6 allows us to reach this 

conclusion. From figure 2.3-6 and 2.3-10 we observe that the expansion due to matrix-producing 

cells occurs at two different times during the development of the colony. The first expansion 

occurs after the threshold 𝑇1 to become a matrix-producer is reached. The expansion of the 

colony by matrix-producing cells continues until the threshold for the spore phenotype is 

reached. Once this threshold is reached spore forming cells occupy an average maximum 

distance that is greater than the motile cells. After the spore forming cells appear a second 

expansion of the colony begins with the matrix forming cells that did not reach the required 

threshold to form spores. This expansion continues until the level of nutrient reaches zero and the 

matrix producing and motile cells die. This result is consistent with experiments that observe 

matrix-producing cells leading the expansion of the colony and that the expansion occurs during 

two different waves [59]. 
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In conclusion, we have presented an agent-based model that incorporates thresholds on 

two important environmental ques, nutrient and autoinducer. Using the GGH model coupled with 

thresholds on these two variables, we reproduced the spatiotemporal dynamics exhibited 

experimentally.  From the simulations we gained insight on the role EPS production has on the 

dynamics of the biofilm. In addition, our model allowed us to predict the distribution and ratio of 

dead cells and EPS separately. The model allowed us to gain insight on the role QS has on 

deciding cell fate and cell lineage. From the simulations, we hypothesize one role of having 

multiple autoinducer is to establish distinct cell lineage between cells responsible for producing 

EPS and cell that do not produce EPS. The distinction between the two cell types can be viewed 

as an evolutionary advantage to ensures only cells that produce EPS form spores.  

The model gave us insight on the role environmental inputs have on cell fate. However, 

the changes were not as gradual as the experiment due to the threshold mechanism. We hope this 

model can be extended to incorporate subcellular dynamics along with environmental ques to 

reproduce the spatiotemporal dynamics of B. Subtilis in a way more consistent with experiments 

since an understanding of the constant interplay between environment signals and regulatory 

network is necessary to fully understand the role that either has in the development of a colony. 
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3 A COMPUTATIONAL MODEL OF BIOFILM DETACHMENT 

3.1 Biofilm Dispersal 

3.1.1 Background 

Detachment occurs as the final stage of a three-stage process leading to the development 

of a biofilm. The first stage is characterized by irreversible attachment to a surface by using 

cohesive and adhesive force[110]. The next stage of development is the expansion of the colony 

due to growth and division of individual bacterium that are encased in the EPS[8, 111].  At the 

final stage bacterium and other material which constitute the biofilm such as EPS are detached 

from the colony.  

To facilitate the detachment biofilms have developed a myriad of mechanism that allow 

detachment when conditions become unfavorable. Unfavorable conditions include the depletion 

of nutrients, increase of toxins and other environmental stresses [66, 112].  The three major 

mechanism used by bacteria to escape from a biofilm are desorption, detachment, and 

dispersion[113]. Although these terms refer to slightly different methods individual or clusters of 

bacteria leave a biofilm, in the literature they are used interchangeable and refer to an individual 

or cluster of bacterium cells leaving an established biofilm[114].  We will follow the convention 

of using the terms interchangeably.  

The dispersal of biomass from a biofilm is categorized as either active or passive.  When 

the dispersal of the biomass is due to external forces dispersal is categorized as being 

passive[115]. For example, biomass removed by shear force is considered a form of passive 

dispersal. Active dispersal on the other hand occurs as a direct consequence of activity within the 

biofilm.  
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Biomass dispersal can be further categorized into three broadly defined modes: seeding, 

sloughing or erosion[115]. Seeding is defined as the rapid release of cells from the biofilm and is 

considered a form active dispersal. Seeding is used by bacteria within a biofilm to colonize new 

areas and can occur due to either high or low nutrient availability. Erosion is the continuous 

release of single cells or small clusters of cells from a biofilm at low levels over the course of the 

formation of a biofilm. While sloughing refers to the sudden detachment of large portions of the 

biofilm[114, 116]. Erosion and sloughing can be classified as either active or passive where 

seeding is always active.   

 

Figure 3.1-1 Active vs Passive Dispersal.   

Figure 3.1-1 represents the two-mechanism causing dispersal in biofilm. The first passive occurs 

when some external force is applied to the biofilm causing the whole or partial removal of the 

biofilm. The second case is an illustration of active dispersal. In this case dispersal occurs as a 

direct consequence of stimulus provided by the bacterium within the biofilm. Figure reproduced 

with permission from [115]. 
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Dispersal is also aided by environmental signals that enable bacterium within the biofilm 

to monitor their environment and release cells at an opportune time. An interesting example of 

environmental signal induced dispersal occurs when the level of nutrients available to a 

bacterium is used as a signal to disperse from biofilms[112]. The decision to disperse from the 

biofilm does not only occur at low levels of nutrients but can also be triggered at high levels. In 

addition, QS is generally thought to govern the assembly of biofilms when a population density 

becomes sufficient to warrant forming a colony. However, recent studies put forth evidence that 

QS contributes not only to the formation of biofilms but also to their disassembly[8, 26, 117]. 

Specifically, in most biofilms once a threshold concentrations of autoinducers is reached 

bacterium within the biofilm start to produce surfactants or enzymes that weaken the cohesive 

forces that hold the biofilm together[26]. The weaken of the bonds within the biofilm enable 

bacteria embedded in the matrix to escape an increase the likelihood of survival of a biofilm.  

3.1.2 Mathematical Models of Detachment 

Mathematical Models of biofilm dispersal have included both continuum and discrete 

models.  In this section, I will give an overview of some of the important models that have been 

used to study the dispersal process. One of the earliest models to successfully incorporate 

detachment was the continuum model presented in  [118], where biofilm detachment was trigged 

by the thickness of the biofilm. In their model, Wanner and Gujer introduce a term 𝜎 that 

measured the detachment velocity of biomass from the biofilm based on the thickness of the 

biofilm. Although the model improved on previous models of biofilms by adding a mechanism 

to account for biomass detachment.  The detachment mechanism used did not account for the 

heterogeneity observed experimentally during the different phases of biofilm development. 

Specifically, the early model could not account for bacterial attachment, growth and detachment.  
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Later continuum models of detachment included detachment occurring as a result of fluid 

flow and shear stress[119]. Although, later Continuum models incorporated different detachment 

mechanisms. They did not allow for the observed emergent properties and dynamics of the 

biofilm to be attributed to the physical interactions between the bacterium forming the colony. 

Furthermore, due to the limitation of continuum models the chemical and biological processes 

leading to detachment could not be included as contributions from individual bacterium.  

To overcome the shortcomings of continuum models, cellular automata and individual-

based models were developed to model biofilms. The main advantage of using individual and 

automata models is that they allow for the macroscopic properties of a biofilm to emerge from 

microscopic interactions between individual cells and their environment. Baclab presented an 

early Cellular Automata computer model that incorporated detachment that was dependent on the 

concentration of a detachment inducing chemical. Baclab modelled chemical reactions taking 

place in the biofilm by using deterministic differential equations and diffusion equations.  While 

using a stochastic cellular automata model for cell division, detachment and movement.   

In the Baclab model, at any time point of the simulation, the state of the system is 

represented using the following three arrays: 𝑆 = {𝐶𝑠(𝑥, 𝑦, 𝑧)} denoting the concentration of the 

limiting substrate, 𝐹 = {𝐶𝐹(𝑥, 𝑦, 𝑧)} denoting the concentration of the detachment factor and 

B={𝐵(𝑥, 𝑦, 𝑧)}, denoting the occupation state at location (𝑥, 𝑦, 𝑧). In Baclab simulations, 

concentrations of the limiting substrate and detachment factor are updated using differential 

equations. While the updates of the occupation state 𝐵(𝑥, 𝑦, 𝑧), are made using cellular automata 

rules.  Detachment in Baclab occurs if 𝐶𝐹 > 𝐶𝑚𝑎𝑥 at a cell’s location, where 𝐶𝑚𝑎𝑥 is a 

predetermined threshold concentration of the detachment factor or if a cell is no longer attached 
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to the substratum. The model incorporates detachment factor production and cellular activity 

through the following reaction term: 

𝑟𝐹(𝐶𝑠, 𝑋) = {
0, 𝑖𝑓 𝐵 = 𝑁𝑢𝑙𝑙 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑃𝑜𝑖𝑛𝑡𝑒𝑟

𝑘 ∗ 𝐶𝑠, 𝑖𝑓 𝐵 ≠ 𝑁𝑢𝑙𝑙 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑃𝑜𝑖𝑛𝑡𝑒𝑟
 

The parameter 𝑘 denotes the detachment factor production coefficient. 𝐵 represents an 

identity pointer to a vector, 𝐼𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚, containing all relevant information about an individual 

bacterium. The first order expression in 𝐶𝑠 correlate the detachment factor production with the 

cellular activity of a cell. With the assumption that when a cell is in a starved state, energy is 

conserved and extra cellular chemicals are not actively produced. 

 The expression is substituted into the reaction diffusion equation: 

0 = 𝐷𝑖 (
𝜕2𝐶𝑖

𝜕𝑥2
+

𝜕2𝐶𝑖

𝜕𝑦2
+

𝜕2𝐶𝑖

𝜕𝑧2
) + 𝑟𝑖(𝐶𝑠, 𝑋) 

 where 𝐶𝑖 is the detachment factor concentration 𝐶𝐹.  

The algorithm governing detachment is illustrated in figure 3.1-2 and corresponds to the 

following sequence of operations adopted from [120]. 1, Initializes the surface with 𝑁𝑐 randomly 

placed spherical colonies of radius 𝑅𝑐. Each cell within the colonies is inoculated with a random 

amount of substrate relative to division denoted by M, where M is chosen from a uniform 

(0, 𝑚𝑛) distribution. 2, generates the substrate distribution for the current time step, 𝑡, by finding 

the steady-state solution to the reaction diffusion equation. 3, the detachment factor distribution 

is generated for the current time step, 𝑡, by again finding the steady-state solution to the reaction 

diffusion equation. 4, for each cube in the spatial domain Γ, determine if it is occupied by a 

bacterium. If the cube is unoccupied, nothing further is done with that volume element at the 

current time step. If the cube is occupied, further calculations are performed. 5, Each bacterium 

consumes substrate based on (2) and the local concentration. The cumulative amount of substrate 



54 

consumed for each cell, since its last division, is then updated. 6, Determine if 𝐶𝐹 in the cube is 

above the detachment factor threshold, 𝐶𝐹,𝑚𝑎𝑥. 7, Remove the bacterium in the current cube and 

any additional bacteria in other cubes according to the detachment rule specified. Additionally, 

identify and remove any floating clusters of bacteria. 8, Check if the bacterium has consumed 

enough substrate to divide. 9, Create a new bacterium neighboring the parent and leave excess 

substrate (not required for the creation of a daughter cell) with the parent bacterium according to 

the rules specified. 10, Move forward in time by Δ𝑡 based on the events that occurred in steps 4–

9. 

 

Figure 3.1-2 Detachment Rules Used in Baclab.  

Illustration of a typical simulations using Baclab. A full explantation of each step is giving 

above. Figure reproduced with permission from [120]. 
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The widely popular individual-based model presented in [121]  was extended to 

incorporate biomass detachment.  To incorporate detachment, a continuous speed detachment 

function denoted 𝑭det was introduced to calculate the local biomass erosion. 𝑭det can depend on 

measured biofilm mechanical properties, on local biomass EPS composition, on the distance to 

the solid support, or the local concentration of detachment-inducing chemical species[30]. For a 

point 𝐱 on the biofilm surface, the retraction speed of the biofilm is expressed as  

𝑑𝐱

𝑑𝑡
= −𝑭𝑑𝑒𝑡(𝐱)𝐧(𝐱) 

Where 𝑭𝑑𝑒𝑡(𝐱) is defined as the value of the detachment speed function at point x and 𝐧(𝐱) as 

vector normal to the biofilm at x.  The model is valid for both 2D and 3D simulations.  

 

 

Figure 3.1-3 Biomass Detachment as Implemented in the Particle Based Model.  

The surface detachment rate at a point (x) placed at the biofilm interface results from the 

product of local values of the detachment speed function, 𝐹𝑑𝑒𝑡, and the vector normal to the 

surface at that point (n(x)), as described by the above equation. Reproduced from[30] with 

permission. 
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The continuum, cellular automata, and individual-based models discussed have been 

modified to include a myriad of detachment mechanism. However, detachment due to quorum 

sensing has not been incorporated until recently.  In[122] a model of QS induced biofilm 

detachment is first proposed. The authors use an established continuum model with a predefined 

dispersal rate to model detachment.  In their model, once an autoinducer threshold is reached 

cells disperse from the biofilm at a predefined rate. Their model is a step in the right direction 

since it incorporates a universal signal produced by a myriad of bacterium. However, their 

modelling approach does not provide information on the effect individual cells reacting to 

quorum sensing induced detachment has on the emergent structure of the biofilm. Furthermore, 

the model being a continuum model does not explicitly model EPS and instead subsumes EPS in 

the term representing cells comprising the biofilm.  

To gain a better understanding of the role of QS induced detachment has on a biofilm. We 

present an agent based model to study QS induced biofilm detachment in an environment with 

no shear force. We explicitly include EPS and model detachment that is dependent on QS. In our 

model biofilm detachment is induced by the weakening of adhesion or cohesion between cell 

types within the biofilm. 
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3.2 Agent Based Model of QS Induced Biofilm Dispersal  

3.2.1 Cellular Potts Implementation 

Modified Hamiltonian 

Experiments point to the weakening of cohesive bonds in a biofilm leading to dispersal, 

either through the secretion of enzymes such as a biosurfactant or other endogenously produced 

chemical compounds[123-130].  In this chapter a model of detachment is presented that allows 

the weakening of the cohesion/adhesion forces in the biofilm under the control of QS. 

Specifically, in our model once a certain threshold level of an autoinducer is exceed, the 

cohesive forces in the biofilm will start to weaken initiating detachment of cells from the biofilm. 

 The weaken of the cohesive force is done by including a cohesiveness weakening factor 

𝒟 that depends on the local autoinducer concentration 𝑎(𝑥, 𝑡). We take this approach since 

experimental evidence suggest that biofilm detachment is dependent on the concentration of 

secreted enzymes that weaken their cohesive bonds [126, 129, 131]. The regulatory mechanisms 

that govern the production of these enzymes are themselves QS dependent[8, 124, 132, 133]. To 

introduce this effect in our model we modify the ℋ𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  term in the Hamiltonian of the 

CPM. Specially, we include an expression 𝒟 ∗ 𝑎(𝑥, 𝑡), we can think of 𝒟 as detachment factor 

relating autoinducer production and cohesion[120].  

Given us, 

𝐽′ (𝜏(𝜎(𝑖)), 𝜏(𝜎(𝑗))) = 𝐽 (𝜏(𝜎(𝑖)), 𝜏(𝜎(𝑗))) + 𝒟 ∗ 𝑎(𝑥, 𝑡) 

The increase in the values of 𝐽′ corresponding to weakening of cell cohesion and occurs once an 

autoinducer threshold 𝜏2 is achieved. 
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Cell Growth and Division 

In our model, the rate of cell growth and division depends on the local nutrient 

concentration, 𝑛(𝑥, 𝑡). In our simulation, each cell initial occupies a 5 × 5 pixels and 1 pixel is 

set equal to 2 𝜇𝑚.  A cell with adequate nutrient will continue to increase its volume until twice 

its target volume 𝑉𝑡 is reached at which time the cell divides. The division occurs instantaneously 

creating two daughter cells of the same type with the target volume set equal to one half the 

parent’s target volume 𝑉𝑡/2. The direction of division is chosen at random to ensure that there is 

no bias in any direction on the lattice therefore reducing anisotropy.  The bacterium in our model 

respond to glucose and grow at a rate proportional to its concentration.  

𝑑𝑉𝑡

𝑑𝑡
= 𝛼 ∗ 𝑛(𝑥, 𝑡) 

 EPS Production 

EPS production is ubiquitous across bacteria species and serves as hallmark of biofilm 

formation[2, 14, 46, 47, 66, 134, 135]. In our model EPS is represented as a discrete cell type 

with its production governed by QS[12, 64, 135-137].  EPS is produced once a certain threshold 

level of autoinducer is reached [10, 12, 57, 87, 138]. This threshold is referred to as 𝜏1.  EPS 

cells are represented as a generalized cell type with size proportionally to the target volume of a 

bacterium cell[96]. If a cell in our model is in an upregulated state it will produce EPS cells as 

follows: a boundary pixel is randomly selected from a cell which is upregulated, that pixel 

location then becomes the center of the EPS particle with a predetermined target volume and 

surface area.  
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Since the production of EPS is metabolically costly to the EPS producer[139, 140].  

To account for the extra cost associated with EPS production the consumption rate of nutrient is 

doubled for cell producing EPS[141]. The amount of EPS produced is varied by adjusting the 

parameter 𝜋: 

  𝑟𝐸𝑃𝑆 = 𝜋 ∗ 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 

Detachment  

In our model biomass detaches from the biofilm due to weakened cohesion or by cell death. 

Weakening of the cohesive strength between cell types occurs once the autoinducer reaches a 

threshold value denoted by 𝜏2. In the simulations, once biomass is detached from the biofilm they 

are removed from the simulation domain. Since the simulation occur on a lattice which is a regular 

repeated graph. We use a graph-based algorithm, specifically the depth-first search algorithm to 

identify detached cells. Bacteria and EPS cell are connected to the substratum in two ways. They 

can be directly connected meaning they rest on top of the substratum or they can be connected 

through other bacteria cells or EPS that are connected to the substratum. 

We implement detachment as follows: 

1. For a cell  𝜎(𝑖) excluding the medium and source, we construct a dictionary using 𝜎(𝑖) as 

a key and its neighbors that share a common surface area as values. We then have for each 

cell a dictionary where the cell indexes 𝜎(𝑖) can be viewed as vertices and the list of values 

associated with that cell index as vertices connected to it by a path. 

2. A graph is then constructed using the dictionaries obtain from part 1.  

3. We next check the graph obtain in part 2 for components that are not connected using the 

depth first search algorithm [142]. The substratum is used as the starting node instead of a 

randomly selected cell to ensure that the starting node is a part of the biofilm. If a cell were 
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randomly selected cell it is possible that the selected cell is detached from the biofilm. 

Using the substratum as the root ensures that this does not occur. 

4. Finally, if a cell is not connected it is deleted and removed from the simulation domain. 

 

Figure 3.2-1 Biofilm Detachment. 

The figure is an illustration of a detached biomass composes of bacterium (green) and cell (gray). 

The rest of the colony is attached to the substratum (red) once detached the biomass will be deleted 

from the simulation domain. The medium (black) and source(blue) are also represented. 
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Chemical Fields 

The evolution of glucose and autoinducer concentrations are modeled using the following 

reaction-diffusion equations. 

   
𝜕𝑛

𝜕𝑡
= 𝐷𝑛∇2n − 𝜆𝑛𝑛 + 𝑆       

          
𝜕𝑎

𝜕𝑡
= 𝐷𝑎∇2a − 𝜆𝑎𝑎 + (𝛼 + 𝛽)𝑎 

Where 𝑛(𝒙, 𝑡) denotes the local concentration of glucose, 𝐷𝑛 represents the coefficient of 

diffusivity of the nutrient, 𝜆𝑛 represents the coefficient of decay. The term 𝑆 = 𝑆(𝒙, 𝑡) describes 

the input of nutrient at a constant rate 𝜙𝑛 from a source located at the top of the simulation 

domain. This is done to simulate biofilm growing in the wild, medical devices, or oral cavity 

where a constant source of nutrient is available [134]. The first two terms for the autoinducer can 

be interpreted the same as we did for nutrient. The third term represents the addition of 

autoinducer by the cells that produced autoinducer at a basal rate 𝛼 and when upregulated 

produced at a rate (𝛼 + 𝛽). The diffusion coefficient 𝐷𝑎 and , 𝐷𝑛 are rescaled to take into 

account presence of microbial cells and EPS [97]. 

Simulation Domain 

The simulation domain Ω represents a square lattice with length 𝑙𝑥 = 150 and width  

𝑙𝑦 = 200 in pixels. In our simulation 1 pixel is set equal to 2 𝜇𝑚. This gives us a simulation 

domain corresponding to 300 𝜇𝑚 in the horizontal direction and 400 𝜇𝑚 in the vertical direction.  

The substratum in our model is located at the bottom of the simulation domain and is 

impermeable to both biomass, autoinducer and nutrient substrate. Therefore, we set 

homogeneous von Neumann boundary conditions 𝜕𝑛 = 𝜕𝑎 = 0 at the substratum for both 

autoinducer and nutrient substrate. The simulation domain represents a small portion of a larger 
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domain in which the biofilm grows such as would be found in nature, implanted medical device 

or as part of a larger bioreactor.  This assumption allows us to set periodic boundary conditions 

at the sides 𝑥𝑚𝑖𝑛 = 0 and 𝑥𝑚𝑎𝑥 = 150 for both autoinducer and nutrient substrate. At the top of 

the simulation domain  𝑦𝑚𝑎𝑥 = 200,  we set Dirichlet boundary condition to represent nutrient 

constantly being added to the simulation domain. The boundary condition at the top of the 

simulation domain is set to zero allowing the simulation to account for the removal of 

autoinducers and establish a diffusion gradient within the biofilm and simulation domain.  

 

Table 3.2-1 Parameter Values 

 

 

 

 

Parameter  Value Units Reference 

𝐷𝐶𝑜𝑚𝑋 2.2 × 10−6 𝑐𝑚2/𝑠𝑒𝑐 [98] 

ComX synthesis Rate 1 × 104 𝑛𝑀ℎ𝑟−1 [98] 

ComX Degradation Rate Constant 0.693 ℎ𝑟−1 [98] 

𝐷𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6.7 × 10−6 𝑐𝑚2/𝑠𝑒𝑐 [97] 

Glucose Uptake rate 𝑉𝑎𝑟𝑖𝑒𝑑  Estimated 

𝒟 10, 100  Estimated 

𝐽𝐵𝐴𝐶,𝐵𝐴𝐶 20  Estimated 

𝐽𝐸𝑃𝑆,𝐸𝑃𝑆 -5  Estimated 

𝐽𝐵𝐴𝐶,𝐸𝑃𝑆 -5  Estimated 

𝐽𝐵𝐴𝐶,𝑆𝑈𝐵 5  Estimated 

𝐽𝐸𝑃𝑆,𝑆𝑈𝐵 -5  Estimated 
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3.3 Results 

3.3.1 Aim of Study 

  The cohesive and adhesive strength exhibited by biofilms is a factor in their resilience to 

treatment and removal[19, 130, 143]. One explanation put forth to explain the resilience 

exhibited by biofilms is they are overdesigned. Specifically, in [19] the authors demonstrate the 

property of biofilm resilience by measuring the factor of safety of a biofilm.  The factor of safety 

as defined by the authors is the ratio of measured cohesive strength to the estimated fluid stress 

excreted on the biofilm. The factor of safety values calculated for biofilms ranged from 330 to 

55,00. When taking in comparison to engineered structures that usually have a factory of safety < 

10, the authors argue that biofilms are overdesigned and it is the overdesign of biofilms that lead 

to them being resilient to removal. Given the role cohesive forces have in the recalcitrant 

behavior exhibit by biofilms, suggest that if one’s aim is to disassemble a biofilm. The focus 

should be on the adhesive bonds holding the biofilm together specifically, the cell-cell, EPS-

EPS, and cell-EPS bonds.  

In carrying out this research we seek the answer to several questions. First is it possible to 

induce dispersal by focusing on weakening a single interaction? QS not only coordinates the 

assembly of a biofilm, but is used by some species to coordinate the disassembly of the biofilm 

as it matures[26, 127, 137, 144]. This leads to the second question, what is the role of quorum 

sensing in dispersal and its effect on the biofilm’s structure? In addition, we seek to gain an 

understanding of what advantages does QS regulated EPS production have over EPS production 

that is not QS regulated. To better understanding the role of adhesion and quorum sensing 

regulated EPS production and biofilm dispersal we use the Cellular Potts model as described 

above.   
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Figure 3.3-1. Initial Attempt to Initiate Dispersal Using Individual Adhesion Terms. 

When each term is weakened the biomass of the biofilm increases indicating that focusing on an 

individual term will not be enough to induce dispersal of biomass from the biofilm. The shaded 

continuous error bars represent a 95% confidence interval around the mean value of the five 

simulations. 

 

Results 

To simulate the growth of a biofilm, at the start of the simulation cells are placed on a 

substratum located at the bottom of the simulation domain. We start out simulation by assuming 

that there are no dispersed cells, upregulated cells, EPS or autoinducer in the simulation domain. 

As the simulation is initiated the cells located on the substratum grow and divide due to 

consuming nutrients and secrete autoinducer at a basal rate. The production at the basal rate 

continues until a threshold 𝜏1 is reached at which time a bacterium will switch from being down-

regulated to up-regulated[145].  When a cell is up-regulated it produces the autoinducer at a rate 
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one order of magnitude greater than cells that are down-regulated[146]. The threshold 𝜏1 once 

exceed also allows a cell to produce EPS.  

 

Figure 3.3-2 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + and 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 –  Using Equal Values on Both Thresholds. 

Figures A and B represent the case when 𝜏1,2 = 4𝜇𝑀. While figures C and D represent the case 

when 𝜏1,2 = 2𝜇𝑀. From the figures we observe 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + (black line) biofilms exhibit a 

lower maximum biomass than biofilms that 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 – (green line). This occurs for all 

possible thresholds 𝜏1. Furthermore, biofilms with a larger value of 𝜏1 produce biofilms that 

have a larger biomass than biofilms with a smaller value of 𝜏1. When biofilms with that have the 

same value of 𝜏1 are compared biofilms with a higher value of 𝒟 have dispersal events that 

occur at an earlier time than biofilms with a smaller value of 𝒟. The shaded continuous error 

bars represent a 95% confidence interval around the mean value of the five simulations. 

 

 



66 

Biofilms with cells that become upregulated are denoted 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + while biofilms 

comprised of cells that are unable to produce an increased rate of autoinducer are termed 

𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 −.  To better understand the role of cell-cell, cell-EPS, and EPS-EPS adhesion a 

second threshold 𝜏2, is introduced that once exceed will weaken the adhesion/cohesion of the 

biofilm. 

To exam the effects of cohesion, we simulate a biofilm growing and attempt to induce 

dispersal. We first test the hypothesis that dispersal can be induced by weakening an individual 

term in our model. We focus on the individual terms:  𝐽𝐵𝐴𝐶,𝐵𝐴𝐶, 𝐽𝐸𝑃𝑆,𝐸𝑃𝑆, and 𝐽𝐵𝐴𝐶,𝐸𝑃𝑆 to test our 

hypothesis. We set the threshold 𝜏1, 𝜏2 equal to 2𝜇𝑀 allowing for the growth of the smallest 

biofilm in our model and 𝒟 = 100 the highest detachment value used in our simulations. We set 

these values because if we cannot induce dispersal on a smaller biofilm with a high detachment 

factor we reason that we will not be able to do so on a larger biofilm. From figure 3.3.1 we 

observe the biofilm’s volume increased as an approximate linear function for each case. Our 

observation indicates focusing on weakening an individual interaction will not induce dispersal 

of cells from the biofilm. Each plot presented in figure 3.31 represents the average of five 

simulations. The shaded continuous error bars represent a 95% confidence interval around the 

mean value of the five simulations. 
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Figure 3.3-3 Biofilm Morphology.  

Figures A-P represents the morphology of the biofilm when different values of the detachment 

factor 𝒟 and for the case when 𝜏1,2 = 2𝜇𝑀. Green colored cells represent bacterium cells and 

grey represent EPS. The blue bar at the top represent the nutrient source. The first column 

represents the initial layout of the cells on the substratum. The second column B, F, J, and N 

represent a mature biofilm before cells are dispersed. The third column C, G, K, and O represent 

dispersal of cells from the biofilm while the final column represents the final state of the biofilm. 

The morphology of 𝜏1,2 = 4𝜇𝑀 is similar and therefore not plotted. 

 

Since weakening individual terms does not induce dispersal, we next focus on weakening 

all terms to induce dispersal. In fig 3.3.2 A-D, we plot the growth of a biofilm for the case  

𝜏1,2 = 2𝜇𝑀 and 𝜏1,2 = 4𝜇𝑀 while varying the values of the detachment factor 𝒟. The thresholds 

were selected to examine the effects of dispersal and EPS production. Specifically, we wanted to 

examine the consequences of a biofilm having the same threshold on EPS production and 
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making the decision to disperse cells. We set the values of  𝒟 = 10 and  𝒟 = 100 and observe 

biofilms lacking upregulated cells 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 − reach a higher average maximum biomass 

than biofilms with upregulated cells 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 +. In the case where 𝒟 = 10, we observe 

𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + biofilms reach an average maximum biomass that is one half of the biofilm with 

cells that cannot be upregulated 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 −.  When 𝒟 = 100, the average maximum size of 

the 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 − biofilms are greater than 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + biofilms. These observations lead 

us to conclude that one of the possible mechanism biofilms use to regulate their size is the 

upregulation of cells after a certain threshold is reached.  

We next examine the time to dispersal for the different thresholds.  For 𝜏1,2 = 2𝜇𝑀 and 

𝒟 = 10, biofilms with  𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + cells start to disperse at an average time of  ℎ𝑟 = 6 

while cells in the 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 – biofilms start to disperse at average time of ℎ𝑟 = 8. From 

figure 3.3-2(D) when 𝒟 = 100 the first dispersal event occurs at ℎ𝑟 = 5 for  𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + 

and  ℎ𝑟 = 6 for 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 − biofilms. The thresholds are then increased to 𝜏1,2 = 4𝜇𝑀.  

When we compare the 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + biofilms to 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 – biofilms for 𝒟 = 10 and 𝒟 =

100 we observe similar dynamics as the case 𝜏1,2 = 2𝜇𝑀. Suggesting that upregulation of cells 

within the biofilm is a mechanism used by biofilms to reduce their size rapidly. In addition, we 

observe that for either threshold when 𝒟 = 100 the biofilms have values later in the simulation 

that are more variable leading to confidence intervals for the 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 − and 

𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + overlapping.   

To give a visual representation of the morphology of the biofilm we plot 𝜏1,2 = 2𝜇𝑀 for 

different values of 𝒟 in figures 3.3-3. The plots represent the initial layout of cells on the 

substratum figure 3.3-3 panels A, E, I, and M. In figures 3.3-3 panels B, F, J, and N represents 

the state during the biofilms growth where the threshold to produces EPS is reached.  Panels C, 



69 

G, K, and O in figure 3.3-3 illustrate the initiation of dispersal of cells from the biofilm. While 

the last column represents the final state of the biofilm. From figures 3.3-3 panels C and G, the 

𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 – biofilm is larger than the 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + biofilm for the same value of 𝒟. When 

the value of 𝒟 is increased to 100 in figures 3.3-3 panels K  and O,  the difference in biomass 

between the 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 − and  𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + biofilm becomes less distinct as suggested by 

figure 3.3-2 panel D.  From the last column, we observe that after cells are dispersed from the 

biofilm the cells spread on the surface of the substratum and continues to grow and produce EPS 

if the threshold for EPS production is satisfied.  

 

Figure 3.3-4 𝑈𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + Using and Increased Value for Second Threshold. 

Figure 3.3-4 gives the temporal plot of the biomass of biofilms grown with different 𝜏1, 𝜏2 

and detachment values D. The black line graph represents biofilms with 𝒟 = 10 while 

the green line represents biofilms with 𝒟 = 100.  Figure A plots the biomass of biofilms 

when 𝜏1 = 4𝜇𝑀𝑎𝑛𝑑 𝜏2 = 40𝜇𝑀. While figure B plots the temporal biomass of biofilms 

with 𝜏1 = 2𝜇𝑀𝑎𝑛𝑑 𝜏2 = 20𝜇𝑀. From the plots we observe biofilms with 𝜏1 = 4𝜇𝑀 

reached a higher maximum biomass when compared with biofilm where 𝜏1 = 2𝜇𝑀. 

Furthermore, for both figure A and B, biofilms with the higher detachment factor had 

cells that were dispersed at an earlier time. 
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 We next focus on 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + biofilms which represent the experimentally observed 

behavior of cells in a biofilm. From figure 3.3.4 A-B, we observe that for 𝜏1 = 20𝜇𝑀 and 𝜏1 =

40𝜇𝑀 biofilms with 𝒟 = 100 have lower maximum biomass than biofilms with 𝒟 = 10. We 

attribute the lower maximum biomass to dispersal of cells occurring earlier than biofilms with 

𝒟 = 10, since higher detachment factor causes earlier dispersal. When  𝜏1 = 2𝜇𝑀 the biomass 

of the biofilm exhibits variability that is greater than what is observed when 𝜏1 = 4𝜇𝑀. The 

greater variability causes the confidence interval 𝒟 = 10 and 𝒟 = 100 to overlap and do not 

exhibit the clear separation over the simulation time course when 𝜏1 = 4𝜇𝑀.  
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Figure 3.3-5 Loss of Biomass.  

Figures A-C represent the change in biomass of the simulated biofilms. Figure A shows the loss 

of biomass for biofilms with 𝜏1,2 = 4𝜇𝑀 and for different values of the detachment factor. In 

figure A, the greatest loss of biomass was exhibited in biofilms where the detachment factor was 

set to 100 (red and maroon lines). In figure B, when 𝜏1,2 = 2𝜇𝑀 the same results held with the 

largest detachment occurring when 𝒟 = 100. In figure C, the largest detachment occurs when 

𝜏1 = 2𝜇𝑀 and 𝜏2 = 20𝜇𝑀 with 𝒟 = 100. When we compare 𝜏1 = 4𝜇𝑀 and 𝜏2 = 40𝜇𝑀 

biofilms the largest dispersal event again occurs when 𝒟 = 100 

 

To better understand the dispersal dynamics exhibited by the biofilms, we measure the 

change in the biomass of the biofilm over the duration of the simulation. In figure 3.3.5 we plot 

the average percentage change in biomass for n=5 simulations for the parameter values listed. 

When comparing figure 3.3-5 A-B, biofilms with 𝜏1 = 4𝜇𝑀 exhibit less biomass loss than 
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biofilms with 𝜏1 = 2𝜇𝑀. The largest dispersal event observed is when 𝜏1 = 2𝜇𝑀 and 𝜏2 = 2𝜇𝑀 

and 𝒟 = 100 with over 10% of the biofilm detached from the colony.  Furthermore, we observe 

that cells with 𝜏1 = 2𝜇𝑀 and 𝒟 = 100 experienced the greatest biomass loss. In figure 3.3-5 C, 

when the threshold is increased to  𝜏2 = 20𝜇𝑀  and 𝜏2 = 40𝜇𝑀 the highest loss in biomass 

occurs when 𝒟 = 10. Table 3.3-1 list the number of dispersal events for n=5 replication of 

simulated biofilm growth. From the table we see that biofilms with 𝒟 = 100 have a greater 

number of dispersal events than biofilms with 𝒟 = 10 except when 𝜏1,2 = 2𝜇𝑀 and the cells are 

capable of being upregulated. The largest difference in the number of dispersal events occurs 

when 𝜏1 = 4𝜇𝑀and 𝜏2 = 40𝜇𝑀. Figure 3.3-5 and table 3.3-1, leads us to conclude that 

increasing 𝒟 causes earlier dispersal events therefore leading to overall more dispersal events. 

However, the detachment factor is not able to predict the size of the biomass that will be 

dispersed from the biofilm. 

Table 3.3-1 Total Number of Dispersal Events 

 

The ratio of EPS to total biomass over the simulated growth of the biofilm is given in fig 

3.3-6.  Biofilms grown with 𝜏1 = 2𝜇𝑀, fig 3.3-6B, have EPS occupying a larger fraction of the 

total biomass than biofilms with 𝜏1 = 4𝜇𝑀, fig 3.3-6A. Due to the lower threshold value placed 

on cells to become upregulated and produce EPS. From fig 3.3-6A we see the maximum biofilm 

occupancy of EPS with 𝜏1 = 4𝜇𝑀 is less than 50% of the overall biofilm. However, from figure 

3.3-2 the overall volume of biofilms with 𝜏1 = 4𝜇𝑀  has a higher maximum volume and 

𝝉𝟏, 𝝉𝟐 Upregulated 𝓓 = 𝟏𝟎 𝓓 = 𝟏𝟎𝟎 

2,2 + 48 45 

2,2 - 38 46 

4,4 + 41 46 

4,4 - 42 45 

2,20 + 39 41 

4,40 + 32 45 
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maintains a higher volume over the simulation. When we increase 𝜏2 = 20𝜇𝑀 and 𝜏2 = 40𝜇𝑀 

biofilms with a detachment factor of 𝒟 = 10 have EPS occupying a great fraction of the biofilm 

than EPS with the detachment value set to 𝒟 = 100. In addition, for a given value of detachment 

factor biofilms with a lower 𝜏1 are composed of more EPS than biofilms with high 𝜏1. These 

observations lead us believe QS regulated EPS production can be used as a timing mechanism by 

biofilms. Specifically, a quorum regulated threshold can be used to ensure that the biofilm attain 

a high volume if desired while not having to pay the cost associated with secreting EPS at an 

earlier stage in development. This would confer an advantage to biofilm since it is now able to 

attain a high volume, obtain the protection of EPS but at a lower metabolic cost if the threshold 

𝜏1 to produce EPS is high.  
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Figure 3.3-6 Fractional EPS Composition.  

Figure A represents the amount of EPS in the biofilm when 𝜏1,2 = 4𝜇𝑀. The biofilms in figure A 

that 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + (black and maroon) have EPS occupying a greater fraction of the biomass 

than biofilm that are 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 – (green and red). In figure B, 𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 – (maroon and 

blue) biofilms have EPS occupying a greater fraction of the biofilm when compared with 

𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 + biofilms (yellow and pink). Figure C represents biofilms with 𝜏2 increased to 

𝜏2 = 20𝜇𝑀 and 𝜏2 = 40𝜇𝑀. Biofilms with 𝜏1 = 2𝜇𝑀(yellow and maroon) have EPS occupying 

a higher fraction of the biofilm than biofilms with 𝜏1 = 4𝜇𝑀(black and green) for a given value 

of  𝒟. 
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We next examine the dynamics of the biofilm under the conditions where the amount of 

EPS produced by the upregulated cells is decreased to half the original amount. When the EPS 

produced by a cell is proportional to its target volume we denote this as 𝐸𝑃𝑆+ when it is set to 

half the cells target volume 𝐸𝑃𝑆−. In fig 3.3.7, we plot 𝐸𝑃𝑆+and 𝐸𝑃𝑆− biofilms for the 

thresholds listed. When  𝜏1 = 2𝜇𝑀 yields biofilms with a smaller volume than 𝜏1 = 4𝜇𝑀. When 

𝜏1 = 2𝜇𝑀 or 𝜏1 = 4𝜇𝑀 the 𝐸𝑃𝑆+ biofilm reach a greater overall volume for the value of the 

detachment factor selected. The biofilms with 𝒟 = 10 also reach a larger maximum volume than 

the case when 𝒟 = 100 for the respective choice of 𝜏1. Suggesting the amount of EPS produced 

by a biofilm is another mechanism biofilms can use to regulate their size. 
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Figure 3.3-7  𝐸𝑃𝑆+ VS 𝐸𝑃𝑆−  

Comparison of the case where matrix producing cells produce EPS at half the regular rate. 

When 𝜏1 = 2𝜇𝑀  𝐸𝑃𝑆+biofilms (black and maroon) reach a maximum biomass value that is 

higher than 𝐸𝑃𝑆−. The same behavior is observed when 𝜏1 = 4𝜇𝑀 . Biofilms with a higher value 

of detachment factor 𝒟=100(maroon and red) reach a lower maximum biomass and lower 

biomass over the simulated growth period as observed in the previous simulated biofilms.   
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3.4 Conclusion 

As pointed out in [130] Reducing biofilm cohesive (or adhesive) strength of a biofilm is 

the most important strategies to understand if we aim to better control them. Specifically, in 

[130] the authors discuss weakening cohesive forces could (1) allow prevailing hydrodynamic 

shear to remove biofilm, (2) increase the efficacy of designed interventions for removing 

biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve 

phagocyte mobility and access to biofilm. To this end we examine the effects of weakening 

cohesive forces of cells within the biofilm. Specifically, we incorporate thresholds on QS and 

dispersal in our model to understand QS the importance if any of quorum sensing induced EPS 

production and detachment.  

From our simulation we conclude that QS regulated autoinducer production and 

detachment can be viewed as growth balancing mechanism enabling the biofilm to regulate their 

maximum size by producing EPS and dispersing cells.  Specially, biofilms that included cells 

that were able to upregulate and increase their production of autoinducer had a smaller maximum 

size that was reached earlier than biofilm that were deficient of upregulated cells.  Indicating that 

upregulation of autoinducer production as a mechanism used by biofilms to regulate their size. 

Biofilms that regulate their size in this manner have the advantage that they are able to have 

more nutrient and produce less waste due to smaller number of cells in the biofilm. In addition, 

we observe the timing of the dispersal is regulated by the value of the detachment factor. 

Biofilms where the detachment factor was set to  𝒟 = 100 had dispersal events occurring earlier 

than biofilms with 𝒟 = 10 for the thresholds selected. We hypothesize that early dispersal can 

also be used as a mechanism by the biofilm to ensure nutrient for the rest of the population to 

grow.  
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 Incorporating thresholds on EPS production leads to different biofilm composition. 

Specifically, low thresholds on upregulating autoinducer and EPS production leads to biofilms 

where EPS comprises higher fraction of total biomass. We hypothesis having threshold regulated 

EPS production is used by the biofilm to ensure that it has reached an adequate size that warrants 

the costly production of EPS. Specifically, a threshold on EPS production maybe considered a 

mechanism for switching to a mode of EPS production once a certain number of cells is present. 

The production of EPS enhances protection from environmental insults ensuring the bacteria can 

protect themselves efficiently[141].  

The plots of the temporal changes in the biomass indicate that the biofilms reach a steady 

state value as they mature. However, from figure 3.3-3 we see that we cannot make the claim of 

a steady state value of the overall biomass. The biofilm as it matures spreads horizontally along 

the substratum and some cells although not part of the initial biofilm accounted for when 

calculating the overall biomass since they are attached to the substratum. For future models, we 

would use another method to account for detached biomass that does not include using the 

substratum. Therefore, allowing us not to count these values in the overall biomass. 
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4 CONCLUSIONS AND FUTURE WORK 

4.1  Conclusion 

The behavior of biofilms is known to be under the control of not only cellular networks but 

also signals in their environment. Levels of autoinducer, Ph levels, nutrient and waste have been 

observed to effect the behavior of biofilms. The effect occurs from the initial stage of attachment 

of planktonic cells to a surface, intermediate stages such as phenotypic differentiation and cells 

dispersal, and ultimately the death. The environment signal that has been studied the most is 

quorum sensing due to it regulating a myriad of behaviors. 

QS although widely studied, its interaction with other environmental signals is not fully 

understood. Furthermore, studies point to threshold values as causing certain behavior exhibited 

by biofilms but do not illustrate how the different threshold can lead to emergent properties 

exhibited in biofilms. Specifically, the spatial and temporal patterning formed by biofilms. In 

addition, models that are presented to model biofilms do not use QS to explain the phenotypic 

variation exhibited in biofilms. In addition, papers that present experimental evidence 

demonstrating the effects of QS threshold do not measure the values of the threshold and how 

they relate to the morphology of the biofilm.  In our model we aim to fill these gaps. 

Specifically, we aim to better understand the role QS has on the emergent property exhibited 

by biofilms by incorporating thresholds in an established agent based model. We want to better 

understand how biofilms use thresholds to govern the behavior that is observed experimentally. 

In particular, our model seeks to understand if using thresholds on QS and other environmental 

signals we can reproduce the spatiotemporal patterning exhibited in a lab strain of B. Subtilis. 

We next study QS thresholding as it relates to dispersal of cells in a biofilm. 
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Incorporating thresholds on QS and the nutrient level in the CPM, we reproduce the 

spatiotemporal pattern exhibited in the lab strain of B. Subtilis. From our simulations we 

discovered that it is necessary to use two autoinducer signals and a signal on the nutrient level. 

Leading us to use three thresholds to reproduce the results that were observed in the experiments. 

We next focused on gaining a better understanding of the QS and its role in cell dispersal. To 

gain an understand of the dispersal events we again incorporated a threshold on the autoinducer 

and EPS production. Using a threshold on these values allowed us to make inferences on the 

possible reasons a biofilm would want to upregulate production of EPS and autoinducer as 

discussed in the literature. Specifically, we found that biofilms that upregulate cells reach an 

overall smaller maximum size than biofilms that are not capable of upregulating autoinducer 

production. We hypothesize that upregulating autoinducer production is a mechanism used by 

cells to manage the size of the biofilm.  We next incorporated thresholds on detachment. 

Specifically, we used a threshold that once exceeded would cause the cohesion between cell 

types in our model to weaken and allowing cells to disperse from the biofilm. We set a 

detachment factor that determines the strength of the weakening of the bonds. From our 

simulation we found that higher detachment factor led to dispersal of cells at an earlier time in 

the simulation than lower values. Suggesting another mechanism biofilms use to regulate their 

size. 

Although, we gained insight on the behavior of biofilms using our model on detachment it 

has a significant shortcoming. Specifically, cells that are not connected to the main biofilm 

contribute to the overall biomass since they are attached to the substratum. Therefore, we cannot 

make predictions regarding the steady state behavior of the biofilms.  In the model we proposed 

to explain the spatiotemporal distribution of phenotypes.  
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Despite the improvements needed to be made to the models they are capable of providing 

insight into the QS mechanism underlying some of the behaviors we observe in biofilms and is 

an advancement in the field of modeling biofilms. The model emphasizes thresholds on 

environmental factors which are the keys to driving the gene regulatory network affecting gene 

expressions in microbes. Thresholds are often discussed in biofilm literature but their 

interdependence hardly examined. Specifically, how does the increase or decrease in a threshold 

value affect the development of a colony and what are the advantages or disadvantages of having 

a threshold on certain activities such as EPS production or phenotype differentiation.  

The model presented here tries to answer these questions in a novel way using an agent-

based model and threshold values on some of the often-discussed environmental ques mentioned 

in literature. Using thresholds on autoinducers we reproduced the spatiotemporal dynamics 

exhibited in a colony of B. Subtilis. To the best of my knowledge this is the first time this has 

been done.  Furthermore, our model separates the biofilm into EPS and bacterial components an 

attribute that is not common in many models but is necessary for a complete understanding of 

biofilm. The separation of EPS and bacterium component will prove useful in future studies that 

may include treatment with antibiotics.  The inclusion of detachment although not new in biofilm 

modelling detachment as it relates to cohesion and QS has not been incorporated into a model of 

biofilms.  
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4.2 Future Work 

Agent based modelling of biofilms is a promising field. There are still many questions that 

need to be answered. A multiscale model incorporating the gene regulatory networks that lead to 

autoinducer signals and the activation of a quorum will provide a better understanding not only 

of phenotypic variations exhibited in biofilms but also the important mechanism of biofilm 

dispersal. Furthermore, incorporating gene regulatory networks will allow one to understand how 

environmental signals such as nutrient or Ph levels effect the development of a biofilm. In 

addition to adding gene regulatory network to our model. Including an additional species of 

bacterium to the CPM would allow us include multispecies competition and division of labor by 

species.  
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