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CHARACTERIZING THE OPTICAL AND ELECTROCHEMICAL PROPERTIES OF 

MONOLAYER-PROTECTED NOBLE METAL NANOCLUSTERS 

 

by 
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Under the Direction of Gangli Wang, PhD 

 

ABSTRACT 

Gold, silver, and other nanoclusters protected by a monolayer of monothiolate or dithiolate 

ligand can be synthesized into a variety of compositions and core structures depending on the 

type of ligand used and reaction conditions. Unique size or composition dependent 

physicochemical properties emerge ranging from being molecular-like to plasmonic toward bulk 

metal. This dissertation focuses on the characterization of optical and electrochemical and other 

related properties of newly synthesized and previously established Au and Ag nanoclusters. 

Chapter one provides an overview of the gold and silver nanoclusters including both 

fundamentals and applications. In chapter two, phase transfer strategy is adopted to overcome the 

restraints of using water as an electrochemical solvent. Redox activities in a much wider 

potential were resolved for newly synthesized aqueous soluble Au nanoclusters stabilized by 

mercaptosuccinic acid and lipoic acid (LA) and the previously reported Au22LA12. In chapter 

three, spectroelectrochemistry analysis reveals unprecedented details in electronic transitions 

from the Au130(p-MBT)50 nanoclusters (sample obtained through the collaboration with Jin’s 

group). An energy diagram is proposed from the combined optical and electrochemical 



characterizations in reference to the ultrafast spectroscopy results. Together with the Au130 

stabilized by a mixed mono- and di-thiolate ligand monolayer reported earlier by our group, a 

significant conclusion is reached that up to Au130, a clear energy band gap remains corresponding 

to molecular energetics. Full transition to metallic will likely occur at larger sizes with 

appropriate lattice structures. In chapter four, a new silver nanocluster is synthesized with the 

lipoic acid as its protecting ligands. Optical, electrochemical, and other features were studied to 

characterize this new cluster. Intense absorbance features along with high but unstable 

luminescence were observed. Like its gold counterparts, ligand oxidation was observed by FTIR. 

Further mass spectrometry data is needed to propose a molecular composition. 

 

INDEX WORDS: Au nanoclusters, monolayer-protected clusters (MPC), Electrochemistry, 

Near-Infrared luminescence, Phase Transfer, Electronic Transitions, 

Spectroelectrochemistry, Ag nanoclusters 
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1 INTRODUCTION 

 

1.1 Au NCs: Synthesis and General Characteristics 

Noble metal nanoclusters, or interchangeably clusters or monolayer-protected clusters, 

protected by a ligand monolayer have grown to great importance over the last few decades. This 

is due to their well-defined optical, electrochemical, magnetic and other physical and chemical 

properties. These properties are often size dependent and can be changed by varying the amount 

of metal atoms, the number of protective ligands, or changing the protective ligand all together 

through controlled synthesis. With all of this it allows these clusters to be quite useful in areas of 

interest such as bioimaging, catalysis, energy, drug delivery, etc1-5.  

These clusters can be synthesized with a variety of metals and ligands including gold, 

silver, palladium as monometallic and a mixture as bimetallic clusters, with ligands ranging from 

thiolates, to phosphates, and even basic halides. My research specifically focused on small gold 

and later silver ligand protected clusters. Figure 1.1 shows a basic representation of a thiolate 

protected gold nanocluster. These clusters can be synthesized in a variety of ways, but the initial 

methods included the Brust-Schiffrin method that was reported in 1994 and 19956-7. For this 

reaction, chloroauric acid (Au(III), AuCl4
-) is first phase transferred from water to an organic 

solvent with the use of tetraoctylammonium bromide as a phase transfer agent. This allows the 

gold to be dissolved in solvents such as toluene so that it can be used in the synthesis of organic 

soluble clusters. The gold is then reduced from Au(III) by the addition of thiolate molecules to 

form Au (I)-thiolate polymers. From there a reducing agent such as sodium borohydride is used 

to further reduce the gold until a gold nanocluster is formed with an Au (0) core and surrounding 

protective ligand monolayer.  
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Figure 1.1. Basic representation of a di-thiolate-protected gold nanocluster. Only two ligands 

are sketched for clarity. The metal NCs are often described by unique compositions with discrete 

numbers of metal atoms and ligands. 

 

The clusters produced during these early syntheses were relatively polydispersed with a 

wide range of sizes, but it gave a great starting point to further the field. From this, changing the 

ratios of the gold, ligand, and reducing agent along with other factors such as temperature, 

atmosphere, or type of ligand can easily affect the outcome of the synthesis to produce varying 

types and sizes of monolayer-protected gold nanoclusters. This method has also been adjusted to 

synthesize purely aqueous soluble gold nanoclusters. For this, the gold (HAuCl4) is dissolved in 

nanopure water or a solvent mixture such as acetic acid/methanol, and then reduced with an 

aqueous soluble ligand such as lipoic acid, mercaptosuccinic acid, or glutathione. Sodium 

borohydride can then be used to further reduce this mixture into gold nanoclusters. Figure 1.2 

shows an overall representation of synthesis of a thiolate protected gold nanocluster.  
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Figure 1.2. Synthesis and treatment of the Au-MSA nanoclusters. Side products such as possible 

disulfide etc. are omitted. The process will produce either thermodynamically stable or 

kinetically trapped species, or both. 

 

Though many metals can be used in this process the most widely used is gold. Due to 

their incredible stability and other properties such as low cytotoxicity and high near-IR 

luminescence, they are useful in a variety of important applications in addition to the primary 

focus of the fundamental studies. Once these clusters have been synthesized a variety of 

experiments can be done to change or tune their properties. This includes such things as basic 

annealing with more of the protective ligand or even ligand exchange reactions. Exchange the 

ligand allows for a few possibilities. Either a new ligand can be attached to the already prepared 

cluster to form a protective layer with more than one types of thiols/functions, or the protective 

ligand monolayer can be fully exchanged to a new thiolate or other molecule. Coupling reactions 

can also be performed to add compounds such as polymerized PEG. This allows the cluster to be 

highly functionalized which in turn allows for their use in a variety of applications.  

Another property of noble metal nanoclusters is their ability to form “magic number” 

compositions that are often highly stable with unique properties making them useful for both 

Crude Au-MSA + Excess MSA + Heat Au-MSA NCs + excess reactants 

Synthesis of Au-MSA

HAuCl4 + MSA Au(I)MSA + excess MSA

Au(I)MSA + NaBH4 Au-MSA Crude Nanoclusters + excess reactants

To obtain purified crude Au-MSA nanoclusters dialysis is used over 3 days

Dialysis is then performed for another 3 days to remove excess reactants
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basic studies and applications. Some of the “magic number” gold clusters include core sizes of 

Au22, Au25, Au38, Au104, Au130, and Au144
8-11. Recently, a new possible magic number cluster, 

Au246, was synthesized by the Jin group12. This cluster offered nicely defined optical features 

which surprisingly did not include a surface plasmon band and had highly ordered 

electrochemical properties including quantum double-layer charging. As of now this is one of the 

largest molecular-like gold nanoclusters that has been synthesized and characterized.  

Many techniques are used in the characterization of gold nanoclusters including various 

optical spectroscopy such as UV-visible absorption and photoluminescence or luminescence, 

mass spectrometry, NMR, electrochemistry, electron microscopy, XPS, crystallography, and 

many others. The optical properties in UV-Vis-near IR spectrum range are incredibly important 

and for many of these clusters show distinct absorbance bands that can be correlated to their 

electrochemical properties. High intensity near-IR photoluminescence has also been observed 

with some of these clusters leading to their use in applications such as biological imaging13. 

Some bimetallic clusters have been observed with having quantum efficiency as high as 40%14. 

Figure 1.3 shows the representative optical features for a Au130 cluster. 
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Figure 1.3. Absorbance features for the Au130(Durene-DT)29(PET)22 cluster. (unpublished 

results) 

 

Mass spectrometry (MS) is one of the more important techniques to elucidate the 

chemical composition of many of the as synthesized clusters. The main MS ionization techniques 

used are those of ESI, LDI, and MALDI15-16. For multicharged clusters the use of ESI is 

incredibly helpful due to its ability observe various multicharged ions. If a molecular ion cannot 

be observed due to being too large these multicharged species can be used to quickly determine 

the final chemical composition. For larger and single charged species, the use of LDI and 

MALDI is better suited in finding the molecular ion. 

NMR Spectrometry is useful in analyzing the protective ligand monolayer though does 

have its drawbacks. One of the biggest issues is the ensemble measurement requires a high 

degree of monodispersity. If the sample is not highly monodispersed, then the result is just an 

average of what the spectra from all species present.  The major related concern is the fact that 

most proton NMR spectrums have what is called the line broadening effect. This effect causes 
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the peaks in proton NMR to significantly broaden instead of being sharp and nicely defined and 

has been highly researched17-19. This is compounded by the things such as the size and shape of 

the cluster, the type of ligand that is attached to the cluster, how monodispersed it is, and how 

close to the gold core the proton is20-24. Figure 1.4 shows an example of this line broadening 

effect from the Au-MSA clusters. The correlations and 2D NMR, however, provide valuable 

information from the often broaden and shifted signals for assignment and accordingly a 

quantitative measure of different ligand compositions of the monolayer. In a recent work 2D 

NMR was used in helping to understand the oxidation occurring in the monolayer of the lipoic 

acid protected Au22
25.  

 

 

Figure 1.4. Proton NMR of the MSA ligand (Top) and Au-MSA cluster (Bottom). (unpublished 

results) 

 

Electrochemical analysis of gold clusters can be of a huge importance for many things 

from unveiling the redox properties to evaluating size and monodispersity of the clusters. Due to 
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the size dependence of the electrochemical properties it is possible to determine a rough size for 

a cluster if proper electrochemical data is obtained. Many smaller clusters like Au25 and Au38 

show distinct HOMO-LUMO spacings in the electrochemical data and medium sized clusters 

such as the Au130 and Au144 have size specific quantized double-layer charging features that can 

easily be correlated to the size of the cluster26-31. The electrochemical data is also useful in 

understanding where and why the absorbance features are observed. Using a technique called 

spectroelectrochemistry with the aid of electrochemical data it is possible to calculate which 

energy states give way to the optical features32-34.  

Two main techniques for the analysis of metal cores are transmission electron 

microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). TEM is useful when looking at 

the overall gold core size. The core can be easily imaged, and this technique was used very early 

on to visualize the shape of various gold nanoclusters35-38. XPS on the other hand is useful in 

determining the elemental composition of the core along with the empirical formula, and the 

chemical and electronic state of the elements present, i.e. binding energy39-40. This can be 

incredibly useful when looking at bimetallic cores as it can help determine the ratio of the two 

metals in the core. 

There are various categories of monolayer-protected gold nanoclusters. Molecular-like 

gold nanoclusters with core diameters around 1 nm or fewer than 100 gold atoms. This includes 

clusters such as Au25, Au38, and other similar sized cores. The other main category of gold 

nanoclusters includes clusters that behave more closely to that of bulk gold. These are large 

clusters with 100’s of gold atoms in the core with diameter less than 2.2 nm. At even large sizes, 

gold surface plasmon band can be observed in the absorbance spectra at around 520 nm with 

little to no luminescence. There are still many applications for these clusters including cancer 
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treatments and other biological applications. The following sections will cover the overall 

characterizations of both molecular-like gold nanoclusters and a subcategory of this that includes 

gold nanoclusters that have a very specific electrochemical property called quantized double-

layer charging which complicates the determination of energy band gap or a transition to metallic 

behavior.  

1.2 Molecular-Like Gold Nanoclusters 

Molecular-like gold nanoclusters have been heavily researched of the previous few 

decades. Like stated earlier this includes such clusters as the Au25 and Au38. To help cover this 

topic the Au25 cluster will be focused on as it is one of the most highly researched clusters to 

date. The early work on this cluster was done by Robert Whetten and his coworkers and used 

glutathione as the protecting ligand. Initially it was labeled as Au28SG16, but this was later 

updated once instrumental limitations had been overcome. The Murray group also synthesized 

and characterized a Au25 cluster but this one was organic soluble and used the ligand phenylethyl 

thiol (PET). This was unfortunately also mislabeled but this time as Au38(PET)24. In time 

however, advancements in ESI and other analytical techniques allowed for the correct 

characterization of the molecular composition. As synthetic routes became easier and advanced 

analytical techniques came around many of the physical and chemical properties of the Au25 

cluster were characterized. The absorbance spectrum for the Au25 cluster shows distinct peaks 

located at 400, 450, and 670 nm though it has been noted that these features can change slightly 

with different charge states41. Figure 1.5 shows a representative absorbance spectrum for the 

Au25 cluster.  
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Figure 1.5. Absorbance spectra of the Au25(PET)18 cluster. (unpublished results) 

 

The electrochemical properties of this cluster and others like it were also heavily 

researched30. For clusters of this size the defining feature is that of an observable HOMO-LUMO 

spacing in the voltammogram. These spacings are highly size dependent though the type of 

ligand attached and other factors including the solvent used during analysis can slightly affect the 

gap. For the Au25 cluster this HOMO-LUMO spacing was calculated to be 1.33 V. The 

electrochemical work done on this cluster also helped with concluding what the actual size of the 

cluster was due to the HOMO-LUMO spacing of this being different than that of the Au38 

clusters. 

Other important advancements with this cluster included some of the first crystal 

structures for small molecular-like gold nanoclusters. The pioneering work on crystal structures 

for gold nanolcusters was first done on the Au102 cluster42. This work reported on the “staple” 

motifs that have gone on to be used in the structure determination of many of the molecular-like 
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gold nanoclusters.  The early structures for the Au25 clusters were determined by the Murray and 

Jin groups on both the anionic -1 and neutral species of the cluster43-44. These crystal structures 

gave way to a solid Au13 core with the other 12 gold atoms helping form the stable protecting 

monolayer. With the help of these crystal structures further predictions of the structure for other 

clusters including the Au38 have been documented and as of now have experimental support to 

back up these predictions45-49.  

Various other molecular like gold nanoclusters have been heavily researched in previous 

years including the already mentioned Au38 and Au102 clusters. Others include the Au13, Au19, 

Au20, Au36, Au40, Au55, Au68, Au75 and the larger Au130 and Au144
27, 50-59. A relatively newer 

cluster however has been the Au22 cluster which has been synthesized with both glutathione and 

lipoic acid as the protecting ligands60-61.  

Like the Au25 and other molecular-like clusters the Au22 has its own set of distinct optical 

and electrochemical features. For the Au22LA12 that was synthesized by Jie Jiang et al an 

absorbance band at 505 nm can be observed in the spectrum25. This band however is dependent 

on the amount of oxidation the cluster has underwent either through dialysis or aging. Through 

FT-IR, 2D NMR, and XPS measurements it was discovered that not all the sulfur atoms on the 

lipoic acid are attached to gold atoms. In fact, some of the sulfur atoms go through an oxidation 

process to form SOx functional groups that have interesting effects on the optical properties of 

the cluster. For one, the absorbance feature at 505 nm is mostly lost once the cluster is oxidized. 

The absorbance spectrum shows more of a featureless decay. More importantly however is the 

significant increase in luminescence that is observed once oxidation has occurred. An increase 

from 1% to 10% quantum efficiency can be observed in the luminescence spectra between the 

oxidized and non-oxidized species. Figure 1.6 shows the FTIR confirming the appearance of SOx 
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groups on the cluster. The peaks at 1045 and 1187 cm-1 are like what has been observed with 

S=O symmetric and asymmetric stretching bands in alkysulfonic acid/sulfonate species which 

have peaks located at 1042 cm-1 and 1179 cm-1. 

 

Figure 1.6. FT-IR measurements of the non-oxidized and oxidized Au22LA12 clusters. Adapted 

with permission from J. Phys. Chem. C 2014, 118, 20680−20687. Copyright 2014 American 

Chemical Society. 

 

Further work was done by Tanyu Wang on this cluster to continue to explore its 

luminesce properties62-63. With the aid of electrochemistry, the electrochemiluminescence 

properties of the cluster were vastly studied with and without coreactants. By itself the Au22LA12 

cluster already has significant ECL intensity. This was compounded by covalently bonding 

DEDA onto some of the ligands which generated an even higher signal. It was noted that the 

intensity of the ECL was highly pH dependent and as the pH was lowered the signal decrease 

significantly.  
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The Au22SG18 is another newly synthesized cluster that has seen incredible increases in 

quantum efficiency60, 64. The cluster in of itself has been observed with quantum efficiencies of 

above 10% but this was just scratching the surface. Unlike its lipoic acid variant this cluster does 

not undergo the oxidation that was seen when using lipoic acid as the protecting ligand. This is 

due to the structure difference between lipoic acid (a dithiolate) and glutathione (a monothiolate). 

Instead, the large increase in quantum efficiency is observed when phase transferring the cluster 

into organic solvents with the use of a transfer agent such as tetraoctylammonium bromide. For 

this particular Au22 studied, increases from 10% to more than 60% Q.E. This increase was 

affected by variables such as the organic solvent used while taking the measurement as well as 

which transfer agent was used. It was noted that higher dielectric constants gave way to lower 

Q.E. increases as well as using shorter carbon chain transfer agents. If a longer carbon chain (10 

or more) was used even higher Q.E.s could be obtained. The same study also looked at the 

similar sized Au25SG18 and noted very similar results for the luminescence. The increases were 

not as substantial but a 6-fold increase in luminescence was noted. 

1.3 Phase Transferring Gold Nanoclusters 

This ability to phase transfer noble metal nanoclusters is a featured part of further 

sections of this dissertation so it is an important property to discuss. Phase transferring metals 

such as gold is not new as this process was done to make many of the early organic soluble 

clusters using the Brust-Schiffrin method. Some of the first work on phase transferring gold 

nanoclusters into organic solvents was done on the Au25SG18 cluster65. Using TOABr the cluster 

was quickly and completely transferred from water into toluene. An early observation was that 

the absorbance data in both water and toluene showed minimal changes to the peaks and overall 

shape of the spectrum.  This is important as because of this it can be concluded that the Au25 core 
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of the cluster is unaffected by the transfer and remained intact. Due to their distinct optical 

properties any changes in the core would be easily observable in the absorbance measurements. 

Another important aspect of this transfer was how the pH would affect it. Since the glutathione 

has both carboxyl groups and an amine group shifts in the pH can change the overall charge 

associated with the clusters. Not surprisingly, the transfer was more effective at higher pHs. The 

transfer works because of the attraction between the negative charge on the cluster and the 

positive charge on the TOA+. If the cluster is positive charged or neutral the TOA+ would have 

nothing to bind to and the transfer would not proceed. This effect is studied in further detail in 

chapter 2.  

Outside of the increases in photoluminescence, another important benefit is the fact that it 

allows for the use of larger potential windows during electrochemical measurements. Like stated 

earlier the electrochemical properties of molecular-like gold nanoclusters are an important part of 

the overall physicochemical properties. Unfortunately, this can be severely hindered when 

performing electrochemical measurements on aqueous soluble gold nanoclusters. This is in part 

due to the small potential window afforded by water due to water splitting occurring around +1.2 

V and -1.x V. Since the potential window is narrow many redox activities that could be useful in 

characterizing a cluster could not be resolved before water splitting signal becomes 

overwhelming. Another concern is the high dielectric constant of the water that permeates and 

swell the protective ligand shell. This higher dielectric constant can cause broadened 

electrochemical features lowering the resolution of the measurements considering simple 

concentrate sphere model66-68. By transferring the cluster into an organic solvent such as 

acetonitrile a much larger potential window can be used and thus open the electrochemical data 

to being much more useful. Early electrochemical work on phase transferred clusters was done 
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by Kyuju Kwak et al29. In this study a variant of the Au25 cluster with (3-mercatopropyl) 

sulfonate as the protecting ligand was transferred and the electrochemical properties were studied 

and various solvent systems. Like the previous glutathione cluster, the absorbance features 

remained unchanged after transferring. Electrochemically, the cluster showed similar results to 

what had been previously reported on the Au25 organic soluble clusters. A main difference 

however was that the HOMO-LUMO spacing was solvent dependent. As increased amounts of 

CH2Cl2 were used for the measurement the HOMO-LUMO spacing went for 1.66 V to 1.39 V. 

The same conditions were performed on a C6-Au25 and this effect was not observed. It was 

concluded that the electrostatic field effect of the sulfonate anion was causing the redox 

potentials to shift. This ability to study the electrochemistry of aqueous soluble clusters in 

organic solvents will be further studied throughout this dissertation.  

Similar to all of the smaller gold nanoclusters that have been discussed, the next group of 

clusters again have very distinct optical and electrochemical properties. Unlike the Au25 and 

similar sized clusters however, which exhibit HOMO-LUMO spacings, with two-electron 

transfer doublet peaks at each state separated by charging energy, in their electrochemical data 

the next group can be characterized by a much different electrochemical process called quantized 

double-layer charging. Generally, this is characterized by the observation of multiple oxidation 

or reduction peaks in the electrochemical data which are correlated to a single electron that is 

being added or removed from the gold core consecutively requiring relative constant charging 

energy and accordingly displaying uniform peak spacing.  

1.4 Quantized Double-Layer Charging 

The pioneering cluster which showed this distinct double-layer charging was the Au144 

cluster that was first reported by Schaaff et al. and Chen et al58-59. Further work was later done to 
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gain an understanding of this electrochemical process69-70. Electrochemical data for this cluster 

gave way to as many as 15 oxidation states representing positive, neutral, and negative states for 

the cluster. Continued work on the Au144 cluster included simpler synthetic routes with decent 

yields of highly pure samples71. This route allowed for the synthesis of both the Au144 (major 

species) and Au25 (minor species) clusters to be synthesized together. Due to the differences in 

solubility the two clusters are easily separated by dissolving the Au25 in acetone. The Au144 

cluster synthesized with this route gives way to absorbance bands at 517 and 700 nm which 

matches well with previous syntheses. MALDI MS data showed an observable peak at 32 kDa 

which was smaller than what was previously reported but this was explained by the loss of 

C6H13S- ligands while running the measurement. Electrochemically this cluster exhibited 

prominent QDL features with an average spacing of 0.26 V which was previously reported for 

the cluster. 

Later work on clusters of this size gave way to many different variants showing similar 

features including that of the mixed-thiolate Au130 produced by Z. Tang et al27. This cluster was 

unique in the fact that it used both a monothiolate (phenylethyl thiolate) and dithiolate (Durene-

DT) in the protective monolayer. The optical features of this cluster were distinct with 4 

absorbance features occurring at 355, 490, 584, and 718 nm though it had relatively low near-IR 

luminescence. MALDI was used to aid in the characterization of the molecular composition. A 

34 kDa peak was observed giving way to a composition of Au130(Durene-DT)29(PET)22. 

Electrochemically this cluster showed the distinct quantum double-layer charging that is 

representative of clusters of this size. At the time 11 different QDL peaks were noted in both the 

oxidation and reduction scans for an average peak spacing of 0.19V and an energy gap of 0.44 V 

was calculated between the 5th and 6th QDL revealing an energy state below the frontier states.  
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This electrochemical data is represented in Figure 1.7. In the next section spectroelectrochemical 

techniques used to correlate the optical and electrochemical properties will be discussed.  

 

Figure 1.7. DPV of the QDL range for the Au130(Durene-DT)29(PET)22 cluster. (unpublished 

results) 

 

More recent work with clusters of this size gave way to the Au130(p-MBT)50 cluster 

synthesized by the Jin group9, 72. This was synthesized by simply changing the type of isomeric 

methylbenzoenethiol used during the synthesis. It was observed that three “magic number” 

clusters could be synthesized by switching between para-, meta-, and ortho- isomers. The ortho- 

isomer allowed for the synthesis of Au40(o-MBT)24. The meta- isomer was used to synthesize 

Au104(m-MBT)41, and the para- isomer allowed for the synthesis of Au130(p-MBT)50. Due to their 

synthetic conditions (high temperature and excess thiol) the final products were highly stable and 

monodispersed. Each sample had its own distinct absorbance features and their molecular 

compositions were characterized using MADLI. For the sake of discussing the quantum double-

layer charging the Au130 will be discussed further.  
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Additional work was done to characterize this cluster by the Jin group including obtaining 

a crystal structure for the cluster. It was determined that this cluster had a four-shell crystal 

structure with a similar Au13 shell in the interior core. Outside of that a 42-gold atom shell 

surrounded the 13 gold atoms. The next shell housed 50 gold atoms and was surrounded by the 

final shell made up of the S-Au-S stable motifs using the final 25 gold atoms. The final structure 

closely resembles that of a barrel. Transient absorption measurements, electrochemical data, as 

well as a proposed energy diagram that correlates the optical data to the electrochemical data will 

be discussed in later chapters. As it pertains to the discussion however, well-defined QDL 

features are observed for the cluster with an average spacing of 0.21 V and an energy gap of 0.5 

V can be calculated.   

The Jin group also successfully synthesized a new Au246SR80 cluster12. This cluster despite 

its large core size was surprisingly not plasmonic and in fact had distinct molecular-like 

absorbance bands at 400, 460, 600, and 800 nm. Further femtosecond transient absorption 

measurements were performed, and the cluster was observed to have electron-phonon coupling 

that was independent of the pump fluence. This as well as other observations from the transient 

measurements suggested the cluster had a small bandgap. To help with this conclusion we 

collaborated with Rongchao Jin on the project to perform electrochemical studies. Square wave 

voltammetry showed well-defined QDL features with an average spacing of 0.15 V. An 

observable band gap was not seen in the measurements. It was concluded that the band gap was 

either 0.15 V or smaller which would go along with what was observed in the transient 

measurements. 
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1.5 Spectroelectrochemistry and Proposing Energy Diagrams 

Probing the optical properties of gold nanoclusters under in-situ control of the charge 

states can play an important role in understand the origin of the corresponding electronic 

transitions. Work of this sort over the past decade has been done on various clusters including 

monolayer-protected gold films and different forms of the Au25SR18 cluster34, 41, 73. The technique 

of spectroelectrochemistry involves the use of an optical component with an electrochemical 

component. For this discussion absorbance changes after charging a cluster to different charge 

states will be focused on. A recent example of this kind of work is the study by Dengchao Wang 

et al. For this study, the Au130 mixed thiol cluster was used.  

To perform the spectroelectrochemical measurements electrochemical data such as the 

potentials to drive electron transfer reactions are necessary. The measurement consisted of first 

holding a potential to charge the clusters within the diffuse layer on the electrode to a certain 

charge state (0, +1, -1) and then taking an absorbance measurement once charging is complete. 

Firstly, it was important to charge the cluster to the neutral charge state to obtain a baseline of 

the absorbance features. Afterwards selected positive or negative potentials based on 

voltammogram features were held to change the charge state of the cluster. Absorbance 

measurements were taken at each step so that a differential spectrum could be calculated. It was 

noted that the differences caused by changing the charge state could be reversible if the potential 

used would not induce chemically irreversible reactions (for example oxidation induced ligand 

decomposition or stripping from the cluster surface). It was observed that by oxidizing the 

sample the absorbance features decreased throughout the spectrum whereas most of the features 

increased when reducing the cluster. Also, new discrete absorption bands were observed that 
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were not seen in steady state measurements. This was attributed to energy transitions involving 

both the core and ligands. 

 The increasing and decreasing of the absorbance features under in-situ electrochemistry 

control reveals the respective energy states involved in the corresponding optical electronic 

transitions. An energy diagram was proposed. It was concluded that the decrease in absorbance 

features during oxidation was due to the removing of electrons from the frontier energy states. 

Removing these electrons left the states empty without electrons available to be transferred to the 

LUMO state. The increase in turn is due to the filling of the states during reduction. This allowed 

for a greater number of electrons to be transferred to the LUMO as there were more states 

accessible. For reference, the energy diagram proposed is in Figure 1.8 

 

Figure 1.8. Proposed energy diagram for the Au130 cluster. Adapted with permission from ACS 

Nano. 2015. 9. 8. 8344–8351. Copyright 2015 American Chemical Society 
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1.6 Au NC Applications 

Due to properties such as long-term stability, ability to covalently bond biocompatible 

molecules such as PEG or biomarkers, high near-IR luminescence, and low cytotoxicity 

monolayer-protected gold nanoclusters have been explored in many important biomedical 

applications such as biosensing, biolabeling, drug delivery systems, and cancer treatments as 

well as many more. The next few sections will briefly outline just a few representative examples 

of the research that has been undertaken in these fields.  

1.6.1 AuNCs used for Biosensors and Bioimaging 

Due to many of the gold nanoclusters having tunable near-IR luminescence and large 

stoke shifts their ability to be used as sensors or as “dyes” has been an important research topic. 

It is not unheard of for an aqueous soluble cluster to have a stoke shift in the range of 300-400 

nm with photoluminescence, often referred as luminescence, in the range of 700 to 800 nm peak 

intensities with peak excitations in the 350 to 550 nm range. This is important because it allows 

for the use of multiple dyes in biological samples such as cells. Many organic dyes can also be 

excited with sources in the comparable wavelength range and their emission is nearby as the 

stoke shifts are usually much smaller compared to gold clusters. Due to this both a dye and 

nanocluster could be injected into a biological sample and with the use of filters one or both 

emissions can be observed. This ability was studied in detail with the Au-MSA cluster13. In this 

paper HEK293 cells were stained with both DAPI (P36391;Invitrogen) and Au-MSA clusters 

that had been PEGylated forming an Au-MSA-PEG cluster. Luminescence confocal microscopy 

was then used to view both the DAPI and pegylated clusters. By switching filters, the DAPI or 

clusters could be “turned off” allowing for the observation of either one. With the use of z-stack 
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imaging it was concluded that the clusters were absorbed into the cellular cytoplasm and even 

managed to get inside of the nucleus. 

In an earlier study Au23 clusters capped with glutathione were functionalized with 

streptavidin with the help of EDC coupling74. Due to the attached streptavidin the clusters were 

able to stain HepG2 because the cells contained biotin. The streptavidin binds strongly with the 

biotin, so the cells could be easily imaged with the use of luminescence confocal microscopy. By 

comparing the luminescence imaging with bright field imaging and a control where the 

streptavidin was not attached to the cluster it was concluded that the clusters had interactions 

with the cells. Without the attached streptavidin no clusters were observed on the cells after 

washing with PBS. 

As biosensors studies such as the one performed by Kwak et al showed gold nanolcusters 

to be quite versatile as an ionic liquid75. It was reported that by combining a negatively charged 

Au25 cluster with imidazolium cations a stable ionic liquid could be made with both ionic and 

electronic conductivity. This new liquid could then be used as a matrix for amperometric enzyme 

sensors designed for the detection of glucose.  High electrocatalytic activity as well as substrate 

affinity was noted when using glucose oxidase and the clusters were observed as acting as redox 

mediators and electronic conductors that determined the detection sensitivity.  

1.6.2 AuNCs as Catalyst  

Catalysis is another area of interest that has seen much research performed with gold 

nanoclusters. Initially thought to be inert, particular with protecting ligands, gold nanoclusters 

were eventually found to be useful in the catalysis of carbon monoxide. Early success used the 

help of transition-metal oxides and afterwards many new ways of using gold nanoclusters to 

catalyze CO were discovered76. Heavy research on how to enhance catalytic properties such as 
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efficiency, selectivity, and recovery have been carried out over the last few decades. Recent 

studies on the topic include the interface engineering of gold nanolcusters for CO oxidation 

catalysis by Jin et al77. In this paper the Au38SR24, Au36SR24, and Au25SR18 were synthesized 

using different ligands with varying bulkiness (R structure). Characterizations were first 

performed on the as synthesized clusters including absorbance measurements and MALDI-MS to 

determine sample purity. In each set of clusters, the optical features were similar with only minor 

shifts of peak position or peak intensities. MALDI-MS results helped confirm the chemical 

composition of each cluster as they matched what was previously reported or showed minor 

differences depending on the ligand used. Once the structure had been confirmed for each 

cluster, CO oxidation studies were carried out to determine how well each cluster would fare. 

For the Au38 samples it was observed that the sample prepared with SCH2CH2Ph had higher 

activity than the SPh, and o-MBT variants. It was concluded that this was due to the sulfur atom 

not being directly connected to the aromatic ring. Having the aliphatic chain between the ring 

and sulfur atom allowed for less crowding at the reaction interface and enabled an enhanced 

catalytic activity. The Au36 clusters put further emphasis on the role of the interface. Regardless 

of the ligand used, catalytic activity was consistent leading them to believe the more important 

trait was the interface sites available for catalysis. Finally, the Au25 clusters further corroborated 

the Au38 and Au36 results. Steric hinderance played an important role in the results as the bulkier 

SCH2CH2Ph ligand allowed for double the catalytic activity as the 2SNap and 1Snap variants.  

There are of course many other applications for monolayer-protected gold nanoclusters 

that have not been discussed here. These include such things as contrast agents for biomedical 

purposes. As more and more uniquely distinct clusters are synthesized and characterized new 
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uses for them with undoubtedly be researched. Their incredible physical and chemical properties 

allow for them to be at the forefront of highly significant research. 

1.6.3 AuNPs used for Cancer Treatments and Imaging 

As it is well known, cancer is a serious disease that effects millions of people every year. 

Improved treatments over the past few decades have insured many people have the ability to 

fight this disease, but there is always room for more efficient and safe routes to defeating this 

disease. Over the last decade or so larger monolayer-protected gold nanoparticles (not to be 

confused with the much smaller gold nanoclusters that have been previously discussed) have 

started to become of significant interest in this field and advancements in applications such as 

laser photothermal therapy, optical scattering microscopy and detection, drug delivery and 

targeting, and their innate ability to intrinsically act as therapeutic agents. Much of this research 

has been done on particles that exhibit surface plasmon resonance due to their sheer size and 

optical properties78. It was noted that gold nanoparticles have the ability to have incredibly large 

amounts of ligands/cm2, in fact 100-1000 times higher than liposomal or polymetric 

nanoparticles79, and are selective with their accumulation at tumor sights. This allows for the 

photothermal ablation with near-IR lasers80-81. As a probe, larger plasmonic gold nanoparticles 

become highly useful due the shear amount of scattering intensity. As noted particles on the 

range of 80 nm have more scattering intensity as a single unit than other probes such as Alexa 

Fluor dyes or Qdot 800 quantum dots82. Due to this and other photophysical properties the larger 

gold nanoobjects have many spectroscopic applications that are important in cancer research. 

These includes things such as two-photon luminescence imaging83,  optical coherence 

tomography84, and surface enhanced Raman scattering (SERS)85. With their size large size 

plasmonic gold nanoparticles have been at the forefront as drug delivery systems. Studies by 
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Paciotti, and Tamarkin showed success at delivering drugs to cancer sites in mice and later 

clinical trials showed the ability to deliver tumor necrosis factor α (TNFα) at a dosage 3 times 

that was previously reported.  These trials also showed little to no serious adverse side effects86-

88. Important work on this topic has also be studied by Mirkin, Rotello, and Xia89-91. Obviously, 

this is barely skimming the top of the tremendous work done on using gold nanomaterials in the 

detection and treatment of various cancers.  

 

1.7 Ag NCs: Synthesis and General Characteristics 

Like their gold counterparts monolayer-protected silver nanoclusters have been the subject 

of much research recently. Though they have many useful and distinct properties there are some 

major drawbacks with silver clusters. One of the biggest concerns is their high susceptibility to 

oxidation in air. This can cause serious complications with the overall stability of the cluster 

rendering them not as useful as many of the highly stable gold nanoclusters. Another 

disadvantage of silver clusters is their inherent high cytotoxicity. This inability to not negatively 

affect biological systems limits their usefulness in many applications. Though there are several 

severe drawbacks this has not given them a negative perception and they have found uses in 

many applications.  

There are various synthetic routes for making silver clusters, but many can be synthesized 

using the Brust-Schiffrin method or a modified version of it. This however is not the only 

successful synthesis technique. Another highly used technique is simply using a mortar and 

pestle to grind the reactants together. Once formed the clusters are extracted by dissolving them 

in the preferred solvent. This performed in laboratory atmosphere has been used to synthesis 

clusters such as the Ag55, which will be discussed later92.   
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Some of the earliest work on silver systems was performed by Henglein and Dickson93-94. 

There work will be discussed in greater detail in a later chapter, but briefly Henglein was able to 

synthesize citrate protected clusters by irradiating the silver/citrate mixture with a commercial 

60Co γ source. Dickson’s work included the observation of single cluster fluorescent blinking 

with the use of luminescence microscopy. This early work helped pioneer the field and led to 

many important advancements in the synthesis and characterization of silver nanoclusters. 

In a recent study by Xie et al95, various monothiol ligands were used to better understand 

the effect the ligand had on the creation of different sized Ag clusters. It was shown that by 

varying the ligand (MHA, p-MBA, or GSH) clusters sizes of Ag25, Ag9-15 and Ag44 could be 

easily obtained. The MHA protected Ag25 clusters showed the distinct peaks around 336, 486, 

and 665 nm that are characteristic to this cluster. Using glutathione, absorbance measurements 

only showed one main feature at 480 nm which is similar to what is seen with previous Ag14 

clusters. The Ag44 was made with the use of p-MBA and optically showed absorbance features at 

422, 496, 548, 648, and 840 nm which had been previously reported for that core size. To further 

characterize these clusters ESI as performed and molecular formulas of Ag25MHA18 and Ag44(p-

MBA)30, ESI on the glutathione protected cluster gave a variety of smaller compositions in the 

Ag9-15 range including Ag9SG5, Ag12SG8, Ag15SG8, and a few others. These differences in size 

were concluded to be due to the various steric hinderances caused by the different size and 

shapes of the ligands.    

Like the gold nanoclusters, various “magic number” silver clusters have been successfully 

synthesized. This includes clusters such as Ag13, Ag55, Ag146 and larger sizes such as Ag309 and 

Ag561. Each of these clusters have their own distinct properties and applications. Of course, many 

other variations of silver cores have also been synthesized. The next couple sections will 



26 

summarize some of the more recent work that has been done on silver clusters as it pertains to 

molecular-like silver clusters and not clusters exhibiting plasmonic properties.   

1.8 Molecular-Like Silver Nanoclusters 

Molecular-like silver nanoclusters coming in a variety of sizes and use many of the same 

ligands as their gold counterparts for their protective monolayer.  One such sought after cluster is 

that of the Ag55. In a recent study performed by Pradeep et al, a successful and controlled 

synthesis of this cluster was carried out. Like stated earlier this synthesis was performed dry and 

in laboratory atmosphere. This was done by grinding the silver (AgNO3) with the ligand (4-(tert-

butyl) benzyl mercap-tan) together in a 1:4 ratio. This was also optimized to be done with the use 

of phenylethyl thiol. Once thoroughly mixed this was reduced with the addition of sodium 

borohydride. The clusters were extracted with toluene and then precipitated with the use of 

methanol which efficiently purified the newly formed Ag55 cluster. It was noted that stability was 

an issue as at room temp it would last for around 8 days. This could be increased by lowering the 

temperature or leaving it as a powder. Both MALDI and ESI were used to characterize the 

composition and it was determined to be Ag55(BBS)31. Optical properties were characterized 

using UV-Vis and similar features were noted between both the Ag55(BBS)31 and Ag55(PET)31 

clusters.  

Another cluster with a mirroring gold core is that of Ag25. In a study by Bakr et al this 

cluster was synthesized and characterized including a full characterization of its crystal 

structure96. The synthesis was carried out by mixing AgNO3 with the ligand HSPhMe2. This 

created an insoluble Ag-thiolate precipitate. An aqueous sodium borohydride was then used to 

further reduce this in the presence of phosphonium bromide. It was noted that the PPh4
+ ions 
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were a requirement to obtain the Ag25 cluster as they were negatively charged. Once purified 

these clusters could be dissolved in a variety of solvents such as DCM and toluene as well as 

many others. Optical features included distinct absorbance peaks as well as near-IR 

luminescence centered around 850 nm. In the absorbance spectrum it was noted that peaks like 

both Au25 as well as other silver clusters were present. The observation of a strong peak at 490 

nm resembles what is seen in the Ag35 and Ag44 clusters. A broad peak at 675 is incredibly close 

to the peak seen with the Au25 variant. Other peaks below 450 nm were also like the Au25 cluster. 

MALDI and ESI was used to confirm the composition and both techniques gave way to the 

composition of [Ag25(SPhMe2)18]
-. Crystal structure analysis of the cluster provided much insight 

as to why the Ag25 and Au25 clusters shared many similar optical properties. It was noted that 

like with the Au25 cluster and internal Ag13 core could be observed with the other 12 silver atoms 

forming the S-Ag-S motifs. A main difference however was that the 3 of these nonicosahedral 

atoms lied facing away from the triangular face centers. In the Au25 all 12 atoms nonicosahedral 

atoms are noted to lie at the center of the triangular faces. As stability of silver clusters is always 

an issue studies were carried out against a Au25 counterpart for comparison. Unsurprisingly the 

silver cluster was less stable though at lower temp it was observed that the Ag25 was stable for 

many weeks.  

Additional studies performed by Bakr et al included one on the synthesis and 

characterization of a bi-ligand Ag67 cluster. At the time it was noted as being one of the largest 

non-superatom Ag clusters synthesized. Synthetically, this was created by mixing silver nitrate 

with the HSPhMe2 ligand used in the making of their Ag25 cluster. Afterwards 

triphenylphosphine was added allowing for the formation of silver-thiolate-phosphine 

complexes. This was reduced with NaBH4 and purified by methanol once this synthesis had 
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completed. Optical the cluster had well-defined absorbance bands (not specifically noted) and 

near-IR luminescence. ESI was used to determine the composition of the cluster. A 3+ peak was 

noted corresponding to [Ag67(SPhMe2)32(PPh3)8]
3+. Experimental and theoretical isotopic 

patterns matched validating that this composition was correct. Crystal structure data showed an 

overall rectangular box structure with an inner Ag23 core forming the “box”. The rest of the 

silver atoms encapsulated the Ag23 core forming the protecting layer. Analysis of the electronic 

structure of the cluster gave way to a HOMO-LUMO spacing of 0.36 V and it was concluded 

that the cluster was electronically stable.  

Other molecular-like silver clusters include the likes of Ag38 and Ag63. Very recent work 

on the Ag38 and Ag63 clusters was published by Zheng et al97. In it, optical and crystal 

characterizations were carried out. Optically both clusters showed well defined and distinct 

features. The Ag38 showed peaks at 413, 507, and 563 nm with shoulders at 351, 468, 609, and 

767 nm. The Ag63 on the other hand had peaks at 235, 415, 470, and 840 nm with only two 

shoulders at 368 and 530 nm. Luminescence measurements for the two clusters were not 

reported. The crystal structures for both clusters were cubic in nature. The Ag38 crystal was 

shown to be formed by four fcc units. These were arranged in a square fashion that shared faces 

and can be described as an octacapped octahedron. The Ag63 crystal was put together similarly 

but with 8 square fcc units forming a full cubic structure. Further work was noted showing the 

crystal structure of a Ag14 cluster. This represented the basic “building block” of the other two 

clusters as it was observed as a single square unit. With all this knowledge a prediction of a 

3x3x3 cube was carried out. Calculations performed predicted that the cluster represented by this 

structure should be on the order of Ag172. 
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These aforementioned examples generalize the incredible field of monolayer-protected 

silver or metal nanoclusters. The next section will discuss just a few representative studies on the 

applications that have shown the usefulness of various sized silver nanoclusters that will 

motivate or sustain growth.... 

1.9 Ag NC Applications 

Like stated earlier, despite their inherent issues of relative low stability and higher 

cytotoxicity than gold nanoclusters, silver nanocluster have still played important roles in various 

applications. This includes such things as water treatment, biomedical fields, and many various 

industries98-101. 

A review recent on silver nanoclusters by Xie et al described usages in this fields of 

antimicrobials, biosensing, and bioimaging102. As antimicrobials silver nanolcusters have been 

shown to be effective on a wide spectrum of microbes. At the time the mechanism behind this 

however was not known. Possible mechanisms were suggested such as the damaging of 

membranes, destroying DNA, or the production of radicals such as reactive oxygen species. This 

effectiveness was also attributed to their smaller size which in result lead to higher surface to 

volume and more active surface atoms. This allows for a higher efficacy compared to larger 

particles or even their gold counterparts. In the review a report studying the effectiveness 

between sub 1 nm clusters versus larger nanoparticles and antibiotics showed that the smaller 

clusters had a much higher efficacy against Eschericia coli and Staphylococcus. In another study 

it was shown that the Ag16SG9 cluster could effectively inhibit the growth of Pseudomonas 

aeruginosa and had higher efficacy compared to the most effective antibiotics used at that time.  

A more recent study on this application was done by Xie et al and used silver 

nanoclusters packed with daptomycin103. In this report Ag16SG9 clusters were synthesized and 
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quickly characterized to show purity. Absorbance measurements showed at 490 nm that is 

representative of clusters of this size. Afterwards the daptomycin was conjugated to the cluster 

though overall core size did not change. Optical and luminescence measurements showed 

consistent results verifying this. Luminescence microscopy was then used to determine the 

impact on the bacteria by these clusters. It was observed that the D-AgNCs were highly effective 

at killing and this was due to their ability to localize both cluster and daptomycin within a 

network to essentially double team the bacteria. Membrane damage caused by the daptomycin 

along with the generation of reactive oxygen species allowed for additional D-AgNCs to enter 

the bacteria and cause severe DNA damage. 

The review mentioned above also discussed the usage of silver nanoclusters as 

bioimaging and biosensing. Due to many of the silver clusters having strong luminescence they 

are strong candidates to be used in bioimaging applications. In the review it was noted that 

glutathione protected silver nanoclusters had been used in the imaging of epithelial lung cancer 

cells. Since the clusters were in the sub nanometer range they could easily penetrate into the 

cells. The clusters also exhibited strong photostability and colloidal stability in a wide pH range. 

As biosensors a study using Ag16SG9 clusters was discussed. It was observed the clusters shown 

high selectivity and sensitivity when detecting cysteine. This detection was done by the cysteines 

ability to break up the clusters by strong Ag-thiol interactions. Tests on the other naturally 

occurring amino acids showed the clusters were unaffected by their presence. 

In another study by Vosch et al, silver nanoclusters were used for the rapid detection of 

microRNA with the use of a DNA probe104. Using a particular DNA sequence (DNA-12nt-RED) 

as the ligand a red emitting AgNC was synthesized. This cluster had a peak luminescence 620 

nm with a quantum efficiency of 32%. To this cluster, the complementary DNA sequence of 
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RNA-miR160 was attached to the DNA-12nt-REDsequence. Once formed the new cluster 

retained its high red luminescence. Testing with the microRNA sequence showed significant 

decreases in the luminescence intensity caused by the presence of the microRNA in the system. 

Control experiments using non-complementary microRNA showed less of a decrease. This was 

further expanded on by using whole plant endogenous RNA where when a mutant was used that 

was miRNA deficient, the luminescence signal generated was much higher than when the 

miRNA was available. 

 Again, this is just barely touching the surface of the many uses for silver nanoclusters. 

Like their gold counterparts continued research will only allow for their use in advanced 

biomedical techniques as well as many other applications that affect the daily life of everyone. 

The next four chapters will go through the work performed on both gold and silver monolayer-

protected nanoclusters. The focus of this PhD work is the optical and electrochemical 

characterizations of a few monolayer-protected clusters and their ability to be phase transferred 

in organic solvents. Addition work on the electrochemical and spectroelectrochemical properties 

of a Au130(p-MBT)50 cluster helped correlate optical properties with their corresponding 

electronic transitions allowing for the proposal of an energy diagram.  
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2     ENABLING BETTER ELECTROCHEIMCAL ACTIVITY STUDIES OF 

AQUEOUS SOLUBLE AU CLUSTERS BY PHASE TRANSFER AND A CASE STUF 

OF LIPOIC ACID STABILIZED AU22 

In stark contrast to organic systems, insight of the electrochemical properties is rather 

limited in aqueous for Au clusters that have received extensive research attention recently. We 

demonstrate phase transfer as an efficient strategy to shuttle the Au nanoclusters between 

aqueous and organic solvents cyclically. The ability to phase transfer the Au clusters circumvents 

the limitations of potential window and high dielectric constant of water for electrochemistry 

studies. Two types of ligand molecular structures were employed with different 

hydrophilicity/hydrophobicity: mercaptosuccinic acid and lipoic acid that highlights a longer 

hydrophobic portion and disulfide (two S- for Au bonding). The transfer efficiency was 

evaluated at different pHs. Additional redox activities from Au22LA12 cluster were successfully 

resolved that could not be seen from aqueous measurements. Reversible and controllable transfer 

between aqueous and organic phases is believed a generalizable approach that could enable 

broader applications. 

2.1 Background and Strategy 

Metal clusters stabilized by a monolayer of covalently attached ligands are of great interest 

due to their size dependent optical, electrochemical, magnetic and other properties. 4, 105-108 Strong 

covalent Au-S bonding in Au-thiolate clusters not just define unique compositions, AuxLigandy or 

‘magic number/size’ that often fulfills electron close shell structures, it also render great stability 

and compatibility for basic studies and applications.109-110 Electrochemical techniques have 

successfully characterized the redox activity and energetics of various organic-soluble noble metal 

clusters.105 However, in aqueous solutions, the narrow potential window (without triggering 
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solvent reactions) and the high dielectric constant (in consideration of solvent penetration into 

ligand monolayer) limit the electrochemical analysis of water soluble clusters.75, 111 

Phase transfer across liquid-liquid interface is a routine practice with appropriate surfactant or 

counter ion species in colloidal and interfacial science. In fact, the first step in the seminal Brust-

Schiffrin synthesis is to transfer the aqueous soluble AuCl4
- ions using a transfer agent 

tetraoctylammonium (TOA+, bromide as counter ion) into organic phase.112-113 Phase transfer is 

also shown effective in the synthesis and post-synthesis derivatization of metal clusters.18, 114 An 

essential question for generalization would be what effect the transfer would have on the cluster’s 

optical and electrochemical features. To address such question, clusters with well characterized 

properties are prerequisite. An ideal system is the Au25SR18 clusters in which SR can represent 

organic soluble ligands such as phenylethanethiol (PET or PhC2), hexanethiol (C6S) or other 

alkanethiols, or aqueous soluble ones such as glutathione (SG).30, 115-119 Discrete molecular-level 

energy states including a 1.3-1.6 eV HOMO-LUMO gap can be resolved by electrochemical 

measurements in organic solvents. These electron transfer (ET) features correlate well with those 

distinct UV-Vis absorption bands and theoretical analysis based on density function theory 

calculations.106, 115, 120 Another choice would be larger clusters in Au130-146 range, in which the 

energy states are more continuum instead of molecular-like.27, 32 Electrochemical measurements 

reveal multiple one-electron transfer activities, i.e. quantized double layer (QDL) or coulomb 

staircase charging, corresponding to continuous or degenerated energy states. 105 Neither the 

discrete ET in smaller clusters nor the continuum QDL charging in larger clusters could be 

measured in aqueous constrained to a much smaller potential window and charging energy due to 

higher dielectric constants. It is desirable to better understand the electrochemical property and 

characterize the energy diagram of those aqueous soluble clusters. On the other hand, great success 
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has been achieved to synthesize highly uniform clusters in organic solvents. Aqueous compatibility 

will greatly enhance their potentials for biomedical and sensing applications. 

Phase transfer of the Au25SG18 clusters have been shown to retain the optical properties 

specifically the major peaks in UV-Visible absorbance.65 Recent work on an Au25MPS18 

(mercaptopropyl sulfonate) cluster revealed similar distinct Au25 electrochemical features seen in 

other organic soluble Au25 clusters.29 Interestingly, the HOMO-LUMO gap of the phase 

transferred clusters varied with solvent polarity, but could be lined up with the previously 

determined HOMO-LUMO gap value for a C6-Au25 cluster by adjusting solvent compositions.29 

The results suggest the monolayer capacitance (permittivity) affected by combined contributions 

from solvent permeation and electrostatics between the counter ions with the ligand terminal 

groups that require further quantification. 75, 111  

In this chapter, two types of ligands were employed to establish a generalizable transfer 

strategy: dithiolate clusters stabilized by lipoic acid (LA)25 and monothiolate clusters by 

mercaptosuccinic acid (MSA)13. Different monolayer hydrophilicity or hydrophobicity is defined 

by the ligand molecular structures. In addition to transfer aqueous soluble Au clusters into 

organic phase, a reversal transfer of the clusters back into aqueous phase is achieved by the 

selection of different counter ions. Electrostatic interactions between the deprotonated carboxylic 

acid and TOA+ counterions (Br-) for organic transfer, and reversal transfer to aqueous by Na+ 

(ClO4
-), enable the phase transfer and depend on pH and ionic strength. Electrochemical 

properties of Au22LA12 are resolved and reported for the first time. The oxidation of one of the 

two sulfur atoms in some of the LA ligands under ambient conditions over time, into SOx as 

previously characterized,25 is proposed to account for some irreversible and gradual transitions in 

the observed electrochemical features 
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2.2      Results and Discussion 

2.2.1 Phase Transferring the AuNCs 

The images in Figure 2.1 show the effective transfer of Au-MSA clusters, with a highly 

hydrophilic monolayer, from water to toluene and back to water. Au-LA clusters display similar 

trends (not shown). Au clusters will not transfer without TOA+ in toluene as shown in Frame A. 

The gradient color is due to the surface tension-induced curvature along a distinct water-toluene 

interface. Frame B shows the intermediate states of the transfer in the presence of low 

stoichiometry TOABr after mechanical shaking/mixing. The Au-MSA clusters were completely 

transferred into toluene with an excess of TOABr shown in frame C. This process is readily 

reversed by the addition of sodium perchlorate in aqueous phase as shown in frame D. Further, 

the presence of excess ionic electrolytes in aqueous phase greatly inhibits the transfer efficacy 

into organic phase. Ionic inhibition and efficient reversal transfer are due to the high 

hydrophilicity of the ligand molecular structures. As rule of thumb, the co-ion in the phase 

transfer agents, Br- or ClO4
-, should be soluble in the original solvent of Au clusters to achieve 

charge balance during the transfer 
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Figure 2.1. Top) Cartoon representation of the phase transfer processes and ligand molecular 

structures. Bottom) Experimental pictures at different stages of the phase transfer for the Au-

MSA nanocluster from water to toluene and back to water. The top layer is organic (toluene) 

while the aqueous layer is on bottom due to density differences. Frame A: without TOABr; B: 

low stoichiometry TOABr added in toluene; C: Excess TOABr in organic phase; D: NaClO4 

added to aqueous phase. 

  

To evaluate the essential roles of electrostatic interactions between the ligands and TOA+, 

the transfer efficiency for both Au-MSA and Au-LA clusters is quantitated at different aqueous 

pHs. The transfer efficiency was calculated by a ratio of the cluster absorbance in toluene to the 

total absorbance in both toluene and water. Normalized absorption spectra in aqueous, in organic 

and in aqueous after the reversal transfer are provided Figure 2.2. 
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Figure 2.2. Overlayed UV-Vis spectra of Au-MSA and Au-LA clusters at different stages of the 

phase transfer. Spectra were normalized at 300 nm. 

 

 The Au-MSA cluster remain unchanged while there appears to be more gradual decrease 

in visible absorption toward longer wavelength for Au-LA clusters in organic solvent. The 

absorption change is postulated to the variation in the permeation of solvent/counter ions in the 

monolayer that requires further study.  
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Figure 2.3. Transfer efficiency for the Au-MSA and Au-LA clusters at different pHs. Absorbance 

values were taken at 400 nm. The amount of TOABr used was controlled to be below or in 

stoichiometry to ligands (i.e. Fig. 1 B), so that the differences in transfer percentage can be 

resolved. Due to this the transfer effiency of the Au-MSA does not reach 100%.The pH is 

adjusted by the addition of either concentrated HCl or NaOH solution. 

 

The highest transfer percentages for Au-MSA clusters are at a pH range of 3-5. The pKas 

of the two carboxylic acids on the MSA ligand are very close to the same range (3.3 and 4.6). It 

is worth mentioning that unlike free molecules with a distinct pKa, de-/protonation of ligands on 

clusters are known to be gradual over wide pH ranges due to surface effects.121 If the pH of the 

solution is either more acidic (<2) or basic (>7), the transfer of Au-MSA to toluene does not 

occur. The observation suggests that the transfer is most efficient when part of the carboxylic 

acids in the monolayer is deprotonated. With little to no electrostatic interactions, i.e. one pH 

unit below pKa corresponding to 90% of the MSA ligands being protonated, transfer is 

suppressed due to the reduced cluster-TOA+ interactions. When the pH is much higher than the 

pKa, it is possible the Au-MSA has too many charges to overcome the surface energy at the 
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water/toluene interface via mechanic forces to initiate contacts with the TOA+ (middle scheme in 

Fig. 2.1), and thus hindering the transfer. Figure 2.4 shows the effects of transferring the Au-

MSA cluster in pH 3.2, 5.5, and 7.8. 

 

Figure 2.4. Visual representation of the amount of Au-MSA that transferred in pH 3.2 (left) 5.5 

(mid) and 7.8 (right). 

 

The transfer efficiency profile of the Au-LA clusters is highest near pH 8. This can be 

partially accounted for by the more basic pKa of free lipoic acid at 4.7 than MSA.25 Another 

unique aspect of the LA is the hydrophobic portion which makes the overall monolayer 

lipophilic. The Au-LA clusters and lipoic acid itself start to precipitate in aqueous solution 

around pH 6 due to the protonation of LA COOH and hydrophobicity. In the presence of toluene 

during the transfer, significant micro/emulsion is formed at lower pH (around 6). Apparently the 

clusters with partially protonated LA ligands served as surfactants at water/oil interface. The loss 

of a clear phase boundary limits the evaluation of transfer efficiency toward more acidic pHs. 

Unlike Au-MSA clusters that can’t be transferred at basic pHs, the hydrocarbon portion and 

single COO- group per ligand is clearly facilitating the transfer at more basic pH up to 10 until 

stability becomes a concern.25, 111 
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Figure 2.5. 1H NMR of the Au-LA clusters in CDCl3 transferred with stoichiometry ratio of  

TOA+. The four major peaks are from TOA+ (0.9, 1.3, 1.7 and 3.3 ppm). Inset is the Au-LA 

clusters in D2O. Area 1 (peak at 0.9) corresponds to CH3 groups from TOA+ (12 protons), while 

area two include the sum of 48 protons from TOA+ and 10 from LA-. 

 

The transferred Au clusters are characterized by proton NMR (Figure 2.5). The amount 

of TOA+ added during transfer was controlled to be low so that some Au-LA clusters remained 

in aqueous phase. In theory this allows the determination of stoichiometry ratio of charges on 

cluster to TOA as counter ions in organic phase. A ratio of 1: 2.7 LA ligand to TOA+ was 

estimated due to 1. the overlap of high TOA signals and 2. the line broadening effects of the LA 

ligands on Au core, which leads to lower LA signals, the apparent higher TOA over LA is 

considered acceptable being within the same magnitude. Further, baseline absorbance in UV-
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visible absorption suggests negligible scattering and rules out surfactant-type assembly such as 

micro/emulsion. Taken together, the transferred Au clusters are confirmed to form a uniform 

solution that is critical for the following electrochemical measurements. The MSA ligand proton 

peaks are completely overwhelmed by the strong TOA peaks and cannot be resolved by NMR 

thus not presented.  

2.2.2 Electrochemistry of the Au22 Cluster in H2O 

 

Figure 2.6. Cyclic (a) and differential pulse (b) voltammograms of the Au-LA nanocluster in 

water. Purging with Ar for 15-30 mins with 0.1 M NaClO4 as the supporting electrolyte. A 0.2 

mm platinum disk working electrode, platinum foil counter, and an Ag/AgCl wire were used for 

all measurements. Black stars indicate features attributed to the actual cluster. The green 

circles indicate a possible oxidation peak at around 0.65 V and a reduction peak attributed to 

oxygen at around -0.3 V. 

 

 

Electrochemical properties of the Au22-LA12 clusters before and after phase transfer is 

shown in Figure 2.6 and 2.7 respectively. Some redox activities can be observed within the 

aqueous potential window. The main features include an oxidation peak at + 0.93 V along with 

reduction peaks at - 0.32 V and -0.60 V. Those redox activities are clearly irreversible also 
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shown in CV. The reduction around -0.32 V, however, is very close to oxygen reduction even 

though extensive purging were performed. A HOMO-LUMO gap of 1.53 eV is obtained (+0.93 - 

-0.60V) accordingly. The gap is qualitatively in line with those from Au25SR18 clusters through 

organic measurements. An additional oxidation at + 1.13 V and a possible reduction below 1 V 

can be resolved in DPV that are significantly affected by background current. The intensity of 

the redox peaks, particularly the oxidation around + 0.66 V could vary from batch to batch and 

decrease over time for a given batch, which is attributed to the partial oxidation of lipoic acid on 

Au22 over time under ambient conditions as characterized in previous report.25 The clusters were 

then purified to remove the electrolyte, phase transferred with TOABr into toluene, then dried 

and redissolved in appropriate organic solvent for voltammetric study.  
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2.2.3 Electrochemistry of the Au22 Cluster in ACN 

 

Figure 2.7. Cyclic (a, c) and differential pulse (b, d) voltammograms of phase transferred Au-LA 

clusters at different potential ranges. Results measured in dry acetonitrile with 0.1M TBAP as 

electrolyte after purging with Ar for 15-30 mins. A 0.2 mm platinum disk working electrode, 

platinum foil counter, and an Ag/AgCl wire were used for all measurements. Orange triangles 

represent  oxidation/reduction peaks not seen in aqueous measurements. 

 

Rich redox activities are better resolved with the larger potential window in acetonitrile 

shown in Figure 2.7. A pair of oxidation peaks at 0.868 V and 1.088 V resembles the HOMO 

state of molecular clusters. The peak spacing corresponds to a charging energy of 0.22 eV which 

is slightly smaller than Au25 with PET or C6 monolayer at comparable core sizes. The result is 

expected considering the sparser ligand coverage and thus thinner monolayer based on 
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concentric sphere capacitance model. No redox activity was observed if the potential window 

were limited within about -0.3 V to +0.6 V (Figure 2.8).  

 

Figure 2.8. Cyclic voltammogram of phase transferred Au22LA12 clusters from -0.4 V to 1.1 V. 

Results measured in dry acetonitrile with 0.1M TBAP as electrolyte with purging with Ar for 15-

30 mins. A 0.2 mm platinum disk working electrode, platinum foil counter, and an Ag/AgCl wire 

were used. 

 

However, if scanned to higher potentials (i.e. beyond +1V or -1V), additional redox 

activities can be observed in this range, particularly the reduction peak in panel c and oxidation 

peak in panel d near 0 V. They are attributed to the reversal processes after the corresponding 

irreversible ET activity at higher potentials (i.e. beyond ±1V. See Figure 2.8 and 2.9). The 

oxidative desorption feature at around 0.17 V is better illustrated in the square wave 

voltammograms in Figure 2.9. The peak is more prominent after the -1.2 V reduction and 

disappears if the reduction is limited to -0.4 V.   
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Figure 2.9. Comparison of square wave voltammograms of the phase transferred Au22LA12 

clusters in acetonitrile. Results measured in dry acetonitrile with 0.1M TBAP as electrolyte with 

purging with Ar for 15-30 mins. A 0.2 mm platinum disk working electrode, platinum foil 

counter, and an Ag/AgCl wire were used. 

 

The HOMO-LUMO gap of the Au22LA12 clusters in acetonitrile is determined to be 1.34 

eV (+0.87 to -0.47). Figure 2.10 illustrates the reduction to a LUMO state that is independent of 

pre-existing oxidation step. Those features around 0 V corresponding to the reversal processes 

indicate the stability of the redox products at different charge states. Specifically, in panel a, a 

reversal reduction peak near 0 V approaches comparable current amplitudes to the one around 

0.8 V at higher scan rates, which is about half of the first oxidation peak current. The results 

suggest a relaxation process after the +0.87 V oxidation. Interestingly, the reduction peak at – 

0.47 V has a current amplitude that is also about half of the first oxidation peak. The results 

suggest the Au22 being an anion species, so that a 2e oxidation does not require a charging 

energy. There appears to be two degenerated HOMO orbitals that split upon further oxidation, 

which corresponds to the second oxidation peak at 1.09 V and another one at 1.48 V. Two 
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reversal reductions can be observed at 1.22 V and 0.97 V suggesting quarsi-to-irreversible 

processes that might involve chemical or structure changes to be determined in future studies. 

The disappearance of the reduction around zero in DPV (slower) that is better resolved in CV at 

a faster scan rate further suggest an irreversible change of the oxidized clusters. Again, more 

negative potentials are avoided because the oxidation features near 0 V shown in panel c&d 

would intensify presumably due to either instability or poor solubility upon further reduction. 

Better synthesis and isolation to obtain more uniform clusters are underway to better characterize 

this new dithiolate Au clusters.  

 

Figure 2.10. Cyclic voltammogram of phase transferred Au22LA12 clusters in acetonitrile from -

1.2 V to -0.4 V Results measured in dry acetonitrile with 0.1M TBAP as electrolyte with purging 

with Ar for 15-30 mins. A 0.2 mm platinum disk working electrode, platinum foil counter, and an 

Ag/AgCl wire were used. 
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2.3  Experimental  

2.3.1 Chemicals 

All chemicals (99% or higher) were purchased from Aldrich. Toluene was purchased 

from Fisher-Science, and nanopure water was produced in-house (>18 Mcm-1). 

2.3.2 Instruments 

UV-Vis spectra were recorded with a Shimadzu UV-1700 spectrophotometer. NMR 

spectra were collected with a Bruker NMR 400 MHz spectrometer. Electrochemical 

measurements were performed on a CH Instruments (CHI 750C) with Picoamp booster in 

Faraday Cage. The solution was generally purged over 15-30 mins with Ar prior to 

electrochemical measurements. The potential of the AgQRE (0.22 V vs. SHE) was calibrated 

periodically by measuring the ferrocene (Fc+/Fc) redox peak at 0.48 V. 

2.3.3 Au-MSA Synthesis 

Synthesis followed a previously published report on the Au-MSA nanoclusters.13 Briefly, 

HAuCl4 was dissolved in 10 mL of a 1:6 mixture of acetic acid and methanol and mixed with a 

20x MSA solution dissolved in 10 mL of the acetic acid and methanol. The mixture was stirred 

until turning colorless. The solution was then placed into an ice bath until the temperature 

equilibrates. Next a freshly prepared ice cold solution of 20x NaBH4 in 10 mL of nanopure water 

was quickly added under rapid stirring causing the solution to quickly turn dark. After 3 hours 

the solution was rotavaped and purified by dialysis for 3 days using snakeskin dialysis tubing 

(3500 MWCO, Thermo Scientific). Once purified the sample was annealed with 10x MSA for 24 

hours at 50oC under mild stirring. The final product was then purified using the previous method. 
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2.3.4 Au22LA12 Synthesis 

Synthesis followed a previously report on Au-LA nanolcusters.[11] Lipoic acid was first 

dissolved in water at a slightly basic pH due to solubility issues. The lipoic acids solution was 

then mixed with HAuCl4 for a final mole ratio of 3:1 lipoic acid to gold. Additional NaOH was 

then added to adjust the final solution pH to 11 and stirred for 4 hours. A 2x solution of NaBH4 

was then quickly added at room temperature and the reaction was allowed to react for 20 hours. 

The crude clusters were then purified with dialysis for 3 days using the snakeskin dialysis tubing. 

2.3.5 Phase Transfer  

During a typical transfer of the clusters, an approximate stoichiometry amount of TOABr 

was used so there would be no significant excess TOA+ in solution when performing future 

electrochemical experiments or 1H NMR. A mild shaking was sufficient for Au-MSA transfers 

while centrifuge was necessary to re-establish the phase boundary in the transfer of Au-LA 

clusters. 

2.4 Summary 

In summary, phase transfer between aqueous and organic phase is achieved by adopting 

appropriate pH and reagent with solvent-compatible co-ions and counter-ions using two types of 

Au clusters. For the Au-MSA clusters featuring highly hydrophilic monolayer, a pH of 3-5 has 

the greatest transfer efficiency that is close to ligand pKa. The Au clusters with a lipoic acid 

monolayer, more lipophilic with a terminal COOH group and a hydrocarbon chain, are best 

transferred under basic pH. Microemulsion formation at acidic pH and cluster stability at more 

basic conditions are limiting factors for the transfer. CV and DPV analysis suggest the Au22LA12 

clusters to be anionic and have a HOMO-LUMO gap of 1.34 eV in acetonitrile. A 0.22 eV 

charging energy is measured after the third electron oxidation that splits the degenerated HOMO 
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orbitals. Further improvement in the synthesis and isolation is needed to better characterize the 

cluster itself and those irreversible electrochemical activities. 

 

This chapter is adapted with permission from ChemElectroChem, 2016, 3, 1201-1205. 

Copyright 2016 John Wiley and Sons. 

 

3     ELECTRONIC TRANSITIONS IN HIGHLY SYMMETRIC AU130 

NANOCLUSTERS BY SPECTROELECTROCHEMISTRY AND ULTRAFAST 

SPECTROSCOPY 

Rich and discrete energy states in gold nanoclusters enable different combinations of 

electronic transitions and correspondingly electrochemical and optical properties for a variety of 

applications. The impacts on those electronic transitions by the emergence and 

magnitude/alignment of a band gap and by the contributions from different atomic/molecular 

orbitals require further study. Au nanoclusters with 130 core Au atoms are of the interest in this 

report because they are at the transition size regime where a small, yet well-defined band gap can 

be resolved along with continuous quantized frontier core orbitals. Here, electrochemical analysis 

is combined with UV-visible-near Infrared optical measurements to unveil previously unresolved 

electronic transitions. Finite changes in steady-state optical absorption spectrum are captured by 

spectroelectrochemistry when the Au nanoclusters are charged to different states via electrolysis. 

Multiple previously unresolved peaks and valleys as well as isosbestic ‘points/regions’ are 

observed in the differential spectrum. The detailed spectral features are explained by the respective 

electronic transitions to those affected energy states. Key features are also well-correlated with 

ultrafast absorption analysis which provides additional insights such as the lifetime of the 
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corresponding transitions. The experimentally measured energy states and transitions could serve 

as references for future theoretical study to learn the respective contributions from different atomic 

orbitals, and importantly, to explore routes to enhance or suppress certain transition so as to 

modulate the corresponding electrochemical and optical properties for better applications.  

 

3.1 Background and Strategy 

Noble metal nanoclusters have been one of the principal topics in nanoscale research due 

to their composition/size/valence dependent optical, electrochemical, magnetic and other 

properties.10 The metal core size is generally a few nanometers or less, energy diagram-wise in the 

transition regime from atoms/molecules to plasmonic metals.122 The covalent nature of the 

stabilizing ligands with the metal cores, particularly in Au-thiolate nanoclusters, allows the 

elucidation of a definitive composition and the quantification of surface functional groups. It also 

renders them with greater long-term stability over those by physical adsorption for better 

applications in complex environment such as biological systems. The tunable physicochemical 

properties combined with the quantifiable surface functions make them applicable in fields such 

as bioimaging, sensing and energy along with many others.4, 123-124 Although the unique merits of 

these prototypes to establish structure-property correlation are widely recognized, compelling 

applications enabled from the gained fundamental insights remain to be demonstrated. Further 

studies are needed to address basic questions such as how to improve an interested property 

targeting a specific application based on the unprecedented atomic precision compositions and 

structures elucidated.   

Several Au130 nanoclusters have been reported stabilized by structurally-comparable 

thiolate ligands: an aromatic ring directly bonded to the thiol (-SH) in p-methylbenzenethiol (p-
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MBT), an ethyl linker in between in phenylethanethiol (PET), and a mixture of PET and Durene-

dithiol in which a CH2 spacer separates the aromatic portion from the thiol and thus decouples the 

electron resonance.9, 72, 125-127 Because the atomic orbitals of both Au and S contribute to the 

superatom electronic structures of the Au-thiolate nanocluster,110 the differences among those 

three Au130 nanoclusters could reveal the impacts by the remaining ligands (other than S) on their 

properties. A prerequisite to tackle such a daunting problem is establishing their respective energy 

diagrams with fine details for comparison.  

Electrochemistry and spectroscopy are major experimental tools that have captured various 

electronic transitions in thiolate stabilized Au nanoclusters, also referred as monolayer protected 

clusters in earlier literature.105 Discrete energy states are characterized by absorption peaks in UV-

vis-near infrared region, as well as redox peaks in the corresponding potential/energy window. In 

those Au-thiolate nanoclusters with clearly separated occupied and unoccupied orbitals/states, 

photoluminescence (PL) in near infrared region after ground state absorption has been found to 

have large Stokes shift and up to hundreds nanoseconds lifetime.128-129 The significant research 

interest in the near IR PL is due in part to the merit of less spectral interference and thus potential 

for better bioimaging and sensing applications. Recently, the discrete energy states in Au 

nanoclusters are also found to enable strong electrochemiluminescence, ECL, in which 

luminescence is activated by electrode reactions instead of photons from a lamp or laser.62-63, 130-

132  At increased sizes yet smaller than plasmonic nanoparticles such as Au146, continuous 

quantized double-layer (QDL) charging behaviors are characteristic electrochemical properties 

while near IR luminescence (both PL and ECL) diminishes associated with the decrease of the 

band gap.105 Non-radiative decay pathways will affect the efficiency of the luminescence, which 
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will likely require the consideration of vibrational modes, both core atoms and ligands, especially 

in those nanoclusters with small band gaps.133-135 

 A better understanding on the energy states and the related charge/energy transfers 

is obviously a key to improve the properties such as ECL and PL of nanoclusters. 

Spectroelectrochemistry, also under electrochemical controls like ECL, measures the changes in 

optical absorption after an orbital/state is oxidized or reduced.34, 44, 73, 106, 111, 136 Unlike transient 

optical absorption spectroscopy in which the population of electrons in different energy states is 

modulated by a pump laser without changing the charge of the sample, spectroelectrochemistry 

allows electrons or holes to be selectively introduced in an energy state by an electrode at the 

appropriate potentials. In the Au130 with mixed PET and Durene-dithiols, differential spectrum 

shows detailed electronic transitions otherwise inaccessible after charging to different core and 

ligand energy states.32 More specifically, electron relaxations from core states after the oxidation 

of the ligand orbitals were clearly resolved. While spectroelectrochemistry combines steady-state 

optical measurements with electrochemical techniques under the conditions more relevant to i.e. 

ECL generation, transient optical measurements up to femtosecond resolution allow one to 

characterize the electron dynamics of short-lived excited states in the photoactive gold 

nanoclusters. The excited state absorption (ESA) and ground state bleaching (GSB) in the transient 

absorption spectrum as well as the decay components and lifetimes of these excited states provide 

valuable insights in smaller Au nanoclusters including Au25, bimetallic Pd/Pt doped M1Au24, and 

the various larger nanoclusters. 137-143 

In this chapter, the Au130(p-MBT)50 nanoclusters are studied in the interest of the known 

core atomic structure and the simplicity of the ligand molecular structure.72 Continuous 

quantized charging, toward both oxidation and reduction potentials, is separated by a 0.5 eV 
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electrochemical gap. The four broad steady-state absorption bands are found to involve multiple 

transitions from different energy states unveiled through spectroelectrochemical study. 

Combined with ultrafast measurements that report the lifetime of several key excited state 

processes, an energy diagram is proposed that successfully explains key optical features. 

3.2 Results and Discussion 

3.2.1 Basic Electrochemistry Features 

 

Figure 3.1. (A) Cyclic voltammograms (CV) at different scan rates and (B) square wave 

voltammograms (SWVs) of the Au130 nanocluster. The electrochemical gap is highlighted by the 

stars in SWV. Results measured in dry CH2Cl2 with 0.1M TBAP as electrolyte after purging with 

Ar for 15-30 min. A 0.2 mm platinum disk working, platinum wire counter, and an Ag/AgCl wire 

reference electrode were used for all measurements. 

 

 Well-defined QDL features are observed as shown in Figure 1. Comparable current 

amplitude of those redox peaks is seen in CVs at a given scan rate. A potential gap of 0.50 V, 

from -0.51 V to -0.01 V, is highlighted in SWV. Uniform QDL’s with an average peak spacing 

of 0.21 V are present on both positive and negative sides of this 0.5 V potential gap. Table 3.1 

summarizes the QDL peak potentials along with the spacing, i.e. charging energy (eV).  

Table 3.1. Potential and peak spacing of the main QDL features of the Au130 cluster. The peak 

spacing values are calculated by subtracting the neighboring (Right-Left) values in the row 
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above. Highlighted peaks represent the 0.5 V band gap discussed. The open circuit potential 

(OCP) during the time of these measurements was 0.0 V. 

 

 

The charging energy is consistent with that from other previously published Au130 sized 

clusters with similar ligand monolayers.32, 125 The peak separation is about 60 mV for each 

oxidation/reduction QDL pair in the CVs at varying scan rates shown, meaning that these 

processes are electrochemically reversible. A small peak is seen in the band gap, at -0.27 V 

between the two QDL’s, but is significantly smaller than the rest of the peaks in both CV and 

SWV. Its weak intensity also varies in different samples and decreases over time for a given 

sample. Further, the open circuit potential (OCP) is found to be close to 0.0V for a freshly 

synthesized sample and shift to more positive over time under ambient conditions, i.e. 0.18V for 

the sample used in spectroelectrochemistry analysis. Accordingly, the weak peak in the gap is 

attributed to trace amount of impurity or Au130 at more oxidized charge states discussed later. 

The QDL features of the aged sample at different temperatures can be seen in Figure 3.2. A 

small potential window was used to resolve the QDL peaks with high gain/sensitivity. The band 

gap increased to about 0.54 V while the average peak spacing remains comparable to the room 

temperature one. The redox reversibility in the QDL range is further attested by the matching 

oxidation and reduction scans. Toward more positive potentials, a single oxidation peak at + 1.46 

V is observed on top of significant background current in both CV and pulsed voltammetry 

measurements (not shown).  
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Figure 3.2. (A) DPV during oxidation of the aged Au130 sample. (B) DPV during reduction of the 

aged Au130 sample. Results measured with 0.1M TBAP as electrolyte with purging with Ar for 

15-30 mins. A 0.2 mm platinum disk working electrode, platinum foil counter, and an Ag/AgCl 

wire were used. Low temperature measurements were done in a mixture of dry ice and ethanol (-

72ºC). OCP during the time of these measurements was 0.18 V. 

 

 

The redox activities involving ligands, especially the sulfur orbitals in Au-S bonding, are 

measured in mixed toluene: acetonitrile (Tol:ACN) which allows a larger potential window 

without significant solvent reactions. The results are included in Figure 3.3. As ultrafast 

spectroscopic data were collected in toluene as solvent, 10:1 Tol/ACN were used to be more 

consistent for comparison (a small amount of ACN is needed to dissolve electrolyte). The band 

gap, OCP and continuous QDL charging are consistent with those in CH2Cl2 and can still be 

measured at a smaller potential window with higher gains, albeit the features become far less 

defined. Toward more positive, a distinct oxidation peak around 1.4-1.5 V is clearly seen in CV. 

At a slightly higher scan rate, the peak shifts to more positive and the reversal reduction is better 

captured at around 1.0-1.1 V, indicating the irreversible nature of this oxidation process 

involving the Au-S bonding. In addition to the one at 1.42V corresponding to the CV feature, 

two oxidation peaks at around 1.20 V and 1.51 V are resolved by differential pulse voltammetry 

(DPV) in which the reversal reduction scan shows a very broad weak band in this potential 
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range, again suggesting irreversibility. On the reduction side, other than the possible residual 

oxygen signals around -1V (absent in CH2Cl2 as solvent), there is a reduction band beyond -1.9 

V shown in DPV.  

 

 

 

Figure 3.3. CV and DPV of Au130 nanoclusters in 10:1 Toluene:Acetonitrile. (A) and (B) scan a 

large potential window as overview. (C) includes a less negative potential range (-0.8V) to show 

the largely featureless oxidation in QDL region and the reversal reduction features around 

+1.0V and -0.2V. Black stars in (D) highlight the 0.5 V gap consistent with the measurement in 

CH2Cl2. Results measured with 0.1M TBAP as electrolyte with purging with Ar for 15-30 mins. A 

0.2 mm platinum disk working electrode, platinum foil counter, and an Ag/AgCl wire were used. 

OCP during the time of these measurements was 0.18 V. 
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There are major differences between this highly symmetric Au130 with p-MBT ligands 

and the previously reported Au130 with a dithiolate Durene as ligands. Near IR 

photoluminescence is not detectable with p-MBT as ligands, but has been reported from the 

Au130 with Durene ligands.127 Regarding the electrochemical properties, there is much weaker 

reversal reduction observed, if any around the frontier QDL states, i.e. around -0.2-0.0 volts. 

Further, the anodic current of the 1.42 V peak is not significantly larger than the QDL peak, for 

example by a factor that correlates with the number of ligands.26 The results suggest that the 

remaining portion of ligands other than S atom is not involved in the electron transfers. The 

inertness of p-MBT, unlike the durene-dithiol/ates in which radical cations can be formed on 

Durene upon oxidation,26 is believed to be responsible for such differences. 

To demonstrate the distinct redox features at higher potentials include both Au and S 

contributions, i.e. Au-S, a mixture of 1:1 HAuCl4:p-MBT was tested in the same 10:1 Tol:ACN 

mixed solvent system. The CV and DPV results are in Figure 3.4. Multiple redox activities can 

be seen because the mixture is known to contain Au(I)-thiolate polymeric complexes and 

disulfides.144 After the Au(0) core formation upon reduction by NaBH4, the oxidation peaks at 

1.00, and 1.57 V shift and diminish in amplitude (CV). The 1.42 V state is the only detectable 

peak in CV for Au nanoclusters. On the reduction side, a distinct peak at -1.9 V is observed from 

this mixture instead of the continuous broad band beyond -1.9 V in the nanoclusters, which 

suggests additional interactions or overlap with other higher energy states such as those from the 

Au core.145 
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Figure 3.4. CV and DPV of the 1:1 Au:p-MBT mixture in 10:1 Toluene:Acetonitrile. Results 

measured with 0.1M TBAP as electrolyte after purging with Ar for 15-30 mins. A 0.2 mm 

platinum disk working electrode, platinum foil counter, and an Ag/AgCl wire were used. 

3.2.2 Spectroelectrochemistry Features 

 

Figure 3.5. Steady-state UV-Vis spectrum of the Au130 cluster. 

The steady-state UV-Vis spectrum of the Au130 nanocluster is included in Figure 3.5. The 

changes in absorbance after each electrolysis at those denoted potentials are plotted in Figure 3. 
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The dashed lines represent those four previously reported values of 390, 490, 605, and 700 nm, 

though each corresponds to a rather broad band/region. This report focuses on the potential range 

of the reversible QDL features and avoids irreversible ligand reactions. The corresponding original 

spectra are included in Figure 3.6 for reference. In the remaining sections, spectrum features are 

described in wavelength with the corresponding transition energy in electron volts (eV) in 

parenthesis for clarity.   

 

Figure 3.6. Original UV spectra measured after each electrolysis in CH2Cl2. The electrolysis 

stopped after the charging current decrease to about less than 10% original/baseline, typically 5 

minutes. These spectra were used to calculate the differential spectra shown in Figure 3.7. The 

abrupt change at 340 nm is an artifact due to lamp switching. 

 

Overall, reduction (top half of Figure 3.7) and oxidation (bottom half) spectra mirror each 

other largely. The positive and negative changes indicate the additional and suppressed 

absorption transitions respectively. The corresponding energy states can be determined 

accurately from the fine spectrum details (top axis shows eV). The first notion is that the 390 nm 

band includes the transitions with a max ∆abs. at 371 nm (3.34 eV). For this and the steady state 

band at 490 nm (2.58 eV), both intensities decrease upon oxidation and increase upon reduction. 

An edge toward lower energy at 530 nm (2.34 eV) is determined by extrapolating the flat 

baselines of the first two redox/spectra in both panels. At around 560 nm (2.21 eV) a possible 
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isosbestic point (or zone considering possible small shift of the corresponding states under redox 

processes) is observed that separates the absorption decrease from the increase in oxidation panel 

(vice versa in reduction). The steady state band at 602 nm (2.06 eV) is in the middle of a newly 

observed band, max at 580 nm (2.14 eV) in the oxidation panel and another one to the red at 644 

nm. Its high energy edge starts from the isosbestic point of 560 nm. Reduction appears to shift 

the corresponding energy states and establish an isosbestic zone till a decrease occurs from 600-

620 nm. The low energy edge of this band is around 625 nm (1.98 eV), estimated from the 

reduction valley or the infection point in the oxidation spectrum. 

 

Figure 3.7. Differential spectra after electrolysis under different potentials in CH2Cl2. Charging 

to more positive and negative potentials were performed separately, using the same sample 

solution split into two, to avoid possible irreversible changes to accumulate over stepwise redox 

charging. The original spectrum was subtracted from the spectrum collected after each 

electrolysis. The key spectrum features remain largely unaffected using a spectrum electrolyzed 

at 0.0 V as baseline. The open circuit potential of this sample at the time of measurement is 

+0.18 V. In addition to the four ground state abs bands, the green circle at 560 nm highlights the 

isosbestic transition. Other arrows indicate key emerging features at 580 nm, 644 nm, 755 nm 
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and 885 nm.  The three potentials correspond to the oxidation (+) and reduction (-) of 1/1, 2/2 

and 5/4 electrons. 

 

Toward lower energy, a peak at 644 nm (1.93 eV) increases by oxidation while reduction 

causes broad/flat decreases extending beyond the last steady state band at 710 nm (1.75 eV). In 

the reduction panel, there appears to be an increase on top of the broad decrease leading to 

overall unaffected area around 755 nm (1.64 eV). A decrease at the same range is observed over 

broad weak increase in oxidation panel. A weak band around 885 nm (1.40 eV) increases by 

oxidation is arguably noticeable. Due to the low absorbance values of the raw spectra and the 

low ∆Abs. especially at longer wavelength, the discussion is focused more on the qualitative 

trend and the characteristic wavelengths. One should be cautious when interpreting the absolute 

positive or negative signs in absorbance changes considering the possible baseline drift during 

the measurements, batch-to-batch sample variations and overlapping electronic transitions from 

different energy states. To fully compare the spectroelectrochemical data with the ultrafast 

results a 10:1 mixture of toluene:acetonitrile was used in later experiments. Absorbance data for 

this solvent system was compared to what is observed in CH2Cl2 in order to rule out any solvent 

effects. For reference this data is shown in Figure 3.8. 
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Figure 3.8. Steady state absorbance spectra in both CH2Cl2 and the mixed solvent system. 

Spectra were normalized at 300 nm. 

 

Differential spectra collected from the same sample in mixed solvents for comparison 

with ultrafast results are presented in Figure 3.9 panel B. Although QDL features are less defined 

presumably due to solvent penetration into the monolayer, the key spectrum features are 

consistent with the results collected in CH2Cl2. A major difference is that the fine structures in 

the longer wavelength range in reduction panel are no longer resolved. Further, the results 

collected from a sample in which the weak mid-gap redox peak (around -0.27 V, Fig. 3.1) is 

clearly noticeable are also provided in panel A for reference. While the features in the reduction 

panel are limited and consistent with others, two major differences are labeled in the oxidation 

panel. The first is a stronger 530 nm band (more positive increases). This seems to distort or shift 

the isosbestic region to around 600 nm. The other one is a distinct positive band at 743 nm. For 

an aged sample, it appeared to redshift and broadened (more positive OCP, Fig. 3.8 A). 
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Figure 3.9. (A) Differential spectra after electrolysis in 10:1 Toluene:Acetonitrile. The OCP of 

the sample used in these measurements was 0.0 V. (B) Differential spectra bias after electrolysis 

in 10:1 Toluene:Acetonitrile. The OCP of the sample was 0.18 V (the same sample used in 

Figure 3.5). The orange circles highlight the major differences between the two samples.   
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3.2.3 Energy Diagram 

Those well-resolved electronic transitions are summarized in the proposed energy diagram in 

Figure 3.13. The conversions between wavelength and electron volts (eV) and related energy 

calculations comparing the optical and electrochemical results are provided in Table 3.2.  

Table 3.2. Calculations of the observed transitions in the differential spectrum in CH2Cl2. The 

wavelength numbers were read from Figure 3.7. The OCP of the Au NCs used in the measurements 

was 0.18 V. Bolded blue boxes represent the four steady state features in the UV-Vis spectrum. 

Calculations directly below each of these areas represent transitions that either directly affect the 

steady state transition or are located between that steady state and the next. Some transitions 

(shaded in pink) are shown twice in the table (the second is shown in italics). This is due to those 

transitions having possible effects on more than one steady state/region in the differential 

spectrum. The green shaded boxes represent the isosbestic point which splits the differential 

spectrum into two distinct regions of overall behavior (either overall decreasing or overall 

increasing with oxidation/reduction). 

 

The wavelength numbers were read from Figure 3. The OCP of the Au NCs used in the 

measurements was 0.18 V. Bolded blue boxes represent the four steady state features in the UV-

Vis spectrum. Calculations directly below each of these areas represent transitions that either 

directly affect the steady state transition or are located between that steady state and the next. 

Some transitions (shaded in pink) are shown twice in the table (the second is shown in italics). 

This is due to those transitions having possible effects on more than one steady state/region in 
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the differential spectrum. The green shaded boxes represent the isosbestic point which splits the 

differential spectrum into two distinct regions of overall behavior (either overall decreasing or 

overall increasing with oxidation/reduction). 

The potential values on the left in Fig. 3.13 are collected from the exact Au130 NC sample 

used in spectroelectrochemical measurements (Fig. 3.7). The first QDL oxidation peak at + 0.08 

V defines the frontier occupied energy states below the band gap. The frontier states above the 0.5 

V gap is therefore at -0.42 V. The open circuit potential (OCP) is generally around 0.0 V for freshly 

synthesized samples but over time shifts slightly more positive, i.e. 0.18V herein. Consider the 

QDL charging energy of 0.21 V, and the as-synthesized Au130 NCs being neutral, the positive shift 

in OCP is explained by the graduate oxidation through which both neutral and positively charged 

species coexist.  The QDL peaks shift upon oxidation slightly, notably the first oxidation peak 

from -0.01 V (Fig. 1) to +0.08 V. To be inclusive of data collected from samples with different 

extent of oxidation, or different ratio of neutral/oxidized species, an additional state separated by 

one charging energy of 0.21 V is added (on the right). The general assignment of those key 

transitions is not affected, though the specific calculations need to be adjusted accordingly. 

Because the rich energy states of the large Au130 NCs make some electronic transitions, especially 

toward low energy range, rather crowded, the differences at tens of milli-electron-Volts between 

electrochemical and spectroscopic data are believed to be acceptable. Those experimentally 

resolved finite differences can be employed to evaluate the coupling of vibrational states or 

structural relaxation in future studies. Further, since the +1.46 V oxidation in CH2Cl2 is reasonably 

close to those measured in mixed solvent (±0.05V), solvent differences are assumed insignificant 

in the measured potentials. The broad reduction starting at -1.90 V measured in the mixed solvent, 

not resolvable in CH2Cl2, is used in the following analysis. The numbers listed on the right indicate 
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the range of the corresponding states from different measurements. Additional states such as the -

2.29 V and +2.22 V were not measured but back-calculated from distinct spectroelectrochemistry 

features: the 490 nm (=2.58 eV; + 0.29V – (-2.29V)) is further validated by i.e. 530 nm (= 2.34 

eV; 0.08V – (-2.29V)); while the 580 nm (=2.14 eV + 2.22V – (+0.08V)) by the 644 nm (= 1.93 

eV; + 2.22V – (0.29V)). The voltage values in parenthesis are electrochemical data.   

 

Figure 3.10. Energy diagram for the electronic transitions in Au130(p-MBT) by 

spectroelectrochemistry.  Voltage values listed on the left were directly from the electrochemical 

measurements (in both solvent systems), those on the right were from a combination of 

spectroelectrochemical and electrochemical data or back calculated as noted. Color coded 

wavelengths are used to show spectroelectrochemical features near the four observed steady-

state optical peaks. Each wavelength (one arrow) represents a distinct spectrum feature resolved 

in, i.e. Fig. 3.7. Black arrows are used to represent electrons in each energy state of the freshly 

synthesized sample (left side) and the oxidation effect of the aged sample (right side). The grey 

bars in the frontier energy states represent charging energy, and the one on top corresponds to 

the broad continuous reduction (Fig 3.3). 

 

The detailed structures in the differential spectra can be correlated to and retrospectively 

account for different combinations of electronic transitions from lower occupied to higher 

unoccupied orbitals. The assignment reveals that multiple transitions could partially overlap and 
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cause the broadening of the four native-state absorption bands. The highest energy band (<390 

nm) includes the transition between the unoccupied and occupied Au-S (p-MBT) orbitals. The 

transition from highest occupied core frontier states to the states above Au-(p-MBT) LUMO 

(broad reduction band above -1.90 V, Fig. 3.3 & discussions) generates the 490 nm (2.58 eV) 

absorption band, which could partially overlap with the transition to the unoccupied core frontier 

states from lower states. The 605 nm (2.05 eV) absorption band is a unique region where the 

transitions both into and from the partially-occupied core frontier states overlap. The last steady 

state around 710 nm (1.75 eV) is mainly the transition from the Au-(p-MBT) HOMO to the 

unoccupied core frontier states.   

Upon oxidation to different potentials, the electrons in the frontier states would be 

stepwise removed. Electron transitions from these states (+0.08, +0.29/-0.21V) should decrease, 

such as the 490/625 valleys in differential spectra and ultrafast GSB bands. Meanwhile, those 

incoming transitions from states below should increase with the additional accessible 

states/holes, for example 580/644/730 nm & 885 nm peaks and ESA bands. The very unique 

isosbestic feature at 560 nm is worth emphasizing, as it separates absorption increase toward 

lower energy (longer wavelength) and negative ∆abs. toward higher energy upon (increasing) 

oxidation. It suggests that the ground state absorption here originates from the states not directly 

affected by the oxidation, such as the states immediate below the frontier occupied ones. 

Additionally, the differential changes could represent the conversion of one transition into 

another around this point (530/580nm: +2.22→+0.08→-2.29), which is also supported by the 

reduction features. The detailed assignments and calculations of those transitions are summarized 

in Table 3.2. Besides the direct impact on the transitions in 490/605 nm range, oxidation has 

indirect influences on the transitions from the lower states, i.e. +1.46 V captured by different 
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measurements. The broad negative ∆abs. in <390 nm range could be due to the decease of 

electron relaxations from frontier states (GSB) after the oxidation. Unfortunately, ultrafast data 

in this energy range is unavailable. Related, the main transitions contributing to the 700nm band 

are not directly affected by oxidation, which is indicated by the ultrafast results where ESA or 

GSB is insignificant. The slight variations are attributed to neighboring transitions at slightly 

higher and lower energies.    

Reduction induced features, albeit less defined or consistent among samples/solvents, can 

be explained similarly. Filling the frontier states (+0.08, then -0.42/-0.50) with additional 

electrons will reduce the transitions from the lower states to the frontier states (+0.08/-0.21, then 

-0.42/-0.50). Meanwhile, those additional electrons will cause the transitions to higher states to 

increase. This is again separated at around 560 nm or 2.21 eV. The absorption remains relatively 

flat up to about 600 nm due to the shift of the frontier states involved in two transitions (+2.22 to 

+0.08 & +0.08 to >-1.90) that partially overlap. There should be a new feature corresponding to 

the electrons in the newly occupied core frontier states, i.e. -0.42/-0.50 V. It is attributed to the 

peak at 755 nm (1.64 V) in the middle of the broad decrease due to the overwhelmingly crowed 

transitions in this energy range.  

A limitation of the proposed energy diagram is that vibrational energy states are not 

considered. Both inner Au core atoms and peripheral Au-S shells would have relaxed, and 

different structures might be responsible for some differential spectra features. The existence of 

different structures can be inferred from the spectrum differences captured from a fresher (less 

positive OCP) sample shown in Fig. 3.9. There is a distinct band at 743 nm (1.67 eV) increases 

up to 5-e oxidation, which is either broader and red-shifted or absent in an aged sample. In the 

range between 530 nm to 625 nm range, the 530 nm edge increases and then decreases upon 
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further oxidation, while the absorption around 600 nm remain basically unaffected. While other 

features are similar between the fresher and aged samples, the finite differences in these two 

regions could not be explained by the redox-induced OCP changes or shift of 

occupied/unoccupied frontier states: one would expect a match between the spectrum from a 

sample with more positive OCP but lower oxidation potential, and the spectrum from a sample 

with less positive OCP but at higher oxidation potentials (i.e. the 850 mV spectrum in panel A 

vs. the 550/850 mV spectrum in panel B). There might be gradual structural changes (over 

days/weeks) of this Au130 NCs that require further study. 

3.3 Experimental 

3.3.1 Chemicals 

All chemicals (99% or higher) were purchased from Aldrich. Toluene was purchased 

from Fisher-Science, and nanopure water was produced in-house (>18 M cm-1). 

3.3.2 Instruments 

UV-Vis spectra were recorded with a Shimadzu UV-1700 spectrophotometer. 

Electrochemical measurements were performed on a CH Instruments (CHI 750C) with Picoamp 

booster in a Faraday Cage. The solution was generally purged over 15-30 mins with Ar prior to 

electrochemical measurements. The potential of the AgQRE (0.22 V vs. SHE) was calibrated 

periodically by measuring the ferrocene (Fc+/Fc) redox peak at 0.48 V. 

3.3.3 Synthesis of Au130(p-MBT) nanoclusters and Au(p-MBT) Complexes 

The Au130 nanoclusters were synthesized and first characterized by Jin el al9, 72. The 

initial synthesis followed the Brust–Schiffrin method with extensive size focusing performed on 

the as-synthesized clusters. The size focusing process was monitored by MALDI and UV-Vis 

and stopped once pure Au130 clusters had been obtained.  
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The complexes were synthesized as analogs or boundary features for the Au-S interface 

bonding in the Au130 nanoclusters. Similar to the synthesis of Au clusters, the HAuCl4 salt was 

phase transferred into the toluene solvent with TOABr first. The complexes were formed by 

adding p-MBT thiol into the Au solutions (1:1 molar ratio) under rapid stirring. No purification 

was performed.  

3.3.4 Spectroelectrochemical Measurements 

Were performed in CH2Cl2 or mixed solvent using a previously published setup.32 Briefly 

a platinum mesh working electrode was placed in the light path inside a thin cell cuvette (1 or 

2mm×10mm) for in-situ spectrum recording after each bulk electrolysis. A platinum foil as 

counter and a Ag/AgCl wire as reference electrodes were positioned away from the mesh 

working, normally slightly higher in the cuvette so as not to obstruct the light path. The solution 

level was checked periodically to maintain consistent concentration throughout a series of 

measurements. 

3.4 Summary 

In summary, electrochemical studies are combined with steady-state and ultrafast UV-vis-

near IR absorption spectroscopy to understand the electronic transitions in Au130(p-MBT)50 NCs. 

The simple ligand molecular structure of p-methyl-benzene-thiolate, high symmetry of the 

nanocluster structure determined by X-ray and NMR, make it an appealing large nanocluster to 

explore the transitions of energy diagram from molecular to metallic/bulk system. Reversible QDL 

features with an average peak spacing of 0.21 V and a gap of 0.3 V are observed. Interestingly, 

near IR photoluminescence is not detected from this nanocluster with a clear energy band gap 

which suggests more effective non-radiative decays. Oxidation and reduction of the nanocluster 

by electrolysis reveal multiple transitions contributing to the four broad steady-state absorption 
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bands. The newly resolved spectroelectrochemical features, major changes in absorption 

increase/decrease upon oxidation/reduction, match the ESA and GSB bands in ultrafast 

measurements well. Combined together, an energy diagram is proposed through which the major 

steady state and newly observed spectroelectrochemical transitions are successfully explained with 

major electronic transitions therein. Those specific energy levels and variations at tens millivolts 

resolution might reveal vibrational energy state coupling to be confirmed in future studies. 

 

This chapter is adapted with permission from J. Phys. Chem. C, 2017, 121, 21217-21224. 

Copyright 2017 American Chemical Society. 

 

 

4 STUDYING THE OPTICAL AND ELECTROCHEMICAL PROPERTIES OF THE 

AU-MSA AND NEWLY SYNTHESIZED AU-LA CLUSTERS IN BOTH WATER 

AND ORGANIC SOLVENTS 

Electrochemical studies in water are limited by the small potential window before water 

splitting dominates the signal when performing measurements. Due to this, insights into the 

electrochemical properties of many aqueous soluble gold nanoclusters have been incomplete. A 

simple and routine work around for this is to phase transfer the cluster into organic solvents with 

the use of a transfer agent such as tetraoctylammonium bromide. This allows for the use of inert 

solvents such as dichloromethane and acetonitrile which have much larger potential windows. 

This chapter discusses the optical and electrochemical features for the Au-MSA and Au-LA 

(1:1.7) cluster in both water and in organic solvents after phase transfer. The impacts of strong 

oxidizing and reducing agents on the Au-LA cluster were also studied to better understand the 
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gradual sulfur oxidations after cluster synthesis. Optically the phase transfer does not seem to 

affect the absorbance or luminescence peak shape, though a substantial increase in quantum 

efficiency is observed after transferring. This increase in luminescence was affected by the 

solvent used when performing the measurements as solvents with higher dielectric constants 

gave way to much lower luminescence intensity. Unsurprisingly, rich redox activities were 

observed for the Au-MSA cluster when using organic solvents. These would have gone 

unnoticed in aqueous measurements due to the restricted potential window and high dielectric 

constant of water. 

4.1 Background and Research Strategy 

Monolayer protected noble metal nanoclusters have been of great importance in the 

research community over the past few decades in various applications including biomedical, 

biosensing, biological imaging, catalysis, etc. due to their rich optical, electrochemical, and other 

fundamental properties. Many of these clusters fall within “magic number” or specifically a 

combination of gold to thiolate that can offer filled electron shells along with increased stability 

and distinct size depended properties.  For this reason, variation of the synthetic conditions could 

produce new clusters with new properties. Retrospectively, specific optical absorbance features 

can be used to determine the core size of many of these magic number clusters. Another 

important tool used in the characterization of metal nanoclusters is electrochemistry. For many 

clusters including Au25, Au38, Au130, Au144, and Au246 very distinct redox activities have been 

observed that are size depended and can be used to accurately characterize the size of the cluster. 

These features include HOMO-LUMO gap spacings which are usually on the scale of 1.3-1.6 V 

(for the molecular-like cluster such as Au25), and QDL spacings for the larger clusters. Even with 

this knowledge there is one glaring problem when trying to use it to compare with newly 
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synthesized aqueous soluble gold nanoclusters. Almost all the electrochemical work has been 

done in organic solvents with large potential windows and lower dielectric constants. 

Electrochemical techniques have been largely ineffective providing limited insights when 

researching aqueous soluble nanoclusters due to the narrow potential window and high dielectric 

constant.  

To get around this, the process of phase transfer can be performed on many of the 

aqueous soluble gold nanoclusters. There have been various works published on this process and 

it has been shown to be nondestructive and reversible. 64-65, 146 For the clusters previously looked 

at it was noted that the optical properties including the main peaks were largely unchanged and 

even when reversing the phase transfer no major difference between pre-transfer and reversed-

transfer were observed. One major observation for the Au22SG18 cluster was that the phase 

transfer caused a substantial increase in Q.E. It was discovered that this enhanced Q.E. is due to 

the tetraoctylammonium bromide causing an increased rigidity in the gold shell. This rigidity 

was caused by the bulkiness of the TOA+ which was proven by exchanging the TOA+ with 

shorter chain quaternary ammonium cations. Once this exchange took place a significant drop in 

Q.E. was observed for cations such as tetramethylammonium. Optically, the ability to observe 

the clusters in organic solvents is nice but the larger potential window allowed by the solvents is 

where advantages can be taken. 

 In the previous report on Au22-LA12 (chapter 2), the electrochemical activity of the 

cluster was looked at in both aqueous and organic mediums146. With the Au22-LA12 cluster a 

HOMO-LUMO gap of 1.53 V was observed in aqueous measurements however some of the 

electrochemical processes could not be fully resolved. Once phase transferred, the potential is no 

longer limited by water, and the electrochemical features can be resolved or better defined at 
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more negative/positive potentials. A well-defined oxidation pair resembling what is seen with 

other molecular like nanoclusters could be observed. It was also noted that the HOMO-LUMO 

gap after transfer was 1.34 V. This is smaller than what was observed in water though this could 

be due to the phase transfer itself or due to the solvent.  

In this chapter the previously published Au-MSA and newly synthesized Au-LA clusters 

are studied optically and electrochemically in both water and organic solvents after phase 

transfer. Optical features (absorbance and luminescence) have been reported for the Au-MSA 

cluster in aqueous mediums, and absorbance changes or lack thereof when phase transferred 

were previously reported along with the Au22LA12 cluster.  Luminescence effects are studied and 

reported for the first time after being phase transferred along electrochemical properties 

including both in water and organic solvents.   

4.2 Results and Discussion 

4.2.1 Optical Features 

The Au-MSA clusters reported were synthesized following previously published 

literature13. Briefly, HAuCl4 was dissolved in a 6:1 mixture of methanol and acetic acid. This was 

then mixed with 15x equivalence of MSA under mild stirring. Once colorless the mixture was 

chilled with ice and then reduced once the temperature had equilibrated with a 20x solution of 

NaBH4 (in similarly chilled water) under vigorous stirring. After completion the sample was 

rotavaped to dryness, redissolved in water, and purified using dialysis. Afterwards the solution 

was etched using a 10x solution of MSA at 50oC for 24 hours. Aqueous optical measurements 

shown in Figure 4.1 match what was previously reported for this cluster13. The absorbance is 

relatively featureless through the full observable range. Broad near-IR luminescence is observed 

for this cluster with a peak intensity at 826 nm and a quantum efficiency of around 4. This Q.E. is 
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a bit weaker than previously published aqueous soluble clusters such as the Au22LA12 cluster 

though is still bright enough to be used in applications such as cellular imaging.25,13  

  

Figure 4.1. Optical Features of the Au-MSA cluster in H2O. Normalization by the absorbance at 

the excitation wavelength of 400 nm was performed on the luminescence spectrum. 

 

The Au-LA nanoclusters were synthesized following a previously reported procedure 

with some minor changes25. Briefly, HAuCl4 was dissolved in 1 mL of nanopure water. A 1.7x 

amount of lipoic acid, w.r.t. Au and referred as 1.7X pending full characterization, was then 

added to 1 mL of nanopure water and NaOH was added dropwise until the lipoic acid fully 

dissolved. This was then added under mild stirring to the solution of HAuCl4. After 4 hours of 

stirring a 5x solution of NaBH4 was quickly added under vigorous stirring. This was allowed to 

react until the luminescence intensity peaked (usually around 16 hours). Afterwards, the solution 

was purified either by centrifuging the sample with a 3500 MWCO filter, or by using snakeskin 

dialysis tubing (3500 MWCO) to perform dialysis of a period of three days. Interestingly the two 

purification methods would lead to two types of samples. One sample (centrifuged) has nicely 

defined absorbance features, but in turn has very weak luminescence. The other sample (dialysis) 
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that these changes can be attributed to the oxidation of the lipoic acid attached to the clusters. 

These changes can be slowly observed in the centrifuged sample if left to oxidize over a few 

days to a week. The absorbance features will start to become less apparent and eventually 

disappear. The luminescence will also rise over this time though never quite reach the intensity 

observed for the dialysis sample. This can most likely be attributed to a small amount of 

annealing that the cluster is going through during dialysis. Since the dialysis does not 

immediately remove all of the excess thiols it is possible there are some rearrangements in the 

monolayer that help facilitate this large increase in luminescence. For the centrifuged sample, 

three distinct absorbance peaks can be observed at 505, 600, and 700 nm. A low Q.E. of around 

1% was calculated for the sample. For the dialysis sample however a Q.E. of 10% was 

calculated. This Q.E. is similar to what was calculated for the Au22LA12 clusters. The absorbance 

spectrum however is relatively featureless throughout the full range. Figure 4.2 shows the 

absorbance and luminescence features for both the centrifuged and dialysis samples.  

  

Figure 4.2. Optical features of the Au-LA Cluster in H2O. The absorbance was normalized to 

one at 300 nm. Luminescence spectra normalizations by the absorbance at the excitation 

wavelength of 400 nm were performed. Centrifuged sample measurements were taken from a 

freshly purified sample to avoid extensive oxidation. 

 

400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
. 
A

b
s
.

Wavelength / nm

 Centrifuge

 Dialysis

600 750 900 1050 1200
0.0

0.2

0.4

0.6

0.8

1.0
 Centrifuge

 Dialysis

N
o

rm
. 
/ 
C

o
rr

. 
In

t.
 x

 1
0

8
 / 

A
.U

.

Wavelength / nm



77 

 In an attempt to decrease the time it takes for a centrifuged sample to oxidize and have 

the luminescence increase, experiments with H2O2 were carried out. Due to the H2O2 being a 

modest oxidative molecule small amounts of it were titrated into a unoxidized Au-LA sample to 

test the effects on both the gradual changes in absorbance and luminescence spectra under 

ambient conditions. Changes are insignificant until 1 mmol of the H2O2 had been titrated in. 

Kinetic effects were also observed. Initially, even at the 1 mmol point the absorbance spectrum 

does not change at all, but after 10 minutes this was rechecked and a major change in the 

absorbance was observed. The absorbance spectrum had a much sharper slope and overall the 

distinct absorbance features were less obvious. The luminescence spectrum did initially show an 

increase at the 1 mmol point, and after 10 minutes had increased even higher. Figure 4.3 shows 

the optical features at each addition of H2O2. Further experiments were performed with slightly 

higher amounts of H2O2 and a longer duration of time to see how this effect the features. Overall 

there was not huge differences when more H2O2 was added though if the solution was not 

purified the luminescence decreased nearly 100% and a gold plasmonic band was observed in the 

absorbance spectrum. This is not surprising due to the oxidative nature of H2O2.  

  

Figure 4.3. Absorbance and luminescence spectra during H2O2 titration. Absorbance 

measurements were normalized to one at 300 nm. Luminescence spectra were normalized by the 

absorbance at the excitation wavelength of 400 nm. 
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With the success of oxidizing the centrifuge sample, the reverse experiment was performed 

with the oxidized centrifuge sample. This time however a strong reducing agent (NaBH4) was 

titrated in instead of H2O2 to determine if the distinct absorbance features observed in the 

unoxidized sample could be brought back by further reducing the sample. The goal is to understand 

whether the optical changes result from core redox states which would be reversible or the 

ligand/interfacial bonding which would be irreversible. The absorbance spectra showed an overall 

increase throughout the full range. The prominent peaks seen in the unoxidized sample did not 

reappear. This addition of NaBH4 also had negative effects on the luminescence intensity of the 

sample. With each addition the luminescence decreased substantially to a point where it had fell 

to around 25% of the initial intensity. Further additions of NaBH4 would have most likely dropped 

the luminescence even further. The absorbance and luminescence spectra for this titration can be 

found in Figure 4.4 

  

Figure 4.4. Absorbance and luminescence spectra after adding NaBH4. Absorbance measurements 

were normalized to one at 300 nm. Luminescence spectra were normalized by the absorbance at 

the excitation wavelength of 400 nm. 
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The process of phase transferring the Au-MSA or Au-LA clusters is a relatively simple 

process and was previously reported146. Normally Au-MSA/LA clusters aqueous solution is placed 

in a vial along with toluene. TOABr is then added to phase transfer the cluster. A mild shaking is 

enough to transfer the cluster. After transferring the cluster can be dissolved in various organic 

solvents such as acetonitrile, toluene, and dichloromethane.  One thing to note is the transfer will 

be much more difficult and at times impossible if there is a higher concentration/amount of salt in 

the aqueous sample. To mitigate this issue the sample is purified before any phase transfer.  Figure 

4.5 shows the absorbance and luminescence features of the phase transferred Au-MSA and Au-

LA clusters.  
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Figure 4.5. UV visible absorbance and photoluminescence spectra of the Au-MSA (top) in toluene 

and the Au-LA (bottom) cluster in dichloromethane. Absorbance measurements were normalized 

to one at 300 nm. Luminescence spectra were normalized by the absorbance at the excitation 

wavelength of 400 nm. 
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features are basically unaffected by phase transfer for all aqueous clusters tested up to date. This 

includes the previously reported phase transferred clusters including the Au22LA12, Au22SG18, 

and Au25 clusters64-65, 146. Because solvent and/or ion permeation into ligand monolayer is 

anticipated to affect some electrochemical properties, the basic phase transfer results will serve 

as baseline controls for spectroelectrochemistry and time-resolved transient analysis. 

  

Figure 4.6. UV-Vis comparison of aqueous and phase transferred Au-MSA (Left) and Au-LA 

(Right). Absorbance measurements were normalized to one at 300 nm. Luminescence spectra 

were normalized by the absorbance at the excitation wavelength of 400 nm. 
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4.7. The increase in luminescence for the three samples is very similar to what was observed 

when the previously published Au22SG18 nanocluster was phase transferred into organic 

solvents.64 It was noted that this cluster showed an increase to more than 60% after being phase 

transferred with TOA+. Though the MSA and lipoic acid ligands are not as bulky compared to 
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the glutathione attached to the Au22 cluster it is possible a similar rigidifying of the monolayer is 

occurring causing this increase in luminescence. 

  

Figure 4.7. Luminescence comparison of the aqueous and phase transferred Au-MSA (Left) and 

Au-LA (Right). Absorbance measurements were normalized to one at 300 nm. Luminescence 

spectra were normalized by the absorbance at the excitation wavelength of 400 nm. 

 

With the previously published Au22SG18 cluster, the types of organic solvents were also 

explored as a variable to explain this increase in luminescence. It was concluded that the increase 

in luminescence did in fact have some dependence on the solvent64. This was attributed to the 

differences in the dielectric constants for the various solvents. As the dielectric constant 

increased in the solvent the luminescence intensity decreased that is well-known in classic 

organic dyes. To determine the solvent effects on both the Au-MSA cluster and the oxidized Au-

LA cluster, a few different solvents were checked. It was observed that regardless of the solvent 

the absorbance curve for the Au-MSA clusters did not change at all. Luminescence wise there 

were some small changes in luminescence intensity between toluene, acetonitrile, and 

dichloromethane, but with methanol there was a significant drop in the luminescence intensity. 

This is similar to what was seen with the Au22SG18 sample however one main difference is the 

fact the luminescence intensity did not drop much in acetonitrile. This is interesting since 
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acetonitrile has a higher dielectric constant than methanol, yet the luminescence only dropped 

slightly. Compared to glutathione, two factors might have contributed to the differences between 

methanol and acetonitrile: less rigid/structurally hindered ligand structures and likely stronger 

hydrogen bonding. Both would facilitate more significant participation of methanol into the 

ligand monolayer and lower the emission. Figure 4.8 shows the absorbance and luminescence 

spectra in the various organic solvents verses water. 

   

Figure 4.8. UV-Vis and luminescence spectra of the Au-MSA cluster in various organic solvents. 

Absorbance measurements were normalized to one at 300 nm. Luminescence spectra were 

normalized by the absorbance at the excitation wavelength of 400 nm. 

 

 Similar observations were made for the oxidized Au-LA cluster. Again, the absorbance 

curves show little to no change regardless of the solvent used for the measurement. 

Luminescence spectra also show a similar trend where the toluene, dichloromethane, and 

acetonitrile only show small differences between the luminescence intensity in each solvent. It 

was not until the measurement was performed in methanol did a noticeable change in 

luminescence intensity occur. Like with the Au-MSA cluster a drastic decrease in luminescence 

intensity (around 50%) is observed.  Figure 4.9 shows the absorbance and luminescence spectra 

for the Au-LA oxidized sample. These measurements were not performed on the unoxidized 
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form of this clusters. It is already noted that transferring the unoxidized cluster and measuring its 

absorbance in CH2Cl2 caused little to no change, so it is unlikely that any of the other solvents 

would have any major effect on the absorbance. The luminescence also showed the same 

increase in luminescence with the initial CH2Cl2 measurement like the other two clusters. Any 

further changes in intensity should follow similar trends with what is observed for the Au-MSA 

and Au-LA (dialysis) sample. 

  

Figure 4.9. UV-Vis and luminescence spectra of the oxidized Au-LA cluster in various solvents. 

Absorbance measurements were normalized to one at 300 nm. Luminescence spectra were 

normalized by the absorbance at the excitation wavelength of 400 nm. 

 

Further experimentation with different phase transfer agents should also be looked at with 

these two cluster systems. In the case of the Au22SG18 cluster it was noted that varying the 

carbon chain length on the transfer agent had significant effects on the increase in luminescence 

intensity. Longer chain lengths gave way to higher increases while shorter chain lengths gave 

little to no increase in luminescence intensity or for much shorter chains did not even allow for 

the transfer of the cluster from water to toluene. In order to obtain optical measurements using 

these chain lengths cation exchange reactions had to be used to replace the TOA+ with a cation 

such as TMA+. Similar issues involving tetrabutylammonium borate or tetrahexylammonium 
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tetrafluoroborate were observed while trying to use other quaternary ammonium salts to transfer 

the Au-MSA or Au-LA clusters.  

4.2.2 Electrochemical Features 

Electrochemical measurements are what really make the ability to phase transfer the 

aqueous soluble Au-MSA and Au-LA nanoclusters exciting. To get a baseline of what may be 

observed in the smaller potential window, cyclic voltammetry (CV) and square wave voltammetry 

(SWV) measurements were first performed on the samples in water. Figure 4.10 shows the CV 

and SWV for the Au-MSA cluster. Within the smaller potential window without significant water 

redox current, a few redox activities are observed. The main features include a reversible reduction 

feature around -0.8 V. Another pair of redox features at -0.33 V which is very close to where 

oxygen reduction would be seen so it is possible that the purging was not 100% successful. Other 

redox activity includes small oxidation features at 0.6 and 1.1 V along with reduction features at 

0.22 and 0.68 V. To get around this small potential window the cluster was phase transferred and 

dissolved in acetonitrile so a much larger window could be used.     

 

Figure 4.10. CV and SWV of the Au-MSA cluster in H2O. Purging with Ar for 15-30 mins with 0.1 

M NaClO4 as the supporting electrolyte. A 0.2 mm platinum disk working electrode, platinum foil 

counter, and an Ag/AgCl wire were used for all measurements. 
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Like the previously published results on the Au22LA12 cluster, the redox activities of Au-

MSA cluster are better resolved after phase transferring. Oxidation features can be observed in 

CV at more positive potentials, with peak values resolved by SWV at 0.90, 1.12 in oxidation 

scan and 1.40 V 0.90, and 1.14 V in reduction scan. The reduction features in CV have 

respective peaks at -1.26, -0.60 in reduction scan and -1.32, -0.62 in oxidation scan. In particular, 

the redox activities around 1 V are much more prevalent and this is most likely due to the fact 

water is no longer an issue. Assuming the peaks at 0.9 and 1.12 represent the spacing due to 

charging energy, the 0.22 eV is similar to what is seen with other molecular-like gold 

nanoclusters. The HOMO-LUMO gap however is quite a bit larger if calculated using the -1.26 

reduction peak and the 0.90 V oxidation peak. This would give way to a gap of 2.16 V which is 

significantly larger than what has been previously seen with other molecular-like gold 

nanoclusters. This would suggest that the cluster is smaller than the likes of Au22 or Au25. Figure 

4.11 shows the CV and SWV of the phase transferred Au-MSA clusters.  

 

Figure 4.11. CV and SWV for the phase transferred Au-MSA clusters. Purging with Ar for 15-30 

mins with 0.1 M TBAP as the supporting electrolyte. A 0.2 mm platinum disk working electrode, 

platinum foil counter, and an Ag/AgCl wire were used for all measurements. 
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 A concern was that the bromine anion in the phase transfer agent TOABr was 

electrochemically active. A very apparent redox couple can be observed with peaks on the 

oxidation curve at 0.99 and 1.3 V along with peaks on the reduction curve at the same potentials. 

To suppress this issue a more precise phase transfer was performed whenever electrochemical 

measurements were going to be performed. To avoid introducing extra bromine, sub-

stoichiometry amount was used so that not all of the cluster was transferred from the aqueous to 

organic phase. A small amount of cluster was left behind in the aqueous phase with the rationale 

that all the TOA+ would be attached to the cluster and any Br- would be in the aqueous phase. 

This seemed to be quite effective though a much better solution would to be to obtain a transfer 

agent that is not electrochemically active. Figure 4.12 shows the CV and SWV for TOABr in 

acetonitrile for reference. 

 

Figure 4.12. CV and SWV of the TOABr in ACN. Purging with Ar for 15-30 mins with 0.1 M 

TBAP as the supporting electrolyte. A 0.2 mm platinum disk working electrode, platinum foil 

counter, and an Ag/AgCl wire were used for all measurements. 

 

Electrochemical measurements were performed on both the unoxidized and oxidized 

samples in aqueous solution. For the previous Au22LA12 sample the ligand oxidation could be see 

around 1.0 V so it could be expected to see something similar with this cluster due to using the 
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same ligand. The potential window is severely limited in water, but a few redox activities could 

be observed for both samples. For the unoxidized sample, a well-defined feature can be found at 

-0.70 V in the oxidation scan SWV, with a small shoulder at 0.84 V and what looks to be another 

feature at around 1.1 V though it is hard to distinguish due to significant background current 

from water. Assuming these two positive potential peaks are the HOMO and spacing of 260 mV 

can be calculated. The 0.26 eV charging energy is similar to the other molecular-like gold 

nanoclusters tested. In the reduction scan SWV, a defined peak at -0.75 V is observed related to 

the peak at -0.70 V seen in oxidation scan. This reversible electron transfer (about 60 mV 

splitting between ox/red) is apparent in CV despite the significant background current.  The 

broad feature at 0.36 V that looks to have a small shoulder at 0.21 V in both CV and SWV. 

Using the peak at -0.75 V as LUMO, a HOMO-LUMO spacing of 1.59 V is calculated which 

again is in line with other clusters like the various Au25SR18. Figure 4.13 shows the cyclic 

voltammogram and square wave voltammogram for the unoxidized sample.  

 

Figure 4.13. CV and SWV of the Au-LA Cluster in H2O. Purging with Ar for 15-30 mins with 0.1 

M NaClO4 as the supporting electrolyte. A 0.2 mm platinum disk working electrode, platinum 

foil counter, and an Ag/AgCl wire were used for all measurements. 
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The oxidized sample shows similar features though some are slightly shifted. The defined 

reduction peak that was located at -0.7 V is now seen at -0.66 V in oxidation scan SWV. The 

small shoulder at 0.84 V is still located at the same potential though it is now much more 

defined. It is still possible there is an oxidation feature at around 1.1 V but again it is buried by 

high background current. Reduction wise the feature at -0.75 V is now located at -0.70 V. The 

small broad feature at -0.10 V shifted to 0.03 V and the larger broad feature that was at 0.36 V is 

now at 0.47 V and no longer shows the second shoulder. Overall the charging energy and 

HOMO (+0.84V) - LUMO (-0.70V) spacing that can be calculated are very similar compared to 

that of the unoxidized sample. The CV and SWV for the oxidized sample can be seen in Figure 

4.14. 

 

Figure 4.14. CV and SWV of the oxidized Au-LA Cluster in H2O. Purging with Ar for 15-30 mins 

with 0.1 M NaClO4 as the supporting electrolyte. A 0.2 mm platinum disk working electrode, 

platinum foil counter, and an Ag/AgCl wire were used for all measurements. 

 

4.3 Mass Spectrometry 

Previous attempts at using mass spectrometry to determine a composition of clusters in 

aqueous solution were not completely successful. Mostly single-charge smaller fragments were 

observed in the spectrum that were inconclusive to propose a possible molecular composition. 
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With the phase transfer capability, mass spectrometry analysis has been revisited in additional 

solvent systems. Figure 4.15 shows the reoccurring features that were observed when performing 

ESI measurements in a 50:50 water:acetonitrile mixture.  Like previous attempts the main 

features observed are smaller fragments with the largest fragment being that of Au4MSA4
-
 (1384 

m/z). Apparent sodium adducts are also observed throughout the spectrum as 22 m/z spacings. 

This was a persistent problem to deal with regardless of purification methods used. As seen in 

Figure 4.15 a consistent spacing of 116 m/z is noted. This fragment m/z matches the MSA ligand 

without the sulfur atom, so it can be assumed we are losing the bulk of the MSA ligand and 

leaving a sulfur atom attached to the Au4 fragment. This can be followed until on a Au4S4 

fragment is left. Other fragment patterns like this can be observed throughout the lower range of 

the spectrum (not shown).  

 

Figure 4.15. Negative mode ESI of the Au-MSA cluster in 50:50 water:acetonitrile. 

Concentration of the cluster was 1.5 mg/mL.  

 

Since similar results were seen in these new attempts, the phase transferred Au-MSA 

clusters were analyzed to capture either molecular ion or multicharged species that could then be 

used to determine a molecular structure. These measurements were performed in a 50:50 mixture 

of dichloromethane and acetonitrile. No further electrolytes were added into the system. Figure 
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4.16 shows the main observed features from these attempts. Similar to the aqueous experiments 

small fragmentation was observed throughout the spectrum again with the largest fragment being 

that of Au4MSA4
-. However, a few larger fragments with a spacing of 467 m/z are observed past 

the Au4MSA4
- fragment. These were calculated to be the Au4MSA4TOA1

-, Au4MSA4TOA2
-, 

Au4MSA4TOA3
-, and Au4MSA4TOA4

- fragments at 1849.51, 2315.28, 2781.87, and 3548.53 

respectively. Unfortunately, this is again not enough to determine a molecular composition for 

the cluster. Further mass spectrometry experiments including MADLI should be carried out to 

help determine the composition of the cluster.  

 

Figure 4.16. ESI of the Au-MSA cluster in 50:50 dichloromethane:acetonitrile. Sample 

concentration was 1.5 mg/mL. 

 

4.4 Experimental 

4.4.1 Chemicals 

All chemicals (99% or higher) were purchased from Aldrich. Toluene was purchased 

from Fisher-Science, and nanopure water was produced in-house (>18 Mcm-1).   

4.4.2 Instruments 

UV-Vis spectra were recorded with a Shimadzu UV-1700 spectrophotometer. NMR 

spectra were collected with a Bruker NMR 400 MHz spectrometer. Electrochemical 
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measurements were performed on a CH Instruments (CHI 750C) with Picoamp booster in 

Faraday Cage. The solution was generally purged over 15-30 mins with Ar prior to 

electrochemical measurements. The potential of the AgQRE (0.22 V vs. SHE) was calibrated 

periodically by measuring the ferrocene (Fc+/Fc) redox peak at 0.48 V. 

4.4.3 Au-MSA Synthesis 

Synthesis followed a previously published report on the Au-MSA nanoclusters.13 HAuCl4 

was first dissolved in 10 mL of a 1:6 mixture of acetic acid and methanol and mixed with a 20x 

MSA solution dissolved in another 10 mL of the same acetic acid and methanol mixture. The 

MSA was then added to the HauCl4 solution and was stirred until turning colorless. The solution 

was then placed into an ice bath until the temperature equilibrated. Next a freshly prepared ice 

cold solution of 20x NaBH4 in 10 mL of nanopure water was quickly added under rapid stirring 

causing the solution to quickly turn dark. After 3 hours the solution was rotavaped and 

redissvoled into 10 mL of water. The pH of the solution was then lowered to 1 with the use of 

concentrated HCl in order to fully protonate the smaple. Afterwards it was purified by dialysis 

for 3 days using snakeskin dialysis tubing (3500 MWCO, Thermo Scientific). Once purified the 

sample was annealed with 10x MSA for 24 hours at 50oC under mild stirring. The final product 

was then purified using the previous method. 

4.4.4 Au-LA Synthesis 

Synthesis followed a previously report on Au-LA nanolcusters with some slight 

changes25. Lipoic acid was first dissolved in water at a slightly basic pH due to solubility issues. 

The lipoic acids solution was then mixed with HAuCl4 for a final mole ratio of 1.7:1 lipoic acid 

to gold. This was then stirred for 4 hours. A 1x solution of NaBH4 was then quickly added at 

room temperature and the reaction was allowed to react until the luminescence peaked. The 
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crude clusters were then purified by centrifuging with a 3500 MWCO filter or by performing 

dialysis for 3 days using the snakeskin dialysis tubing (3500 MWCO).  

4.4.5 Phase Transfer 

During a typical transfer of the clusters, the Au-MSA is dissolved in 1-2 mL of water. 

Next, 2 mL of toluene is then added on to and an approximate stoichiometry amount of TOABr 

is used so there would be no significant excess TOA+ in solution when performing future 

electrochemical experiments or 1H NMR. A mild shaking was sufficient to fully transfer the Au-

MSA clusters. Afterwards the mixture is allowed to settle in order to re-establish the phase 

boundary so that it is easier to separate out the transferred clusters from the aqueous phase. 

4.5 Summary 

In conclusion, the optical and the electrochemical properties of Au-MSA and Au-LSA (1-

1.7 ratio) clusters were studied in both the aqueous and organic solvents via phase transfer. The 

long carbon chains of the phase transfer agent tetraoctylammonium bromide allowed for the 

quick and easy transferring of the clusters into toluene. Once phase transferred the clusters could 

be dried and redissolved in many different organic solvents. This transfer can also be easily 

reveresed by adding a salt such as sodium perchlorate or potassium chloride in water and shaking 

with the already transferred sample in organic solvent. The process of phase transferring the 

cluster had little effect on the absorbance spectrum, but a significant increase in quantum 

efficiency from 4 to 18% for the Au-MSA and 1% to 10% (centrifuge) and 10% to 14% 

(dialysis) for the Au-LA. Two factors contributed to the increase: the TOA+ helps to rigidify the 

gold core causing a tighter monolayer, and suppression of hydrogen bonding/solvent (with high 

dielectric constant) penetration into monolayer. Electrochemical data was obtained firstly in 

water to see what  redox activites could be observed in the smaller potential window allowed by 
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water. For both samples there were a few redox activies observed. For the phase transferred Au-

MSA sample the concern of the bromide ion being redox active is mitigated by adopting sub-

stoichiometry tranfer, i.e. with less TOABr used and extra clusters un-transferred in aqueous 

solution. In the case of the Au-MSA aqueous electrochemical results the oxidation SWV scan 

showed peaks at -0.8, 0.6, and 1.1 V. Reduction SWV peaks at -0.8, -0.33, 0.22, and 0.68 were 

also observed. The reduction peak at -0.33 is possibly due to oxygen which would mean the 

purging is not 100% effective. Once phase transferred the cluster had quite a few more redox 

activites including peaks at -1.32 , -0.62, 0.90, 1.12, and 1.40 V in the oxidation SWV scan along 

with features at -1.26, -0.6, 0.9, and 1.14 V in the reduction SWV scan. For the Au-LA cluster 

the redox activities of the unoxidized and oxidized samples were studied. For the unoxidized 

sample the oxidation SWV scan had observable peaks at -0.7, 0.84, and 1.1 V with peaks at -

0.75, -0.1, 0.21, and 0.36 in the reduction scan. Some slight shifts in these potentials are 

observed in the oxidized sample with the peaks showing up at -0.66, 0.84, and 1.1 V in the 

oxidation SWV scan and the reduction scan showing peak at -0.7, 0.03, and 0.47 V. 

 

5 SYNTHESIS AND CHARACTERIZATION OF A NEWLY FORMED AG-LA 

NANOCLUSTER 

Like their gold counterparts monolayer-protected silver nanoclusters have proven to be 

an important nanoscale research topic. Due to increased research in the field many new and 

exciting molecular-like and plasmonic clusters have been synthesized. In this chapter a newly 

synthesized Ag cluster is characterized optically and electrochemically. Distinct absorbance 

bands are present at 326, 426, and 500 with a shoulder at 640 nm. Near-IR photoluminescence is 

observed with a peak intensity at 675 nm. This emission is highly pH dependent and heavily 
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affected by oxidation. If purified by dialysis or left in open atmosphere, oxidation on the lipoic 

acid ligand occurs and results in the loss of observable absorbance peaks. This effect can be 

reduced by quickly purging the sample with argon after synthesis. This oxidation was 

characterized by the observation of S=O symmetric and asymmetric stretching bands in FT-IR 

measurements. Like its gold counterparts the cluster can be easily phase transferred into organic 

solvents with the use of TOABr. This transfer does not affect the core structure as the absorbance 

spectrum stays consistent. Electrochemically various redox features can be observed in water 

including a significant ligand oxidation peak. A 1.73 V HOMO-LUMO gap was calculated for 

the cluster. Further work including mass spectrometry is needed to fully characterize the 

composition of the cluster.  

5.1 Background and Research Strategy 

 Noble metal nanoclusters have been heavily studied over the past few decades due to 

their unique optical and electrochemical properties and their definite compositions and 

structures, and the relative stability enabling their use in many applications including biosensing, 

drug delivery, biological imaging, and much more147-151. The research has focused primarily on 

gold nanoclusters due to their superior stability, low cytotoxicity, and high near-IR 

luminescence. Various “magic number” gold nanoclusters are readily made and understood 

including the likes of Au25, Au38, Au130, Au144, and many others12, 27, 31, 72, 74, 138, 152-153. Silver on 

the other hand has taken an overall backseat to its gold counterparts though it remains an 

important piece of noble-metal nanocluster research. One of the major drawbacks was always its 

susceptibility to oxidation and therefore lack of any reliable stability, but this has changed in 

recent years. Another issue with many silver nanoclusters are their cytotoxicity and negative 

impacts on many forms of life including man plants and animals154-157. This however has not 
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stopped the usage of silver clusters in many applications including water treatment, biomedical, 

and many various industries98-101. 

 Early work done on small fluorescent silver nanoclusters by Henglein and Dickson 

allowed for an increased interest in these types of noble metal clusters93-94. Henglein’s work 

included a colloidal silver nanocluster protected by citrate. This was synthesized by irradiating 

the solution over time with a commercial 60Co γ source. While irradiating the solutions a color 

change to yellow and the observation of a plasmon absorption band was noted. The synthesis 

was completed once the plasmon band had stopped increasing. Dickson on the other hand used 

luminescence microscopy and spectroscopy to look at the photoactivated emission for nanoscale 

silver oxide. It was shown that single nanoparticle blinking and emission patters could be 

observed but also large-scale color changes could be seen from the same nanoparticle. Their 

work helped to pioneer the silver nanocluster field early on and increased the interest in 

exploring more of what these clusters could do and be used for. Since then the field has grown 

by leaps and bounds and more and exciting discoveries have been made.  

Several examples of stable, monodispersed Ag nanoclusters were synthesized and 

characterized in and around 2010 that showed these clusters are viable and can as useful as their 

gold counterparts including a single-stage synthesis of glutathione/captopril clusters, a 

superstable 25 kDa cluster, Ag44SR304 supercomplex and a ultrastable M4Ag44(p-MBA)30 cluster 

155, 158-161. These clusters show very particular and intense absorbance spectra and relative lack of 

the need of size sorting leading to an easy synthesis and purification. Due to this the Ag44 cluster 

in particular reported by Anil Desireddy was one of the first Ag clusters where a complete crystal 

structure was determined161. More recently, crystal structures were determined for the Ag23 and 

Ag146 clusters by the Jin group162-163. The Ag146 cluster is particularly interesting as it shows an 
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observable optical band gap and electron dynamics that are power-independent concluding that it 

is molecular-like and not something more plasmonic. Both clusters show distinct optical features 

including multiple absorbance peaks and in the case of the Ag23 cluster near-IR luminescence.  

 In this chapter the previous research done on gold nanoclusters with the use of lipoic acid 

as the protecting ligand is used in the synthesis of a new, stable silver nanocluster with distinct 

absorbance bands and relative high luminescence. One concern with using this ligand however 

was its ability to oxidize readily during purification or even just over time. This could adversely 

affect the silver core due to silver’s own ability to oxidize readily which could decompose the 

cluster and cause concerns with its overall stability. Absorbance and luminesce properties were 

studied in both water and in organic solvents with the use of phase transferring. Like with 

previous samples this was assisted with the use of TOABr as the phase transfer agent. Proton 

NMR characterizations were used to make sure free thiols were removed after purification was 

performed. Due to lipoic acids ability to oxidize, FT-IR was used to determine if the ligand 

would be oxidized and how this oxidation could be prevented. Finally, basic electrochemical 

analysis was performed on the cluster to explore how the silver cluster would react differently 

from its gold counterparts. This again was performed in both water and organic solvents.   

5.2 Results and Discussion 

5.2.1 Optical Characterizations 

The Ag-LA nanocluster was synthesized following a similar method previously published 

for the Au22LA12 cluster25. Briefly, AgNO3 and LA (1:3 ratio) were separately dissolved in 2 mL 

of nanopure water. NaOH was added dropwise to the LA solution in order to get it to fully 

dissolve. Once dissolved it was added to the AgNO3 solution and precipitates immediately 

formed. This was solved by adding in more NaOH dropwise until everything dissolved and a 
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clear solution was obtained. This was allowed to stir for 3 hours at room temperature. Afterwards 

a 5x solution of NaBH4 was added under heavy stirring and the mixture was allowed to react for 

around 4.5 hours, or until the luminescence intensity peaked and leveled out. The end solution 

was then purified by either dialysis or by centrifugation. If centrifuged the final solution was then 

purged with argon and kept in the refrigerator at 4°C for storage. This was done to keep the 

cluster from being oxidized. Figure 5.1 shows the optical features during synthesis and after 

purification with dialysis. 

  

Figure 5.1. UV-Vis and Luminescence spectra for the Ag-LA cluster. Absorbance was 

normalized to at 300 nm and the luminescence was normalized by the absorbance value at the 

excitation (400 nm). 

 

The absorbance spectrum throughout the synthesis shows the formation of three major 

optical bands at 326, 426, and 500 nm with a slight shoulder at 640 nm. The peaks at 426 and 

500 nm and the shoulder at 640 nm occur very quickly during the synthesis (around 30 minutes) 

though the peak at 326 nm doesn’t start to show until around 120 minutes and becomes more 

prominent thereafter. The luminescence observed increases during the synthesis until 270 

minutes and then starts to decline afterwards. These sharp absorbance features are quite similar 

to what was observed with other silver clusters such as the Ag44 and AgSG clusters155, 160-161. The 
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peaks are at different wavelength corresponding to different electronic transition states, so it can 

be concluded that this new cluster is not the same as any of these clusters. Figure 5.2 shows the 

excitation curve for the cluster along with emission curves at each excitation peak. The 

excitation scan looks similar to that absorbance spectrum. This has been noted in other silver 

cluster systems. Overall the emission curves do not show much change other than insignificant 

changes in the intensity. The curve when exciting at 495 nm shows an increased initial baseline. 

If this were to be corrected its increase in intensity would most likely be negated and it would 

fall in line with the other two measurements.  

  

Figure 5.2. Excitation spectrum (left) and emission spectra (right) for the Ag-LA cluster. 

Emission spectra were normalized at each spectrum’s respective excitation wavelength’s 

absorbance value. 

 

Figure 5.3 shows the absorbance values for each of the three main absorbance features 

and luminescence intensity throughout the duration of the synthesis. As seen in the figure the 

peaks at 327, 427, and 498 nm have a linear increase over time and may start to level off towards 

the end of the synthesis.  
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Figure 5.3. Peak absorbance and luminescence values throughout the synthesis. Absorbance 

values are normalized at the 330-minute peak absorbance. Luminescence was normalized at the 

absorbance value of the excitation wavelength (400 nm). 

 

One major challenge is the changes in absorbance and luminescence during the 

purification via dialysis. All absorbance peaks and the photoluminescence diminish nearly 100%. 

The absorbance features becoming less apparent is not hugely surprising as both the previous 

Au22LA12 cluster and Au-LA (1-1.7 ratio) cluster showed a decrease in absorbance features once 

the sample oxidized. What was surprising was the significant decrease in luminescence intensity. 

With previous samples an increase of 4-5 times was seen after purification with dialysis along 

with the oxidation of sulfur on the LA ligands. The results suggest that the oxidation likely 

affects the silver core which had a negative impact on the clusters. To retain the optical features, 

the newly synthesized clusters were directly precipitated with methanol from the reaction 

mixture and then purged with argon to suppress oxygen exposure or oxidation. Figure 5.4 shows 

the effects of argon purging after synthesis. 
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Figure 5.4. UV-Vis and Luminescence spectra after argon purging. Absorbance was normalized 

to at 300 nm and the luminescence was normalized by the absorbance value at the excitation 

(400 nm). 

 

Purging was obviously effective but does seem to have the perfect effect of keeping the 

absorbance features along with keeping a higher luminescence intensity at 100%. The results 

strongly support the hypothesis that oxygen was the root cause that should be better controlled in 

future synthesis and purification. Considering the carboxylic group on the lipoic acid that affect 

the photoluminescence of other clusters, the optical properties were studied under pH variation. 

PBS buffers at different pHs were used to check the absorbance and luminescence spectra. 

Figure 5.5 shows the absorbance and luminescence spectra at the different pH values. The 

emission intensity is higher at higher pHs, about twice at pH 9.0 compared to pH 6.5. This 

significant increase is quite surprising as only small increases toward more basic pH have been 

noted with Au LA clusters. Small shifts in the luminescence peak wavelength can also be 

observed though they are minor. In the absorbance spectra small differences can be noted in the 

height of the peaks, but overall the curvature and shape are similar.  In PBS pH 3.5 (results not 

shown), a significant increase in the baseline of the absorbance measurement corresponding to 

the sample precipitation in the lower pH. 
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Figure 5.5. Absorbance and luminescence spectra at different pH values. Absorbance was 

normalized to at 300 nm and the luminescence was normalized by the absorbance value at the 

excitation (400 nm). Each sample was prepared by taking 50 uL of a bulk solution and diluting 

with 3 mL of each PBS buffer.  

 

 Like with other cluster samples the ability to phase transfer this cluster was explored to 

enable analysis in organic solvents. The sample was transferred similarly to all of the previous 

gold nanolcusters. The Ag- LA was first dissolved in water and toluene was added on top. To 

this 0.01 M TOABr was added in 100 uL increments until almost all of the sample was 

transferred. A small amount of sample was left in the aqueous phase to avoid introducing excess 

TOABr in the organic solution. Once the phase boundary is re-established after mixing/transfer, 

the organic phase was collected by pipetting away from the aqueous phase. The sample could 

then be dried and redissolved in various organic solvents as needed. This process took under 10 

minutes, so a slight oxidation could affect future measurements. Figure 5.6 shows comparison of 

the absorbance and luminescence spectra in water and toluene. 
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Figure 5.6. Comparison of UV-Vis and luminescence spectra in water and toluene. Absorbance 

was normalized to at 300 nm and the luminescence was normalized by the absorbance value at 

the excitation (400 nm). 

 

The absorbance spectra of the Ag-LA clusters showed little to no change after phase 

transferring into toluene. This is similar to what is seen in previously transferred samples. The 

luminescence on the other hand is quite different compared to the transferred gold clusters. One 

difference is there is no major increase in luminescence intensity and in fact an overall decrease 

is observed. This could be due to the fact the sample may have oxidized before and during the 

transfer process. Also, it is possible that the silver core is not as affected by the rigidifying of the 

monolayer compared to the previously transferred gold clusters. The biggest difference however 

is the major red shift and overall broadening that is seen in the luminescence after the transfer. 

Little to no shift in the luminescence peak was noted in any of the gold clusters so this shift is 

quite interesting and requires further investigation.  

5.2.2 IR Characterizations 

The IR characterizations of the centrifuged sample (un/less oxidized), centrifuged sample 

after exposure to air over a week (oxidized), and the fully oxidized sample (over 3 days dialysis) 

are shown in Figure 5.7. Not surprisingly this new Ag-LA sample display similar features that 
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were seen with the previously published. Like with the Au22 sample two peaks that match up 

closely with the S=O symmetric and asymmetric stretching bands in alkysulfonic acid/sulfonate 

species (1042 cm-1 and 1179 cm-1) show up slightly in the oxidized centrifuge sample and are 

apparent in the sample that underwent dialysis. For the Ag-LA sample these peaks show up at 

1043 cm-1 and 1177 cm-1 and are represented by a dashed line in Figure 5.5. It can be concluded 

that like with the Au22 sample some of the sulfur atoms are being oxidized during dialysis and 

can slowly oxidize if the sample is used and not again purged with argon after use. The purging 

does seem to be effective in controlling this oxidization as the purged and sealed Ag-LA sample 

did not show any signs of these two features. Another concern that can be removed is if one of 

the sulfurs during synthesis is reduced into a thiol instead of actually attaching to the Ag core. 

This concern is negated by the fact that S-H stretching which would appear around 2500 cm-1 is 

not seen in the any of the IR spectrums so it can be concluded that this process is not happening. 

The three peaks to the left of the 1177 cm-1 peak (1642, 1550, and 1405 cm-1) are due to carbonyl 

stretching and asymmetric/symmetric carboxylate stretching. Finally, the peak around 1000 cm-1 

is related to synthetic byproducts such as boronic species or excess ligands. Most likely the 

sample was not fully purified before taking the measurement. 
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Figure 5.7. IR Spectra for the Unoxidized, Oxidized, and Dialysis Ag-LA samples. 

 

5.2.3 Electrochemical Characterizations 

Aqueous electrochemical measurements were performed on the unoxidized sample using 

0.1 M NaClO4 as the supporting electrolyte. A potential window of -1.2 to 1.2 V was used to 

avoid significant background water splitting current signal. Figure 5.8 shows the full potential 

range CV for the unoxidized sample. Some similar features that were observed with previous 

Au-LA clusters were noticeable including an obvious ligand oxidation peak. This feature was 

slightly shifted less positive to 0.8 V and looks to be slightly reversible as a small peak can be 

observed at 0.81 V in reduction scan SWV. Other features in oxidation scan SWV include peaks 
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at  -0.82, 0.12, and a small shoulder at 1.06 V. The features at -0.93 and -0.09 in reduction scan 

are most likely correlated with the oxidation features at -0.82 and 0.12 V. The redox activities 

around zero V, irreversible oxidation in CV and the 0.12/-0.09 peaks in SWV, is postulated to be 

irreversible oxidation at Ag-S interface that needs to be confirmed. Using the +0.80 V oxidation 

and -0.93 reduction peaks, a spacing of 1.73 V can be calculated for the HOMO-LUMO spacing. 

This spacing is in line with a calculated optical gap using the UV-Vis measurement. 

 

Figure 5.8. CV and SWV of the Ag-LA unoxidized cluster in water. Purging with Ar for 15-30 

mins with 0.1 M NaClO4 as the supporting electrolyte. A 0.2 mm platinum disk working 

electrode, platinum foil counter, and an Ag/AgCl wire were used for all measurements. 

 

Measurements using a limited potential window of -1.2 to -0.4 V and -0.4 to 1.2 V 

respectively were also performed to see if any of the peaks relied on other oxidation/reduction 

processes. By limiting these potential windows, it was observed that most of the main features 

seem to be independent of one another. The oxidation/reduction features in the positive potential 

range still appear if the window is limited to -0.4 V. The redox activities in the negative potential 

range are still observed if the positive oxidation features are not activated though they do appear 

to less prominent. Figure 5.9 shows the limited window CVs for the positive and negative 

potential ranges.  
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Figure 5.9. Limited potential window CVs for the Ag-LA cluster in water. Purging with Ar for 

15-30 mins with 0.1 M NaClO4 as the supporting electrolyte. A 0.2 mm platinum disk working 

electrode, platinum foil counter, and an Ag/AgCl wire were used for all measurements. 

 

 Electrochemical characterizations of the most oxidized dialysis sample are shown in 

Figure 5.10. The voltammograms between the unoxidized and oxidized samples are quite similar 

with features including a noticeable ligand oxidation feature and a noticeable reduction feature in 

the negative potential range. The irreversible oxidation near zero is almost absent, consistent 

with the pre-oxidation during purification or sample preparation. Accordingly, the reduction 

around -0.03 V becomes more distinct. Overall major differences in the electrochemical data was 

fully expected due to the previous results in the Au-LA (1-1.7 ratio) sample. For that cluster, 

only minor differences were noted including a slight intensity change involving the ligand 

oxidation peak.  
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Figure 5.10. CV and SWV of the oxidized Ag-LA cluster in H2O. Purging with Ar for 15-30 mins 

with 0.1 M NaClO4 as the supporting electrolyte. A 0.2 mm platinum disk working electrode, 

platinum foil counter, and an Ag/AgCl wire were used for all measurements. 

 

The main features in oxidation scan SWV can be observed at -0.88, -0.54, -0.37, and 0.75 

V. The features in reduction scan SWV can be observed at -0.91, -0.04, and 0.76 V. A few main 

differences including the two new reduction features at -0.54 and -0.37 V along with the missing 

oxidation feature at 0.12 V and 1.06 V. The other main difference is a shift slightly less positive 

of the ligand oxidation. The unoxidized sample shows the peak at 0.8 V where as for the 

oxidized sample this peak has moved to 0.75 V for a 50 mV difference. This is not a huge shift 

but something to keep mind. The peak is also not as strong which is not a huge surprise since this 

sample should be fully oxidized at this point. This small shift also slightly effects the calculated 

HOMO-LUMO spacing as now it would be 1.66 V.  

5.3 Experimental 

5.3.1 Chemicals 

All chemicals (99% or higher) were purchased from Aldrich. Toluene was purchased 

from Fisher-Science, and nanopure water was produced in-house (>18 Mcm-1).   
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5.3.2 Instruments 

UV-Vis spectra were recorded with a Shimadzu UV-1700 spectrophotometer. NMR 

spectra were collected with a Bruker NMR 400 MHz spectrometer. Infrared spectra were 

acquired on a PerkinElmer Spectrum 100 FT-IR spectrometer. Electrochemical measurements 

were performed on a CH Instruments (CHI 750C) with Picoamp booster in Faraday Cage. The 

solution was generally purged over 15-30 mins with Ar prior to electrochemical measurements. 

The potential of the AgQRE (0.22 V vs. SHE) was calibrated periodically by measuring the 

ferrocene (Fc+/Fc) redox peak at 0.48 V. 

5.3.3 Ag-LA Synthesis 

AgNO3 and LA (1:3 ratio) were separately dissolved in 2 mL of nanopure water. A 0.5 M 

NaOH solution was then added dropwise to the LA solution until the LA solution became clear. 

The LA solution was then added to the AgNO3 solution and precipitates immediately formed 

after brief stirring. Additional 0.5 M NaOH solution was added dropwise until everything 

dissolved and a clear solution was obtained. This solution was mixed under mild stirring for 3-4 

hours at room temperature. Next a 5x solution of NaBH4 was dissolved in 2 mL of nanopure 

water and added under rigorous stirring. This new solution was then allowed to react until the 

luminescence intensity peaked and leveled out. This end solution was then purified by either 

dialysis or by centrifugation. In dialysis, a 3500 MWCO dialysis tubing was used for 3-4 days. 

The water was changed out every 4-6 hours during this time. If the sample was centrifuged the 

bulk solution was dried down to around 1 mL. This was then precipitated with the addition of 

methanol and centrifuged to pull out any excess thiols from the precipitates. This was done 3-4 

times and the final precipitates were collected by dissolving in water. This final solution was 
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then purged with argon and stored in the fridge. This was done to keep the cluster from oxidizing 

and to keep the optical features as consistent as possible. 

5.3.4 Phase Transfer 

During a typical transfer of the clusters, the Ag-LA is dissolved in 1-2 mL of water. Next, 

2 mL of toluene is added on top and an approximate stoichiometry amount of TOABr is used so 

there would be no significant excess TOA+ in solution when performing future electrochemical 

experiments or 1H NMR. A mild shaking was sufficient to fully transfer the Ag-LA clusters. 

Afterwards the mixture is allowed to settle in order to re-establish the phase boundary so that it is 

easier to separate out the transferred clusters from the aqueous phase. 

5.4 Summary  

In summary, a new Ag-LA cluster has been synthesized and its optical and 

electrochemical properties have been characterized. Optically it has 3 absorption peaks at 326, 

426, and 500 nm with a slight shoulder at 640 nm, along with an optical band gap of xx. These 

features occur very quickly during the synthesis and the synthesis is stopped normally at around 

4.5 hours when (immediately before) a drop in the luminescence intensity is noticed. Two 

purification routes have been adopted. One is by using dialysis over a period of three days. This 

route gives way to a significant drop in luminescence intensity as well as a total loss of the 

absorbance features. The loss in absorbance features can be contributed to the oxidation during 

dialysis as this has been noted in the previously synthesized Au22LA12 cluster. Purifying the 

sample with the use of centrifugation and methanol while then purging with argon afterwards is 

much more effective at retaining the absorbance features as well as keeping a higher 

luminescence intensity. This is most likely due to the suppression of gradual oxidation by 

oxygen. Overall the proton NMR looks very similar to that of the Au22LA12 and Au-LA (1-1.7) 
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clusters. IR spectra help to conclude that like with the Au clusters the lipoic acid goes through an 

oxidation process during dialysis. This can be concluded with the fact that bands can be observed 

at 1045 and 1177 cm-1 which are very similar to those seen with the S=O symmetric and 

asymmetric stretching bands in alkysulfonic acid/sulfonate species. Electrochemically the sample 

does show some redox activities throughout the potential window afforded by water. In the 

unoxidized sample a large ligand oxidation peak is observed along with some smaller features. 

As the sample is oxidized this peak does seem to decrease as shown in the oxidized samples CV 

and SWV. Further structural work will be needed before any compositional conclusions can be 

made. 

6 CONCLUSIONS AND MAJOR DISCOVERIES 

In conclusion, the work reported in this PhD dissertation focused on the optical and 

electrochemical characterizations of monolayer-protected noble metal nanoclusters. Specifically, 

the ability to phase transfer aqueous soluble clusters into organic solvents enables the 

observation under broader conditions to better understand their properties. By using TOABr as a 

phase transfer agent the Au22LA12, Au-MSA, Au-LA (1-1.7 ratio), and Ag-LA clusters were 

easily phase transferred into various organic solvents. Optically this transfer showed little to no 

change in the absorbance features of all of the nanoclusters. This would imply that no major core 

rearrangement was occurring during the phase transfer. With regards to the photoluminescence 

all gold clusters showed a significant increase in the emission intensity when transferred. The 

Ag-LA cluster was different in this regard as a slight decrease was noted though this could be 

due to the quick oxidation of the silver core. Another advantage given by this phase transfer is 

the ability to use a much large window for electrochemical analysis. Water has a very small 

potential window and because of this many redox activities could not be resolved. Transferring 
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into organic solvents such as acetonitrile increases the potential window substantially which 

enables the observations of redox activities that went unseen or were poorly defined in water. 

The one challenge is the Br- counterion for TOA+. This is electrochemically active, so care must 

be taken to ensure that it does not interfere in any measurements. Further work could be done 

with other transfer agents to see how they affect the optical features and if one could be used that 

would be electrochemically inactive. 

Separately, a complete energy diagram was proposed for the Au130(p-MBT)40 cluster 

synthesized by the Jin group. Electrochemical analysis along with spectroelectrochemical 

changes were used to aid in the piecing together of where the absorbance features come from and 

how the various energy states are aligned. The newly resolved spectroelectrochemical features 

and increasing/decreasing of the steady state absorbance bands during oxidation/reduction agreed 

with the ESA and GSB bands observed during ultrafast measurements.   
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