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REMEMBERING MORE THAN MET THE EYE: ASSESSING THE MECHANISMS 

UNDERLYING VISUAL BOUNDARY EXTENSION IN HUMANS (HOMO SAPIENS), 

RHESUS MONKEYS (MACACA MULATTA), AND CAPUCHIN MONKEYS (CEBUS 

APELLA) 

by 

BRIELLE JAMES 

Under the Direction of Michael Beran, PhD 

 

ABSTRACT 

Humans have been shown to falsely remember seeing the details just beyond the edges of 

a pictured scene. This constructive memory error is known as boundary extension. Either the 

traditional visual-cognitive model or the multisource model, which differ in their distinction 

between scene perception and representation, can explain boundary extension. Five experiments 

assessed boundary extension in humans (Homo sapiens), rhesus monkeys (Macaca mulatta), and 

capuchin monkeys (Cebus apella) using identical and equivalent delayed match-to-sample tasks. 

The present study replicated boundary extension in human adults. However, neither monkey 

species demonstrated boundary extension when viewing human-unique or monkey-relevant 

scenes. Unlike humans, monkeys may not have demonstrated boundary extension because they 

are local visual processors. This would have limited their view of the stimuli as scenes, allowing 

them to rely on direct visual input. This species discontinuity reflects the potentially human-

unique qualities of boundary extension. 

 

INDEX WORDS: Boundary extension, Scene perception, Multisource model, Rhesus monkeys, 

Capuchin monkeys  
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1 INTRODUCTION  

Human vision is graded in nature, with visual acuity decreasing dramatically outside of 

the foveal region in the center of the visual field. As a result, accurate scene perception requires 

shifts in eye movement to reposition the fovea approximately three to four times per second 

(Rayner, 2009). In addition, whenever the eyes are moving (known as a saccade), vision is 

suppressed (known as saccadic suppression; Matin, 1974). However, despite these limitations, 

humans perceive a comprehensible and continuous world. The question of how this is achieved 

has long intrigued vision and cognition researchers (e.g., Davidoff, 1975; Gibson, 1950; Gordon, 

2004; Hering, 1868/1977), including those who study perception across species and are 

interested in understanding the evolutionary foundations of human visual perception (Lazareva, 

Shimizu, & Wasserman, 2012). 

Scene perception research has repeatedly demonstrated that humans are able to 

meaningfully perceive the surrounding world very quickly. In as little as one eye fixation, 

observers can identify complex views (e.g., drawings or photographs) by general categories (e.g., 

‘ocean scene’) or words (e.g., Biederman, 1972; Biederman, Mezzanotte, & Rabinowitz, 1982; 

Potter, 1976), as well as describe them (Intraub, 1981). The specific time frame for scene 

classification has been identified to be within about 100 ms of picture onset (Davenport & Potter, 

2004; Fei-Fei, Iyer, Koch, & Perona, 2007; Intraub, 1981; Potter, 1976; Vo͂ & Henderson, 2010). 

Data from event-related potentials during a categorization task with rapid serial visual 

presentation (RSVP) of the photographs indicated identification of the scenes’ category occurred 

150 ms after initial picture exposure (Thorpe, Fize, & Marlot, 1996), providing additional 

evidence of the rapidity of scene identification.  
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Nonhuman primates also quickly and accurately categorize objects (Vogels, 2012). 

Research with rhesus macaques has shown that they are able to distinguish stimuli from different 

categories and transfer their learning to categorization of new stimuli, which is evidence of 

concept formation for the categories (e.g., animals vs. non-animals and food vs. non-food, Fabre-

Thorpe, Richard, & Thorpe, 1998; trees vs. non-trees and fish vs. non-fish, Vogels, 1999; 

monkeys vs. non-monkeys, Yoshikubo, 1985). For example, using a rapid visual categorization 

task, Fabre-Thorpe et al. (1998) trained two rhesus macaques to discriminate photographs based 

on visual concepts, classifying food vs. non-food or animal vs. non-animal. Once the task was 

learned, monkeys demonstrated categorization of 200 novel images with high accuracy (90.5% 

for foods and 84% for animals). Their performance was compared to performance of humans 

tested with the same new stimuli and similar errors were made across species, suggesting similar 

categorization strategies. As in human categorization, monkeys performed these categorizations 

within one eye fixation (the target image was flashed for only 80 ms) and very quickly, on 

average between 250 and 350 ms. Monkeys’ ability to categorize stimuli that they had never seen 

suggests they developed a mental representation of the target category as a concept. Other 

species of monkeys and animals also can discriminate between stimuli of different categories and 

apply mental schemas for these concepts to new stimuli (e.g., capuchin monkeys, D’Amato & 

Van Sant, 1988; squirrel monkeys, Roberts & Mazmanian, 1988; stump-tailed monkeys, Schrier, 

Angarella, & Povas, 1984; see Zentall, Wasserman, Lazareva, Thompson, & Rattermann, 2008, 

for a review). 

Abstract stimuli also can be categorized into explicit and implicit categories by capuchin 

monkeys (e.g., Smith et al., 2012b) and rhesus macaques (e.g., Smith, Beran, Crossley, Boomer, 

& Ashby, 2010). Rhesus macaques, along with humans, can generalize knowledge of these 
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abstract categories to novel stimuli (e.g., Smith et al., 2015; Zakrzewski, Church, & Smith, 

2018). The results of these studies highlight the abstract mental representations that can be 

learned by nonhuman primates (Vogels, 1999). These mental concepts that developed to 

organize and interpret the presented stimuli into categories are evidence of schemas in nonhuman 

cognition. 

Human recognition memory for rapidly identified pictures (presented in the absence of 

any masks) is generally poor (e.g., Intraub, 1981; Potter, 1976). However, if attention is shifted 

to some pictures of an RSVP sequence and not others (Intraub, 1984) or to a primary task (Lin, 

Pype, Murray, & Boynton, 2010) then memory improves for some of the briefly presented 

pictures in the sequence. Recognition memory for these pictures, however, does not last for long, 

with even a 1.4 second delay to an immediate recognition test having resulted in a decline in 

memory performance for a set of five pictures (Potter, Staub, Rado, & O’Connor, 2002). Thus, 

while visual perception and processing is complex and swift, the information that is perceived is 

quickly vulnerable to retrieval error. 

1.1 Memory Errors 

1.1.1 Errors of Omission 

In addition to studies of picture recognition memory, memory researchers have also 

studied humans’ ability to remember a picture’s details. Errors in memory for picture details 

typically occur for long-term memory. However, change blindness (the failure to detect visual 

changes to an object or scene across brief interruptions; Simons & Levin, 1997; Simons & 

Rensink, 2005) highlights the fragility of detail retention even for extremely brief retention 

intervals. Using the flicker paradigm, Rensink, O’Regan, and Clark (1997) repeatedly presented 

alternating photographs of a real-world scene and a modified version of that scene to participants 
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for 240 ms each. Between the photographs, a blank screen was presented for 80 ms, creating a 

flickering appearance to mimic eye movements without requiring a change in fixation location 

(Simons & Levin, 1997). Under these conditions, observers struggled to identify the single 

change that had been made to the scene, even after repeated presentation. For some images, 

nearly a minute of alternations was required by observers for them to detect what had changed in 

the image. However, with the blank screen removed, changes were detected in less than one 

second on average. Similarly, a verbal cue of the change prior to stimuli presentation also 

produced significant improvement in observers’ change detection.  

This error of omission brought into question how much detail is retained between eye 

movements in visual memory representations. Rensink (2000; Rensink et al., 1997) proposed 

that without focused attention visual change was not perceived because observers do not 

maintain detailed visual scene representations in short-term memory that can be used to make 

comparisons across saccades and other similarly brief time intervals. However, visual memory 

theory (Hollingworth, 2006; Hollingworth & Henderson, 2002) provides an alternative 

explanation that identifies limits in attention, not representation detail, as the reason for change 

blindness. Other researchers (e.g., Hochberg, 1986, as cited in Intraub, Gottesman, Willey, & 

Zuk, 1996; O’Regan, 1992; Simons & Levin, 1997) have also argued that internal visual 

representations may lack much detail. In addition, research demonstrating the large capacity of 

human recognition memory (e.g., more than 2,000 photographs; Standing, Conezio, & Haber, 

1970) also makes evident that this memory was not reliant on the precise visual details of the 

images. Stimuli were mirror-reversed at test without significant detriment to observers’ 

recognition performance.  
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On the other hand, some studies (e.g., Intraub, 1980; Konkle, Brady, Alvarez, & Oliva, 

2010) have provided evidence of accurate memory for specific visual details under difficult 

conditions, suggesting that details are normally retained in scene representations. For example, 

Intraub (1980) demonstrated that photographs presented briefly (110 ms) using an RSVP 

paradigm with varied inter-stimulus intervals (4,890 ms; 1,390 ms; 620 ms; 385 ms; 0 ms) could 

elicit recognition memory for photos’ visuospatial orientation (assessed with reversal detection) 

at proportions better than chance when the inter-stimulus interval was at least 1,390 ms. More 

recently, observers have been shown to distinguish previously seen images and novel images 

from the same scene category in a recognition memory test, even after having studied categories 

with up to 64 other exemplar scenes and with approximately 3,000 images and 130 scene 

categories in memory at test – evidence that a sufficient amount of detail in addition to scene 

category is retained during scene perception (Konkle et al., 2010). This contradictory evidence 

makes it unclear just how much detail is held in visual scene representations during perception at 

different stages. 

1.1.2 Errors of Commission 

When thinking of failures in memory, errors of omission often first come to mind. 

However, errors of commission also are seen, in which details, words, or events that were never 

experienced are falsely remembered as having occurred. For example, false memories can be 

induced during list learning, resulting in participants “remembering” words that were never 

presented to them. Roediger and McDermott (1995) presented participants with lists of words to 

be studied, where each list had several words closely associated to a critical, non-presented word 

(e.g., “sleep” was a critical non-presented word for a list that included “bed,” “rest,” and 

“awake”). During the following free recall and recognition memory tests, this non-presented 
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word was frequently falsely included as having been on the list, and often was reported with high 

confidence. Similarly, short sentences can elicit false memories for the compound sentences that 

are created if they were to be combined, despite these longer sentences not having been 

presented (Bransford & Franks, 1971). Items not included in photographs of stereotypical scenes 

are also later falsely recognized (Miller & Gazzaniga, 1998) – evidence that false memories 

related to schematic knowledge can be created as well. 

In addition to word and sentence associations, schemas can lead to commission errors in 

human memory. Schemas are a set of organized expectations, forming mental concepts of 

objects and events, that are involved in information processing, storage, and retrieval (Lewis & 

Durrant, 2011; Taylor & Crocker, 1981, as cited in Tuckey & Brewer, 2003; Tuckey & Brewer, 

2003) and have implications for eyewitness memory of events, story recall, deductive inferences, 

and education (Greenberg, Westcott, & Bailey, 1998; Tse et al., 2007; Tuckey & Brewer, 2003). 

These “frameworks” for knowledge (Tse et al., 2007) develop from abstractions of newly 

encoded information (Kumaran, Summerfield, Hassabis, & Maguire, 2009; Lewis & Durrant, 

2011) that explain the relations between similar objects or events (e.g. chihuahuas and Great 

Danes are both dogs, with “dogs” being the mental schema in this example; Kumaran et al., 

2009). As new information is learned it is integrated into schemas (Dumay & Gaskell, 2007; 

Loftus, 1996; Tamminen, Payne, Stickgold, Wamsley, & Gaskell, 2010), especially when it is 

compatible with an already existing schema (Kumaran et al., 2009; Lewis & Durrant, 2011; Tse 

et al., 2007). Schemas can even be learned for abstract dot-patterns made from variations of 

prototypes (e.g., Posner & Keels, 1970). During integration, the details of a memory can 

sometimes be distorted to fit the existing schema (Lewis & Durrant, 2011), resulting in false 

memories. For example, Tuckey and Brewer (2003) presented witnesses with ambiguous 
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information. Witnesses interpreted this information using their schemas, resulting in schema-

consistent false memories and reduced accuracy as a result of the underlying schema supporting 

the “true” events (Loftus, 1996). During a recognition task of ambiguous shapes with or without 

disambiguating labels, older adults (60 to 75 years old) especially showed more false recognition 

of related lures when semantic schemas were activated by the presence of labels (Koustaal et al., 

2003). In addition, some of the categories studied had larger numbers of exemplars than others, 

resulting in higher rates of false recognition, presumably because of the more salient perceptual 

or conceptual schema for the items elicited during the study phase compared to categories for 

which only one item was presented. In the same study, older adults also showed higher false 

recognition of concrete objects (e.g., bed, candle) than abstract objects (e.g., pictures of abstract 

art), further demonstrating the role of schemas and conceptual representations in false memories. 

Schacter, Verfaellie, and Anes (1997) reported a distinction between conceptual false recognition 

and perceptual false recognition. Participants were presented with conceptually and perceptually 

related words (e.g., funnel and twister, related to the conceptual lure “tornado,” and hate and late, 

related to the perceptual lure “fate”). False recognition was seen more for conceptually related 

words than perceptually related words, and with higher levels of confidence. Similarly, older 

adults (63 to 75 years old) have shown a tendency to rely on conceptual and/or perceptual 

similarity when tested on a recognition memory test for colored pictures (Koustaal & Schacter, 

1997). This reliance on the similarity of studied pictures impacted adults’ recognition of the 

unrelated items that they had previously studied. Like Koustaal et al. (2003), Koutstaal and 

Schacter (1997) also reported an effect of category size on false recognition, where falsely 

recognized lures were more frequent for larger categories. Constructive memory errors in picture 
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memory, however, would not be expected under simple conditions, but research on boundary 

extension has demonstrated otherwise. 

1.2 Boundary Extension 

In studies of boundary extension (e.g., Intraub, Bender, & Mangels, 1992; Intraub & 

Richardson, 1989), participants are presented with a target image, typically a photograph or 

drawing of a scene (i.e., one or more objects placed within a larger, continuous spatial 

background), and they usually remember seeing parts of the image just beyond the edges of the 

pictured scene that were not originally visible. Participants’ memory of the scenes is typically 

assessed by having them draw the target image from memory or rate whether a second 

photograph or drawing of the same scene (which is presented with either the same or a different 

viewpoint as the target image) has a closer viewpoint, the same viewpoint, or a more wide-angle 

viewpoint than the original image. When reporting on their memory for the viewed scenes, 

participants often draw the images with information that likely would have been present if the 

original boundaries of the scene had been extended outward slightly (e.g., more grass around an 

object on the lawn or the continuation of fencing in the background; see Figure 1.1). Similarly, 

when rating probe photographs or drawings, observers usually rate images with a more wide-

angle view (i.e., a more “zoomed out” viewpoint) as being the same as the original image more 

often than they do for more close-up (“zoomed in”) views. Together, these responses indicate 

that participants falsely remember seeing the target image with more information than was 

presented. The information just outside the boundaries of the actual view was incorporated into 

their memory for the scene, distorting the location of the view’s boundaries.  
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Figure 1.1 Examples of boundary extension.  

The top row depicts close-up target images viewed by participants, with the participants’ 

drawings from memory of those same scenes below. Boundary extension is seen in the drawings 

by the continuation of each scene at each edge compared to the close-up images. Images in the 

left column are from “Wide-Angle Memories of Close-Up Scenes,” by H. Intraub and M. 

Richardson, 1989, Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 

p. 182. Images in the right column are from “Boundary Extension for Briefly Glimpsed 

Photographs: Do Common Perceptual Processes Result in Unexpected Memory Distortions?” 

by H. Intraub, C. V. Gottesman, E. V. Willey, and I.J.  Zuk, 1996, Journal of Memory and 

Language, 35, p. 124. 

 

 Since the first formal test of boundary extension (Intraub & Richardson, 1989), 

subsequent studies have revealed a specific diagnostic pattern indicative of the phenomenon 

(e.g., Hubbard, Hutchison, & Courtney, 2010; Intraub, 2010; Intraub & Dickinson, 2008). When 

no change is made between the target and probe images for an originally close-up view, 

participants usually rate the probe image as more close-up than the target image. The target 

image is remembered with extended boundaries, and as a result the close-up view is thought to 
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show less of the original image. However, when no change is made from a wide-angle view there 

is little or no directional error seen in participants’ ratings. When the target and test pictures do 

not match in viewpoint (i.e., truly showing less or more of the scene in the test picture) a 

distractor image rating asymmetry is seen. When less of the scene is shown in the test picture 

(i.e., a wide-angle target is followed by a close-up probe), the difference between the images is 

easily detected as being more close-up in view. However, when more of the image is shown in 

the test picture (i.e., a close-up target is followed by a wide-angle probe), the images are more 

often thought to be the same or rated as more similar. As a result, a smaller range of differences 

in the rating of test images is seen for this trial type than when less of a scene is shown at test. 

The typical response pattern (that boundary extension is larger for close-up views than 

wide-angle views) is also seen when a medium-angle view is included in the stimulus set, with 

boundary extension for the medium-angle view dependent on whether it is the more close-up or 

wide-angle view relative to the other picture(s) (Intraub et al., 1992). When presented with a 

more close-up view, boundary extension was not seen for the medium-angle view, but when the 

medium-angle view was presented with a more wide-angle view, the medium-angle view led to 

boundary extension, while the wide-angle view did not. When all three views were presented 

together, after a 48-hour retention interval, only the close-up and medium-angle views resulted in 

boundary extension, with accurate memory reported for wide-angle views. In the original test of 

boundary extension, Intraub and Richardson (1989) used a large number of pictures, ample 

stimulus presentation time, and rather long retention intervals. However, boundary extension has 

since been demonstrated under a variety of conditions not expected to generate false memories. 
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1.2.1 Previous Research of Boundary Extension 

Even in the absence of large stimulus sets, boundary extension has been demonstrated. 

Several studies have shown evidence of boundary extension despite low memory loads of only 

one to three pictures presented per trial (e.g., Bertamini, Jones, Spooner, & Hecht, 2005; 

Dickinson & Intraub, 2008; Intraub et al., 1996; Intraub, Daniels, Horowitz, & Wolfe, 2008; 

Intraub & Dickinson, 2008; Intraub, Hoffman, Wetherhold, & Stoehs, 2006; Kreindel & Intraub, 

2017; Seamon, Schlegel, Hiester, Landau, & Blumenthal, 2002). Most interesting in relation to 

the present study is the occurrence of boundary extension even when only one target image was 

presented at a time, and participants commented on their memory for the item immediately after 

its presentation and before the next target image (e.g., Beighley & Intraub, 2016; Intraub et al., 

2006, 2008; Intraub & Dickinson, 2008; Kreindel & Intraub, 2017; Seamon et al., 2002). 

Explicit instructions to pay close attention to the test images’ background and main 

objects or its boundaries also do not eliminate the presence of boundary extension from memory 

(e.g., Gagnier, Dickinson, & Intraub, 2013; Intraub & Bodamer, 1993; Intraub & Richardson, 

1989). Intraub and Bodamer (1993), for example, informed some participants of the nature of the 

drawing and rating tasks prior to viewing the target images (test-informed condition), as well as 

demonstrated the boundary extension effect to other participants and instructed them to avoid the 

memory error during study and later memory reports (demo condition). However, when 

compared to the control condition (standard task instructions), boundary extension was observed 

across all conditions for both tasks. Although participants in the test-informed and demo 

conditions displayed reduced boundary extension during the drawing task, as well as reduction 

during the rating task only for the test-informed condition, levels of boundary extension in both 

groups across tasks were still significantly different from control conditions. Gagnier et al. 
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(2013) also found a reduction, but not elimination, of boundary extension during boundary rating 

and border adjustment tasks for test-informed participants. 

Boundary extension also has been demonstrated in humans across the lifespan. Recently, 

Kreindel and Intraub (2017) have reported observations of boundary extension in preschool 

children (4 to 5 years old) and adults (18 to 21 years old) using a drawing and forced-choice 

immediate recognition memory task. Seamon et al. (2002) observed boundary extension in 

young children (5 to 7 years old), adolescents (10 to 12 years old), young adults (18 to 21 years 

old), and older adults (58 to 84 years old) using a drawing task and single picture stimulus 

presentations. Similarly, Chapman, Ropar, Mitchell, and Ackroyd (2005) reported boundary 

extension during a magnification adjustment task (in which probe images were zoomed in or out 

by the participant to match their remembered view of the target image) in adolescent males 9 to 

16 years old with Asperger’s syndrome, an age- and intelligence-matched control group, and a 

control group of adult male and female participants (18 to 53 years old). Candel, Merckelbach, 

Houben, and Vandyck (2004) also have provided evidence of boundary extension in children 

(10-12 years old) during the standard drawing task. Spanò, Intraub, and Edgin (2017) reported 

boundary extension in preschoolers (4 to 7 years old), adolescents (13 to 17 years old), and 

participants with Down’s Syndrome (11 to 25 years old) across three different tasks (drawing, 

recognition, and 3D scene reconstruction tasks), demonstrating this memory error across stages 

of development and impairment in memory. Claims of boundary extension in infants (3 to 4 

months old and 6 to 7 months old) have even been made (Quinn & Intraub, 2007), using 

preferential looking procedures. After familiarization to a target picture, infants were 

simultaneously presented with wide-angle and close-up views of the same scene and were found 
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to look at the close-up views during test trials at rates significantly above chance (taken to 

indicate that the wide-angle view was considered more familiar). 

Additionally, a wide range of retention intervals, from days to milliseconds, have been 

found to elicit boundary extension. In a recognition test after 6 to 13 days of retention, Safer, 

Christianson, Autry, and Österlund (1998) found strong evidence for boundary extension of a 

neutral image. Intraub et al. (1992), Intraub and Berkowits (1996), and Intraub and Richardson 

(1989) all found boundary extension in participants’ memory after a 48-hr retention interval. 

Intraub et al. (1992, 1996) reported boundary extension within minutes of participants viewing 

multiple pictures. Boundary extension also has been reported after 1 s (e.g., Bertamini et al., 

2005; Dickinson & Intraub, 2008; Intraub et al., 1996) and 2.5 s (e.g., Dickinson & Intraub, 

2009) retention intervals. Shortening retention intervals even further, Dickinson and Intraub 

(2008; Intraub & Dickinson, 2008) also obtained boundary extension with 42-, 100-, 250-, and 

625-ms retention intervals. These shorter retention intervals clearly indicate that boundary 

extension is independent of long-term memory processes. In one of the fastest examples of 

boundary extension to date, photographs were interrupted by a mask for only 42 ms before 

reappearing to be rated (Intraub & Dickinson, 2008). For identical close-up views, for example, 

this extremely brief break in visual input was enough for observers to falsely remember the 

target view with more of the scene than was presented and rate the identical probe image as 

having a more close-up view than before. Intraub and Dickinson’s (2008) finding that boundary 

extension occurs across such a brief retention interval is significant because 42 ms is also the 

duration of a saccade. A retention interval quicker than an eye blink suggests that observers may 

be extending their scene representations as their eyes rapidly move between fixation points. This 
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would mean that during saccadic suppression, when vision is suppressed as the eyes are moving, 

may be when boundary extension occurs.  

Boundary extension also has been observed with a wide range of target durations. 

Presentation times ranging from less than one second per picture (133 ms – Beighley & Intraub, 

2016; 250-750 ms – e.g., Beighley & Intraub, 2016; Bertamini et al., 2005; Dickinson & Intraub, 

2008, 2009; Intraub et al., 1996, 2006, 2008; Intraub & Dickinson, 2008; Munger, Owens, & 

Conway, 2005) to three to five seconds per picture (e.g., Chapman et al., 2005; DeLucia & 

Maldia, 2006; Intraub et al., 1996, 2006) have all resulted in boundary extension effects in 

memory. Even longer presentation times that allow for ample studying of the test pictures and 

should protect against memory errors (e.g. 15 seconds: Gottesman & Intraub, 2002; Intraub et 

al., 1992; Intraub, Gottesman, & Bills, 1998; Kreindel & Intraub, 2017) still result in boundary 

extension.  

Additionally, boundary extension has been observed for scenes within scenes (i.e., a 

smaller picture within a larger one; Gottesman & Intraub, 2003) and regardless of whether the 

scenes were viewed inverted or upright (Beighley & Intraub, 2016; Intraub & Berkowits, 1996). 

This memory error also has been repeatedly demonstrated across different response measures 

and modalities (e.g., haptic studying of a 3D scene and 3D scene reconstruction), and to be 

unrelated to whether the objects within the original scene were cropped by the view’s boundaries 

(e.g., Chapman et al., 2005; Gagnier et al., 2013; Gottesman & Intraub, 2003; Intraub et al., 

1992; Intraub, 2004; Intraub & Bodamer, 1993; Intraub & Richardson, 1989; Spanό et al., 2017). 

However, the presented stimuli must be of a continuous view that in the real-world would extend 

beyond the presented picture’s edges (including simple textured backgrounds, such as concrete 

pavement; although see Blazhenkova, 2017, for evidence of boundary extension in recognition 
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memory of faces). Non-scenes or single objects not a part of any larger surrounding context (e.g., 

on a blank background) do not produce boundary extension (Hubbard et al., 2010), evidence that 

this error is not simply one of misrepresenting the size of a focal object. Intraub et al. (1998) 

presented participants with line drawings of scenes and line drawings of the same scenes’ central 

objects on a blank background. Both a rating task and drawing task produced boundary extension 

for the line drawings of the scenes, but not the line drawings of the objects. When participants 

were instructed to envision a described scene around the line drawings of the objects, however, 

boundary extension for the images was observed (Gottesman & Intraub, 2002; Intraub et al., 

1998). Similar results of boundary extension for photographs but not “background-less 

drawings,” were also found by Legault and Standing (1992). However, Munger and Multhaup 

(2016) found no additive effects of imagining additional details about a scene (e.g., smells, 

sounds, scene surroundings) for boundary extension. 

Mamus and Boduroglu (2018) compared boundary extension of scenes presented with 

semantically consistent objects, semantically inconsistent objects, and objects without a 

background. They found that semantically consistent scenes produced the most boundary 

extension. Whereas objects presented without a background also produced boundary extension, 

they argued that this was because the real objects elicit a pretense of a background scene (similar 

to the results of envisioned scenes by Gottesman & Intraub, 2002).  In a second experiment, 

pictures of abstract shapes, for which scene schemas were completely removed, resulted in no 

boundary extension, which Mamus and Boduroglu claimed further suggests the necessity of 

schemas in boundary extension. While Mamus and Boduroglu found that contextual consistency 

is not necessary for boundary extension to occur, it should be noted that Bertamini et al. (2005) 
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did not observe boundary extension when scenes were presented with less clear details by 

removing the context of the scene. 

1.2.2 Role of Boundary Extension 

Boundary extension may have an adaptive role in visual scene perception. Hypothesized 

to facilitate the integration of successive views (e.g., Intraub, 1997, 2002), boundary extension 

reflects anticipation of the upcoming scene during visual scanning to generate the coherent and 

continuous view of the world that we perceive (Intraub, 2012; Intraub & Dickinson, 2008). 

Scene perception may involve representations that prime future spatial processing of a scene as 

they are integrated (e.g., Sanocki, 2003). Boundary extension may be evidence of this priming 

for expected, “soon-to-be-visible” aspects of a scene in the next fixation (Intraub & Dickinson, 

2008). Consistent with this idea are the findings of Ménétrier, Didierjean, and Barbe (2018) that 

showed reduced boundary extension when participants had knowledge of a picture’s larger 

spatial context. Participants studied a very wide view of test images before completing a rating 

recognition task with closer views of the same scenes. This study period induced contextual 

knowledge for the images, reducing the need for boundary extension. Under some conditions 

(high-confidence ratings), boundary extension was eliminated completely. Scene perception 

processes are in less need of predictions from boundary extension when contextual spatial 

knowledge of a scene is already known, highlighting the role of these predictions. While Intraub 

and Dickinson (2008; Intraub, 2010) have proposed an alternative model of scene representation 

to explain the mechanisms leading to boundary extension, the traditional visual-cognitive model 

of scene perception must first be reviewed. 
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1.3 The Traditional Visual-Cognitive Model 

Human memory for scenes is not ‘picture perfect,’ and how imperfect scene 

representations are created in human memory is unclear. This question has driven research by 

many cognitive psychologists over the years, and several short-term memory buffers have been 

identified that facilitate the integration of visual information into visual memories, presumably 

also contributing to “mis-memories.” 

During scene perception, information is first held in visual sensory memory, also called 

iconic memory (Sperling, 1960). Visual sensory representations, however, quickly fade, and are 

maintained for only approximately 300 ms in this short-term buffer. Loftus, Johnson, and 

Shimamura (1985) found that representations for briefly presented, unmasked pictures are 

maintained for approximately 100 ms after the visual stimulus is removed. If the presented visual 

stimulus is masked (disrupting sensory memory), visual information can be stored in one of 

several other short-term memory buffers: transsaccadic memory for the duration of an eye 

movement (Irwin, 1991, 1993), visual short-term memory for a few seconds (Phillips, 1974), 

conceptual short-term memory for the time between picture identification (approximately 100 ms 

after stimulus presentation) and consolidation (Potter, 1976), or visual working memory across 

ongoing tasks (the visuospatial sketchpad; Baddeley & Hitch, 1974). Information in these stores 

can then either be consolidated in long-term memory or lost.  

These different short-term memory systems should not necessarily be thought of as 

discrete entities, but instead as different stages of visual information processing (Intraub, 2012). 

For example, due to saccadic suppression as the eyes are moving, the visual-cognitive system 

relies on transsaccadic memory across fixations. This means humans alternate between visual 

sensory input and memory during initial formation of visual representations. In this model, 
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conceptual knowledge is prompted by visual sensory information, but remains a separate type of 

representation (Intraub, 2012). In other words, bottom-up processing of visual sensory input 

results in the initial mental representations during scene perception. Top-down processing, as a 

result of conceptual knowledge, then interacts with and alters these representations. Support for 

this distinction can be found in Potter’s (1976) explanation for why recognition memory for 

pictures presented with RSVP was poor. Potter (1976) identified conceptual masking within 

conceptual short-term memory as the cause of poor recognition memory during RSVP tasks; an 

effect distinct from visual masking experienced within iconic memory. Conceptual masking is 

brought on by the conceptual processing of a subsequent picture that interrupts the conceptual 

representation of a scene currently being maintained in conceptual short-term memory (resulting 

in the forgetting of this previous representation). However, if processing and consolidation of the 

initial conceptual representation into long-term memory occurs prior to this interruption, it is 

protected from conceptual masking and remembered, even in the face of a visual mask. This 

distinction between conceptual and visual masking, supported by other studies of memory for 

briefly presented pictures as well (e.g., Intraub, 1980, 1984; Loftus & Ginn, 1984), suggests a 

distinction between processes of perception and representation that is central to the traditional 

visual-cognitive model.   

While the visual stimuli are still present, an observer would readily discern the location 

of a picture’s boundaries. Given this fact, it should be assumed that the extended representations 

reported during tests of boundary extension are not constructed within the visual-cognitive model 

until the viewed scene has been removed. Taking into consideration the rapidity of boundary 

extension (e.g., Dickinson & Intraub, 2008; Intraub & Dickinson, 2008), the extrapolation of the 

scene representation must be constructed not only after the view is gone but also completed 
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before the observer’s next fixation. In other words, between saccades (Intraub & Dickinson, 

2008). However, Intraub and Dickinson (2008; Intraub, 2010, 2012) have found this hard to 

explain with the traditional visual-cognitive model. They have argued that a “scene extrapolation 

buffer” (Intraub, 2010) would need to be added alongside the other short-term memory buffers in 

the model or extrapolation capabilities added to transsaccadic or visual short-term memory. 

Assuming these additions unlikely, they have proposed an alternative model of visual scene 

processing to explain boundary extension – the multisource model (Intraub, 2010; Intraub & 

Dickinson, 2008). 

1.4 The Multisource Model of Scene Perception 

Unlike the traditional visual-cognitive model, for which visual sensory input is the sole 

basis of visual perception and the representation, in the multisource model scene perception 

begins with an underlying spatial framework that is simultaneously filled in by information from 

multiple sources (both internal and external; Intraub, 2010; Intraub & Dickinson, 2008). 

According to this model, viewing a picture elicits several sources of input that are then organized 

within an egocentric frame of reference and provide the observer with a mental representation of 

the scene centered around their viewpoint (e.g., viewpoint of the camera when looking at a 

photograph; Bryant, Tversky, & Franklin, 1992; Franklin & Tversky, 1990). This scene 

representation is created from visual sensory input of the stimulus, amodal perception of objects 

and surfaces (Kanizsa, 1979, as cited in Intraub, 2010; Yin, Kellman, & Shipley, 1997), and 

conceptual knowledge associated with the view (scene categorization; e.g., Greene & Oliva, 

2009; Tversky & Hemenway, 1983, and contextual associations made from objects within the 

scene; e.g., Bar, 2004). In other words, information from sensory input and top-down processing 

critical for view comprehension are combined together to form one’s conceptualization of the 
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likely overall surrounding spatial context of the view. This compiled scene representation is 

considered, in this model, to be scene perception. Intraub (2012) likens this multisource 

representation to a “simulation” described by Barsalou (1999) in his theory of grounded 

cognition (see Barsalou, 2010, for a review). In the multisource model, bottom-up and top-down 

processing interact simultaneously to form even the initial mental representations of scene 

perception, in contrast to the step-wise nature of the traditional visual-cognitive model. 

The fundamental spatial structure of this model does not have to be egocentric in nature 

(Intraub, 2010), and can take on different frames of reference depending on the viewpoint taken 

by the observer (e.g., allocentric or geographic; see Allen, 2004, for a review of this topic). 

Amodal perception is prompted by visual obstructions of the physical world and allows an 

observer to infer the likely surroundings of a scene by completing cropped objects (Kanizsa, 

1979) and surfaces (Yin et al., 1997). It is named as such because it does not employ any specific 

sensory modalities (Kellman, Yin, & Shipley, 1998). In the multisource model of scene 

perception, extrapolation of the visual input just beyond the edges of the view by amodal 

perception is constrained by the visual details at the picture’s boundaries (Gottesman & Intraub, 

2003) and the general categorization and associations of the scene from conceptual knowledge. 

Because amodal perception and the observer’s associated conceptual knowledge of the view 

contribute to scene perception even initially, boundary-extended regions are not constructed after 

stimulus offset but instead are already present in the scene representation while the scene is 

being viewed. This is a distinction from the traditional model (see Figure 1.2 for a pictorial 

depiction of this difference). The error is, therefore, believed to occur from the observer 

misreporting the source of this extended region as being externally generated (i.e., from visual 



21 

input) instead of internally generated (i.e., amodal perception and conceptual knowledge) – a 

source monitoring error (Johnson, Hashtroudi, & Lindsay, 1993).  

 

Figure 1.2 Boundary extension in the context of the traditional visual-cognitive model 

(top) and the multisource model (bottom).  

In both cases, the perception panels represent what occurs while the picture is available, 

compared to when the stimulus is removed (memory panels). Relevant abstract concepts 

associated with the scene representation are shown in verbal form for the visual-cognitive 

model. Illustrations are from “Rethinking visual scene perception,” by H. Intraub, 2012, WIREs 

Cognitive Science, 3, p. 123. 
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1.4.1 Boundary Extension as a Source Monitoring Error 

When reflecting on memory for the target view during tests of boundary extension, 

according to the multisource model, observers must discern from the different sources of their 

scene representation (visually perceived information, amodal perception, and elicited conceptual 

knowledge) to determine which aspects of the representation originated from visual sensory 

input and were seen in the target image (Intraub, 2010, 2012; Intraub & Dickinson, 2008). 

Source monitoring errors occur, typically in long-term memory, when the source of a memory is 

incorrectly determined based on the memory’s number and quality of perceptual, contextual, 

semantic, and emotional details (Johnson et al., 1993). The high level of similarity between an 

observer’s memory from visual input for the details at the edge of a picture and their memory 

from amodal perception for the continuation of those details leads to source misattribution 

(Intraub, 2010, 2012; Intraub & Dickinson, 2008). As a result, information generated from 

amodal perception is thought to have come from visual sensory input. Observers, therefore, 

believe that they originally saw this information and boundary extension is seen in memory. This 

source monitoring error is specifically an error in reality monitoring (Johnson & Raye, 1981), as 

the observer has failed to determine where externally-generated visual input ended and 

internally-generated amodal perception began within their mental representation of the scene 

(Intraub, 2010; Intraub & Dickinson, 2008). 

Experimental support for this source monitoring hypothesis has come from studies of the 

effects that divided attention and varied stimulus duration have on boundary extension. Intraub et 

al. (2008) found that divided visual attention (using a visual search task) increased boundary 

extension in participants’ boundary ratings, compared to those from participants only engaged in 

the memory task. Random error during the search task, however, did not increase for the dual-
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task participants compared to those in the search-only condition, indicating that this increase in 

boundary extension was not due to an overall increase in errors as a result of divided attention. 

These results have been considered supportive of the multisource model and source monitoring 

hypothesis (e.g., Intraub, 2010, 2012) because they suggest that divided attention lowered the 

threshold for information generated by amodal perception to be attributed to visual sensory input, 

resulting in source attribution error.  

Similarly, reduced stimulus duration also increased boundary extension (Intraub et al., 

1996). As previously discussed, stimulus presentation durations of 250 ms and 4 s both resulted 

in boundary extension across recall (drawing) and recognition (rating) tasks (Intraub et al., 

1996). Interestingly, however, across both tasks a significant main effect for stimulus duration 

was also found, with the shorter duration resulting in an increased degree of boundary extension 

compared to the 4 s stimulus duration. Intraub (2010, 2012) has also described this study as 

support for the hypothesis that boundary extension is a source monitoring error, because the 

reduction in stimulus duration reduces the observer’s memory strength for visual details 

originating from visual input. As a result, memory for visual input becomes more similar to 

details originating from amodal perception and more vulnerable to source misattribution, as 

predicted by source monitoring theory.  

2 PRESENT STUDY 

 While the source monitoring hypothesis seems like a probable explanation of why 

boundary extension occurs in human memory for scenes, it is unclear why the shift in the 

distinction between perception and memory that is suggested by the multisource model is needed 

to explain boundary extension. In the multisource model (Intraub, 2010; Intraub & Dickinson, 

2008), representation is equal to perception. Upon seeing a scene, the observer’s internal spatial 
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framework (a representation of their understanding of the scene and its likely surrounding spatial 

layout) is filled in by visual sensory information, amodal perception, and general conceptual 

associations, forming the basis of scene perception. Amodal perception within the representation 

results in boundary extension. The traditional visual-cognitive model retains the distinction 

between perception and representation that was suggested by Potter (1976), and supported by 

others (e.g., Intraub, 1980; Loftus & Ginn, 1984), with representation occurring after perception. 

In this model, an observer’s memory for the details of a scene results in a representation based 

solely on visual input and separate from the subsequent top-down processing needed for scene 

comprehension (amodal perception, conceptual knowledge from categorization and contextual 

object associations, etc.) that would be responsible for boundary extension. The difference 

between these models lies in the timing of when boundary extension occurs (after the stimulus is 

gone according to the traditional model or during perception, as a part of the multisource 

representation), as well as by what mechanism boundary extension happens (general top-down 

processing in the traditional model or amodal perception, specifically, in the multisource model). 

 It is possible that either amodal perception or context-based scene interpretations could 

result in a continuation of the view beyond its original boundaries, as the result of an error in 

source monitoring. Despite Intraub and Dickinson’s attribution of boundary extension to only 

amodal perception, they have also repeatedly suggested that scene categorization and the 

observer’s contextual knowledge of the scene have similar constraints to amodal perception on 

scene representation (e.g., Intraub, 2010, 2012). Unlike Intraub and Dickinson (2008), I do not 

find the rapidity of boundary extension as a limitation to the traditional model’s potential to 

explain this memory phenomenon. As previously discussed, pictured scenes can be rapidly 

categorized within 100 to 150 ms of picture onset (e.g., Davenport & Potter, 2004; Fei-Fei et al., 
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2007; Intraub, 1981; Potter, 1976; Thorpe et al., 1996; Vo͂ & Henderson, 2010). Even the studies 

of boundary extension designed to push the limits of stimuli presentation (e.g., 133 ms: Beighley 

& Intraub, 2016; 250 ms: Intraub et al., 1996, 2006; Intraub & Dickinson, 2008; Munger et al., 

2005) have used presentation lengths long enough for scene categorization and similar in length 

to a single eye fixation during scene perception (260 to 330 ms; Rayner, 2009; although see 

Hale, Brown, & McDunn, 2016, for a demonstration of boundary extension with 46 ms scene 

presentation). Conceptual information and contextual associations would, therefore, be available 

during a saccade and able to influence an observer’s next view fixation.  

While boundary extension has been proven to occur across a variety of testing conditions 

and serve an adaptive role in visual scene perception, previous research has not clearly identified 

the underlying mechanisms of this phenomenon nor which model offers the best explanation of 

this memory error. A comparative approach to studying boundary extension would help identify 

the necessary mechanisms and appropriate model of this constructive error in human scene 

memory. To test the multisource model, assessments of an observer’s picture memory in the 

absence of predictive conceptual knowledge (scene categorization and contextual associations of 

objects) of the view are needed to determine the mechanistic role of top-down processing in 

scene representation and boundary extension.  Assessing scene memory in nonhuman primates 

would demonstrate amodal perception and visual sensory input’s effects on boundary extension 

in the absence of effects from human conceptual scene knowledge. This dissociation of processes 

would be much more difficult to achieve with humans without using purely abstract stimuli or 

extremely brief stimuli presentation durations. A comparative approach would allow for the 

presentation of pictured scenes in ways similar to that of previous research, affording more direct 

comparisons of findings. Studying boundary extension through a comparative lens would 
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disentangle the mechanistic roles of these processes in boundary extension, as well as perhaps 

point to the model that most accurately explains this memory error. 

In addition to minimizing the potential effects of associated conceptual knowledge on 

boundary extension, use of the comparative method to study animal visual perception and 

cognition provides an informative reference point for human perception. Studying whether 

humans and nonhuman animals’ perceptual organization is the same allows for a better 

understanding of the evolutionary origins and phylogeny of perception and gives insight into the 

fundamental aspects of human perception and mental representation. Comparative psychology 

informs theory and evolution (Call, 2017) and plays a crucial role in psychology by connecting 

the natural and social sciences within and between disciplines (e.g., psychology and biology; 

Call, Burghardt, Pepperberg, Snowdon, & Zentall, 2017). Laboratory studies with nonhuman 

animals have better control over a study’s design and stimuli, as well as subjects’ past and future 

experience, than do many studies with humans (Call et al., 2017). General life experience and the 

specific testing environment can be more easily manipulated as needed to serve research aims in 

comparative research. Past comparative analyses have shown that the basic principles of visual 

perception are similar across multiple species, including humans (see Lazareva, 2017, for a 

review). As discussed earlier, nonhuman primates can also categorize stimuli and form schematic 

equivalence classes, recognizing abstract perceptual and functional relations between stimuli (see 

Aust, 2017, for a review). These similarities in perception and cognition make nonhuman 

primates an ideal model to compare and generalize results to humans. 

Through five experiments assessing boundary extension in humans and nonhuman 

primates (rhesus monkeys and capuchin monkeys) I investigated whether boundary extension is 

best explained by the traditional visual-cognitive model or the multisource model, while 
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revealing what specific psychological processes (e.g., conceptual knowledge, contextual 

associations, and amodal perception) lead to boundary extension. In the first comparative study 

of boundary extension, identical tasks (for humans and rhesus macaques) and equivalent tasks 

(for capuchin monkeys) were given to three species to compare the possibility of boundary 

extension occurring. Human adults (Homo sapiens), adult male rhesus macaques (Macaca 

mulatta), and adult male and female capuchin monkeys (Cebus apella) completed a 

computerized, delayed matching-to-sample (DMTS) task with various picture stimuli of common 

scenes encountered by humans (Pilot study, Replication study, and Experiment 1) or monkeys 

(Experiment 2A and Experiment 2B). Building off of previous forced-choice recognition tasks 

(Kreindel & Intraub, 2017; Mathews & Mackintosh, 2004; Safer et al., 1998; Spanό et al., 2017), 

the objective was to choose which of two simultaneously presented images exactly matched a 

previously shown sample image. The target scene was shown alongside either a closer or wider 

view of the same image. In the absence of boundary extension, matching responses would not 

differ across these conditions. However, if boundary extension had occurred participants would 

be more likely to select the wider angle image compared to the closer angle image. This would 

result in a decrement in performance when the sample image was the closer view (close trials) 

and an aid in performance when the sample image was the wider view (wide trials), an 

asymmetrical error pattern indicative of boundary extension.  

Consistent with previous research, human participants were expected to demonstrate 

boundary extension in a DMTS task with pictures of human-unique scenes. Given the necessity 

of schematic and contextual knowledge for boundary extension (e.g., Bertamini et al., 2005; 

Mamus & Boduroglu, 2018), it was predicted that monkeys would not show boundary extension 

with human-unique scenes but would with monkey-relevant scenes. These results, demonstrating 
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that amodal perception alone is not sufficient to produce boundary extension with human-unique 

stimuli, would point towards a traditional visual-cognitive model explanation of boundary 

extension. This finding would add to the literature that suggests specific conceptual knowledge 

of a scene is a necessary mechanism of boundary extension. However, if boundary extension was 

not observed at all in the monkeys, such a result would demonstrate the potentially human-

unique qualities of boundary extension and a species discontinuity in perceptual experiences. 

3 PILOT STUDY WITH ADULT HUMANS 

Visual inspection of initial testing (N = 8) with the below procedure, except with a 250 

ms sample duration, suggested that this presentation time was too fast for participants to make 

meaningful responses (participants answered only 62% of total trials correctly). As a result, 

performance with two presentation times (500 and 750 ms) was compared to determine the 

appropriate testing parameters for the following experiments. 

3.1 Participants 

 Undergraduate students (N = 23, 22 females, M age = 18.65 years, SD = 1.19) recruited 

from the Georgia State University (GSU) psychology research pool participated for course 

credit. All participants provided informed consent and all research procedures were approved by 

the GSU Institutional Review Board. A total of nine participants were excluded, due to changes 

to the testing protocol (stopped using the above described 250 ms sample duration) and because 

one participant was not attentive during the task, resulting in a total of 14 participants for 

analysis. 

3.2 Apparatus 

All participants worked on individual 19-inch desktop computers, including individual 

headphones. Participants used a standard mouse to respond to stimuli. A total of 90 stimuli 
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images were used, including 30 different common human scenes (e.g., backyard, beach, park) 

and a closer and wider view of each scene (see Figure 3.1). The different stimuli images were 

created using a program written in Visual Basic 6.0, which created a close-up image (showing 

13% less of the scene) and a wide-angle image (showing 13% more of the scene) of each of the 

30 scenes. The pilot study computer task was also written in Visual Basic 6.0. 

 

Figure 3.1 Example stimuli images of common human scenes.  

The wide-angle view (left) and the close-angle view (right) of each scene are also shown. 

3.3 Design and Procedure 

Participants first saw a start screen with task instructions. These instructions included a 

description of the task and directions for responding. To initiate each trial, participants clicked a 

“start” button located in the center of the computer screen. This resulted in immediate 

presentation of the sample image (400 pixels by 400 pixels) for either 500 or 750 ms, followed 

by a black and white mask image for 750 ms. Participants waited through a 2 s delay period 
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before seeing two same-size (400 pixels by 400 pixels) images as match options. One of these 

images was the sample image, while the foil image was either the zoomed in image of the same 

scene (called wide trials, because the sample image was the wider view) or the zoomed out 

image of the same scene (called close trials, because the sample image was the more close-up 

view). Left-right position of the sample image was randomized across trials. After choosing one 

of the match options by clicking on it, participants saw a green checkmark or a red “X” for 2 s in 

the bottom right corner of the computer screen, as well as heard either a brief melodic sound or a 

buzz tone, after correct or incorrect responses, respectively. Following incorrect responses, 

participants also experienced a 10 s timeout. See Figure 3.2 for a visual example of a trial. 

 

Figure 3.2 Example trial of the boundary extension task in the Pilot Study. 

 Depending on the condition, the sample image was shown for either 500 ms or 750 ms. After a 

correct match response, participants saw a green checkmark for 2 s in the bottom right corner of 

the computer screen and heard a brief melodic sound. Following incorrect responses, 

participants saw a red “X,” heard a brief buzz tone, and experienced a 10 s timeout. 
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 Participants completed a total of 240 trials, in four 60-trial blocks. Sample duration (500 

or 750 ms) alternated by block, counterbalanced across participants. Per block, participants were 

presented with each of the 30 sample scenes once, in a random order, before any were repeated, 

during which each trial was randomly assigned to be a close or wide trial. For the remaining 30 

trials of each block, sample images were presented in random order in the opposite trial type. As 

a result, each sample image was presented twice per block, once as a wide trial and once as a 

close trial. After testing, all participants were debriefed about the task. 

3.4 Results 

 Participants’ performance was similar with both presentation durations. When the sample 

image was presented for 500 ms, participants were correct on 77% of trials (SD = 10.82). When 

the sample image was shown for 750 ms, participants were correct on 78% of trials (SD = 14.63). 

Performance in both cases was significantly better than chance levels, 500 ms: t(13) = 9.28, p < 

.001; 750 ms: t(13) = 7.09, p < .001. There was no significant difference in participants’ 

performance across conditions, t(13) = -0.30, p = .77.  

3.5 Discussion 

This pilot study with adult humans was needed to determine the testing parameters for the 

following experiments with humans and monkeys. Given that no significant differences in 

performance were seen between the two sample presentation durations, the longer sample 

presentation (750 ms) was chosen for the following experiments. Choosing the longer of the two 

sample durations would afford more time for nonhuman primates to view the sample image in 

Experiments 1 and 2, increasing the likelihood that they would be able to learn the DMTS task. 
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4 REPLICATION STUDY 

 Before testing with nonhuman primates, the present method was tested with human adults 

to determine whether a computerized DMTS two-alternative forced-choice task was sensitive 

enough to detect boundary extension. Considering the results of the pilot study, a 750 ms sample 

presentation duration was used. 

4.1 Participants 

 Undergraduate students (N = 63, 59 females, 3 males, 1 participant chose to not provide 

their gender, M age = 19.51 years, SD = 2.93) were again recruited from the GSU psychology 

research pool and participated for course credit. All participants provided informed consent, and 

all research procedures were approved by the GSU Institutional Review Board. One participant 

did not complete the entire testing session, leaving a total of 62 participants for analysis. 

4.2 Apparatus 

 The testing setup was the same as in the pilot study. 

4.3 Design and Procedure 

 The task design was the same as in the pilot study, with the only exception being that the 

sample image was always presented for 750 ms. Participants completed a total of 180 trials, in 

three 60-trial blocks. Per block, participants were again presented with each of the 30 sample 

scenes once in a random order before any were repeated. For the first half of each block, each 

scene was randomly presented as either a close or wide trial. For the second half of each block, 

the sample images were shown again in a different random order, but in the other trial type. After 

testing, all participants were debriefed about the task. 
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4.4 Results 

 To test for boundary extension, the error rates in participants’ responding as a function of 

trial type and block were examined (see Figure 4.1). Mauchly’s test of sphericity indicated a 

violation of this assumption for block (χ2(2) = 20.24, p < .001) and the interaction term (χ2(2) = 

10.60, p < .01), therefore degrees of freedom were corrected using the Greenhouse-Geisser 

estimations (block, ε = .78; interaction, ε = .86). There was a significant main effect of trial type, 

F(1, 61) = 57.93, p < .001, such that participants produced a significantly higher proportion of 

errors on close trials (M = 0.27, SD = 0.11) than on wide trials (M = 0.18, SD = 0.12). Correct 

performance patterns in both conditions were significantly above chance levels of responding, 

close trials: t(61) = 16.05, p < .001; wide trials: t(61) = 21.37, p < .001. There was also a 

significant main effect of block, F(1.56, 94.84) = 110.54, p < .001. Participants’ proportion of 

errors significantly decreased across block (block 1, M = 0.31; block 2, M = 0.22; block 3, M = 

0.15), with all pairwise comparisons significant after Bonferroni corrections (p < .001). There 

was not a significant interaction between block and trial type, F(1.72, 104.99) = 0.97, p = .37. 
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Figure 4.1 Mean proportion of errors, as a function of trial type and block, for human 

adults in the Replication Study.  

Error bars show the 95% confidence intervals. 

4.5 Discussion 

 The conceptual replication study with human adults using a new version of a DMTS 

paradigm replicated boundary extension with a task that could be used with nonhuman primates. 

Participants made a significantly higher proportion of errors on close trials than wide trials, 

demonstrating the error rate asymmetry indicative of boundary extension. Boundary extension 

leads participants to falsely remember the target image with more information just outside of the 

scene’s boundaries than was originally presented. When the sample image was the wider view of 

the presented scene compared to the foil image participants were more easily able to identify the 

correct image, aiding their performance in the task. However, when the sample image was the 

closer view it appeared to show less of the original scene, resulting in more errors. 

 Across blocks, participants’ performance significantly improved but boundary extension 

was not eliminated by experience. Feedback resulted in fewer errors as participants advanced 

through the task, presumably the result of a practice effect, with the magnitude of boundary 
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extension largest for block one, but boundary extension was still observed across all three blocks. 

The first block of trials was the most informative for boundary extension, as the sample images 

were not yet associated with rewards and penalties as was true in later blocks. This is an 

important issue to consider when giving this task to monkeys, as they require multiple sessions to 

complete the task. Evidence that feedback did not eliminate boundary extension indicated that 

the DMTS task used with human adults would be a suitable method for nonhuman primates. 

Overall, this DMTS design, which produces boundary extension in humans even with extended 

experience, proved to be a suitable method to study boundary extension in rhesus monkeys and 

capuchin monkeys in the following experiments. 

5 EXPERIMENT 1 

Given the successful replication of boundary extension in human adults, Experiment 1 

was conducted to test for boundary extension in nonhuman primates with the same stimuli and 

methods as the previous experiment. 

5.1 Participants 

A total of six adult male rhesus macaques (Macaca mulatta, 13 to 34 years of age) and 23 

adult capuchin monkeys (Cebus apella, 7 males and 16 females, 7 to 48 years of age) housed at 

the Georgia State University Language Research Center were tested. All monkeys had constant 

visual and auditory access to nearby monkeys during testing, as well as periods without testing 

with access to a compatible social partner or group and/or an outdoor play yard multiple times 

per week. All of the monkeys voluntarily chose to work for food rewards. Food and water 

deprivation were not used. The monkeys were fed a daily diet of primate chow biscuits and 

various fruits and vegetables regardless of their performance on the tasks, as well as provided 

with continuous access to water. All research procedures followed guidelines for working with 
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nonhuman primates and were approved by the GSU Institutional Animal Care and Use 

Committee. In addition, GSU is accredited by the Association for Assessment and Accreditation 

of Laboratory Animal Care.  

All of the monkeys were computer and joystick-trained, with extensive experience with a 

variety of computerized cognitive tasks, including DMTS tasks. Two capuchin monkeys and two 

rhesus macaques were used as pilot animals to determine the training parameters needed for 

testing. As a result of working with these animals, testing parameters were modified as needed 

for each species to learn the task. All four animals were included in the full testing procedure 

described below. After training (described below), nine capuchin monkeys were dropped from 

the experiment due to an inability to learn the task, lack of engagement with the task, or time 

constraints during testing. This left a total of 14 capuchin monkeys with data for analysis. 

5.2 Apparatus 

Each monkey was tested individually using the Language Research Center’s 

Computerized Test System, which comprises a personal computer, digital joystick, color 

monitor, and pellet dispenser (Evans, Beran, Chan, Klein, & Menzel, 2008; Richardson, 

Washburn, Hopkins, Savage-Rumbaugh, & Rumbaugh, 1990). The monkeys used their hands to 

manipulate the joystick to control a small cursor on the computer screen. Contacting correct 

stimuli with the computer cursor resulted in a brief melodic chime and the delivery of a 45-mg 

banana-flavored chow pellet, while incorrect responses resulted in a brief buzz tone and a 30 s 

timeout period. All tasks were written in Visual Basic 6.0. 

Experiment 1 used the same 90 scene stimuli images as the pilot and replication studies 

with human adults. 
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5.3 Design and Procedure 

All monkeys were first trained on the present DMTS task until 75% correct performance 

was achieved for three consecutive 60-trial blocks. Monkeys indicated their readiness to work 

before each trial by contacting a “start” button through movement of the cursor. For rhesus 

monkeys, a training trial included presentation of one of the 90 scene images (selected randomly 

and shown as a 400 pixel by 400 pixel image in the center of the computer screen) for 750 ms, 

immediately followed by presentation of a black and white mask image for 750 ms, and a 2 s 

delay period. After the delay period, two match options (both 400 pixels by 400 pixels) were 

presented on the bottom half of the computer screen. One image was the previously seen sample 

image, while the foil image was a randomly selected image of a different scene (see Figure 5.1). 

Left-right position of the sample image was randomized across trials. After making a matching 

response by contacting one of the images with the cursor, monkeys saw either a green checkmark 

or a red “X” for 2 s in the bottom right corner of the computer screen, indicating a correct or 

incorrect response, respectively. After incorrect responses, monkeys also heard a brief buzz tone 

and experienced a 30 s timeout. After correct responses, monkeys heard a brief melodic chime 

and received a 45-mg banana-flavored food pellet. 
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Figure 5.1 Example training trial of the boundary extension task in Experiment 1.  

Specific timing of each component depended on the monkey species being tested. After a correct 

match response, monkeys saw a green checkmark for 2 s in the bottom right corner of the 

computer screen, heard a brief melodic sound, and received a 45-mg food pellet. Following 

incorrect responses, monkeys saw a red “X,” heard a brief buzz tone, and experienced a 30 s 

timeout. 

 

For capuchin monkeys, contacting the “start” button resulted in presentation of the 

randomly selected sample image (one of the 90 stimuli images, shown as a 400 pixels by 400 

pixels image) until the monkey contacted it with the cursor, after which it was displayed for an 

additional 1.5 s. A black and white mask image was then displayed for 300 ms, followed by a 2 s 

delay period. After this delay, the sample image and an image of a different, randomly-selected 

scene were shown simultaneously on the bottom half of the computer screen as match options 

(400 pixels by 400 pixels, left-right position randomized across trials). The stimuli remained 

onscreen until the monkey contacted one image with the cursor. After correct match responses, 

monkeys saw a green checkmark for 2 s in the bottom right corner of the computer screen, heard 

a brief melodic chime, and received a 45-mg banana-flavored food pellet. After incorrect 
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responses, monkeys instead saw a red “X” for 2 s, heard a brief buzz tone, and were given a 30 s 

timeout.  

Some capuchin monkeys (N = 6) were unable to pass training with this procedure, so they 

were given trials without the 300 ms mask image. All other aspects of the trial were the same. 

One capuchin monkey was unable to pass either type of training. As a result, she was given 

training trials without a mask image or a delay period. Therefore, after touching the sample 

image the match options were immediately presented. After passing this easier version of 

training, she was put back on training trials with a 2 s delay period but no mask image until 

training criterion was met. 

Once each monkey met the training criterion, they were moved to the test phase. Each 

trial preceded the same way as described above for the training phase, except that 25% of the 

trials were now test trials and 75% of trials were baseline training trials identical to those just 

described. During test trials, match options included the sample image, which was always the 

central-view of a scene, and a foil image which was either the closer or wider view of that same 

scene (as shown in Figure 3.2). The test trials were intermixed among training trials and each of 

the 30 sample scenes were presented twice as close and wide trials before being repeated. For 

capuchin monkeys given training trials without mask images, test trials were also presented 

without a mask image. All monkeys worked until they completed at least 2,400 total trials in the 

test phase. 

5.4 Results 

5.4.1 Rhesus macaques 

By random chance, two blocks did not include all three conditions (train, close, and wide 

trials). Instead of excluding those blocks from analysis, each rhesus monkey’s performance was 
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binned into 20 120-trial blocks for analysis. Analysis of the monkeys’ average proportion of 

errors, as a function of trial type and block, indicated a significant main effect of trial type, F(2, 

10) = 183.58, p < .001 (see Figure 5.2). Performance was above chance levels for all trial types, 

train: t(5) = 17.55, p < .001; close: t(5) = 2.81, p < .05; wide: t(5) = 2.69, p < .05. Pairwise 

comparisons with Bonferroni corrections for multiple comparisons showed that rhesus monkeys 

made a significantly smaller proportion of errors on train trials (M = 0.11, SD = 0.06) compared 

to close trials (M = 0.45, SD = 0.04), p < .001, and wide trials (M = 0.45, SD = 0.04), p < .001, 

but that the proportion of errors made on close and wide trials were not significantly different 

from each other, p = 1.00. There was no main effect of block, F(19, 95) = 0.62, p = .88, or an 

interaction between block and trial type, F(38, 190) = 0.43, p = .17. Analysis of performance on 

critical trials during the first block also showed no difference in the rhesus monkeys’ proportion 

of errors on close (M = 0.47, SD = 0.19) and wide (M = 0.50, SD = 0.24) trials, t(5) = -0.27, p = 

.80. 

 

Figure 5.2 Mean proportion of errors, as a function of trial type and block, for rhesus 

macaques in Experiment 1.  

Error bars show the 95% confidence intervals. 
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5.4.2 Capuchin monkeys 

Capuchin monkeys’ proportion of errors were analyzed across 40 60-trial blocks, as a 

function of trial type and block (see Figure 5.3). Overall, capuchins performed above chance in 

all trial types, train: t(13) = 19.80, p < .001; close: t(13) = 4.11, p = .001; wide: t(13) = 3.91, p < 

.01. There was a significant main effect of trial type, F(2, 26) = 258.92, p < .001. Pairwise 

comparisons, with Bonferroni corrections for multiple comparisons, showed that monkeys made 

a significantly smaller proportion of errors on train trials (M = 0.20, SD = 0.06) than on close (M 

= 0.47, SD = 0.03), p < .001, and wide trials (M = 0.47, SD = 0.03), p < .001. Performance on 

close and wide trials did not differ from each other, p = 1.00. There was no main effect of block, 

F(39, 507) = 0.90, p = .65, or an interaction between block and trial type, F(78, 1014) = 1.03, p = 

.40. The monkeys’ performance on the critical close and wide trials during the first block showed 

a significant difference as a function of trial type, t(13) = -2.72, p < .05. Capuchin monkeys 

made a larger proportion of errors on wide trials (M = 0.62, SD = 0.16) than on close trials (M = 

0.47, SD = 0.14) 
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Figure 5.3 Mean proportion of errors, as a function of trial type and block, for capuchin 

monkeys in Experiment 1. 

Error bars show the 95% confidence intervals. 

5.5 Discussion 

The multisource model predicts that either amodal perception or conceptual knowledge 

can result in boundary extension. However, the results of Experiment 1 suggest the contrary. 

Rhesus monkeys and capuchin monkeys did not show boundary extension when viewing scenes 

commonly encountered by humans but not nonhuman primates. Under these conditions, 

conceptual knowledge for categorization of the scene and contextual associations from objects 

were absent for the animals. However, based on research with fish (Sovrano & Bisazza, 2008), 

chicks (Regolin & Vallortigara, 1995), mice (Kanizsa, Renzi, Conte, Compostela, & Guerani, 

1993), baboons (Deruelle, Barbet, Dépy, & Fagot, 2000; Fagot, Barbet, Parron, & Deruelle, 

2006), rhesus monkeys (Fujita, 2001), and chimpanzees (Sato, Kanazawa, & Fujita, 1997) 

indicating that amodal completion is present in animal visual perception, it can be assumed that 

amodal perception would have been experienced by the monkeys.  
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The absence of boundary extension in the present experiment suggests that amodal 

perception may not be sufficient for boundary extension to occur in memory. Instead, object and 

conceptual knowledge of a scene may be a necessary mechanism of boundary extension. 

However, there is evidence that amodal perception is sufficient for boundary extension when 

abstract geometric shapes are the stimuli (see Hale, Brown, McDunn, & Siddiqui, 2015; 

McDunn, Siddiqui, & Brown, 2014). This would suggest that the failure of monkeys to show 

boundary extension in the present experiment is more likely a species difference, rather than the 

result of amodal perception not being sufficient to elicit boundary extension. However, it is 

important to withhold that conclusion until monkeys could be presented with relevant stimuli 

that would prompt conceptual knowledge, to see if this might induce boundary extension. By 

using scenes that are familiar to the monkeys, instead of human scenes that they have no 

knowledge of, the necessity of conceptual knowledge can be assessed, at least to the best extent 

possible with a nonverbal species. This hypothesis was tested further in the following 

experiments. 

 Unlike for human adults, the monkeys’ performance did not benefit from experience. 

Error rates did not significantly improve or differ in any way for either species across 40 blocks 

of 60 trials. Capuchin monkeys did demonstrate a difference in performance on the critical test 

trials during the first block of Experiment 1. However, this outcome was unexpected, as it was in 

the opposite direction of boundary extension. Capuchin monkeys made fewer errors on close 

trials than wide trials. This result may have been because the monkeys were paying more 

attention to central features of the scene, as opposed to the overall scene. These central features 

would have been slightly more prominent in the closer view of the sample images, resulting in a 

bias for this view when making match responses during the task. 
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6 EXPERIMENT 2A 

 Given the absence of boundary extension in two species of nonhuman primates using 

images of human scenes, Experiment 2A was conducted to test for boundary extension with 

monkey-relevant stimuli. Showing the monkeys pictures of common human scenes (e.g., a 

restaurant) would not have activated any schemas in the animals, because they would not 

recognize what the image was a picture of. The rationale of the present experiment was that 

perhaps images of scenes that the monkeys would be familiar with would be more likely to 

induce boundary extension if this memory error requires conceptual knowledge and contextual 

associations evoked by the objects in the scene. This experiment was more species-fair if scene 

relevance matters for boundary extension, and I therefore was better able to investigate whether 

conceptual knowledge of familiar scenes was needed for boundary extension to occur. 

6.1 Participants 

 The same six rhesus macaques and 14 capuchin monkeys that passed training in 

Experiment 1 participated in Experiment 2A.  

6.2 Apparatus 

The testing apparatus and computer task were the same as in Experiment 1. Experiment 

2A used 90 images of common scenes encountered by the monkeys as stimuli. These images 

included 30 different scenes of the monkeys’ inside and outside environments at the Language 

Research Center (e.g., play yards, inside home enclosures), as well as a closer and wider view of 

each scene (see Figure 6.1). The stimuli images were created using the same program previously 

described to create the stimuli images of human scenes and were cropped using the same 

dimensions. 
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Figure 6.1 Example stimuli images of common scenes encountered by the monkeys.  

The wide-angle view (left) and the close-angle view (right) of each scene are also shown. 

6.3 Design and Procedure 

 Due to a break in testing between experiments 1 and 2A, three rhesus macaques were re-

trained on the boundary extension task using Experiment 1 training procedures and stimuli. All 

other monkeys moved directly from Experiment 1 to Experiment 2A without completing any 

additional training and without any substantial delay between test periods. Trials proceeded 

exactly as described in Experiment 1 for each species, with test trials occurring 25% of the time. 

Due to experimenter error, all capuchin monkeys were given trials with black and white visual 

masks, regardless of their training history with or without masks in Experiment 1. All monkeys 

worked until they completed at least 2,400 total trials. 
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6.4 Results 

6.4.1 Rhesus macaques 

Rhesus macaques’ performance was divided into 40 60-trial blocks for analysis as a 

function of trial type and block (see Figure 6.2). Performance was above chance for all trial 

types, train: t(5) = 5.95, p < .01; close: t(5) = 4.13, p < .01; wide: t(5) = 4.93, p < .01. The 

monkeys’ error rates showed a significant main effect of trial type, F(2, 10) = 22.08, p < .001. 

Pairwise comparisons (Bonferroni corrected for multiple comparisons) indicated that monkeys 

made a significantly smaller proportion of errors on train trials (M = 0.24, SD = 0.11) compared 

to close trials (M = 0.45, SD = 0.03), p < .01, and wide trials (M = 0.45, SD = 0.02), p < .05. 

Performance on close and wide trials did not differ from each other, p = 1.00. There was no main 

effect of block, F(39, 195) = 1.00, p = .47, or an interaction, F(78, 390) = 0.98, p = .54. Analysis 

of performance during the first block of testing also did not show any significant differences 

between close (M = 0.44, SD = 0.31) and wide (M = 0.38, SD = 0.13) trials, t(5) = 0.57, p = .59. 
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Figure 6.2 Mean proportion of errors, as a function of trial type and block, for rhesus 

macaques in Experiment 2A. 

Error bars show the 95% confidence intervals. 

6.4.2 Capuchin monkeys 

Capuchin monkeys’ performance was analyzed across 40 60-trial blocks, as a function of 

trial type and block (see Figure 6.3). Across all trial types, monkeys performed significantly 

above chance levels, train: t(13) = 14.58, p < .001; close: t(13) = 2.92, p = .01; wide: t(13) = 

4.23, p = .001. There was a significant main effect of condition, F(2, 26) = 123.66, p < .001, such 

that monkeys made a significantly smaller proportion of errors on train trials (M = 0.23, SD = 

0.07) than on close (M = 0.46, SD = 0.05) and wide (M = 0.46, SD = 0.03) trials, all pairwise 

comparisons with Bonferroni corrections p < .001. Performance on close and wide trials did not 

differ from each other, p = 1.00. There was no effect of block, F(39, 507) = 1.01, p = .46, or an 

interaction, F(78, 1014) = 1.02, p = .43. Monkeys’ performance on close (M = 0.47, SD = 0.21) 
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and wide (M = 0.44, SD = 0.23) trials during the first block also did not show any significant 

differences in error rates, t(13) = 0.42, p = .68.  

 

Figure 6.3 Mean proportion of errors, as a function of trial type and block, for capuchin 

monkeys in Experiment 2A.  

Error bars show the 95% confidence intervals. 

6.5 Discussion 

Using images of relevant scenes for these monkeys (i.e., common scenes encountered by 

these specific animals) also did not lead to boundary extension. Neither species demonstrated a 

difference in performance on close and wide trials. This is contrary to predictions from both 

models of scene perception. Presumably, relevant scenes would have engaged the mental 

activities proposed by the traditional and multisource models to be present during scene 

perception (visual input, amodal perception, and schematic information of the scene). Despite the 

presence of an additional source of information compared to the previous experiment (i.e., 

categorization of the scene from conceptual knowledge and contextual associations), it seems 

that the monkeys were only relying on direct visual input during the DMTS task. This resulted in 
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an identical outcome as the previous experiment, with above chance performance when 

identifying the sample image from a foil image but no difference in performance based on the 

sample image’s view relative to the foil image. This lack of boundary extension in rhesus 

monkeys and capuchin monkeys may represent a potential species difference between human 

and nonhuman primates for this memory error.  

However, an additional explanation is that the monkeys were not motivated to perform 

well on critical trials compared to baseline trials given the much greater difficulty of those trials 

and the 50% chance level on what amounted to be a minority of the overall trials presented. This 

lack of motivation to attend carefully on these trials could have led to equal performance on 

close and wide trials. This possibility was investigated further in the following experiment by 

increasing the frequency of test trials experienced by the monkeys, so that they would have to try 

harder to perform well on those trials to keep the rate of reward that they had become 

accustomed to consistent.   

7 EXPERIMENT 2B 

Although all monkeys’ performance in Experiments 1 and 2A were significantly above 

chance levels for all conditions, performance on the critical test trials did not differ greatly from 

chance unlike the baseline training trials. In Experiment 1, rhesus macaques’ proportion of errors 

on training trials (M = 0.11) was much lower than their proportion of errors on close (M = 0.45) 

and wide trials (M = 0.45). The same pattern was observed for rhesus macaques in Experiment 

2A: training trials (M = 0.24), close trials (M = 0.45), and wide trials (M = 0.45). Capuchin 

monkeys demonstrated the same trend in performance for Experiment 1 (train trials, M = 0.20; 

close trials, M = 0.47; wide trials, M = 0.47) and Experiment 2A (train trials, M = 0.23; close 

trials, M = 0.46; wide trials, M = 0.46). It was possible that the monkeys were not motivated to 
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do well on the critical test trials due to their infrequent occurrence (25% of the total trials), 

especially given the high levels of reward they received on baseline training trials.  

Experiment 2B was done to increase monkeys’ motivation to respond meaningfully on 

test trials by increasing the probability of close and wide trials occurring to 75%. To determine 

whether this made a difference in eliciting boundary extension, I tested macaques first to see 

whether additional tests with capuchin monkeys might be warranted by this manipulation. 

7.1 Participants 

 The same six rhesus macaques from the previous experiments participated. 

7.2 Apparatus 

The testing apparatus was the same as in previous experiments with the monkeys. The 

computer task and stimuli were the same as in Experiment 2A. 

7.3 Design and Procedure 

 Experiment 2B used the same testing procedures as Experiment 2A, with one critical 

difference. Test trials now occurred 75% of the time during testing and baseline training trials 

occurred 25% of the time. No additional training was completed between this and the previous 

experiment. Halfway through testing, a procedure modification was made for one animal for 

husbandry reasons. Instead of being rewarded with one 45-mg food pellet for correct responses, 

he was rewarded with two 45-mg food pellets. All other procedures remained the same. Monkeys 

worked until they completed at least 1,200 total trials. 

7.4 Results 

 Rhesus macaques’ performance was analyzed across 20 60-trial blocks, as a function of 

trial type and block (see Figure 7.1). Fewer blocks were analyzed due to the higher percentage of 

test trials compared to previous experiments. Performance for all trial types was significantly 
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above chance levels, train: t(5) = 6.32, p = .001; close: t(5) = 3.54, p < .05; wide: t(5) = 3.00, p < 

.05. There was a significant main effect of trial type, F(2, 10) = 27.87, p < .001. Pairwise 

comparisons, corrected for multiple comparisons with the Bonferroni correction, indicated that 

monkeys made a significantly smaller proportion of errors on train trials (M = 0.22, SD = 0.11) 

than on close (M = 0.46, SD = 0.03), p = .007, and wide (M = 0.46, SD = 0.04) trials, p = .01. 

Performance on the critical close and wide trials did not differ from each other, p = 1.00. There 

was not a main effect of block, F(19, 95) = 0.85, p = .64, or a significant interaction, F(38, 190) 

= 0.974, p = .52. Performance during the first block of testing was not analyzed given that the 

stimuli and task design were no longer novel to the monkeys. 

 

Figure 7.1 Mean proportion of errors, as a function of trial type and block, for rhesus 

macaques in Experiment 2B. 

Error bars show the 95% confidence intervals. 

7.5 Discussion  

 As in Experiment 2A, rhesus macaques did not demonstrate boundary extension or an 

effect of experience. Increasing the frequency of test trials to motivate the monkeys to perform 
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meaningfully on the critical close and wide trials did not elicit boundary extension. Rhesus 

monkeys’ performance on the test trials did not differ, nor did their performance change across 

blocks. Monkeys performance on all trial types only differed slightly from previous experiments, 

suggesting that the monkeys were at their threshold of discriminative ability. Even when 

demonstrating their best performance, the monkeys were not affected by the scene’s view 

relative to a foil image. Unlike humans, they did not misremember a sample image with a closer 

or wider view than was originally seen. Instead, rhesus monkeys and capuchin monkeys seemed 

to be “invulnerable” to boundary extension. 

8 GENERAL DISCUSSION 

Boundary extension, a memory error in which participants remember seeing details of a 

pictured scene that were not shown (e.g., Intraub & Richardson, 1989), has been observed in a 

variety of testing conditions in humans. To determine the underlying mechanisms of this 

phenomenon and whether it is better explained by the traditional visual-cognitive (Baddeley & 

Hitch, 1974; Irwin, 1991, 1993; Phillips, 1974; Potter, 1976; Sperling, 1960) or the multisource 

model (Intraub, 2010; Intraub & Dickinson, 2008), a series of experiments were conducted with 

humans and nonhuman primates (rhesus monkeys and capuchin monkeys) assessing boundary 

extension across species.  

Consistent with previous research, human participants demonstrated boundary extension 

across three blocks of trials in a DMTS task with pictures of common scenes encountered by 

humans (e.g., beach, playground, backyard; Replication Study). These results provided a 

conceptual replication of boundary extension in human adults with a comparative method that 

could be given to nonhuman primates. When the same human-unique scenes and DMTS task 

were presented to the monkeys neither species demonstrated boundary extension in the absence 
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of conceptual knowledge and contextual associations (Experiment 1). Performance was above 

chance level in all conditions (baseline, close, and wide trials), indicating that the animals were 

able to remember and successfully discriminate between the sample image and a foil image. 

However, the error asymmetry between close and wide trials indicative of boundary extension 

was not observed. Images of monkey-relevant scenes (e.g., play yards, inside housing 

enclosures) also did not lead to boundary extension in rhesus monkeys and capuchin monkeys 

(Experiment 2A), even when the occurrence of test trials was increased to motivate the monkeys 

to perform well (Experiment 2B). Again, performance was above chance levels in all conditions 

for both experiments.  

The magnitude of boundary extension can differ depending on the conditions under 

which it is studied (e.g., Beighley & Intraub, 2016; Hale et al., 2016; Intraub et al., 1996, 2008). 

Interestingly, the monkeys’ performance was not impacted by the type of stimuli (relevant and 

non-relevant scenes) they were exposed to. There were no noticeable differences in the 

magnitude of the monkeys’ error rates across Experiments 1, 2A, and 2B for either species. At 

their threshold of discrimination (error proportions ranged between 0.45 and 0.47 across 

experiments and species), monkeys were equally as good at discriminating the sample from 

closer and wider views of the same image. These results were seen even though the test trials 

were difficult trials that might have lended themselves to a bias on the basis of the match 

option’s view angle (i.e., being the closer or wider view). No separation in performance (e.g., 

above and below chance level) for the critical test trials reflects no presence of boundary 

extension in a test in which humans did show a difference. 

Unlike most studies of boundary extension, the present study also explored the effects of 

experience. Overall, monkeys did not show any differences in performance across blocks, except 
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capuchin monkeys who showed a significant difference in performance on close and wide trials 

during the first block of Experiment 1. However, this difference was in the opposite direction of 

the boundary extension effect, with the monkeys performing better on close trials (when the 

sample image was the closer view compared to the foil image) compared to wide trials (when the 

sample image was the wider view compared to the foil image), and the effect did not replicate in 

Experiment 2A with new stimuli. For humans, experience reduced the effect of boundary 

extension, but did not eliminate it. This again provides a strong contrast in performance among 

species, with humans showing a clear replication of the effect and monkeys instead showing 

limited or no evidence. 

The present study demonstrated a thorough investigation of boundary extension in 

nonhuman primates. Monkeys’ high performance on baseline training trials (which ranged from 

76% to 89% correct, across species and experiments) clearly indicates that the monkeys were 

engaged and making meaningful responses throughout the DMTS task. Presenting the same 

stimuli to human adults, rhesus monkeys, and capuchin monkeys allowed for a direct comparison 

of recognition memory and possible boundary extension effects. The present study also included 

a species-fair investigation of boundary extension by exposing the monkeys to multiple pictures 

of scenes relevant to them. Seeing different pictures of outside play yards, for example, should 

have evoked the schema for “play yards” in the monkeys, just as seeing pictures of restaurants 

evokes schematic information (i.e., conceptual knowledge and contextual object associations) in 

human adults. Despite these manipulations, monkeys do not seem biased to interpret a wider-

angle view as being more similar to the sample image, while humans are biased in this way.  

While these null results do not provide evidence for the traditional visual-cognitive model 

or the multisource model of scene perception, they do suggest a possible species difference in 
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perception. Both models predict that amodal perception and conceptual knowledge of a scene 

would lead to boundary extension. The traditional model suggests that boundary extension would 

not occur in the absence of conceptual knowledge, while the multisource model predicts that 

boundary extension would occur both with and without conceptual knowledge due to amodal 

perception. Even though the mechanisms of boundary extension in human memory are still 

unclear, the present study suggests that capuchin monkeys and rhesus macaques are immune to 

this memory error, or at least that the present approach, which elicits boundary extension in 

humans, does not elicit this memory error in monkeys. The absence of boundary extension 

without conceptual knowledge (Experiment 1) and with conceptual knowledge (Experiment 2A 

and 2B) demonstrates that monkeys can rely on visual input alone to discriminate scenic stimuli, 

even in the presence of amodal perception, conceptual categorization, and contextual 

associations of the scene.  

Rhesus monkeys and capuchin monkeys are primarily local processers (De Lillo, 

Spinozzi, Truppa, & Naylor, 2005; Hopkins & Washburn, 2002; Spinozzi, De Lillo, & Salvi, 

2006; Spinozzi, De Lillo, & Truppa, 2003), unlike humans who show more frequent global-to-

local precedence when assessing compound stimuli (e.g., Navon, 1977, 1981). This difference 

may have limited the monkeys’ representation of the broader scene, making them unsusceptible 

to boundary extension effects. As local processors, the monkeys’ ability to focus primarily on 

individual items of the scene through bottom-up processing (potentially resulting in a mental 

representation that was a collection of items, instead of a continuous scene) may have protected 

them from the interfering effects of conceptual knowledge and contextual associations from top-

down processing. In contrast, due to the precedence for global processing, humans may not have 

been as easily able to overcome the interfering information from top-down processing during 
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scene perception, resulting in boundary extension in memory. This would be consistent with 

research demonstrating that boundary extension only occurs for views of scenes and does not 

occur for non-scenes (e.g., Gottesman & Intraub, 2002; Intraub et al., 1998; Legault & Standing, 

1992; Park, Intraub, Yi, Widders, & Chun, 2007). Such a result demonstrates a sharp species 

discontinuity and may reflect a truly human-unique perceptual experience for boundary 

extension. However, future research with more species would be required to provide stronger 

support for such a contention. 

8.1 Implications 

The present study highlights the processes necessary for scene perception. For boundary 

extension to occur a scene must be processed in its entirety and as a continuous view. This 

memory error was not seen in the monkeys perhaps because of their precedence for local features 

when viewing complex stimuli, limiting their interpretation of the sample images as scenes. It is 

humans’ global-to-local processing of visual stimuli that allows for boundary extension to occur. 

This sharp contrast between humans and two species of nonhuman primates highlights the 

uniqueness of boundary extension in the human experience and the necessary role global 

processing plays in scene perception.  

While no strong conclusions can be made about which of the former models best explains 

boundary extension based on the present comparative data, monkeys’ ability to rely on visual 

input alone demonstrates that local processing can be protective against this memory error. 

While boundary extension plays an important role in scene perception by priming the next 

fixation, at times this memory error could be maladaptive. When accurate memory of a scene is 

essential, the present study suggests that local processing of the scene’s features would lead to 

more accurate recall and recognition of that scene. Therefore, the present study’s results suggest 
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that intentional local processing of scenes can be used to circumvent boundary extension when 

necessary. 

8.2 Limitations 

 An unavoidable limitation of the present study is the assumption that the nonhuman 

primates interpreted the sample images as referents to real-world scenes. Several species of great 

apes, as well as capuchin monkeys, have been shown to be capable of referential understanding 

that can guide behavior in the real-world (e.g., Gardner, Gardner, & Van Cantfort, 1989; Itakura, 

1994; Kuhlmeier & Boysen, 2001, 2002; Kuhlmeier, Boysen, & Mukobi, 1999; Menzel, 

Premack, & Woodruff, 1978; Poss & Rochat, 2003; Potì & Saporiti, 2010; Savage-Rumbaugh, 

McDonald, Sevcik, Hopkins, & Rupert, 1986; Truppa, Spinozzi, Stegagno, & Fagot, 2009). 

These studies are encouraging results that the rhesus monkeys and capuchin monkeys interpreted 

the human-unique and monkey-relevant stimuli as images of the real-world, invoking top-down 

processes (conceptual and contextual associations) during perception. However, in several of the 

previous studies training was involved to teach the animals to learn the referential associations, 

so this assumption remains a concern for the present study. 

Additionally, many of the monkeys advanced through the present study’s experiments 

with different levels of experience. That is, while all monkeys completed at least 2,400 trials in 

Experiments 1 and 2A and 1,200 trials in Experiment 2B, some monkeys completed many more 

trials than that before moving on to the next experiment, while others did not (see Table 8.1 for 

the total number of trials completed by each monkey for each experiment). These differing 

numbers of trials determined each monkeys’ experience and familiarity with the task as they 

advanced through the present study. However, the lack of a main effect for block in Experiments 

1, 2A, and 2B make it less likely that these differences in experience affected the results. 
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Table 8.1 Total Number of Trials Completed by Each Monkey 

 Exp 1* Exp 2A* Exp 2B** 

Capuchin Monkeys    

Benny 3,539 3,509 - 

Gonzo 2,663 4,262 - 

Gretel 4,401 6,561 - 

Griffin 5,750 4,632 - 

Ira 2,845 2,976 - 

Ivory 6,040 3,348 - 

Lexi 2,696 4,525 - 

Lily 5,844 2,462 - 

Logan 2,760 13,373 - 

Nala 6,049 2,413 - 

Nkima 4,067 4,085 - 

Paddy 4,764 3,450 - 

Widget 2,608 3,092 - 

Wren 3,342 6,100 - 

Rhesus Monkeys    

Chewie 3,845 6,044 2,923 

Hank 3,341 2,639 1,733 

Lou 3,007 4,246 3,302 

Luke 3,916 6,152 1,417 

Murphy 2,437 2,458 1,994 

Obi 5,385 3,133 2,563 

Note. *Only the first 2,400 trials were analyzed **Only the first 1,200 trials were analyzed 

8.3 Future Directions 

One species that would be of interest to test for the presence of boundary extension 

would be pigeons (Columba livia). Pigeons are known to have visual systems with functionally 

equivalent properties to humans (Levenson, Krupinski, Navarro, & Wasserman, 2015) and, like 
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monkeys, are also local visual processors (e.g., Cerella, 1980). Additionally, like human and 

nonhuman primates, pigeons can learn to recognize and categorize objects into common and 

abstract categories using similar mechanisms (e.g., Bhatt, Wasserman, Reynolds, & Knauss, 

1988; see Soto & Wasserman, 2014, for a review). For example, Bhatt et al. (1988) trained 

pigeons to classify images into four categories (cats, flowers, cars, and chairs). The pigeons were 

able to then generalize from exemplar images for each category and accurately categorize novel 

stimuli. Other pigeons were able to correctly classify stimuli in the absence of any exemplars. 

Given pigeons’ ability to discriminate complex visual stimuli (e.g., color paintings by Monet and 

Picasso, Watanabe, Sakamoto, & Wakita, 1995; benign and malignant human breast tissue and 

cancer microcalcifications, Levenson et al., 2015) and presumably form concepts in order to 

categorize novel stimuli, they may offer interesting results in a study of boundary extension.  

While there are similarities in pigeons’ ability to visually discriminate stimuli, there are 

also differences between primate and pigeon learning. In a study of rule-based (RB) and 

information-integration (II) categorization, Smith et al. (2012a) found that humans, rhesus 

macaques, and capuchin monkeys learn a RB task quicker and more accurately than an II task. 

Pigeons, on the other hand, learned RR and II tasks with equal speed and performance. Given the 

high perceptual acuity of pigeons and the differences in learning, I would predict that they would 

not demonstrate boundary extension in memory. Most likely, discrimination of the sample image 

from a foil image would be even better than that by the rhesus monkeys and capuchin monkeys, 

with no effect of trial type on proportions of errors. If so, further evidence would be provided 

that boundary extension may be a human-unique experience. 

Another study of interest would be a local-global training study with nonhuman primates. 

If the reason rhesus monkeys and capuchin monkeys did not demonstrate boundary extension is 
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because they are local processors, it would be expected that training them to allocate their 

attention to global features of a visual stimulus would lead to boundary extension during a 

subsequent test of scene recognition. Monkeys would have to be trained to be global processers, 

as well as demonstrate transference of this skill to novel complex stimuli, including images of 

scenes. Once monkeys can process stimuli with a global precedence, a test of boundary extension 

with the same DMTS task used in the present study might demonstrate boundary extension in the 

monkeys’ performance. This would further demonstrate that local processing by the monkeys 

was the reason for the present study’s results. 

Overall, rhesus monkeys and capuchin monkeys do not seem to demonstrate boundary 

extension on a test for which humans clearly did demonstrate this memory error. This species 

discontinuity may be due to the difference in visual attention allocation between humans and two 

species of nonhuman animals, elucidating an important mechanism of scene perception and a 

potential means to prevent boundary extension from occurring in memory. Future studies with 

other species of nonhuman animals would further explain the mechanisms involved in boundary 

extension and the cognitive model that best describes this memory error. 
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