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ABSTRACT 

Research shows that by observing properties of figures and making conjectures in non-

Euclidean geometries, students can better develop their understanding of concepts in Euclidean 

geometry. It is also known that definitions in mathematics are an integral part of understanding 

concepts and are often not used correctly in proof or logic courses by students. To further 

investigate student understanding of mathematical definitions, this dissertation studied students’ 

uses of dynamic geometry software and group work to generalize their understanding of definitions 

as they completed activities in Taxicab geometry. As a result of the analysis from the group work 

and use of Geometer’s Sketchpad by 18 students in a College Geometry class, suggestions are 

provided to implement cooperative learning and technology in the classroom. In addition, results 



are provided from the data analysis of responses to questions pertaining to the definition of circle 

(and its relevant concepts) of 15 students enrolled in the course who volunteered to participate in 

semi-structured interviews. This dissertation specifically utilizes APOS Theory (Arnon et al., 

2014) and the interaction of schema framework provided by Baker et al. (2000) to determine what 

components of the circle schema were evoked by these participating students during these 

interviews. By adapting and transferring their knowledge of concepts back and forth between 

Euclidean and Taxicab geometry, these students provided evidence for the relationships they had 

formed between the components of their circle schema. Further, they demonstrated a variety of 

levels of schema interaction of their evoked Euclidean geometry schema and Taxicab geometry 

schema. As a result, a model of schema interaction and suggested pedagogical activities were 

developed to help facilitate student understanding of the definition of a circle and other relevant 

concepts. 

 

INDEX WORDS: Definitions, Geometry, Taxicab, APOS Theory, Circle, Cooperative learning, 

Geometer’s Sketchpad 
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1 INTRODUCTION  

1.1 Statement of the problem 

Definitions are an integral part of understanding concepts and constructing proofs in 

mathematics. Thus, it is important for students to develop a deep understanding of the content and 

role of definitions in mathematics. Edwards and Ward (2008) found mathematics majors exist that 

do not understand the role of definitions in a mathematically acceptable way but have been deemed 

successful students in advanced mathematical courses. These authors explain that this should be 

addressed in undergraduate mathematics, and research is needed to determine pedagogical 

strategies that help facilitate student understanding of the concept of definition. Güner and Gülten 

(2016) explain that geometry has three dimensions: definitions, images that represent these 

definitions, and their properties. In addition, with respect to activities that have been designed to 

deepen the understanding of the concept of definition in mathematics, research is needed to assess 

their effectiveness (Edwards & Ward, 2008). In this study, I investigate these three dimensions 

and their relationship to one another to determine how students understand certain definitions and 

present suggestions for how to develop this understanding. 

With respect to this need, the purpose of this study is to identify and analyze students’ 

perceptions and understanding of mathematical definitions in geometry. Further, it is investigated 

how applying these definitions in an atypical context affects their understanding of the concept of 

definition. In particular, I explored how being introduced to Taxicab Geometry contributed to 

students’ understanding of mathematical definitions and their roles within geometric reasoning. 

Also, as Geometer’s Sketchpad (GSP) is a dynamic geometry software that participants used in 

this study, it is investigated how students utilized this program to explore concepts and generalize 

definitions. 
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Geometry is a very important area in mathematics because it takes objects and their 

relationships in the real world and allows students to understand these behaviors. The skills 

developed through learning geometry, like spatial sense and relationships among figures, is 

increasingly necessary for many areas of study (Grunbaum, 1981). In college geometry courses, 

Euclidean geometry and its axiomatic system is deeply studied, but other axiomatic systems 

receive little consideration (Byrkit, 1971; Hollebrands, Conner, & Smith, 2010), although research 

shows that by exploring concepts in non-Euclidean geometry, students can better understand 

Euclidean geometry (Dreiling, 2012; Hollebrands, Conner, & Smith, 2010; Jenkins, 1968). There 

is also a need for further research to investigate whether students develop deeper insight to 

Euclidean axioms, concepts, and theorems as a result of a comparison of these ideas in different 

geometries (Kinach, 2012). In particular, Siegel, Borasi, and Fonzi (1998) encourage the 

introduction to Taxicab geometry before other non-Euclidean geometries since the simpler space 

makes it easier for students to reason, and thus abstract concepts. Supporting this, Dreiling (2012) 

found that “through the exploration of these ‘constructions’ in Taxicab geometry…[students] 

gained a deeper understanding of constructions in Euclidean Geometry.” (Dreiling, 2012, p. 478). 

One objective of this study is to determine how students perceive and understand mathematical 

definitions in Taxicab Geometry in order to facilitate a better understanding of how to use 

definitions in geometric reasoning, from which concepts are widely used in various areas of study.  

There have been many technological tools developed to help students’ reason in non-

Euclidean geometry, but it is relatively uninvestigated how college students construct arguments 

in non-Euclidean mathematics when given the ability to use these technological tools. Few 

research studies have examined how students' uses of such tools affect their mathematical thinking 

or influence the mathematical arguments they develop (Hollebrands, 2010). There are many 
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advantages to using dynamic software in the classroom. First, according to Glass and Deckert 

(2001), seeing examples of problems worked out or figures drawn does not help students focus on 

the relationship and relevant aspects of the material as much as using technology can. Second, by 

using dynamic technology, students can develop a higher level of geometric reasoning and 

understanding. Third, with the ability to alter figures and analyze what relationships change or do 

not change, technology can help students explore these relationships and differentiate between 

drawings and constructions. Finally, Glass and Deckert (2001) state that research implies students 

who use this software can generate conjectures better than those who do not use technology, since 

they are able to visualize patterns and properties. In this study, participants used the dynamic 

geometry software Geometer’s Sketchpad, which will be discussed more about later in Section 

2.3. 

Despite the expectations held for students enrolled in higher-level mathematics courses, it 

has been found that commonalities exist regarding students’ inability to properly complete tasks 

involving definitions (Edwards & Ward, 2004). In fact, the authors state that there were 

misconceptions in students’ understanding of “the very nature of mathematical definitions, not just 

from the content of the definitions,” (p. 411). Within the context of geometry, since properties of 

geometric figures are derived from definitions within an axiomatic system, it is important to note 

that a figure is “controlled by its definition,” (Fischbein, 1993, p. 141).  

Schoenfeld (2000) reminds us of the purposes of mathematics education research. The first 

is in a pure sense, “to understand the nature of mathematical thinking, teaching, and learning. The 

second, as applied, is “to use such understandings to improve mathematics instruction,” 

(Shoenfeld, 2000, p. 641). This study aims to accomplish both of these with respect to geometry, 

geometrical thinking, mathematical definitions, and Taxicab geometry. As previously stated, the 
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purpose of this study is to determine how students perceive and understand mathematical 

definitions in Taxicab Geometry in order to facilitate a better understanding of these definitions 

and their application in geometric reasoning.  

1.2 Research questions 

I sought to answer how being introduced to Taxicab Geometry contributes to students’ 

understanding of mathematical definitions with the help of Geometer’s Sketchpad (GSP). In 

particular, 

1. In what ways do students use GSP to refine their understanding of mathematical 

definitions? 

(a) How do students apply their working understanding of a definition in GSP to reason 

about mathematical problems? 

(b) How does cooperative learning and the use of GSP help students in the abstraction of 

definitions from Euclidean geometry to axiomatic systems in general?  

2. How do students adapt their understanding of concepts in Euclidean geometry in order to 

apply definitions in Taxicab geometry, a non-Euclidean axiomatic system? 

(a) What activities in Taxicab geometry can aide in the abstraction of a definition? 

(b) How does applying definitions in an atypical context affect the development of student 

understanding of these definitions? 

(c) How do students transfer their understanding of relationships among concepts in 

Euclidean geometry to Taxicab geometry?  

1.3 Theoretical perspective 

Constructivism as an epistemological viewpoint states that an individual constructs his or 

her knowledge based on his or her experiences with the related concepts. In particular, knowledge 



5 

is not “passively received, but rather actively constructed by an individual,” (Selden & Selden, 

1998, s.1). In regard to mathematics education, the authors continue to explain that “knowledge” 

refers to the mental structures that allow an individual to interpret the meaning of something, evoke 

ideas in their mind, or explore new mathematical problems effectively. Further, individuals can 

use this “old” knowledge in order to construct “new” knowledge. Thompson (1979) discusses a 

constructivist teaching method within mathematics education research. It is not uncommon for 

there to be a pattern in the way students learn mathematical concepts, and as such, mathematics 

educators should strive for a way to incorporate these patterns of construction in their instruction. 

This study was conducted around a course designed from a constructivist perspective, and relevant 

data was analyzed with constructivist frameworks.  

The method of instruction for this report was based on APOS Theory and the ACE teaching 

cycle (Arnon et al. 2013) and both APOS Theory and the theory of Concept Image and Concept 

Definition (Vinner & Hershkowitz, 1980; Tall, 1980; Tall &Vinner, 1981) are used to analyze 

student perceptions of various mathematical definitions. 

1.3.1 APOS Theory 

As a constructivist framework, APOS theory is based on Jean Piaget’s theory of reflective 

abstraction, or the process of constructing mental notions of mathematical knowledge and objects 

by an individual during cognitive development (Dubinksy, 2002). Piaget believed that reflective 

abstraction was “critical for the development of more advanced concepts in mathematics,” 

(Dubinsky, 1991, p. 160). As an extension or adaptation of reflective abstraction, APOS theory, 

introduced by Dubinksy in 1984, describes how concepts are learned in mathematics. Its aim is to 

understand how students understand and perceive mathematical concepts, to track the development 

of concepts, and use this knowledge to develop instructional material to assess the success of this 



6 

learning (Arnon et al., 2014). APOS is an acronym that stands for Action-Process-Object-Schema, 

which can be thought of as a non-linear pathway of how an individual learns particular 

mathematics concepts. 

The development of APOS theory by Dubinsky and other researchers in mathematics 

education is described and can be found in many cases (Asiala et al. 1996; Arnon et al. 2013; 

Dubinksy & McDonald, 2001). In addition, many examples of how this theory can be used to 

describe the learning of different concepts within mathematics by students (Asiala et al., 1997; 

Dubinsky et al., 2005; Weller et al., 2003; Çetįn, 2009; Stalvey et al., 2018; etc.). A general 

description of APOS Theory is provided below. 

APOS theory attempts explain how mathematical concepts might be learned (Arnon et al., 

2014). Through reflective abstraction, once an individual has encountered a concept and works 

with tasks related to this concept, their understanding of the concept moves from the lower level 

to a higher level of cognitive development with necessary restructuring of their existing 

knowledge. This continues as needed and helps to build upon the individual’s already existing 

knowledge to construct new relationships between these cognitive structures. In APOS Theory, 

there are four different stages of cognitive development: Action, Process, Object, and Schema. In 

addition, APOS Theory includes mechanisms to move between these levels of cognitive 

development: interiorization, coordination, encapsulation, de-encapsulation, and reversal 

(Dubinsky, 2010; Weller et al., 2003, Arnon et al., 2014).  

An action is being performed when a student is able to transform objects by external 

stimuli, needing guidance or using memorized rules to perform operations and tasks. As a student 

reflects on these actions, they are able to interiorize them, so they can imagine performing these 

actions without actually doing so. In this case, we refer to the interiorized action as a process. A 



7 

student can then coordinate this process with others within a schema in order to form connections 

between concepts. In addition, a process can be reversed in order to understand a concept further. 

Once a student is able to think of this process as a totality to which actions or other processes could 

be applied, we say that an object is constructed through the encapsulation of the process. It is also 

possible for a student to de-encapsulate an object that they have already constructed in order to 

add new knowledge to their pre-existing knowledge of a mathematical concept. In addition, an 

individual can de-encapsulate two objects, coordinate these processes, and form a new object from 

the coordinated process (Arnon et al., 2014). Finally, the entire collection of actions, processes, 

objects, and other schemas that are connected to the original concept that form a coherent 

understanding is called a schema (Dubinsky, 2002). A general illustration of the stages of APOS 

Theory as adapted from Arnon et al. (2014) is summarized in Figure 1.1 below. An example of 

what it looks like for student to go through the different mental stages of understanding according 

to APOS theory is discussed next. 

 As an example, the different stages of APOS (Action-Process-Object-Schema) Theory are 

described below in reference to the mathematical concept of Function. When a student has an 

Figure 1.1 Illustration of APOS theory as adapted from 

Arnon et al. (2014). 
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action conception of Function, he or she has a need to see a particular expression for a function, 

say 𝑦 = 2𝑥 + 4, and only then are they are able to think of evaluating this function at certain points 

as an external rule. For example, the student can determine that when 𝑥 = 1, 𝑦 = 6 and when 𝑥 =

20, 𝑦 = 44. Once the student performs these actions enough and reflects on these actions, he or 

she will be able to imagine that for any function, if he or she inputs a value into this function, they 

will obtain a unique output value. At this point, we say that the student has interiorized these 

actions, resulting in a process conception of Function. In general, a student with a process 

conception of Function does not need to have particular examples of functions to talk about their 

properties. In addition, the student can imagine inputting values into this function and can describe 

what will result from this without actually performing these actions. Using this example, such an 

observation might be that for linear functions, a positive slope indicates that as the 𝑥 values 

increase, the 𝑦 values are also increasing (positive relationship). Eventually the student may reach 

a conclusion that a function represents a set of inputs and outputs that are related to one another 

by some expression. A student can then begin to encapsulate this process into an object by 

classifying functions and describing groups of functions. At this point, the student can perform 

actions on this object conception, such as composing functions with one another or comparing 

types of functions to one another. This entire process and collection of actions, processes, and 

objects is what constructs the schema of the concept of Function for an individual student. 

Specifically, every individual’s schema is uniquely formed by his or her experiences and is not 

necessarily linearly formed in the order of Action-Process-Object-Schema. On the contrary, APOS 

Theory emphasizes that “the construction of mathematical knowledge is nonlinear,” although “the 

APOS-based description of the mental construction of a mathematical concept is presented in a 

hierarchal manner,” (Arnon et al., 2014, p. 19).  
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The idea of a genetic decomposition in APOS Theory is meant to outline and model the 

necessary constructions students need to make in order to develop understanding of mathematical 

concepts (Arnon et al. 2014). The authors define it as a “description of how the concept may be 

constructed in an individual’s mind,” (Arnon et al., 2014, p. 17). A genetic decomposition plays 

an important role in mathematics education research based in APOS Theory, since it provides a 

necessary theoretical model to aid in the design of instruments to gather and analyze data from 

students. Based on the researcher’s experiences and understanding of the concept, historical 

development of the concept, and results from relevant research, an initial genetic decomposition 

is created. This preliminary genetic decomposition is used as a guide in the development of 

instructional methods. During the analysis of data, the preliminary genetic decomposition is 

reflected upon to see if the questions and activities asked of students helped to make the mental 

constructions suggested by the genetic decomposition, or if the data suggests something about 

students’ understanding of the concept that was not included in the initial genetic decomposition. 

Depending on the reflection, the genetic decomposition or method of instruction may be revised. 

The repetition of refinement, revision, and data analysis produces a genetic decomposition that 

will closely mimic the cognitive development of a concept for a large portion of individuals as 

they learn about the concept. In general, the genetic decomposition can be used to design materials 

for instruction that will help to better facilitate student learning and understanding of mathematical 

content (Arnon et al. 2014). In Chapter 3, genetic decompositions are presented for this research 

study, and in Section 4.2 another genetic decomposition is presented for the interaction of 

schemata related to the circle schema. Another perspective on how students understand definitions 

is described below. 
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1.3.2 Concept image and concept definition 

Two different ways students can approach a mathematical topic are by a natural or a formal 

strategy (Tall, 2001). A natural approach is one in which a learner builds on concept imagery to 

give a personal meaning to a formal definition (Tall, 2001). A student who uses a natural approach 

is more likely to use examples as references for what a definition or theorem says in order to apply 

it to another situation. A student who uses a formal approach attempts to avoid using intuition 

when applying a definition or theorem to another situation. These learners focus on the formal 

definitions, using formal deductions to build theorems (Tall, 2001). It is very possible that learners 

use a combination of the two approaches, however it is more typical for them to have a major 

tendency towards one over the other. With the human mind being a finite entity, it is clear that we 

cannot hold an infinite number of concepts in it (Tall, 2001). This requires us to compress our 

knowledge associated with a concept into a manageable form that we can relate to other concepts, 

build upon to further our understanding, and also apply to situations we have not been made aware 

of previously. 

It is believed amongst many mathematics educators that a mathematical concept within an 

individual’s mind consists of a concept image and a concept definition (Tall &Vinner, 1981; 

Edwards &Ward, 2004; Chesler, 2012).  The concept definition is the definition that has been 

assigned to the concept while the concept image is a representation of an individual’s 

understanding of the concept under consideration. In essence, we come to develop a complete 

concept image in the mind consisting of “the total cognitive structure that is associated with the 

concept, which includes all the mental pictures and associated properties and processes,” (Tall & 

Vinner, 1981, p. 152). Furthermore, an individual’s concept image and concept definition for a 
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particular concept changes and develops over time (Tall, 2008). Note that the idea of concept 

image is comparable to schema from APOS theory.  

By exploring the process and possible learning paths of students, we can improve 

instruction for students to develop better understanding of definitions which will therefore improve 

the basis for understanding of proofs and their functionality. In general, a definition is a universal 

understanding of an object that gives meaning to it. The sophistication that comes about in higher 

level mathematics is that these definitions are linguistic compressions of phenomena that in turn 

become “thinkable concepts” themselves (Tall, 2007). Once this is the case, we then use these 

compressed phenomena to relate to other “thinkable concepts,” creating cognitive structures 

surrounding mathematical concepts and theorems (Tall, 2007).  

 Tall states that “definitions arise from experience with objects whose properties are 

described and used as definitions; in formal mathematics, as written in mathematical publications, 

formal presentations start with set-theoretic definitions and deduce other properties using formal 

proof” (Tall, 2008, p. 8). According to Pinto (1998), students take two distinct routes in learning 

concepts in formal mathematical analysis: one where they give meaning to definitions from the 

information they have compressed into their concept image, and one where they extract meaning 

from the concept definition. Furthermore, a concept definition generates its own concept image in 

the mind of each individual student: what we can call a concept definition image (Tall & Vinner, 

1981). When a student’s understanding of the concept of definition is being discussed, it is 

considering his or her experiences outside of mathematics classrooms as well as what they have 

developed with the guidance of an instructor. Tall and Vinner (1981) explain that there is a 

difference between a personal concept definition and a formal concept definition, since a formal 

concept definition is accepted by the mathematical community as a whole. Pinto (1998) and Pinto 
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and Tall (1999, 2001) found that students preferred to build on their personal version of a definition 

of a concept instead of using the formal conception definition assigned to this concept. Some of 

the concept images evoked by the students in their study were distorted or inadequate.  

With a slightly different explanation, Moore-Russo (2008) defines a concept definition to 

be the “words used to specify a mathematical object”, while a concept image consists of the 

“nonverbal representations, mental pictures, and the associated properties built through a person’s 

experiences…,” (p. 408). In addition, when an individual is considering a mathematical concept, 

often only part of the student’s memory, and therefore concept image, is called upon. Tall and 

Vinner (1981) refer to this induced set of memories and experiences as the evoked concept image.  

By exploring the process and possible learning paths of students’ thinking in relation to 

these concept images and concept definitions, I hope to develop better instructional materials to 

aide in the understanding of definitions. Further, I hope an improvement in the understanding of 

definitions will result in a deeper understanding of how to apply them in proofs and geometric 

reasoning.  

1.4 Outline of the study 

In this study, I attempt to answer the research questions presented in Section 1.2, as they 

relate to student understanding of definitions, geometrical reasoning, and how learning Taxicab 

geometry has an influence on both of these. In Chapter 2, a review of relevant literature is included 

to inform the reader of past and current research, needed research, and a general overview of 

Taxicab geometry and its differences from Euclidean geometry. Chapter 3 will include the research 

and instructional setting, data collection methods, and instruments used in this research study, as 

well as a preliminary genetic decomposition. This preliminary genetic decomposition attempts to 

model the learning of Taxicab geometry and how this affects students’ understanding of various 
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mathematical definitions. Chapter 4 will include the analysis of data and the presentation of a 

genetic decomposition involving the interaction of schema. The conclusions of the study, findings, 

any adjustments needed for the genetic decomposition, and recommendations for future research 

related to definitions within geometrical reasoning will be explained in Chapter 5. Further, 

suggested instructional material, developed as a result of these findings, will be provided in 

Appendix B. 

1.5 Chapter summary 

In this chapter, the importance of this research was summarized, as definitions are such an 

important facet of understanding mathematics. Research shows exposure to non-Euclidean 

geometry can assist students in the abstraction of meaning of these definitions within the context 

of geometry. The need for this research was discussed, as many research studies have indicated a 

need to investigate student understanding of definitions in geometry and how they are used within 

geometric reasoning, as many proofs rely on definitions. The theoretical frameworks that were 

used analyze data in an attempt to answer my research questions were presented. These research 

questions were specified as follows: 

1. In what ways do students use GSP to refine their understanding of mathematical 

definitions? 

(a) How do students apply their working understanding of a definition in GSP to reason 

about mathematical problems? 

(b) How does cooperative learning and the use of GSP help students in the abstraction of 

definitions from Euclidean geometry to axiomatic systems in general?  

2. How do students adapt their understanding of concepts in Euclidean geometry in order to 

apply definitions in Taxicab geometry, a non-Euclidean axiomatic system? 
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(a) What activities in Taxicab geometry can aide in the abstraction of a definition? 

(b) How does applying definitions in an atypical context affect the development of student 

understanding of these definitions? 

(c) How do students transfer their understanding of relationships among concepts in 

Euclidean geometry to Taxicab geometry?  
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2 LITERATURE REVIEW 

2.1 Geometry 

Geometry is a very broad area of mathematics that has many applications. In particular, it 

typically has some reliance on intuition and logic. Semple and Kneebone (1959) give a clear 

description of geometry, 

Geometry is the study of spatial relations, and in its most elementary form it is conceived as a 

systematic investigation into the properties of figures subsisting in the space familiar to 

common sense…even the most abstract geometrical thinking must retain some link, however 

attenuated, with spatial intuition, for otherwise it would be misleading to call it geometrical; 

and it is an historical fact that, throughout the long development of mathematics, geometers 

have again and again arisen who have given a fresh impulse to formal mathematics by going 

back once more for inspiration to the primitive geometrical sense (p. 1). 

Continuing this idea that geometry has to do with intuition, Grunbaum (1981) states that “few 

people are conscious of the fact that all geometry…is a product of our thinking and represents just 

one of the ways in which we try to communicate about our surroundings and understand certain 

aspects of reality,” (p. 232). Many students may question why they need to learn geometry, but 

many non-mathematicians encounter geometric problems regularly but struggle to accurately 

assess these problems because they are not equipped with the correct mathematical skills 

(Grunbaum, 1981). 

Oladasu (2014) states that “geometry is a central aspect of the school mathematics 

curriculum and is crucial in the mathematics education of our children from the perspective of 

providing them with the opportunity to develop spatial awareness and geometric thinking,” (p. 2). 

The author goes on to explain that reasoning activities can strengthen the evaluation of 
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mathematical arguments. It is common for students come into the college geometry classroom 

without a sufficient formal background, so when exposed to this approach, many students find it 

unattractive because of the demands imposed by writing formal solutions or using formal logic 

(Armitage, 1971).  

College geometry is difficult for students because they are used to reasoning from intuitive 

understandings and experiences rather than from axiomatic systems (Hollebrands et al, 2010). 

Along the same lines, Jenkins (1968) explains that students are surprised to find they have little 

understanding and insight into the axiomatic systems which are necessary for most mathematics. 

As Krause (1973) explains, having an understanding of non-Euclidean geometry can deepen a 

student’s insight of Euclidean geometry. According to this author in regard to higher mathematics, 

non-Euclidean geometry is recognized as a great way to illustrate the nature of axioms and the 

meaning behind the independency of axioms. At the same time, learning about non-Euclidean 

geometry is important to the process of using a rigorous axiomatic approach to reasoning. The 

understanding of geometry for students is significantly modified when they are challenged by 

different axioms (Hollebrands et al, 2010). As an example, having students construct models in 

elliptic geometry can reinforce important connections between elementary and higher geometry 

(Kaisari & Patronis, 2010).  

Menger (1971) discusses the importance of learning about deductive geometric systems. 

Among other benefits, the author explains that the student learns: 

1. These systems start from unproven assumptions in terms of undefined concepts.  

2. These concepts and assumptions are designed to reflect upon objects and facts of 

the physical world. In addition, there are many applications of geometry to nature. 

3. Definitions in terms of undefined terms can be of great importance. 
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4. Proving is combining and transforming assumptions according to the rules of logic. 

5. Some examples of systems satisfy certain postulates but not certain propositions. 

6. One theory may be capable of a variety of interpretations. 

Perhaps the most relevant to this dissertation, Menger (1971) specifies that by exploring these 

systems, “any mystery is dispelled by displaying to the students non-Euclidean geometries in 

situations with which they are perfectly familiar,” (p. 4). In particular, the author provides the 

example of Taxicab geometry in this context. With such evidence from researchers that 

emphasizes the instruction of non-Euclidean geometry, I anticipate that during the teaching of 

Taxicab geometry, students will be able to expand on their understanding for Euclidean geometry 

in addition to axiomatic systems, which are used throughout mathematics.  

2.1.1 Taxicab geometry 

Around the end of the 19th century, a Polish-German mathematician by the name of 

Hermann Minkowski first introduced the Taxicab metric to the world within a collection of 

proposed metrics (Gardner, 1997; Reynolds, 1980), although the name “Taxicab” was not used 

until 1952 when Karl Menger established a geometry exhibit in Chicago (Reinhardt, 2005). It is 

typically first taught in college geometry courses, although many times is ignored in the 

curriculum. Fortunately, many strides have been taken to encourage the instruction of non-

Euclidean geometry in general. In fact, geometry at the university level is no longer strictly 

Euclidean geometry, and has transitioned to being conceived as geometric topology (Willmore, 

1970). As college educators, we should emphasize geometrical discovery and the excitement that 

accompanies this, along with the idea of several different geometries (Willmore, 1970). 

Byrkit (1971) explains that the axiomatic system associated with Euclidean geometry is 

studied in depth in geometry, while other axiomatic systems receive little attention. The author 
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continues to explain that when non-Euclidean axiomatic systems are studied, often the examples 

are too difficult, too limited, or too trivial to create interest. Siegel, Borasi, and Fonzi (1998) 

encourage the introduction to Taxicab geometry before other non-Euclidean geometries since the 

simpler space makes it easier for students to reason, and thus abstract concepts. One advantage to 

learning Taxicab geometry is that it can be used as a model for various applications, such as 

optimizing driving time in cities or laying pipes in a home. Caballero (2006) even explains how it 

can be used to model the spread of forest fires and discusses how this can be used to improve 

computer code for these types of simulations. Thus, learning concepts in Taxicab geometry not 

only can help facilitate geometrical reasoning, but can be applicable to many individuals and their 

future careers. Taxicab Geometry measures distance only in horizontal and vertical motions, as 

opposed to Euclidean geometry which measures distance as the length of the straight line between 

two points. For example, imagine a city where the streets form a perfect grid system. A car can 

only travel forwards or backwards, with the ability to make left and right turns. Thus, driving 3 

blocks straight, making a left, and driving two more blocks is a total of five blocks.  

In general, the Taxicab distance between two points is measured as the sum of the change 

in horizontal and vertical directions between the two points, where Euclidean geometry is 

measured using the Pythagorean theorem. For simplicity sake, in this report when an object such 

as Euclidean circle, Taxicab circle, etc. is being referred to, it is intended that I am referring to this 

object (and associated concepts) as it exists within that particular space, rather than suggesting that 

object has two distinct concepts (one in Euclidean geometry and one in Taxicab geometry). For 

example, a “Taxicab circle” is the concept of a circle and its definition within the Taxicab metric 
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system. Figure 2.1 shows visual examples of both metrics. Mathematically, Euclidean distance 

(𝑑𝐸)  and Taxicab distance (𝑑𝑇) between two points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) are defined below: 

(i) 𝑑𝐸(𝑃, 𝑄) =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

(ii) 𝑑𝑇(𝑃, 𝑄) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| 

Seen in Figure 2.1, in Euclidean geometry, a distance between two points is represented 

visually as a straight line segment between two given points. In particular, it is calculated as the 

length of the hypotenuse of a right triangle constructed with legs parallel to the axes, as can also 

be seen in Figure 2.1. In Taxicab geometry, a distance between two points is represented visually 

as a path from one point to another by “walking” only over horizontal and vertical blocks. One 

such path would be along the legs of the right triangle mentioned in the case of Euclidean distance, 

but Figure 2.1 demonstrates two such paths. It is obvious that, in the case of Euclidean distance, 

there is a unique geometric representation of a distance between two points, while in Taxicab 

geometry this is not the case.  

Many interesting things occur once we change how distance is measured within an 

axiomatic system. For example, the triangle inequality does not hold in Taxicab geometry, circles 

look like squares, and the congruence criteria of Side-Angle-Side, Angle-Side-Angle, and Side-

Figure 2.1 Visual representations of Euclidean distance and Taxicab distance, respectively. 
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Side-Side of two triangles does not hold anymore (for more information on Taxicab triangles and 

trigonometry, please see Thompson & Dray (2000)). These are some examples of why learning 

Taxicab geometry can be interesting and important for students. By varying assumptions, students 

can come to the fundamental realization that we can develop new theory and results under certain 

conditions (Menger, 1971), and begin to abstract and generalize their understanding of particular 

concepts. As an example, Smith (2013) found that through exploration in Taxicab geometry his 

students deepened their understanding of a locus of points.  

As briefly discussed previously, for this report, when concepts are discussed in each 

geometry by the convention of Euclidean circle, Taxicab circle, Euclidean perpendicular bisector, 

etc., I am referring to this object as it exists within this geometry, not that this object is defined 

differently within these geometries. In other words, the definition of this object is the same, but 

the properties of this object may be different between the geometries because of the way distance 

in measured. For example, the Euclidean perpendicular bisector and Taxicab perpendicular 

bisector of a segment are defined as the locus of points equidistant from the endpoints of this 

segment in Euclidean geometry and Taxicab geometry, respectively. Thus, it is noted that for the 

entirety of this report a perpendicular bisector of a segment is defined as the set of points that are 

equidistant from the endpoints of this segment. As a result of this definition, this object has 

different properties in both geometries. In particular, in Euclidean geometry, this results in a 

straight line that intersects the segment at its midpoint at a right angle. In Taxicab geometry, this 

locus of points is not necessarily a straight line, nor does it necessarily intersect this segment at a 

right angle, depending on the slope of the segment with respect to the axes. Thus, when the concept 

of Perpendicular bisector is discussed in relation to a segment, it is not implied this line intersects 
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the segment at a right angle, because this depends on in what metric space this line is being 

constructed. 

Regarding this idea of properties varying as a result of a definition, Smith (2013) so 

eloquently discusses that our own assumptions can prevent us from seeing a problem in its full 

depth. Along these lines, Fujita and Jones (2006, 2007), Okazaki and Fujita (2007), and Turnuklu 

et al. (2013) talk about prototypical images in geometry and how students use them in their 

personal concept definitions, which affects how they define or classify figures. Identified as the 

“prototype phenomenon” (Hershkowitz, 1990), I believe using Taxicab geometry in the classroom 

can help students to move past this phenomenon and examine definitions and the underlying 

reasons for the appearance of figures as a result of these definitions, as explained in Berger (2015). 

This author provides activities and applications of Taxicab geometry, along with Krause (1973), 

Dreiling (2012), Smith (2013), and Chu and Tran (2017).  

2.1.2 Van Hiele levels of Geometric Reasoning  

Although mathematicians see proofs and logic as a method for establishing validity, 

mathematics education researchers have questioned whether students are convinced by proof 

(Battista & Clements, 1995) or if they perceive proof as “a set of formal rules unconnected to their 

personal mathematical activity,” (Hanna, 1989). In particular, geometrical proofs challenge and 

encourage students to distinguish the difference between seeing and deducing (Yang & Lin, 2008). 

In order to construct proofs effectively in geometry courses, it is inferred that appropriate 

geometric reasoning skills are required. In terms of analyzing student understanding of geometry, 

it is commonplace for researchers to use van Hiele’s levels of geometric reasoning. 

As important as proofs are to higher mathematics, it is largely misunderstood by 

mathematics students. For example, in a large research study conducted by Senk (1985) of over 
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1500 students enrolled in full-year geometry courses that spent time on proof, only 30 percent of 

the students achieved a 75 percent-mastery level in proof writing. As an integral part of the formal 

mathematics world, educators need to be sure their students are actually learning the methods and 

logic of proof writing since the purpose of a proof is to provide students with mathematical insight 

(Hannah 1990, Hersh 1993, Thurston, 1994). Mejia-Ramos et al. (2012) state, “exactly what 

insight is, what it means for a proof to be understood, and how we can tell if students comprehend 

a given proof remain open questions in mathematics education,” (Mejia-Ramos et al., 2012, p. 4). 

A theory of geometrical thought, the van Hiele levels of geometric reasoning, will be 

discussed below. In particular, this theory suggests that students are not able to recognize and 

appreciate axiomatic systems until they reach the highest level of understanding in this hierarchy. 

Also, it implies that students must have reached the lower levels of these hierarchies before arriving 

at the highest level (Battista & Clements, 2004). Thus, when considering this theory in the 

classroom, activities and instruction must be flexible in order to compensate for students who are 

at varying levels in these hierarchies before attempting to guide students to the highest levels. 

Many researchers describe these levels in different ways (Battista & Clements, 2004; Glass & 

Deckert, 2001; Hansen, 2004), however the following descriptions summarize these levels.  

The first van Hiele level, Visualization, is when a student is able to recognize figures and 

relate them to objects they know. The student is not focused on individual parts, but the overall 

appearance of a figure. Next, stage 2 is Analysis, in which a student can identify the properties of 

figures, but do not know which properties are explicit enough to define the figure itself. The student 

is aware of properties, but do not comprehend the “significance of sufficiency of conditions,” 

(Glass & Deckert, 2001). Stage 3 is Abstraction or Informal Deduction, where a student is able 

classify figures and use basic logic to justify reasoning. At stage 4, which is Deduction (or Formal 
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Deduction), a student is able to write simple proofs and understand an axiomatic system. At the 

final stage, Rigor, a student is able to understand non-Euclidean geometry and has the ability to 

construct more difficult proofs.  

Since students must traverse the lower levels of these hierarchies before attaining the 

highest level of understanding, educators should be aware of at what levels their students are 

thinking when they arrive to their classroom.  

2.2 Mathematical Definitions 

Piaget (1928) explicitly states that “from the psychological point of view, definition is the 

conscious realization of the use which one makes of a word or a concept in the course of a process 

of reasoning,” (p. 147). The concept of a definition has historically not been a popular topic of 

discussion since there is an official view that imposes clarity and order on mathematics, which is 

apparently unproblematic and completely dominant (Brown, 1998). However, understanding the 

concept of definition is something that is full of important issues, and many of these issues are 

central to how we understand mathematics (Brown, 1998). The question of what the concept of a 

mathematical definition should be has been an ongoing topic of discussion. Krantz says “…a 

definition must describe the concept being defined in terms of other concepts already known,” 

(2007, p. 5). We can define a term using certain other terms only if these terms are defined 

previously (Brown, 1998). Reinforcing this idea of an official view on what a definition is, 

Principia Mathematica, written by Whitehead and Russell states: 

A definition is a declaration that a certain newly-introduced symbol or combination of symbols 

is to mean the same as a certain other combination of symbols of which the meaning is already 

known. (1910, p. 11) 
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Krantz (2007) states that “an axiom is a mathematical statement of fact, formulated using 

the terminology that has been defined in the definitions, that is taken to be self-evident,” (p. 6), 

which implies that definitions precede axioms. Thus, definitions are used to formulate axioms, 

which can be used in deriving propositions or theorems. As evident, a definition is the only basis 

on which we can build in mathematics and as a mathematical community, we can decide if a 

definition is considered valid. Brown (1998) discusses the differences between contextual 

definitions, explanations, and explicit, directly defined terms. A contextual definition is one in 

which the axioms are needed in order to find a meaning of the term instead of the term itself 

(Brown, 1998). In this way, the axioms are not necessarily defined only in terms of previously 

established defined words and are not explicitly stated. Brown (1998) also discusses the possible 

differences between an explanation and a definition, assuming there exist any. The mathematical 

community has varying opinions on whether an explanation could be considered as a definition. 

In this mathematical debate, Hilbert argues for explanations to be contextual definitions, while 

Frege’s point of view on this is that explanations are helpful with the introduction to a concept but 

should not be a part of or used as the formal mathematical definition (Brown, 1998).   

According to Dormolen and Zaslavsky (2003), there are certain criteria that must be met 

for a statement to be considered a definition. These are: 

• The criterion of hierarchy: The idea that any new concept must be described in terms 

of previously defined concepts;  

• The criterion of existence: The idea that a definition must guarantee that there is a term 

that satisfies conditions in a way that such a situation exists; 

• The criterion of equivalence: If there are two ways to define a mathematical term, these 

definitions must be equivalent; 
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• The criterion of axiomatization: The idea that a definition is part of an axiomatic, 

deductive system. 

Other important criterions considered part of the general culture include the criterion of 

minimality, the criterion of elegance, and the criterion of degenerations (Dormolen & Zaslavsky, 

2003; Edwards & Ward, 2008). 

When undergraduate students first take upper-level math classes, it is a common 

occurrence for students to struggle writing mathematical proofs (Edwards & Ward, 2004). Selden 

and Selden (2015) suggest that helping students understand how to interpret formal mathematical 

definitions so that they become operable is a good place to start when attempting to teach proof 

construction. This is because in order for a student to construct an adequate proof, they need the 

skill of converting definitions into operable interpretations (Selden & Selden, 2015). Conclusions 

from research that has been conducted suggest that students do not necessarily understand the 

content of relevant definitions or know how to use them in proof writing, which could be a main 

cause of these difficulties students are facing (Edwards & Ward, 2004). Menger (1971) explains 

that when a deductive approach is taken in teaching, a student learns that he or she can carefully 

choose definitions in terms of undefined terms in order to simplify theorems and proofs. In 

addition, the student learns that the “deductive geometric system must start from unproven 

assumptions in terms of undefined concepts,” (Menger, 1971, p. 3).  

Zandieh and Rasmussen (2010) identified a formal stage of operation of a student when he 

or she uses definitions without having to “unpack” the meaning of these definitions in order to use 

them as “links in chains of reasoning,” (p.70). Edwards and Ward (2004) identify a few issues 

students face when understanding the concept of a mathematical definition in this type of formal 

way: 
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• Many students do not categorize mathematical definitions the way mathematicians do. 

• Many students do not use definitions the way mathematicians do, even when the 

students can correctly state and explain the difference.  

• Many students do not use definitions the way mathematicians do, even in the apparent 

absence of any other course of action. 

So as educators, how do we change this? What pedagogical strategies can be used in order 

to further the understanding of what a mathematical definition is? Teachers must draw upon a 

specialized content knowledge in order to interpret, evaluate, choose, or use definitions (Chesler, 

2012). By having activities for students that require the construction of definitions for 

mathematical concepts, students are more likely to develop a deeper understanding of these 

concepts. In fact, definition construction is an activity just as important as solving problems, 

making conjectures, specializing, proving, generalizing, etc. (Chesler, 2012; De Villiers, 1998). 

By conducting this research study, I hope to find more pedagogical tools to be used to help this 

understanding. 

Traditionally in the mathematics classrooms, Freudenthal (2006) explains that students are 

given definitions and rules and are expected to proceed to show some other concept or idea. 

However, Pinto and Tall (1999) found that students failed to use the formal definition given to 

them in order to deduce another idea. Instead, they preferred to build on their own personal version 

of the definition, sometimes distorted, in order to make these deductions (Tall, 2002). As described 

by Çetįn (2009), for conflict to occur, “it is needed that conflicting portions are evoked 

simultaneously in the individuals’ mind. Not only portions of concept image can be in conflict 

[with] each other, but also conflict might happen between [a] concept image and its formal 

definition.” (p. 24)  



27 

Thus, the inner conflict of what exactly a mathematical term means in relation to its formal 

definition influences how students apply these definitions within proofs. Dawkins (2012) suggests 

that within the context of geometry, students “have a body of experience that facilitates ease of 

processing and provides basic intuition for assessing the validity of reasoning within the context.” 

This is supported by Alcock and Simpson (2002, 2004), Edwards and Ward (2008) and Vinner 

(1991). In this sense, there are many different ways individuals can use mathematical terms, 

properties, and definitions to develop their understanding of concepts. What follows is a summary 

of these various strategies as a result of a literature review and the researchers’ knowledge and 

experiences. Seen in Figure 2.2, an illustration is provided to model the process individuals may 

take in three different types of activities related to definitions and mathematical terms.  

Deriving a definition of a mathematical term based on properties: By having activities for 

students of constructing definitions for mathematical concepts, they are more likely to develop a 

deeper understanding of these concepts. In fact, definition constructions are an activity just as 

important as solving problems, making conjectures, proving, and generalizing (Chesler, 2012; De 

Figure 2.2 Visual representations of ways mathematical terms, properties, and 

definitions can be utilized. 
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Villiers, 1998). When they are constructing their understanding of a concept, students are usually 

interacting with examples and nonexamples along with the definition of that concept which will 

then contribute to and clarify their understanding of that concept and definition along with the 

roles and features of it (Selden, 2011; Wilson, 1990). Thus, we make meaning through experience.  

The first map in Figure 2.2 illustrates that to construct a definition, an individual can first 

consider examples and nonexamples to observe properties and non-properties of a certain 

mathematical term. He or she then internalize these properties and derive a personal definition that 

is unique to the mathematical term. In other words, the individual is attempting to write a definition 

that captures his or her concept image. Lakatos (1976) emphasizes and provides examples of this 

type of approach to constructing definitions. Larsen and Zandieh (2008) and Zandieh and 

Rasmussen (2010) reframe the methods presented by Lakatos (1976) as frameworks to be used in 

research on the teaching and learning of mathematics. Although there are pros to this method, 

Dickerson & Pitman (2016) report that participants in their study were “largely unsuccessful at 

writing definitions that captured their own concept image.” The authors claim that when writing 

their definitions, students failed to consider key examples. An example of this type of activity to 

help students with their understanding of Perpendicular bisector would be providing two 

endpoints of a segment and giving students a set of points, specifying which points fall on its 

perpendicular bisector and which do not, making it clear that the mathematical term under 

consideration is perpendicular bisector. Students would begin to conjecture what a perpendicular 

bisector looks like, and what is required for a point to be on this line. They can then develop or 

modify their personal definition of this mathematical object. 

Observing properties of a mathematical object based on its definition: The second map in 

Figure 2.2 illustrates how an individual might apply his or her personal definition of a 
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mathematical term to various situations to observe properties about the mathematical object’s 

definition. With the addition of new observations, the individual associates these properties with 

the mathematical object, and adjusts his or her personal definition and concept image to assimilate 

them. As this process continues, the individual’s personal definition and concept image becomes 

more aligned with the concept definition of that mathematical term.  

Wawro et al. (2011) report that students’ descriptions of a particular mathematical concept 

were substantially different from the language of this concept’s formal definition. These authors 

note this is consistent with other literature. For example, Dickerson & Pitman (2012) state that 

when attempting to apply mathematical definitions, many students have incomplete concept 

images from which they reason, resulting in them rejecting given definitions to use their imprecise 

concept image. An example of this type of activity would be giving students the definition of a 

perpendicular bisector and two arbitrary points. Student would have the task of identifying several 

points that fall on the perpendicular bisector of the segment connecting the two points and use this 

to associate properties of a perpendicular bisector with the mathematical object. The extent to 

which a student varies and generalizes his or her resulting examples and nonexamples affects to 

what extent it helps to adjust his or her personal definition of Perpendicular bisector. To clarify 

the difference between this method and the previous one, it is accentuated that in this case, a 

student is strictly using a definition to find his or her own examples and nonexamples and observe 

properties. In the prior method, a student is given examples and nonexamples and is told to observe 

properties from these.  

Producing a mathematical term based on properties of its definition: Seen in Figure 2.2, 

the third map shows how an individual can use a definition of a mathematical object in a problem 

to explore the properties that result from this definition. It is noted in this case, the term that is 
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being defined is not explicitly stated. This “de-labeling” of the mathematical term allows the 

individual to use problem-solving logic and freely abstract upon this definition without 

preconceived notions of what that object is. In essence, a student can sort through his or her 

relevant concept images or schemas to select a mathematical term and object that most closely 

matches the individual’s understanding of the definition being presented. Otherwise, the individual 

could involuntarily restrict his or her understanding of the problem to his or her working concept 

image of the term. This essentially reverses the process of a student being told which mathematical 

term he or she is operating with in order to discover properties of the definition.  

In this case, the individual is less likely to associate an incomplete concept image with the 

problem which can restrict his or her ability to reason and can explore the problem freely according 

to his or her own interpretation. It is noted that Godino and Batanero (1998) discuss the meaning 

of mathematical objects and question whether formal definitions cover the full meaning of 

concepts. It is with this approach to teaching and learning definitions that we, as educators, can 

assess what types of meaning students are drawing upon in order to approach real-life 

mathematical situations. As Fischbein (1993) states, relationships among figures “do not depend 

on the drawing itself. They are imposed by definitions and theorems,” (p. 142). The author goes 

on to explain that an individual does not necessarily need to “polish” a figure in order to understand 

or reason through what it represents. This implies that an individual’s understanding of a figure is 

“from the beginning, not an ordinary image but an already logically controlled structure,” (p. 143). 

So, in the exploration a student is conducting in this approach to understanding definitions, while 

his or her drawing may not be accurate, this does not indicate the student is not making meaning 

of this mathematical term.  
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An example of this type of activity would be giving students a definition within another 

context, like a real-world situation, without mentioning what mathematical term it is defining, and 

having students identify what mathematical object this definition represents through free 

exploration. This encourages students to observe properties they may not have initially associated 

with a mathematical object, expanding their concept image of the mathematical object. An 

example of this type of activity would be asking students to identify location(s) for an apartment, 

given that they want it to be equidistant from two buildings in a city that is on a grid system 

(Taxicab geometry). After reflecting on the task, students will use their evoked schema or concept 

image to decide how they will approach the problem. Students may draw a representation of where 

a location could possibly be for this apartment and will begin to notice patterns or properties. Then, 

once students have a working concept image of this “unlabeled” mathematical object, they are 

asked to associate some mathematical term with this object. They now can assimilate essentially 

un-biased properties of this mathematical term in to their existing schema or concept image by the 

nature of the task. 

2.3 Geometer’s Sketchpad and group work 

As a part of the teaching experiment conducted for this study, the textbook used in the class 

(Reynolds & Fenton, 2011) made use of the ACE Teaching Cycle and included activities that 

required the use of Geometer’s Sketchpad (GSP). This software allows you to create, manipulate, 

and analyze the relationships between various figures and concepts in geometry. Many 

mathematics education researchers encourage the use of dynamic software programs to teach 

geometry, since this helps students to interact with accurate diagrams which will help to understand 

abstract properties and relationships of mathematical objects (Hollebrands et al., 2010, 

Hollebrands, 2003; National Council of Teachers of Mathematics, 1986; Abdullah, 2015; 
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Contreras, 2001). As students explore theorems using a dynamic geometry software, Chazan 

(1993) reports some students use their interaction with the computer as an empirical proof and do 

not understand the need to write a formal proof for theorems. However, Hollebrands et al. (2010) 

states that “students learning mathematics often engage in mathematical reasoning and sense-

making activities prior to constructing a formal proof,” (Hollebrands et al., 2010, p. 236). Further, 

Edwards (1997) states students are able to make the most use of technological tools within this 

“territory before proof.” Thus, although this dynamic exploration is of particular figures in GSP, 

it can help students to generalize relationships and concepts in geometry.  

There are many advantages to using dynamic geometry software in the classroom. First, 

according to Glass and Deckert (2001), seeing examples of problems worked out or figures drawn 

does not help students focus on the relationship and relevant aspects of the material as much as 

using technology can. Second, by using dynamic technology, students can develop a higher level 

of geometric reasoning and understanding. Third, with the ability to alter figures and analyze what 

relationships change or do not change, technology can help students explore these relationships 

and differentiate between drawings and constructions. Finally, the authors state that research 

implies students who use this software can generate conjectures better than those who do not use 

technology, since they are able to visualize patterns and properties easier than traditional “pencil 

and paper” exploration. 

Many of the studies that have been conducted in relation to technology in the mathematics 

classroom found that through the use of technology students developed a better understanding of 

mathematical concepts and were more motivated to learn (Abdullah, 2015; Meng & Idris, 2012; 

Meng & Sam, 2013; Dogan & İçel, 2010; Cha & Noss 2001; Contreras 2011; Guven, 2012; 

Hanson, 2004; Lee, 2015; Meng, 2009; Tieng & Leong, 2015). As a counterexample, Tieng & 
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Leong (2015) and Tieng and Eu (2014) conducted statistical tests to determine there was not a 

significant difference in students’ van Hiele level of geometric reasoning between their control 

group (traditional method of instruction) and group using GSP to explore concepts, although there 

was evidence that in general students had improved their understanding. In particular, the authors 

suggest part of the reason their results were not significant could be because of the students’ 

unfamiliarity with GSP at the beginning of the study, which resulted in many students’ inability to 

use the program well as an exploration tool during the study. Thus, they state future research allows 

a longer time for students to familiarize themselves with the program.  

In regard to this dissertation, since the participants had used GSP for at least the 12 weeks 

prior to learning concepts in Taxicab geometry as is explained in Section 3.2, these students had 

the opportunity to achieve a sufficient level of familiarity with GSP. Hull and Brovey (2004) also 

found no significant difference between their course using GSP from courses from previous years 

but suggest that instruction that includes technology should be used not only in teacher-led 

instruction, but in a self-directed way as well. Since the course, textbook, and instruction for this 

study utilized the ACE Teaching Cycle, this study attempts to account for this, since students were 

using technology throughout the course leading up to and including the sections on Taxicab 

geometry.  

Many studies that have investigated students’ use of technology and geometric reasoning 

have used the van Hiele levels of geometric reasoning as a framework to do so (Abdullah, 2015; 

Guven, 2012; Hanson, 2004; Lee, 2015; Meng, 2009; Tieng & Leong, 2015). Further, Hansen 

(2004) acknowledges there are many studies that have been conducted that investigate the use of 

dynamic geometry software in middle and secondary school but suggests the investigation of this 

in the college classroom as well. For this dissertation, APOS Theory is utilized to investigate how 
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undergraduate students use Geometer’s Sketchpad to generalize their understanding of particular 

concepts in Taxicab geometry and Euclidean geometry). Hollebrands (2003) provides a framework 

based in APOS Theory for studying students’ understanding of transformations as their 

understanding evolves using dynamic geometry software. The author also states that there is a need 

for further research to investigate the complexities of using technology in the teaching and learning 

of mathematics, which is something this study seeks to investigate. This framework by 

Hollebrands (2003) is adapted to analyze data for this dissertation, in addition to the preliminary 

genetic decomposition, which will be presented in Section 3.1.  

In terms of the use of group work in the mathematics classroom, attention is focused toward 

cooperative learning, which involves students working in groups to complete a common goal 

(Siegel, 2005) and in this way “students work together to maximize their own and each other’s 

learning,” (Johnson & Johnson, 1999, p. 73). The authors also state that in terms of psychological 

health and social competence, the more individuals participate in cooperative learning the more 

they value themselves and the more independent they tend to be,” (Johnson & Johnson, 1999). In 

other words, although cooperative learning requires the reliance on others to accomplish a shared 

goal, it also encourages independence in reasoning. 

Because of the potential cooperative learning has to increase academic achievement and 

social skills in students, there are many researchers who advocate its implementation (Sharan, 

2010; Johnson & Johnson, 1978, 1983, 1999; Johnson et al., 1998, 2014; Shimazoe & Aldrich, 

2010). Further, many researchers have investigated or report on the use of cooperative learning in 

the mathematics classroom (Zakaria et al. 2010; Zakaria et al. 2013; Aziz & Hossain 2010; 

Cavanaugh, 2011; Davidson, 1989; Davidson & Kroll, 1991). In particular, Davidson (1990) 

provides a handbook for teachers on how to implement cooperative learning in the mathematics 
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classroom.  Aziz and Hossain (2010) found a significant improvement in students’ mathematics 

achievement for their group of students who participated in cooperative learning compared to the 

conventional classroom. Also, Zakaria et al. (2010) describes cooperative learning and the positive 

effects this has on students’ attitudes towards mathematics and state the need for research to 

investigate this idea over a longer time span.  

2.4 APOS Theory 

APOS Theory is based on Jean Piaget’s constructivist theory of reflective abstraction, or 

the process of constructing mental notions of mathematical knowledge and objects by an individual 

during cognitive development (Dubinksy, 2002). As APOS Theory was described in general in 

Section 1.3.1, what is provided in this section is a description of APOS Theory within the context 

of geometry. 

An action is exhibited when an individual is able to transform objects by external stimuli, 

performing memorized steps following instructions to complete this transformation. In the context 

of the concept of Distance, for example, an action conception could be demonstrated when a 

student uses specific points’ coordinates to substitute into a formula to calculate the distance 

between two points. As an individual reflects on an action and has the ability to perform it in his 

or her head without external stimuli, we refer to that as an interiorized action and call it a process. 

A process conception of Distance could be exhibited when an individual is able to imagine in his 

or her head how to calculate the distance between any two points without actually performing this 

action. Once an individual is able to think of a process as a whole, viewing it as a totality to which 

actions or other processes could be applied, we say that an object is constructed through the 

encapsulation of the process. For Distance, an example of an object conception could be exhibited 

by a student comparing two distances to determine if they are equal or not, where the action being 
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applied to this Distance object is a comparison. Finally, the entire collection of actions, processes, 

objects, and other schemas that are connected to the original concept that form a coherent 

understanding is called a schema (Dubinsky, 2002). In the context of the circle schema, for 

example, other concepts and associated schemas that are involved would be Distance, Radius, 

Center, and Locus of Points. It is noted here that a schema can be thematized in an object to which 

actions and processes can applied. The thematization of the circle schema will be discussed in 

detail in Section 3.1.5. 

2.4.1 ACE Teaching Cycle  

As a pedagogical result of APOS theory, the ACE Teaching Cycle was the method of 

instruction used in this teaching experiment. In particular, ACE stands for Activities on the 

computer (A), Classroom Discussion (C), Exercises done outside the class (E) (Asiala et al., 1996). 

To implement this cycle, first, Activities (A) are conducted in a group setting with guided tasks 

intended to help students make the mental constructions that the genetic decomposition has 

suggested. Students are able to explore relationships and form and test conjectures, implementing 

the process of reflective abstraction. The next step of the cycle, Classroom discussion (C), is 

primarily an instructor-led discussion, but requires class participation. These discussions are 

intended to allow students to reflect more formally on the activities from the first step of the cycle. 

Instructors provide explanations, definitions, and/or theorems in order for students to make 

connections between material. In the third step, Exercises (E), students are required to complete 

homework assignments outside of the classroom on selective exercises intended to reinforce the 

concepts they have learned and to help support the development of mental constructions. This part 

of the cycle allows students to consider related concepts in mathematics and apply the concepts 

they have just learned. (Arnon et al., 1996).  Labeled as a “cycle,” this method of instruction may 
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move through activities, discussion, and work at home multiple times while learning a single 

concept, aiming to foster the development of appropriate mental structures for each student in the 

classroom (Voskoglou, 2013). By this instruction, the teacher is meant to guide students to explore 

new topics in mathematics by having students reflect on the activities they complete in class. 

Students typically complete these activities in groups, allowing discussion to facilitate learning 

among one another. By hearing others’ perspectives and explanations, students may be able to 

reinforce their own knowledge of mathematical concepts. In particular, research shows positive 

effects of group work and active learning on academic achievement (Freeman et al., 2014; 

Cavanagh, 2011; Spring et al. 1999). 

2.4.2 Triad of Schema development and schema interaction 

Although describing the mental structures and relationships a student would need to 

construct to complete a task is helpful, Arnon et al. (2014) stated that in order to describe certain 

learning situations, considering the schema structure may be necessary. As a result of the 

progression of APOS-based research, analyzing this structure may help to explain “why students 

have difficulty with different aspects of a topic, and may even have different difficulties with the 

same situation in different encounters,” (p. 110). The authors continue to explain that schemas may 

include a single concept being applied in various situations or can be comprised of multiple 

concepts that are interrelated. In the development of a schema in the mind of an individual, new 

relationships can be established among the components of the schema, and new actions, processes, 

or objects can be assimilated into this existing schema through these new relationships. Further, 

this schema can also relate to other schemas which will result in constructing a new schema which 

encompasses components of both schemas. For example, a student’s distance schema and its 

components are involved in the development of his or her circle schema, since the idea of distance 
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is directly involved in the construction of a circle. Recall that a schema can be thematized into an 

object to which actions and processes can applied. If an individual can think of the schema as a 

total entity, we consider this schema to have been thematized (Clark et al. 1997).  

Considering the development of a student’s schema has proven to lead to a deep 

understanding of how he or she reasons when confronted with a mathematical problem situation. 

In particular, how a student uses certain evoked components of a schema and relates them to one 

another when presented with these situations can reveal the structure of this schema and its 

development. Arnon et al. (2014) state that there is a need to investigate the development of 

schemas and how they are applied in mathematics. In particular, Piaget and García (1989) proposed 

“the triad” of stages of schema development: Intra-, Inter-, and Trans-, where the hyphen symbol 

in each of these is followed by the name of the schema under consideration. Each of these stages 

is described below according to Arnon et al. (2014) and provide descriptions of these stages in 

relation to this study in Section 3.1.4.  

Intra- Stage. This stage of development of the Schema can be identified when a student 

focuses on individual, isolated components of a schema. The individual can identify a set of 

common properties among the objects within that schema, where these connections are “local and 

particular,” (p. 112). For example, a student who is able to observe similarities and differences 

among all circles within a particular geometry is exhibiting evidence of operating in the Intra-

stage of development of the circle schema, or Intra-circle.   

Inter- Stage. As knowledge develops within the mind of the individual, “access to 

necessary connections and the reasoning behind them begins to be developed,” (p. 113). This is 

indicative of a student operating in the Inter-stage of development, when the individual constructs 

relationships among cognitive entities and components of the schema (Dubinksy & McDonald, 
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2001). Arnon et al. (2014) use the case of geometrical structures as an example to illustrate that 

algebraic representations in various geometries lead to the introduction of transformations that 

relate figures under different perspectives. Thus, a student who is aware that circles across various 

geometries visually appear different because of the way distance is measured but cannot coherently 

explain why is exhibiting evidence of operating in the Inter-stage of development of circle schema, 

or Inter-circle. 

Trans- Stage. A student is operating in the Trans-stage of development when he or she sees 

the schema as a whole. At this stage, “the structure is coherent, and the individual can determine 

whether it is applicable or not to a given situation,” (p. 113). Dubinksy and McDonald (2001) 

describe this stage as the individual constructs an “underlying structure through which the 

relationships developed in the Inter-stage are understood,” (p. 282). For example, a student 

operating in the Trans-circle stage of schema development if he or she is able to understand the 

underlying structure in the construction and equation for a circle in a given metric space and how 

these are a result of the definition of a circle. 

As stated previously, in some cases excluding the use of the triad results in an inadequate 

understanding of schemas involved, although there is a need for more research in using the triad 

to explain student thinking. Although a relatively new addition, in studies such as Clark et al. 

(1997), Cotrill (1999), McDonald et al. (2000), Baker et al. (2000), and Trigueros (2000, 2001), 

researchers found the addition of the triad to their analysis helped to paint a better picture of how 

the components of schemas work together in certain circumstances. In particular, the reader’s 

attention is focused to Baker et al. (2000) and how the authors define an overall calculus graphing 

schema in terms of the interaction of two schemas, as it is the first model of schema interaction 

described in detail. It is also noted Trigueros (2004) provides a second model of schema interaction 
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for the solutions of systems of differential equations. Baker et al. (2000) describe the relationship 

between what are named the interval schema and the property schema and analyze common 

student errors when solving “an atypical calculus graphing problem,” (p. 558). Further, Cooley et 

al. (2007) examines this calculus graphing schema and the thematization of this schema in the 

context of APOS Theory, providing for the first time a framework for analyzing the thematization 

of schemata. The authors found that participants in this study supported results found in Baker et 

al. (2000), indicating a pattern in the existence of “double triad” and found only one of 28 students 

demonstrated a thematized calculus graphing schema. Further, they state that future research needs 

to consider the thematization of various schemas, and in particular, what it means to thematize a 

schema for particular concepts and corresponding genetic decompositions. For some of the data I 

will utilize the idea of schema interaction and will present a genetic decomposition for the 

development of the circle schema within this context in Section 4.2. In particular, this schema is 

described as its components may be evoked within the interaction of the Euclidean geometry 

schema and Taxicab geometry schema, using the framework and genetic decomposition presented 

in Baker et al. (2000) and Cooley et al. (2007) as models.  

 

3 METHODOLOGY 

As a qualitative study, I seek to answer how being introduced to Taxicab Geometry 

contributes to students’ understanding of mathematical definitions with the help of Geometer’s 

Sketchpad (GSP). As a reminder, these research questions are provided below.  

1. In what ways do students use GSP to refine their understanding of mathematical 

definitions? 
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(a) How do students apply their working understanding of a definition in GSP to reason 

about mathematical problems? 

(b) How does cooperative learning and the use of GSP help students in the abstraction of 

definitions from Euclidean geometry to axiomatic systems in general?  

2. How do students adapt their understanding of concepts in Euclidean geometry in order to 

apply definitions in Taxicab geometry, a non-Euclidean axiomatic system? 

(a) What activities in Taxicab geometry can aide in the abstraction of a definition? 

(b) How does applying definitions in an atypical context affect the development of student 

understanding of these definitions? 

(c) How do students transfer their understanding of relationships among concepts in 

Euclidean geometry to Taxicab geometry? 

In this chapter, I will describe in detail the methods of data collection, specifics of recruitment of 

participants, the overall design of the study, preliminary genetic decompositions, and method of 

data analysis. Through this analysis I hoped to gain more insight into how students develop their 

understanding of definitions in geometry and to design activities with the goal to help facilitate 

this understanding. 

3.1 Preliminary Genetic Decompositions 

As a facet of APOS Theory, a genetic decomposition is constructed by the researcher to 

outline and model the necessary constructions individuals need to make to develop understanding 

of mathematical concepts (Arnon et al. 2014). The authors define it as a “description of how the 

concept may be constructed in an individual’s mind,” (Arnon et al., 2014, p. 17). A genetic 

decomposition plays an important role in mathematics education research based in APOS Theory, 

since it provides a necessary theoretical model to aid in the design of instruments to gather and 
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analyze data from students. Based on the researcher’s experiences and understanding of the 

concept, historical development of the concept, and results from relevant research, the researcher 

develops an initial genetic decomposition.  

This preliminary genetic decomposition is used as a guide in the development of 

instructional methods. During or after this instruction, data is collected and analyzed. Throughout 

the analysis of data, the preliminary genetic decomposition is reflected upon to see if the questions 

and activities asked of students helped to make the mental constructions suggested by the genetic 

decomposition, or if the data suggests something about students’ understanding or mental 

constructions of the concept that was not included in the initial genetic decomposition. Depending 

on this reflection, the genetic decomposition or method of instruction may be revised. The 

repetition of refinement, revision, and data analysis produces a genetic decomposition that will 

closely mimic the cognitive development of a concept for a large portion of the individuals who 

are learning the concept. In general, the genetic decomposition can be used to design materials for 

instruction that will help to better facilitate student learning and understanding of mathematical 

content (Arnon et al., 2014). In addition to identifying relevant concepts, what follows in this 

section is a description of the mental constructions I suggest can be evoked by a student and are 

necessary to understand various concepts in geometry. Further, I describe what relationships are 

formed in a student’s mind through the interaction of his or her Euclidean geometry schema and 

Taxicab geometry schema as they transfer and adapt definitions between these geometries. I will 

also elaborate on these relationships that may exist between relevant concepts that are evoked 

within the circle schema in Section 4.2. 
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3.1.1 Use of definitions in geometry 

In this section, a very basic preliminary genetic decomposition is proposed based on APOS 

theory. Figure 3.1 shows a preliminary genetic decomposition for this present study as adapted 

from Vidakovic, Dubinksy, & Weller (2018) which was developed for the construction of a line 

in analytic geometry. In this figure, the ways in which students can provide evidence for being at 

various stages of development are provided. I will use circles in Taxicab geometry as an example 

to illustrate these various stages.  

As proposed, a student at an action conception for this study will be able to construct 

figures and observe properties about these figures in Taxicab geometry but will not necessarily be 

able to conjecture what properties hold in Taxicab geometry in comparison to Euclidean geometry. 

For this example, students at an action conception of Taxicab circle will be able to construct a 

circle in Taxicab geometry given a center and a radius by counting the measure of the radius out 

in different directions and connecting these points, but they will not be able to identify any 

relationship with a circle in Euclidean geometry with the same center and radius. Once a student 

has interiorized this action conception, they will be able to begin making inferences about 

properties between Taxicab and Euclidean geometry, and which theorems or characteristics exist 

in both. They will also be able to investigate and observe how the change in metric affects certain 

properties. For this example, students with a process conception of Taxicab circle would be able 

Figure 3.1 Preliminary genetic decomposition for this research study, adapted from a genetic 

decomposition for analytic geometry from Vidakovic, Dubinsky, & Weller (2018). 
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to compare the values of 𝜋 in Taxicab to Euclidean geometry, compare areas of circles in Taxicab 

to Euclidean geometries, etc. Once a student has encapsulated this process into an object, they will 

then be able to conjecture as to how changing the metric in a geometry affects properties of circles 

and will be able to apply this logic to other types of metrics. For the concept of Taxicab circle, 

students with an object conception would be able to construct new figures or lines using Taxi-

circles, such as perpendicular bisectors, and analyze how these relate to the same concept in 

Euclidean geometry.  

Once the course was designed and methods of data collection were determined, particular 

concepts were anticipated to be evoked in the minds of the participants in this study and more 

specific genetic decompositions were created. In particular, a preliminary genetic decomposition 

is provided for how a student can move through and exhibit various stages of understanding of 

particular concepts in Section 3.1.2. In Section 3.1.3, I discuss a genetic decomposition of how 

students may use GSP to understand these concepts. In Sections 3.1.4, I present a genetic 

decomposition for the triad of schema development with regard to the circle schema. Finally, I 

discuss the interaction of schema in Section 3.1.5, for which a genetic decomposition is presented 

in Section 4.2. 

3.1.2 Mental constructions in geometry 

As a result of a thorough literature review, including historical development of concepts 

results from relevant research, and the researchers’ own experiences and understanding of the 

concepts, the following genetic decompositions were created. It was anticipated that three main 

concepts would emerge in the participants’ minds as they are presented in this study, based on 

their understanding of various problems given to them. I define a subconcept of another to be a 

concept that is a main underlying component of the definition of the overall concept. The main 
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concepts are Midpoint, Circle (with subconcepts of Radius, Center, and Locus of points), and 

Perpendicular bisector (with subconcepts of Midpoint and Locus of points), each with the 

subconcept of Distance. When I refer to a subconcept (of another concept), I specify that the 

subconcept’s mental construction and development is directly related to the development of the 

original concept. For example, students use their concept of Distance as it relates to their concept 

of Circle when reasoning through a construction and trying to write the equation of a circle. I also 

partition each of these concepts and subconcepts into Geometric Representation and Algebraic 

Representation to be able to consider the relationship between these different forms of 

representation in each student’s mind.  

There is a multitude of literature on the investigation or emphasis on student understanding 

of various representations of mathematical objects (just to name a few - Ainsworth, 1999; Dreher 

& Kuntze, 2015; Booth et al., 2017; Boaler et al., 2016; Wilkie, 2016). Thus, the various 

representations a student can associate with a concept was considered in this genetic 

decomposition. In the preliminary genetic decomposition I provide the breakdown of Geometric 

Representation and Algebraic Representation for the concepts of Distance and Circle, and omit 

this detail for the other concepts, but remind the reader it is an implied part of these concepts and 

the analysis. As another note, when I discuss a student having a process conception of a concept, 

there is an assumption that the student has coordinated his or her Geometric representation and 

Algebraic representation of that concept. For example, students who exhibits a process 

conception Radius has provided evidence that he or she has coordinated his or her Geometric 

Representation of Radius and Algebraic Representation of Radius and have constructed a new 

process called Radius from this coordination. From this coordination, they can relate these 

geometric and algebraic representations to one another independent of the metric space. In 
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Sections 3.1.3, 3.1.4, and 4.2, it is discussed how these conceptions are used to determine the stages 

associated with the triad of schema development and levels of schema interaction according to 

APOS Theory. I remind the reader when I refer to an object such as Euclidean circle, Taxicab 

circle, Euclidean midpoint, etc., I am referring to this object (and associated concept) as it exists 

within that particular space, rather than suggesting that object necessarily is defined differently in 

each geometry. 

3.1.2.1 Distance 

A student’s personal concept definition of distance can be related to a geometrical 

representation, algebraic representation, or a mixture of these. For example, describing out loud 

that distance is the ‘straight line between two points’ exhibits more of a geometric representation, 

since it elicits an image in an individual’s mind. In contrast, describing distance in relation to the 

Pythagorean theorem is more of an algebraic representation, since this directly relates to the 

formula for Euclidean distance. If a student were to describe distance as “a measure of the straight 

line between two points using the Pythagorean theorem,” then this clearly is an example of a 

student who is relating their geometric and algebraic representations of Distance. 
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We note that for each concept of Euclidean distance and Taxicab distance, there is an 

understood coordination between a student’s Geometric Representation of Euclidean Distance 

(GRED) and Algebraic Representation of Euclidean Distance (ARED) processes and 

Geometric Representation of Taxicab Distance (GRTD) and Algebraic Representation of 

Taxicab Distance (ARTD) processes, respectively (see Figure 3.2). In this figure, the double sided 

arrows indicate a coordination of processes. The arrows coming from the Euclidean distance 

process and the Taxicab distance process indicate a coordination of their components, which 

result in the construction of the Distance process. It is noted this is also how each of the additional 

concepts in this genetic decomposition are believed to develop but omit these descriptions here.  

As illustrated in Figure 3.2, a student must have a process conception of both Euclidean 

distance and Taxicab distance to coordinate these processes to form the conflated concept of 

Distance. In other words, a student must have a process conception of each of these metrics in 

order to make connections between them. What follows is how I have partitioned the concepts 

Figure 3.2 Visual representation of the construction of the Distance 

process. 
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relevant to Distance (whether that is Euclidean distance, Taxicab distance, or the coordination 

of the two (Distance)) into Geometric Representation of Distance (GRD) and Algebraic 

Representation of Distance (ARD) in relation to the preliminary genetic decomposition. If a 

student has not constructed a new process by coordinating their Euclidean distance and Taxicab 

distance processes because they do not have a process conception of these concepts, then when 

we discuss their understanding of Distance, we will specify whether we are referring to their 

understanding of Euclidean distance or Taxicab distance.  

Geometric Representation of Distance (GRD). Distance can be represented 

geometrically by graphing or describing out loud what a distance “looks like” in a certain context. 

Specifically, in Euclidean geometry, distance can be drawn and described as the segment 

connecting two points. On the other hand, in Taxicab geometry, distance can be drawn and 

described in various ways. Some of these can be as a step pattern between two points, the vertical 

and horizontal movements between two points, or the legs of a right triangle whose hypotenuse is 

the segment connecting two points. Below details of the various levels of conception associated 

with GRD as they could be exhibited given a single metric are provided.  

Figure 3.3 Visual representation of a possible learning pathway for a 

student developing their understanding of Distance. 
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Action: An individual is able to draw a pathway between two points given a metric. He or 

she may be unable to accurately describe in his or her own words what a distance 

looks like.  

Process: When given a metric to consider, an individual can illustrate the distance between 

any two points. He or she does not need two specific points to imagine the distance 

between and can describe this distance geometrically using their own words. 

Object: An individual encapsulates this Process into a totality if given a metric, he or she 

can illustrate and/or describe multiple distances and compare them. Specifically, 

the individual can successfully illustrate the distance between multiple points and 

compare them to determine which distances are equal to, greater than, or less than 

others. The individual can compare these distances using either visual 

representations or by describing similarities or differences in the shape or length of 

the distances using his or her own words.  

Algebraic Representation of Distance (ARD). In general, distance can be represented 

algebraically by either stating a formula for distance or by verbally describing an expression or 

formula in the context of the algebraic representation. For example, if a student references the 

Pythagorean theorem while explaining Euclidean distance, or describes aloud that in Taxicab 

geometry, distance is defined by “taking the absolute difference in x-coordinates and adding this 

to the absolute difference in y-coordinates,” this clearly is in reference to the formula for these 

metrics. What follows are the various levels of conception associated with ARD.  

Action: Given two specific points and either recalls or is given a distance formula, the 

individual can correctly identify which values are associated with which variables 
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and substitute these values in to this formula. The individual can then evaluate this 

expression, resulting in the distance between the two points.  

Process:  Given a distance formula or told what metric to use, an individual can calculate the 

distance between any two points. He or she does not need two specific points to 

imagine how they could calculate distance and can describe what the formula ‘says’ 

in their own words. 

Object: An individual encapsulates this Process into a totality when they can successfully 

calculate the distance between any two points and can compare these distances to 

one another. In this case, the action being performed on this Distance object is a 

comparison.  

In general, the addition of a new metric can cause issues with students’ understanding of 

definitions. Overlooking for a moment the partition of these Distance concepts (the general 

Distance, Taxicab Distance, and Euclidean Distance) into their respective GRD and ARD, there 

are many ways a student can assimilate the Taxicab metric into their existing understanding of 

Distance. Figure 3.3 illustrates one way in which this is can take place.  

As shown in Figure 3.3, a possible learning path for an individual introduced to Taxicab 

geometry begins by a student previously exhibiting an object conception of Distance in Euclidean 

geometry and has interiorized his or her action conception of Distance in Taxicab geometry into 

a Process. In this case, the individual must de-encapsulate his or her Euclidean Distance object to 

assimilate the concept of Taxicab Distance (a new metric) into this understanding. Once this 

happens, the processes of Euclidean Distance and Taxicab Distance can be coordinated, and the 

individual can construct one Process from this coordination. I will call this transformed concept 

Distance, as it includes more than one metric. A student can then encapsulate this understanding 
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to arrive at an object conception of Distance, in which he or she can compare the definitions of 

distance across Euclidean and Taxicab geometry. Another example begins with a student 

exhibiting an action conception of Euclidean Distance. In this case, if a student also has an action 

conception of Taxicab Distance, they must interiorize both of these action conceptions into 

processes in order to coordinate them to construct the new Distance process. The individual can 

then encapsulate this understanding into an object called Distance after further reflection. I claim 

that an individual must have a process conception of both Euclidean Distance and Taxicab 

Distance in order to make observations beyond what are call local observations of properties 

between the two metrics. For example, a student making local observations may describe the visual 

differences in distances between the geometries in reference to particular examples or can identify 

that one formula for distance has a square root sign while the other does not. If a student has an 

action conception of either Euclidean or Taxicab Distance, they are able to illustrate and/or 

calculate distances in both geometries but cannot begin to describe geometrically or algebraically 

in what ways the distances are different from one another. 

Distance. A student’s understanding of GRD and ARD (made up of GRED/GRTD and 

ARED/ARTD, respectively) along with his or her verbal communication of these facets makes up 

their understanding of Distance. As noted previously, for a student to have this transformed 

concept of Distance he or she must exhibit a process conception of Euclidean Distance and 

Taxicab Distance independently, coordinate these two processes, and construct a new process 

from this coordination. If a student has an action conception of either Euclidean Distance or 

Taxicab Distance, the student will not have the necessary mental constructions to be able to make 

meaningful connections or comparisons between the two metrics. Below the APOS levels of 

understanding of the concept of Distance in terms of the concepts of GRD and ARD are described. 



52 

Action: Since a student needs a process conception of both Euclidean and Taxicab distance 

to construct the transformed concept of Distance (that I are describing here), as it is 

defined it thus far, there is not an action conception of Distance. So, instead an action 

conception of Distance is defined to be the combination of the conceptions of 

Euclidean distance and Taxicab distance, given that at most one of these is a process 

conception. In other words, if a student has an action conception of at least one of 

Euclidean distance and Taxicab distance, this student is exhibiting an action 

conception of Distance, since he or she would be unable to coordinate these 

conceptions and construct a Distance process. Further, an individual exhibits an action 

conception of Distance if he or she has an action conception of at least one of GRD 

and ARD. In other words, the individual is able to graphically represent two or more 

metrics and/or can use formulas to calculate distances in these geometries but cannot 

make connections between these representations. The student is able to observe local 

differences between distances (geometrically or algebraically) in multiple geometries 

but struggles to verbalize these differences. For example, if a student explains that the 

difference between the Euclidean distance formula and the Taxicab distance formula 

is that there is a square root sign for the Euclidean formula but cannot explain why 

geometrically, this is evidence that the student has not coordinated his or her GRD 

and ARD.  

Process: Once an individual has interiorized this Action, he or she can describe in his or her 

own words similarities and differences between various metrics beyond obvious visual 

differences. Thus, the individual needs to be able to describe the metrics independently 

in each metric in his or her own words, requiring a process conception of both GRD 
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and ARD, as shown in Figure 3.4. With a process conception of Distance, the 

individual can conjecture about what properties might still hold from Euclidean 

geometry in a new metric and can begin to explain in their own words the differences 

between metrics beyond making local observations. For example, if a student explains 

that the Euclidean distance cannot be more than the Taxicab distance between two 

points because of the triangle inequality, the individual is coordinating his or her 

processes of GRD (with the visual use of a triangle to consider both distances) and 

ARD (with the algebraic representation of the inequality). 

Object:  Once a student has coordinated all of their Euclidean distance/Taxicab distance and 

GRD/ARD processes at the same time, he or she can encapsulate this Distance 

process into an object. This Process is encapsulated into an object if an individual can 

perform actions on this object, such as comparisons or using it as an “input” into a 

transformation, in both geometries. For example, if a student is given a center point 

and measure of a radius and can construct a circle in both Euclidean and Taxicab 

geometry, a student is using his or her Distance object as an input to a function or 

Figure 3.4 The construction of the Distance 

process. 
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transformation where the output is a locus of points that retain this distance from a 

center point.  

3.1.2.2 Midpoint 

A midpoint between two points 𝑃 and 𝑄 is defined as a point 𝑀 such that the distance 

from 𝑃 to 𝑀 is equal to the distance from 𝑀 to 𝑄, which is equal to half of the distance from 𝑃 to 

𝑄. An object conception of Distance is a necessary prerequisite to identify a point as a midpoint 

of two others, since a student would need to compare two distances to see that they are equal. In 

Euclidean geometry, the midpoint between two points is unique and is located on the segment 

connecting them. Noting that a continuously measured Taxicab metric is being utilized, in Taxicab 

geometry, any two points have a midset, or a possibly infinite set of points that satisfy this 

definition of a midpoint. In particular, one of the Taxicab midpoints is also the midpoint in 

Euclidean geometry, i.e.- the formula used to find a midpoint in Euclidean geometry will also 

provide a midpoint in Taxicab geometry. In the case that the segment connecting two points is 

parallel to one of the axes or has a slope of 1 or -1, the midset only consists of one point. That is, 

the Euclidean midpoint is the only point in the Taxicab midset of the two points. Otherwise the 

Taxicab midset contains an infinite number of points and is represented by a segment intersecting 

the initial segment at its Euclidean midpoint. Figure 3.5 provides illustrations of the midsets 

(shown as red segments) of two segments 𝐴𝐵 with varying slopes. I note that for this study the 

concept of Midpoint includes subconcepts of Euclidean midpoint and Taxicab midpoint that 

develop in a similar manner as illustrated in Figure 3.3. How an individual may exhibit each stage 

of conception associated with Midpoint is described below. 



55 

Action: To identify a midpoint of a segment connecting two points, the individual can use a 

formula or expression for finding a midpoint and plug in given values. The individual 

can evaluate this expression and arrive at an ordered pair that is a midpoint. The 

individual could also start at two given points and count interchangeably one block 

at a time from each point until he or she arrives at a point that is equidistant from 

these points, and this point happens to be a midpoint.  

Process: The individual has interiorized a Midpoint Action if he or she can imagine the 

midpoint is located so that the distance to it from the given points is half of the total 

distance between these points. One way to do this is to find the total distance between 

the given points, divide by 2, and use this value to identify a point that satisfies this 

criterion. In this case, a student is able to think of how to find a midpoint of any two 

given points and can explain in his or her own words how to do so for a general 

scenario. 

Object: The student has encapsulated this Process into an Object if, when given two points, 

he or she identifies a midpoint of the segment connecting them and can apply an 

action to it. In addition, the individual can be aware that a midpoint is not unique in 

Figure 3.5 Graphical representations of midsets in Taxicab geometry. 
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Taxicab geometry when the given segment is not parallel to one of the axes and does 

not have a slope of 1 or -1. An example of an action that can be applied to this Object 

is the comparison of locations of multiple midpoints in Taxicab geometry. 

3.1.2.3 Circle  

Just as a circle is defined in Euclidean geometry, a Taxicab circle is defined as the locus of 

points that are equidistant from a fixed point. Using the Taxicab metric to measure distance, it is 

observed that a Taxicab circle resembles a regular diamond, or a square that is “tilted.” Based on 

the definition of a circle, then the Taxicab metric results in the equation of a Taxicab circle to be 

𝑟 = |𝑥 − ℎ| + |𝑦 − 𝑘|, where 𝑟 is the radius and (ℎ, 𝑘) is the center of the circle. Figure 3.6 

illustrates a Taxicab circle with a center at (3,3) and radius 2. An object conception of Distance is 

a necessary prerequisite to recognize the points on a circle are equidistant from a given fixed point, 

the center, since a student would need to understand the radii of this circle are all equal in distance, 

comparing values, i.e. – performing an action on their Distance Object. In this study the concept 

of Circle includes subconcepts of Euclidean Circle and Taxicab circle that develop in a similar 

manner as illustrated in Figure 3.3. I clarify that a student would need to use their understanding 

of Distance in order to understand what a radius of a circle is, but the concepts of Distance and 

Radius are distinguished as they can be used in different ways in regard to a student’s overall 

understand of his or her Circle concept. How an individual may exhibit each stage of conception 

associated with Circle are described below. 
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As with the other concepts in geometry, the concept of Circle can be expressed 

geometrically or by an algebraic representation. For example, describing a Euclidean circle as 

round or a Taxicab circle as a square is using a visual image, or a geometric representation. On the 

other hand, writing the equation for one of the circles is clearly a reference to the algebraic 

representation of a circle. For the sake of not repeating ourselves, almost exactly as illustrated in 

Figure 3.3 pertaining to Distance, a student must have a process conception of both Euclidean 

circle and Taxicab circle in order for him or her to make connections between the figures in both 

geometries, or to coordinate their conceptions in order to form this concept of Circle.  

We note that for each process of Euclidean circle and Taxicab circle, there is an 

understood coordination between a student’s Geometric Representation of Euclidean Circle 

(GREC) and Algebraic Representation of Euclidean Circle (AREC) processes and Geometric 

Representation of Taxicab Circle (GRTC) and Algebraic Representation of Taxicab Circle 

(ARTC) processes, respectively (similar to Figure 3.2). Since the definition of distance is used in 

the definition of circle, it is noted that Distance is a subconcept of Circle. Intuitively, this means 

that GRD and ARD are subconcepts of both GRC and ARC. Specifically, it may be that a student 

Figure 3.6 Visual representations of a Euclidean and Taxicab circle each 

with center (3,3) and radius 2. 
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utilizes both his or her GRD and ARD within his or her understanding of Circle. Figure 3.7 

illustrates in general how this interaction may take place. The red arrows in this figure indicate the 

interactions that are of most importance within the descriptions of various stages of conception for 

Distance and Circle. What follows is how the concepts relevant to Circle (whether that is 

Euclidean circle, Taxicab circle, or the coordination of the two – Circle) into Geometric 

Representation of Circle (GRC) and Algebraic Representation of Circle (ARC) in relation to 

the preliminary genetic decomposition is partitioned in this study.  

Geometric Representation of Circle (GRC). In terms of geometrically representing 

Circle, an individual can do so graphically or by describing various properties of circles in terms 

of their visual appearance. For example, a student can draw examples of circles or explain how the 

construction of a circle is related to the definition of a circle. Below details of the various levels of 

conception associated with GRC are described. 

Action: An individual is able to draw a circle given a metric, center, and radius. The 

individual may need specific examples of circles in order to talk about properties 

of circles within a geometry. 

Process: When given a metric to consider, an individual can illustrate a circle with any center 

and radius. The individual does not need specific values to imagine how to 

Figure 3.7 Visual representation of the concept of Circle. 
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construct the circle and can begin to describe why the circle appears a certain way 

within a metric using his or her own words. 

Object: An individual encapsulates this Process into a totality when he or she can compare 

multiple circles to one another. Specifically, he or she can successfully illustrate 

multiple circles within a geometry and can compare the appearance of the circles 

one another. The individual can compare these circles by describing similarities or 

differences in the shape or size of the circles using his or her own words. In this 

case, the action being performed on this object is a comparison. 

Algebraic Representation of Circle (ARC). In general, Circle can be represented 

algebraically by either stating an equation for a circle or by verbally describing an expression or 

formula in the context of the algebraic representation. For example, by describing aloud that for a 

point to be on a Taxicab circle, “the distance formula would have to be equal to the radius,’ this 

clearly is in reference to how the formula for distance is included in the equation for a Taxicab 

circle. What follows are the various levels of conception associated with ARC.  

Action: Given a specific center and radius, the individual can recall/use the equation of a 

circle, correctly identify which values from the given center and radius are 

associated with which variables in the equation, and substitute these values into the 

equation.  

Process:  Given a metric and any center and radius, an individual can write the equation of 

the circle associated with them. The individual does not need a specific center and 

radius to imagine how to write this equation, and can begin to describe in his or her 

own words how this equation is derived from the definition of a circle. 



60 

Object: An individual encapsulates this Process into a totality when he or she can 

successfully produce equations for different circles in a geometry using his or her 

definitions of Distance and Circle. He or she can compare these equations in to 

one another and explain how they were derived from the definition of a circle. In 

this case, the action being performed on this ARC object is a comparison. 

In a similar manner that as described in the development of the Distance concept, I proceed 

by describing the development of the concept of Circle. Note that within both Euclidean and 

Taxicab circle, there are subconcepts of GREC/AREC and GRTC/ARTC, respectively. 

Overlooking for a moment the partition of these Circle concepts (the general Circle, Taxicab 

Circle, and Euclidean Circle) into GRC and ARC, there are many ways a student can assimilate 

the Taxicab circle into their existing understanding of Circle. Figure 3.8 illustrates how this is can 

take place, which is similar to Figure 3.3.  

A possible learning path for an individual introduced to Taxicab geometry begins by he or 

she previously exhibiting an object conception of Circle in Euclidean geometry and has 

interiorized their action conception of Circle in Taxicab geometry into a Process. In this case, the 

individual must de-encapsulate his or her Euclidean Circle object to assimilate the new metric, or 

Figure 3.8 Visual representation of a possible learning pathway for a student developing 

his or her understanding of Circle. 
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the concept of Taxicab Circle. Once this happens, the processes of Euclidean Circle and Taxicab 

Circle can coordinate to form one Process, and conflated concept will be called Circle. He or she 

can then encapsulate this understanding to arrive at an object conception of Circle. Another 

example begins with a student exhibiting a process conception of Euclidean Circle. In this case, 

if a student has an action conception of Taxicab Circle, they must interiorize this action 

conception into a process in order to coordinate these two processes of Euclidean Circle and 

Taxicab Circle to form the new Circle process. The individual can then encapsulate this 

understanding into an object called Circle. An individual must have a process conception of both 

Euclidean circle and Taxicab circle in order to make connections between the two metrics. If a 

student has an action conception of either Euclidean or Taxicab circle, they are able to draw or 

write equations of circles in both geometries but cannot accurately describe geometrically or 

algebraically why the figures appear different.  

We illustrate below in Figure 3.9 a possible pathway that a student might take in order to 

assimilate the subconcept of Taxicab distance (outlined in blue in Figure 3.9) into his or her 

existing Circle schema. Compiling figures from the previous sections about these pathways, I 

suggest that a possible pathway begins with a student de-encapsulating his or her object 

conceptions of Euclidean circle and Euclidean distance into processes (red arrow in Figure 3.9) 

which he or she can then coordinate with his or her process conceptions of Taxicab circle (purple 

arrows in Figure 3.9) and Taxicab distance (blue arrows in Figure 3.9), respectively. These 

coordinations can result in the construction of the Circle and Distance processes, respectively. 

Once these new processes are constructed, the student can coordinate any combination of his or 

her GRD, ARD, GRC, and ARC to further develop his or her understanding of both Distance and 

Circle. The student can then encapsulate his or her processes of Distance and Circle into objects. 
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 For a large portion of this dissertation, each student’s mental structures are considered and 

his or her development and understanding of the concepts involved in understanding the general 

construction of a geometric representation of a circle and the structure of the equation of a circle 

(algebraic representation). I remind the reader that in addition to Distance, the concept of Circle 

also has the subconcepts of Radius, Center, and Locus of points. All of these develop in a similar 

manner within the circle schema in relation to a student’s assimilation of Taxicab geometry into 

this schema (in a similar manner as illustrated in Figure 3.3) but omit these details for the sake of 

length.  

3.1.2.4 Perpendicular bisector 

As stated previously, the concept of Perpendicular bisector of a segment in this study is 

defined to be the set of points that are equidistant from the endpoints of this segment. In Euclidean 

geometry, this results in a straight line that intersects the segment at its midpoint and does so at a 

right angle. On the other hand, in Taxicab geometry, the equivalent of the perpendicular bisector 

as defined in the same manner, is not necessarily a straight line and does not necessarily intersect 

this segment at a right angle, depending on the slope of the segment with respect to the axes. Thus, 

when the concept of Perpendicular bisector is discussed in relation to a segment, I am not 

Figure 3.9 Illustration of a possible pathway for a student to take in assimilating 

the Taxicab metric into his or her circle schema 
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implying this line has to intersect the segment at a right angle, but rather that it is the line defined 

by the locus of points equidistant from the endpoints of this segment.  

To clarify, if a segment is neither parallel to one of the axes nor has a slope of 1 or -1, its 

Taxicab perpendicular bisector consists of two rays and the midset, which intersects the given 

segment at the Euclidean midpoint. Figure 3.10 illustrates an example of a perpendicular bisector 

of a segment 𝐴𝐵, where the red portion of this line is the midset of the endpoints of this segment. 

On the other hand, if the given segment is either parallel to one of the axes or has a slope of 1 or -

1, the Euclidean and Taxicab perpendicular bisectors of that segment are the same line.  

Again, an object conception of Distance is necessary for an individual to identify a point 

that is equidistant from the two endpoints of a segment, and therefore on the perpendicular bisector, 

since he or she has to be aware that the distances from this point to the endpoints of the segment 

are equal to one another. Again, it is noted that in this study the concept of Perpendicular bisector 

includes subconcepts of Euclidean perpendicular bisector and Taxicab perpendicular bisector 

that develop in a similar manner as illustrated in Figure 3.3. 

Figure 3.10 The perpendicular bisector of 

segment AB. 
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Action: Given two points, the individual identifies a point that is equidistant from both points 

by guessing and checking for a point that satisfies this property. He or she also can 

check to be sure the distances from this point to the two given points are equal.   

Process: The individual coordinates his or her Distance, Midpoint, and Locus of points 

Processes to construct a Perpendicular bisector Process (Seen in Figure 3.9). In 

particular, the individual can imagine in his or her head what it looks like for a point 

to be on the perpendicular bisector of a segment and can explain in his or her own 

words how to find such a point. In particular, in Taxicab geometry if an individual 

can identify a point on the perpendicular bisector that is also in the midset but does 

not explicitly state it is on the perpendicular bisector, the individual is using his or 

her concept of Midpoint, and not necessarily his or her concept of Perpendicular 

bisector. 

Object: The individual has encapsulated this Process into an Object when, if given two points, 

he or she identifies that the set of points that is equidistant from these points is the 

perpendicular bisector. Therefore, he or she has recognized that not only is there more 

than one point that is equidistant from these two points, but there are an infinite 

Figure 3.11 The construction of the Perpendicular 

bisector Process. 



65 

number of points that would satisfy this property. In other words, the individual is 

able to consider all of these distances and points at the same time, and views these 

points as a totality, or a line, and can apply actions to this object. The student can 

compare properties of perpendicular bisectors in a single geometry, especially in 

Taxicab geometry when the slope of the segment directly influences the appearance 

of the perpendicular bisector.  

It is reiterated that if a student is able to make observations and comparisons of a concept 

across geometries, this indicates that the student is exhibiting at least a process conception of this 

concept in both Euclidean and Taxicab geometry, since this requires a coordination of processes. 

If a student has not constructed processes for a concept in both Euclidean and Taxicab geometry, 

the stage of development of the mental structure is presented as it is exhibited within Euclidean or 

Taxicab geometry. 

3.1.3 Use of GSP in student understanding 

We model this preliminary genetic decomposition for the way in which students use GSP 

in problem solving on the analysis and results presented in Hollebrands (2003), which investigated 

the use of GSP in how students reason about transformations in geometry in particular reference 

to the domain of a transformation. The author found that students’ understanding of domain was 

possibly influenced by their interactions with the computer. At first, students perceived the domain 

only as a single and particular object to which transformations were applied, which may have been 

reinforced by the requirement within the program to select an object to apply a transformation. 

Thus, these students were using the computer program to simply perform actions on this static 

object. Hollebrands (2003) also found that some students had shifted their understanding of a 

domain to consider all of the points in the plane, indicating that these students were “operating 
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from the theoretical definition of the point…rather than only labeled points on the screen,” (p. 70). 

These students also were able to anticipate the results of a transformation without having to 

perform the actual transformation in the computer program, indicative of a process conception. 

Further, when students began to consider the properties and behaviors of transformations rather 

than rely on the specific image on their screen, this indicated an object conception of the domain 

of the transformations. These notions of actions, processes, and objects adapted to definitions in 

GSP in addition to the detailed preliminary genetic decomposition (presented in Section 3.1.2) will 

be used in order to analyze evidence of the participants’ understandings of various concepts in 

Euclidean and Taxicab geometry in this dissertation. 

3.1.4 Triad of schema development 

Our focus now shifts to the circle schema and what relevant concepts are evoked by a 

student through the coordination of the Euclidean geometry and Taxicab geometry schemas during 

an interview. Below, descriptions are provided of the various stages associated with the triad of 

development of the circle schema in both Euclidean and Taxicab geometries and the mental 

constructions necessary to achieve these stages. Note that at each stage of development, the circle 

schema is rearranged, or accommodated, in order to form new relationships among the 

components.  

 After the descriptions of these stages for the circle schema in general, descriptions will be 

provided for what it means for students to accommodate their circle schema in order to assimilate 

Taxicab geometry into their current circle schema. It is noted the circle schema involves the 

evoked Euclidean geometry schema within the circle schema (which will be called circle in 

Euclidean geometry schema (cEg)). In addition, the evoked Taxicab geometry schema within the 

circle schema will be referred to as the circle in Taxicab geometry schema (cTg). The genetic 
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decomposition for what will be called the cEg-cTg schemata interaction will be presented in 

Section 4.2. This genetic decomposition will be used in data analysis and possible examples of the 

various levels of schema interaction within the context of the triad of schema development between 

the cEg and cTg will be presented. In other words, this interaction considers the coordination of 

the two schemata of Euclidean geometry and Taxicab geometry as they are evoked within the 

circle schema, and what relationships are formed from this coordination.  

These relationships are predominantly made evident by the verbal explanations and/or 

written responses (or personal concept definitions) provided by a student about how the definition 

of a circle relates to various representations of a circle and other relevant concepts/subconcepts. 

This analysis will focus on what components of each student’s circle schema were evoked during 

the interview in order to justify the responses he or she provided on a questionnaire prior to a 

follow up interview. It will be investigated to what extent students understand how the construction 

of a circle (geometric representation) and the structure of the equation of a circle (algebraic 

representation) directly relate to one another and the definition of a circle and what this means in 

terms of their overall understanding of Circle. For the remainder of this report when a circle 

schema is being referenced, I clarify this is in the context of a student that is learning about the 

Taxicab metric (and other concepts in Taxicab geometry), as the interaction of the cEg and cTg 

schemata is a natural result of the introduction of this metric. It is believed that the genetic 

decomposition of this schema interaction could be used as a model for how a student could 

assimilate any metric into their circle schema, although further research would need to be done to 

validate this. 

As stated previously, Baker et al. (2000) is used as a model for the descriptions of the 

various stages of schema development for circle in addition to the descriptions of the various stages 
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of schema interaction formed from by the coordination of the cEg and cTg schemata. Recall that 

the circle schema involves the concepts of Distance (Euclidean distance/Taxicab distance), 

Radius, Center, and Locus of points. Figure 3.12 shows an illustration of how this schema may 

be structured in terms of these concepts. As a note, arrows in this figure represent a coordination 

of processes, possibly across schemata, specifically by connecting various geometric and algebraic 

representations/properties of circles in both geometries. The blue arrows indicate the coordination 

of geometric components, while the green arrows indicate the coordination of algebraic 

components. The red arrows indicate the interaction of the cEg and cTg schemata, which will be 

discussed in detail in Section 4.2.  

 The concept of Distance in Figure 3.12 as shown in the concepts of GRC and ARC is a 

coordination of the Euclidean and Taxicab distance processes resulting in the construction of the 

Figure 3.12 Illustration of an example of the underlying structure of a circle schema, including 

the interaction of schemas, as indicated by red arrows. 
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new process of Distance, as described previously. Similarly, Radius, Center, and Locus of points 

in GRC and ARC are assumed to be the new processes constructed by the coordination of their 

respective processes in Euclidean and Taxicab geometry. At the bottom of this figure, a color 

coordinated breakdown of how each of these concepts is directly involved in the geometric and 

algebraic representations of a circle in both geometries is provided. It is believed a student who 

has constructed this underlying structure of the circle schema can demonstrate this using his or her 

personal concept definition and verbal explanations. A student with a coherent understanding of 

Circle can also describe how the construction of a circle and the structure of the equation of a 

circle are direct results of the definition of a circle.  

Below it is described what it looks like for a student to be operating within the various 

stages of the triad of schema development for the circle schema within Euclidean/Taxicab 

geometry along with the necessary mental constructions that I believe exist at each stage. In 

particular, the coordination of processes within each schema is paid special attention.  

Intra- Circle in Euclidean/Taxicab geometry (cEg/cTg) 

At this stage of schema development, a student views the components of his or her circle 

schema as isolated structures. A circle in Euclidean/Taxicab geometry is analyzed in terms of its 

properties either geometrically or algebraically (e.g. - it is round/square, there is a square root 

sign/absolute value signs). Explanations of these properties (for example, what a circle looks like) 

are local and particular, i.e. – a student references specific examples of circles in 

Euclidean/Taxicab geometry in order to try to explain simple observations. A student may also be 

able to make simple generalizations about Euclidean/Taxicab circles. He or she talks about a 

Euclidean/Taxicab circle predominantly either geometrically or algebraically, but not both. In 

other words, the student’s personal concept definition relates to the visual appearance of the circle 
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or to the algebraic representation of the circle and cannot form or explain connections between the 

two (specifically, verbally). The student cannot coordinate any of their Euclidean/Taxicab 

Distance, Radius, Center, and Locus of points Processes (if they exist) for a circle in 

Euclidean/Taxicab geometry. A student has a collection of “rules” or properties of a circle in 

Euclidean/Taxicab geometry but has very limited knowledge about the relationship among these. 

For example, if a student knows to construct a circle by measuring out a certain distance in multiple 

directions but cannot explain how this satisfies the definition of a circle, nor how it relates to the 

equation of the Euclidean/Taxicab circle, the student is exhibiting that he or she is operating at an 

Intra-Circle in Euclidean/Taxicab geometry stage of schema development. 

Necessary mental constructions: An action conception of the subconcepts involved in 

Euclidean/Taxicab Circle (Euclidean/Taxicab Distance, Radius, Center, and Locus of 

points). If the student has a process conception of any of the four subconcepts in 

Euclidean/Taxicab geometry, then he or she has not yet been able to coordinate these processes 

with one another to make necessary connections between the geometric/algebraic representations 

of a circle.  

Inter- Circle in Euclidean/Taxicab geometry (cEg/cTg) 

The student is able to form relationships among the isolated ideas from the Intra- Circle in 

Euclidean/Taxicab geometry stage. In other words, the student is able to make connections 

between visual properties of a circle in Euclidean/Taxicab geometry and the algebraic properties 

(specifically, verbally), and can use either of these representations to talk about a circle. The 

student can coordinate his or her Euclidean/Taxicab Distance, Radius, Center, and Locus of 

points Processes (and corresponding geometric and algebraic representations of each) for a circle 

in Euclidean/Taxicab geometry, resulting in these explanations. The student can coordinate any 
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number of these processes with one another but does not demonstrate they coherently understand 

how the construction and the equation for a circle in Euclidean/Taxicab geometry result from the 

definition of a circle. The student can begin to make more meaningful generalizations about circles 

in Euclidean/Taxicab geometry by coordinating various representations, and how these 

representations relate to the definition of a circle. A student begins to group components of 

Euclidean/Taxicab circles and realizes they are related for all circles in Euclidean/Taxicab 

geometry but is unaware of a more general relationship among all circles in multiple geometries. 

For example, if a student can explain that the Euclidean/Taxicab distance formula in the equation 

for a circle in Euclidean/Taxicab geometry corresponds to the distance from the center of the circle 

to a point on the circle (coordinating Euclidean/Taxicab Distance, Radius and Center 

Processes), but explains this only within the context of Euclidean/Taxicab geometry, and not in 

general for all circles, then the student is exhibiting that he or she is operating at the inter- Circle 

in Euclidean/Taxicab geometry stage of schema development. 

Necessary mental constructions: At least a process conception of some the subconcepts 

involved in Euclidean Circle (Euclidean Distance, Radius, Center, and Locus of points), which 

is necessary in order to make connections between geometric/algebraic representations of the 

components of a circle. A student has the ability to coordinate at least two of the subconcepts (and 

some or all of their corresponding geometric/algebraic representations). If a student has at least a 

process conception of all four of the subconcepts, they have not constructed a new process as a 

result of the coordination of these four processes. 

Trans- Circle in Euclidean/Taxicab geometry (cEg/cTg) 

A student at this stage constructs an awareness of the completeness of the circle in 

Euclidean/Taxicab Geometry schema and can “perceive new global properties that were 
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inaccessible at the other levels,” (Baker et al., 2000, p. 559). The student groups geometric and 

algebraic representations when presented with a problem involving a circle in Euclidean/Taxicab 

geometry and can decide when one or both of these representations are needed for reasoning, which 

indicates a coherence of the schema. The student can coordinate all of his or her 

Euclidean/Taxicab Distance, Radius, Center, and Locus of points Processes (and all 

corresponding geometric and algebraic representations of each) for a circle in Euclidean/Taxicab 

geometry to coherently understand the construction of a circle and the structure of the equation for 

a circle in Euclidean/Taxicab geometry. If a student can explain how particular parts of the 

equation for a circle in Euclidean/Taxicab geometry correspond to parts of a graphical 

representation, and how they are both a result of the definition of a circle, then the student is 

exhibiting evidence of operating at the Trans-Circle in Euclidean/Taxicab geometry stage of 

schema development. 

Necessary mental constructions: At least a process conception of ALL subconcepts 

involved in Euclidean Circle (Euclidean Distance, Radius, Center, and Locus of points). A 

student has coordinated all combinations of these Processes and has constructed a new process 

(which coordinates all geometric/algebraic representations of all subconcepts) in order to make 

coherent connections between the geometric and algebraic representations of a circle in 

Euclidean/Taxicab geometry and how these are a result of the definition of a circle. 

Next, the reader’s attention is focused to the red arrow shown in Figure 3.12, which 

represents the interaction of the cEg and cTg schemata.  

3.1.5 Schema interaction and thematization of the circle schema 

The genetic decomposition for the schema interaction that occurs within the circle schema 

across the Euclidean geometry schema and Taxicab geometry is presented in detail in Section 4.2. 
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In particular, this interaction includes nine levels of schema interaction that result as the two 

schemata of circle in Euclidean geometry (cEg) and circle in Taxicab geometry (cTg) interact with 

one another at various stages. These nine stages are illustrated in Table 3.1 below. It is noted what 

type of information students are transferring from one geometry to another such as whether a 

student is transferring local properties of a concept, the definition of the concept, or the definition 

of concept and how it relates to other concepts. Drawing from relevant literature, accentuating 

focus to using Cooley et al. (2007) as a framework, a description of what thematizing the circle 

schema may mean and what it involves conceptually follows. 

Table 3.1 The nine levels of cEg-cTg schema interaction. 

 

 

 

 

In APOS Theory, a schema has been thematized into an object when actions and processes 

can be applied to it (Arnon et al., 2014). Based on Cooley et al. (2007), a student can thematize his 

or her circle schema if the student is sufficiently conscious of it, can reflect on it, and act upon it. 

In particular, to be recognized as having thematized his or her circle schema, a student must be 

classified as (or exhibit evidence of) operating at the trans-cEg, trans-eTg stages of their circle 

schema, and also demonstrate that, if given a new metric, they can act upon this understanding to 

construct a circle and also derive the equation for a circle using this metric. In other words, the 

student has abstracted the definition of a circle to all metrics known or unknown, can provide 

geometric and algebraic representations of a circle using any given metric based on the definition 

of a circle, and understands how these representations are related to one another. It would also be 

expected the student could verbally communicate all of this information coherently.  In general, a 

  cTg 

  Intra- Inter- Trans- 

cEg 

Intra- Intra-intra Intra-inter Intra-trans 

Inter- Inter-intra Inter-inter Inter-trans 

Trans- Trans-intra Trans-inter Trans-trans 
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student has thematized his or her circle schema if the student can demonstrate an awareness of the 

global definition of a circle over all metrics across all representations (geometric, algebraic, 

verbal). At this point, the underlying structure of the circle schema is a “fundamental part of the 

understanding and can be viewed in totality as an object conception,” (Cooley et al., 2007, p. 7). 

3.2 Research and instructional setting 

This research study was conducted at a university in a College Geometry course during 

one Fall semester, which has an introduction to proof course as a prerequisite. Since it is a cross 

listed course, there were both undergraduate and graduate students enrolled in the course, many of 

whom were pre-service or in-service secondary mathematics teachers. The study is defined as a 

teaching experiment, as described by Cobb and Steffe (2010) and Steffe & Thompson (2000), 

which consisted of sessions of instruction, many of which involved the dynamic geometry software 

Geometer’s Sketchpad, followed up with individual interviews with voluntary participants. During 

the teaching episodes, there is a method of recording in order to document what occurs during an 

episode, which can then be used to reflect on and analyze the teaching experiment itself to prepare 

and develop future methods of instruction (Steffe & Thompson, 2000).  

In conducting a research study in this manner, the researcher will be able to implement 

instructional methods based off of the relevant research and analyze how this instruction has 

influenced students’ mathematical learning, reasoning, and understanding on a first-hand basis, as 

this is the primary purpose for using teaching experiment methodology (Steffe & Thompson, 

2000). Under the assumption that the construction of mathematical knowledge largely is 

influenced by the experience students have in the classroom and their interactions with classmates 

and instructors, the emphasis for the researcher as the teacher can be very important in modeling 

how students come to learn mathematical concepts (Cobb & Steffe, 2010). In fact, the analysis of 
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mathematical reasoning for students has shifted toward conjecturing about the quality of their 

experience with mathematics, and as a benefit to this type of research, teachers are no longer 

consumers of findings that are produced outside of the classroom (Cobb, 2000). Many mathematics 

education research studies are conducted outside of a teaching experiment with theoretical analysis 

by the researcher.  

While this is important to understanding the construction of mathematical knowledge, this 

analysis can “at best intersect only part of the knowledge gained through experiencing the 

dynamics of a child doing mathematics.” Further, in the past, “classical experimental design 

inhibited efforts to investigate students’ sense-making constructs” and often in these cases, the 

researchers act as a passive voice, with “conceptual analyses of mathematical understanding and 

mathematical performance” omitted from the study (Cobb & Steffe, 2010, p. 20). As the dynamics 

of the classroom can greatly influence student goals, understanding, what constitutes a 

mathematical explanation, and students’ general beliefs as to what mathematics is (Cobb, 2000), 

it is important to conduct research in this way to gain a deeper understanding of these students and 

their learning discourse.  

3.2.1 Course structure 

As a prerequisite for this College Geometry course, students were to have taken and earned 

a letter grade of C or better in Bridge to Higher Mathematics, which is an introduction to proofs 

course in which students must use mathematical reasoning and proof to develop their writing and 

critical thinking skills. In Bridge to Higher Mathematics, students study set theory, algebra, 

analysis, and real numbers in order to facilitate a formal approach to mathematical concepts and 

proofs. Although students in College Geometry have been exposed to proof writing, it is noted that 
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students fail to see a need for proof, as found invariably in research (Jones, 2002). In fact, 

according to Jones (2002),  

“Learning to prove requires the co-ordination of a range of competencies each of which is, 

individually, far from trivial, that teaching approaches tend to concentrate on verification and 

devalue or omit exploration and explanation, and that learning to prove involves students 

making the difficult transition from a computational view of mathematics to a view that 

conceives of mathematics as a field of intricately related structures. Further reasons are that 

students are asked to prove using concepts to which they have just been introduced and to 

prove things that appear to be so obvious that they cannot distinguish by intuition the given 

from what is to be proved,” (Jones, 2002, p. 132). 

Since it is so difficult for students who have even been exposed to proof writing before, it 

is very important to implement a well thought-out, efficient, and effective instructional approach. 

For this reason, the textbook chosen for the course is College Geometry Using the Geometer’s 

Sketchpad (2006), written by Barbara E. Reynolds and William E. Fenton. The authors intended 

the book to aid in showing “the need for developing mathematical proofs in the context on hands-

on explorations that help students develop insight into these ideas before they attempt to write 

rigorous mathematical proofs,” (Reynolds & Fenton, 2006, p. xvii). The authors used the following 

four questions in determining what mathematical topics to include in their text ((Reynolds & 

Fenton, 2006): 

1. Does this topic lend itself to exploration and conjecture with The Geometer’s Sketchpad? 

2. Does this topic allow us to examine some interesting questions in geometry – and connect 

the study of geometry to the larger tapestry of mathematics? 
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3. Does this topic allow explorations that lead students to make and test their own 

conjectures? 

4. Is this topic useful content for future middle-school and high-school mathematics teachers 

while leading to important ideas that reach considerably beyond the content of a high-

school geometry course?  

Only topics that answered in the affirmative to all four of these questions were included in 

the text. The textbook for this course is based on APOS Theory and is explicitly modeled after the 

ACE teaching cycle. That is, each chapter contains three main sections dedicated towards activities 

on Geometer’s Sketchpad (A), classroom discussion (C), and exercises (E), with a fourth section 

dedicated as a chapter overview. In particular, the activities on GSP provided by the textbook guide 

students and are intended for students to explore properties and relationships about various figures 

and concepts before being formally taught these notions. It is noted that during these activities, 

students work in groups and are expected to participate in meaningful discussion in order to come 

up with conjectures.  

The classroom discussion section is guided by the instructor, meant to reinforce these 

explorations by the students. This section of the text and the guided instruction is formalized in 

order to help students solidify concepts and theorems and be able to present them as proofs. The 

third section includes many exercises that students are to complete outside of class to strengthen 

the conceptual understanding they have reached after activities and classroom discussion. These 

include, but are not limited to, questions about logic, proofs, and may include further constructions 

in GSP. In this course, students are required to submit their exercises by the respective due dates 

in Geometer’s Sketchpad in order to help facilitate the use of and skill with the program. GSP 

helps to keep students engaged and guide them to conjecture and think logically through their 
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reasoning in proofs. By allowing students to visually see relationships and then discuss them with 

their classmates, the authors of this textbook aim to help students understand the underlying 

mathematical concepts which, in turn, will allow them to gain the ability to correctly write proofs, 

or in the least improve their proof writing skills. Students in this course will also be required to 

take online quizzes, written exams, and be able to present their solutions for certain activities, 

exercises, and proofs in class. 

As discussed previously, this study is classified as a teaching experiment. As the class 

meetings were an hour and fifteen minutes in length, the 18 students enrolled in the course 

participated in group work for most of the class meetings throughout the semester, and when they 

were not participating in group work, there were large class-discussions led by the instructor about 

the theory involved with particular concepts in the class. These students were assigned groups at 

the beginning of the semester and shortly after the middle of the semester the groups were 

reassigned based on the level of understanding exhibited by each student and the social interactions 

the instructor had witnessed throughout the semester. The goal of rearranging the groups was to 

evenly distribute the level of understanding of students as well as optimize the cooperative learning 

among groups. The new groups had a few weeks to work together before Taxicab geometry was 

introduced in the course, so note the interactions presented in this report are not the first 

interactions these students had with one another within these groups. It is clarified that students 

learned concepts and theory in Euclidean geometry for the first 12 weeks of the semester, and then 

the course switched focus to consider some of these concepts and ideas in Taxicab geometry for 

the remaining two weeks of the semester, resulting in four class days spent on Taxicab geometry. 
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3.2.2 Taxicab geometry 

Before the first day of Taxicab geometry, students completed a few activities from their 

textbook in GSP pertaining to particular concepts in Euclidean geometry, since they would be 

introduced to these concepts in Taxicab geometry next. For the class periods designed around 

Taxicab geometry, the students had four days to explore concepts and complete activities in their 

groups. On the first day, students were given a “paper and pencil” activity where they were 

exploring the Taxicab metric in a real-life situation, with the intention that students “get a feel” for 

the way this metric behaves. To clarify, this activity never mentioned the words “Taxicab metric” 

or provided a formula for how to calculate this distance (we present this activity in further detail 

in Section 4.1.1), and instead asked students to try and write this formula on their own. After 

working in groups on this activity for about 30 minutes, the students began completing activities 

in GSP from the text about distance in Taxicab geometry and how it is used in the construction of 

a circle in Taxicab geometry.  

On the second day, students continued to complete activities in GSP from the text about 

other concepts in Taxicab geometry such as ellipses and the distance from a point to a line. On the 

third day, students began to work on a worksheet designed by the researchers in GSP with more 

activities that pertained to perpendicular bisectors, the triangle inequality, and congruence of 

triangles in Taxicab geometry. On the fourth and last day of instruction for Taxicab geometry, 

about 45 minutes were spent on an instructor-led class discussion to help students reflect on their 

exploration and talk about some of the theory behind these concepts. The students were then given 

a different worksheet in GSP designed by the researchers about the construction of an ellipse in 

Taxicab geometry and proving that all of the points on an arbitrary ellipse with arbitrary foci and 

axes lengths satisfy the definition of an ellipse. The instructor then went over a few examples in 
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GSP of how to prove that points on this ellipse in Taxicab geometry satisfied the definition of an 

ellipse. The last 30 minutes of class were allotted for students to explore and try to prove this for 

the remainder of the points on this ellipse. It is noted that this activity proved to be somewhat 

unsuccessful at first, as it was found that almost all of the participants did not understand the 

definition or construction of an ellipse in Euclidean geometry. This led to many students not 

appearing to be able to make connections between an ellipse in Euclidean geometry and an ellipse 

in Taxicab geometry. This was used as an opportunity to go over the definition of an ellipse and 

how an ellipse is constructed in Euclidean geometry to help deepen this understanding in the 

participants. 

3.3 Participants 

For this Fall semester, there were eighteen students enrolled in the College Geometry 

course, partitioned into seven undergraduate students and eleven graduate students. Of the seven 

undergraduate students, six were mathematics majors and one was a pre-middle level education 

major. Of the eleven graduate students, nine were in the Masters of Arts in Teaching (MAT) 

Mathematics Education program and two are in the Mathematics Education (MED) program. All 

students that were willing to participate were included in this research study and were given 

pseudonyms. All students were at varying levels of understanding in mathematics but are all 

required to have earned a C or better in the transition to proofs course. Provided in Table 3.2 is a 

summary of these participants names and program they were enrolled in. 
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Table 3.2 Overview of participants 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Data Collection 

In general, data was collected in various ways for this research study. This data can be 

categorized in three ways.  

1. Students’ group work (activities) during the Taxicab Geometry lessons along with the 

guided class discussion were audio and video recorded. Students’ work in GSP from these 

class days were also collected. 

2. Students’ relevant coursework throughout the semester including homework assignments, 

quizzes, and exams were collected.  

3. Interviews were conducted pertaining to course material and were audio and video 

recorded; this will include a think-aloud session completed in Geometer’s Sketchpad, 

followed by a group interview conducted based off of a protocol. 
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Ally Math major 

Alicia Math major 

Eileen Pre-Middle Ed major 

Samantha Math major 

Russell Math major 

Nicole Math major 

Kristen Math major 
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ts
 

Felix MAT Program 

Amy MAT Program 

Tyra MAT Program 

Darryl MAT Program 

Mark MED Program 

Robin MAT Program 

Alex MAT Program 

Parker MAT Program 

Brianna MED Program 

Marianne MAT Program 

Hannah MAT Program 
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All relevant coursework that was used in data analysis was collected and copied before any 

grading or grade commentary was given, so that student grades were not being used in the analysis. 

All 18 students consented for their in-class group work and discussion to be audio and video 

recorded, as well as written work and exams throughout the course to be collected. Semi-structured 

interviews were conducted after the end of classes but before the Final Exam with 15 of the 18 

students enrolled in the course who voluntarily signed up to participate in these interviews. 

Students who volunteered to participate in the questionnaire and interview sessions received extra 

credit in the course for doing so. An equivalent extra credit opportunity was given to students who 

were unwilling to participate in this portion of the study.  

Since I was a co-instructor for the course, these interviews were conducted by a colleague 

in the area of research of Collegiate Mathematics Education, so students would not feel as though 

their answers affected their final grades in the course. Students formed groups on their own or with 

the help of the interviewer, and interviews were conducted in groups of one, two, or three, 

depending on the availability of students. Specifically, two interviews were conducted with 

individual students, two interviews were conducted in groups of two students, and three interviews 

were conducted in groups of three students. Students were given approximately 30 minutes to 

complete a questionnaire prior to the interview, and during the interview each student was asked 

to elaborate on his or her responses to the questionnaire by the interviewer. To ensure uniform 

interviews, an interview protocol was provided to the researcher conducting the interviews (part 

of which is provided in Appendix A). For consistency in group interviews, the interviewer asked 

that for each new question, the order of responses rotated so each student had an equal opportunity 

to express his or her original thoughts without an influence from the other students. 
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3.5 Data Analysis 

The data collected from in-class group work during the class sessions on Taxicab geometry 

was collected in hopes of answering the first research question and sub questions, provided below.  

1. In what ways do students use GSP to refine their understanding of mathematical 

definitions? 

(a) How do students apply their working understanding of a definition in GSP to reason 

about mathematical problems? 

(b) How does cooperative learning and the use of GSP help students in the development 

of abstracting definitions from Euclidean geometry. 

The second and third methods of data collection which include relevant written coursework 

and answers from the questionnaire and interview sessions were largely used to answer the second 

research question and sub questions, provided below.  

2. How do students adapt their understanding of concepts in Euclidean geometry in order to 

apply definitions in Taxicab geometry, a non-Euclidean axiomatic system? 

(a) What activities in Taxicab geometry can aide in the abstraction of a definition? 

(b) How does applying definitions in an atypical context affect the development of student 

understanding of these definitions? 

(c) How do students transfer their understanding of relationships among concepts in 

Euclidean geometry to Taxicab geometry?  

The data that will be presented in this report includes student work and conversations from 

certain activities during the in-class group work and portions of each interview that pertained to 

students’ understandings of the components within the circle schema. 
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All of this data was analyzed with relevant research questions in mind, with multiple passes 

of analysis conducted to ensure consistency and correct interpretation of student work and 

thoughts. For the first pass of analysis from transcriptions of group work in class, the data was 

organized by group and included any submitted work in GSP for the members of each group. For 

the first pass of analysis of the group work, within each group each group member’s understanding 

of particular concepts in terms of APOS Theory were identified based on the parts of conversation 

in which he or she participated. During the second pass of analysis for the group work data, how 

each group member interacted with the other members of his or her group and/or instructor during 

the class period was identified. This allowed me to begin to analyze how cooperative learning and 

the use of GSP influenced each student’s conceptions of different mathematical concepts in 

Taxicab geometry. On the third pass of this analysis, the results were organized in terms of each 

activity and identified trends in how students worked on the activity together and in GSP.  

For the transcriptions of discussions from the interviews that were conducted, the data was 

organized by individual student and included their written work on the questionnaire. For the first 

pass of analysis with these transcriptions, each student’s understanding of particular concepts in 

terms of APOS Theory and concept image/concept definition were identified as they emerged 

during each interview. For the second pass of data analysis for this aspect of my study, how each 

student interacted with the interviewer in addition to the other students in his or her interview (if 

there were any) was identified. In particular, the relationships between the components of each 

student’s circle schema that were being evoked were noted and described. It was in this analysis 

that I noticed the development of these students’ circle schemas were very complex since they 

were operating in both Euclidean geometry and Taxicab geometry. Not only was there an 

interaction of components within the Euclidean geometry schema (between Distance, Radius, 
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Center, and Locus of points), but there was an interaction of these components from the 

Euclidean geometry schema and the Taxicab geometry schema and back. In addition, during this 

analysis, since the questionnaire protocol asked students to express their thoughts on the algebraic 

representations of concepts in addition to the geometric representations of concepts, a complex 

relationship was found with how this fit together and made up each student’s understanding of the 

relevant concepts.  

It was after the second pass of this analysis that a genetic decomposition for the schema 

interaction between each student’s circle in Euclidean geometry (cEg) and circle in Taxicab 

geometry (cTg) and how the overall circle schema could be thematized was developed, as modeled 

from Baker et al. (2000) and Cooley et al. (2007). For the third and final pass of this data analysis, 

this genetic decomposition was used to analyze all 15 volunteers’ work and responses. From this 

information, the level of schema interaction each student exhibited in terms of the interaction of 

the cEg and cTg schemata was determined.   

3.6 Chapter summary 

In this chapter, genetic decompositions and descriptions as to how APOS Theory would be 

utilized to analyze each student’s understanding of various concepts in geometry were described. 

In particular, these stages were explained in relation to the concepts of Distance, Midpoint, 

Circle, and Perpendicular bisector. In addition, a description of the various stages of schema 

development for the circle schema were provided. A summary of these descriptions is given in the 

following tables (Tables 3.3 – 3.7).  
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Table 3.3 Stages of conception for Distance. 

Action: The individual is able to graphically represent a distance and/or can use formulas to 

calculate distances in these geometries but cannot make connections between these 

representations. The student is able to observe local differences between distances 

(geometrically or algebraically) in multiple geometries but struggles to verbalize 

these differences. 

Process: The individual can conjecture about what properties might still hold from 

Euclidean geometry in a new metric and can begin to explain in their own words 

the differences between metrics beyond making local observations. 

Object: The individual can perform actions on this object, such as comparisons or using it 

as an “input” into a transformation, in both geometries.  

Table 3.4 Stages of conception for Midpoint. 

Action: The individual can use a formula or expression for finding a midpoint, substitute 

given values, and evaluate this expression to arrive at an ordered pair that is a 

midpoint. 

Process: The individual can imagine the midpoint of two points is located so that the 

distance to it from the given points is half of the total distance between these 

points. 

Object: The individual can, when given two points, identify a midpoint of the segment 

connecting them and can apply an action to it such as a comparison to another 

midpoint of the same segment in Taxicab geometry. 

Table 3.5 Stages of conception for Circle. 

Action: The individual is able to graphically represent a circle in a particular geometry 

and/or can use equations of a circle in these geometries but cannot make 

connections between these representations. The student is able to observe local 

differences between distances (geometrically or algebraically) in multiple 

geometries but struggles to verbalize these differences. 

Process: The individual can conjecture about what properties of circles might still hold from 

Euclidean geometry in a new metric, and can understand how various parts of a 

circle are a part of the definition of a circle. 

Object: The individual can perform actions on this object, such as comparisons or using 

their understanding of the definition of a circle to draw and write an equation of a 

circle.  

Table 3.6 Stages of conception for Perpendicular bisector. 

Action: Given two points, the individual identifies a point that is equidistant from both 

points by guessing and checking for a point that satisfies this property. 

Process: The individual can imagine in his or her head what it looks like for a point to be on 

the perpendicular bisector of a segment, and can explain in his or her own words 

how to find such a point. 

Object: The individual is able to consider all of the points on the perpendicular bisector at 

the same time and views these points as a totality, or a line, and can apply actions 

to this object. The individual can compare properties of perpendicular bisectors in a 

single geometry, especially in Taxicab geometry when the slope of the segment 

directly influences the appearance of the perpendicular bisector. 
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Table 3.7 Stages of schema development for the circle schema. 

Intra-:  The individual views the components of his or her circle schema as isolated 

structures. A circle in Euclidean/Taxicab geometry is analyzed in terms of its 

properties either geometrically or algebraically (e.g. - it is round/square, there is a 

square root sign/absolute value signs). Explanations of these properties (for 

example, what a circle looks like) are local and particular, i.e. – a student 

references specific examples of circles in Euclidean/Taxicab geometry in order to 

try to explain simple observations. 

Inter-: The individual is able to make connections between visual properties of a circle in 

Euclidean/Taxicab geometry and the algebraic properties (specifically, verbally), 

and can use either of these representations to talk about a circle. 

Trans-: The individual can explain how particular parts of the equation for a circle in 

Euclidean/Taxicab geometry correspond to parts of a graphical representation, and 

how they are both a result of the definition of a circle. 

 

In this chapter the instructional setting and course structure for the class in which data was 

collected were described, as well as the participants in this study. In particular, the methods of data 

collection which included audio and video recordings of group work from class in addition to GSP 

submissions, written work submitted by students during the course, and student responses to a 

questionnaire in addition to audio and video recordings of interviews that were conducted which 

asked questions about these responses were discussed. Further, details were provided of how the 

data was analyzed and how I arrived at these results. These results are provided in Chapter 4.  
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4 RESULTS 

As details of the method of the analysis were provided in Chapter 3, this analysis will be 

discussed in further detail for each method of data collection that was also described in Chapter 3. 

In particular, in Section 4.1, the results from the analysis of the audio and video data collected as 

well as GSP files that were submitted by students are provided. In Section 4.2, the results from the 

analysis of the interview data, including the genetic decomposition for the schema interaction that 

resulted from this analysis, are provided.  

4.1 In class group work with Geometer’s Sketchpad 

Results from the participants about their understanding of various definitions during certain 

activities during the four days of class that proved to be motivating to students and provided rich 

data to help illustrate their understandings are provided below. As there were five groups in the 

class, five activities are presented (one group per activity), where the group’s work and 

conversations are a representative example of not only how students worked on these activities, 

but also the various group dynamics that existed in the class. These results also give an idea into 

students’ attitudes towards mathematics as a result of cooperative learning since this research study 

was conducted as a teaching experiment, and data was collected throughout the course which was 

built heavily around group work for 14 weeks. In particular, this dissertation sought to investigate 

how the use of cooperative learning and GSP help students to generalize their understanding of 

definitions of various concepts in geometry.  

4.1.1 “Jason, the Uber driver” 

The activity given to students on the first day of class devoted to Taxicab geometry is 

provided below. The students were given about 30 minutes to work with “paper and pencil” on 

graph paper to explore this problem. To the instructor’s knowledge, students had not seen the 
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formula for distance in Taxicab geometry. In this problem, students were told there was an Uber 

driver named Jason who had to pick up three different customers from various locations during a 

shift one night, in each case leaving his apartment and driving along the streets’ grid system to 

arrive at these locations. The task given to students was to explore how many distinct routes of 

shortest distance there were from Jason’s apartment to the pick-up location of each customer that 

night. Although students did not use GSP for this activity, I believe it is still important to provide 

this example of students working together with a shared goal.  

Activity. Jason is an Uber driver in a major city, where all streets are constructed in a grid 

system so that, at a bird’s eye view, the taxi can only drive vertically or horizontally to get from 

any two points (in the picture, point A to point B). 

 

Throughout his shift one night, Jason had to pick up three different people, all at different times. 

Thus, for each trip, he had to leave his apartment to get to each respective pick-up spot. After all 

the trips were done, he began to wonder how many different routes of shortest distance there were 

to get to each spot.  

(1) Help Jason figure out how many different routes would result in the shortest distance for 

each pick-up spot. Using the graph paper provided, explore this problem, given that Jason’s 

apartment is located at (0,0) and the three pick-up locations were (2, 3), (5, 4), and (7, 7).  
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(2) Once you explore this problem, try to come up with a way to calculate the number of 

shortest routes from Jason’s apartment to any given point on the grid. Write any 

observations here (or on the back of this paper). 

(3) The way you were just measuring the distance that Jason traveled is how we measure 

distance in Taxicab geometry. Write a formula for distance in Taxicab geometry between 

any two points 𝐴(𝑥𝑎, 𝑦𝑎) and 𝐵(𝑥𝑏 , 𝑦𝑏). 

This activity was meant to allow students to explore the behavior of the Taxicab metric 

with limited association of components of their distance schemas, which can result in the formation 

of misconceptions. In particular, when attempting to apply mathematical definitions many students 

have incomplete concept images from which they reason resulting in them rejecting given 

definitions to use their imprecise concept image (Dickerson & Pitman, 2012). Thus, by not 

formally defining the Taxicab metric before this activity, it was hoped students would be able to 

explore this concept more freely to gain an understanding of Taxicab distance. For part (2) of this 

problem, although it was not expected for students to reach this conclusion in 30 minutes, the 

correct solution is that the number of distinct shortest routes from one point to another corresponds 

to Pascal’s triangle. To clarify, the number of shortest routes between two points in Taxicab 

geometry is equal to the number of ways in which you can choose the change in x (or change in 

y) from the total distance. Algebraically, the number of distinct routes 𝑛 from 𝐴 to 𝐵 is  

𝑛 = (
|𝑥𝑏 − 𝑥𝑎| + |𝑦𝑏 − 𝑦𝑎|

|𝑥𝑏 − 𝑥𝑎|
) = (

|𝑥𝑏 − 𝑥𝑎| + |𝑦𝑏 − 𝑦𝑎|

|𝑦𝑏 − 𝑦𝑎|
) =

(|𝑥𝑏 − 𝑥𝑎| + |𝑦𝑏 − 𝑦𝑎|)!

|𝑥𝑏 − 𝑥𝑎|! ∗ |𝑦𝑏 − 𝑦𝑎|!
 

As an example, the number of distinct routes of shortest distance from the origin to (2,3) 

is 𝑛 =
5!

2!3!
= 10. This activity led to great discussion among all the groups, but one group in 

particular stood out. This group was made up of Marianne, Hannah, and Eileen. Marianne and 
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Hannah were graduate students and Eileen was an undergraduate student in the course. Below 

various portions of their conversations during the group work on this problem are shown. These 

illustrate these students’ reflections on their understanding of Taxicab distance. In particular, these 

students were working to generalize the number of unique routes of shortest distance as asked in 

part (2) of this problem.  

For the first customer pick up location of (2,3), Marianne and Hannah were counting the 

number of ways to go a total distance of 5. At first, they were counting each route and trying to 

keep track of which routes they had already considered, but they decided to organize these by 

considering how many routes were possible if they only moved a certain distance in the vertical 

direction initially. This was made evident by Marianne counting these out loud saying, “Starting 

going up one? So, we got one, one, two one. Then we go one, two, two. I don’t think there’s 

another way that we can go if we want to go up one.” Hannah spoke up to suggest considering the 

route composed of single unit movements (like a staircase) and they agreed there were three of 

these routes that began by moving up one unit first. They then moved on to investigating how 

many routes there were if they moved two in the vertical direction first and agreed upon two routes. 

An example of how they were counting these routes can be seen in Figure 4.1, where Marianne 

appeared to be counting the number of routes between what could have been the origin and (2,2). 

At this stage of the activity, Hannah and Marianne were collectively exhibiting that they were 

applying an action conception of Taxicab distance to this context by calculating the length of 

each route from the origin to this particular point.  

Figure 4.1 Marianne’s way of counting routes from (0,0) to (2,2). 
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Hannah then began to try to generalize what this looks like while still using this particular 

point, an indication that she may have begun to interiorize these actions. She said, “If you go up 

to this one, you can go two ways. If you go up to this one you can go three ways. If you don’t go 

up there, four ways. If you go this way…that’s…four. That’s it.” After a few seconds Hannah said, 

“I’m mad ‘cause I can’t see the pattern,” indicating that Hannah was trying to interiorize these 

actions by searching for a pattern among these numbers so that she could apply this pattern to 

another point. After a moment of working in this way, Hannah asked Marianne if she counted ten 

routes from the origin to (2,3) and Marianne confirmed this number. Then Hannah stated, “The 

pattern is just one two three four… So, let’s do the next one and see if there really is a pattern.” 

Here, Hannah was pushing her group to identify and conjecture a possible pattern among the 

number of distinct routes between two points. As Hannah began to test another point of (5,4) the 

following interaction ensued where they related their findings to their previous ones.  

Hannah: This one’s crazy. I think the only reason this one was short was because… 

Marianne: Yeah, I mean there’s only five spaces and we’re moving…  

Hannah: But when we come to this one, something crazy happens. 

In this moment, Hannah and Marianne were discovering that the number of distinct routes 

of shortest distance from the origin went from being ten to the point (2,3) to being much larger for 

the point (5,4). Marianne was able to conjecture where this difference originated by saying “there’s 

only five spaces…”, in which she was talking about the total Taxicab distance between the origin 

and (2,3). After further exploration of using their method of moving a particular distance in a 

direction and counting the number of routes given this movement, Marianne got slightly distracted 

by how to calculate the shortest distance between the points (and not necessarily the number of 

shortest routes between them). In doing so, she said “It better not be you add the numbers together,” 
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which was a conjecture that the distance between the origin and any of these points could be 

calculated by adding the x and y coordinates of that point to one another. Marianne attempted to 

come up with a reason as to why this would be the case by saying, “I guess it would make sense 

because… the shortest distance between one point and another is a straight line, right? So, in order 

for us to get the height of this one, we have to go here and then…go over…so it will always be the 

sum of those.” 

Here, Marianne was able to coherently explain how to calculate distance in Taxicab 

geometry by relating it to distance in Euclidean geometry. By saying, “In order for us to get the 

height of this one…and then…go over,” she was referring to how to obtain the distance in the 

vertical and horizontal direction between two points, and that the shortest distance in this space 

would always be the sum of however many units she moved in these directions. In other words, 

she had generalized that to calculate distance in this way from the origin to any point, she would 

need to find the change in the x coordinates and add it to the change in y coordinates. This is clear 

evidence that she was able to interiorize her action conception of this distance and explain how to 

calculate it in general terms without actually performing these actions. 

Eileen then interjected in an attempt to get the group back on track by pointing out that 

they were supposed to be finding the number of ways to go from the origin to that point and not 

the distance between these points. Hannah began exploring the problem again by counting 

different routes and was trying to figure out the pattern they had discussed previously. She made 

an observation that once she moved further away from the origin, “it gets real crazy, cause you 

gotta add all the combinations that went ahead before it.” This comment is evidence that in order 

to reason about the current situation, Hannah had grouped all of the previously considered 

situations together and was trying to use this group of distances/routes to obtain the total number 
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of routes once she had moved to the next unit out. Here, Hannah was trying to create a recursive 

function that allowed her to input her existing knowledge (about the number of routes to a point 

that was closer to the origin) and would output the number of routes she was counting to a different 

point. This is evidence that she was applying an action to a set of distances. That is, exhibiting an 

object conception of Distance where the action being performed on this object was a 

transformation from input to output of a mental function.  

Although Eileen had been quiet for the majority of the activity, she clearly had been 

listening to Hannah and Marianne’s conversation and excitedly said, “It’s like permutations and 

combinations!” From an initial analysis of the dynamics of this group, it may have appeared that 

Eileen had been disengaged from the conversation. However, since she was able to make this 

conjecture that the pattern had something to do with “permutations and combinations,” I believe 

that internally she had been trying to generalize her understanding of the problem along the way. 

This is evidence that in cooperative learning, some students may take a role that is not as verbal as 

others, but this may be where they are the most comfortable which enables them to listen and 

reflect on others’ conversation to generalize their own understanding. Shortly after this, Hannah 

began to reference Bernoulli’s triangle (which has a similar construction to Pascal’s triangle but is 

different conceptually). Regardless, Hannah had made a connection between the current activity 

and prerequisite knowledge from other math courses about combinations. Eileen seemed to be 

following Hannah’s train of thought, while Marianne disagreed with them and continued down a 

different path, which is when the following conversation took place. 

Marianne:  If the shortest distance, if the shortest distance is 𝑛… max number of ways of 

shortest distance is equal to (𝑛 − 1) + (𝑛 − 2) + ⋯ all the way down to 1… When 

I tried (2,2)… The shortest distance was 4, right? So then if 𝑛 is 4, then if the 
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shortest distance is 4, then the maximum number of ways of going to shortest 

distance would be 3 + 2 + 1 which is 6, and that’s what I got. It was the same way 

when we did it with (2,3), which is 5, and it ended up being 4 + 3 + 2 + 1. Then 

when I tried it with this one, when the max was 3 it ended up being 2 + 1. 

Eileen:  So, how could we…So would this… 

Marianne:  So for (5,4)… 

Eileen:  That’s 9 would be the shortest distance. 

Marianne:  …the shortest distance equals 9, so I think that the max number of ways would 

equal 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1. whatever that is… 

After this Eileen and Hannah showed their slight disagreement that this method of 

calculation would capture the total number of shortest routes. At this time, the instructor 

announced to the class that it was time to move on to other activities and that they would discuss 

details of their solutions later. In general, the interactions and conversation in this group throughout 

the activity resulted in conjectures pertaining to permutations and combinations, 

Bernoulli’s/Pascal’s triangle, Hannah’s attempt at writing a recursive formula for the number of 

shortest routes, and Marianne’s attempt to create an explicit formula for the shortest distance 

between two points. This shows how effective the use of cooperative learning can be. These three 

students worked together, corrected one another, and challenged each other to generalize and test 

conjectures throughout the activity, which resulted in this group generalizing the problem more 

than any other group. Although they did not reach part (3) of this problem to define the Taxicab 

metric, it is noted that Marianne was able to verbally explain how this distance is defined earlier 

in this activity.  
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This example of cooperative learning was thought of as a success, since it could be clearly 

seen that each of these students working to generalize their understanding of the problem, and thus 

of distance in Taxicab geometry. Although Hannah and Marianne took the lead roles of this group, 

Eileen appeared to be engaged the entire time and contributed meaningful observations or 

conjectures to the conversation. Thus, the dynamics of this group worked well for them and they 

helped each other to complete this task. It is possible, as suggested by Glass and Deckert (2001), 

that if these students were given the opportunity to use GSP for this activity, they could have been 

able to generate conjectures even better than they did in this case, since they would be able to 

visualize patterns and properties accurately and more quickly. 

4.1.2 Constructing a Taxicab circle 

The next activity that students worked on came from their textbook for the class. 

Specifically, this activity is partially summarized in terms of the information and tasks given to 

students. The activity defines Euclidean distance algebraically, and the text specifies this formula 

is based on the Pythagorean theorem. The students are informed that in GSP, the Distance and 

Length tools calculate the Euclidean distance between two points. The text suggests defining a 

new rule for measuring distance as it is defined in Taxicab geometry. This part states “you can 

measure the taxi-distance easily by counting the blocks from one intersection of the grid to the 

next,” (Reynolds & Fenton, 2011, p. 146). The text then provides the following parts (a)-(c) to 

guide students through the construction of a Taxicab circle in GSP and the generalization of this 

construction.  

(a) Plot points at 𝑃(3,4), 𝐴(2,2), 𝐵(3,7), 𝐶(2,5), and 𝐷(5,5). By counting the number of 

blocks from 𝑃 to 𝐴, we find that the taxi-distance 𝑃𝐴 is 3 units. Find the taxi-distances 

𝑃𝐵, 𝑃𝐶, and 𝑃𝐷. Two of these points are the same taxi-distance from 𝑃 as 𝐴 is. Which two? 
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(b) The set of all points that are at the same taxi-distance from 𝑃 form a taxi-circle centered at 

𝑃. In part (a), three of the points lie on a taxi-circle of radius 3 centered at 𝑃. Find several 

additional points on this taxi-circle. Describe the set of all points that are at a taxi-distance 

of 3 units from a fixed point 𝑃. How is the shape of a taxi-circle different from (or similar 

to) the shape of an ordinary Euclidean circle? 

(c) If you are given a point 𝑄(𝑥𝑄 , 𝑦𝑄) and a radius 𝑟, how could you quickly sketch a taxi-

circle of radius 𝑟 centered at 𝑄? 

For part (a), they were given an example of the distance measure between 𝑃 and 𝐴 and 

were told how to get this, by “counting blocks.” In addition to “counting blocks” to find distance 

in Taxicab geometry as suggested in the text, students were given a Taxicab distance tool in GSP 

that could measure the distance between two points in Taxicab geometry. It was expected that 

students would be able to plot the given five points (𝑃, 𝐴, 𝐵, 𝐶, and 𝐷) and count the blocks and/or 

use this tool in GSP to calculate the Taxicab distance between 𝑃 and the remaining three points 

and identify which two of these points are the same distance from 𝑃 as 𝐴 is. These two points end 

up being 𝐵 and 𝐷. In part (b), the goal was for students to make a connection that 𝐴, 𝐵, and 𝐷 were 

on the circle centered at P with radius 3. Further, the students would ideally be able to either count 

blocks or guess and check where several other points on this circle would be located. After finding 

a few points, students should begin to conjecture what the rest of the locus of points that satisfy 

this criterion would look like. Thus, when the text asks them to describe the set of points that are 

3 units away from 𝑃 in Taxicab geometry, students can try to imagine all of the points at the same 

time that satisfy the definition of a circle. The text then asks them to compare this figure to a circle 

in Euclidean geometry in order to get students to make connections between how the definition of 

distance affects the appearance of a circle in both geometries while maintaining the same definition 
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of a circle. Part (c) aimed for students to generalize their understanding of the construction of a 

circle of any radius 𝑟 by coming up with a general procedure to do so. In Figures 4.2 – 4.4 the 

completed activity by Ally, Amy, and Brianna are provided. As a note, the position of the text 

boxes for Amy and Brianna’s submissions were slightly altered for the sake of presentation. 

Amy and Brianna were both graduate students and Ally was an undergraduate student in 

the course. These students worked together during this activity, but all completed their own GSP 

document to submit. The concepts involved with the circle schema are Distance, Radius, Center, 

and Locus of points, as seen in the preliminary genetic decomposition in Chapter 3. As a part of 

these students’ developing circle schemas, their conception of the definitions of these concepts are 

analyzed as they emerged in conversation. As can be seen in their submitted work, they began by 

plotting and labeling each of the given points in part (a) of the activity on their grid as shown by 

the red points in Figures 4.3 and 4.4, and multicolored points in Figure 4.2 (what are labeled as 

𝐴, 𝐵, 𝐶, and 𝐷). They then each used the Taxicab distance tool to calculate each of the distances 

of 𝑃𝐴, 𝑃𝐵, 𝑃𝐶, and 𝑃𝐷, shown in the upper left part of Figures 4.2 – 4.4.  

They correctly determined and agreed, after the use of the Taxicab distance tool, which 

of the distances were three units, implying they were aware that 𝐵 and 𝐷 were both three units 

away from 𝑃, and indicating at least an action conception of Taxicab distance, as they were able 

Figure 4.2 Work in GSP for Activity 5 submitted by Ally. 
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to use a tool to measure specific distances. After they read part (b) of the problem which asked 

students to plot several other points that are three units away from 𝑃, Brianna was looking at her 

graphical representation (seen in Figure 4.3) of the problem and said, “wait, why is 𝑃𝐵 the same?... 

Just cause it’s three straight up?” to which Amy replied, “’cause it’s like the radius, yeah... of that 

circle.” Thus, algebraically they had agreed point 𝐵 was three units away from 𝑃, but 

geometrically, Brianna did not see how this was the case until she visualized the straight line 

segment connecting these two points. This indicated she needed this particular example to 

understand why the point three units directly above the center would fall on the circle, indicative 

of an action conception of Taxicab circle. However, since she was able to visualize the distance 

between these two points (also a radius of this circle), she appeared to be ready to interiorize her 

action conception of the geometric representations of her Distance and Radius. It is possible she 

was confusing her Euclidean distance and Taxicab distance concepts (and Euclidean radius 

and Taxicab radius concepts), since these distances would be the same between these two points. 

When Amy explained to Brianna here that the distance from 𝑃 to 𝐵 was three because it was the 

radius of that circle, this provides evidence that Amy had coordinated her Distance and Radius 

processes within her Taxicab circle concept.  

Figure 4.3 Work in GSP for Activity 5 submitted by Brianna. 



100 

Amy began to investigate why the distance from 𝑃 to 𝐴 (in Figure 4.2, the point 𝐴 is the 

blue point to the left of her label) was three and said “’cause if that was a triangle, then the length 

of that hypotenuse wouldn’t be… wait, because 𝑃𝐴 is like… sides one and two.” Here, Amy 

referred to the components of the Taxicab distance between these two points as the legs of a right 

triangle whose hypotenuse is the Euclidean distance between 𝑃 and 𝐴. In particular, she provided 

evidence that her instinct was considering the distance on the hypotenuse of this triangle, but then 

realized she should be looking at the legs of this triangle. Ally spoke up around this time and said, 

“so, we just need to form like a Taxi-circle” to which Brianna responded that they are just supposed 

to find a few points that they think are on this circle in Taxicab geometry.  

This interaction was especially interesting because of the different stages of conception 

these students were exhibiting. The way in which Amy was analyzing the geometric representation 

for the distance between these two points in the form of a triangle is evidence that she was trying 

to coordinate her process conceptions of Geometric Representation of Euclidean distance 

(GRED) and Geometric Representation of Taxicab distance (GRTD) to try and make 

connections between them. Ally seemed to have already understood why these points were all 

three units away from 𝑃 and fully understood the task given since she said “so, we just need to 

Figure 4.4 Work in GSP for Activity 5 submitted by Amy. 
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form like a Taxi-circle.” Although this is not explicit evidence of any particular stage of conception 

of concepts within her circle schema by itself, further and supporting evidence of Ally’s 

understanding of Circle is discussed later in this activity. Brianna insisting that they just needed 

to find particular points that were three units away supports the claim that she had an action 

conception of Circle or many concepts within her circle schema at this point in the activity, since 

she wanted to plot particular points on her graph.  

Ally listed aloud the point (4,6) that was also three units away from 𝑃, and then Brianna 

said, “I would say like (4,6),” repeating what Ally had said. The reader’s attention is drawn to this 

short statement, because it is possibly in this reflection of Ally’s comment that Brianna interiorized 

her action conceptions of Radius and Distance and coordinated them, since the next thing she said 

was, “…wouldn’t (3,1)? ‘Cause it’s the same as 𝑃𝐵, just the opposite direction? Like that’s the 

radius, right?” Brianna indicated here that she was able to visualize the vertical distance from 𝑃 to 

𝐴 as a radius and reflect this distance across the horizontal line through the center of this circle. 

Based on the framework presented in Hollebrands (2003), since Brianna was able to 

anticipate this transformation on the distance/radius of this circle before actually performing it, 

this is evidence she had interiorized her action conceptions of Radius and Distance and 

coordinated them to see that (3,1) would be on the circle. It is possible that she could have still 

been conflating her conceptions of Distance and Radius in both her Euclidean and Taxicab 

schemata. This is because she had not indicated to this point that she had been able to differentiate 

the two distances geometrically, since they appeared the same for these points. In any case, she 

was able to generalize that the point directly three units below the center would also be on the 

circle because it was the same length of the radius, indicating a coordination of her Distance and 

Radius processes within her circle schema.  
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Ally listed aloud another point of (4,2) to which Amy responded, “wait, why (4,2)? ‘Cause 

that’s only two away.” Recall that Amy had discussed the geometric representation of distance 

between 𝑃 and 𝐴(2,2) in terms of a right triangle, indicating she was in the state of interiorizing 

her action conception of Taxicab distance to coordinate with her process conception of Euclidean 

distance so that she could coherently make these connections. Since (4,2) is the point (2,2) 

reflected across the vertical line through the center of the circle, it is believed she most likely was 

evoking this right triangle again but was still confused or held a misconception about how Taxicab 

distance was measured since she still thought it was only two units away. Then, Brianna said “So, 

it’s a distance of three though still,” and after some thought, Amy replied, “Oh wait, I’m sorry…I 

understand now,” which was the moment it is believed that Amy was able to construct a new 

process from the coordination of her Euclidean and Taxicab distance process, which she exhibits 

later in the conversation.  

During this conversation between Brianna and Amy, Ally was plotting all of the additional 

green points shown in green in Figure 4.4. After Amy said she understood why (4,2) was on the 

circle, Ally said “it forms a diamond,” but Amy and Brianna were still caught up in plotting and 

labeling additional points they had found that were three units away from 𝑃. Ally appeared to be 

in the state of interiorizing her action conception of Taxicab circle (if it was not interiorized 

already) since she was able to anticipate that the rest of the points on this diamond would also be 

three units away from the center. A few moments later Ally repeated herself and Amy, surprised, 

said “Oh, does it really?” Ally showed Amy her work in GSP (which can be seen in Figure 4.4) to 

which Amy replied, “Oh wow. That’s very cool.” Amy used this information and verbalized that 

she wanted to plot more points on her graph so that “you can see that it’s a diamond.” This is 

indicative that Amy was working to interiorize her action conception of Taxicab circle by 
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focusing on the locus of points of this circle. In particular, Amy was using her conception of 

Taxicab distance and Radius to plot several specific points that were equidistant from P (action 

conception of Locus of points) until she could visualize the entire locus of points (process 

conception of Locus of points). This is supported by literature, in that Cha & Noss (2001) describe 

that it is important for students to have a ‘local’ understanding of locus by seeing properties of 

individual points on the locus. It is after this that students can generalize the point “into an algebraic 

form,” (p. 85).  

Brianna had caught up to the conversation at this point and said “or, it could make a 

square,” which led to a lengthy conversation about differences between the definitions of a square 

and a diamond. But before they began discussing this, Amy said “So, it’s not a circle,” to which 

Ally responded, “this radius is the same.” This indicates that Ally was aware the diamond they had 

found indeed was a circle based on the definition of a circle, whereas Amy was still only 

associating the visual representation of a Euclidean circle to her concept image of Circle. This is 

evidence Ally may have already constructed process conceptions of Distance, Radius, Center, 

and Locus of points and was coordinating these processes to justify why this shape satisfied the 

definition of a circle, whereas Amy provided evidence that she was still in the state of interiorizing 

some of these concepts, in particular, the concept of Locus of points, since she was picturing a 

round circle in Euclidean geometry. Ally’s statements throughout this conversation about how 

these circles are similar because the radius is the same despite their shape indicates Ally was 

coordinating some or all of her Distance, Radius, Center, and Locus of points processes. As a 

result of these coordinations, Ally appeared to be forming a coherent understanding of the 

underlying structure of her circle schema, evident by her ability to verbally compare circles in both 

geometries. 
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When the problem asked for the students to compare the circle in Taxicab geometry they 

just constructed with a Euclidean circle, Ally said, “well an ordinary circle is round,” and Brianna 

said, “an ordinary circle is shaped circular… round.” Both of these comments pertained to the 

visual appearance of the circles, but then the following conversation occurred, providing great 

insight to these students’ understandings of these concepts.  

Ally:  I mean they’re similar because… the radius is always the same. 

Brianna:  It’s like…they’re all the same distance from the center? 

Amy: Well, this is the same distance too, but it’s the same Taxi-distance.  

Brianna:  But they’re like a different type of distance ‘cause you can go like up, you can move 

different ways, it’s not like straight to it… like a clock. 

Ally continued to demonstrate here that she was coordinating all of her processes of 

subconcepts of her circle schema by explaining that the two circles are similar in the way in which 

they are constructed. Also, she was using her definition of a circle to compare and contrast a circle 

in Euclidean geometry and a circle in Taxicab geometry in general terms. Thus, it appeared she 

had constructed an object in each of Euclidean and Taxicab geometry from the coordination of 

these processes (Distance, Radius, Center, and Locus of points), and was performing an action 

of a comparison on each of these objects. Then Brianna made a comment involving the concepts 

of Distance, Center, and Locus of points (when she said “they’re all” it is interpreted she was 

referring to the points on the circle) which indicated she was attempting to coordinate some 

processes within her circle schema. In her next comment, she provided concrete evidence that she 

had constructed a Distance process from the coordination of her Euclidean and Taxicab distances 
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by making connections in the visual appearance of the two distances saying Taxicab distance is 

not like Euclidean distance, which is “straight to it… like a clock.”  

By this statement it appeared Brianna was using a metaphor of a clock to understand that 

a clock is round as a result of connecting points with a straight line (by rotating this straight line 

around one of its endpoints). She went on to reason through the fact that the circles are the same 

by the definition but are different because Taxicab distance is “like a different type of distance 

than the radius of a circle.” When she said, “radius of a circle,” she said this in the context that the 

radius of a Euclidean circle is a straight line segment (i.e.- the hand of a circular clock), which 

indicates that Brianna was comparing the appearance of radii between circles in Euclidean and 

Taxicab geometries. In other words, she had constructed a Radius process across her cEg and cTg 

schemata and was coordinating this with her Distance process.  

Ally ended up writing on her submission (Figure 4.4) that the circle in Taxicab geometry 

was “just like a Euclidean circle except you must go around the blocks instead of [through] them,” 

whereas Amy and Brianna wrote something about the points being the same distance from the 

center, but that it was “a different type of distance.” In other words, they all agreed that the way 

distance is measured is the cause of the difference in appearance of a circle in Euclidean geometry 

and in Taxicab geometry. However, Ally gave visual details as to how the change in metric results 

in the change in appearance of a circle, further indicating a coherence to the structure of her circle 

schema. For part (c) this group began trying to geometrically explain how they would construct a 

generic Taxicab circle but ended up attempting to use algebraic expressions to explain this 

construction, indicating they were evoking both of their GRCs and ARCs. Specifically, they 

defined four points algebraically, “(𝑟, 𝑦𝑞), (𝑥𝑞 , 𝑟), (−𝑟, 𝑦𝑞) and  (𝑥𝑞 , −𝑟),” and said they would 

[geometrically] connect those points. It is assumed they were attempting to define the points 
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(𝑥𝑞 − 𝑟, 𝑦𝑞), (𝑥𝑞 , 𝑦𝑞 + 𝑟), (𝑥𝑞 − 𝑟, 𝑦𝑞) and  (𝑥𝑞 , 𝑦𝑞 − 𝑟), as shown in Figure 4.5, but right after 

they wrote these coordinates, the class period ended. If they had more time to explore their initial 

attempt at writing these coordinates, I wonder if they would have realized their mistake and 

adjusted the coordinates. 

Prior to this activity, students had only been exposed to the Taxicab metric for the activity 

about Jason, the Uber driver, which was presented in Section 4.1.1. It is possible that Ally had 

interiorized her action conception of Taxicab distance during that activity, given the 

understanding she exhibited at the beginning of this activity. However, the moments that it is 

believed Amy and Brianna interiorized their action conception of Distance by constructing a 

process from the coordination of their Euclidean distance and Taxicab distances were able to be 

pin pointed. Further, the coordination of Amy, Brianna, and Ally’s Distance processes with their 

Radius processes were observed in these interactions. Further, Ally was able to use the definition 

of a circle to compare and contrast this concept in both Euclidean and Taxicab geometry, which 

indicates an object conception of Circle in each of Euclidean and Taxicab geometry. It is noted 

that no particular student held a leadership role in this group and overall, they were able to work 

Figure 4.5 Coordinates of the vertices of an 

arbitrary Taxicab circle with radius r. 
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together to complete this task of generalizing the concept of a circle in Taxicab geometry by 

sharing ideas and questioning one another along the way. In fact, by all working separately on their 

own laptops and then comparing diagrams and observations of their various representations, it 

appeared to help these students develop their understanding of a circle in Taxicab geometry. This 

group provided an example of working with dynamic geometry software consistent with Contreras 

(2011), in that GSP allowed these students to have a firsthand experience with the definition of a 

circle and to reflect on their actions which allowed for a “more powerful abstraction” of this 

concept (p. 20). 

4.1.3 “The Red Line Investigation” 

In this activity, several constructions of perpendicular bisectors of segments with different 

slopes in Taxicab geometry were given to students on a worksheet in GSP. On the first part of this 

activity, the construction of the perpendicular bisector of a segment with positive slope (not equal 

to one) in Taxicab geometry was provided, but the activity did not say what this line was. Rather, 

it had them investigate and conjecture what this line was based on definitions and what they knew 

about similar constructions in Euclidean geometry. The first sheet of this activity is provided below 

in Figure 4.6, with answers from one of the groups of students made up of Robin, Nicole, and 

Kristen, of which Robin was the only graduate student. Unlike Amy, Brianna, and Ally in the last 

activity that was presented, these students chose to all work on the same computer (Robin’s) while 

they were discussing the activity and submitted one file for their group at the end of class.  
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To clarify, this red line was constructed by the intersecting points of each of the purple, 

navy blue, green, and light blue Taxicab circles (which are centered at each endpoint and have the 

same radius respective to their colors). It was intended that students would be able to see that the 

points 𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3 and 𝑍 in Figure 4.6 denote intersections of circles of the same color, i.e. 

– each of these points is equidistant from both endpoints as the distance between each of the 

endpoints and each of these points is the length of the radius of corresponding circles. In other 

words, the line that is being constructed is the set of points that are equidistant from both endpoints, 

which in Euclidean geometry is called the perpendicular bisector. In the case of the segment on 

the first part of the activity seen in Figure 4.6, this line bisects the segment but is not perpendicular 

to it.  

As the main concept aimed to be evoked with this activity is Perpendicular bisector, the 

subconcepts that would be evoked as a result would be Distance, Midpoint, and Locus of points, 

as seen in the preliminary genetic decomposition presented in Chapter 3. It was also anticipated 

Figure 4.6 Submitted work from Robin, Nicole, and Kristen for the red line investigation. 
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that the concept of Circle would emerge in the students’ minds since the construction of this line 

uses circles. Evidence of Robin’s, Nicole’s, and Kristen’s various understandings of these concepts 

as they emerged during their group work on this activity follows. 

Even just as this group began reading the problem, evidence can be seen of these students’ 

conceptions. Nicole said, “Based on the diagram and what you know about circles… which is that 

they are round!” to which Robin said, “except in Taxicab geometry.” Nicole demonstrated here 

that she predominantly views circles geometrically and includes the shape of a circle as an 

extremely important part of her concept image. In particular, she was evoking her circle in 

Euclidean geometry schema (cEg) since she was describing the shape of a Euclidean circle. Robin, 

was evoking both his circle in Euclidean geometry and circle in Taxicab geometry schemata (cTg) 

since he was able to correct Nicole that a circle does not have to be round in order for it to be a 

circle, as they had seen was the case in Taxicab geometry during the previous activity. In other 

words, Robin had already begun to assimilate the concept of Taxicab circle into his circle schema 

and had expanded his notion of Circle to include a circle in Taxicab geometry, while Nicole was 

still conceptually evoking a geometric representation of a circle in Euclidean geometry. 

Nicole then went on to examine the figures in GSP and said, “so would these be the routes?” 

and motioned in the air with her fingers as though she was drawing different distances in Taxicab 

geometry. Although it cannot be explicitly determined at what lines she was looking in GSP, 

Nicole described Taxicab distance geometrically by drawing in the air with her fingers. It can be 

inferred she was drawing arbitrary examples of distances in Taxicab geometry and not specific 

routes in the figure, since she was not pointing at the screen when she drew them. This indicates 

that she was able to imagine geometric representations of Taxicab distance (GRTD) in her head 

without using specific examples which is evidence of a process conception of GRTD. There was 



110 

no evidence that Nicole had identified circles in the figure yet, which would imply her Circle 

concept was not being evoked at this time. Next, the following interaction took place. 

Robin:  So, the red line actually goes like here, here, and here. 

Nicole:  It goes through all of them!  

Robin:  But it looks to only intersect… it’s like tangent to the blue to the dark blue circle. 

Here, Nicole made the connection that the red line was concurrent with the points of 

intersection of each set of circles but, again, it is not believed she was aware these were circles 

until Robin said, “it’s like tangent to the…dark blue circle.” By this statement, Robin provided 

evidence that he was aware that lines that are tangent to circles in Taxicab geometry can have more 

than one point in common (whereas in Euclidean geometry, a tangent line to a circle only has one 

point in common with the circle). Although it is a small distinction, he described this figure as a 

“circle” instead of a “Taxicab circle,” which is further evidence that Robin had expanded his notion 

of Circle to also include a circle in Taxicab geometry. Robin had generalized his personal concept 

definition of Circle to include both Euclidean and Taxicab circles, indicating he had constructed 

a Circle process by coordinating his Euclidean and Taxicab circle processes. Further he had 

generalized his understanding of what it meant for a line to be tangent to a circle to include both 

Euclidean and Taxicab geometries. This provided evidence he may have been ready to encapsulate 

this Circle process, at least geometrically, since he was able to apply this understanding of a circle 

to his understanding of what a tangent line is.  

Shortly after this, Kristen asked what the question was that they were trying to answer, and 

Robin explained that they were trying to figure out what the red line was equivalent to in Euclidean 

geometry. After a few seconds of silence, Robin shouted, “Oh, it’s the perpendicular bisector of 

AB!” Kristen replied, “oh yeah,” and Nicole said, “that’s it?” Nicole began trying to explain that 
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they had been “looking at the big picture and we should have just been looking at this.” Then 

Robin said, “no…remember how we constructed perpendicular bisectors?” Nicole then replied 

that she agreed with him but that her “thought process was totally off.”. Through this interaction, 

it appeared Kristen asking what they were supposed to be doing made Robin reflect on the task at 

hand. This helped him to identify that this line was constructed the same way as the perpendicular 

bisector of 𝐴𝐵 in Euclidean geometry. It was during this moment of silence and reflection that it 

is believed that Robin began to evoke different concepts within his Euclidean geometry schema in 

a “guess and check” method to identify what this line could be. The possible trajectory Robin took 

during this time in regard to his thinking is presented below. 

While evoking various concepts, at some point Robin evoked his Perpendicular bisector 

schema and began to reason in his head if this was the correct line. In other words, he was 

investigating whether or not the construction in Taxicab geometry he was given in GSP was 

equivalent to the construction of a perpendicular bisector in Euclidean geometry. In doing so, he 

was exhibiting an action conception of Perpendicular bisector in Taxicab geometry since he was 

referring to the specific example in front of him. He then verified the constructions were the same, 

which required the coordination of his Circle process with his Perpendicular bisector processes 

in both his Euclidean geometry schema and his Taxicab geometry schema. Thus, very quickly, 

Robin constructed a Perpendicular bisector process that included this concept in both Euclidean 

and Taxicab geometry by verifying this constructed in Taxicab geometry mirrored the construction 

of a perpendicular bisector in Euclidean geometry. This is the moment in which he decided the 

line was indeed a perpendicular bisector in Taxicab geometry. An illustration of this conceptual 

trajectory as I believe it occurred is provided in Figure 4.7. In particular, the red arrow represents 

the moment Robin interiorized his action conception of Perpendicular bisector in Taxicab 
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geometry, the blue arrows indicate the coordination of a concept (also outlined in blue) from the 

Euclidean geometry schema, the green arrows indicate the coordination of a concept (also outlined 

in green) from the Taxicab geometry schema, and the purple arrows indicate the coordination of a 

concept (also outlined in purple) in Robin’s general Perpendicular bisector schema. Thus, his 

Perpendicular bisector process is constructed through the coordination of (1) his Circle process 

in his Perpendicular bisector schema, (2) processes within his Euclidean geometry schema, and 

(3) processes in his Taxicab geometry schema. Thus, this particular coordination in Figure 4.7 has 

three different colored arrows.  

This type of coordination had not been considered in the preliminary genetic 

decomposition presented in Chapter 3 as a possibility to guide students to generalize their 

understanding of Perpendicular bisector. However, since Circle and Perpendicular bisector 

both have the subconcepts of Distance and Locus of points, the specific coordination of his 

Distance and Locus of points processes across these concepts possibly helped Robin to 

successfully complete this complex coordination.  

Figure 4.7 Robin’s possible trajectory to construct a Perpendicular 

bisector process. 
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Robin then asked his group if they agreed with what he had written in GSP at the time 

(which is different from what is seen in Figure 4.7 as they edited their work throughout the 

activity), but they were distracted and talking off topic. Later, the instructor walked over to the 

group and Robin asked if they were on track with their observations and answer to this first part 

of the activity. The instructor responded by asking what the definition of a perpendicular bisector 

was. Robin said, “it cuts the segment” and Kristen, currently engaged in the conversation since the 

instructor came over, added “in the middle.” The instructor then asked what else they knew about 

perpendicular bisectors to which Robin replied “perpendicularly.” The instructor asked them if 

that was still true in this case, referring to their work in GSP on this activity. Kristen immediately 

said, “yes…that’s what it looks like.” The instructor clarified that angles are measured the same 

way in Euclidean and Taxicab geometry, and Robin said, “then, no.” The next portion of the 

conversation was the instructor guiding the students to make a connection between the construction 

of this line in GSP and how this satisfies the definition of a perpendicular bisector in Euclidean 

geometry.  

In regard to the group’s submitted work for this part of the problem, Robin then edited their 

explanation and typed that this red line in Taxicab geometry “seems to be the same as a 

perpendicular bisector in Euclidean geometry” with the justification that “each of the intersecting 

points of the circles are equidistant from the endpoints of the segment AB,” which can be seen in 

Figure 4.6. Robin was able to use the instructor’s guidance, his understanding of the construction 

of a perpendicular bisector in both geometries, and the definitions of a circle and perpendicular 

bisector to write this justification. Kristen did not seem to be engaged for the majority of this 

activity, predominantly adding comments such as “oh yeah,” and, “oh!” to the conversation, 

whereas Nicole was engaged at least at first. However, once Robin determined the line was a 



114 

perpendicular bisector (i.e. - arrived at an answer), Nicole disengaged and began talking to Kristen 

about something personal. Robin attempted to bring them back to the activity by asking if they 

agreed with what he wrote, which ended up reoccurring throughout the activity. For example, a 

few minutes later Nicole and Kristen got off topic again and Robin tried to get the group back on 

track again by saying “here we go, here we go… team? Team?”  This is unlike Amy, Brianna, and 

Ally (during the activity presented in Section 4.1.2) since all of the members of their group 

appeared to be engaged the entire time. 

Recall a change in slope of this segment affects the appearance of its perpendicular bisector 

in Taxicab geometry. The next parts of the activity had the students look at the Taxicab 

construction of the perpendicular bisector of a segment that has a negative slope and then a slope 

of positive one. These two constructions can be seen in Figures 4.8 and 4.9, with submitted answers 

from this group. For the case of segment 𝐴𝐵 having a positive slope, seen in Figure 4.6, the 

students began with a misunderstanding as to what the question was asking. In particular, they 

thought they were supposed to be investigating why 𝐴𝐵 had a negative slope, and not how the 

negative slope of 𝐴𝐵 affects the perpendicular bisector in Taxicab geometry.  

Figure 4.8 Submitted work by Robin, Nicole, and Kristen for the case of a negative slope. 
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After the instructor came over to the group and clarified the task, she helped guide the 

students through making observations about the appearance of the perpendicular bisector. She 

asked what the perpendicular bisector from the first part of the activity looked like if they were to 

trace it with their finger. After they went back to that sheet in GSP to look at its appearance, they 

all motioned as though they were tracing the locus of points seen in Figure 4.6. She then asked 

them to go back to the sheet in GSP shown in Figure 4.8 and try to identify any differences. Nicole 

traced the shape of the perpendicular bisector in this image in the air with her finger and then said, 

“it flipped!”  

By comparing the shape of two Taxicab perpendicular bisectors to determine the difference 

in shapes, Nicole provides evidence she had at this moment constructed an object out of her 

Geometric Representation of Perpendicular bisector process in Taxicab geometry, where the 

action being applied to this object is a visual comparison. The instructor confirmed it looked 

different and asked if it still had the same properties. Nicole said it did, and Robin said, “I mean I 

guess so.” Then Nicole turned her attention to writing an answer in GSP, and said, “so just say it’s 

the same properties? Its flipped…” Robin expressed his hesitation in accepting what the instructor 

had implied by saying “I mean I guess so” and even went on to say, “I get fearful with observations 

because I like to make sure my observations are right.” This leads to the belief that he wanted to 

explore this more in GSP when Nicole turned the groups attention to writing an answer and trying 

to confirm with the instructor that it was correct. This is a situation in cooperative learning where 

one student seemed to be fixated on obtaining an answer throughout the activity, while the other 

student in the group wanted to verify these observations and understand why they were true before 

putting them as part of their answer. This situation may call for a need in “group processing” as 

defined in Johnson and Johnson (1999) in that they need to discuss how they are working to 
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achieve their goals, so they can identify and solve any issues they are having in working together 

effectively. 

In the next part of the conversation, the members of this group were discussing how to 

word their observations, which can be seen in Figure 4.8. This excerpt is provided below.  

Robin:  Observe the perpendicular bisector is now what?  

Nicole: It’s now…the same?  

Robin:  I feel like it’s rotated. 

Nicole:  Okay! Well say…. 

Robin:  It’s rotated… 

Nicole:  …but still has the same properties. 

Notice in Figure 4.8, Robin wrote “perpendicular bisector” with quotes around it. This 

indicates he was distinguishing between a perpendicular bisector in Euclidean geometry and 

Taxicab geometry by putting quotes around this term in the context of Taxicab geometry. This is 

most likely because he is aware that in this context, the construction of this line no longer resulted 

in a line perpendicular to the segment, and thus was uncomfortable writing “perpendicular”. By 

Nicole saying here that this perpendicular bisector is “the same,” she was talking about the 

sameness in properties of this line compared to the previous one as a result of their conversation 

with the instructor. This indicates she may be ready generalize her understanding of the definition 

of a perpendicular bisector to include her understanding of this term in both Euclidean and Taxicab 

geometry. The students then went on to the next sheet in this GSP worksheet, which had the 

construction of a Taxicab perpendicular bisector for a segment AB that had slope equal to one, as 

seen in Figure 4.9. 
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Robin made the observation that the perpendicular bisector in Taxicab geometry was a 

[straight] line now, and Kristen said, “it’s so strange to be that when the slope equals one. Why 

does it look that way and not that way?.” To clarify, she was referring to the other constructions 

they had seen. Robin said, “because AB has slope one,” to which Kristen acted like she understood 

this as justification. Kristen had not exhibited evidence that she had the necessary mental 

constructions in order for her to understand this statement as justification (mainly since she had 

not participated much in this activity). Although it cannot be said for certain, it is not believed she 

actually understood the justification that Robin provided in this case. In particular, her observation 

about this case of the perpendicular bisector and asking why it looked this way appeared to be an 

attempt to participate in the conversation, although she could not add much in terms of depth.  

In other words, her understanding of the involved concepts were not as developed as 

Nicole’s and Robin’s. She perhaps felt that she had not participated meaningfully in a while and 

wanted to try and add to the conversation. However, by making an observation about the change 

in appearance of the line when that was a given part of the task implies she did not completely 

Figure 4.9 Submitted work by Robin, Nicole, and Kristen for the case of slope equal to one. 
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understand (in the same way as her group members may have) that this line is defined the same 

way as it was in the previous constructions, but that the slope of the segment connecting two points 

affects the appearance of this line. 

Nicole read the question from this activity aloud asking what this segment bisector in 

Taxicab geometry was, and Robin exclaimed, “a perpendicular bisector now!...because it forms 

the right angles!” This supports the belief that Robin was uncomfortable calling this line in Taxicab 

geometry a perpendicular bisector since it is not necessarily perpendicular. It is noted that in the 

submission for this portion of the activity seen in Figure 4.9, Robin typed in the bottom right that 

“the red line is a perpendicular bisector by definition,” this time writing “perpendicular bisector” 

without quotes, unlike the way he did in their submission seen in Figure 4.8. Thus, it appeared 

Robin was referring to the perpendicular bisector in Euclidean geometry here, attempting to clarify 

that this line is perpendicular to the segment in addition to bisecting the segment (referring to the 

“perpendicular” part of that term and saying “by definition”) as it would be in Euclidean geometry.  

Nicole then agreed and asked if she could see the first construction again. Thus, she wanted 

to look at particular examples of these different situations and compare their appearances in order 

to better understand what the perpendicular bisector in Taxicab geometry is. She then said, “I 

wonder if we can make an angle and then measure it,” and Robin replied, “Do it. Just use this guy 

and measure from here to here,” in which he was referring to the Marker tool in GSP which 

allowed them to define an angle (and then use another tool to measure this angle). Nicole wanting 

to explore the idea that this line was perpendicular to the segment and Robin encouraging this is 

an example of this group conjecturing about a situation and choosing to test this conjecture before 

believing it as truth. In particular, they were working together to verify or disprove that this line 

was actually perpendicular to the segment AB. As a note, the measure of the angle they obtained 
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shown in Figure 4.9 was 90.11º because of a slight shift in one of the lines involved in the 

construction of this perpendicular bisector. The students asked the instructor if it was supposed to 

measure to be 90º, which was confirmed, and Robin finished typing the rest of their response to 

this part of the activity.  

Overall, Robin took the lead role in this group by working on the computer, writing their 

observations in GSP most of the time, and trying to keep his group on task. Nicole was engaged 

for the most part throughout this activity and contributed meaningful observations or conjectures 

to the conversation. This may have helped her and Robin in generalizing their understandings of 

concepts in Taxicab geometry. Kristen appeared disengaged much of the time (often distracting 

Nicole by talking off subject) and contributed “simple” observations and comments to the 

conversation when she was engaged. There was a “gap” in understanding between each of these 

students, which may have led to the less cohesive group dynamics as compared to Amy, Brianna, 

and Ally from Section 4.1.2. Having some sort of structure or instruction for group work while 

working on the activity could have motivated Kristen to remain engaged and would have 

encouraged her group mates to make sure she was keeping up with their reasoning. In terms of 

cooperative learning, this group as a whole did not perceive this activity in the same way as others. 

They also did not show as much evidence that they were working towards a shared goal in the 

same way that Amy, Brianna, and Ally demonstrated previously. 

4.1.4 The Triangle Inequality 

After students investigated what a perpendicular bisector was in Taxicab geometry, they 

worked on an activity that asked them to investigate the triangle inequality. Parker, Darryl, Felix, 

and Russell were in a group together in the class, although Felix was absent from class this day. 

Parker, Darryl, and Felix were graduate students and Russell was an undergraduate student in the 
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course. This activity as it was given to the students can be seen in Figure 4.10, and the submission 

from Parker, Darryl, and Russell, can be seen in Figure 4.11. Since it is hard to differentiate in this 

figure, it is noted that their written response to the question asking about a strict equality is directly 

below this question in Figure 4.11. This is where they wrote, “When B is collinear A and C, and 

is between A and C.” This group, much like Robin, Kristen, and Nicole, chose to work on the same 

computer (Parker’s) for these activities and submit one file for the group at the end of class. This 

activity mainly was aiming to get students to become more familiar with the Taxicab metric and 

how they could use it to analyze various situations. However, one ideal solution here would be for 

students to figure out that if there is a right triangle that is oriented such that the legs of the triangle 

are parallel to the axes of the graph, then there would be equality (although this is not the only case 

there is equality). In particular, it can be proved there is equality in this case in two ways – 

algebraically and geometrically.  

Proposition: If a right triangle ABC exists in Taxicab geometry such that the legs AB and 

BC are parallel to the x and y axes, then 𝑑𝑇(𝐴, 𝐵) + 𝑑𝑇(𝐵, 𝐶) = 𝑑𝑇(𝐴, 𝐶). 

Proof 1: We can show algebraically, 

𝑑𝑇(𝐴, 𝐵) + 𝑑𝑇(𝐵, 𝐶) = |𝑥𝐵 − 𝑥𝐴| + |𝑦𝐵 − 𝑦𝐴| + |𝑥𝐶 − 𝑥𝐵| + |𝑦𝐶 − 𝑦𝐵| 

= (|𝑥𝐵 − 𝑥𝐴| + |𝑥𝐶 − 𝑥𝐵|) + (|𝑦𝐵 − 𝑦𝐴| + |𝑦𝐶 − 𝑦𝐵|) 

= |𝑥𝐶 − 𝑥𝐴| + |𝑦𝐶 − 𝑦𝐴| = 𝑑𝑇(𝐴, 𝐶) 

Where |𝑥𝐵 − 𝑥𝐴| + |𝑥𝐶 − 𝑥𝐵| = |𝑥𝐶 − 𝑥𝐴| and |𝑦𝐵 − 𝑦𝐴| + |𝑦𝐶 − 𝑦𝐵| = |𝑦𝐶 − 𝑦𝐴| as a 

result of  the betweenness axiom, since 𝑥𝐵 is collinear and between 𝑥𝐴 and 𝑥𝐶, and similarly, 𝑦𝐵 is 

collinear and between 𝑦𝐴 and 𝑦𝐶. ∎ 
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Proof 2: We can see that for the points A and C, the Taxicab distance between them can be 

geometrically represented as (and is equivalent to the sum of) the distances between these points 

horizontally and vertically, which are precisely the legs of triangle ABC. Hence, by the definition 

of the Taxicab metric, the Taxicab distance between the two points A and C (which is labeled as 

𝑑𝑇(𝐴, 𝐶)) is equal to the sum of Taxicab distances of the legs AB and BC (which is 𝑑𝑇(𝐴, 𝐵) +

𝑑𝑇(𝐵, 𝐶)).  ∎ 

Darryl began by reading the question, trying to understand the problem along the way. This 

was evident by Darryl pausing in between reading statements aloud and saying, “okay, that makes 

sense.” When he finished reading the question asking if they thought this inequality holds in 

Taxicab geometry, Russell immediately said, “Calculate it.” Darryl began to try and conjecture 

whether or not he thought it held, and Russell said again, “Calculate it.” Darryl continued to try 

and think aloud saying, “we know that in Taxicab distances… oh wait.” During this time, Russell 

whispered something to Parker and then Parker said aloud, “let’s just see!” Russell most likely 

told her to calculate the distances of the legs of the arbitrary triangle ABC they had been given on 

the worksheet initially (as seen in Figure 4.10). Parker then used the Taxicab distance tool to find 

the distances of the sides of this triangle and add the distances 𝐴𝐵 and 𝐵𝐶 to compare them to the 

distance 𝐴𝐶, which can be seen near the bottom right of Figure 4.11. In the preliminary genetic 

Figure 4.10 Original activity given to students for the triangle inequality. 
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decomposition presented in this dissertation, in order to compare distances, it is stated a student 

must have an object conception of this distance. Thus, a student comparing distances after he or 

she had calculated them in GSP indicates an object conception of Distance in Taxicab geometry. 

However, in order to understand why there is a relationship between these distances requires the 

de-encapsulation of this object. More about their understanding of this concept in how they used 

this comparison to talk about the triangle inequality is presented below, in terms of Taxicab (and 

Euclidean) geometry.  

Parker had misinterpreted the inequality given to them which is evident while she was 

measuring these distances and saying “we’re saying the distance from A to B and from B to C, 

will be less than A to C. Oh no! It’s not,” where she should have said these two distances “will   

[sum to] be at least” the distance from A to C. In other words, in her mind she was trying to show 

𝑑𝑇(𝐴, 𝐵) + 𝑑𝑇(𝐵, 𝐶) < 𝑑𝑇(𝐴, 𝐶), whereas the inequality as it was given to them was 𝑑𝑇(𝐴, 𝐶) ≤ 

𝑑𝑇(𝐴, 𝐵) + 𝑑𝑇(𝐵, 𝐶). So, she had noticed the inequality involved a “less than” sign, but switched 

Figure 4.11 Parker, Darryl, and Russell’s submission for this activity. 
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the sides of the inequality, resulting in a misinterpretation about what the task was. She tried 

multiple times to convince Darryl that they had found a case where they contradicted the triangle 

inequality, but Darryl kept trying to explain that they only found a case that supported it. Once 

Parker realized she had been mistaken, she apologized, and Darryl said, “Don’t worry, I got 

confused by the wording as well.” This interaction is included as an example of the dynamics of 

this group. Darryl and Parker felt comfortable enough to have a productive disagreement about the 

problem but were patient with one another until they came to an agreement. This is when Darryl 

offered a comment in an attempt to ease any embarrassment Parker may have felt from 

misinterpreting the inequality. This interaction also may indicate Parker did not fully understand 

the geometrical representation of the triangle inequality in Euclidean geometry since what she was 

discussing with Darryl was also not the triangle inequality in Euclidean geometry.  

As Parker was adding “≤” sign in red in Figure 4.11, Darryl said, “so it holds for both 

Taxicab geometry and Euclidean geometry…and this is proof… well through the proof they have 

it…” In terms of Darryl’s geometric reasoning skills, he took the one example they were given and 

that they checked to be empirical proof for the idea that this inequality holds in Taxicab geometry. 

This is supported by Chazan (1993) who found many students did not see writing a formal proof 

as necessary after interacting with the computer in a similar way. On the contrary, at this time 

Russell spoke up and said, “but why is that? It says explain why.” This implies Russell did not 

take this example to be empirical proof and knew they needed to further investigate this conjecture 

using geometric reasoning. Darryl then began to try and come up with reasons why this inequality 

would hold, evoking his ARTD by bringing up the fact that this distance included absolute values 

in the formula and if they didn’t take the absolute values of these differences in coordinates, that 

the “value” would change. It is interpreted that Darryl was referring to the fact that the difference 
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in the coordinates could be negative if they didn’t take the absolute value of it, which is when 

Russel was attempting to explain why the formula had to use the absolute values of these 

differences so that it would be positive. This portion of the conversation is provided below.  

Russell:  Even in normal geometry… we still square it…[indiscernible]…so isn’t the case. 

Darryl:  Well, if you do think about it. One is making it bigger than another other number, 

because the absolute value, right?  

Russell: I mean wouldn’t you say that you should always like… 

Darryl:  No, no. I see what you’re saying, because if you are squaring it or you are making 

it absolute value, regardless it’s going to be positive. I understand that.  

By bringing up the formula for distance in Euclidean geometry (or “normal geometry,” as 

Russell called it) to discuss this with Darryl, Russell indicated he was coordinating his ARED and 

ARTD processes. This is because he was able to compare these two formulas and explain that the 

transformations being applied to these terms will result in a positive distance in both cases. In other 

words, he viewed taking the absolute values of 𝑥2 − 𝑥1 and 𝑦2 − 𝑦1 in the Taxicab distance 

formula as a similar action as squaring these terms in the Euclidean distance formula, in that it 

made these terms positive. By referring to these distances as “numbers,” in the next statement, 

Darryl was exhibiting an action conception of at least ARTD (if not also ARED) since Russell 

bringing up the formula for distance in Euclidean geometry could have evoked Darryl’s ARED. 

When Russell says “you should always like…” it is interpreted he was trying to express that 

distance should always be positive, so it is necessary to include the absolute values of these terms 

in this distance formula (or squaring/taking the square root of the terms in Euclidean distance). 

Although not clear, this is evidence that Russell had constructed a general Distance process since 

he was using properties of distance to logically explain why the algebraic representation of Taxicab 
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distance made sense to him. Recall he had just brought up the structures for both formulas for 

Euclidean and Taxicab distance. In the least, he was using his personal concept definition to try 

and generalize his ARD.  

Next, Parker dragged point 𝐵 to make the angle at point 𝐵 look like a right angle, which is 

when Russell suggested that maybe the Pythagorean theorem had something to do with why this 

inequality held in Taxicab geometry. Specifically, he said, “in Taxicab was how we calculate the 

distance…like no matter the triangle,” to which Parker replied, “no matter the points.” To clarify, 

I believe Russell saw this triangle and evoked his GRTD and saw the legs of this right triangle 

(AB and BC) as the Taxicab distance between the points A and C, which fell on the hypothenuse 

of this triangle. Russell had said, “no matter the triangle,” and Parker corrected him by saying, “no 

matter the points.” Although he misspoke, Russell appeared to have been trying to say no matter 

the orientation of the two points he is measuring the distance between in Taxicab geometry, a right 

triangle can be constructed with the distance geometrically represented as the legs of this triangle. 

Parker correctly interpreted what he was saying, which is why she was able to add the clarification 

that this would be the case for any two points, and not necessarily any triangle. Thus, Parker and 

Russell exhibited evidence they had interiorized their action conception of GRD since they both 

seemed to understand in general how Taxicab distance is represented for any two points.  

As they continued working on the activity, Darryl added “so the absolute value...is always 

going to be greater than…[indiscernible] and you can say the same thing with the squares in terms 

of Euclidean geometry.” Here, he may have been trying to understand exactly what Russell and 

Parker’s point was by talking about the Pythagorean theorem, which is why he said, “the squares 

in terms of Euclidean geometry.” Because he could not coherently express this thought or 

connection, Darryl was still exhibiting an action conception of ARED and ARTD and was trying 
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to make a connection between these two metrics but was unable to do so since he had not 

interiorized them yet. Parker continued to explore in GSP on her laptop while Russell and Darryl 

listened and watched as Parker explained she was trying to figure out when the inequality would 

change to a strict equality. Darryl suggested moving one of the points up to see if the slope of the 

segments affected the relationship between the distances. Russell then started to suggest things for 

Parker to do, asking her to move point B to the middle of the segment AC so that it was collinear 

with them. They concluded that in this case there was a strict equality between 𝑑𝑇(𝐴, 𝐶) and 

𝑑𝑇(𝐴, 𝐵) + 𝑑𝑇(𝐵, 𝐶). Darryl then asked, “is it whenever C is between A and B as well?” to which 

Parker answered, “no, it’s only when B is in the middle.” Although not explicitly stated, it is 

interpreted that Darryl was asking if 𝑑𝑇(𝐴, 𝐶) would still equal 𝑑𝑇(𝐴, 𝐵) + 𝑑𝑇(𝐵, 𝐶) if C were 

collinear with A and B and between them, which is certainly not the case. The fact that Parker was 

able to quickly respond in the negative makes us believe she was using her process conception of 

Distance to reason through his question and anticipate why this was not true and did not need to 

see an example to justify her response. At the same time, this is further evidence that Darryl had 

not interiorized his action conception of Distance since he most likely needed to consider a specific 

example to determine if his conjecture was false.  

The group continued to explore in GSP by moving points and measuring angles to see if 

they could find any patterns about this inequality with different triangles. At one point they found 

a triangle where they had a strict equality for the expression. Parker conjectured that this may be 

because this specific triangle appeared to have two angle measures that were equal, so she wanted 

to measure them and see if once she made them exactly equal they would still have a strict equality 

for the expression. Once she did this, Darryl observed it was not a strict equality, and said, “it 

would just follow the rules of an isosceles triangle.” Thus, Darryl was able to make a connection 
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between the two angles of this triangle being congruent and the fact that it was an isosceles triangle, 

although it is not certain what he meant by the “rules of an isosceles triangle.” It is possible that, 

like Kristen in Section 4.1.3, he was attempting to add a meaningful comment to the discussion 

since he may have realized Russell and Parker had a more developed understanding of the concept 

of Distance. In this case instead of making a local observation like Kristen did about the 

appearance of the red line in the previous activity, Darryl made a connection between concepts, 

but they were just not concepts that were relevant to the task. In either case, he evoked his 

understanding of what an isosceles triangle was as an attempt to contribute to the conversation 

when his understanding of Distance had hindered him from understanding Russell and Parker’s 

conversation beginning with Russell mentioning the Pythagorean theorem. Thus, his productive 

struggle in this activity is attributed to his inability to coordinate his ARED and ARTD processes 

(if they existed), since Russell and Parker both exhibited they had already done this, which led to 

them having this conversation where Darryl was not as engaged verbally.  

Overall in this group, Parker seemed to have fallen into a type of leadership role since she 

had control of the computer, but Russell was extremely engaged and added many meaningful 

comments to the conversation about distance and connections between Taxicab and Euclidean 

geometries. Darryl was also engaged for the entirety of the activity and was trying to contribute 

meaningfully to the conversation, but his conception of Distance hindered him from being able to 

have the same “level” of conversation that Russell and Parker demonstrated. 

4.1.5 Congruence of Triangles 

The last activity in this worksheet (that is included in this report) had students consider the 

congruence of triangles in Taxicab geometry. In particular, they were given examples of why each 

Side-Side-Side (SSS), Side-Angle-Side (SAS), and Angle-Side-Angle (ASA) congruence criterion 



128 

did not hold in Taxicab geometry. Figures 4.12, 4.15, and 4.16 show these worksheets. The 

conversations and group work for the group made up of Tyra, Mark, Alex, and Samantha are 

presented in this section. Out of members of this group, Samantha was the only undergraduate 

student. This group worked in a similar way as Amy, Brianna, and Ally in that they all worked on 

their own computers and discussed their findings with one another, showing each other their 

screens and work throughout the class. Again, the main goal of this activity was to familiarize the 

students with the Taxicab metric and how to apply it in different situations. The first part of this 

activity had them investigate the congruence criterion of SSS in Taxicab geometry, as seen in 

Figure 4.12. Specifically, they were to explain why these two triangles satisfy the SSS criterion 

but are not congruent. This group proved to work very well together, as is presented in the 

following analysis of their conversation during this activity.  

Mark made a very quick discovery about the example shown on the SSS worksheet in 

Figure 4.12. This excerpt is included below, as he was trying to explain his understanding to Alex 

about why he believes the segment AB’ in Figure 4.12 is congruent to segment AB in Taxicab 

geometry. 

Figure 4.12 GSP worksheet for the SSS criterion. 
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Mark:  AB is actually um, the x… the distance along the x plus the y, right? And there is a 

point between C’B’, such that y…is equal to Euclidean distance A and B…plus this 

distance right here. Does that make sense?… This distance, the Euclidean distance 

AB stops… right here at this point… So, you have this distance AB plus this 

distance AB’…, so there is a point between C’B’ such that the distance… between 

this point [A] and B’ is the same distance as the distance between here [A] and here 

[B]…Which would mean then that AB’ is the same as AB in terms of Taxicab. 

Mark was able to explain in general terms how it was possible that segment AB’ was 

congruent to segment AB, including Euclidean and Taxicab distance in his reasoning, indicative 

of a process conception of Distance by the coordination of his GRED and GRTD. It was in the 

reflection of this exercise that Mark was at a state of encapsulating his process conception of 

GRTD into an object, since he was confident that AB’ and AB were congruent in Taxicab distance. 

In other words, he was performing an action of comparison on his GRTD object, although these 

objects were particular and defined in GSP. At this point, Samantha and Tyra listened as he 

attempted to explain his thought process again. Before he began explaining, Mark shut his laptop 

and grabbed a sheet of paper that was on the table to draw a triangle that looked like the triangle 

from the GSP worksheet (but was arbitrary since he did not have a coordinate grid anymore). A 

picture of this drawing is provided in Figure 4.13. Numbers are used in the following excerpt that 

correspond to the numbers in Figure 4.13 to denote in his explanation what portion of this drawing 

he was referring to. Throughout his explanation, Samantha and Tyra were nodding and saying 

affirmative comments such as “yes” and “mm hmm” to indicate they were following his logic. 

After hearing Mark’s first explanation, Alex at this time was working on writing his observations 

on his worksheet in GSP, which will be presented later in this section. 
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Mark:  We have A, B’, and B, right? So by Euclidean um, geometry, this distance AB 

would be the same as to some point right here[1], right? This distance from here to here[2]…would 

be the same as from here to here[3]…such that this distance right here[2] is the same as the y value 

here[3]. So if there is a point along here[4] such that this distance here[2] is this distance here[3], then 

that means that by Taxi… this distance[4] is the same as this distance[5] when that happens.  

Tyra:  I agree with that. It looks like that would happen. So, these are congruent by side… 

by Taxi-Side-Side-Side.  

Mark:  Right so by Taxi, this distance[4] is the same as this[5], but by Euclidean they’re not. 

First, it is interesting Mark preferred to use paper and pencil to explain this to his group 

instead of GSP. It is possible that he felt as though GSP would limit his explanation since the 

triangle constructed in this worksheet was not necessarily arbitrary. If this were the case, this was 

an example that is not consistent with Chazan (2003) in that Mark [hypothetically] wanted to 

construct a formal [geometric] proof for this situation despite the empirical evidence he saw in 

GSP. As stated previously, Mark exhibited a clear object conception of GRTD, but in first part of 

this excerpt Mark also compares Euclidean distances of the segment AB and the segment formed 

[2] 

[3] 

[5] 

[

[4] 
[1] 

Figure 4.13 Mark’s drawing to explain why AB was 

congruent to AB’. 



131 

by A and the point indicated by [1]. This is indicative of an object conception of GRED as well. 

He was able to de-encapsulate his object conception of GRTD in order to consider the distance 

denoted by [3] and how this was a part of the Taxicab distance from A to B, and specifically 

referred to this as “the y-value.” Thus, Mark was evoking his ARTD since he seemed to be 

referencing the y-coordinates of the arbitrary points on this triangle, an indication that he was in 

the state of encapsulating his Taxicab distance process. He seemed to believe the Euclidean 

distance between A and B would be equal to the Euclidean distance between A and the point he 

drew on segment AB’, which does not fully correspond to the way in which he was trying to 

describe how the Taxicab distance of segment AB would be measured. In other words, the 

hypotenuse of the triangle (the segment AB) formed by A, B, and this point he drew would be 

longer in Euclidean distance than both legs of that triangle (not equal to the leg made up of A and 

this point like he thought). However, even with this misconception, he seemed to be able to 

encapsulate his process conception of GTD. 

Although Tyra indicated she followed his logic, she seemed to think his point was to show 

these triangles were congruent in Taxicab geometry even though they were not in Euclidean 

geometry. In actuality, Mark’s point was just that the segments AB and AB’ were congruent in 

Taxicab geometry but were not in Euclidean geometry. In any case, Mark’s detailed and thought 

out explanations were helping Alex in the interiorization of his action conception of GRTD. In 

particular, part of his submitted GSP worksheet for this part of the activity can be seen in Figure 

4.14 where his answer to the question asking why these triangles were not congruent in Taxicab 

geometry even though they satisfied the SSS criterion can be seen.  



132 

It can be seen from his work that he found the lengths of each of the legs of both triangles 

to verify that these triangles indeed satisfied the criterion of SSS. Although he did not explain why 

the triangles were not actually congruent, he explained how Taxicab distance in measured in the 

red writing seen in Figure 4.14. By describing how to calculate this distance in general terms but 

also referring to counting units, saying “When you measure with taxi distance you measure how 

many units you go to the left or right and how many units you go up or down,” he provided 

evidence he had interiorized his action conception of GRTD. Specifically, he was able to talk 

about counting blocks as components of finding the distance (“left or right” and “up or down”) in 

general terms as a process. The students then moved on to the next worksheet, which pertained to 

the congruence criterion of SAS in Taxicab geometry, which can be seen in Figure 4.15. 

Figure 4.14 Alex’s response to the question on the activity 

for the SSS criterion. 
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Once Tyra read the statement on this worksheet asking to show these trianges have “two 

sides equal” along with congruent enclosed angles, but are not congruent she stated aloud, “I get 

it now. These are congruent by Side-Angle-Side even though they’re not congruent by Euclidean.” 

This indicates, along with her previous comment in the last excerpt, that Tyra had a misconception 

about the definition of congruence. Further evidence of this misconception appeared on the 

introduction sheet to this activity which asked students to define what it means for two triangles 

to be congruent. Tyra’s response to this was, “Euclidean: same size and shape.” Thus, she had 

formed a distinction between congruence in Euclidean geometry and congruence in Taxicab 

geometry. In particular, in Euclidean geometry two triangles had to look the exact same to be 

congruent, whereas in Taxicab geometry, as long as they satisfied a congruence criterion, they 

were congruent regardless of their appearance. In other words, she seemed to believe these 

congruence criteria “trumped” the definition of congruence in Taxicab geometry. This 

misconception arose despite the fact that each of these worksheets asked the students to observe 

that the triangles satisfied a congruence criterion in Taxicab geometry but were not actually 

congruent.  

Figure 4.15 Worksheet for the SAS criterion. 
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Once Tyra stated that she understood what to do, Mark said, “Oh, cool. Your turn… How 

does it work?”, encouraging Tyra to explain the activity to the group. Tyra was able to explain to 

her group why the segments AB and ED were congruent in Figure 4.15 by saying, “you go up 

eight for AB but…E to D is gonna be still four over and four down, that’s eight.” Mark then said, 

“so it’s basically the same idea…” referring to the last set of triangles in this activity. Tyra replied, 

“Now it’s easy!” and Mark said, “When you realize that once it’s at an angle it’s just a combination 

of x and y, then you start to see it.” Mark appeared to have understood that if the segment is “at an 

angle,” (GRD) the Taxicab distance is measured as “a combination of x and y” (ARTD). The fact 

that he added the “once it’s at an angle,” implies he had differentiated this case from if the segment 

was horizontal or vertical. In other words, he knew if the segment was not “at an angle,” the length 

of the segment is the same in Euclidean geometry and Taxicab geometry (comparing GRED to 

GRTD implies an object conception of GRD).  Thus, he may have possibly constructed an object 

conception of Distance since he had apparently started to compare how Taxicab distance is 

measured and looks like in comparison to Euclidean distance depending on the slope of a segment. 

His last statement (“combination of x and y”) implies he may have de-encapsulated his GRD in 

order to coordinate his GRTD and ARTD processes. With some reflection on his ARED and 

ARTD and how these representations compare to one another, he possibly would have been able 

to encapsulate his process conception of ARD to arrive at an overall object conception of Distance. 

In this case, he would have fully assimilated Taxicab distance into his understanding of his 

distance schema.  

Samantha then asked for someone to explain to her how these triangles satisfied the SAS 

congruence criterion, since she had apparently not followed the earlier conversation. Mark broke 

down the explanation Tyra had provided by asking Samantha in terms of Taxicab distance how 
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many “squares” were between A and B and then how many “squares” were between E and F (as 

illustrated in Figure 4.15). Samantha replied with an answer of eight both times and then expressed 

that it made sense to her now. Recall when Mark had been explaining his thought process to his 

group previously, his explanations exhibited a process and/or object conception of Taxicab 

distance, but in this case seemed to know Samantha most likely needed to hear an explanation that 

was catered towards an action conception. This is indicated by him saying, “how many squares” 

were between two points instead of phrasing this as “what is the Taxicab distance” between the 

points. In this situation, Mark understood and had the social awareness that Samantha had not 

developed as deep of an understanding of Taxicab distance and changed the way in which he 

explained his thoughts. The students all agreed they understood this part of the activity and moved 

to the last sheet in GSP about the congruence criterion of ASA seen in Figure 4.16. They all quickly 

agreed that this “was the same” idea as the last two sheets and moved on to another activity. 

Overall, this group was successful at cooperatively working together for a shared goal to 

complete these worksheets. Mark ended up taking a leadership role in this group, which may have 

happened because he seemed to have the most developed understanding of Distance. As with 

Figure 4.16 Worksheet for ASA criterion. 
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Amy, Brianna, and Ally, all of the members of this group appeared to be engaged throughout this 

activity. They each were exploring ideas in their own GSP file and discussing ideas. Not only did 

they share their computer screens to explain concepts, but Mark even used paper and pencil to do 

so. This was perhaps because he felt GSP limited him to an environment of working with non-

arbitrary triangles and wanted to be able to explain his thoughts in general terms to his group. In 

this group, Mark had been using “face-to-face promotive interaction” as defined by Johnson & 

Johnson (1999) in which he was promoting the success of his group members by helping, 

encouraging, and praising his group member’s efforts to achieve, as evident by him making the 

effort to explain ideas multiple times (in different ways) and encouraging Tyra to explain the ASA 

worksheet in GSP to the group. 

4.1.6 Student opinions of GSP and the course 

As part of the interviews that were conducted with the 15 students who volunteered to 

participate in them (out of the 18 in enrolled in the course), they were asked questions about how 

the course affected their comfortability with various aspects of mathematics. These questions 

asked for students to provide their opinions on a Likert scale (1 = Strongly disagree (SD), 2 = 

Disagree (D), 3 = Neither agree nor disagree (NA), 4 = Agree (A), 5 = Strongly agree (SA)) and 

are provided below. The summary statistics of each question is presented in Table 4.1, but the 

question pertaining to technology (Question 1) is discussed in detail in this section. During the 

interview, the participants elaborated on their answers to these questions and some of their 

comments about GSP are presented here as well. 

1. This course has helped me with my comfortability in using technology to understand 

mathematical concepts.  
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2. This course has helped me with my comfortability in reading formal definitions and my 

ability to apply them in proofs. 

3. This course has helped me with my comfortability in reading and understanding proofs in 

mathematics. 

4. This course has helped me with my comfortability in conjecturing and writing my own 

proofs. 

5. This course has helped me with my comfortability in applying my mathematical knowledge 

to new problems.  

6. This course has helped me with my comfortability with mathematics in general.   

Table 4.1 Distribution of responses to survey questions. 

 

 

As can be seen from Table 4.1, the question asking students if the course helped their 

“comfortability in using technology to understand mathematical concepts” received the highest 

average of responses with 4.20. This also had the smallest standard deviation, indicating that 

overall this was the highest scored question out of the six. Representative comments that students 

made during the interview based on their response to this question about using technology to 

understand mathematical concepts are presented below.  

Question 1 2 3 4 5 6 

% SD 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

% D 0.0% 13.3% 20.0% 26.7% 6.7% 6.7% 

% NA 20.0% 20.0% 0.0% 6.7% 13.3% 13.3% 

% A 40.0% 20.0% 33.3% 26.7% 40.0% 46.7% 

% SA 40.0% 20.0% 33.3% 26.7% 40.0% 46.7% 

Average 4.20 4.00 4.07 3.80 4.13 4.07 

Median 4.00 4.00 4.00 4.00 4.00 4.00 

Standard Dev 0.77 1.13 1.16 1.26 0.92 0.88 
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Neither Agree nor Disagree – “Okay, so question 1- I put neither agree nor disagree 

because the only thing we used in there was GSP and…I feel that program is pretty limited 

compared to something like Matlab.” – Russell, Undergraduate mathematics major   

Neither Agree nor Disagree – “I would say neither of the two, because GSP…I just didn’t 

ever really understand it, you know… I was just doing it…They would tell me to draw a circle 

and…okay I’m drawing one. Okay, find the radius. We’re finding the radius, but … I didn’t see 

what that helped...” – Kristen, Undergraduate mathematics major 

Agree – “…a new way of how to look at proofs through different shapes and 

constructions…with using those constructions you get…a visual aide…of exactly how you are 

supposed to visualize the image, or how you’re supposed to visualize the mathematical concept 

itself.” – Darryl, Graduate MAT student 

Agree – “ …with GSP, I think it was easier to plot stuff in GSP versus you drawing it on 

a paper, and trying to figure it out yourself, cause sometimes your drawings aren’t always 

accurate…it definitely helps to like visualize and know that those calculations in there are accurate 

versus what you conjured up yourself.” – Alicia, Undergraduate mathematics major 

Strongly Agree – I liked the integration of the GSP, I think it helps strengthen…being able 

to formally define… anything and apply them to proofs and apply it to new problems, 

understanding more about the properties so that you can apply it… I just think overall the design 

of this course was just probably one of my favorites. – Robin, Graduate MAT student 

Strongly Agree – “This is the most I had used up to the point I mean other than a calculator 

it was like excel or something…doing something like GSP… initially was kind of crazy dealing 

with that -  I didn’t understand it. But as we went through the class…Something had changed in 

the classroom when we started working together… groups more and more…our discussions in our 
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groups, and the groups discussing amongst each other in the class … it really got me more engaged 

into it and I really enjoyed it. I enjoyed the discussion, and I enjoyed the discovery and learning 

and trying things out in GSP. For me…its opened my eyes significantly with…learning more about 

geometry and mathematics, and basically looking behind the curtain to see how it works. So, I’m 

immensely grateful that I managed to take this class…not just this class but this classroom…this 

group of people that I took it with.” – Felix, Graduate MAT student  

Overall, the participants in this study appeared to find the use of GSP and group work 

helpful in their understanding and beneficial for their experience in this class. 

4.2 The development of the circle schema through schema interaction 

In this section, responses from 15 students who volunteered to participate in the interview 

portion of this study were analyzed in relation to their circle schema. Their responses provided 

good insights about how students’ transfer definitions to a new context. The following questions 

from the questionnaire were relevant to this data analysis, and are a subset of the questions asked 

before and during the interview:  

1. Define and draw an image (or images) that represents each of the following terms however 

you see fit: Circle, Distance.  

2. For any two points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) 

(i) Euclidean distance is given by 𝑑𝐸(𝑃, 𝑄) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

(ii) Taxi distance is given by 𝑑𝑇(𝑃, 𝑄) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| 

(a) Using the grids below, illustrate each of these two distances. Be as detailed as 

possible in labeling them.  

(b) Is it possible for these two distances to be the same, i.e. 𝑑𝐸(𝑃, 𝑄) = 𝑑𝑇(𝑃, 𝑄)? If 

yes, explain. 
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3. Is the following definition true in both geometries? Explain. “The circle (Euclidean or 

Taxi) is a set of points in the plane equally distant from a fixed point.” 

4. Using the grids below, sketch the following circle in both geometries: Circle with center at 

𝐶(3,3) and radius 𝑟 = 2.  

In general, there is no unique ideal response for each of these questions since the main goal 

of these interviews was to get students to elaborate on their thought processes as they responded 

to these questions. However, Figure 2.1 in Section 2.1.1 shows an example of how a student could 

illustrate these distances, as asked in Question 2. A student who has formed a coherent 

understanding of Distance should be able to explain exactly how the formula for distance in each 

geometry is represented by an illustration. For Question 2(b), a possible correct response would 

be that the Euclidean and Taxicab distances between two points are the same if they lie on a vertical 

or horizontal line, or if their x-coordinates or y-coordinates are the same. Graphically, the 

Euclidean and Taxicab distance between two points would then be illustrated in the same way and, 

algebraically, one of the terms in each equation (either 𝑥2 − 𝑥1 or  𝑦2 − 𝑦1) would be eliminated, 

resulting in the same expression for Euclidean and Taxicab distance between the two points. For 

Question 3, this definition holds in both geometries, but the circles will appear different as a result 

of the way in which distance is defined. This was anticipated to cause some uneasiness about 

responding “yes” to this question. For Question 4, an example of how a student could illustrate 

these circles is shown in Figure 3.6. A student who has formed a coherent understanding of Circle 

would be able to explain exactly how the equation of a circle in each geometry is represented by 

an illustration in relation to the definition of a circle. 

Students’ responses to these questions were used in the analysis for this report, since they 

helped to identify students’ understandings of Circle. In addition, details would emerge of the 
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possible schema structure for each student associated with this concept and how this would 

develop in order to transfer his or her definitions from Euclidean to Taxicab geometry. 

Specifically, how each student uses his or her conceptions of Distance, Radius, Center, and 

Locus of points to construct their circle schema in his or her reasoning/explanations of how the 

construction of a circle (geometric representation) and structure of the equation of a circle 

(algebraic representation) relate to the definition of a circle was considered in this analysis. From 

this information, the level of schema interaction each student exhibited in terms of the coordination 

of the cEg and cTg schemata was determined.  

It should be noted that the analysis of this data began by identifying mental constructions 

in terms of APOS Theory without the notion of the triad or schema interaction. However, it was 

determined that considering the relationships between the Actions, Processes, and Objects 

associated with these schemata revealed a much richer story in relation to each student’s 

understanding. In particular, a preliminary genetic decomposition for the levels of schema 

interaction as modeled from Baker et al. (2000) and Cooley et al. (2007) was developed.  

From the revised version of this genetic decomposition, all 15 students’ work and responses 

were analyzed. The understanding of each of the subconcepts each student evoked during the 

interviews and how these concepts interacted with one another across schemata in order to help 

the student reason through the questions asked of them were analyzed. Although the data from 

each student was analyzed in this way, the detailed analysis of only one student’s level of schema 

interaction is presented in its entirety here. This breakdown includes details of the components of 

a participant’s schema to illustrate how this information was used to determine at which level of 

schema interaction a student may have been operating during the interview. For the remaining 
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analysis of work and responses during the interview presented in this section, evidence is provided 

that a student is operating at each level of schema interaction, but a detailed breakdown is omitted. 

What follows are descriptions and representative examples of the levels of schema 

interaction between the cEg and cTg schemata associated with the circle schema. For these 

examples, students’ answers on a questionnaire and to questions during a follow up interview as 

they correspond to the genetic decomposition were analyzed. 

As noted in Section 3.1, it was anticipated the main concepts to emerge within the circle 

schema to be Distance, Radius, Center, and Locus of Points. Since the entirety of the distance 

formula (and concept) is complicated on its own and is used within the equation for a circle for 

each metric, this was found to be an important facet of a student’s circle schema. In addition, 

particular questions on the questionnaire directly asked about this concept, which allowed the 

analysis of each student’s conception of Distance to be more in depth (than the other subconcepts 

of Circle) and it was determined how this may have affected his or her understanding of Circle.  

Recall that in Section 3.1.4, descriptions of the triad of schema development of the circle 

schema as it is evoked in Euclidean and Taxicab geometries were presented. What follows in 

Sections 4.2.1 – 4.2.10 is the genetic decomposition of schema interaction that includes the nine 

levels that result as the two schemata of circle in Euclidean geometry (cEg) and circle in Taxicab 

geometry (cTg) interact with one another at various stages (as illustrated in Table 3.1 in Section 

3.1.5). In particular, the type of information a student was transferring from one geometry to 

another was of importance during this analysis. It was noted if a student was predominantly 

observing local properties of a concept, the definition of the concept, or the definition of concept 

and how it relates to other concepts. For figures presented in this portion of the dissertation 

(Section 4.2), red ink indicates the student had written or drawn that part during the interview. 
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4.2.1 Intra-cEg, Intra-cTg 

At the intra-cEg and intra-cTg (intra-intra) level, a student can compare a circle in 

Euclidean and Taxicab geometries either visually (geometrically) or algebraically but cannot make 

connections between the geometric and algebraic representations in either geometry. If a student 

has a process conception of the geometric or algebraic representation of any of Distance, Radius, 

Center, or Locus of points (i.e.- has constructed a new process from the coordination of the 

corresponding processes in his or her GREC/GRTC or AREC/ARTC), then the student cannot 

coordinate these concepts across his or her general GRC and ARC. In general, a student does not 

understand and cannot make connections about how the construction and equation of a circle 

within a metric space is a direct result of the definition of a circle. In other words, the student 

cannot talk about the construction of a circle, the structure of the equation for a circle, or how these 

two representations are related, other than local geometric/algebraic properties. There were three 

students, Kristen, Samantha, and Mark, that showed evidence of operating at an intra-intra level 

of schema interaction. The detailed analysis of Kristen’s responses is presented in the next section, 

but only the summary of analysis of each student following Kristen in relation to his or her level 

of schema interaction is provided following this for the sake of length. 

4.2.1.1 Kristen 

Kristen was one of the undergraduate mathematics majors enrolled in the course and was 

in a group interview with Hannah, a graduate student, and Samantha, an undergraduate 

mathematics major. As a note, these three students had not worked together in a group in class.  

For the first question in this analysis, students were asked to define and illustrate definitions 

for various mathematical terms. Figure 4.17 shows Kristen’s response to this portion of the 

questionnaire prior to the interview. Specifically, for the definition of distance, she wrote the 
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formula for distance in Euclidean geometry. During the interview, when asked if her definition of 

distance provided in Figure 4.17 held in both Euclidean and Taxicab geometry, Kristen explicitly 

says she thinks it does. This implies Kristen was not able to relate her ARED and ARTD. 

Later in the questionnaire, participants were asked to draw illustrations of both Euclidean 

and Taxicab distance without being given specific points. Kristen’s drawings are presented in 

Figure 4.18. For Euclidean distance, Kristen drew the straight line between her arbitrary points P 

and Q, and for Taxicab distance, she drew various pathways between the same arbitrary points P 

and Q. Kristen’s elaboration during the interview is provided below. 

Interviewer:  How do each of your drawings represent each distance? And did you use the 

definition of each type of metric when you made your illustrations? 

Figure 4.18 Kristen’s illustrations of Euclidean and Taxicab distance, 

respectively. 

Figure 4.17 Kristen’s definitions and illustration of circle and 

distance. 
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Kristen:  Okay um yeah so, I guess I’ll just show you… um this is just Euclidean so you just 

do rise and run, rise over run, just normally. And then the Taxicab it’s different but 

you get it’s pretty much the same thing but it’s different. I don’t know how to 

explain it. It’s like you’ll get the same answer, but you’re using a different process, 

so this you do, I don’t know I don’t know how to say it. The whole humpy thing 

the whole humps up and down… 

Kristen went on to describe Taxicab distance as “the zig zag thing,” and used phrases like 

“you can’t just go go through the straight line,” and “you can just go up and down and left and 

right…like as if you were in a car,” to relate Taxicab distance to driving on roads.  

In regard to her GRED and GRTD, Kristen was able to draw at least one pathway between 

two points in each metric. When describing her Euclidean distance illustration, she referred to this 

distance as “rise over run” with no verbal description of what the distance actually looks like. In 

addition, she struggled to come up with a way to describe Taxicab distance, indicated by her saying 

Taxicab distance is “different, but you get…I don’t know how to explain it.” Because Kristen 

could draw a pathway between points in both metrics, but was unable to give a detailed verbal 

description of what each metric looks like, she provided evidence of an action conception of both 

GRED and GRTD. Thus, Kristen exhibited an action conception of GRD.  

It is noted that Kristen was able to make a visual distinction between the two drawings by 

saying “you’ll get the same answer, but you’re using a different process,” in relation to 

geometrically measuring the distance between two points. By “using a different process,” it 

appeared Kristen was referring to the visual difference in pathways between her two points since 

at this time in the interview she was evoking her GRD. In terms of her schema development, it is 

concluded that Kristen was not able to make meaningful connections between the geometric 
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representations of distance in both geometries (GRED and GRTD) other than local properties like 

the appearance of the path. By saying that the distances use different processes, Kristen was unable 

to verbally explain what causes the distances to appear different. In other words, if she had process 

conceptions of ARD and GRD, she was unable to coordinate them in order to see why the distances 

appear different. 

In regard to her ARED and ARTD, when the interviewer first asked Kristen to explain 

how she used the definition of each metric in her illustrations, Kristen struggled to explain the 

connection between the formula for Euclidean distance and her illustration. She again brought up 

“rise over run” and drew corresponding segments on her graph (seen in red ink in her Euclidean 

distance illustration in Figure 4.18). The interviewer then asked where the squared terms in the 

Euclidean distance formula could be shown on her graph. The following excerpt contains Kristen’s 

response to this question as well other questions related to this formula.  

Interviewer:  And where do we see that the squares 

Kristen:  These squares? Oh 

Interviewer:  No, no in the first one. Because the formula has the square root of… 

Kristen:  Oh yeah the square root… [indiscernible] because I don’t know. Because it’s the 

distance? Between them? So the the distance between this and this, you have to go 

up and then side to side 

Interviewer:  Uh huh would that be just x2 or y2 minus y1 without the square…? You go just 

up… 

Kristen:  Mm… without the square root?… I’m not sure… I I mean I thought that that was 

how you do the distance formula so I was just, I just thought that’s [indiscernible]… 

cause I’ve seen it before. 
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In this excerpt, Kristen was unable to identify where any part of the equation is seen in her 

illustration even after prompting from the interviewer. In fact, she said she thought it is this way 

because she had “seen it before.” It seems as though Kristen’s strong notion that Euclidean distance 

is related to “rise over run” prevented her from being able to relate the Pythagorean theorem to 

this distance. The interiewer later asked Kristen if she thought the Euclidean and Taxicab distance 

between two points could be the same, and Kristen insisted that they were equal in her illustrations, 

which is incorrect.  

Kristen:  Is it possible? I said yes it is, um, because I mean, I thought that’s what we were 

doing up here maybe. So I just thought that… I mean this is equal to this, like 

they’re the same distance. Right? I mean… they’re the same distance, PQ here and 

PQ here, so even if you use this formula and this formula, it should still equal the 

same thing. It should be equal.  

After this, the interviewer asked Kristen how she would be able to check to see if the 

Euclidean and Taxicab distances between her points were equal, and Kristen continued to count 

blocks on both of her illustrations, coming to the same conclusion they were equal. So, although 

Kristen drew the segment connecting her points as her illustration of Euclidean distance, she was 

calculating the distance between them geometrically by counting blocks, as though she was 

calculating the distance geometrically in Taxicab geometry. With prompting by the interviewer to 

consider the formulas provided, Kristen was able to plug in specific values to both of the formulas 

for distance in Euclidean and Taxicab geometry, and realized these distances were not actually the 

same in her illustrations (seen in red ink in the left and right margins of Figure 4.18).  

Kristen eventually demonstrated after this prompting, that she could use the formulas 

provided of each metric to calculate the distance between two points in both geometries. In 
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addition, when trying to explain the formula for Euclidean distance, Kristen was unable to provide 

a connection between the formula and her illustration. By saying that she had “seen it before” in 

relation to her “rise over run” geometric representation of the Euclidean distance formula, she was 

relying on memory to produce this representation. By plugging values into formulas to calculate 

the Euclidean distance and Taxicab distance between two points, Kristen exhibited an action 

conception of ARED and ARTD. Although she was not prompted to try and relate her geometric 

representation and the formula for distance in Taxicab geometry, it is inferred she most likely 

would not be able to since she was unable to do so for distance in Euclidean geometry, indicating 

that she had not yet interiorized her action conception of ARED. For all of these reasons, Kristen 

was exhibiting an action conception of ARD as she exhibited an action conception of both ARED 

and ARTD. In terms of her schema development, Kristen was not able to make connections 

between the algebraic representations for distance in both geometries (ARED and ARTD) other 

than local properties, like that there is a square root sign involved with the Euclidean distance 

formula. Kristen also believed that the geometric representation of her Eucldiean and Taxicab 

distances between her points were equal, and eventually concluded that they were not by 

calculating these distances algebraically after prompting. This further indicates a disconnect 

between her GRD and ARD.  

By exhibiting an action conception of both GRD and ARD and no evidence that Kristen 

was able to make meaningful connections between these representations, Kristen exhibited an 

overall action conception of Distance. In addition, she had not made the necessary mental 

constructions to successfully begin to assimilate Taxicab distance into her existing, working 

understanding of Distance. Without this assimilation, Kristen also struggled to make connections 
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between the geometric and algebraic representations of a circle in both geometries (GRC and 

ARC), for which evidence is provided below. 

Recall in Figure 4.17, Kristen’s personal concept definition of a circle was “points 

equidistant from the center.” When asked if she believed this definition held in both Euclidean and 

Taxicab geometry, Kristen said that she did not think it did. Later in the interview, she was asked 

if the definition provided on the questionnaire (“the circle…is a set of points in the plane equally 

distant from a fixed point”) held in both geometries, which was essentially equivalent to her 

personal concept definition. To this she replied, “I’m not even sure on this, but I said yes.” This 

contradiction of not believing her personal concept definition held in both geometries but then 

believing the provided definition does indicates a misconception in Kristen’s mind about the 

definition of a circle. Further, when she was asked to explain how she drew her illustrations (which 

can be seen in Figure 4.19), she indicated she was attempting to work off of memory for her 

illustrations.  

Kristen:  Well I just drew the two things, um... I know how to draw, sorry, the Euclidean 

circle easily. It’s just Taxicab circle is it’s, like I know how to draw it, it’s just I 

Figure 4.19 Kristen’s illustrations of the Euclidean and Taxicab 

circles, respectively. 
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knew how it’s supposed to look, but it’s like I don’t know why it’s supposed to look 

like that. 

By clearly stating that she knew how to draw the Euclidean circle and knew what a Taxicab 

circle looks like without knowing why it looks this way, Kristen was exhibiting an action 

conception of GRC. The interviewer did not probe for an understanding of her ARC, however 

Kristen wrote the equation for a Taxicab circle after listening to conversation between Hannah and 

the interviewer (seen in red ink at the bottom of Figure 4.19). For this reason, there is only evidence 

to claim Kristen exhibited an action conception of Circle. In other words, Kristen needed to 

interiorize her conception of Euclidean circle in order to begin assimilating Taxicab circle into 

her existing circle schema. 

Supporting the preliminary genetic decomposition in this report, Kristen’s understanding 

of Distance hindered her ability to make meaningful connections between her ARC and GRC. 

There was also not much evidence of Kristen’s conception of Radius, Center, and Locus of points 

from this data, since she did not elaborate on how she constructed her circles besides indication a 

reliance on memory.  Thus, she was not evoking these concepts within her circle schema. In terms 

of her schema development, having an action conception of both GRC and ARC implies she was 

unable to coordinate any processes across her cEg and cTg schemata. Thus, the only comparisons 

she was able to make between a circle in Euclidean geometry and a circle in Taxicab geometry 

were local and particular properties, such as the geometric appearance of each circle. Kristen was 

unable to talk about how the construction of a circle or the structure of the equation for a circle is 

a direct result of the definition of a circle. For these reasons, Kristen provided an illustrative 

example of a student operating at the intra-intra level of schema interaction. 
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4.2.1.2 Samantha 

Samantha was one of the undergraduate mathematics majors enrolled in the course, and 

was in a group interview with Kristen, an undergraduate student, and Hannah, a graduate student 

in the course. On the questionnaire, students were asked if a provided definition of a circle was 

true in both Euclidean and Taxicab geometries. In Figure 4.20, Samantha’s response to this 

question prior to the interview is provided.  

Notice that Samantha wrote the word “circles” without quotes when referring to circles in 

Euclidean geometry and with quotes when referring to circles in Taxicab geometry. She appeared 

to distinguish the circles in each geometry in this way because of the shape of the circles in Taxicab 

geometry. In addition, when she said, “they should be equally distant to be considered a circle,” 

she was not clearly describing what should be equidistant from what, though it is assumed she 

meant the points on the circle should be equidistant from the center. Below Samantha’s verbal 

explanation of her response to this question is presented.  

Samantha:  Um, the worded definition I would say holds true for both but also because…if I 

remember correctly, you know that um, for the Taxi-circle is when you are finding 

the length [to a] point it’s the same in any direction I think? In any direction you go 

it should be the same and that’s how you know that um, it’s a Taxi-circle. Because 

the distance will be kind of like the same from anywhere I think. But I don’t know. 

Figure 4.20 Samantha’s written explanation of why the definition of 

circle holds in both geometries. 
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 Here, Samantha attempted to make it clearer what she meant by her written response. She 

mentioned “finding a length [to a] point,” and that this should be the same in any direction. It is 

assumed she was referencing the radius of the circle when she was talking about the length to a 

point and that this length should be the same in any direction from the center. In doing so, she was 

utilizing her subconcepts of Radius and Locus of Points. She said that she was trying to remember 

what she had learned about circles and seemed to be trying to express what it means for a point to 

be on a circle. In addition, since she referred to a Taxicab circle in her verbal explanation, she 

provided evidence of attempting to transfer her personal concept definition of circle from 

Euclidean to Taxicab geometry in order to explain how a circle in Taxicab geometry is constructed.  

The next question on the questionnaire asked students to draw a circle with center (3,3) 

and radius two in both Euclidean and Taxicab geometry. Seen in Figure 4.21, Samantha accurately 

drew the Euclidean circle, but incorrectly drew the Taxicab circle corresponding to these 

parameters. Note in Figure 4.21, her initial drawing of the circle in Taxicab geometry has been 

accentuated, seen in blue, since the lines had been lightly drawn and were difficult to see. During 

the interview, Samantha correctly drew this circle, as seen in red ink in Figure 4.21, after listening 

to the conversation between the other participants in the interview and the interviewer about their 

drawings. When asked about her illustrations, Samantha said, “I keep forgetting that the Taxicab 

circle, it’s like a diamond,” and “every time I think of Taxicab, I think of actual squares and not 

like diamond shaped, so I keep drawing just regular squares everywhere.” By memorizing that the 

Taxicab circle resembles a square and using the conversation during the interview to correct her 

drawing, it seems as though Samantha was only able to talk about local observations about circles 

in Euclidean and Taxicab geometry.  
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Although Samantha correctly drew the circle in Euclidean geometry, after detailed analysis 

of her understanding of subconcepts and the rest of the interview, it is believed that Samantha drew 

this from memory and would not necessarily be able to explain how she constructed this circle. 

She was not probed to talk about the equations for each of these circles, as Hannah, one of the 

other students in the interview, was asked this first and derived the equations. According to the 

preliminary genetic decomposition, the analysis of Samantha’s subconcepts implies she would 

have been unable to do explain how the construction or structure of the equation of a circle are 

results of the definition of a circle. Samantha had started to make some connections between her 

personal concept definition of a Euclidean circle and a Taxicab circle. However, Samantha 

provided evidence of operating at the intra-intra level because it was not made clear that she was 

coordinating processes across her GRC and ARC. Further, her observations about a circle in 

Taxicab geometry in relation to a circle in Euclidean geometry were local and particular.  

4.2.1.3 Mark 

Mark was a graduate student in the course who participated in an interview with Eileen, an 

undergraduate student, and Felix, another graduate student in the course. Mark only drew images 

for his personal concept definitions on the questionnaire, but verbally elaborated on his definition 

of a circle. His explanation is provided below.  

Figure 4.21 Samantha’s illustrations of Euclidean and 

Taxicab circles, respectively. 
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 Mark:  In terms of the definition for a circle I said it’s a figure that is um, every locus from 

the figure is equidistant from the same, from a particular point…In Taxicab 

geometry, it would pretty much be the same thing, right? Where um, every point 

along the circle in Taxicab is actually equidistant from the same point. And um, as 

Felix said, it is a square right? But…the square is actually oriented in such a manner 

where each vertex lies on…the coordinate axis, the coordinate grid, the x-y 

axis…When you use Pythagorean theorem, you realize that every point in 

distance…is actually equal at every point along the square. 

By saying “every locus from the figure is equidistant from…a particular point,” Mark was 

elaborating on his personal concept definition of a circle. He went on to talk about this definition 

within Taxicab geometry explaining that “every point along the circle in Taxicab is actually 

equidistant from the same point.” In addition, he said, “In Taxicab geometry, it would pretty much 

be the same thing, right?,” which further provides evidence he had generalized the definition of a 

circle across these two geometries. He talked about the shape of the circle in Taxicab geometry, 

explaining that each vertex of this square lies on “the coordinate axis.” This is interpreted to be his 

way of saying to construct the square so that its diagonals are parallel to the coordinate axes. Then 

he said that by using the Pythagorean theorem, you can verify that “every point along the square” 

is an equal distance from the center. Although he never explicitly said “center”, he appeared to be 

implying this is the “same point” he referred to in this excerpt. Since the Pythagorean theorem 

would be involved in the calculation of the radius of a circle in Euclidean geometry, Mark 

demonstrates that he may have had a misconception associated with his Distance and/or Radius 

concept, since he was trying to explain how to measure the radius of a Taxicab circle at this time 
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in the interview. In particular, he was initially trying to use the Euclidean concept of Distance to 

justify that every point on the square is equidistant from the center.  

Mark actually brought up this idea about the Pythagorean theorem in Taxicab geometry 

again later but ended up correcting himself. This can be seen at the end of the next excerpt where 

Mark was explaining his answer to the question that asked if the definition provided on the 

questionnaire held in both geometries. He began to explain why he believed circles appear 

differently in Euclidean and Taxicab geometry. To simplify the presentation of the analysis of this 

lengthy excerpt, what follows is a partition of this excerpt as he was verbally explaining his thought 

process. The full excerpt has been broken in this way to explain how each set of comments has 

been interpreted in the analysis, but it is noted they were all said sequentially.  

Mark:  What the difference from Euclidean to Taxicab is that um Euclidean makes use of 

every possible angle. And so when we’re looking at... a figure that is equidistance 

from a particular point, we can take into consideration every single possible angle, 

and because of that a circle in terms of a round figure…is um created… 

In this portion, it appears Mark may have interpreted that the “roundness” of a circle in 

Euclidean geometry to be a result of considering the 360 degrees of the circle. The beginning of 

the next excerpt is how he transfers this interpretation to Taxicab geometry.  

Mark: …Now in Taxicab, however, when we draw a circle, essentially, we can only 

consider 90 degree angles because we are using the coordinate grid which is created 

in 90-degree angles, and so… the only direction that we can consider is up and 

down or left and right… 

Mark was evoking his concept of Distance by saying “the only direction that we can 

consider is up and down or left and right,” and that these directions make 90-degree angles, like 
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the coordinate grid on which he had drawn circles, shown in Figure 4.22. Because he said this in 

relation to “in Taxicab…when we draw a circle,” he seemed to have been evoking his GRTD 

concept and was trying to explain why circles in Taxicab geometry appear square instead of round. 

He continued to elaborate on his thinking about how to draw a Taxicab circle in the next two 

portions of this excerpt.  

Mark: …the question is then okay is it possible to create a figure within these limitations 

that is actually equidistant from a point?... And the answer is yes um, because if we 

create a square that has its vertices along those x and y values, then when we 

consider the Pythagorean theorem, right? Then each point between these vertices 

will actually be um, be they will actually be equal from the center right? When you 

do the math. Short answer, when you do the math, every single point is actually…  

By saying “based on these limitations,” Mark was referring to the way we calculate 

distance in Taxicab as a limitation, or rather that he meant “based on these conditions” instead of 

“based on these limitations.” Further, he explains that in order to construct a Taxicab circle, he 

would first plot points as the vertices (“along those x and y values”) and connect them, with the 

understanding that each of the points on these lines between the vertices are also equidistant from 

the center of the circle. Thus, he was continuing to transfer his personal concept definition of a 

circle to his GRTD but indicated that he was following a specific procedure based on memory to 

draw this circle. This portion of his explanation is interpreted to be his attempt to explain that the 

property of equidistance in this figure is a result of the shape of the figure, and not the other way 

around. In other words, Mark believed that in Taxicab geometry, this square happens to form the 

locus of points that are equidistant from a center point, and not that the shape was a result of the 

construction of an infinite number of radii resulting in this locus of points. The next excerpt was 
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when Mark corrected himself about using the Pythagorean theorem to measure the radius of a 

circle in Taxicab geometry. 

Mark: …Okay the math is based on the Pythagorean theorem. Or not even necessarily 

Pythagorean… no… actually it’s not the Pythagorean theorem, it’s simply adding 

the x value and the y value, that’s what it is, it’s not the Pythagorean theorem. And 

so um when you draw a square with vertices along the x axis and along the y 

axis…as long as the radius of the circle along the x axis and the y axis the same 

from that particular point, what we will find is if we were to draw in the vertices, 

any point along that line that draw in the vertices, when you when you add the x 

and y value to get the point, it actually still is the same value as the radius along the 

x or the radius along the y… 

Mark was able to fix his misconception that the radius of a circle in Taxicab geometry was 

measured using the Pythagorean theorem, and began explaining it is measured “along the x-axis 

and along the y-axis” or “when you add the x and y value to get the point.” In this case, Mark was 

ready to or had interiorized his action conception of Radius within his cTg during this part of the 

conversation. In general, from this long excerpt, it is deduced that Mark was attempting to make 

connections between his GRC and ARC by trying to explain what formula was used to measure 

the radius of a circle while he was evoking his GRC, as he said things like “when you draw your 

square.” However, later in the interview there was evidence that he was not able to fully coordinate 

these processes across his GRC and ARC to explain how the construction of a circle and the 

equation of a circle are results of the definition of a circle, possibly as a result of the misconception 

he had just encountered. As part of this evidence, Mark was discussing how he constructed his 

illustrations of the circles in both geometries, seen in Figure 4.22. Mark explained that he plotted 
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the four points on the vertical and horizontal from the center for both circles, and eventually said 

“the truth is, I drew it from memory. I mean I understand um, the rules behind the circle in… 

Euclidean and Taxicab, but…I just purely did it from memory because I knew that’s what it would 

look like.” 

When asked if he would be able to write the equations of these circles, he said that he could 

after hearing the conversation between the interviewer and the other students about them, but that 

had not remembered these equations until then. Since Mark was able to make local observations 

about the differences between these circles, like the shape, but was not able to accurately explain 

why the shapes would be different, he provided evidence that he was operating at the intra-intra 

level. In particular, it did seem that he was close to making certain connections between his ARC 

and GRC in terms of his ARD and his concept of Radius within his GRC but did not coherently 

explain these connections with regard to how the construction of the radius leads to this change in 

shape of a circle. Instead, his comments implied he believed the shape of the circle was inherently 

defined, so it had this property of equidistance. In addition, he struggled to explain why the shapes 

of these circles were different other than connecting it to the way distance is measured in these 

two geometries. Thus, the connections he was making between his cEg and cTg did not appear to 

be the coordination of processes, but rather that he was considering these concepts in a more 

Figure 4.22 Mark’s illustrations of a circle in Euclidean and 

Taxicab geometry. 
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isolated way about which he could make local observations. That is, in Taxicab geometry he was 

relying primarily on memory to draw and talk about a circle. 

Mark provided some insight about his misconceptions in the conclusion of this portion of 

the interview, where he demonstrated that he was aware he did not coherently understand the 

definition of a circle. Mark talked about this after he was asked if he would be able to draw a circle 

using a new metric if he were given one. He quickly replied, “based on what happened last week… 

I’d say no,” and continued to elaborate about the quiz the students had taken the week before in 

class where they were asked to use a new metric (metric is defined in Appendix B, Activity 6) to 

try and sketch a circle. 

Mark:  ...That asked us to draw a circle um, using a differen.. using a metric I had never 

seen before, and I had no clue, right? And so… I guess what I discovered last week 

is I have… a difficulty, or okay. This. I don’t quite get how metrics work, 

apparently, in the general of sense. Because um, Taxicab, I get it. Euclidean, I get 

it. Give me another one…unless it’s actually broken down to me and explained to 

me, then I don’t understand, which means then that there is a fundamental concept 

that governs them all that I don’t get. You know. So the answer, the honest to 

goodness answer is no.  

This last excerpt showed that his reflection on the problem he had the week prior and this 

questionnaire led him to be aware that if he had a better understanding of the concept of Distance 

(“I don’t quite get how metrics work, apparently, in the general sense”), he would be able to 

complete these activities on his own without external guidance. This is evident by him saying 

“unless it’s actually broken down to me…then I don’t understand…there is a fundamental concept 

that governs them all that I don’t get.” In other words, he was aware that there is some structure 
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for how a metric would be applied in order to construct a circle using that metric, but he did not 

have a coherent understanding of this structure.  

Since most of the data for Mark pertained to his understanding of a circle in Taxicab 

geometry, it is possible that he may have exhibited an inter-cEg stage of schema development. 

However, from the interview data and evidence that was obtained, the level at which Mark 

evidence of operating was the intra-intra level. 

To summarize, Mark, Samantha, and Kristen all ended up relying on memory to draw the 

circles in both geometries (as well as write the equation of a circle, if attempted). This supports 

the literature, as Akkurt (2010) described that when a student cannot make a connection between 

his or her prior knowledge and new information about a concept, the student will attempt to 

memorize the new concept.  

4.2.2 Intra-cEg, Inter-cTg 

At the intra-cEg and inter-cTg (intra-inter) level, a student has begun to make connections 

in Taxicab geometry about how the equation and appearance of a circle is a direct result of the 

definition of a circle but cannot transfer this knowledge back to Euclidean geometry to make the 

same connections about a circle. In other words, the student is able to coordinate some of his or 

her processes of Distance, Radius, Center, and Locus of points with one another across his or 

her GRTC and ARTC to make non-local comparisons between these representations but cannot 

coordinate these processes (if they exist) with his or her GREC and AREC, respectively. There 

were no students that exhibited evidence they were operating at the intra-inter level of schema 

interaction. 
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4.2.3 Intra-cEg, Trans-cTg 

At the intra-cEg and trans-cTg (intra-trans) level, a student has formed a coherent 

understanding in Taxicab geometry of how the construction of a circle and the equation of a circle 

are a direct result of the definition of a circle but cannot transfer this knowledge back to Euclidean 

geometry to begin to make the same connections between these representations. In other words, 

the student is able to coordinate all of his or her processes of Distance, Radius, Center, and Locus 

of points with one another across his or her GRTC and ARTC to understand the underlying 

structure of a circle within Taxicab geometry but cannot coordinate any of these processes with 

his or her GREC and AREC, respectively. The student is able to compare local properties of 

circles across his or her cEg and cTg schemata but cannot discuss any deeper connections. There 

were no students that exhibited evidence they were operating at the intra-trans level of schema 

interaction. 

4.2.4 Inter-cEg, Intra-cTg 

At the inter-cEg and intra-cTg (inter-intra) level, a student has begun to make connections 

in Euclidean geometry about how the equation and appearance of a circle is a direct result of the 

definition of a circle but cannot transfer this knowledge to Taxicab geometry to make the same 

connections about a circle in this space. In other words, the student is able to coordinate some of 

his or her processes of Distance, Radius, Center, and Locus of points with one another across 

his or her GREC and AREC to make non-local comparisons and observations between these 

representations but cannot coordinate these processes (if they exist) with his or her GRTC and 

ARTC, respectively. There were three students, Alicia, Felix, and Darryl, that exhibited evidence 

of operating at an inter-intra level. 
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4.2.4.1 Alicia 

Alicia was an undergraduate student enrolled in the course who participated in an interview 

with Darryl, a graduate student. Alicia first said that she struggled to write a definition of a circle 

as the questionnaire asked to do. However, she saw the definition written on the next page (as “a 

set of points in the plane equally distance from a fixed point”) and decided to write it in her own 

words on the first page. As a result, her definition for a circle was “a shape that is centered at a 

fixed point with all points being equidistance from that fixed point.” By re-wording this definition, 

Alicia made evident what facets she found important about the definition of a circle within her 

schema/concept image. In particular, the fact that she specified it is a shape centered at a point 

“with all points being equidistance…” implies that she viewed a circle as a figure with these 

properties, and not necessarily that these properties define the shape.  

Alicia provided more insight in to her evoked circle schema for this questionnaire as she 

discussed the construction of her circles, which can be seen in Figure 4.23. She stated, “we know 

like in a Euclidean circle, is centered at a fixed point and every point on the circle is equal distance 

from that fixed point. And then at first in Taxi geometry, I didn’t see how they were equal distant.” 

Thus, geometrically, Alicia was able to visualize how her Euclidean circle satisfied the definition 

of a circle but struggled to see this for her Taxicab circle. Next, Alicia elaborated on these circles 

she drew in each geometry. 

Figure 4.23 Alicia’s illustrations of a circle in Euclidean and Taxicab 

geometry, respectively. 
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Alicia:  Okay, so um, I drew my, well I plotted my center at (3,3) at first um and then we 

know that the radius is 2, so I just did it like… it’s easiest to do 2 to here, in four 

sides and then I drew my circle. This one, um for my Taxi-circle... um… I know 

it’s whenever I did it in GSP it always gave me like a diamond shape, um, so I drew 

my center at (3,3) again and I did the radius at 2 and then I connected all the points. 

Regarding her geometric representations of a circle in both geometries, Alicia implied here, 

in addition the last presented excerpt, that she had made some connections in Euclidean geometry 

between the definition of a circle and her geometric representation. This is evident by statements 

such as “we know the radius is 2…it’s easiest to do 2 here, in four sides, and then I drew my 

circle.” At the same time, she was unable to make these same connections in Taxicab geometry, 

evidenced by her expressing in the last excerpt that she was unsure of how the points on her 

Taxicab circle were all equidistant from the center. It seemed as though Alicia was trying to 

transfer her understanding of the construction of a circle to Taxicab geometry by following the 

same procedure as she had done in Euclidean geometry. However, she reached a point where she 

was confused and relied on memory to complete the figure. This was evident by her saying “GSP 

always gave me like a diamond shape…and then I connected all the points.”  

Although she did not understand how her circle in Taxicab geometry satisfied the definition 

of a circle, she pinpointed her confusion to the concepts of Distance and/or Radius. This was 

demonstrated as she said she “didn’t see how they were equal distant,” in reference to the points 

on the circle being equidistant from the center of the circle. In other words, she knew what the 

figure should look like, but could not explain why it looked that way. This implies she was having 

trouble transferring her understanding of a circle from Euclidean to Taxicab geometry but was able 

to differentiate the shapes of these circles, implying she could make local observations and 
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comparisons between her GRC across her cEg and cTg schemata. Similar evidence regarding her 

ARC was found by her explanations regarding the algebraic representations of these circles, 

provided below.  

Alicia was able to produce the equation for her circle in Euclidean geometry (shown in 

Figure 4.23), verbally explaining, “I know a circle is x minus h squared plus y minus k squared…is 

equal to r squared.” When asked what the equation of her circle would be in Taxicab geometry, 

Alicia explained the following about her thought process.  

Alicia:  Umm... just based off the distance formula I think it would be the absolute value of 

these, so the absolute value of x minus 3 plus the absolute value of y minus 3 but I 

wouldn’t know if it would be equal to just 2 or 2 squared… I think it would just be 

equal to 2…Because in the distance formula for Taxi…nothing is squared, like how 

it is in Euclidean…so I think it equals 2. 

This excerpt showed that Alicia understood certain algebraic aspects of the equation for a 

circle, specifically since she referred to the formula for distance in both geometries being involved 

with these equations. However, since she was relying on local properties of these algebraic 

representations by saying things such as “because in the distance formula for Taxi… nothing is 

squared… so I think it equals 2.” Thus, she had made meaningful connections between the 

algebraic representations for Distance and Circle within her circle schema in both geometries, but 

she could not use these connections to explain how the algebraic representation for a circle in either 

geometry is a result from the definition of a circle. Alicia showed evidence that she was trying to 

write the equation for a circle in Taxicab geometry by following the same format of the equation 

of a circle in Taxicab geometry. She eventually relied on patterns she saw in the Euclidean circle 

equation instead of connecting this equation to her geometric representation or definition of a 
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circle. Alicia appeared to have transferred some knowledge (the notion of using the distance 

formula in the equation of a circle) from her AREC to her ARTC and then relied on copying a 

format to finish writing her equation. 

Alicia was able to make some connections between her definition of a circle in Euclidean 

geometry and her geometric representation for this circle and was able to easily produce the 

equation of a circle in Euclidean geometry. However, when Alicia tried to transfer this knowledge 

to Taxicab geometry, she relied on transferring and copying a process or format instead of 

transferring a conceptual understanding from one space to the other regarding both her GRC and 

ARC. Alicia provided evidence she was operating at the inter-intra level of schema interaction 

because she was making these connections both geometrically and algebraically in Euclidean 

geometry, but could only make local observations between these representations in Taxicab 

geometry.  

4.2.4.2 Felix 

Felix was a graduate student in the course and participated in an interview with Eileen, an 

undergraduate student, and Mark, a graduate student in the course. In his written work before 

elaborating on questions during the interview, Felix defined a circle as “a locus of points 

equidistant from a central point,” and drew a Euclidean circle with three radii, indicating they were 

congruent, as seen in Figure 4.24. This indicated he was aware of how a circle in Euclidean 

geometry is constructed but stated during the interview that this written definition of a circle would 

be different in Taxicab geometry. He explained they would be different because a “Taxicircle is a 

square, uh around a central point,”. The interviewer probed him further about this by asking Felix 

what his definition of a circle in Taxicab geometry would be. He replied, “I believe it would be 

the set of points…it can’t be tangent because…I’m not sure how to find it.” Thus, he was focused 
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on the differences in the visual appearance of the circles which led him to believe that the definition 

of a circle itself would be different between Euclidean and Taxicab geometry. Further, he was not 

able to write the definition of a circle in Taxicab geometry and was trying to evoke other concepts 

or properties, such as tangency to try and explain his understanding.  

His written explanation for why the definition provided on the questionnaire would not 

hold in both geometries is shown in Figure 4.25. He said it was “because the “circle” in Taxi is a 

square.” The use of quotations around the word “circle” in this response further showed his belief 

that the geometric representation of a circle in Taxicab geometry was pre-defined by shape and 

not by the construction using the definition of a circle. This further indicates Felix was able to 

make local observations about the difference in geometric representations of a circle in Euclidean 

and Taxicab geometry, but that he may have a misconception associated with his understanding of 

the definition of a circle in Taxicab geometry. 

Figure 4.24 Felix’s personal concept definition and illustration of a 

circle on the questionnaire. 

Figure 4.25 Felix’s response to whether the provided definition of circle 

held in both geometries. 
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Recall the red portion of Figure 4.25 was drawn during the interview when he was asked 

to elaborate on this written response. The excerpt of this portion of the interview which pertains to 

this drawing is provided below. 

Felix:  I actually said I don’t think that that statement is true um, because I’ll, I’ll go with 

this. With the Euclidean geometry, yes it’s true because it’s loc…all the points 

everything is equidistance forms a circle so everything is equally distanced. With a 

circle in Taxi, uh we have uh the radius, defined on… the axis of the coordinate 

plane…but the other points are a go... just a straight line that’s identified by a right 

triangle created with the axes, and it connects directly. Now, the relationship 

between the points moving across to get to various points a long those distance 

between uh, x, 0, and 0, y, um, their relationship will always remain constant in 

how they change with the x and the y moving across.  

Interviewer:  Can you, can you just illustrate that? And you can use that space below.  

Felix:  …The distance here, and [indiscernible] and this to measure this measure is equal 

to this measure, but 

Interviewer:  From the x… 

Felix:  Yeah all the x and y, but likewise the measure, the relationship between the edges 

will always remain the same cause they have to be… this is a right triangle so like 

this, relationship here between these two sides… will be equal to the relationship 

between these two sides, which is equal to the relationship between this side 

because it has to maintain along the hypotenuse of this triangle of the side, of that 

Taxicircle. So that relationship is true, but the points are not equidistant from a 
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fixed point. At least I don’t I don’t see that, so that’s why that’s why my answer 

was no… that the definitions aren’t the same between Euclidean and Taxi.  

Felix said a lot of very interesting things within this excerpt. First, he drew a quarter of a 

Taxicab circle and called it a right triangle. This could be due to some misconception in Felix’s 

mind that a Taxicab circle is defined by these triangles, instead of constructed by the radii that 

happened to be legs of the triangles Felix was referring to. This is evidence he had mentally 

partitioned these circles into four right triangles, specifying the hypotenuse of these right triangles 

as “edges”. Second, he established that there is a relationship between the x and y coordinates of 

the points (“relationship here between these two sides”) that are on this edge. As he was saying 

“between these two sides…these two sides…” he was drawing the straight lines from the right 

angle of this bigger triangle to its hypotenuse and was referring to the two legs that made up the 

newly formed [smaller] right triangles that can be seen in Figure 4.25.  

Third, Felix talked about “the relationship between these two sides” being equal to “the 

relationship between this side because it has to maintain…” In other words, he was saying these 

two relationships must be the same but does not specify what exactly this relationship was. That 

is, until he brought up equidistance again saying, “but the points are not equidistant from a fixed 

point.” Felix implied he understood there should be a relationship between the x and y coordinates 

of points on a circle in Taxicab geometry (referring to the distance of the radius of a Taxicab circle) 

but did not understand how these x and y coordinates related to this radius or showed equidistance, 

and how the radius would be represented geometrically. For these reasons, any misconception he 

was having with regard to his GRC was most likely due to either his concept of Distance or 

Radius in his cTg and the inability to coordinate these processes, if they exist, with the other 

necessary concepts involved with his circle schema.  
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Felix went on to describe how he correctly constructed the circles requested in the 

questionnaire by mainly using visual descriptions of the figures. For example, he explained that 

he “did the round sides equidistant” for the Euclidean circle and drew the Taxicab circle “by 

creating straight edges…connecting the points on the vertices…have a square standing on one of 

its vertices.” From his statements, it seemed as though Felix understood how the geometric 

representation of a circle in Euclidean geometry is constructed since he referenced equidistance 

with his construction of that circle. However, he could only transfer knowledge of visual 

differences in terms of his GRC from his cEg to his cTg schemata, as evident by him saying, 

“connected the points” and continuously referring to the shape of the Taxicab circle as to why the 

definition of a circle would not hold in both geometries. When Felix was asked to write the 

equations for both of his circles during the interview, he was able to produce the equation for his 

Euclidean circle based on memory. He then used properties of this equation to attempt to write the 

equation for this circle in Taxicab geometry. These equations can be seen in Figure 4.26. 

When he was writing the equation for the Taxicab circle, he explained, “I think it would 

be the uh, the distance formula, cause that’s what we used so that would be… so I don’t have to 

necessarily have to do square root…” and ended up squaring some terms and using a square root 

over part of his equation. Recall in Section 4.2.4.1, Alicia also noted that the distance formula 

appeared in the equation of a circle but did not indicate she knew why. Because of this, she 

reproduced patterns she noticed in the equation of a circle in Euclidean geometry. Similarly, Felix 

did not provide much verbal evidence of understanding the derivation of the equation for the circle 

Figure 4.26 Felix’s equations for his circles in Euclidean and Taxicab 

geometry. 
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in Euclidean geometry besides stating that it involved the formula for distance. He resorted to 

identifying local properties of that equation and attempted to transfer them to write the equation 

for his Taxicab circle without deep consideration of why the distance formula is involved in these 

equations. Felix is a clear example of a student who was operating at an inter-intra level since he 

had formed some connections between representations of a circle in Euclidean geometry, but was 

unable to transfer his understanding of a circle to Taxicab geometry in order to make the same 

connections. 

4.2.4.3 Darryl 

Darryl was a graduate student who participated in an interview with Alicia, an 

undergraduate student in the course. Darryl was extremely open about his thinking and, as a result, 

provided very detailed insight to his geometric reasoning. Darryl’s personal concept definition of 

a circle was “a locus of points that are equidistant from the center,” which can be seen written and 

accompanied by an illustration and equation of a circle in Euclidean geometry in Figure 4.27. 

During the interview, Darryl explained this definition in further detail. An excerpt from this portion 

of the interview is provided below when he was asked to explain his definition and if it would hold 

in Taxicab geometry.  

Darryl:  Okay so my definition for circle was a locus of points that are equidistant from the 

center…So I thought about the definition because I thought about if you have a 

center, and you have your radius, your radius has to be equal for each direction that 

Figure 4.27 Darryl’s definition of circle written on the questionnaire prior to 

the interview. 
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you have your circle… The locus of points are all of the points on the circle itself. 

And so, uh if it applies to Taxicab geometry, yes. It does. 

Here, Darryl demonstrated that he had evoked all of his Distance, Center, Radius, and 

Locus of points conceptions. Later in the interview, Darryl was asked if the definition of a circle 

provided on the questionnaire held in both geometries, to which he elaborated even further about 

his personal concept definition of a circle. An excerpt of this conversation is presented below 

Figure 4.28, which shows his written answer to this question on the questionnaire prior to the 

interview, confirming that he had a coherent understanding of the definition of a circle.  

Darryl:  Yeah it would be the same. The definition holds for both Taxicab and Euclidean 

and I said the same thing for the previous question too because I was really thinking 

about the radius between uh the points that were on the circle regardless of 

Euclidean or Taxicab…That distance from uh…the point on the circle to the center 

and uhh regardless of whether it’s going to be in Taxicab or in Euclidean, the 

distance is gonna hold the same so it’s gonna be equidistant to each other. So if 

your radius was 2, uh, if your center was at some point and your radius was 2 all 

the way around the circle, it’s going to be 2 regardless of what metric you’re in.  

From the portion of his written answer when he said “even though the paths of the distances 

are different in both geometries…” Darryl provided evidence he was evoking his GRC, since the 

Figure 4.28 Darryl’s written response to whether the provided definition 

of a circle held in both Euclidean and Taxicab geometry. 
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word choice of “paths” comes with imagery. Further, his explanation that a radius would be the 

same “all the way around the circle…regardless of what metric you’re in,” showed Darryl had 

formed a fairly coherent understanding of the definition of a circle, and how this related to the 

construction of a circle (GRC).  

Further information about this understanding is evident in his illustrations, shown in Figure 

4.29, and his explanation of how he constructed these circles. When talking about the circle in 

Euclidean geometry, he stated that he plotted the center, “went whatever two radius from the center 

is,” counted two units up, down, left, and right (points are plotted in illustrations), and drew “my 

circle and with the center at that point.” He correctly drew the circle in Euclidean geometry but 

oriented his circle in Taxicab geometry incorrectly. The following excerpt from the interview was 

part of a conversation between Darryl and the interviewer in which Darryl explains his reasoning 

for orienting his circle in Taxicab geometry in this way.  

Darryl:  Now through Taxicab geometry, again I did the same thing except when I think 

about Taxicab I think since you can’t uh go through the fence…it’s that you can’t 

go through the graph um, which I drew mine in this, the form of a square for Taxi… 

Figure 4.29 Darryl’s illustrations of a Euclidean and Taxicab 

circle. 
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essentially in Taxicab geometry like the circle…it kinda looks similar to a square, 

I could be wrong but….that’s what I thought the circle would look like.  

His explanation for why he oriented the circle in Taxicab geometry this way illustrated a 

misconception about the manner in which distance can be drawn or measured in Taxicab geometry. 

Recall in Section 4.2.1.3, Mark said regarding Taxicab distance, “we are using the coordinate grid 

which is created in 90 degree angles.” This was interpreted to mean he felt restricted in Taxicab 

geometry to drawing lines only on the coordinate grid. Mark ended up relying on his memory of 

the shape and orientation of a Taxicab circle to draw one on the questionnaire. It is interpreted that 

by Darryl stating, “you can’t go through the graph” he had a very similar idea to what Mark 

explained and to what Nicole described, whose work is presented later in 4.2.1.3. 

These types of statements are attributed to Mark, Darryl, and Nicole believing that Taxicab 

distances, and therefore lines, can only be drawn on the coordinate grid formed by the set of 

integers on each axis. In other words, they have discretized the Taxicab metric and do not view it 

as a continuous measure. This is consistent with research, in that Smith (2013) discusses having 

conversations with students about how it was possible to draw line segments through the blocks 

even though a taxicab or car would not be able to drive through the blocks. This misconception 

led Darryl and Nicole to disregard their understanding of the definition of a circle to draw the circle 

in Taxicab geometry, resulting in an incorrectly oriented circle. This affirms Fischbein (1993), as 

it is explained that in geometrical reasoning, many students decide to neglect a definition if they 

are presented with constraints on a figure. In these cases, the figural constraint is the manner in 

which distance is defined. In contrast to Darryl and Nicole’s drawings, Mark encountered the same 

misconception, but relied on the memory of the shape and orientation to finish constructing the 

Taxicab circle. 
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In general, Darryl demonstrated that he understood how the construction of a circle is a 

result of the definition in Euclidean geometry and was trying to transfer part of this understanding 

(GREC) to Taxicab geometry (GRTC). This was evident by his statements about the “paths” or 

the way in which radii of a circle in Taxicab geometry were constructed being different than 

Euclidean geometry. This implies he understood why the circles appear different but was not able 

to use this understanding to correctly construct this circle. Darryl said he constructed his Taxicab 

circle “in the same way” as he constructed his Euclidean circle and had previously described in 

the interview how he would do this in Taxicab geometry. When he was explaining how he 

illustrated this specific circle, he gave the impression he had copied the procedure of plotting the 

four points on the vertical and horizontal from the center.  

With prompting, Darryl was able to recall the equation for a circle in Euclidean geometry 

and wrote what he thought the equation for a circle in Taxicab geometry would be, shown at the 

top of Figure 4.29. The interviewer asked him how the equation he wrote compared to the distance 

formula, and the following interaction ensued. 

Darryl:  Well… if we’re saying that the definition of both circles hold for both Euclidean 

and Taxicab geometry, essentially 

Interviewer: The definitions… uh how things are calculated… metric 

Darryl:  Right, cause the form would be a little different. 

This excerpt showed that Darryl implied he understood that the definition of the circle 

coupled with the defined metric resulted in the difference in appearances of these equations, 

connecting his definition of a circle to his ARC. He also specified, with help from the interviewer, 

that since the definition of a circle holds in both geometries, that the difference in metric is causing 

the equations to appear different, referring to the “form” of these equations. He went on in the 
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interview to say “I would think that if you add the absolute values that would still equal the radius 

squared. So, that’s how I think you could form it in Taxicab.” This implies he was actively trying 

to transfer knowledge from his AREC to ARTC but ended up reproducing patterns he saw in the 

equation for a circle in Euclidean geometry, rather than referring to his understanding of the 

definition of a circle to see if the radius term should be squared. Recall that Alicia and Felix 

(presented in Sections 4.2.4.1 and 4.2.4.2, respectively) also verbally stated that the distance 

formula was involved in these equations and ended up relying on reproducing patterns to finish 

writing the equation of the Taxicab circle. 

Darryl showed he had transferred some knowledge from his cEg to his cTg about the 

definition of a circle in his GRC and ARC independently. However, he was only able to talk about 

the appearance of his Taxicab circle and how the format of the equations for a circle were related. 

He did not exhibit evidence of using his definition of a circle to construct and derive the equation 

of his circle in Taxicab geometry. For these reasons, Darryl provided evidence he was operating 

at an inter-intra level of schema interaction since he was only able to transfer and make local 

observations about both of these representations in Taxicab geometry. 

To summarize, Felix, Alicia, and Darryl were all able to make observations about local or 

visual properties of the geometric representation of a circle in Taxicab geometry. Two out of these 

three students correctly oriented the Taxicab circle on the questionnaire but indicated they did so 

based on memory. All three students used patterns they noticed from the respective distance 

formulas to try and write their equation of a circle in Taxicab geometry. This resulted in two of 

the three students writing the incorrect equation.  
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4.2.5 Inter-cEg, Inter-cTg 

A student operating at the inter-cEg and inter-cTg (inter-inter) level can begin to generalize 

and make connections about how the equation and/or appearance of a circle within a metric is a 

direct result of the definition of a circle. In other words, the student can begin to talk about the 

construction of a circle and the structure of the equation of a circle as a result of this definition 

other than local, particular properties in either geometry. At this level, the student is able to 

coordinate some of his or her processes of Distance, Radius, Center, and Locus of points with 

one another across his or her GREC and AREC to make non-local comparisons between these 

representations. The student can also coordinate some of these processes across his or her GRTC 

and ARTC. Further, the student can coordinate these processes across their GREC and GRTC in 

an attempt to construct a general GRC, resulting in the interaction of his or her cEg and cTg 

schemata. Similarly, these processes can be coordinated across their AREC and ARTC to 

construct a general ARC. The student can also coordinate some of these processes across his or 

her GRC and ARC and can make meaningful connections between these representations in both 

geometries at this level but have not formed a coherent underlying structure for how these 

representations are related. There were six students that showed evidence of operating at the inter-

inter level of schema interaction. Specifically, these students were Hannah, Nicole, Brianna, 

Robin, Marianne, and Eileen, of which Nicole and Eileen were the only undergraduate students. 

4.2.5.1 Hannah 

Hannah, a graduate student in the class, provided some insightful responses to the questions 

posed on the questionnaire and by the interviewer. Hannah was in an interview with Kristen and 

Samantha, both undergraduate math majors. When asked to define and draw images for both 

concepts of distance and circle prior to the interview, Hannah defined a circle as “all points 
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equidistant from [a] specific point.” Later, Hannah was asked if the definition of a circle provided 

on the questionnaire held in both Euclidean and Taxicab geometry. She explained that the formulas 

were different, but she believed this “worded” definition holds in both geometries. In particular, 

the question asked for an explanation of why or why not the definition for circle held in both 

geometries. To this, Hannah stated yes, and only provided the equations for a general circle in each 

geometry as her justification, seen in Figure 4.30. This indicated that Hannah may have made a 

connection between this “worded” definition and how it related to the structure of the equation of 

a circle in both geometries. However, later in the interview, she seemed to be unsure of herself 

when talking about the equation for a circle in Taxicab geometry, for which evidence will be 

provided. 

Notice in the right side of Figure 4.30, Hannah seemed to have erased an incorrect attempt 

to draw a Taxicab circle, possibly recalling it resembles a square. This indicated that at this point 

in the questionnaire, Hannah was attempting to rely on memory to sketch a circle in Taxicab 

geometry but may have realized it was not oriented correctly at some point. In fact, Figure 4.31 

shows Hannah’s correct illustrations for a circle in both geometries, and excerpts are provided 

from her conversation with the interviewer that indicated she could use more than just her memory 

to draw this circle. This portion of the interview ensued after the interviewer asked Hannah how 

she (1) went about drawing her circles, (2) how she used the definition of circle in each scenario, 

Figure 4.30 Hannah’s written response to whether the definition of 

circle held in both geometries. 
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and (3) if she could write the equation of each circle. Recall that red ink in Figure 4.31 indicates 

writing Hannah did during the interview. 

Hannah:  Well I started with the equation, and I don’t know if I’m right or not 

[indiscernible]… We know with um Euclidean geometry it looks like that one, x 

minus h squared plus y minus k squared equal r squared…and kinda based on the 

distance formula, so I was thinking this might be the one for Taxicab I don’t know 

if that’s right or wrong. 

Interviewer:  So how would you check? 

Hannah:  Okay, so when I drew it, [indiscernible] so I just did the paths thing, so I just I knew 

okay when you go to 2,2 if the radius is 2 I knew that’s going to be a point on that 

and I can go out 2 or up 2 or either one, but then, you know those distance things, 

so I just did like 1,2 and put a point there… you know and just started count[ing]... 

checked it and that’s how I got that. 

In this excerpt, Hannah first explained how she understood the distance formula was 

involved with the equation for each circle and how this influenced her derivation of the equation 

Figure 4.31 Hannah's illustration of a Euclidean and Taxicab circle, 

respectively. 
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for her circle in Taxicab geometry. Specifically, she said she wrote it “based on the distance 

formula,” but wasn’t sure if she had written it correctly, indicating she was transferring local 

observations from Euclidean to Taxicab geometry in terms of her ARC. She also explained how 

she constructed her circle in Taxicab geometry based on her understanding of the definition. She 

seemed to evoke all of her Distance, Radius, Center, processes geometrically here by explaining 

that a point would be on this circle if it was at a distance of two away from the center. Further, she 

described this by saying things like “if the radius is 2, I knew that’s going to be a point on that.”  

The interviewer then asked Hannah to show her that any other point (that was not one of 

the vertices of the circle in Taxicab geometry) was also two units away from the center. Although 

Hannah struggled with this initially, with prompting she was able to show this was true for a couple 

of the midpoints on the edges of the circle by counting blocks and then stated, “oh yeah… in fact 

that’s how I got the point.” It is possible that Hannah had not fully coordinated some of the 

processes within her GRC prior to the interview (which could explain the light sketch of the 

incorrect Taxicab circle in Figure 4.30) and was beginning to coordinate them during the interview. 

Kristen, one of the other students in this interview, was asked to explain her illustrations after 

Hannah. As Kristen appeared to be struggling to explain how she constructed her circle in Taxicab 

geometry, Hannah jumped in and stated, “well it’s cause you gotta be able to… finding every point 

with the path of 2.” This demonstrates that Hannah was able to imagine how to construct this circle 

without performing actions of drawing specific radii, and that she was able to describe this process 

in her own words geometrically. 

Pertaining to her ARC, recall that in Figure 4.31, Hannah was able to produce the equations 

for an arbitrary circle in both Euclidean and Taxicab and geometry. When Hannah was asked to 

write the equations for the particular circles she had drawn, Hannah stated that the equation of a 
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circle was based on the distance formula, although she did not explain how this related to the 

definition of a circle. As a result, she wanted to use the formula for Taxicab distance within her 

equation for a Taxicab circle, but said she was not sure that what she had written was correct for 

this equation, shown towards the bottom of Figure 4.31. The interviewer asked Hannah how she 

would be able to check to see if this equation was correct, and Hannah immediately wanted use 

points on her circle in Taxicab geometry to substitute them into her written equation for the circle 

in Taxicab geometry and verify that she would get two when she evaluated this expression. In 

other words, Hannah was using the definition of a circle and her concept of GRC to verify that the 

equation she had written (ARC) was correct. The following excerpt is part of her going through 

this process, where she specifically relates her equation to the center and radius of the circle.  

Hannah:  So if the center is at uh 3,3 and then r is equal to 2. Then our formula this guy to 

look something like um square, the absolute value of x minus 3 plus the absolute 

value of y minus 3, ‘cause that’s our h, is equal to 2…So let’s take a sample of a 

point, (x,y)… this (x, y) is um 3.. (3,1). Let’s see if (3,1) is on the circle as a test 

point. So for (3,1) I would have 3 minus 3 which is 0, k? Plus um, y which is 1 

minus 3…Right so, is equal to… our answer, 2…. Cha ching! That’s true.  

By saying things like “…absolute value of y minus 3, ’cause that’s our h,” Hannah seemed 

to be identifying and substituting values for variables in her equation to see if, after evaluating the 

expression, she would get the value of two. It was as though she was performing an action by 

substituting values into an equation with little interpretation rather than confirming the equation 

satisfied the definition of a circle. In other words, she did not explain that she was checking to see 

if a point was on the circle by finding the distance between it and the center and comparing it to 

the size of the radius. Specifically, in terms of her concept of Radius, she was checking to see if 
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this expression was equal to the radius as a number instead of a concept, since she referred to the 

expression being “equal to…our answer, 2” instead of something like, “equal to the radius, which 

is 2.” Once she verified that substituting the coordinates of two of the points on her circle into her 

equation both result in a value of 2, she explained that her equation made sense to her. 

Hannah stated that she “derived the formula. I didn’t do it by memory, I was deriving it, 

that’s what makes sense to me. I’m just glad it kind of worked.” This statement implied that 

Hannah believed she had derived this equation for a circle in Taxicab geometry by using the 

definition of a circle, despite evidence throughout the interview implying she was unsure of the 

equation she had written until this point. While looking at her illustration Hannah was able to 

verify that the equation of a circle in Taxicab geometry was correct by substituting points on the 

circle into this equation. That is, since she was evoking her GRC, Hannah was able to coordinate 

some of her processes across her GRC and ARC by referencing her graph and the equation at the 

same time. Thus, she was able to make some connections between the algebraic representation and 

geometric representation for a circle in both geometries but did not exhibit a coherent 

understanding of how these are a direct result of the definition of a circle. However, the 

connections she was making between her cEg and cTg schemata were not local properties, since 

she knew how to test to see if her equations of a circle satisfied the definition of a circle.  

Hannah was able to understand how the definition of a circle resulted in the construction 

of a circle geometrically but seemed to still be in the process of forming this coherent 

understanding for her ARC. She knew the distance formula was involved with each equation but 

did not explain why in relation to the definition of a circle. Further, when she substituted a point 

into her equation, she explained how to check to see if her equation was correct, she simply 

substituted the values for her center and radius, evaluated the expression, and says “is equal to… 
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our answer 2.” She said, “let’s see if (3,1) is on the circle as a test point,” but lacked reference to 

any subconcepts of Circle. This implies she may have just been performing an action with little 

interpretation of how it related to these components of the circle schema. Her reference to “our 

answer 2” instead of phrasing this in context of the radius is a small, but meaningful difference in 

the interpretation of these comments.  

There was not specific evidence referring to Hannah’s ability to explain the structure of the 

equation of a circle in Euclidean geometry, however she appeared to have been forming this 

understanding in Taxicab geometry, as evident by these excerpts. She was most likely transferring 

knowledge back and forth between Euclidean and Taxicab geometry during the interview to reflect 

on her understanding of the definition of a circle. Thus, Hannah exhibits evidence of operating at 

the inter-inter level of interaction of her cEg and cTg schemata.  

4.2.5.2 Nicole 

Nicole was an undergraduate student in the course and participated in an individual 

interview. Nicole originally defined a circle on the questionnaire as a “figure of equidistant points 

from another point” and stated that she had written this as a “Euclidean definition,” and continued 

to say that when she thought of a circle in Taxicab geometry, “the figure won’t be the same… 

visually it won’t be the same, but I do think the definition it would be the same, because it has to 

be equidistant to be a circle.” Further, on the questionnaire when asked if the provided definition 

of a circle held in both geometries, Nicole said “the points must be equally distant away from 

another point to be considered a circle,” as seen in Figure 4.33. Note the word “must” is underlined 

in her explanation, implying she wanted to emphasize that this was important regarding the 

definition of a circle. 
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In all of these statements, Nicole clearly showed that her personal concept definition of a 

circle was coherent. She was aware that the definition would hold across geometries, but with this 

comes a change in the shape of a circle Taxicab geometry. Later, Nicole was discussing how she 

constructed the circles in both Euclidean and Taxicab geometry, seen in Figure 4.32. She drew the 

circle in Euclidean geometry and in Taxicab geometry drew a square that was oriented incorrectly. 

Nicole’s explanations of her illustrations are provided below Figure 4.32.  

Nicole:  For my Euclidean circle I made my point and you can see my lines, I was trying to 

get a... to where these two [indiscernible] and try to make it equidistant from that 

Figure 4.33 Nicole’s written response to whether the provided 

definition of circle held in both geometries. 

Figure 4.32 Nicole’s illustrations of a Euclidean and Taxicab circle. 
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point (3,3). However, when I went in Taxicab, I wasn’t able to get such a curved 

line, so I had to follow the ways... and I keep wanting to say routes, I don’t know 

why…the ways that you’re able to move in Taxicab. So, my Taxicab circle was 

way different from my Euclidean because I had to follow strict routes, making my 

radius…   

With prompting, Nicole was able to recall that a circle in Taxicab geometry looked more 

like a “diamond” and was able to draw this circle (seen in red ink in Figure 4.32). In general, this 

excerpt shows that Nicole was able to coherently explain how she constructed her circle in 

Euclidean geometry. Further, she indicated how she was trying to transfer her understanding of 

how to do this to Taxicab geometry, by using Taxicab distance to construct radii for this circle 

(“follow strict routes, making my radius”). By saying “my Taxicab circle was way different from 

my Euclidean because I had to follow strict routes, making my radius,” this provided clear 

evidence that Nicole did not just see that the shapes were different, but understood that the way 

distance was measured led to this difference.  

Although she did not draw the circle correctly initially, with little prompting during the 

interview, she demonstrated she understood why the diamond shape satisfied the definition of a 

circle geometrically. This is evidence that Nicole had formed an underlying structure to the 

construction of a circle in Euclidean geometry that was based off of her personal concept definition 

and was transferring this understanding to Taxicab geometry. She explained later in the interview 

why she had been confused about the orientation of the circle in Taxicab geometry saying, “I was 

thinking from each point it had to be on a strict grid, and not go in between… but I can go in 

between.” In other words, Nicole thought that it “wasn’t allowed” to draw lines such that they 

crossed the “grid” at places other than the intersections formed by the integers on each axis.  
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This misconception, similar to Mark’s and Darryl’s (as discussed in Section 4.2.4.3), 

hindered Nicole from successfully constructing her circle in Taxicab geometry initially, although 

she indicated she was trying to construct radii in order to sketch her circle. It is most likely the 

case that Nicole got confused because she thought she could not draw the circle in this way and 

then relied on memory of the shape of the circle to finish her drawing. Nicole’s explanations 

differed from Darryl’s and Mark’s in a meaningful way. Recall Darryl explained how he would 

use the concept of Radius to construct a circle when describing his personal concept definition but 

did not talk about this at all when describing how he actually constructed his circle in Taxicab 

geometry. On the other hand, Nicole specifically referred to the construction of radii in relation to 

her geometric representation and how she tried to construct it. Further, when Nicole drew the 

correct circle, she was able to use the definition of a circle to verify this was correct.  

Although Nicole did not construct this Taxicab circle correctly at first, she explained that 

she was constructing her circle in the same way she did in Euclidean by constructing radii. This 

implies she was transferring her understanding of the definition of a circle in GRC from Euclidean 

to Taxicab geometry. When she arrived at a situation that did not adhere to her understanding of 

Taxicab distance, she resorted to memory. As described by Çetįn (2009), there was a conflict 

within portions of her concept image, perhaps between her GRTD and other components in her 

GRTC. Still, Nicole showed she could talk about how she was using radii to construct both of her 

circles, which provided evidence that she had made meaningful connections within her GRC 

across her cEg-cTg schemata other than observing local properties of the appearances or equations 

of a circle.  

 With prompting, Nicole was able to piece together the equation for a circle in Euclidean 

geometry. She was unable to explain how any of these pieces related to the definition of a circle 
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and indicated she was trying to recall a memorized equation. When the interviewer asked her what 

the equation for a circle in Taxicab geometry would look like, Nicole responded “I’m wanting to 

use… absolute values… simply because we use absolute values for the distance? But that could 

be wrong.” Like Alicia, Felix, and Darryl, she identified the formula for distance was used in the 

equation for a circle in Euclidean geometry and wanted to copy this pattern for her equation of a 

circle in Taxicab geometry. This was further shown when she wrote the equation for the circle in 

Taxicab geometry (seen in Figure 4.32) and explained that she decided not to square the radius 

value of 2 because nothing was squared in the formula for Taxicab distance.  

In terms of her ARC, Nicole did not provide evidence that she had made meaningful 

connections between the definition of a circle and the equation for a circle and was observing local 

properties about these equations. However, it was clear that she was making meaningful 

connections in her GRC across her cEg and cTg schemata by explaining the construction of both 

of her circles and why the geometric representations would visually appear different as result of 

the definition of a circle. This implies Nicole was operating at an inter-inter level of schema 

interaction. 

4.2.5.3 Brianna 

Brianna was a graduate student in the course who participated in an interview with Amy, 

another graduate student. The results of Brianna’s work begins by the presentation of her written 

response (shown in Figure 4.35) followed by her verbal explanation of why the definition of a 

circle provided in the questionnaire held in both geometries. Brianna believed this definition was 

true in both geometries and said “but the distances are different, like the formulas…”  
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Here Brianna verbally brought up the algebraic representation of distance as a 

distinguishing factor of a circle between these geometries. Seen in Figure 4.35, she also described 

the differences in geometric representation between geometries by observing local properties, such 

as shape. She also added the comment about the different formulas for distance, which indicates 

she was using her evoked ARD within her ARC to justify why the shape would be different, which 

is a part of her GRC. Her explanations to this question illustrate that she had made some 

connections between the algebraic representation and geometric representations of these circles. 

Brianna went on to explain how she drew her circles in Euclidean and Taxicab geometry, which 

can be seen in Figure 4.34. A descriptive portion of the conversation between her and the 

interviewer during this part of the interview is provided below.  

Figure 4.35 Brianna’s written response to whether the provided 

definition of a circle held in both geometries. 

Figure 4.34 Brianna's illustrations of a Euclidean and Taxicab circle. 
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Brianna:  I first placed the point um (3,3) so that’s the center point… and then I found you 

know of radius 2, four points, made a circle for Euclidean. And then the Taxicab 

geometry though… or circle… um... I found the radius, but there it’s a square. And 

that’s how I connected them.  

Interviewer:  So how did you use a definition of a circle in each of these two drawings? 

Brianna:  Well, since it’s centered at (3,3), you know that’s the fixed point, and then since we 

have the radius 2, you know that means um, uh all the points that lie on the circle, 

since they are the same distance from the fixed point here… that I could just go 

over two to find points to help me make the circle. Even though all the points that 

uh lie on here are too... I just did the easy ones.  

Brianna clearly explained here that she found the four points directly horizontally and 

vertically that were two units away (seen as plotted points in Figure 4.34) and then drew the rest 

of her circle in each geometry with the understanding that all of those points were also two units 

away from the center. This, again, shows that her GRC was fairly developed since she could 

explain this idea coherently and in general terms. Further, after this excerpt, the interviewer asked 

Brianna to show on her illustration in Taxicab geometry that one of the other points (other than 

the vertices) on her circle was also two units away from the center. Without prompting, Brianna 

used the formula for distance in Taxicab geometry to calculate the distance between a point on her 

circle (2,4) and the center (3,3), seen in red ink below her Taxicab circle in Figure 4.34. This 

indicates that while she was evoking concepts within her GRC (since she was looking at her 

drawing), she also evoked her ARD to verify this point was on her circle instead of her GRD to 

do so (by counting blocks).  
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Without prompting right after this, she explained and labeled what part of the Taxicab 

distance formula corresponded to each part of a radius she constructed between (2,4) and (3,3). In 

doing so, she labeled parts of a radius in small red ink on her illustration, writing “𝑥1 − 𝑥2” and 

“𝑦1 − 𝑦2.” This is further evidence that she was coordinating her GRD and ARD with her evoked 

Radius concept within her circle schema. In other words, Brianna was demonstrating that she had 

formed a coherent structure for the geometric representation of a circle (GRC) in both geometries 

while also evoking concepts from her ARC. As Akarsu & Yilmaz (2015) suggest, the reflection 

and interpretation of diagrams in Brianna’s mind helped her to formulate connections and define 

her knowledge.  

When asked to write the equations for each of these circles, Brianna tried to recall a 

memorized equation for Euclidean geometry and even said “I should remember this.” At this point, 

Amy stepped in and began to explain these equations to Brianna, which was when Brianna wrote 

these equations seen in Figure 4.34. Although Brianna had made coherent observations about the 

geometric representation of a circle in both geometries, she had only been able to coordinate some 

of her processes (like Radius) across her ARC and GRC in both geometries. Thus, Brianna shows 

evidence of operating at an inter-inter level of schema interaction.  

4.2.5.4 Robin 

Robin was a graduate student in the class who participated in an interview with Marianne 

and Parker, two other graduate students in the course. Robin’s personal concept definition of circle 

that he wrote on the questionnaire prior to the interview was “an infinite set of points equidistant 

from a central point.” When he was asked during the interview to elaborate on this, he said, “I 

really don’t know how to explain my thinking behind what a circle is…it just kinda makes sense 

to me that it’s a bunch of points around one point in the middle.” Further evidence of his 
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understanding of the definition of a circle is exhibited in his explanation of why he said the 

definition of a circle provided on the questionnaire would hold in both Euclidean and Taxicab 

geometry. This response on the questionnaire prior to the interview can be seen in Figure 4.36.  

Robin specified that the definition of distance had changed from Euclidean to Taxicab 

geometry, and then wrote “equidistant in t-geometry is more grid-like (squarish).” Here he was 

evoking his GRC since he mentioned the shape of a circle in Taxicab geometry and inferred that 

this shape is different because of the way distance looks. In other words, this is evidence that Robin 

had made a connection between the definition of a circle (by bringing up equidistance) and how 

the choice of metric affects the shape of a circle based on this definition. Thus, he provided 

evidence he had generalized the construction of a circle (GRC) across his cEg and cTg schemata, 

which was supported further by his illustrations shown in Figure 4.37. Although he did not have a 

chance to explain how he constructed these circles verbally during the interview, the detail in his 

illustrations provided a good idea of how he did this.  

Figure 4.36 Robin’s written response to whether the provided 

definition of a circle held in both geometries. 
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In his drawing of the circle in Euclidean geometry, Robin plotted the four points on the 

vertical and horizontal that were two units away from his center point and then connected them by 

a curved line. It then appears he went back to check that his circle was accurately drawn, in that 

all of the points on his circle were exactly two units away from his center (in Euclidean distance). 

This is evident by the lines indicating he went over portions of his figure multiple times to refine 

the exact location of his curved edges. It is assumed he took this same approach in his drawing for 

a circle in Taxicab geometry, except that he initially drew his circle as a square with an incorrect 

orientation. Again, he went back to check and make sure all of the points on the figure drew were 

actually two units away from the center (in Taxicab distance) and discovered that he had drawn it 

incorrectly. He then realized the correct orientation of his Taxicab circle and noted this by writing 

“the “diamond” shape!”  

Here Robin was clearly transferring his understanding of the construction of a circle in 

Euclidean geometry to the construction of a circle in Taxicab geometry and was able to fix his 

initial misconception of the orientation of the circle using this understanding. Thus, Robin had a 

Figure 4.37 Robin’s illustrations of a Euclidean and Taxicab circle. 
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coherent understanding of the construction of a circle using both of these metrics and how this was 

a result of the definition of a circle. Robin’s discourse was different from others that drew the 

circle in Taxicab geometry incorrectly oriented. In particular, he drew it from memory but then 

used the definition of a circle to make sure this figure satisfied this definition. When he realized it 

did not, he adjusted the orientation. As a note, his incorrect orientation was a result of operating 

from memory (which he was able to correct), whereas Nicole’s and Darryl’s incorrect orientation 

was a result from a misconception about Taxicab distance. 

We do not have much evidence of Robin’s understanding of ARC since Parker, one of the 

other students in the interview, and the interviewer had a lengthy conversation about this topic. As 

such, Robin did not say too much about these equations besides a few comments that implied he 

was trying to recall the format of the equation of a circle in Taxicab geometry. Regardless, Robin 

had clearly made meaningful connections across his cEg and cTg schemata regarding his GRC, 

implying he was coordinating processes across these schemata, and was operating at the inter-inter 

level of schema interaction.  

4.2.5.5 Marianne 

Marianne was a graduate student in the course and participated in an interview with Robin 

and Parker, two other graduate students in the course. Marianne defined a circle on the 

questionnaire before the interview as “a set of points equidistance from center, x.” Her written 

response to whether the definition of a circle provided by the questionnaire held in both geometries, 

which is accompanied by illustrations, is provided in Figure 4.38. Specifically, she wrote that every 

point on both circles would be “the same distance from the center”, but that the Euclidean distance 

may not be equivalent to the Taxicab distance.  
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As she brought up the use of Euclidean distance versus Taxicab distance, it is interpreted 

that she was referring to the construction of radii for each of the circles. In particular, in her 

illustrations in Figure 4.38, she clearly drew a radius in the Euclidean circle and drew two radii in 

the Taxicab circle. One reason she may have drawn two different radii in the circle in Taxicab 

geometry was to demonstrate that she understood the points that were not vertices of this square 

were the same distance away from the center. She did not explicitly state this was why she drew 

these two radii on her circle in Taxicab geometry, but she drew the horizontal radius in her Taxicab 

circle as a solid line just as she did for the radius drawn in her Euclidean circle. Thus, this indicated 

she may have understood these radii would be measured the same way (or at least would appear 

the same).  

Further, the fact that the other radius on the Taxicab circle was drawn as a dotted line 

further implies Marianne wanted to distinguish the appearance of this radius from the other, in that 

it was not measured in a straight line. In any case, Marianne was clearly making a connection 

between the definition of a circle and how the construction of a circle using different metrics results 

in different shapes. In other words, she was aware that the change in metric is what is causing the 

figures to look different and had formed a coherent understanding of her GRC. This is illustrated 

Figure 4.38 Marianne’s written response to whether the provided definition of a 

circle held in both geometries. 
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even further in her next illustrations, shown in Figure 4.39, of a circle centered at (3,3) with a 

radius of 2 in both Euclidean and Taxicab geometry.  

Marianne explained that she began constructing her circles by plotting the four points on 

the vertical and horizontal from the center points. She stated she knew what each circle would look 

like so finished the drawing in this way. When asked how she used the definition of a circle in her 

illustrations, she stated she knew they had to be equidistant. Further, she explained for the circle 

in Taxicab geometry she “went back to check that…the points that weren’t directly vertical or 

horizontal…to see if it was still the same distance.” The interviewer asked her to explain how she 

checked, and Marianne drew the two radii on her Taxicab circle in red ink, shown in Figure 4.39 

while explaining this how she verified her circle was correct. This is further evidence that Marianne 

had formed a coherent understanding of the underlying structure associated with her GRC in both 

geometries within her circle schema. 

In terms of her ARC, Marianne was able to reproduce the majority of the equation of a 

circle in Euclidean geometry but wrote “𝑦 =” in her equation shown in Figure 4.39 instead of 

something in terms of the radius. Further, once she substituted her center into the right side of this 

Figure 4.39 Marianne’s illustrations of a Euclidean and 

Taxicab circle. 
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equation, she never set this expression equal to a value. Thus, Marianne demonstrated she had a 

limited understanding of how the definition of a circle is related to the algebraic representation of 

a circle in Euclidean geometry. Later, Parker, one of the other students in the interview, was talking 

about how she was able to write the equation for a circle in Euclidean geometry but forgot what it 

looked like in Taxicab geometry. The interviewer then began to prompt all three students in this 

interview about this equation and how it would be derived. This excerpt of the interview is included 

below as evidence of Marianne’s understanding of ARC in addition to an example of an effective 

set of leading statements/questions that were used to get these students to reflect on their 

understanding of this equation. Note that during this part of the conversation, Marianne, Robin, 

and Parker were all attempting to write this equation at the same time, so when the interviewer 

says “no, no,” she was referring to something one of the students had written. 

Interviewer:  Can you use… the definition or distance formula to write them? Again, just uh, 

keep in mind what’s your definition of um  

Robin:  Oh I see what you are saying 

Interviewer: Yeah what is the definition of a circle. You said it’s a set of points that is equally 

distant from the center. And you have distance formula. And so, you have um, you 

have when this distance formula, applies for every point on the circle… and so what 

do we usually want the distance for the uh for the circles...No, no. That’s the 

distance, right? And so you have the distance for every point. And so that distance 

is…what is the name of the distance? 

Marianne:  Oh the radius?  

After this interaction, (plus some more comments made by Parker which will be presented 

in Section 4.2.9.3), Marianne verbally indicated that she understood how this equation was 
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derived. Overall, Marianne appeared to have formed a coherent understanding of the underlying 

structure of her GRC (entirely coordinated her GREC and GRTC). Further, she provided 

evidence she was at least coordinating a process conception of Radius with her process conception 

of Distance since she knew was able to “name the distance” that the interviewer was describing. 

Thus, she exhibited she had a process conception of ARTC. From the data, it was determined 

Marianne exhibited evidence of operating at an inter-inter level of schema interaction. 

4.2.5.6 Eileen 

Eileen was an undergraduate student participating in an interview with Felix and Mark, 

two graduate students in the course. Eileen originally defined a circle on the questionnaire as 

“points that are an equal distant from a given point,” without indicating this was an infinite number 

of points. Eileen wrote on the questionnaire prior to the interview that the definition provided on 

the questionnaire was true in both geometries. When the interviewer asked Eileen to elaborate on 

her response, Eileen replied with the following explanation. 

Eileen:  Um, I know that it’s equal distance from based... ‘cause when I did my picture, I 

knew that like um, given…the center, the radius is equal distance from each side in 

a circle as well as in like uh…Taxicab geometry. But it’s not like uh…but it’s not 

the same… at all points. It’s only like vertical and horizontals, and the radius in 

Taxicab is the absolute value of the x plus the absolute value of the y and then, um, 

in um, Euclidean, you can use the um, Pythagorean theorem too… I didn’t go 

through I just said they were equal. 



197 

This excerpt illustrated how Eileen differentiated a circle in Euclidean and Taxicab 

geometry. Specifically, she understood that a circle is defined the same way in both geometries by 

saying “given…the center, the radius is equal distance from each side in a circle.” It is interpreted 

she was trying to say that given a center, each point on the circle (“each side in a circle”) is a 

certain distance (“radius is equal distance”) from that center. Notice to begin this excerpt, Eileen 

said, “when I did my picture,” which indicates she was evoking her GRC and then went on to 

explain how the radius is calculated in both geometries (“…radius in Taxicab is the absolute 

value…” and “Euclidean, you can use the um, Pythagorean theorem”). In other words, she had 

made a connection between the algebraic and geometric representations for radius in both 

geometries and how this radius is used to construct a circle. Her misconception that not all of the 

points on a Taxicab circle are equidistant from the center will be addressed after a few more 

excerpts. The next passage is from conversation between Eileen and the interviewer about how 

she constructed each of the circles, which can be seen in Figure 4.40. 

Eileen:  Okay, with mine and I did, I found the point (3,3) and then um, with the circle well 

with Euclidean I…went over 2 horizontally both sides and then vertically both sides 

Figure 4.40 Eileen’s illustrations of a Euclidean and Taxicab circle. 
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and then I drew a circle to get…my construction of [the] Euclidean circle. And then 

with the Taxicab circle, I did pretty much the same thing, found the point (3,3) and 

I went over two with each… like horizontal as well as vertical and then I um, I drew 

the um, square to get the um Taxicab circle. 

⋮ 

Eileen:  I did it like the where it’s equal, where the radius…the circle is equidistance from 

the radius, so that’s how I did… I didn’t use a formula or anything to draw my 

picture, I just knew it that it would be equidistance and I know my Taxi-circle is 

incorrect. 

At first, it seemed like Eileen only drew her illustrations from memory. In general, this is 

still possible, but in the second portion of this excerpt Eileen demonstrated that she knew how to 

construct her circles. This is evident from the fact that she could talk about how to do this, despite 

some ambiguity in her choice of words. In fact, based on her drawing of the circle in Euclidean 

geometry, it appears Eileen went back to make sure all of the points on her circle were actually 

two units away from the center, which could be why the lines have been drawn multiple times. In 

other words, she wanted to refine the locus of points of her circle that appeared to be more or less 

than two units away from the center.  

Eileen demonstrated she understood how she should construct a circle based on the 

definition in Euclidean geometry but did not provide evidence that she had successfully transferred 

her understanding of this construction from Euclidean to Taxicab geometry. Thus, she most likely 

decided to rely on memory for the shape of a circle in Taxicab geometry, which is why she drew 

a square.  However, she had apparently forgotten how the square should be orientated. This could 

also explain why Eileen stated earlier that the points on the vertical and horizontal from the center 
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are the only ones in Taxicab geometry that are equidistant from the center. If she had gone back to 

check this drawing of a circle in Taxicab geometry to make sure all of the points were two units 

away from the center (as she appeared to have done in Euclidean geometry), then she would have 

discovered they were not. In other words, it is interpreted that Eileen demonstrated she coherently 

understood how the construction of a circle in Euclidean geometry is a result of the definition of a 

circle (GREC). She seemed to attempt to transfer this understanding to the square she had drawn 

as a circle in Taxicab geometry (GRTC). In doing so, she ended up confusing herself on how her 

illustration satisfied the definition of a circle but was not sure how to fix it. Baker et al. (2000) 

found similar confusion between the visual expectation a student has of a figure versus reality. In 

other words, this type of confusion can be a result of students who have images in their mind of 

what a circle should look like (a Euclidean circle), and the conditions they were given (Taxicab 

metric) conflicted with these images.  

Regarding her algebraic representations, recall Eileen was able to specify how the radii of 

both circles would be calculated and talked about this while evoking her GRC. Further, when 

talking about the equations for a circle in Euclidean, she said and wrote (seen in Figure 4.40), 

“r…equals to x minus h squared plus y minus k squared,” then corrected herself that it should be 

“r squared.” She substituted values in to this equation saying, “h would be 3, and then k would be 

3.” These statements imply she was relying on memory and performing actions to write the 

equation of this circle. She almost derived the equation for a circle in Taxicab geometry, seen in 

Figure 4.40, with the only incorrect facet being that she squared the radius. Her first statement 

regarding this was, “I think it would be r equals to absolute value of x plus absolute value of y,” 

then again changed her mind and decided it should be “r squared.” After substituting the center in 

to the appropriate places in this equation, she said, “right, so I would say x minus 3 absolute value 
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plus y minus 3 absolute value…equals r squared.” There was no further evidence of her 

understanding of ARC, but Eileen clearly made a connection between the geometric and algebraic 

representations of a circle in both geometries in regard to Radius and Distance. In particular, she 

discussed how to construct a circle using a radius and how to calculate the length of this radius in 

each metric. Thus, Eileen demonstrated she was operating at the inter-inter level of schema 

interaction.  

Overall, the students who exhibited evidence of operating at the inter-inter level of schema 

interaction identified that the choice of metric, or the way distance is defined, affected either their 

geometric or algebraic representations of a circle. Although these students could not coherently 

explain how both representations were results of the definition of a circle, many of the students 

demonstrated they could do so geometrically. Thus, it is possible that further reflection on the 

structure of the equation of a circle using a metric and how this relates to the definition of a circle 

would benefit these students in the development of their circle schema. 

4.2.6 Inter-cEg, Trans-cTg 

A student at the inter-cEg and trans-cTg (inter-trans) level coherently understands how the 

construction of a circle and the equation for a circle in Taxicab geometry is a direct result of the 

definition of circle. At the same time, in Euclidean geometry, the student has made non-local 

connections between the geometric and algebraic representations of a circle. In other words, the 

student has successfully coordinated all of the concepts within his or her ARTC and GRTC and 

some of the concepts within his or her AREC and GREC. At this point, the student can coordinate 

some of their Radius, Center, and Locus of points processes across their cEg and cTg schemata, 

resulting in the interaction of schemata. In general, the student begins to transfer knowledge from 

Taxicab geometry back to Euclidean geometry to try and make the same coherent understanding 



201 

of a circle that they have in Taxicab geometry. There were no students that exhibited evidence of 

operating at the inter-trans level of schema interaction. 

4.2.7 Trans-cEg, Intra-cTg 

A student at the trans-cEg, intra-cTg (trans-intra) level coherently understands how the 

construction of a circle and the structure of the equation of a circle in Euclidean geometry is a 

direct result of the definition of a circle. However, they cannot transfer this knowledge to Taxicab 

geometry to begin to make any connections between representations. In other words, the student 

has successfully coordinated all processes across his or her GREC and AREC. If the student has 

a process conception of any concept within his or her cTg, he or she cannot coordinate them with 

the corresponding process in his or her cEg. The student cannot make connections other than local 

properties between circles in Euclidean and Taxicab geometry. There were no students that 

exhibited evidence of operating at a trans-intra level of schema interaction. 

4.2.8 Trans-cEg, Inter-cTg 

A student operating at the trans-cEg and inter-cTg (trans-inter) level of schema interaction 

is able to understand in Euclidean geometry, the construction of a circle and the structure of the 

equation of a circle is a result of the definition of a circle. The student is able to transfer this 

knowledge from Euclidean geometry to Taxicab geometry in order to begin making similar 

connections between the geometric/algebraic representations of a circle in Taxicab geometry but 

has not been able to generalize this for Taxicab geometry the same way that they have in Euclidean 

geometry. In other words, the student has successfully coordinated all of the concepts within his 

or her AREC and GREC and some of the concepts within his or her ARTC and GRTC. At this 

point, the student can coordinate some of their Radius, Center, and Locus of points processes 

across their cEg and cTg schemata, resulting in the interaction of schemata. In general, the student 
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begins to transfer knowledge from Euclidean geometry to Taxicab geometry to try and make the 

same coherent understanding of a circle that they have in Euclidean geometry.  

4.2.9 Trans-cEg, Trans-cTg 

A student at the trans-cEg, trans-cTg (trans-trans) level when the student has generalized 

the concept of Circle completely and has a coherent understanding of how the construction of a 

circle and the equation of a circle for any metric is the direct result of the definition of a circle. 

That is, the student has generalized the structure of the equation for a circle geometrically and 

algebraically. In terms of APOS Theory, the student has successfully constructed new processes 

of GRC and ARC by coordinating all of their Distance, Radius, Center, and Locus of points 

processes. There is a complete coordination of the student’s cEg and cTg schemata, and the student 

would be able to evoke any necessary components of these schemata to coherently talk about a 

circle in both geometries. There were three students, Russell, Amy, and Parker who exhibited 

evidence of operating at the trans-trans level of schema interaction, of which Russell was the only 

undergraduate student. 

4.2.9.1 Russell 

Russell was an undergraduate student enrolled in the course who participated in an 

interview by himself. Russell seemed to have a coherent understanding of most of the concepts 

involved with his circle schema, although throughout his interview he hesitated to be open about 

his thinking. However, from his written work and explanations, Russell provided sufficient 

evidence he had begun operating at the trans-trans level of schema interaction by the end of the 

interview. 

Russell originally defined a circle on the questionnaire prior to the interview as “a center 

with equidistance [sic] points,” and specified during the interview that he drew a “circle in 
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Euclidean geometry” to accompany this definition. Russell was asked if his definition held in both 

geometries and the following conversation took place, which provided insight to Russell’s thought 

process in determining what classifies a figure as a circle.  

Russell:  I know that a circle in Taxicab is square, but you know like those diagonal right? 

Uh, I’m not sure if the diagonal from the center to the point that is diagonal...  

Interviewer: Okay, so how would you know… how would you check that the… it is a center 

Russell:  You calculate the distance of those points around? 

Interviewer: Uh huh… 

Russell:  Okay, then it probably would be the same as Taxicab. 

In this excerpt, Russell was clearly expressing his lack of comfortability with assuming 

what he has learned is a circle in Taxicab geometry satisfies the definition of a circle, implying he 

was thinking critically about the definition of a circle. With prompting, he was able to verbally 

express that if he followed the same logic that he did in Euclidean geometry, then the figure he 

had learned is a circle in Taxicab geometry would “probably” satisfy this definition. Thus, Russell 

was making connections between the definition of a circle in both Euclidean and Taxicab 

geometries. Russell went on to describe that he constructed his circle in Euclidean geometry (seen 

in Figure 4.41) by plotting the four points directly vertical and horizontal from the center that were 

two units away because “the r is 2,”and connected these points “by drawing the curve.” For his 

circle in Taxicab geometry, Russell explained that “I pin point the point where…with the radius 

equal to 2, the same way, right?... but I draw a straight line to connect them.” This statement 

demonstrated that Russell had transferred knowledge from Euclidean geometry to Taxicab 

geometry by saying “the same way, right?” Also, he specified that he was counting two units 

because the two units represented the radius of the circle.  
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 The interviewer asked Russell how he would explain that his circle in Taxicab geometry 

represented the definition of a circle. She specifically asked Russell to pick another point on his 

circle that was not one of the vertices of the square, and to “show me how that definition applies.” 

Russell immediately said “we can take this point, which is (2,4), x is 2, y is 4. And the center is 

given, (3,3), so the difference in x, 3 minus 2, plus the difference in y, 3 minus 4. And that would 

give us [2].” While he was saying this out loud, he was writing this out in the right margin of his 

paper, shown in red ink in Figure 4.41.  

The interviewer asked Russell if he could illustrate this on his graph, which is when he 

drew the red dotted lines that form a radius of the circle connecting the center and the point (2,4). 

Thus, Russell knew how to justify geometrically and algebraically that an arbitrary point was on 

his circle. This conversation, along with analysis of the rest of the interview implies Russell had 

formed a coherent understanding of his GRC and understood how the construction of a circle is a 

result of the definition of a circle.  

Figure 4.41 Russell’s illustrations of a Euclidean and Taxicab circle. 
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Russell and the interviewer began discussing the equations for a circle in both geometries, 

which he eventually wrote at the top and bottom of his work, shown in Figure 4.41. Before he 

wrote these equations, he had told the interviewer he would not be able to write the equation for 

either of these circles. The interviewer was able to push Russell to try anyway, which is when he 

had a “lightbulb” go off about the equation for a circle in Euclidean geometry. The passage in 

which this happened is provided below. 

Interviewer:  So... that definition or formulas for distance would not be helpful? 

Russell:  Uh the distance for Euclidean… or the distance… Pythagorean and I would 

illustrate the… may I? 

Interviewer:  Yeah, try. 

Russell:  [Drawing]  

Interviewer:  So if you pick any point on the circle and label that x and y. 

Russell:  Oh, I get it! Oh so that would equal to r, and r would be just equal to…  

Interviewer:  Okay so… now to put together.  

Russell:  Okay, so the first point, the center, say a and b. the second point, a point on the 

circle, say m and n. and that’s r, the distance is r is the distance between center and 

that point. So, [smiling].  

Here, it is clear that Russell has coordinated all of his processes within his cEg since he 

took the algebraic representation for a circle in Euclidean geometry and was able to graphically 

represent where each portion of this equation was represented on his illustration (see Figure 4.41). 

Further, he was able to do this with all general variables and explanations. In other words, he was 

able to coordinate his Euclidean Distance, Radius, Center, and Locus of points processes across 

his GREC and AREC in order to form a coherent structure to the equation of a circle. As such, he 
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was able to verbally express, coherently and in his own words, that the equation is defining all 

points that are the measure of the radius away from the center in Euclidean distance as a result of 

the definition of a circle. Further, when asked if he could write an equation of a circle in Taxicab 

geometry, Russell was able to take this structure from Euclidean geometry and was successful in 

writing the equation for a general circle in Taxicab geometry, although he was never probed to 

explain his thought process in doing so.  

Russell was able to transfer his knowledge from Euclidean geometry to Taxicab geometry 

to make similar connections among the concepts that he observed in Euclidean geometry. In 

particular, he used the definition of a circle to explain the construction of both circles and the 

derivation of the equation of the circle in Euclidean geometry. Further, he appeared to have 

transferred all of these connections to Taxicab geometry to write the equation of this circle. Thus, 

he was able to accommodate his circle schema during the interview (possibly pin pointed to when 

he smiled during his explanation), to fully assimilate his cTg schema into his existing circle 

schema. Thus, Russell provided evidence he was operating at a trans-trans level of schema 

interaction by the end of the interview.  

The interviewer proceeded to ask him if he would be able to sketch a circle using a new 

metric if it were to be defined for him. Russell quickly replied that he wouldn’t know what to do. 

This provided evidence that Russell would need to reflect further on his circle schema in order to 

generalize his understanding and be able to transfer this knowledge to a new metric. Thus, he had 

not thematized this schema in order to construct a circle and derive the equation of a circle with 

another metric. 
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4.2.9.2 Amy 

Amy was a graduate student who participated in the interview with another graduate 

student, Brianna. For her personal concept definition of circle written on the questionnaire, she 

addressed multiple parts of the definition of a circle carefully and related them to a graphical 

representation of a Euclidean circle, as seen in Figure 4.42. 

Before the interviewer could ask Amy about the construction of her circles, Brianna, the 

other student in the interview, had been asked about the equation of a circle in Euclidean geometry. 

While Brianna was trying to recall the format of this equation, Amy stepped in and asked to 

explain. Figure 4.43 shows Amy’s illustrations and equations of the given circle in both geometries 

and excerpts from Amy’s explanations from the interview during this interaction are provided. It 

is noted that in the equation she wrote for her circle in Euclidean geometry seen in Figure 4.43, 

she wrote the value of the radius as 3, but this seemed to be a simple mistake and the analysis of 

her work disregards this error. In addition, during the course, the students did an activity where 

they found the linear equations of the four edges of a Taxicab circle, which was most likely the 

reason Amy wrote these equations next to each edge of her circle.  The next excerpt illustrated 

Amy’s thought process in deriving a different form of the equation of her Taxicab circle (instead 

of the linear equations of the edges). In this passage Amy was verbally explaining in detail how 

Figure 4.42 Amy’s written definition of a circle on the questionnaire 

prior to the interview. 
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the equation for a circle in Euclidean geometry is derived and used the same logic to derive the 

equation for a circle in Taxicab geometry. 

Amy:  Oh, okay. Cause I think that the formula for the circle is the same… I didn’t notice 

that… yeah… so it would be x minus the h and then squared plus y minus k squared, 

and that equals… usually that would equal the distance… if you’re using the 

distance formula, but that equals r squared… that is the distance between… the 

center and any point… 

Interviewer:  Exactly. And so what would be for Taxicab? 

⋮ 

Amy:  So that? I guess that relates to the distance as well? The distance formula… right 

okay… yeah… so x minus 3, plus [y] minus 3 equals… equals… umm… so equals 

the radius which is 2? This is y… so like if we had… if we plugged in one of these 

points it should equal 2? Yeah… okay. Yeah. So that’s the formula. Final answer 

ha. 

Figure 4.43 Amy’s illustrations of a Euclidean and Taxicab circle. 
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Coupled with Amy’s personal concept definition provided in the first question, her 

explanation of the derivation of the equation of a circle in Euclidean geometry indicated that she 

had formed a coherent understanding of both AREC and GREC. This is made evident by the 

connections she was making between various concepts such as the use of the distance formula in 

this equation and the radius of a circle. Her statement about the equation for a circle in Taxicab 

geometry, “I guess that relates to the distance as well?” was an indication that she was transferring 

knowledge from her cEg schema to her cTg schema. She then explained articulately in Taxicab 

geometry that the distance formula (with her center substituted in) should be equal to the value of 

the radius. Thus, she demonstrated she had successfully transferred her understanding of a circle 

from Euclidean geometry to Taxicab geometry, which indicates a coherent understanding of both 

her GRC and ARC. This was also made evident through her comment that “if we plugged in one 

of these points it should equal 2.” This statement indicates she understood any of the points she 

had drawn were on the circle by definition and could anticipate this was the truth through 

reasoning. 

Although Amy never had a chance to explain how she constructed her circles, in Figure 

4.43 it can be seen that during the interview, she drew multiple radii on each of her drawings. By 

the analysis of her conceptions of various components within her circle schema throughout the 

rest of the interview, Amy provided more evidence she had constructed a coherent understanding 

of her GRC and the underlying structure that connects this to her ARC. Thus, Amy demonstrated 

she was operating at a trans-trans level. Later, the interviewer asked Amy if she were given a new 

metric if she would be able to sketch a circle using this new metric, and Amy’s response was “I 

guess uh yeah… applying the same logic…” Neither the questionnaire nor the protocol probed to 

see if she would actually be able to do this or derive the equation for a circle using another metric. 
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However, the fact that Amy thought she could by “applying the same logic” is evidence that Amy 

may have been ready to thematize her circle schema. 

4.2.9.3 Parker 

Parker was a graduate student who participated in an interview with Robin and Marianne, 

who were also graduate students. Parker’s definition of a circle written on the questionnaire was 

the “set of all points equidistant from a given point known as the center.” On the part of the 

questionnaire that asked if the definition of a circle provided held in both Euclidean and Taxicab 

geometry, Parker responded “Yes, the given distance just looks different in reference from the 

center.” This provided clear evidence that while evoking her GRC and saying, “distance just looks 

different,” Parker was aware that the choice of metric is the distinguishing factor between the 

visual appearance of a circle in Euclidean and a circle in Taxicab geometry. Although she was not 

asked to explain how she constructed her geometric representations of the circles shown in Figure 

4.44, many details can be deduced from her illustrations.  

In her circle in Euclidean geometry, it can be seen that she plotted the four points on the 

vertical and horizonal from the center that were two units away from the center and then most 

Figure 4.44 Parker’s illustrations of a Euclidean and Taxicab circle. 
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likely “connected” these points based on how she knew the circle would look. For her circle in 

Taxicab geometry, in addition to plotting the same four points on the vertical and horizontal from 

the center, she also plotted four more points that were two units away from the center. She then 

used these eight points to construct her circle. This is a clear indication that she used her 

understanding of the definition of a circle and the Taxicab metric to construct this circle, and that 

she had formed a coherent underlying structure for her GRC. Again, she did not have an 

opportunity to verbally explain how she constructed these circles, but her illustrations and the 

detailed analysis of her understanding of concepts involved in her circle schema indicated this 

coherence.  

Recall in Section 4.2.5.5 when results for Marianne were presented, it was mentioned that 

Parker made comments about the derivation of the equation of a circle in Taxicab geometry. 

During the prompting from the interviewer presented at the end of Section 4.2.5.5, Parker was 

writing down the equation for distance under her illustration of a circle in Taxicab geometry, seen 

in Figure 4.44. Note that she used the variable 𝑑, and then substituted the value of 2 (the radius) 

for this variable, which is what indicated she understood how distance was involved in the equation 

of a circle. She interrupted the conversation between the interviewer and the other students and 

said the following.  

Parker:  This might be wrong… I wrote the formula for…calculating distance for Taxicab, 

and then I know…this has to be compared to the center which is (3,3) so… if my 

distance is 2, doesn’t that make it?...Is equal to 2. So let me change that…’Cause 

then like this point up here is [(3,5)] and if we plug in 3 and 5…3 minus 3 is 0, 5 

minus 3 is two, so that would mean our distance is 2, which means it’s on the circle. 



212 

Parker implied here verbally that she knew the distance formula was related to the radius. 

Specifically, if the distance from the center to all of the points on this circle is the same, then this 

distance should be equal to the radius of the circle. She then used an arbitrary point to verify on 

her own that a point she knew geometrically was on the circle, would also satisfy her algebraic 

representation of the circle. In this moment, it appeared Parker had generalized her understanding 

of a circle geometrically and algebraically, and how these representations are a result of the 

definition of circle. In general, Parker did not talk about her equation in Euclidean geometry other 

than the fact that she was able to write it. However, from the detailed analysis of her conceptions 

of relevant concepts involved with her AREC, at this point in the interview she would have been 

able to explain how this equation was derived. For these reasons, Parker provided evidence that 

by the end of the interview she had formed a complete, coherent understanding of the underlying 

structure of the circle schema and was operating at the trans-trans level of schema interaction.   

4.2.10 Thematization of the circle schema 

As stated previously, a student has thematized his or her circle schema if given a new 

metric, they can act upon this understanding to construct a circle and also derive the equation for 

a circle in this “new” space. In other words, the student has abstracted the definition of a circle to 

all metrics, can provide geometric and algebraic representations of a circle using any given metric, 

and understands how these representations are related to one another. It would also be expected 

that the student to be able to verbally communicate all of this information coherently.  In general, 

a student has thematized their circle schema if he or she demonstrates an awareness of the global 

definition of a circle over all metrics across all representations (geometric, algebraic, verbal). At 

this point, the structure of the circle schema is a “fundamental part of the understanding and can 

be viewed in totality as an object conception,” (Cooley et al., 2007, p. 7). 
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With regard to the possible thematization of her circle schema, the interviewer asked 

Parker if she was given a different metric, if she could draw a circle using that metric and how she 

would approach that task. Parker responded confidently, “yeah… figure out what the metric is 

asking…and what it’s… well we eventually get our radius, and then we can…” During this 

explanation of how she would approach this problem, she began moving her finger in the air like 

she was starting at a center point and drawing outward. It is interpreted that she was constructing 

multiple radii using some arbitrary metric.  

It was previously mentioned in the presentation of Mark’s responses in Section 4.2.1.3 that 

the students were given a new metric on a quiz the week prior to this and were asked to sketch a 

circle using this metric. On the last day of class during the semester prior to this interview, the 

instructor went over this problem and explained how to construct the unit circle using this metric. 

This is what Parker began discussing at the end of this portion of the interview. In particular, she 

said “I mean we did it in class. The unit circle…and the radius needs to be one, so we have to 

figure out from the metric…what would yield an answer of one and if we do that then we can 

sketch the circle.” Parker demonstrated here that she was completely aware of how she would be 

able to construct a circle if she were given a new metric. Without explicitly stating she would 

construct multiply radii in order to sketch the circle, she implied this by her motions in the air with 

her finger. Further, she described that for a unit circle, she would use the new metric to find the 

points that would be one unit away from the center (“would yield an answer of one”) when we 

calculated the distance from that point to the center using that metric. Once she had done this, she 

implied she would be able to sketch the circle from these points. 

Although she was not presented with the opportunity to actually use a new metric in order 

to construct a circle (besides the week before, which was prior to when Parker most likely made 
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these generalizations), Parker was able to imagine how she would do so. In other words, Parker 

gave explicit directions as to how one could use any metric to construct an arbitrary circle. She 

was not asked about deriving the equation for a circle using this metric but based on her 

generalization of the equation for an equation in Taxicab geometry, Parker may have been able to 

transfer this knowledge and generalization to a new metric. Without this evidence, it cannot be 

said for certain that Parker had completed the thematization of her circle schema but was at least 

in the stage of thematizing it.  

None of the other students that volunteered for these interviews demonstrated such a 

coherent understanding of the underlying structure of the circle schema, however, the 

questionnaire did not necessarily probe for this type of understanding. In Chapter 5, these findings 

are summarized in regard to the research questions for this report, including common obstacles 

that emerged during these tasks. In addition, in Appendix B suggestions for how to help guide 

students towards forming a coherent understanding of the structure (and thematization) of their 

circle schema are discussed. 

In this part of the results, the analysis of 15 students’ circle schema was presented. 

Specifically, how each student represented a circle geometrically and algebraically and how he or 

she used the definition of a circle in each of these representations (and to make connections 

between them) was described. The main focus of this analysis was on how each student 

coordinated processes (if they existed) between his or her geometric and algebraic representations 

in each geometry and how he or she transferred knowledge from Euclidean to Taxicab geometry 

(and back, in some cases). Four out of the 15 students incorrectly drew their circle in Taxicab 

geometry, all of which were a square just oriented in the wrong manner. This does not include 

Robin, who initially drew his circle oriented incorrectly, but was able to adjust his drawing using 
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reasoning prior to the interview. In other words, the four students who did not correctly draw this 

circle were aware that circles in Taxicab geometry are squares but relied on their memory to finish 

their drawing instead of using their understanding of GRC to adjust their sketch. It is noted that 

Eileen checked her illustration and knew most of the points were not actually equidistant but could 

not use her definition of a circle and GRC to fix it. Of the nine students who actually wrote an 

equation for the circle in Taxicab geometry on their own (not as a result of others’ conversations), 

three of them wrote an incorrect equation after trying to copy the format of the equation of a circle 

in Euclidean geometry. Further, two [arguably, three] students wrote the equation correctly by 

copying this format but could not explain why the format would change in relation to the use of 

distance in the definition of a circle.  

These students demonstrated a strong tendency of relying on memory and particular 

properties when their reasoning and logic “failed” them. As Fischbein (1993) explains, in 

geometrical reasoning, a major obstacle is the tendency to “neglect the definition under the 

pressure of figural constraints,” (p. 155). In other words, many of these students somewhat 

disregarded their understanding of the definition of a circle once they were faced with a new 

metric, and relied on memory to complete tasks. This happened even in cases when his or her 

personal concept definition was well developed, as was the case with Darryl. At the same time, 

many students who demonstrated they had at least a fairly coherent understanding of their GRC 

and/or ARC struggled to make connections between individual components of these 

representations as well as make connections between these in the “big picture” that is the circle 

schema. 
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5 DISCUSSION AND CONCLUSIONS 

As a result of the analysis of the data presented, the research questions for this dissertation 

were answered. In addition, some revisions have been identified to the preliminary genetic 

decomposition for many mental structures that exist within a student’s geometry schema. Also, 

ways in which students used GSP to help generalize their understanding of various concepts were 

identified. Lastly, a genetic decomposition for the interaction of two schemata and how this 

influences students’ understandings of definitions was developed. Below, details about how each 

of the research questions have been answered are given provided these results.  

5.1 Discussion of results 

5.1.1 Research question 1 

The first research questions pertained to students’ use of GSP and group work to better 

understand mathematical definitions in geometry. Specifically, in what ways do students use 

Geometer’s Sketchpad to refine their understanding of mathematical definitions? This included 

the following two sub questions. 

(a) How do students apply their working understanding of a definition in Geometer’s 

sketchpad to reason about mathematical problems? 

(b) How does cooperative learning and the use of Geometer’s Sketchpad help students in 

the abstraction of definitions from Euclidean geometry to axiomatic systems in 

general?  

In order to answer these questions, the results from the in-class group work data and some 

of the data from the interviews provided insight as to student opinions about the course. For 

Research Question 1(a), these results support the framework provided by Hollebrands (2003) in 

terms of analyzing students’ use of dynamic geometry software using APOS Theory. In particular, 
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if a student was using GSP to measure specific lengths or in a guess and check method in relation 

to a particular concept, he or she also verbally exhibited an action conception of that concept. An 

example of this conception was presented in Section 4.1.5 when Alex measured the lengths of each 

leg of both triangles in GSP using the Taxicab distance tool. If a student was able to anticipate a 

transformation of an object (in relation to a particular concept) in GSP without actually performing 

it, he or she also exhibited a process conception of this concept verbally. An example of this was 

Brianna’s process conceptions of Radius and Distance, as she suggested another point on her 

Taxicab circle based on the reflection of a known radius and point on the circle, presented in 

Section 4.1.2. Finally, if a student was able to consider the properties and behaviors of a concept 

rather than rely on the specific image on their screen in GSP, they were also exhibiting an object 

conception verbally. An example of this conception was presented in Section 4.1.2 when Ally was 

able to consider general circles in both Euclidean and Taxicab geometry to compare their 

constructions without the use of the specific circle she had constructed in GSP.  

For Research Question 1(b), of the five groups presented in Section 4.1, three of the groups 

tended to work on their own computers, and two of the groups tended to use one shared computer 

to explore concepts in GSP. All of the groups had discussions about their exploration, but it was 

found that the members of groups that worked on individual computers tended to be more engaged 

in activities and discussion, whereas some members of the groups that worked on one computer 

were distracted or disengaged for portions of class. In terms of cooperative learning, this may 

imply that having students be responsible for their own work for submission may encourage more 

active discussion and cooperative learning. Although students would be individually working on 

their own computer, they may be more likely to remain on task and participate in discussion or ask 

questions for things they may not understand about the task at hand which may result in a deeper 
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understanding of the material. This supports results found by Abdullah et al. (2015) (and 

constructivism, in general) in the sense that “any knowledge of an individual is the result of 

activities undertaken by the individual,” (p.110).  

In general, it was found that by conjecturing about the behaviors of objects in GSP and 

listening to group members’ thoughts about these conjectures, the participants in this study were 

able to generalize their understanding of concepts such as Circle and Perpendicular bisector. In 

addition, students were able to make observations about similarities and differences between 

objects and relationships in Euclidean and Taxicab geometry. As evident by the data provided in 

Table 4.1 in Section 4.1.6, students appeared to have had a positive experience with the design of 

the course and the ways in which GSP and group work contributed to their understanding of the 

course material. Thus, for Research Question 1 it is determined that students use GSP in order to 

observe patterns, make conjectures about these patterns and relationships, and test these 

conjectures with the software. They can then use results of this “testing” to either justify why their 

conjecture is correct or why it is incorrect and how they can adjust their understanding to 

compensate for this. As an example, in Section 4.1.3, when Robin, Nicole, and Kristen were 

exploring the concept of Perpendicular bisector in Taxicab geometry, they conjectured that when 

the slope of the segment connecting two points was equal to 1 that this segment’s perpendicular 

bisector in Taxicab geometry would intersect the segment at a right angle, resulting in the same 

line as the Euclidean perpendicular bisector of this segment. Instead of just observing this 

phenomenon on their screen, Nicole wanted to use GSP to mark and measure this angle to be sure 

they had made a correct observation. Another example was presented in Section 4.1.4 when Parker, 

Darryl, and Russell were exploring the triangle inequality in Taxicab geometry, and they made 
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several measurements in GSP to compare distances and try to find patterns that existed when these 

distances had a certain relationship with one another.  

Overall, students appeared to have benefitted from and found significance in using GSP in 

the classroom to explore concepts, even some students who did not express this. For example, 

Samantha was one of the students who chose “Neither Agree nor Disagree” for the question that 

asked if the course helped with her comfortability in using technology in mathematics. Throughout 

the interview she continued to say how she wished she had GSP in order to answer some of the 

questions on the questionnaire, implying she found GSP to be useful for exploration. Based on the 

analysis of the videos of in class group work, there also appeared to be a positive relationship 

between the level in which a student engaged with GSP and the level of understanding of concepts 

and material in the class. Further, Felix pointed out his appreciation for the group work and 

cooperative learning in the classroom, which supports Cavanagh (2011), who found that students 

greatly valued these opportunities to improve their understanding and to remain engaged and 

focused in the course. Felix’s comment about group work is also consistent with Zakaria (2010) 

in how the use of cooperative learning in the classroom affected his attitude towards math. His 

comment was among many that confirmed this notion, which is also supported by the average 

scores for Question 6 on the survey which asked about how this course affected their comfortability 

with mathematics in general, which can be seen in Table 4.1. 

5.1.2 Research question 2 

To answer the second research question, which asked how students adapt their 

understanding of concepts in Euclidean geometry to apply definitions in Taxicab geometry, the 

results from all three methods of data analysis are used. In particular, the reader’s attention is 

shifted to how students relate concepts in Euclidean and Taxicab geometry and how they use these 
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observations to generalize their understanding. In general, it was found students can better adapt 

their understanding of a definition of a conception from Euclidean to Taxicab geometry if they can 

make connections between the algebraic and geometric representations for these concepts. This 

was not initially anticipated that this aspect of a student’s understanding would be so influential to 

their transferal of knowledge to Taxicab geometry from Euclidean geometry. In order to better 

answer this overall research question, the following sub questions that are also part of the second 

research question are answered in Sections 5.1.2.1 and 5.1.2.2. 

(a) What activities in Taxicab geometry can aide in the abstraction of a definition? 

(b) How does applying definitions in an atypical context affect the development of 

student understanding of these definitions? 

(c) How do students transfer their understanding of relationships among concepts in 

Euclidean geometry to Taxicab geometry?  

What follows is how each method of data analysis helped to answer these sub questions. 

5.1.2.1 Group work and GSP 

Through the data that was collected from the group work in class, results can provide 

insight into these sub questions. For Question 2(a), some activities that students worked on helped 

them to familiarize themselves with the Taxicab metric. This also allowed students to make 

connections between concepts in Euclidean and Taxicab geometry in order to make generalizations 

about definitions. The five activities presented in this report are five examples of activities that 

were very productive in this regard. One example of an activity that helped students to generalize 

definitions was the activity in which the students were asked to construct a circle in Taxicab 

geometry. In this activity presented in Section 4.1.2, Ally, Brianna, and Amy were able to 

generalize their understanding of the definition of a circle by comparing and contrasting properties 
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of circles in Euclidean and Taxicab geometry. In particular, this construction led Ally to see very 

quickly that the definition of a circle controlled the construction of a circle, which can lead to a 

different shape of a circle by using different metrics. She specified that she understood the way to 

construct the radii of circles in both geometries is the same, but this results in different appearances 

of these circles by the way distance is measured. Amy and Brianna were also able to generalize 

why this was the case.  

As another example, recall that by seeing the construction of a perpendicular bisector of a 

segment by using circles in Taxicab geometry, Robin was able to identify that this line was indeed 

a perpendicular bisector and explicitly stated that he understood how this construction was related 

to the same construction in Euclidean geometry. It is believed that in the moment that he made this 

connection, he was able to generalize his understanding of the definition of a perpendicular 

bisector is. Thus, Robin would most likely be able to make a distinction between a definition of 

this object versus a description of the properties of this object, such as “the straight line that 

intersects the segment at a right angle,” since he was aware how this construction leads to a line 

that does not necessarily satisfy this description.  

In general, by either having students construct figures in Taxicab geometry that mirror the 

construction in Euclidean geometry, students were able to generalize these definitions or properties 

they observed. In particular, by comparing geometrical or algebraic representations of concepts 

between Euclidean and Taxicab geometry, they were able to understand what aspects of a figure 

part of the definition of that object and what aspects were results of the definition using a different 

metric. Thus, as Dreiling (2012) found, by having students follow procedures based on definitions 

in Euclidean geometry in order to construct figures in Taxicab geometry, these students were able 

to make meaningful generalizations about the definition of various mathematical objects.  
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5.1.2.2 The development of the circle schema through schema interaction 

Recall the other sub questions of the second research question: (b) How does applying 

definitions in an atypical context affect the development of student understanding of these 

definitions? and (c) How do students transfer their understanding of relationships among concepts 

in Euclidean geometry to Taxicab geometry? To answer these questions, I ended up having to alter 

my perspective by considering the interaction of schema that exists between a student’s Euclidean 

geometry and Taxicab geometry schemata. In particular, initially the interview data was analyzed 

by identifying student understanding of various concepts, but I realized the relationships that 

existed were too complex to be described only using this idea.  

Using the idea of schema interaction allowed for a deeper analysis of each student’s make 

up, or structure, of the circle schema. In particular, considering each of the subconcepts within this 

schema (Distance, Radius, Center, and Locus of points) helped to describe these structures. 

There was also a need to consider each of these concepts within both Euclidean geometry and 

Taxicab geometry, how each student understood these concepts within these geometries both 

algebraically and geometrically, and how this resulted in their overall understanding of the 

definition of Circle. In other words, for each concept each student’s Euclidean algebraic 

representation, Taxicab algebraic representation, Euclidean geometric representation, Taxicab 

geometric representation, the relationship between all of these aspects, and how this influenced his 

or her personal concept definition was considered. It was determined that a student’s personal 

concept definition, ability to verbalize coherent statements about the definition of a circle, and how 

these relate to the algebraic and geometric representation depended on how developed the student’s 

circle schema structure was. It is summarized below how each level of schema interaction (that 



223 

there was data for) apparently resulted in how students were able to discuss the concept of Circle 

during the interviews.  

By asking questions about both Euclidean and Taxicab geometry on the questionnaire as 

well as probing from the interviewer, students were presented with an atypical task, just as the 

participants in Baker et al. (2000). In this dissertation, the participants had been accustomed to 

talking about a circle within Euclidean geometry (for a good part of their lives), and then were 

asked to compare and contrast ideas in both geometries about various concepts. A breakdown of 

the number of students that displayed evidence of operating at each level of schema interaction 

within their circle schema is provided below in Table 5.1. The various descriptions of levels of 

schema interaction are also summarized in table format in Appendix A. 

Table 5.1 Distribution of students operating at various levels of schema interaction. 

 

 

 

 

In particular reference to this table and Table 5.3 (which summarizes descriptions of the 

levels of schema interaction), the levels outlined in blue (intra-inter, intra-trans, and inter-trans) 

are levels of that students primarily would be transferring knowledge from Taxicab to Euclidean 

geometry. In other words, a student would be working to make connections in Euclidean geometry 

that they have observed in Taxicab geometry but are not able to fully transfer this knowledge 

necessary to do so. One possible explanation for none of the students exhibiting evidence of 

operating at a higher stage of understanding of their cTg schema than their cEg schema could be 

since [most of] these students have only learned concepts within Euclidean geometry for their 

entire lives until about two weeks prior to these interviews. In other words, it is much more likely 

  cTg 

  Intra- Inter- Trans- 

cEg 
Intra- 3 0 0 

Inter- 3 6 0 

Trans- 0 0 3 
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that students would have a better understanding of the concepts and relationships within their circle 

schema as they are situated in their evoked Euclidean geometry schema than how they understand 

these concepts in their evoked Taxicab geometry schema. Perhaps it is because of this that there 

were not any students that exhibited evidence of operating at the intra-cEg and inter-cTg (intra-

inter), intra-cEg and trans-cTg (intra-trans), or inter-cEg and trans-cTg (inter-trans) levels of 

schema interaction during these interviews.  

Similarly, the levels outlined in orange (inter-intra, trans-intra, and trans-inter) are levels 

where I believe students would primarily be attempting to transfer knowledge from Euclidean to 

Taxicab geometry. In particular, if they have a “higher” stage of schema development for their cEg 

than their cTg, then it is intuitive that in order to continue to form an understanding of the 

underlying structure of their circle schema, students would need to make the same connections in 

Taxicab geometry as they see in Euclidean geometry, so they can generalize properties. Any of the 

other levels that have a combination of orange and blue outlines indicate that a student could be 

transferring knowledge in either direction discussed previously, or back and forth between their 

cEg and cTg in order to make connections between the various representations of circles across 

geometries. In general, the results support this notion.  

There were many trends that emerged in the analysis of the various levels of schema 

interaction for which there was data. What is described below are the most common ways in which 

students appeared to transfer their knowledge of various concepts from one geometry to another. 

By summarizing each student’s attempt at drawing a circle and writing the equation of this circle 

in Euclidean and Taxicab geometry and partitioning these summaries by the particular level of 

schema interaction each student was operating at, particular trends in the data were identified. 

Geometrically, the majority of these trends were found in how students tried to transfer their 
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understanding of Distance and Radius from Euclidean to Taxicab geometry in their illustration. 

Algebraically, the majority of these trends were found as the students were deriving the equation 

for the circle in Taxicab geometry and what particular components they drew upon from their 

understanding of a circle in Euclidean geometry. In particular, to write the equation of a circle, 

some students tried to reproduce patterns, some tried to adapt their understanding of a definition, 

and some tried to transfer their understanding of the relationships between various concepts in 

Euclidean geometry. Below is a summary of these findings and descriptions of some of the 

examples from the participants in the study that exhibited these particular trends in their thinking. 

In addition, how these trends relate to the genetic decomposition for schema interaction and 

descriptions of these levels are provided. In particular, more details about the trends that emerged 

for the students operating at the inter-inter level are presented, since this proved to be the broadest 

classification of understanding. 

Intra-intra.  

Kristen, Samantha, and Mark all demonstrated they were operating at the intra-intra level 

of schema interaction. In terms of their GRCs, all three of these students demonstrated that they 

had memorized the shapes of the circles, particularly in Taxicab geometry, by saying things like 

“I knew what it was supposed to look like” (Kristen), “I keep forgetting that the Taxicab circle it’s 

like a diamond…I keep drawing regular squares” (Samantha), and “I drew it from memory…I 

knew that’s what it would look like,” (Mark). Regarding their ARCs, Kristen and Samantha were 

not probed to write the equations of the circle in both geometries since another student in their 

interview, Hannah, was asked this first and ended up deriving the equations. Mark was probed 

about writing these equations but stated that he didn’t remember them until the other students in 

his interview (Eileen and Felix) talked about them.  



226 

From the evidence provided from the participants, that students operating at the intra-intra 

level of schema interaction rely on memory for both their geometric and algebraic representations 

of a circle, and although they may have a coherent understanding of the definition of a circle as 

evidenced by their personal concept definition, they do not know how to apply this definition in 

the construction or equation of a circle. In other words, their circle schema is made up of isolated 

components, and their explanations usually involve visual observations or local properties about a 

specific circle or formula/equation. 

Inter-intra 

Three students, Alicia, Felix, and Darryl, provided evidence that they were operating at the 

inter-intra level of schema interaction. In the construction of the circles in Taxicab geometry, these 

students tried to transfer their understanding of Circle from Euclidean to Taxicab geometry but 

ended up relying on their memory once they reached a point where they got “stuck”. For example, 

Alicia explained that for her Euclidean circle she constructed several radii and then finished 

drawing her circle. However, for her Taxicab circle she said, “whenever I did it in GSP it always 

gave me like a diamond shape,” and had also said previously that for a circle in Taxicab geometry 

that she “didn’t see how they were equal distant.” Regarding their ARCs, these students identified 

that the distance formula was used in the equation for the Euclidean circle and tried to then copy 

the “format” of this for the Taxicab equation. For example, Alicia said, “based off the distance 

formula” and wrote part of the equation and then verbally explained that she did not want to square 

the radius in this formula “because in the distance formula for Taxi…nothing is squared like how 

it is in Euclidean.” In other words, the only information she was able to transfer from her cEg to 

her cTg were local properties of the distance formulas, without knowing why one was squared and 

the other was not. Similarly, Felix explained he thought the distance formula would be involved 
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“cause that’s what we used…so I don’t think I have to necessarily…square root.” Meaning, he saw 

the distance formula in the equation for Euclidean circle and wanted to use this again in the 

equation for the circle in Taxicab geometry and tried to copy the format of this equation. He ended 

up using a radical in his equation for a circle in Taxicab geometry and squaring the terms with 

absolute values, which visually is similar to the formula for distance in Euclidean geometry.  

From the evidence provided by the students in these interviews, students operating at the 

inter-intra level of schema interaction can make connections between their AREC and GREC, but 

when they attempt to transfer these connections to Taxicab geometry, they end up only being able 

to transfer the visual or local properties from their AREC to their ARTC, and GREC to GRTC, 

separately, without the connections. In other words, they could “copy” the construction of a circle 

in Taxicab geometry, but do not understand why it worked, and they tried to “copy” the format of 

the equation of a circle but cannot describe why these equations are different in relation to the 

definition of a circle and a particular metric. In general, students operating at the inter-intra level 

of schema interaction in this study often fall into the issue of the “prototype phenomenon” 

(Hershkowitz, 1990) for the concept of Circle. This affirms studies that discuss students in 

geometry having similar issues with other concepts (Fujita and Jones, 2006, 2007; Okazaki and 

Fujita, 2007; Turnuklu et al., 2013).  

Inter-inter 

There were six students, Hannah, Nicole, Brianna, Robin, Marianne, and Eileen that 

demonstrated they were operating at the inter-inter level of schema interaction. It is believed that 

a relatively high number many of the participants in this study were classified as operating at this 

level because this level can be “achieved” in a wide variety of ways by making connections 

between concepts and schemas. For example, a student could have a coherent understanding of 
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their GRC, but not show evidence of the ability to transfer meaningful connections from his or her 

AREC to their ARTC and how these relate to their GREC and GRTC, respectively. However, 

another student may not have a coherent understanding of their GRC but were more successful in 

making connections between his or her GRC and ARC in both geometries. In both cases, the inter-

inter level of schema interaction is being exhibited since students are making connections between 

representations between Euclidean and Taxicab geometry. 

In terms of the GRCs of the participants classified as operating at the inter-inter level, all 

six students began by transferring the definition and concept of a circle from Euclidean geometry 

to Taxicab geometry in the construction of their circles. Four of the students, Hannah, Brianna, 

Robin, and Marianne, were successful with this. Hannah and Brianna both explained how they 

constructed particular radii to draw their circles, but also showed that they were aware why all of 

the other points on the circle also satisfied the definition of a circle. Robin had constructed 

particular points that satisfied the definition of a circle, tried to draw the circle based off of memory 

and did so incorrectly, but then used the definition of a circle to go back and check to make sure 

he drew it correctly. When he realized he had not, he changed the orientation of his circle to be 

correct. Marianne explained how she constructed her circle and also went back to make sure 

multiple points off the vertical and horizontal satisfied the definition of a circle.  

In general, all of these students were able to use the definition of a circle to verify that their 

drawings were accurate. Eileen used her definition of a circle to first try and draw her Taxicab 

circle, and then ended up relying on memory for the shape. As this resulted in an incorrect 

orientation of her circle, she stated that she didn’t think all of the points were equidistant from the 

center expressing a clear understanding that this shape should satisfy that definition and the figure 

she had drawn did not. Nicole attempted to use the definition of a circle in her drawing of the circle 
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in Taxicab geometry but had a misconception similar to Darryl’s about how the way of measuring 

distance affects how you can draw lines in Taxicab geometry. In particular, they seemed to have 

discretized Taxicab distance which influenced them to think this is the reason why a circle in 

Taxicab geometry is a square, stating things like “I was thinking from each point it had to be on a 

strict grid, and not go in between” (Nicole), and “since you can’t uh go through the fence...you 

can’t go through the graph…I drew mine in…the form of a square,” (Darryl). Once Nicole and 

Darryl overcome this misconception (which Nicole may have accomplished during the interview), 

it may be the case they will have formed a coherent understanding of their GRCs. 

For the ARCs of these students, three of the students, Brianna, Robin, and Marianne, did 

not write equations for the circles on their own and/or were not [heavily] probed about this 

understanding. However, Robin made a few comments leading us to believe he was trying to 

remember the equations, and Brianna indicated she had coordinated her Distance and Radius 

processes across her AREC and GREC but then resorted to trying to remember the equations. 

Marianne did not derive the equation on her own, but after being involved in conversation between 

the other participants in her interview, indicated that she understood this derivation. The other 

three students, Hannah, Nicole, and Eileen, first recalled the equation for a circle in Euclidean 

geometry, and then identified that the formula for distance would be involved with the equation 

for a circle in Taxicab geometry based on the equation for a circle in Euclidean geometry (we 

assume Eileen did this, although she did explicitly state it). In attempting to write her equations, 

Eileen ended up relying on trying to copy the format of the Euclidean circle equation and 

incorrectly squared the radius term in her Taxicab circle equation. Nicole also attempted to copy 

the format but decided that since nothing was squared in the formula for distance in Taxicab 

geometry, that she would not square the radius. Hannah wrote out her equation for a circle in 
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Taxicab geometry, and then checked to be sure it was correct by substituting in a point from her 

circle to verify the expression would simplify to two, although she did not indicate she understood 

what this meant in terms of the definition of a circle.  

To summarize further, for the six students in this study that exhibited they were operating 

at the inter-inter level of schema interaction, at least four of the six had a coherent understanding 

of the geometric representation of a circle and how this relates to the definition in both geometries. 

At the same time, at least three of the six students exhibited evidence that they were relying on 

memory when they were trying to think about the equations for the circle in Euclidean and Taxicab 

geometry. The other three attempted to copy the format of the equation of a Euclidean circle to 

produce the equation for a Taxicab circle. In general, the students at this level in the study have 

made meaningful connections between their GREC and GRTC (if not formed a coherent 

understanding of GRC) but struggled to make meaningful connections between their AREC and 

ARTC. Of the students who attempted to use the definition of a circle in writing their equation of 

a circle in Taxicab geometry, Brianna, Hannah, and Eileen clearly demonstrated they had made 

some connections between their GRC and ARC, while the others either did not exhibit this, or 

tried to make these connections but struggled to do so. Perhaps guiding these students to make 

[more of] these connections would be beneficial in the development of their circle schema.  

In Table 5.2 the distribution of students in this level of schema interaction is summarized 

as it pertains to their ARC and GRC with regard to the interaction between their cEg and cTg 

schemata. The data is summarized in this way as this was the distinguishing factor among these 

students’ development of their particular circle schema. To clarify, the title of the rows/columns 

indicate what each student relied on to construct their circles (GRC) and to write the equation of 

their circles (ARC) in terms of their cEg and cTg schemata. “Memory” means they predominantly 
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relied on memory to construct/write the equation of their circles, “Connections” means they were 

able to make some connections between their evoked cEg and cTg schemata in order to do so. 

“Coherent” means they had formed a coherent understanding of the construction/equation of a 

circle in general terms. It is noted that if probed, Robin may have been able to verbally explain 

some connections between his GRC and ARC, but this evidence did not exist. Table 5.2 shows 

that all six of the students operating at this level would significantly benefit from the reflection of 

their ARCs and how they relate to their GRCs. 

Table 5.2 Distribution of the students operating at the inter-inter level in terms of GRC/ARC 

 

 

 

 

 

 

Trans-trans 

There were three students, Russell, Amy, and Parker, who showed evidence of operating 

at the trans-trans level of schema interaction by the end of their respective interview. All three of 

these students were able to form a coherent understanding of the construction and equation of a 

circle and how these are a result of the definition of a circle. In other words, they formed this 

understanding in Euclidean and Taxicab geometry separately and together, requiring the 

coordination all of their processes across their GREC and GRTC to construct the corresponding 

more general processes (Distance, Radius, Center, and Locus of points) for their GRC, and the 

coordination of all of their processes across their AREC and ARTC to construct the corresponding 

more general processes for their ARC. They were then able to coordinate all of these general 
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processes (Distance, Radius, Center, and Locus of points) across their GRC and ARC in order 

to identify the underlying structure of their circle schema. They can coherently explain how the 

construction of a circle and the equation of a circle is a result of the definition of a circle and how 

these different representations relate to one another.  

In terms of these students’ GRCs, all three students demonstrated throughout the 

interviews that they were aware all of the points on the circle in each geometry satisfied the 

definition of a circle, in that they are all a particular distance away from the center. Parker was the 

only student to plot more than four points on the circle in Taxicab geometry by constructing radii 

(while others plotted the four points on the horizontal and vertical and used these to complete the 

sketch). Although Russell was the only student of the three to specifically be asked about his 

constructions, the evidence of this understanding for all three students actually emerged in the 

discussion of their equations for their circles. This indicates that they had evoked both their GRC 

and ARC at the same time (coordination) to talk about these equations.  

For their ARCs, all three students were able to explain the structure of the equations of a 

circle in both geometries in general terms and how it related to their illustrations and the definition 

of a circle. This is the main difference between the students operating at the inter-inter level and 

the trans-trans level. As stated previously, some of the students operating at the inter-inter level of 

schema interaction could recall the Euclidean circle equation and could write the equation of a 

circle in Taxicab geometry, but mainly relied on “copying” the format of distance formulas. In 

contrast, the students operating at the trans-trans level understood how the distance formulas were 

involved with this equation as a result of the definition of a circle. For example, Amy explained in 

so many words that for a circle in Euclidean geometry, the formula for distance represents “the 

distance…between…the center and any point” and goes on to say that in Taxicab geometry, the 
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distance formula “equals the radius which is 2.” As another example, Parker said “I wrote the 

formula for…calculating distance for Taxicab…this has to be compared to the center which is 

(3,3) so… my distance…is equal to 2.” Both Amy and Parker explicitly stated that if they 

substituted an arbitrary point on their circle into their equation, that they should get two. In 

particular, Parker even said, “that would mean our distance is 2, which means it’s on the circle,” 

indicating that in writing and explaining the equation of a circle in Taxicab geometry, Parker relied 

on its definition. 

To summarize, by making connections between the algebraic and geometric 

representations of concepts in both Euclidean and Taxicab geometry, students were able to 

generalize their understanding of this definition. There appeared to be a positive relationship 

between the amount and depth of these connections and the extent to which students were able to 

generalize the definition of a circle. By visualizing and algebraically defining a circle in an atypical 

context, such as Taxicab geometry, these students continued to construct relationships between 

components within their circle schema, which once fully developed, will assist students in the 

generalization of axiomatic systems in geometry and to fight the urge to transfer local observations 

and properties of objects between geometries, since they are aware these are essentially side effects 

of a definition and not part of the definition. In other words, with a coherent schema structure for 

this concept, when students evoke their concept image of Circle, they are able to identify what 

parts of this concept image are part of the formal definition and what parts are not.  

Fischbein (1993) explains that in geometrical reasoning, a major obstacle is the tendency 

to “neglect the definition under the pressure of figural constraints,” (p. 155). The results presented 

in this paper are consistent with this notion. Moore-Russo (2008) specified that participants in their 

study did not seem to understand the concept of slope deeply when they thought about slope 
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outside of a common scenario. Something similar seemed to occur with many of the participants 

in this dissertation.  

Since geometry courses examine the Euclidean geometry axiomatic system in depth 

(Byrkit, 1971), it follows that some of these students would face obstacles in thinking about the 

concepts presented in this report in Taxicab geometry. However, it is possible that with this further 

experience, students can make more meaning of these concepts. As Kaisari and Patronis (2010) 

suggest, “the meaning of mathematical concepts cannot be grasped or produced only by definitions 

and/or formal mathematical explanations. It needs an awareness of human action and depends on 

the use of concepts within a particular concept…,” (p. 255).  

5.2 Revised Genetic Decompositions 

5.2.1 Mental Constructions in geometry 

A revision to the preliminary genetic decomposition pertains to students’ conception of 

Distance. It was stated that a student should have an object conception of Euclidean distance and 

de-encapsulate this object before successfully coordinating the process of Taxicab distance with 

his or her Euclidean distance process. Through this analysis, it was found that students do not 

necessarily have to exhibit an object conception of concepts in Euclidean geometry to assimilate 

the corresponding Taxicab geometry concept into their understanding. For example, an individual 

can begin with an action conception of Euclidean distance and interiorize this to be able to 

coordinate it with his or her Taxicab distance Process.  

Figure 5.1 provides an illustration of this revision to the genetic decomposition, in that a 

student can begin at various stages of conception of Distance in Euclidean geometry and still have 

the ability to understand Taxicab distance. However, students must exhibit a process conception 

of both Euclidean and Taxicab distance in order to make connections between properties and 
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figures in these geometries. This idea translates to all of the emergent concepts of Midpoint, 

Circle, and Perpendicular bisector. In other words, regardless of the conception a student has of 

this concept in both Euclidean or Taxicab geometries independently, he or she should have at least 

a process conception of that concept in both geometries in order to coordinate these processes and 

make connections or distinctions between them. Below two revisions to the descriptions of mental 

structures within the preliminary genetic decomposition based on these results are given.  

One revision of the preliminary genetic decomposition arises from how several students 

compared objects in Euclidean and Taxicab geometries. As an example, recall that in Section 4.1.2 

Amy compared Euclidean and Taxicab distances between two points as a triangle, where the 

hypotenuse of this triangle was the Euclidean distance between the points, and the legs of the 

triangle made up the Taxicab distance between them. Within the context of the genetic 

decomposition for the mental structures in geometry, it had not been considered that comparing 

the geometric and algebraic representations of an object in multiple geometries required the 

coordination of these processes. It had also not been considered that the way in which a student 

describes an object as it relates to another within a definition contributes to evidence of his or her 

conception of that object. For example, In Section 4.1.2 when Brianna explained that a Euclidean 

circle is round because the radius is a straight line because of how distance was measured, she was 

Figure 5.1 Revised illustration of a possible way for a student to 

assimilate Taxicab distance into his/her understanding of Distance. 
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exhibiting a process conception of Euclidean Circle because she was coordinating her Radius 

and Distance processes to explain in general terms why this circle is round. 

In other words, I had not considered to what extent relationships among components were 

necessary in order to make these connections, until I began to consider the interaction of schemas 

presented in this report. I rephrase this portion of the preliminary genetic decomposition for the 

concept of Distance below, but note that similar statements should be applied to all process 

conceptions of Midpoint, Circle, and Perpendicular bisector. 

Process: Given a distance formula or told what geometry to consider, an individual can 

calculate the distance between any two points. He or she does not need two specific 

points to imagine the distance between and can describe this distance using his or 

her own words. If a student can consider the Euclidean and Taxicab distances 

between two points at the same time and describe this relationship algebraically 

and/or geometrically, the student is exhibiting a process conception of Distance, 

since this requires the coordination of processes across their Euclidean and Taxicab 

geometry schemata. As an example, a student can describe these distances between 

two points as a right triangle whose hypotenuse represents the Euclidean distance, 

and the legs of which comprise the Taxicab distance between the points. A student 

can also exhibit a process conception of Distance by providing evidence that they 

are coordinating this process with another within a schema. For example, if a 

student is able to explain why the way distance is measured affects the appearance 

of a circle, they are coordinating their Distance process with at least one of Radius, 

Center, and Locus of points, depending on how he or she chooses to explain this.  
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To summarize, a student exhibits a process conception of a concept in geometry if he or she provide 

evidence of any of the following: 

(1) Can talk about the concept in their own words or using arbitrary examples.  

(2) Can talk about the concept in general terms as it exists across geometries (algebraically 

or geometrically).  

(3) Can talk about the concept in general terms as it relates to other concepts.  

The next revision is a result of Tyra’s solution to a problem on the final exam with regard 

to Midpoint. Although this solution was not presented, Tyra found two Taxicab midpoints of a 

given segment and used these to find the equation of the line containing the midset. In the 

preliminary genetic decomposition, this possibility of using midpoints as an input into a function 

to determine an equation that represents all midpoints of two points in Taxicab geometry had not 

been considered. Thus, regarding an object conception of Midpoint, this portion of the preliminary 

genetic decomposition is rephrased below.  

Object: The student has encapsulated this Process into an Object if, when given two points, 

he or she identifies a midpoint of the segment connecting them and can apply an 

action to it. An example of an action that can be applied to this Object is the 

comparison of locations of multiple midpoints in Taxicab geometry. In addition, 

the individual can be aware that a midpoint is not unique in Taxicab geometry when 

the given segment is not parallel to one of the axes and does not have a slope of 1 

or -1. Another way a student can perform an action on his or her Midpoint Object 

is by using two midpoints of a segment in Taxicab geometry to derive an equation 

that represents the midset of the two given points. The action being applied to this 

Object is a transformation of the Object from two points to an equation of a line. 
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Results from this question on the Final Exam which had students investigate the idea of 

equidistance in Taxicab geometry were not provided in this report. However, in Appendix B, a 

suggested wording of this problem to better assess students’ understandings of each of Midpoint, 

Taxicab circle, and Perpendicular bisector is provided as a result of this analysis.  

The magnitude of which students’ conception of Radius would have on their overall 

understanding of Circle was also not anticipated. In particular, it was certainly anticipated that to 

form a coherent understanding of the definition of a circle a student would need to coordinate his 

or her Distance and Radius processes, but I did not consider the complexity of this relationship 

until I began using the framework of schema interaction. Thus, in the preliminary genetic 

decomposition that was created for the various mental structures within the circle schema, details 

had been provided for the concept of Distance, but not for the concept of Radius and the 

relationship that exists between these concepts in a student’s mind.  

Below I provide the descriptions of the various stages of conception a student can have 

exhibit of Radius, how this concept interacts with the concept of Distance, and what this means 

in terms of the overall circle schema. Some examples are inspired by some of the responses of the 

participants in this dissertation. For example, the idea Brianna suggested by using the metaphor of 

a clock influence the description of a process conception of Radius. 

Radius. The radius of a circle is defined as the distance from the center of a circle to any 

point on the circle or the length of a segment connected the center to any point on the circle. Thus, 

the concept of Radius inherently has the subconcepts of Distance, Center, and Locus of points, 

and as these concepts would be evoked by reading this definition. What follows is a description of 

the various stages of conception associated with the concept of Radius and how a student operating 

at each stage by relate the radius to these other concepts within their circle schema.  
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Action:  A student exhibiting an action conception of Radius is able to find the length of a 

radius of a circle either by looked at an equation of a circle or by looking at a 

drawing of a circle. A student could also draw a circle using a particular radius 

length (and center) but cannot explain how this relates to the definition of a circle 

in general.  

Process: A student has interiorized his or her action conception of Radius if he or she can 

understand how to find the length of a radius of any circle in any metric through 

understanding the role a radius has in the definition of a circle. A student can exhibit 

a process conception of Radius as well if he or she is able to make connections 

between how this concept relates to others in the definition of a circle. For example, 

a student explaining that if the radius of a circle is measured as a straight line, then 

the circle will be round is exhibiting evidence that the student is coordinating his 

or her Radius process with at least one of Distance, Center, and Locus of points, 

depending on exactly how this is explained. 

Object: A student has encapsulated their Radius process into an object if he or she can 

perform an action on this object, such as using it as an input into a function. For 

example, if a student uses his or her understanding of the concept of Radius to 

write the equation of a circle, then the student is using his or her Radius object as 

an input into a mental transformation, where the output is the equation for a circle 

with that radius. 

Following this idea for an object conception of Radius, it had not explicitly been identified 

what mental structures were necessary in order to understand the equation of a circle until the 

interaction of schema framework was introduced. In particular, for a student to be able to write 
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and talk about the equation of a circle, he or she needs to have an object conception of (at least) 

the algebraic representation of each of Distance, Radius, Center, and Locus of points, as they 

are being used as inputs into a mental function where the output is an equation. However, these 

objects can be de-encapsulated in order to coordinate the resulting process with other processes 

within his or her circle schema. This would help a student to better understand the derivation of 

this equation. For example, a student can write the equation for a circle but not understand how 

each portion of this equation is a result of the definition of a circle. In this situation, the student 

has an object conception of all of the subconcepts of Circle, since he or she is using them as inputs, 

but this student does not have a coherent understanding of the underlying structure of the circle 

schema. This understanding can be gained by the student de-encapsulating his or her object 

conceptions of each of Distance, Radius, Center, and Locus of points and coordinating them 

with one another in order to observe these relationships. An illustration of this is provided in Figure 

5.2. In particular, the blue arrows indicate the de-encapsulation of all of these objects into 

processes. The red arrows in this figure indicate the possible coordinations that could then occur 

among these processes.  
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Kaisari and Patronis (2010) suggest there are three types of use of geometrical concepts: 

(1) as elements of representation of spatial experience, (2) as objects of traditional School practice, 

and (3) as constituents of an abstract mathematical theory (pp. 255-256). The first focuses on 

geometry as a model separated from formal definitions and proofs, the second focuses on 

defaulting to Euclidean geometry, and the third focuses on abstraction and formalization. The 

students in this report illustrated a combination of geometry of these types of uses. For example, 

Parker demonstrated in Section 4.2.9.3, that she was using spatial sense to first understand the 

definition of a circle, then used abstraction and formalization to generalize her personal concept 

definition of a circle. An example of a student using geometry as an object of traditional School 

practice was presented in Section 4.1.3 when Nicole seemed to become disengaged once her group 

found the “desired” answer of the instructor, as she interpreted it to be.  

Many participants in this report follow the findings of Kinach and Fostering (2012) that 

their students demonstrated an understanding of concepts in geometry mainly through algebraic 

and numerical methods, absent of a spatial understanding. For example, many students in this 

Figure 5.2 De-encapsulation of components in order to coordinate 

processes within the circle schema. 
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report some students relied solely on their algebraic and numerical scratch work when finding the 

equation of a circle. On the other hand, many of the solutions and descriptions provided by these 

participants were very complex, which is why there was a need to incorporate the framework for 

schema interaction in the analysis. In general, these results affirm the claim that there is a need for 

further research in determining whether comparing ideas and concepts in different geometries 

result in a deeper insight into Euclidean axioms (Kinach & Fostering, 2012). 

5.2.2 Schema interaction 

There is not a revision to the genetic decomposition for the interaction of these schemata. 

In lieu of a revised genetic decomposition for this section, below in Table 5.3 is a summary table 

of the various levels of schema interaction as they were exhibited and believed to have existed 

within these participants. Recall that the levels outlined in blue (intra-inter, intra-trans, and inter-

trans) indicate a level where a student would primarily be transferring knowledge from Taxicab to 

Euclidean geometry. Similarly, the levels outlined in orange (inter-intra, trans-intra, and trans-

inter) are levels where students would primarily be attempting to transfer knowledge from 

Euclidean to Taxicab geometry. As stated previously, these students were much more familiar with 

Euclidean geometry than they were with Taxicab geometry, so the natural flow of knowledge 

would be in this direction from their cEg schema to their cTg schema. Any of the other levels that 

have a combination of orange and blue outlines indicate that a student at that level could be 

primarily transferring knowledge in either direction discussed previously, or back and forth 

between their cEg and cTg in order to make connections between the various representations of 

circles across geometries. 
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Table 5.3 Genetic decomposition for the cEg-cTg schemata interaction within the circle schema. 
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5.3 Implications for instruction 

In this study, illustrations of various stages of conception in APOS Theory were presented 

as they were exhibited by students enrolled in a college geometry for many different concepts. 

Many students could recite and explain the definitions of various mathematical objects but 

struggled to correctly draw or algebraically define these objects in Taxicab geometry based on this 

definition. By using APOS Theory to analyze these participants’ work and responses to questions, 

I was able to identify some common misconceptions about Taxicab distance, circles, midpoints, 

and perpendicular bisectors. For example, multiple participants believed one could not travel in 

non-integer increments in Taxicab geometry (i.e. – “split” units or measure distance continuously) 

since a car would not be able to drive through blocks in a city. This did lead to students attempting 

to calculate and imagine distance under a certain constraint, which resulted in misconceptions in 

Taxicab geometry. This is consistent with Smith (2013), as he had to explain to students that we 

have to think of the streets and the blocks in between as “negligible width, allowing nonlattice 

points to be generated,” (p. 619).  

This study has several implications with regard to the teaching and learning of geometry 

in the college classroom. First, it was found that through group work and the use of a dynamic 

geometry software, students were generally successful in accomplishing a shared goal and 

deepening their understanding of various definitions. However, in the cases where students all 

chose to share one computer in order to use this software, many times members of the group were 

off task and distracted, as they perhaps did not feel as much accountability for the group’s work. 

Thus, with the use of cooperative learning and technology in the classroom, these results are 

consistent with results from Cavanagh (2011) in that students positively react to the use of 

cooperative learning and Zakaria (2010) in that students’ attitude towards math had improved 
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[possibly] as a result of the structure of this course. It is noted, that as many factors affect student 

success and attitude, it cannot be said for certain the cooperative learning and use of GSP led to 

the overall positive experience these students had. However, these results further support Hull and 

Brovey (2004) that instruction that includes technology should be used not only in teacher-led 

instruction, but in a self-directed way as well, since there were many cases of students discovering 

and generalizing without the explicit guidance of the instructor. Thus, the use of well-prepared 

activities that each student is required to complete on their own for submission is suggested, but 

that they complete these activities with one another. In this way, each student is responsible for 

their own understanding within their submission, but the group as a whole is still working towards 

a shared goal. In other words, as they work together, students are not only using self-guidance but 

are helping guide one another as well. This also can lead to a better sense of community within the 

classroom and a comfortability that students can find with each other to talk about their 

understanding and ask questions. 

Second, this study led to the creation of a model for schema interaction within the context 

of geometry which in turn leads to another teaching implication. In particular, as students tried to 

transfer knowledge from Euclidean to the Taxicab geometry context, the connections between 

algebraic and geometric representations played a much bigger role than anticipated. In the context 

of APOS Theory, the more processes a student had coordinated between his or her Algebraic 

Representation of Circle and Geometric Representation of Circle (across Euclidean and 

Taxicab geometry), the more the student was able to coherently talk about a circle and its 

properties. In particular, the more coherent this structure was, the more students were able to 

identify the difference between a definition in mathematics and the properties that are a 

consequence of the setting in which this definition was being considered. Further, the more 
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connections between these algebraic and geometric representations students made, the more likely 

they were to be able to construct figures and identify relationships in new metric spaces.  

Based on these results, in Appendix B suggested activities are provided that will help in 

the development of the circle schema in relation to a student’s GRTC, AREC, and ARTC. There 

is a focus on these aspects since these seemed to be where these students needed the most guidance 

in order to make connections between a circle in Euclidean and Taxicab geometry. Of course, these 

activities are open for the reader to edit or adapt as he or she sees fit for use in a classroom, but 

these have the over-arching goal to facilitate the connections between representations for the 

concept of Circle.  

First, activities to help with understanding the connections between the geometric and 

algebraic representation of distance in Euclidean and Taxicab geometry are presented. It was 

determined that that many students struggled to understand the distance formula in Euclidean 

geometry, which may have led to an issue with transferring particular knowledge from Euclidean 

to Taxicab geometry within their circle schema (e.g. - Distance as it relates to Radius). I believe 

this was one of the main obstacles students faced with both drawing and writing the equation for 

the circle in Taxicab geometry on the questionnaire. As a note, these activities are not designed to 

necessarily be given sequentially in the same period of time, and students should be briefly 

introduced to the Taxicab metric prior to completing Activities 2, 3, and 5, as well as a brief 

introduction to Taxicab circles before completing activities 3 and 5. Once a student has achieved 

a trans-trans level of schema interaction, Activity 6 is provided as a supplement, which is intended 

to help in the thematization of the circle schema so that they can transfer this understanding to a 

new metric space. Within these activities in Appendix B, the task to be given to students along 

with the pedagogical goals are provided, along with ideal solutions for some of these tasks.  
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Lastly, another teaching implication for this study is the effect that constructions within 

atypical contexts have on students’ understandings of definitions. In particular, having students 

explore concepts without explicitly stating the concept they are exploring significantly helped 

students in this study to generalize their understandings. For example, in The Red Line 

Investigation presented in Section 4.3.2 shows students the construction of a perpendicular bisector 

in Taxicab geometry with the goal that students could determine the relationship between the 

circles used in this construction and the constructed line and transfer this relationship back to 

Euclidean geometry to identify what was being constructed, based on the definition of that object 

(perpendicular bisector). In other words, by not stating “perpendicular bisector” within the 

problem, students were able to dissociate any misconceptions or preconceived understanding of 

properties that are involved with their concept images of Perpendicular bisector and approach 

the problem with limited associations. By doing this, it was the goal to avoid the conflict described 

by Çetįn (2009), in that “portions of concept image can be in conflict each other but also conflict 

might happen between concept image and its formal definition,” (p. 24). These results also affirm 

that when attempting to apply mathematical definitions, many students have incomplete concept 

images from which they reason, resulting in them rejecting given definitions to use their imprecise 

concept image (Dickerson & Pitman, 2012).  

Overall, these results imply exploration in a “simpler” non-Euclidean geometry led 

students to make more sense out of the definition of various concepts in Euclidean geometry. In 

addition these results are consistent with that of Smith (2013) and Berger (2016) in that many of 

these participants were able to generalize their understanding of why the shapes of figures can 

change as a result of the underlying structure of a definition. Güner and Gülten (2016) explain that 

geometry has three dimensions: definitions, images that represent these definitions, and their 
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properties. I believe participants in this study deepened their understanding of the relationships 

between these three dimensions.  

5.4 Limitations of the study 

There are several limitations to this study. One limitation is that there were only 18 students 

enrolled in the course, and a greater number of participants could reveal more examples of various 

stages of conception for the concepts that emerged in the minds of these participants. Also, the 

enrollment in this course was cross-listed so there were both undergraduate and graduate students, 

as well as mathematics majors and students in an education program. These results did not 

explicitly take these characteristics into account other than noting what level and program they 

were in. These various differences in backgrounds may have had an effect on the interactions that 

took place within the class room and within the context of group work.  

Further, it should be noted that I can only gain as much insight to these students’ 

understanding of various concepts as they are willing to provide. In many cases, the conception a 

student is exhibiting may not be his or her overall conception that student has, but rather the 

“highest” conception the student finds necessary in order to answer a particular question or 

complete a particular task. Within the context of analysis, another limitation of this study was 

having only utilized the frameworks of APOS Theory and concept image and concept definition. 

As Baker et al. (2000) state, there are other theories or models that could have been used to analyze 

this data that may have led to other conclusions.  

5.5 Future research 

Moore-Russo (2008) points out that there is not as much literature on attributes of 

geometric figures and the relationships between them than there is on the construction of 

definitions of geometric figures, which was a major motivation for this study. Future research 
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could benefit from investigating how differently designed activities affect student understanding 

of definitions and mathematical terms. In particular, do students better understand mathematical 

concepts from constructing definitions, using their personal definitions to observe properties and 

incorporate these with prior knowledge, or using given definitions and applying them in a situation 

to determine what mathematical concept is under consideration? Further investigations into this 

can help to develop more instructional material that will help facilitate an understanding of 

mathematical definitions, their roles, and their uses. Moore (1994) discusses how mathematical 

language or definitions are a large influence on students’ inability to write proofs. Thus, more 

research on how students understand mathematical definitions and how they apply them in their 

geometric reasoning could result in bettering student understanding of proofs.  

As an extension of this direction in approach to instruction, this report provided examples 

of activities and interactions in which students generalized definitions using technology and group 

work. These results lead to further research questions such as (1) In what other ways can 

technology help students to interiorize their action conceptions or encapsulate their process 

conceptions of definitions of various concepts in mathematics? (2) How else can we utilize APOS 

Theory to analyze student interactions with technology in mathematics? (3) What other 

frameworks can be used to model this interaction?  

There is a lack of research that uses of the stages of the triad in APOS Theory (for 

examples, see Clark et al. (1997) and McDonald et al. (2000)), but even fewer studies that use the 

idea of the “double triad” or schema interaction. A model of schema interaction was described in 

detail, using the original model by Baker et al. (2000) as a guide (see Trigueros (2004) for a second 

model pertaining to differential equations). It was determined that analyzing this data using APOS 

Theory without the triad or schema development hindered the researcher from understanding the 
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thought process of many of the participants. By involving these facets of APOS Theory into the 

analysis I was able to better describe the structure of these participants’ circle schema and their 

overall understanding of the definition of various concepts in geometry. This leads to future 

research questions such as (1) What pedagogical activities could help in the development of a 

student’s circle schema with this schema interaction in mind? (2) Within the circle schema, what 

other schemata and their interaction would be beneficial for a student to help with the development 

of its underlying structure? (3) What does the thematization of other schemata look like? (4) What 

other mathematical situations could be better understood through analysis using schema 

interaction? I suggest that future research investigates these issues. 
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APPENDICES  

Appendix A INTERVIEW QUESTIONNAIRE AND PROTOCOL 

We note that red text indicates questions part of the protocol given to the interviewer to ask each 

student, orange text indicates sample solutions students could provide for each portion of the 

questionnaire, and black text indicates questions that students responded to on the questionnaire 

prior to each interview. 

Preliminary Questions: 

• What are your majors/programs? 

• What are some of the highest-level mathematics courses you have completed prior to this 

course? 

• Do you have a degree in a different area of study? If so, what area and where did you earn 

your degree from? 

• How do you feel about the course? [Elaborate on any interesting responses] 

[Ask students to elaborate on any of the Likert-Scale questions they feel strongly about one 

way or another] 

Interview Questionnaire 

1. Define and draw an image (or images) that represents each of the following terms, 

however you see fit.  

a. Circle - {𝑃: 𝑑(𝑃, 𝐶) = 𝑟, 𝑤ℎ𝑒𝑟𝑒 𝑟 > 0 𝑎𝑛𝑑 𝐶 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑}, or the locus of points 

equidistant from a fixed point. 

b. Distance – a function that gives measurement to how far apart two objects are 

c. Congruent Triangles – all corresponding angles and sides are congruent 
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d. Tangent line – a line that intersects another figure at exactly one point; line that is 

perpendicular to a radius at a given point (point of tangency) 

e. Perpendicular bisector of a segment – the locus of points equidistant from 

endpoints of segment; or the line that is perpendicular to the segment that crosses 

through the midpoint of the segment 

f. Ellipse - {𝑃: 𝑑(𝑃, 𝐹1) + 𝑑(𝑃, 𝐹2) = 𝑑, 𝑤ℎ𝑒𝑟𝑒 𝑑 > 0 𝑎𝑛𝑑 𝐹1 𝑎𝑛𝑑 𝐹2 𝑎𝑟𝑒 𝑓𝑖𝑥𝑒𝑑}, 

or the locus of points such that the sum of distances from any point of the locus of 

points and two other distinct fixed points is constant 

(a) What was your thought process in coming up with these definitions? 

(b) Does your definition work in both Euclidean and Taxicab geometry? 

2. For any two points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) 

(i) Euclidean distance is given by 𝑑𝐸(𝑃, 𝑄) =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

(ii) Taxi distance is given by 𝑑𝑇(𝑃, 𝑄) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| 

a) Using the grids below, illustrate each of these two distances. Be as detailed as possible in 

labeling each of them.  

        

  Euclidean distance       Taxicab distance 
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(a) How do each of your drawings represent each distance? 

(b) Did you use the definition of each type of metric when you made your illustrations? 

(c) If I gave you a different metric or way to measure distance, do you think you could 

illustrate that easily? 

b) Is it possible for these two distances to be same, i.e. 𝑑𝐸(𝑃, 𝑄) = 𝑑𝑇(𝑃, 𝑄)? If yes, 

explain.  

Yes, it is possible for them to be equal if the points are vertical or horizontal from 

one another. 

(a) Elaborate on your response to this question.  

(b) Is it possible for the Euclidean distance be more than the Taxicab distance between two 

points? 

(c) Is it possible for the Taxicab distance be more than the Euclidean distance between two 

points? 

3. Is the following definition true in both geometries? Explain. 

“The circle (Euclidean or Taxi) is a set of points in the plane equally distant from 

a fixed point.”  

Yes, it is true. Definitions are constant between geometries, although they 

produce different looking objects. 

(a) Does this definition differ from your definition in the Preliminary questions? 

a. If so, what is the difference? Are they still equivalent? 

b. If not, what makes them the same? 

4. Sketch the following circle in each of the geometries: Circle with center at 𝐶(3, 3) and 

radius 𝑟 =  2.  
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        Euclidean circle           Taxicab circle  

(a) How did you go about drawing each of your circles? 

(b) How did you use the definition of a circle in each situation? 

(c) Could you write the equations for each of these circles? Describe what they would look 

like. 

(d) If I gave you any center and any radius, do you think you could draw the Taxicab circle 

associated with it? 

(e) If I gave you a different metric or way to measure distance, do you think you would be 

able to sketch a circle using that metric? How would you go about sketching a circle? 
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Appendix B SUGGESTED ACTVITIES 

Activity 1. (Euclidean distance) 

(a) On the first grid provided, plot points at (1,2) and (4,6). Illustrate the distance between 

these two points in Euclidean geometry.  

(b) Calculate the distance between the x-coordinates and the y-coordinates of these two points 

and draw/label these distances on your graph. What figure is formed from your original 

illustration of the distance between these two points and the distances you just drew? 

(c) Using your answer to the question in part (b), can you use the distances you found for part 

(b) to find the distance between these two points? What theorem did you use to do this? 

(d) Repeat parts (a)-(c) on the second grid, but with points arbitrary points (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2). 

(e) Reflection: The distance between two points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) in Euclidean 

geometry can be calculated by 𝑑𝐸 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. Write a few sentences to 

explain how this formula is illustrated in your graph. 

Pedagogical goal for Activity 1.  

For an ideal solution, the students should realize they have formed a right triangle in parts 

(a) and (b), and that they can find the length of the hypotenuse, which is the distance between these 

two points, by using the Pythagorean theorem (part (c)). Then, by generalizing this to arbitrary 

points (part (d)) and having them reflect on what similarities they identify between the provided 

formula for distance in Euclidean geometry and their graph from part (d), I hope that students will 

come to understand the derivation of this formula better both geometrically and algebraically. Ideal 

graphical solutions for parts (a)-(d) can be found in Figures B.1 and B.2. 
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Activity 2. (Taxicab distance/cEg) 

(a) On the first grid provided, plot points at (1,2) and (4,6). Illustrate the distance between 

these two points in Taxicab geometry such that it forms the legs of a right triangle.  

(b) Calculate the length of each “leg” of this distance using the x-coordinates and the y-

coordinates of these two points. Label these distances on your graph.  

Figure B.1 An ideal graphical solution for parts 

(a)-(c) of Activity 1. 

Figure B.2 An ideal graphical solution for part (d) 

of Activity 1. 
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(c) Using part (b), calculate the total distance in Taxicab geometry between these two points. 

Is it possible to draw any other “route” between these two points that is the same distance 

in Taxicab geometry? Shorter? Longer? 

(d) Repeat parts (a)-(b) on the second grid, but with points arbitrary points (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2). Use this information to calculate the distance in Taxicab geometry between two 

points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2). 

(e) The distance between two points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) in Taxicab geometry can be 

calculated by 𝑑𝑇 = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1|. In 2-3 sentences, summarize how this formula 

is illustrated in your graph. Why is it necessary to include the absolute value signs? 

(f) Reflection: Compare and contrast how the differences in the 𝑥 and 𝑦 coordinates of two 

points (𝑥2 − 𝑥1 and 𝑦2 − 𝑦1) are used in the formulas for distance in Euclidean and Taxicab 

geometry in relation to your graphs. 

Pedagogical goal for Activity 2. 

For this ideal solution, the students should realize in parts (a)-(c) they can use the difference 

in x coordinates and y coordinates to find the distance between two points in Taxicab geometry. 

In addition, by asking them about other routes of shortest Taxicab distance, I hope they will 

abstract that, although there is more than one way to illustrate Taxicab distance, this method results 

in calculating the length of all shortest paths. Then, by generalizing a form of this calculation to 

arbitrary points (part (d)) and having them reflect on what similarities they identify between the 

provided formula for distance and their graph in part (e), I hope that students will come to 

understand the derivation of this formula better both geometrically and algebraically. Lastly, for 

part (f), I hope that students will begin to make better connections between distance in these two 
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geometries, and how they are represented geometrically and algebraically. Ideal graphical 

solutions for parts (a)-(d) are below in Figures B.3 and B.4.  

 

 

 

 

Figure B.3 An ideal graphical solution for 

parts (a)-(c) of Activity 2. 

Figure B.4 An ideal graphical solution for 

part (d) of Activity 2. 
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Activity 3. (GRTC/cEg) 

(a) Using the figure provided (Figure B.5), illustrate the Taxicab distance between the point in 

the center of this figure and each of the red points on the figure. Show or disprove that all 

of the red points on this figure have equal Taxicab distance from the center point. 

(b) What is the definition of a circle? Does this figure provided satisfy this definition? How do 

you know? 

(c) Draw/sketch a circle in Taxicab geometry centered at (2,1) with radius 4 by finding at least 

6 different points that would be on this circle. Label the center of this circle and illustrate 

the 6 different radii that you have constructed.  

(d) Reflection: Does the definition of a circle change from Euclidean to Taxicab geometry? 

What properties of a circle hold from Euclidean to Taxicab geometry? What properties do 

not? 

Pedagogical goal for Activity 3.  

From this activity it is aimed that students can begin to reflect on their understanding of 

the definition of a circle and abstract upon this to not feel the “figural constraints” Fischbein (1993) 

refers to. In particular, students can make geometrical connections between their concept of 

Figure B.5 Provided figure for Activity 3. 
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Radius in both Euclidean and Taxicab geometry, geometrically and algebraically, since this was 

a common obstacle for the participants in this study.  

 

Activity 4. (GREC/AREC) 

Using the figure provided (Figure B.6), the formula for distance in Euclidean geometry, 

and the format of the example below: 

(a) Calculate and illustrate the distances between each of the following points and the center 

of the circle 

Point (1,2)       √(1 − 4)2 + (2 − 2)2 = 3 

Point (4,-1)        ______________________________ 

Point (7,2)        ______________________________ 

Point (4,5)        ______________________________ 

(b) Do you notice any similarities/differences in all of your responses to part (a)? Explain how 

these similarities/differences relate to the graph of this circle.   

Figure B.6 Provided figure for Activity 4. 
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(c) Reflection: Use your responses to parts (a)-(b) to write the equation for this Euclidean 

circle. In your own words, use 2-3 sentences to explain what this equation is saying in 

relation to your graph and to the definition of a circle.  

Pedagogical goal for Activity 4.  

We hope through this activity, that students can better understand where values in the 

equation of a circle in Euclidean geometry are located on a graph, and not only that the distance 

formula is used within this equation, but why it is used in relation to the definition of a circle, i.e. 

– that the distance between any point on the circle and center should be constant, and is equal to 

the radius of that circle.   

 

Activity 5. (GRTC/ARTC) 

Using the figure provided (Figure B.7), the formula for distance in Taxicab geometry 

formula, and the format of the example below: 

(a) Calculate and illustrate the distances between each of the following points and the center 

of the circle 

Figure B.7 Provided figure for Activity 5 
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Point (1,2)                 |1 − 4| + |2 − 2| = 3 

Point (6,1)                 ________________________ 

Point (6,3)                 ________________________ 

Point (3,4)                 ________________________ 

(b) Do you notice any similarities/differences in all of your responses to part (a)? Explain how 

these similarities/differences relate to the graph of this circle.   

(c) Reflection: Use your responses to parts (a)-(b) to write the equation for this Taxicab circle. 

In your own words, use 2-3 sentences to explain what this equation is saying in relation to 

your graph and to the definition of a circle.  

(d) Reflection: Does the definition of a circle change between Euclidean and Taxicab 

geometry? What geometric/algebraic properties of a circle in Euclidean geometry still hold 

in Taxicab geometry? What geometric/algebraic properties do not?  

Pedagogical goal for Activity 5.  

We hope through this activity, that students can better understand where values in the 

equation of a circle in Taxicab geometry are located on a graph, and not only that the distance 

formula is used within this equation, but why it is used in relation to the definition of a circle, i.e. 

– that the distance between any point on the circle and center should be constant, and is equal to 

the radius of that circle. By asking them to relate their findings to their understanding of a circle 

in Euclidean geometry, I hope students will begin to coordinate more processes across their cEg 

and cTg schemata in order to better the development of their circle schema in general.  
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Activity 6. (Thematization of the circle schema) 

Define a new metric (or way to measure distance) between two points 𝑃(𝑥1, 𝑦1) and 𝑄 (𝑥2, 𝑦2) 

as 𝑑𝑀 = max{|𝑥2 − 𝑥1|, |𝑥2 − 𝑥1|}. This is sometimes referred to as Maxi-distance.  

(a) Using the first grid provided, plot the points (1,2) and (4,6). Use the provided distance 

formula to calculate the distance between these two points and illustrate this distance on 

your graph. In your own words, explain how to calculate Maxi-distance. 

(b) Use the definition of a circle and the grid provided to draw/sketch the Maxi-circle centered 

at (4,2) with radius 3. (Hint: think about how you use a metric to construct the radii of a 

circle in Euclidean/Taxicab geometry, and try to use this idea here). 

(c) Using the definition of a circle, try to write the equation of this circle. If necessary, use 

some points on your circle to verify that your equation is correct.  

(d) Reflection: Write 2-3 sentences to compare and contrast your geometric representation and 

the equation of this circle to that of a circle in Euclidean and Taxicab geometry. 

Pedagogical goal of Activity 6.  

From this activity, I hope that students can take what they have abstracted about a circle 

from their exploration in Euclidean and Taxicab geometry (and comparing these) and be able to 

illustrate a new metric and a circle using this metric. It is also a goal that from the definition of a 

circle, a student will be able to determine the equation of that circle by identifying that that the 

Maxi-distance between any point on the circle and center should be constant, and is equal to the 

radius of that circle. Thus, the student will have reflected and abstracted enough on their 

understanding of a circle to have a coherent understanding of how to complete these tasks. After a 

student is able to complete this activity, if they were given a new metric and asked to sketch a 



284 

particular circle within that space, that they could utilize their circle schema and geometrical 

reasoning skills to do this on their own, without prompting.  

 

Activity 7. (Midpoint, Perpendicular bisector, Circle) 

As a note, the original problem given to students simply asked them to graphically illustrate 

where their apartment could be located and to associate a mathematical term with this illustration. 

While the openness of that problem was a positive for this collected data and analysis, the 

following suggestion for altering the problem is to to probe for certain understandings of 

mathematical concepts. As such, this problem can be used as an assessment tool or as an in class 

activity. 

Assume Georgia State’s campus and surrounding streets are designed explicitly in a 

grid pattern, i.e.- distance is measured by Taxi-distance. You are looking for an apartment near 

campus, but you want to make sure that from your apartment, the walking distance to Aderhold 

(located at (-2, -2)) is the same as the walking distance to the College of Education and Human 

Development (located at (4, 3)), since you have classes in both locations. 

a. Provide one possible location of your apartment, given that you want it to be half 

way between the two buildings. What mathematical term would describe the point 

you provided? Is there more than one possible point that you could have given? 

b. Is it possible to find a location of your apartment, given that you do not want to be 

half way between the buildings but still equidistant to them? Is there more than one 

possible point that you could have provided? What mathematical concept would 

you associate with your solution?  
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c. Draw a graphical representation of how a taxicab circle could be used to identify a 

location for your apartment, given that you don’t care if you are halfway between 

the buildings or not. Is there more than one way to do this? Does this relate at all to 

your answers from (a) and (b)? 

d. How would your responses to these questions change if we provided two new 

locations for the buildings? 

For part (a), the goal is for students to identify a midpoint between the buildings and use 

their definition of midpoint to understand this is what they have drawn. In addition, I hope students 

can generalize this point to all points that are half way between the buildings and understand their 

point is not unique.  

For part (b), the ideal solution would be that a student provides a point that is on the 

perpendicular bisector and uses their personal definition of perpendicular bisector to understand 

their point falls on this line. Also, the aim is for students to see that they could have chosen any 

point on the perpendicular bisector that is not in the midset, bringing awareness again to the fact 

that a solution is not unique.  

For part (c), the goal is for students to visualize how a Taxicab circle could be used to find 

such a point. Hopefully, they arrive at the conclusion that the center of the circle would be a 

possible location for their apartment and see that this is not a unique place. The answers to this 

part could be analyzed in more depth with regard to the coordination of processes discussed in 

Figure 3.9 in Section 3.1.2.3. 

For part (d), the goal is to probe students to see if they can observe what happens when the 

original two points change. In particular, if students are able to compare properties of a 

mathematical definition between Euclidean and Taxicab geometries, or able to compare properties 
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of a mathematical definition as you change certain conditions within one geometry, they may be 

exhibiting an object conception of that mathematical concept. For example, if a student is able to 

describe how, in Taxicab geometry, the perpendicular bisector appears differently if you change 

the slope of the original segment, this is evidence of an object conception of Perpendicular 

bisector. 
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