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ABSTRACT 

 

 

THREE EMPIRICAL ESSAYS ON HEALTH INFORMATICS AND ANALYTICS 

 

BY 

 

Youyou Tao 

 

07/16/2018 

 

 

Committee Chairs: Dr. Abhay N. Mishra, Dr. Mark Keil 

 

Major Academic Unit:        Computer Information Systems  

 

Health Information Technology (HIT) has an important and widely acknowledged role in enhancing healthcare 

performance in the healthcare industry today. A great amount of literature has focused on the impact of HIT 

implementation, yet the studies provide mixed and inconclusive results on whether HIT implementation actually 

helps healthcare providers enhance healthcare performance. Here, we identify three possible research gaps that lead 

to these mixed and inclusive results. First, prior IS research has exclusively examined HIT complementarity 

simultaneously, but ignored the temporal perspective. Second, extant HIT research has primarily examined the 

relationship between HIT implementation and healthcare performance in a static framework, which may neglect the 

dynamic relationship between HIT and healthcare performance. Third, prior HIT value studies have typically 

examined HIT’s impact on hospital-level outcomes, but no extant studies consider HIT impact on transition-level 

outcomes as disease progresses over time.  

This dissertation addresses these gaps in three essays that draw upon three different lenses to study HIT 

implementation’s impact on healthcare performance using three analytics methods. The first essay applies 

econometrics to study how various types of HIT complementarities simultaneously and sequentially impact diverse 

healthcare outcomes. In so doing, we find evidence of simultaneous and sequential complementarity wherein HIT 

applications are synergistic—not only within the same time period, but also across periods. The second essay uses 

advanced latent growth modeling to explore the dynamic, longitudinal relationship between HIT and healthcare 

outcomes after incorporating the nonlinear trajectory change of different HIT functions and the various dimensions 

of hospital performance. The third essay applies multi-state and hidden Markov models to examine how HIT 

functions’ implementation levels impact a finer, more-granular-level healthcare outcome. This approach includes the 

dynamics of the transitions, including observable transitions (chronic to acute, acute to chronic, chronic to death, 

and acute to death) and underlying and unobservable transitions (minor to major disease and major disease to death). 

This essay examines how different types of HIT can improve different transitions types as diseases progress over 

time.  
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Over the past decade, the adoption and use of health information technology (HIT) has increased 

significantly among U.S. healthcare providers. In 2015, 84 percent of non-federal acute care 

hospitals1 had adopted a basic Electronic Health Record (EHR) to support the display of various 

data, including patient demographics, problems, and medications; clinician notes and medication 

orders; and laboratory and radiology results (Henry et al. 2016). Widespread HIT adoption and 

use significantly impacts clinical workflow, process performance, and interactions among 

patients and providers (Angst et al. 2017). Both practitioners and scholars are interested in 

assessing whether HIT impacts lead to enhanced healthcare performance. HIT’s value can 

emanate from two sources: HIT implementation and healthcare analytics. First, implementing 

and using HIT facilitates real-time access to clinical information, reduces unnecessary duplicate 

tests, and decreases preventable medical errors (Adler-Milstein and Bates 2010). Second, the 

clinical data that HIT captures can be used to predict patients’ risks of readmission, adverse 

health events, and death; these predictions enable effective clinical decision making and 

personalized interventions. Practitioners and scholars are also interested in assessing whether 

HIT’s benefits are accompanied by the risk and unintended consequences that come from 

misconfigurations among workflow, users, and technologies. 

From a research perspective, despite a significant amount of literature studying the 

impact of HIT implementation in the information systems (IS), health policy, health economics, 

and health informatics fields, debate continues about whether HIT implementation leads to 

                                                 
1 Non-federal acute care hospitals include acute care general medical and surgical, general children's, and cancer 

hospitals owned by private/not-for-profit, investor-owned/for-profit, and state/local government. 
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improved healthcare performance. Indeed, empirical results suggest that HIT may have a positive 

impact (Amarasingham et al. 2009; Buntin et al. 2011; Lee et al. 2013; Menachemi et al. 2008), a 

negative impact (Ash et al. 2004; Nebeker et al. 2005), or little to no impact on healthcare quality 

(Agha 2014). Furthermore, results suggest that HIT may decrease (Bardhan and Thouin 2013; 

Borzekowski 2009; Menachemi et al. 2006), increase (Agha 2014), or have little to no impact on 

healthcare cost (Furukawa et al. 2010). These mixed and inconclusive results regarding HIT’s 

impact require further investigation.  

Based on my research, I posit that these mixed results can be attributed to three major 

sources. First, prior research in the IS field has predominantly examined the impact of each HIT 

function in isolation but rarely studied the joint impact of various HIT functions, which can 

impact healthcare performance both in isolation and in combination. When different HIT 

functions are applied in combination, their joint effects can exceed the sum of the values they 

generate individually. Ignoring the complementarity effect of mutually reinforcing HIT functions 

may lead to an inaccurate assessment of HIT impact on healthcare performance. Further, 

synergistic gains can occur when a HIT function implemented in one time period interacts with 

functions implemented in the same or different time periods. Thus, it is vital to examine both 

simultaneous and sequential complementarity effects of HIT. 

Second, extant HIT research has focused primarily on the relationship between HIT 

implementation and healthcare performance in a static, linear framework. However, HIT 

implementation levels and healthcare performance measures can change in nonlinear ways over 

time. Overlooking this potential nonlinear change may lead to inaccurate estimations by the 

research model.  
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Finally, because prior HIT studies have typically examined HIT’s impact on hospital-

level outcomes, our understanding of HIT’s effect is mostly limited to hospital-level 

performance. However, it is important to study HIT impact on lower-level outcomes because the 

clinical workflow enhancement those technologies facilitate (Amarasingham et al. 2009; 

Bardhan and Thouin 2013) and the new types of errors they introduce (Coiera et al. 2016; 

Kannampallil et al. 2017; Weiner et al. 2007) likely impact those lower-level outcomes. Indeed, 

researchers are increasingly studying HIT’s value for patient-level outcomes such as readmission 

risk (Amarasingham et al. 2010; Bardhan et al. 2015), mortality risk (Amarasingham et al. 2010), 

and the risk of adverse health events (Lin et al. 2017). However, to the best of our knowledge, no 

existing research considers HIT’s impact on outcomes at the patient-transition level. Specifically, 

we know little about the transitions between chronic and acute conditions in patients, how these 

transitions influence underlying health status, and whether HIT can impact these transitions. 

This dissertation addresses these three gaps in the literature and draws upon three different 

lenses to study the impact of HIT implementation on healthcare performance. In the first essay 

(Chapter 2), we examine pairwise and three-way complementarity effects of HIT on hospital-

level cost and quality performance. We also conceptualize simultaneous and sequential 

complementarities in which HIT applications are synergistic—both within the same time period 

and across time periods—and find evidence of both types of complementarities and their 

differential effects on healthcare quality and costs. This essay moves HIT literature forward by 

considering both simultaneous and temporal perspectives to explain the performance differences 

generated by the combined technologies. 

The second essay (Chapter 3) explores how to use an advanced latent growth modeling 

technique—the Bivariate Dynamic Latent Difference Score Model (BDLDSM)—to explore the 
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dynamic and longitudinal relationship between HIT and healthcare outcomes after incorporating 

the nonlinear trajectory change of different HIT functions and various hospital performance 

dimensions. We first verified that both HIT implementation levels and healthcare performance 

change in a polynomial manner over time. Having incorporated these nonlinear trajectory 

changes in healthcare performance and HIT implementation-level variables, we examined how 

we could use the change in HIT implementation level to predict the subsequent change in 

healthcare performance over time. We used a BDLDSM to analyze this dynamic relationship. 

This essay extends current HIT studies to a dynamic, nonlinear perspective and suggests that 

researchers need to examine the relationship between HIT’s impact on healthcare performance 

using a model that incorporates nonlinear functional forms of change.  

While our first two essays studied the relationships between HIT implementation and 

hospital-level performance outcomes, our third essay (Chapter 4) focuses on how HIT 

application data might be used in predictive modeling. More specifically, this essay has two 

research objectives. First, it aims to examine how different HIT functions impact various types of 

observable transitions (chronic to acute, acute to chronic, chronic to death, and acute to death) 

and underlying and unobservable transitions (minor to major disease and major disease to death) 

as diseases progress over time. This essay is the first study in the information systems literature 

that empirically examines HIT value at the patient-transition level, where the unit of analysis is 

at both the transition and patient levels, and the unit of observation is at the transition level. The 

essay’s findings provide both scholars and practitioners with a more complete picture of HIT’s 

impact at a granular level. Our model also advances the IS field’s current predictive health 

analytics research for examining multiple events as a disease progresses over time. To the best of 
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our knowledge, this is the first predictive health analytics study in the IS field that examines 

event history and predicts the transition between different events over time.  

Our research uses a longitudinal dataset from 715 hospitals that had 67 million discharges 

in seven U.S. states during the study period (2008–2013). Table 1.1 below summarizes outcomes 

of interest, analysis levels, and analysis techniques; this is followed by a more detailed 

discussion of each of the essays. 

Table 1.1 Summary of the Three Essays 
 

Essay 1 Essay 2 Essay 3 

Title Functional IT 

Complementarity and 

Technology Value in Health 

Care: A Longitudinal, 

Hospital-Level Investigation 

A Bivariate Dynamic Latent 

Difference Score Model for 

Longitudinal Data Analysis 

A Multi-State Markov 

Model for Patient Health 

Status Prediction 

Outcome of Interest Healthcare quality (clinical and 

experiential) and cost  

Healthcare quality (clinical 

and experiential) and cost  

Risk of transition between 

health statuses 

Level of Analysis Hospital level Hospital level Patient-transition level 

Analysis Techniques Econometrics Analysis: 

1) Fixed-Effect Model 

2) SUR Model 

3) Fixed/Random-Effect 

Model 

Latent Growth Modeling: 

1) Bivariate Dynamic Latent 

Difference Score Model 

2) Bivariate Latent Growth 

Modeling 

Multi-State Markov 

Modeling: 

1) Multi-State Markov 

Model 

2) Multi-State Hidden 

Markov Model 

1.2 Essay 1 

In Essay 1, we examine functional IT complementarity between different HIT functions and their 

performance effects on multiple cost and quality measures. We conceptualize functional IT 

complementarity based on whether HIT innovations perform primary or supplementary tasks in 

the care-provision process, and whether they are applied in the same or different functional 

domains. Furthermore, emphasizing the usage context, we study how the impacts of functional 

IT interactions vary for chronic and acute health conditions. Finally, we examine both 

simultaneous and sequential complementarity, which is a departure from existing research that 

examines applications used during the same time period. Using five secondary data sources, we 

collected longitudinal data on HIT implementation levels, care quality and cost, and 
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demographic and environmental variables for the 715 hospitals. We examined pairwise and 

three-way complementarity effects of HITs on hospital-level cost and quality performance.  

Our central findings are that, HIT applications interact and demonstrate pairwise and three-

way complementarity. We further find that HIT application impact quality and cost differently 

for acute and chronic conditions. Finally, we find evidence of simultaneous and sequential 

complementarity, wherein HIT applications are synergistic both within a single time period and 

across time periods.  

Essay 1 makes two major contributions. First, prior IS research has examined simultaneous 

complementarity exclusively and ignored the temporal perspective. Essay 1 contributes to the IS 

literature by considering both simultaneous and temporal perspectives to explain performance 

differences generated by technologies. Second, essay 1 demonstrates the importance of context 

in assessing complementarity between HIT applications. We find that HIT has different impacts 

for patients with chronic and acute conditions in terms of healthcare quality and costs. This result 

clearly illustrates the need for researchers to separately consider HIT’s impact on chronic and 

acute conditions. We further suggest that researchers jointly examine HIT application and the 

clinical workflows specific to chronic and acute conditions to further illuminate the value 

creation possibilities in hospitals. 

1.3 Essay 2 

Essay 2 introduces the use of a BDLDSM to analyze the dynamic lead-lag association between 

predictor and outcome variables in a longitudinal framework. The BDLDSM is a powerful tool for 

IS researchers aiming to explore longitudinal theories related to change using a panel data set. In 

contrast to traditional longitudinal analysis methods, BDLDSM allows IS researchers to (1) 

examine dynamic lead-lag associations between two variables across time, (2) simultaneously 
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model change trajectories in two variables over time, (3) test for a reciprocal relationship between 

two variables over time, and (4) identify different types of dynamic effects.  

We first review the most commonly applied longitudinal analysis methods in the IS field 

from 2008–2017 and then compare BDLDSM with these widely applied methods. We then discuss 

why the IS field needs BDLDSM, and introduce it with both linear and nonlinear functional forms 

of change. Next, we apply BDLDSM in a HIT impact context and unveil the dynamic interplay 

between different HIT functions and various dimensions of hospital performance. Finally, we 

compare BDLDSM using linear and nonlinear functional forms and compare BDLDSM with latent 

growth modeling. The essay concludes with a discussion of the implications of BDLDSM for 

longitudinal data analysis in the IS field. 

Essay 2 contributes to the IS literature both by extending the current understanding of 

latent growth modeling (LGM) and introducing a sophisticated data analysis model, BDLDSM, 

to examine trajectory changes and analyze the dynamic lead-lag association between the 

predictor and outcome variables in a longitudinal data setting. The essay provides the first 

demonstration in the IS literature of separating the dependent variables’ dynamic change effect 

into three parts: the overall mean trajectory change components, the within-variable proportional 

changes, and the cross-variable coupling effects. We also provide guidelines to test the dynamic 

lead-lag relationship between dependent and independent variables while considering the 

functional forms of change. Essay 2 contributes to the HIT literature by extending current HIT 

studies to a dynamic, nonlinear perspective. We find that all HIT implementation levels increase 

in a quadratic way over time, and healthcare performance measures grow with cubic trajectories 

over time. This suggests that researchers need to examine HIT’s impact on healthcare 

performance using a model that incorporates nonlinear functional forms of change for both the 



8 

 

HIT and healthcare performance variables. Such an analysis method can also be extended to 

explore other longitudinal dynamic relationship in the IS field. 

1.4 Essay 3  

Our third essay identifies an important gap in predictive health analytics research in the IS field. 

The majority of predictive health analytics research predicts the transition from an initial state, 

such as the start of treatment, to a single endpoint, such as readmission or death (Amarasingham 

et al. 2010; Bardhan et al. 2015). This transition from one state to another state is defined as an 

event (Andersen and Keiding 2002). However, it is rare that only one event would happen in the 

course of hospitalization (Lin et al. 2017). It is more likely that, as a disease progresses over 

time, it will result in multiple events. If we analyze each event separately, we can neither capture 

the relations among different types of events nor uncover the dynamics of how patients transition 

among different events (Jackson 2011; Putter et al. 2006). In this essay, we propose a predictive 

model that examines multiple events to advance predictive health analytics research in the IS 

field.  

Our first research objective is to detect the likelihood of a future transition from a minor 

to a more severe state and finally to death based on HIT implementation levels, hospital 

characteristics, and patient profile. Additionally, in the predictive model, we account for the 

transition between chronic and acute states as a disease progresses over time. Indeed, both 

literature and statistical evidence suggest that the transition between chronic and acute states 

would be a good indicator of the patient’s underlying health status (Bernstein et al. 2017; 

Greenberg 2012; Zile et al. 2008) yet, surprisingly, to our knowledge, no existing research 

explores how to use this transition in predictive modeling.  
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Our second research objective is to study the impact of various HIT functions on the 

patient-transition level. Specifically, we want to explore HIT’s impact on the transition between 

chronic and acute conditions, and the transition between a minor and a more severe health status. 

Prior HIT value studies have typically examined HIT’s impact on hospital-level outcomes. These 

outcomes are usually end performance outcomes, which cannot capture HIT impact on lower-

level, intermediate performance outcomes, which measure the intermediate stages in a clinical 

process. HIT can benefit clinical processes by improving core process workflows, such as 

reducing patients’ transition between chronic and acute status while hospitalization. Here, we 

refer to these impacts as intermediate measures to differentiate them from traditional end 

performance measures, such as mortality rate and healthcare cost (Brandyberry et al. 1999). HIT 

can provide value to clinical processes by improving the workflow of the core processes, such as 

by reducing patients’ transition between health states during hospitalization. Thus, it is vital to 

empirically study HIT impact on lower-level outcomes and more clearly and deeply understand 

how they impact intermediate healthcare performance. 

Our contributions are twofold. First, our study contributes to predictive health analytics 

by proposing a predictive model that detects when a disease progresses from a minor to a more 

severe state; healthcare providers can use this information to intervene early with appropriate 

treatments and slow the worsening cycle of a disease. Our model advances current predictive 

health analytics research in the IS field by incorporating the dynamic transitions between chronic 

and acute diseases in predicting patient health status and by introducing a multi-state Markov 

model to examine multiple events in the disease progression process. 

Second, our study contributes to the HIT business value literature by examining HIT 

value at the patient-transition level. We find empirical evidence on how different HIT functions 
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impact various patient-transition level outcomes. Assessing how different HIT functions impact 

different types of transitions will help healthcare providers more effectively allocate investment 

across various IT resources to achieve enhanced health outcomes.  

1.5 Discussion 

This dissertation contributes to the general empirical question of how HIT impacts healthcare 

performance; it also contributes theoretically and practically to the body of knowledge on HIT 

value. From a research perspective, we synthesize HIT value literature and identify three major 

reasons for the mixed and inconclusive results on HIT’s impact. These reasons are a) ignoring 

the complementarity effect of different types of HIT; b) examining HIT impact primarily from a 

static, linear perspective, but not dynamic and nonlinear perspective; and c) studying HIT impact 

predominantly on hospital-level outcomes, with only limited studies on patient-level outcomes 

and no studies on patient-transition-level outcomes. This dissertation addresses these research 

gaps and examines HIT’s value from three different perspectives.  

First, extant complementarity literature ignores the fact that technologies can interact 

with one another temporally, assuming only that interactions occur simultaneously (Battisti et al. 

2015; Kim and Mukhopadhyay 2011; Tiwana and Konsynski 2010). However, synergistic gains 

are possible when innovations implemented in one time period interact with those implemented 

in the same or a different time period. Previous literature does not differentiate between these 

alternatives. However, we find empirical evidence of simultaneous and sequential 

complementarity wherein HIT applications are synergistic, not only within the same time period 

but also across periods. Further, our results address mixed and inconclusive HIT impact findings 

by examining pairwise or three-way complementarity simultaneously and sequentially among 

different HIT applications, instead of examining HIT applications individually. Future research 
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should examine HIT impact not only in combination, but also by studying the complementarity 

of HIT value from both simultaneous and sequential perspectives.  

Second, we extend the current literature on HIT impacts on healthcare performance to 

include a dynamic, nonlinear perspective. Empirical evidence shows that in terms of change of 

mean trajectories, both healthcare performance variables and HIT implementation level variables 

grow nonlinearity over time, and all healthcare performance variables change faster than HIT 

implementation level variables over time. This suggests the need for future research to 

incorporates nonlinear functional forms of change for both the HIT and healthcare performance 

variables in the research model when examining the relationship between HIT impact on 

healthcare performance.  

Third, we assess the impacts of HIT value on both end performance outcomes, including 

mortality rate (Chapter 2 and 3) and healthcare cost (Chapter 2 and 3); intermediate performance 

outcomes, including experiential quality outcomes (Chapter 2 and 3); and patient-transition 

outcomes (Chapter 4). We also examine the impacts of HIT value from two analysis levels: 

hospital level (Chapter 2 and 3) and patient-transition level (Chapter 4). We find that HIT 

consistently enhances end performance measures. However, HIT impact on intermediate 

performance measures has mixed result. One plausible explanation may be that HIT is a 

sociotechnical system that relies on the context in which it is embedded, and the healthcare 

context largely involves people and processes (Coiera et al. 2016). If HIT is not designed to meet 

the needs of clinical practices and communication processes, it may lead to errors in 

communication and coordination; these errors, in turn, may lead to mixed result related to the 

intermediate performance outcomes. A plausible reason that HIT’s negative impact from 

misconfiguration among workflow, users, and technologies presented only on intermediate 
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performance outcomes and not end performance outcomes may be because factors other than 

HIT impact end performance measures. Controlling such factors may be difficult. Studying HIT 

value for end and intermediate performance outcomes from both the hospital level and patient-

transition level gives us a more complete, comprehensive picture of how health technologies 

impact healthcare performance.  

This dissertation also has important methodology implications. First, we review the 

longitudinal techniques commonly applied in IS studies from 2008–2017 and demonstrate three 

different analysis techniques in those longitudinal studies: econometrics methods (Chapter 2), 

BDLDSM (Chapter 3), and multi-state Markov model (Chapter 4). This illuminates how IS 

researchers can use longitudinal methods to solve different research problems in the same research 

context. Second, we extend the IS field’s current understanding of LGM by introducing BDLDSM 

to examine trajectory changes, analyze the dynamic lead-lag association between the predictor and 

outcome variables, and test for a reciprocal relationship between two variables in a longitudinal 

data setting. Third, we provide the first demonstration in the IS literature of how to apply the multi-

state Markov model to both examine multiple events in the same model and study HIT value at 

the patient-transition level.  

Finally, our research has key practical implications. First, we find that different 

combinations of technologies impact hospital performance in different ways. Given this, 

healthcare providers should identify optimal combinations of technological investments over 

time according to their priorities for performance improvement. Second, we find that different 

health technologies impact chronic and acute diseases in different ways. For example, the HIT 

interaction effects that impact quality or cost for patients with chronic conditions do not 

significantly impact quality and cost for patients with acute conditions. Therefore, when 
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allocating HIT resources, healthcare providers should consider how systems of technologies 

integrate into different disease workflows and prioritize different technology combinations 

depending on which performance variables are most important. Third, our findings emphasize 

the importance of estimating patients’ health status based on the transition between a chronic and 

an acute status, which is a useful predictive analytics method for healthcare providers. 
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CHAPTER 2 FUNCTIONAL IT COMPLEMENTARITY AND TECHNOLOGY VALUE 

IN HEALTH CARE: A LONGITUDINAL, HOSPITAL-LEVEL INVESTIGATION 

 

Abstract 

This paper examines functional IT complementarity between different HIT innovations and their 

performance effects on multiple measures of cost and quality. We conceptualize functional IT 

complementarity based on whether HIT innovations perform primary or supplementary tasks in 

the care provision process, and whether they are applied in the same or different functional 

domains. Furthermore, emphasizing the context of use, we study how the impacts of functional 

IT interactions vary for chronic and acute health conditions. Finally, we examine both 

simultaneous and sequential complementarity, which is a departure from existing research that 

has examined applications employed in the same time period. Using five secondary data sources, 

we collected longitudinal data on HIT implementation levels, care quality and cost, and hospital 

demographic and environmental variables on 715 hospitals located in seven states in the U.S. We 

examined pairwise and three-way complementarity effects of HITs on hospital level cost and 

quality performance. Our central findings are that, HIT applications interact and demonstrate 

pairwise and three-way complementarity. We further find that HIT application impact quality 

and cost differently for acute and chronic conditions. Finally, we find evidence of simultaneous 

and sequential complementarity, wherein HIT applications are synergistic both within a single 

time period and across time periods. We discuss theoretical and pragmatic implications of our 

findings. 

Keywords: IT Complementarity, Three-way Complementarity, Quality of Care, Cost of Care, 

Core Clinical Activities, Supplementary Clinical Activities, Health Information Technology 

(HIT), Business Value of IT, Sequential Complementarity, Inpatient Quality Indicator (IQI) 
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2.1 Introduction 

“Innovations hardly ever function in isolation.” (Rosenberg 1979) 

 “In the next 10 years, data science and software will do more for medicine than all of the 

biological sciences together.” (Khosla 2013) 

The health care industry is no stranger to technological and scientific innovations, however, in 

recent years, there has been considerable deliberation among researchers, practitioners and 

policy makers regarding the role of HIT innovations on the delivery of care (Agarwal et al. 2010; 

Banger and Graber 2015; Dranove et al. 2014; Lee et al. 2013). On the one hand, there is distinct 

excitement about the potential of HIT to transform health care access and delivery in the United 

States. On the other hand, some have sounded cautionary notes because evidence on the impacts 

of HIT on cost and quality has been mixed (Agarwal et al. 2010; Furukawa et al. 2010). In this 

study, we examine the interactive effects of various HIT applications on a variety of hospital-

level cost and quality outcomes, in order to understand and unpack the issue of technology value 

in the health care industry. 

 Over the last two decades, researchers in information systems (IS), economics, 

organization theory and operations have sought to understand the joint impacts of various 

innovations, such as information technology (IT) applications, process transformations and 

organizational changes (Barua and Mukhopadhyay 2000; Bharadwaj et al. 2007; Brynjolfsson 

and Hitt 2000; Cassiman and Veugelers 2006; Ennen and Richter 2010; Forman 2005; Milgrom 

and Roberts 1990). A key insight emerging from this literature is that innovations may be less 

impactful in isolation, but when applied as mutually reinforcing elements, their joint effects can 

exceed the sum of values generated through them individually (Aral et al. 2012; Dewan et al. 

2010; Tambe et al. 2012). Building on this notion, the concept of complementarity suggests that 
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if the levels of any subset of such innovations are increased, the marginal return to increase in 

any or all the remaining innovations rises. Complementary innovations have played a crucial role 

in many industries by streamlining operational processes, shaping firm strategies, enabling 

information sharing and coordination among key entities, facilitating effective decision making, 

and expediting the execution of critical tasks (e.g., Parmigiani and Mitchell (2009); Tiwana and 

Konsynski (2010)). 

 Although extant literature on complementarity has contributed significantly to our 

understanding of the relationships between innovations and their joint impacts on performance, 

we argue that it can be extended in several important ways. First, prior research has largely 

employed post hoc accounts of complementarity, i.e., explanations have depended on elements 

that are observed to be combined in a supermodular way (Grandori and Furnari 2009). However, 

complementary elements can be similar or different, and applied to the same or different 

activities and transactions in a system (Grandori and Furnari 2009). This aspect has been ignored 

in the literature, resulting in limited understanding of the sources of complementarity. Second, 

the context in which innovations are complementary has received insufficient attention in the 

literature. Tanriverdi and Ruefli (2004) argue that complementary inputs are activity-specific, 

i.e., their value is relevant in the context of specific activities. Thus, a deeper examination of the 

context may allow us to understand when innovations are complementary (Brynjolfsson and 

Milgrom 2012; Cassiman and Veugelers 2006; Ennen and Richter 2010). Third, a majority of 

studies examining complementarity has taken a cross-sectional perspective on performance 

changes over relatively short time spans (Brynjolfsson and Milgrom 2012; Ennen and Richter 

2010). However, probing the evolution of complementarity over time, which requires 

longitudinal data, is a critical issue that researchers need to address (Brynjolfsson and Milgrom 
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2012). Fourth, complementarity literature ignores that innovations can interact with one another 

temporally, and rather treats them to have taken place simultaneously (Battisti et al. 2015; Kim 

and Mukhopadhyay 2011; Tiwana and Konsynski 2010). However, synergistic gains can occur 

when innovations implemented in one time period interact with those implemented in the same 

or a different time period. Extant literature does not differentiate between these alternatives 

(Battisti et al. 2015). Finally, focusing specifically on the IS literature, current work on 

complementarity has largely examined general purpose IT and measured it in the aggregate (Aral 

et al. 2012; Aral and Weill 2007). As a result, researchers lack insight into complementarities 

between specific technologies, the functions they support, and their contributions to different 

performance metrics. 

 Concurrently, considerable extant work has examined HIT and process digitization in 

health care, contributing much to our understanding of how digital innovations impact patient 

care, but this work is limited in three notable ways. First, although prior research distinguishes IT 

applications based on supported tasks, such as clinical, administrative, operational and strategic, 

it omits functional differences within clinical IT innovations (Beaumont 2011). For instance, 

although clinical documentation and results viewing are related to patient care, these are 

supplementary activities to the primary clinical tasks of deciding upon the treatment regimen for 

a patient and prescribing medicines, tests and procedures. It is likely that due to different 

functional foci, digitization of these two parts of clinical processes will impact hospital 

performance differently. Second, acute and chronic conditions have different characteristics, 

which has been largely ignored in HIT value studies, resulting in inadequate attention paid to the 

context of application that is critical in examining value (Agarwal et al. 2010; Susan and Stern 

2002). Third, the literature in HIT has suffered from empirical limitations, such as, limited use of 
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panel data to attempt causal explanation of HIT impacts, and no consideration of 

complementarity between HIT applications. 

 In this study, we attempt to address limitations in extant research by examining 

complementarity among several HIT innovations used in hospitals. We conceptualize functional 

IT complementarity, discuss its underpinnings, and open the black box of monolithic IT. A 

majority of IT applications used in organizations are functional, i.e., they are used to accomplish 

specific organizational tasks. Accordingly, we do not examine HIT as a monolithic artifact, but 

rather focus on functions it enables hospitals to accomplish. Drawing upon prior literature (Earl 

1996), we divide IT applications into two categories: those enabling core or primary functions 

and those enabling secondary, supplementary or support functions. Second, following Grandori 

and Furnari (2009), we pay close attention to how different functional HIT innovations interact 

with one another to provide complementarity. Third, we specifically account for the context by 

examining functional IT complementarity for both chronic and acute conditions.2 Fourth, we 

explicitly examine temporal interactions between different functional HIT applications to assess 

if they are complementary. Finally, we examine a large number of performance outcomes to 

provide a comprehensive assessment of the impact of HIT on hospitals. 

 Specifically, we address three research questions: 1) How do functional IT innovations 

that facilitate core/primary functions and secondary/support functions within the broad umbrella 

of clinical processes impact hospital level outcomes? In particular, how do the effects of pairwise 

and three-way HIT complementarities manifest themselves? 2) How do the impacts of functional 

IT interactions vary for chronic and acute conditions? 3) How do temporal and simultaneous 

                                                 
2 A chronic condition is defined as a condition that lasts 12 months or longer and meets one or both of the following 

tests: (a) it places limitations on self-care, independent living, and social interactions; (b) it results in the need for 

ongoing intervention with medical products, services, and special equipment (https://www.hcup-

us.ahrq.gov/db/vars/chronn/kidnote.jsp). 
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interactions among functional IT innovations impact performance? We focus our inquiry on 

hospitals because they are pivotal to the U.S. health care system, providing a variety of services 

to patients with acute and/or chronic conditions, and accounting for the largest single item of 

expense in the health care industry. 

We constructed a panel dataset over the 2008-2013 period, comprising 715 hospitals 

from seven states: California, Florida, Maryland, New Jersey, New York, North Carolina and 

Washington. We merged data from five sources: Healthcare Cost and Utilization Project’s state 

inpatient datasets (HCUP-SID), American Hospital Association (AHA)’s annual survey and IT 

supplement datasets, the hospital consumer assessment of health care providers and systems 

(HCAHPS) surveys, and cost reports from Centers for Medicare & Medicaid Services (CMS). 

We used two cost measures calculated from the HCUP database and the CMS cost report. Both 

clinical outcomes, focusing on inpatient mortality, and experiential outcomes, focusing on 

patient perceptions, were used as quality measures. We analyzed our panel data using the 

Hausman Taylor model and conducted several robustness tests to verify our results. We also 

conducted several tests to assess complementarities between functional IT applications. Our 

central findings are that although there are direct effects of functional IT applications on various 

hospital-level performance metrics, these applications do interact with one another and 

demonstrate pairwise and three-way complementarity effects. We further find that the impacts of 

HIT applications on quality and cost differ for acute and chronic conditions. Finally, we find 

evidence of simultaneous and sequential complementarity wherein different HIT applications are 

synergistic not only within the same time period but also across periods. 
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2.2 Background Literature and Theoretical Development 

We draw upon two broad streams of literature. The first stream examines the impact of HIT 

applications on various health care outcomes. Researchers in health services research, health 

informatics and IS have examined these issues in detail. This stream of research allows us to 

conceptualize the different types of HIT applications used in this study, to introduce the various 

hospital level quality and cost performance metrics, and to synthesize prior results. The second 

stream of literature on complementarity of innovations allows us to conceptualize the nature of 

complementarity between various HIT applications. 

2.2.1 HIT and Its Implications 

Examining the business value of IT has a rich tradition of research in the IS literature (Barua and 

Mukhopadhyay 2000; Brynjolfsson and Hitt 2000; Melville et al. 2004). In recent years, 

researchers have actively examined the impact of IT investments and use in the U.S. health care 

industry. Specifically, researchers have been interested in two major outcomes, namely the 

quality and cost of care (Agha 2014; Angst et al. 2011; Dranove et al. 2014; Menon and Kohli 

2013). Considerable prior work has examined care quality and cost in isolation, but recent 

research has begun to study these outcomes simultaneously. Providing a rationale for this, Lee et 

al. (2013) suggest that quality gains may not be captured unless clinical progress translates into 

economic ones, such as increased prices or lower costs, and thus, it is important to examine both 

quality and cost of care concurrently to fully assess the impact of HIT. 

 Prior literature has found mixed impact of IT on quality. A stream of research has 

suggested that hospitals with more advanced IT have fewer complications and lower mortality 

rates (Amarasingham et al. 2009; Buntin et al. 2011; Lee et al. 2013; Miller and Tucker 2011), 

while another stream has revealed mixed impacts, with lower mortality rates, but higher 
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complications (Furukawa et al. 2010), little or no significant impact (Agha 2014; Parente and 

McCullough 2009) and adverse impact (Ash et al. 2004; Nebeker et al. 2005). These results may 

be a manifestation of a wide variety of quality measures used in extant literature, resulting in 

inconsistent comparisons. For example, the quality indicators developed by the Agency for 

Healthcare Research and Quality (AHRQ) are mostly disease-specific measures (Farquhar 2008; 

Greenberg et al. 2009; Mutter et al. 2008). On the other hand, patient mortality rates are general 

quality measures (Agha 2014). 

The impact of IT on cost arises largely from decreased utilization of care. IT is expected 

to enable better diagnosis and task execution, eliminating the need for unnecessary tests and 

treatments (Chaudhry et al. 2006; Hillestad et al. 2005). Extant research examining the 

relationship between HIT and cost has again found mixed results. For instance, Bardhan and 

Thouin (2013) found HIT to lower costs, but Agha (2014) found that HIT is associated with a 1.3 

percent increase in billed charges, and has no evidence of cost savings after five years of 

adoption (Agha 2014). Dranove et al. (2014) found no significant decrease in costs, measured as 

hospital operating expense per admission, after the implementation of electronic medical records 

(EMRs) in hospitals. Other researchers have also found HIT impacts to be insignificant on cost 

and efficiency (Furukawa et al. 2010; Parente and McCullough 2009; Sharma et al. 2016). 

Offering an interesting perspective on this issue, Atasoy et al. (2017) have suggested that HIT 

may increase costs for adopting hospitals, but due to spillover effects, reduce costs at 

neighboring hospitals. 

Prior literature hints that the impact of IT on quality and cost of care may be context-

dependent (McCullough et al. 2010). For instance, patients with chronic diseases are more likely 

to have health data in their file that is relevant to their disease, which may favorably impact their 
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treatment (Chaudhry et al. 2006). This information can be used to check for allergies, drug 

interactions, doses, and communication between providers (Unertl et al. 2009). It can also be 

used to create patient-specific treatment plans. Finally, IT can be used to chart a chronic patients’ 

health conditions, compliance and outcomes longitudinally, potentially reducing adverse drug 

events and poor health outcomes at the hospital. Patients with acute conditions may not benefit to 

the same extent from the mechanics discussed above. 

In the last decade, four systematic reviews of HIT literature have been performed by 

health informatics researchers (Buntin et al. 2011; Chaudhry et al. 2006; Goldzweig et al. 2009; 

Jones et al. 2014). These reviews suggest that overall, HIT impacts care provision processes, and 

the quality and safety of health care. However, others seem to be less convinced about these 

results. The prestigious Institute of Medicine suggested in a report in 2011 that the evidence for 

the impact of HIT is still mixed (see:www.nationalacademies.org/hmd/~/media/Files/ 

Report%20Files/2011/Health-IT/HealthITandPatientSafetyreportbrieffinal_new.pdf). Further, 

Hydari et al. (2014) have suggested that the impact of HIT on performance outcomes is an 

empirical issue, worthy of further research.  

A synthesis of prior literature reveals three prominent themes. First, researchers have 

examined effects of HIT individually, such as computerized provider order entry (CPOE) and 

clinical decision support systems (CDSS) (Bates et al. 2001; Garg et al. 2005; O’Connor et al. 

2011) without considering their complementary effects. A small number of studies have 

examined the impact of multiple HITs, but ignored their interaction effects (see Sharma et al. 

2016 for an exception). For example, Menachemi and colleagues have examined the effects of 

clinical, administrative, and strategic HIT on financial and quality measures. They found all three 

types of HIT improve financial performance (Menachemi et al. 2006), but their impacts differ for 
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patient safety and inpatient quality performance (Menachemi et al. 2008; Menachemi et al. 

2007). Similarly, Bardhan and Thouin (2013) studied the impact of clinical systems, financial 

systems, scheduling systems, and human resource systems on the quality and cost of health care 

delivery, without considering their interaction effects. They found clinical systems and 

scheduling systems are associated with best practices for treatment of heart attacks, heart 

failures, and pneumonia, and financial systems are correlated with lower operating expenses in 

hospitals. In another study, Bardhan et al. (2015) examined the effects of administrative, clinical 

and cardiology IT on readmission. Although influential, this study does not consider the 

interaction effects of various types of HIT. In summary, extant research has largely examined 

individual technologies rather than their joint impacts, which may disguise how different HIT 

components can impact performance synergistically.  

Second, prior studies contain data and/or methodology limitations. These include 

studying HIT impacts on performance using either small sample sizes (Aron et al. 2011; Kaushal 

et al. 2006) or cross-sectional data (Amarasingham et al. 2009; DesRoches et al. 2010; Linder et 

al. 2007). For instance, Aron et al. (2011) conducted a field study of two hospitals and found that 

automating medical error prevention systems results in fewer medical errors. DesRoches et al. 

(2010) applied a cross-sectional dataset to examine the relationship between electronic health 

records adoption and health care quality and efficiency measures. However, the relationship 

between HIT use and health care performance is subject to temporal effects with different time 

lags and learning effects (Angst et el. 2011), and thus, benefits may not be realized for an 

extended time (Devaraj and Kohli 2000; Sharma et al. 2016). Accordingly, in recent years, 

researchers have applied longitudinal datasets and advanced models (Atasoy et al. 2017; Bardhan 

and Thouin 2013; Furukawa et al. 2010; Menon and Kohli 2013; Sharma et al. 2016), yet most 
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studies remain cross-sectional and/or informed by small samples acquired from selected hospital 

systems. 

Third, most HIT studies have examined one performance outcome, such as quality or cost 

(Sharma et al. 2016). This singular focus on one metric may fail to account for the trade-offs that 

exist between various performance dimensions, such as clinical outcomes, cost and timeliness 

(Chandrasekaran et al. 2012; Senot et al. 2016). In order to address these issues, recent research 

has begun examining HIT using multiple dimensions of performance. For example, Agha (2014) 

and Bardhan and Thouin (2013) studied the impact of HIT adoption on both quality and cost. 

Sharma et al. (2016) examined the effects of two HIT bundles – Clinical HIT and Augmented 

Clinical HIT – on cost and process quality outcomes. These recent studies, however, are 

exceptions, with a majority examining one outcome. 

In summary, although there is a rich body of research from both health care and IS 

scholars examining the relationship between HIT and health care performance, it has been 

challenging to obtain a consistent view of HIT impacts due to conflicting evidence. Further, data 

and methodology limitations as well as the use of a variety of metrics have made cross-study 

comparisons difficult. Finally, a majority of studies have explored technologies individually, 

with few explicitly focusing on complementarity, and none examining pairwise or three-way 

complementarity among different HIT applications. 

2.2.2 Complementarity of Innovations 

The complementarity perspective originated in the economics literature in the late 19th century. It 

posits that economic factors of production are complementary if the total value created by 

combining two or more factors exceeds the value that would be generated through these factors 

in isolation, i.e., the impact of one factor on an outcome is amplified by increasing the other 
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factor. Milgrom and Roberts (1990;1995) conducted pioneering work on complementarity. They 

laid out the foundation of complementarity between technological innovations, organizational 

changes directed toward greater functional flexibility, and higher skill levels in organizations. 

Researchers in a wide variety of disciplines, including IS, have used the complementarity 

framework to examine synergistic relationships between technological innovations, 

organizational strategies, structures and processes, and the external environment. 

The complementarity perspective has been credited with addressing one of the limitations 

of the resource-based view (RBV) of the firm (Wade and Hulland 2004; Xiao 2007). While RBV 

does not adequately account for the fact that resources often act in combination to create value, 

the raison d’être of the complementarity perspective is to analyze these interactions. It is 

important to note that although the complementarity perspective addresses limitations in the 

RBV literature, it has its own limitations. Most prominently, the complementarity perspective 

does not constitute a theory, but is rather a meso level approach, which enables researchers to 

detect relationships between different factors of production and performance (Brynjolfsson and 

Milgrom 2012; Ennen and Richter 2010). It lacks a well-defined set of theoretical constructs and 

causal logic to establish relationships (Ennen and Richter 2010). It further offers little guidance 

on when complementarities occur or which elements complement one another. Thus, it may be 

difficult to offer precise predictions about relationships between specific elements in a study or 

to assign clear boundary conditions (Ennen and Richter 2010). As a result, extant research in this 

domain has inductively inferred complementarity from empirical analyses. 

Grandori and Furnari (2009) have attempted to conceptualize the nature of 

complementarity among different elements. They posit that the extent and type of 

complementarity are dependent on the interacting elements and the domains in which they are 
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employed. Interacting elements can be similar or different, and can be applied together to the 

same or a different function/application domain. Based on this conceptualization, Grandori and 

Furnari (2009) propose two possible combination of elements that generate complementarity and 

two others that do not. Symbiotic complementarity is generated when different elements are 

applied to the same application domain or function. Pooled complementarity is generated when 

similar elements are applied to different application domains. Other combinations do not usually 

generate complementarity. When similar elements are applied to the same application domain, 

they may become substitutes or their combinations may become redundant. Dissimilar elements 

applied to different application domains are independent, i.e., neither complementary nor 

substitutes. We use this rarely adopted approach to build the complementarity perspective. 

Prior empirical research has used two approaches to establish complementarity (Aral et 

al. 2012; Brynjolfsson and Milgrom 2012). The first approach is used when a performance 

outcome variable is either not of interest or not available. Complementarity is established if 

different practices or elements are found to cluster in organizations more significantly than a 

random chance would predict (Brynjolfsson and Milgrom 2012). The second approach is used 

when a reliable performance variable is available and of interest. Complementarity is established 

if joint implementations of these practices or elements are demonstrated to lead to better 

performance than the summation of impacts of individual applications of practices or elements. 

The first approach is more common in the literature. 

A recent advance in the literature has been to examine three-way complementarity (Aral 

et al. 2012; Brynjolfsson and Milgrom 2012; Tambe et al. 2012). The key idea here is that 

interacting elements form a system of components such that correlations between any two 

components of the system are positive when the third component is also positive, but not 
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necessarily otherwise (Aral et al. 2012). Empirical work examining three-way complementarity 

is limited in the IS literature, with only two published papers to our knowledge. Aral et al. (2012) 

studied three-way complementarity between IT, human resource analytics and performance pay 

implementation in organizations, and found that the joint application of these practices has a 

higher productivity premium than when they are employed separately. Tambe et el. (2012) found 

that external focus, decentralization and IT provide three-way complementarity, as demonstrated 

by improved product innovation capabilities. 

The use of the complementarity perspective is limited in health care literature (exceptions 

include Dranove et al. 2014; Sharma et al. 2016). In this study, we apply the complementarity 

perspective to analyze how different HIT applications implemented to accomplish core and 

support functions in hospitals interrelate with one another and whether such relationships 

produce supermodular value. In the health care literature, researchers have identified two core 

clinical functions, task execution (TE) and decision support (DS) (Riaño et al. 2012; Unertl et al. 

2009; Walker and Carayon 2009), which HIT can facilitate and streamline. The latter enables 

physicians to diagnose patient conditions and provide evidence-based and customized clinical 

care guidance. The former enables care providers to execute treatment plans by entering 

medications, clinical procedures, radiology and other lab orders. These key clinical functions are 

supported by other functions that are also IT-enabled. For instance, it is important to have access 

to patients’ medical information, as well as the results of prior tests and procedures performed on 

and medications taken by patients. This information helps assess the efficacy of the treatment 

regimen. We wish to emphasize that these activities are conceptualized as support activities 

because the major purpose of documentation and results viewing is to provide a comprehensive 

assessment of the patient’s health so physicians responsible for medical care can better diagnose 
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and plan the treatment regimen by using DS IT and implement their treatment plans by using TE 

IT. 

We employ the conceptualization proposed by Grandori and Furnari (2009) to examine 

the nature of complementarity. We conceptualize DS as the level of CDSS implementation in a 

hospital. A CDSS aids decision support by enabling care providers to accurately diagnose patient 

conditions, consult latest evidence and provide patient-specific care. We conceptualize TE IT as 

the level of CPOE implementation in a hospital. A CPOE system facilitates task execution by 

enabling care providers to offer instructions to nurses and technicians, and to order medications, 

tests and procedures. Finally, we conceptualize support IT as the level of electronic 

documentation and results viewing implementation in a hospital. These applications enable care 

providers to access and record patient information, and to view the results of prior tests, 

medications and procedures to make assessments and adjustments. It is evident that information 

obtained from the supporting applications is essential for the diagnosis of medical conditions, 

determination of the treatment regimen and the further ordering of medications, tests and 

procedures. 

TE and DS ITs are both similar, as they are used to perform core activities in the care 

provision process, but their application domains are different. Accordingly, we posit that the 

nature of complementarity, if any exists between them, is pooled. TE and support IT, as well as 

DS and support IT, are examples of interacting elements that are different, but applied to the 

same application domain together. TE and DS facilitate the core activities of ordering and 

decision making respectively, and support IT enables the execution of these tasks. Thus, we posit 

that the nature of complementarity, if any exists between TE and support IT, as well as between 

DS and support IT, is symbiotic. Ennen and Richter (2010) suggest that resources and 
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applications of different types may produce higher complementarity than those of the same type. 

We investigate the nature of complementarities between the posited pooled and symbiotic 

complementarities in our context. 

2.3 Data and Measurement 

2.3.1 Data Sources 

We constructed a longitudinal dataset from multiple sources of archival data spanning 2008-

2013. Our first source of data is the HCUP-SID database. This dataset provides five files: 1) 

Core file that contains data elements, such as patient demographics, length of stay, discharge 

status, and number of procedures; 2) Diagnosis and Procedure Groups file, containing diagnostic 

and procedure information for each hospital discharge; 3) Disease Severity Measures file that 

contains severity information related to each discharge in the core file; 4) Charges file, 

containing detailed and summarized charge information; and 5) AHA Linkage file to connect 

HCUP-SID files with AHA’s survey and IT supplement files.3 The unit of data collection in 

these files is at the hospital discharge level. We calculate hospital level clinical quality and cost 

by aggregating the information at the discharge level. 

We use the HCAHPS survey to obtain experiential quality data, which provides a 

perceptual assessment of patients’ experiences during their stay at a hospital (Boulding et al. 

2011; Senot et al. 2016; Sharma et al. 2016). The survey measures patients’ perceptions of the 

following components after their discharge from a hospital: communication with doctors and 

nurses, communication about medicines, and communication about post-discharge recovery. It 

also measures patients’ willingness to recommend the hospital, and their overall rating of a 

                                                 
3 More information about these files can be obtained at: https://hcup-us.ahrq.gov/db/state/siddist/ 

Introduction_to_SID.pdf 
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hospital. This survey is administered to get a random sample of adult inpatients after their 

discharge. Survey results are averaged to get experiential quality at the hospital level. 

We use three sources of data to estimate the impacts of HIT on cost. Our first source is 

the HCUP charges files that contains information about the total charge for each inpatient 

discharge. Our second source is the Medicare cost report, which provides total inpatient charge 

data at the hospital level. Our third source is the HCUP cost-to-charge ratio file that contains 

hospital-specific cost-to-charge ratios. 

We employ AHA annual survey and its IT supplement datasets to obtain hospital 

characteristics and HIT implementation data. The annual survey dataset provides hospitals 

demographics, organization structure, and operational and financial information on more than 

6,300 hospitals in the U.S. The IT supplement dataset contains HIT implementation level 

information on more than 3,300 hospitals. 

To combine AHA, AHA IT and HCUP datasets, we first aggregated the discharge-level 

data in HCUP to the hospital-level and then matched the data sets using the unique hospital ID 

from the AHA Linkage file. We then combined this dataset with HCAHPS survey, CMS 

outcomes files, and Medicare cost report using the unique Medicare ID. Our final sample 

comprised 715 hospitals with 2,054 observations from 2009 to 2013. Table 2.1 provides 

descriptive statistics and correlations between variables and online Appendix 2A provides the 

definitions, references, and data sources for variables. 
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Table 2.1 Descriptive Statistics and Pairwise Correlation Matrix 

  Mean Stdev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 IQI 91 Chronic Composite 0.340 0.175 1                               

2 IQI 91 Acute Composite 0.294 0.080 0.78* 1               
3 Communication Score  0.869 0.032 0.16* 0.14* 1              
4 Rating Score  0.900 0.041 -0.03 -0.05* 0.82* 1             
5 Recommend Score  0.939 0.031 0.01 -0.05* 0.79* 0.91* 1            
6 IQI 91 Chronic Cost  13,032 6,403 -0.20* -0.26* -0.05* 0.07* 0.10* 1           
7 IQI 91 Acute Cost 11,188 3,560 -0.20* -0.14* -0.01* 0.08* 0.08* 0.73* 1          
8 Cost Per Discharge  10,086 4,143 -0.06* -0.03 0.17* 0.19* 0.20* 0.67* 0.61* 1         
9 DSt-1 2.770 2.352 -0.02 -0.08* 0.07* 0.10* 0.09* 0.09* 0.02 0.01 1        
10 TEt-1 1.444 2.129 0.00 -0.03 0.02 0.06* 0.07* 0.15* 0.09* 0.10* 0.51* 1       
11 Support ITt-1 8.283 3.431 -0.08* -0.16* 0.12* 0.18* 0.18* 0.13* 0.02 0.06* 0.60* 0.43* 1      
12 Bed Size  306 268 0.00 -0.21* -0.14* -0.02 0.03 0.47* 0.17* 0.25* 0.19* 0.24* 0.19* 1     
13 Not-For-Profit  0.723 0.447 0.06* -0.01 0.12* 0.13* 0.20* 0.02 -0.01 0.06* -0.04 0.02 -0.01 0.08* 1    
14 Teaching 0.131 0.337 0.04 -0.03 -0.06* 0.01 0.07* 0.48* 0.23* 0.33* 0.13* 0.28* 0.12* 0.57* 0.03 1   
15 HHI 0.173 0.161 0.10* 0.13* 0.25* 0.16* 0.17* -0.18* -0.16* -0.12* -0.04 -0.05* -0.02 -0.14* -0.01 -0.15* 1  
16 IT Network Effectt-1  122 101 -0.11* -0.13* -0.22* -0.12* -0.16* 0.11* 0.12* 0.05* 0.09* 0.15* 0.08* 0.16* 0.00 0.12* -0.57* 1 

* p<0.05 
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2.3.2 Operationalization of Outcome Variables: Quality of Care 

Our clinical quality measures include the inpatient quality indicator IQI 91 composite quality. 

The IQI 91 quality measure is available as a composite measure that takes into account 

mortalities for both acute and chronic conditions. The Inpatient Quality Indicators (IQIs) were 

developed by experts at University of California, San Francisco, Stanford University Evidence-

based Practice Center, and University of California, Davis. Compared to other indicators such as 

simple mortality rate and medical error rate, IQIs are risk-adjusted and face-validated quality 

measurements (Menachemi et al. 2008). As a result, IQIs are considered to be more reliable, and 

are frequently used by researchers.  

 The IQI 91 composite quality measures consider mortality related to six conditions: acute 

myocardial infarction (IQI 15), heart failure (IQI 16), acute stroke (IQI 17), gastrointestinal 

hemorrhage (IQI 18), hip fracture (IQI 19), and pneumonia (IQI 20). Mortality rates for these 

conditions vary substantially across institutions. Furthermore, evidence suggests that high 

mortality may be associated with a deficiency in the quality of care. Thus, IQI 91 mortality 

measures provide us with a good set of validated, extensively-used and well-understood metrics 

to assess clinical quality. To evaluate chronic and acute quality separately, we mapped the six 

IQI 91 conditions against the chronic indicator variable from the HCUP dataset. We found that 

Acute Myocardial Infarction (AMI), Heart Failure (HF), and Acute Stroke are all chronic 

diseases, hence, we conceptualize mortality rates for IQI 15, IQI 16 and IQI 17 as our clinical 

quality measure for chronic conditions. We also found that 96.8% of Gastrointestinal 

Hemorrhage, Hip Fracture, and Pneumonia (PN) conditions are classified as acute. We use only 

those discharges for which these three conditions are classified as acute, excluding others from 

further consideration, and conceptualize mortality rates for IQI 18, IQI 19 and IQI 20 as our 
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clinical quality measure for acute conditions. The calculation of these measures is involved; 

please see Appendix 2B for methodological and procedural details. Consistent with statistical 

theory (Collett 2003), we applied logit transformation on the IQI 91 chronic and acute measures 

to ensure the predictions of the percentage dependent variable would be within the unit interval. 

We used three measures to study experiential quality: communication score, rating score, 

and recommendation score. The communication score is calculated by four items in the 

HCAHPS survey (see online Appendix 2C, Part I for all HCAHPS survey items). The response 

categories for question 1 to 3 are “Never/Sometimes,” “Usually,” or “Always.”, and the response 

categories for question 4 are “Yes” or “No.” For question 1 to 3, we used the sum of the 

percentage of respondents who answered “Always” and “Usually”, and for question 4, the 

percentage of patients who answered “Yes” to measure communication score. We calculated the 

average score for these four items. Following recent research (Chandrasekaran et al. 2012; Senot 

et al. 2016; Sharma et al. 2016) and consistent with statistical theory (Collett 2003), we applied 

logit transformation on the average score computed earlier. The communication score is given by 

the following equation with i as the individual hospitals and Q as the average score of the four 

items: 

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝑖 = 𝐿𝑛 [
𝑄𝑖

1 −  𝑄𝑖
 ] 

To calculate the rating score, we used the patients’ overall rating for a hospital, which is 

expressed on a 10-point scale. Ratings of 9 or 10 are considered high; ratings of 7 or 8 are 

considered medium; and ratings of 6 or lower are considered low. We calculated sum of the 

percentage of high and medium ratings that each hospital received, and then applied logit 

transformation on it (Collett 2003). The final rating score is given by the following equation with 

i as the individual hospitals and PR as the high rating percentage:   
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𝑅𝑎𝑡𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑖 = 𝐿𝑛 [
𝑃𝑅𝑖

1 −  𝑃𝑅𝑖
 ] 

To calculate the recommendation score, we examined if patients would recommend the 

hospital to friends and family. The survey has 3 answers for recommendation score: “Yes, 

definitely recommend the hospital,” “Probably recommend the hospital,” and “Not recommend 

the hospital.” For each hospital, we calculated the sum of the percentage of patients who would 

definitely recommend the hospital and patients who would probably recommend the hospital 

(Angst et al. 2012), and then applied logit transformation on it (Collett 2003). The 

recommendation score is given by the following equation with i as the individual hospitals and R 

as the recommendation percentage:   

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝑖 = 𝐿𝑛 [
𝑅𝑖

1 −  𝑅𝑖
 ] 

2.3.3 Operationalization of Outcome Variables: Cost 

We employed two broad measures of hospital cost: IQI 91 costs and cost per discharge. To 

calculate IQI 91 costs at the hospital level, we first multiply the charge amount for each 

discharge by cost-to-charge ratio. These costs are then averaged over three chronic IQI 91 

conditions and three IQI 91 acute conditions to obtain for IQI 91 chronic and IQI 91 acute costs, 

respectively, at the hospital level. Our second measure, cost per discharge, examines overall 

costs, not just those relevant to IQI conditions.  It is measured by a hospital’s total inpatient 

charge reported by the CMS cost report, multiplied by the cost-to-charge ratio obtained from the 

cost-to-charge ratio file and divided by the number of discharges calculated from HCUP 

database. Following recent research, the cost measures are log transformed for further analysis 

(Senot et al. 2016; Sharma et al. 2016). 
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2.3.4 Explanatory Variables 

The main explanatory variables in our model corresponding to HIT implementation include DS 

IT (CDSS), TE IT (CPOE), result viewing IT, and electronic clinical documentation (ECD). 

Result viewing and ECD are jointly conceptualized as support IT because these application, 

while invaluable in patient care, play supporting roles to the primary clinical tasks of diagnosis 

and ordering. HIT implementation is measured by a six-point scale, where 1 indicates “fully 

implemented across all units,” and 6 indicates “not in place and not considering implementing.” 

The AHA IT survey, which serves as the source of these measures, is reported in Appendix 2C, 

part II. 

In order to calculate HIT implementation levels, we first recoded the original data. 

Responses between 2 and 6 were recoded as 0, and the original coding of 1 was retained as one. 

This coding scheme separates full implementation from no- or partial implementation. We group 

hospitals that have partial and no implementation of HITs together because synergistic impacts at 

the hospital level are possible only when HITs are fully implemented hospital-wide. Hospitals 

with no HIT implementation are not likely to have these impacts. Hospitals with HIT 

implementations in few but not all units may enjoy some benefits within those units, but suffer 

from coordination and duplication issues arising from having to maintain both electronic and 

paper-based systems. Second, we constructed three HIT variables – DS IT, TE IT, and support 

IT - by counting the number of technologies completely implemented at a hospital in each HIT 

category.  This approach has been widely used in the IS and health care literature (Angst et al. 

2012; Borzekowski 2009; Burke and Menachemi 2004; Menachemi et al. 2008). We then 

standardize IT variables to remove potential multicollinearity in the pairwise and three-way 

interaction terms. Individual items measuring the implementation of each HIT application and 
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the temporal trend in the implementation levels are presented in online Appendix 2D. We can 

infer that: 1) the implementation levels for most HIT applications continuously increase from 

2008 to 2012, and 2) overall, the implementation levels of support IT are higher than those of DS 

IT or TE IT. 

2.3.5 Control Variables 

To account for other factors that may influence HIT impact on hospital performance, we also 

included several control variables in our analysis. These include hospital-level variables (e.g., 

size, profit status, and teaching status) obtained from AHA survey datasets. Further, prior 

literature indicates that due to network effects, HIT implementation behavior in a hospital can be 

influenced by other hospitals in the same market (Miller and Tucker 2009). In addition, market 

competition can also influence HIT implementation efforts (Miller and Tucker 2009). Thus, we 

include these two variables in our study. For a focal hospital, we operationalize IT network 

effects and market competition at the level of hospital referral region (HRR). To calculate the IT 

network and competition effects, hospitals are aggregated into HRRs. IT network effect is 

measured by averaging IT implementation levels across all the hospitals in the HRR, excluding 

the focal hospital. Competition is measured by Herfindahl-Hirschman Index (HHI). 

2.4 Data Analysis and Results 

We performed a series of analyses whose results we report in stages. First, we report results from 

correlation and performance tests. Next, we present the cube view, which provides us with a 

graphical framework to test and explain the system effect of complementarity by unveiling if 

joint implementations of different HITs can achieve a higher impact on performance than the 

sum of individual effects (Aral et al. 2012; Brynjolfsson and Milgrom 2012; Tambe et al. 2012). 

Following that, we conduct post-hoc analyses to uncover complementarity relationship among 
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different types of HIT implementation levels and the healthcare performance. Finally, we present 

findings from a series of robustness tests performed to verify our results. 

2.4.1 Correlation Tests 

We conduct a partial correlation test to examine the association among three HIT applications. 

We further assess how these correlations change over time (Tambe et al. 2012). The correlation 

test cannot provide direct evidence of performance, but it can provide an indication of whether 

certain HIT applications may be complementary, which is indicated by a statistically positive 

correlation between their implementation levels and a rising trend of this correlation over time. 

We find that after controlling for hospital characteristics, IT network effect, market competition, 

state effect, and year effect, correlations between DS and TE, DS and support IT, and TE and 

support IT are 0.45, 0.53 and 0.36, respectively. These correlations are significant at p < 0.001, 

providing suggestive evidence of complementarity. We also examine how the implementation 

levels of one HIT change over time when other HIT applications are both high (one standard 

deviation above the mean), or both low (one standard deviation below the mean), or mismatched. 

Our findings suggest that the implementation level for one type of HIT in hospitals with two 

other HITs matched high grow at a faster rate as compared to hospitals with HITs mismatched or 

matched at a low level. These results are presented in Figure 2.1. 
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a. Decision Support IT b. Task Execution IT c. Support IT 

Figure 2.1 IT Implementation Levels over Time 
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2.4.2 Performance Test 

We use the fixed effect (FE) model as our main empirical method to analyze the panel data. FE 

model takes into account the unobserved, time-invariant heterogeneity at the hospital level that 

may correlate with the IT variables4. In this case, we can use the within-hospital variation for 

identification. The use of FE model with panel data allows us to control the potential impact of 

unobserved individual heterogeneity, which has been a significant concern in the 

complementarity literature (Aral et al. 2012; Brynjolfsson and Milgrom 2012; Dranove et al. 

2014; Cassiman and Veugelers 2006). We estimated the following econometric model: 

Performance (i, t) = HIT'
itβ + Control'

itη + αi + εit , 

where the dependent variables include different quality and cost measures for a hospital at time t; 

HITit are HIT variables, including lagged individual IT variables (e.g. DSi, t-1 , TEi, t-1 , Support i, t-

1), pairwise and three-way interactions between lagged IT variables (e.g. DS i, t-1×Support i, t-1, TE 

i, t-1×Support i, t-1, DS i, t-1×TE i, t-1, DS i, t-1×TE i, t-1×Support i, t-1); Controlit  are the time-varying 

control variables, including hospital characteristic variables (Hospital Size (log) i, t , Teaching i, t), 

lagged IT network effect variables (e.g. IT Network Effect i, t-1), and market competition effect 

(HHI i, t ), non-profit hospital (Not-For-Profit i, t), and year effect; αi is the time-invariant 

unobserved hospital effect; and εit the time-varying unobserved hospital effect. 

Identification in our analysis comes from time series variation in the levels of HIT 

implemented by hospitals. Given that we are interested in examining the causal effect of HIT 

applications on hospital performance, it is important that we address some potential validity 

threats, such as selection effect, reverse causality, simultaneity, and unobserved hospital 

heterogeneity (Angrist and Pischke 2009). Not every hospital responds to AHA’s request to 

                                                 
4 We performed Durbin–Wu–Hausman tests, which results also suggest that fixed effect model provides consistent 

results than random effect model. 
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complete the IT supplement survey. Thus, it is likely that there is a selection bias. To examine 

the potential selection bias, we performed the Heckman selection test. Our results indicate that 

selection effect is not a significant concern (see Appendix 2E1). In order to assess reverse 

causality, we estimated a number of models with one year lagged performance indicators as 

explanatory variables and HIT implementation levels as outcome variables. We do not find 

evidence of reverse causality for HIT application in any of the models (see Appendix 2E2-E4). 

We can rule out simultaneity based on extensive evidence in the IS and HIT literature that 

suggests that there is a considerable time gap between IT implementation and organizational 

level impacts. Finally, unobserved hospital heterogeneity could be related to performance 

impacts. To the extent that such heterogeneity is not systematically related to HIT 

implementation levels or does not change systematically after HIT, we expect the impact of such 

heterogeneity to be small.  

We estimate HT models to examine both simultaneous and temporal HIT 

complementarities. HITs are lagged one year and two years in these analyses. We begin by 

analyzing simultaneous HIT interaction models with three HITs either lagged one year or two 

years together. We then estimate temporal complementarity models with support IT implemented 

before or after DS and TE, TE implemented before or after DS and support IT, and DS 

implemented before or after TE and support IT. We discuss these results in the following two 

sections. 

2.4.3 Simultaneous HIT Complementarity 

Table 2.2 shows hospital performance effects of HIT when each of the three applications is 

lagged either one-year (see Part I) or two-years (see Part II). Focusing on Part I, we examine the 

impact of these lagged HITs in combination, including both, pairwise and three-way interactions. 
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We find that the interaction effect between DSt-1 and Supportt-1 decreases cost-per-discharge 

(p<.05). The interaction between TEt-1 and Supportt-1 and the interaction between DSt-1 and TEt-1 

have no significant effect on any outcome variable. Further, three-way interaction effect among 

DSt-1, TEt-1, and Supportt-1 leads to decreased IQI 91 chronic mortality rate (p<.1), implying the 

three-way interaction effect of DS, TE and support IT leads to an increase in IQI 91 chronic 

quality. We explore this effect further using the cube view of complementarity in a later section. 

Looking at the results from Part II, we notice that DSt-2, TEt-2, and Supportt-2 impact 

various performance measures differently. Our results show the interaction effect between DSt-2 

and Supportt-2 increases rating score (p<.1). The interaction effect between TEt-2 and Supportt-2 

increases clinical chronic quality by decreasing mortality rate for IQI 91 chronic composite 

(p<0.01). Besides increasing clinical quality, the interaction between TEt-2 and Supportt-2 

decreases IQI 91 chronic disease cost (p<.05) and IQI 91 acute disease cost (p<.1). This result 

suggests that hospitals that implemented both TE and support IT have lower average IQI 91 

disease cost for both chronic and acute discharges two years later. The interaction between TEt-2 

and DSt-2 has a weakly significant effect on IQI 91 chronic composite (p<.1) and cost per 

discharge (p<.1). Three-way interaction between DSt-2, TEt-2 and Supportt-2 leads to an increase 

in communication score (p<.05) and recommendation score (p<.1). Again, we will discuss this 

effect further in a later section. 
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Table 2.2 Simultaneous Complementarity Models 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-1, and Supportt-1  

DS t-1×Support t-1 
-0.0045 0.0059 0.0022 0.0086 -0.0111 -0.0001 -0.0057 -0.0092* 

(0.012) (0.006) (0.005) (0.010) (0.011) (0.005) (0.004) (0.004) 

TE t-1×Support t-1 
-0.0045 0.0012 0.0064 0.0095 0.0133 -0.0066 -0.0003 -0.0087 
(0.016) (0.008) (0.006) (0.010) (0.014) (0.006) (0.006) (0.006) 

DS t-1×TE t-1 
0.0031 -0.0075 0.0006 0.0006 0.0022 -0.0074 0.0009 0.0011 

(0.013) (0.008) (0.005) (0.009) (0.012) (0.006) (0.006) (0.004) 

DS t-1×TE t-1×Support t-1 
-0.0226+ -0.0078 0.0063 0.0141 0.0000 0.0052 -0.0011 -0.0026 

(0.013) (0.007) (0.005) (0.010) (0.011) (0.005) (0.004) (0.004) 

# Observations 2,054 2,054 2,049 2,049 2,049 2,054 2,054 2,054 
# hospital 715 715 713 713 713 715 715 715 

R2 0.044 0.045 0.373 0.119 0.037 0.131 0.125 0.231 

Part II. Models for DSt-2, TEt-2, and Supportt-2  

DS t-2 ×Support t-2 
0.0142 0.0015 0.0050 0.0177+ -0.0032 0.0021 0.0000 -0.0067 

(0.015) (0.008) (0.005) (0.010) (0.015) (0.005) (0.005) (0.005) 

TE t-2 ×Support t-2 
-0.0477** -0.0055 0.0029 -0.0010 -0.0086 -0.0187* -0.0187+ 0.0051 

(0.018) (0.011) (0.005) (0.011) (0.015) (0.009) (0.010) (0.007) 

DS t-2 ×TE t-2 
0.0259+ 0.0052 -0.0047 -0.0120 0.0004 -0.0004 0.0004 -0.0091+ 

(0.015) (0.008) (0.004) (0.009) (0.012) (0.009) (0.010) (0.005) 

DS t-2 ×TE t-2 ×Support t-2 
-0.0115 0.0051 0.0099* 0.0113 0.0242+ -0.0026 -0.0060 0.0018 

(0.016) (0.009) (0.004) (0.010) (0.013) (0.008) (0.009) (0.006) 
# Observations 1,548 1,548 1,541 1,541 1,541 1,548 1,548 1,548 

# hospital 646 646 644 644 644 646 646 646 

R2 0.043 0.042 0.328 0.093 0.024 0.124 0.119 0.176 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 

2.4.4 Temporal HIT Complementarity 

We present three sets of analyses to assess if HIT applications implemented in different years 

interact with one another and impact performance outcomes. Part I in Table 2.3 provides details 

on performance impacts of interactions when support IT is lagged two time periods while DS 

and TE are lagged one time period. We notice that the effects of two-way interaction between 

DSt-1 and Supportt-2 are negative on recommendation score (p<.1) and cost per discharge (p<.05). 

The interaction between TEt-1 and Supportt-2 influences communication score (p<.1). DSt-1 and 

TEt-1 together enhance acute clinical quality by decreasing IQI 91 acute morality rate (p<.1). The 

three-way interaction between DSt-1, TEt-1, and Supportt-2 facilitates improvement in clinical 

quality by reducing IQI 91 chronic composite mortality rate and in cost reduction by decreasing 

IQI 91 acute cost (p<.1 for both effects). 
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Part II in Table 2.3 shows performance impacts of interactions when support IT is lagged 

one time period while DS and TE are lagged two time periods. Examining two-way interactions, 

we observe that the interaction between DSt-2 and Supportt-1 has no significant effect on any 

outcome variable. We also find that the interaction between TEt-2 and Supportt-1 decreases 

communication score (p<.05), while the interaction between DSt-2 and TEt-2 has a negative effect 

on cost per discharge (p<.1). The three-way interaction between DSt-2, TEt-2, and Supportt-1 

enhances communication score significantly (p<.01). It is interesting to note that three-way 

interaction effect increases clinical quality and decreases cost when support IT is implemented 

one year before DS and TE and increases experiential quality when support IT is implemented 

one year after DS and TE. 

Table 2.3 Temporal Complementarity Models of Support IT  

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-1, and Supportt-2  

DS t-1×Support t-2 
0.0082 0.0005 -0.0039 0.0090 -0.0266+ -0.0104 -0.0034 -0.0121* 

(0.016) (0.010) (0.006) (0.015) (0.015) (0.006) (0.006) (0.006) 

TE t-1×Support t-2 
-0.0024 -0.0017 0.0125+ -0.0195 0.0251 0.0017 -0.0009 0.0039 
(0.021) (0.013) (0.007) (0.018) (0.017) (0.008) (0.008) (0.008) 

DS t-1×TE t-1 
0.0087 -0.0176+ 0.0043 0.0117 -0.0065 -0.0024 0.0043 -0.0002 

(0.014) (0.009) (0.006) (0.013) (0.014) (0.006) (0.006) (0.005) 

DS t-1×TE t-1×Support t-2 
-0.0300+ -0.0025 -0.0006 0.0255 -0.0118 -0.0074 -0.0126+ -0.0093 

(0.016) (0.011) (0.006) (0.018) (0.016) (0.008) (0.007) (0.007) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# hospital 499 499 499 499 499 499 499 499 

R2 0.041 0.040 0.320 0.105 0.037 0.109 0.109 0.175 

Part II. Models for DSt-2, TEt-2, and Supportt-1 

DS t-2 ×Support t-1 
0.0005 -0.0000 0.0061 0.0068 0.0009 0.0063 0.0039 -0.0025 

(0.016) (0.008) (0.005) (0.011) (0.015) (0.007) (0.007) (0.008) 

TE t-2 ×Support t-1 
-0.0051 0.0145 -0.0124* -0.0077 -0.0242 -0.0021 0.0022 0.0027 

(0.018) (0.009) (0.006) (0.012) (0.016) (0.007) (0.008) (0.007) 

DS t-2 ×TE t-2 
0.0031 0.0086 0.0015 -0.0008 0.0059 -0.0103 -0.0100 -0.0086+ 

(0.014) (0.007) (0.004) (0.010) (0.013) (0.008) (0.008) (0.005) 

DS t-2 ×TE t-2 ×Support t-1 
0.0225 -0.0115 0.0130** 0.0073 0.0225 -0.0034 -0.0066 0.0005 

(0.016) (0.008) (0.004) (0.014) (0.015) (0.007) (0.007) (0.006) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# hospital 499 499 499 499 499 499 499 499 

R2 0.046 0.040 0.325 0.093 0.036 0.110 0.109 0.173 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 
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Part I in Table 2.4 depicts performance impacts of interactions when TE is lagged two 

time periods while DS and support IT are lagged one time period. Two-way interaction effect 

between DSt-1 and Supportt-1 reduces cost-per-discharge (p<.1). The interaction between TEt-2 

and Supportt-1 does not have any significant effect. The interaction between DSt-1 and TEt-2 

deceases cost per discharge (p<.05).  The three-way interaction between DSt-1, TEt-2, and 

Supportt-1 enhances the communication score (p<0.001) and increases cost per discharge (p<.1). 

Part II presents performance impacts of interactions when TE is lagged one time period 

while DS and support IT are lagged two time periods. We discover that interactions between 

Supportt-2 and DSt-2, between Supportt-2, and TEt-1, and between DSt-2 and TEt-1 have no 

significant impact on any performance outcome. The three-way interaction between DSt-2, TEt-1, 

and Supportt-2 enhances the communication score (p<0.001) and rating score (p<.1). 

Table 2.4 Temporal Complementarity Models of TE 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-2, and Supportt-1  

DS t-1×Support t-1 
-0.0048 -0.0005 0.0009 0.0089 -0.0140 0.0024 0.0032 -0.0084+ 

(0.015) (0.008) (0.005) (0.011) (0.014) (0.006) (0.006) (0.005) 

TE t-2×Support t-1 
0.0152 0.0172 -0.0062 -0.0056 -0.0068 -0.0044 -0.0019 0.0051 
(0.017) (0.011) (0.006) (0.012) (0.016) (0.008) (0.009) (0.006) 

DS t-1×TE t-2 
-0.0169 -0.0072 -0.0007 -0.0033 -0.0040 0.0010 0.0011 -0.0092* 

(0.013) (0.010) (0.006) (0.012) (0.014) (0.008) (0.008) (0.004) 

DS t-1×TE t-2×Support t-1 
0.0137 -0.0026 0.0161*** 0.0225 0.0036 -0.0041 -0.0076 0.0069+ 

(0.013) (0.008) (0.004) (0.014) (0.013) (0.008) (0.008) (0.004) 

# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# hospital 499 499 499 499 499 499 499 499 

R2 0.044 0.036 0.324 0.096 0.030 0.103 0.104 0.178 

Part II. Models for DSt-2, TEt-1, and Supportt-2 

DS t-2 ×Support t-2 
0.0071 0.0011 0.0066 0.0178 -0.0021 -0.0040 -0.0073 -0.0089 

(0.017) (0.008) (0.005) (0.011) (0.014) (0.007) (0.006) (0.005) 

TE t-1 ×Support t-2 
-0.0192 -0.0051 0.0073 -0.0013 0.0071 -0.0026 -0.0043 -0.0038 

(0.018) (0.010) (0.005) (0.009) (0.012) (0.008) (0.008) (0.007) 

DS t-2 ×TE t-1 
0.0101 0.0008 -0.0039 -0.0140 -0.0122 -0.0048 -0.0017 -0.0006 
(0.015) (0.008) (0.004) (0.009) (0.012) (0.007) (0.008) (0.005) 

DS t-2 ×TE t-1 ×Support t-2 
-0.0218 -0.0024 0.0155*** 0.0195+ 0.0156 -0.0047 -0.0049 -0.0007 

(0.016) (0.009) (0.004) (0.011) (0.013) (0.007) (0.007) (0.005) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# hospital 499 499 499 499 499 499 499 499 

R2 0.042 0.036 0.336 0.109 0.037 0.109 0.108 0.172 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 



45 

 

Part I in Table 2.5 illustrates performance impacts of interaction when DS is lagged two 

time periods while support IT and TE are lagged one time period. We notice that there is no 

interaction effect between DSt-2 and Supportt-1 and  between TEt-1 and Supportt-1. Two-way 

interaction effect between DSt-2 and TEt-1 decreases rating score (p<.05) and decreases chronic 

cost (p<.05). The three-way interaction between DSt-2, TEt-1, and Supportt-1 enhances the 

communication score (p<.05) and rating score (p<.1). 

Part II presents performance impacts of interactions when DS is lagged one time period 

while TE and support IT are lagged two time periods. We find that the two-way interaction effect 

between DSt-1 and Supportt-2 decreases cost-per-discharge (p<.05), suggesting DS complements 

with support IT in reducing cost if DS is implemented one year after support IT. We also find 

that the two-way interaction effect between TEt-2 and Supportt-2 decreases both IQI 91 chronic 

cost and IQI 91 acute cost (p<.05 in both effects). There is no interaction effect between DSt-1 

and TEt-2. Furthermore, three-way interaction between DSt-1, TEt-2 and Supportt-2 enhances the 

communication score (p<.1). 
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Table 2.5 Temporal Complementarity Models of DS 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Cost 

Cost per 

Discharge 

Part I. Models for DSt-2, TEt-1, and Supportt-1  

DS t-2×Support t-1 
0.0059 0.0072 0.0014 0.0083 -0.0021 0.0081 0.0053 -0.0006 

(0.015) (0.007) (0.005) (0.011) (0.013) (0.006) (0.006) (0.007) 

TE t-1×Support t-1 
-0.0104 0.0062 0.0036 0.0124 -0.0093 0.0041 0.0053 -0.0083 
(0.020) (0.009) (0.006) (0.012) (0.016) (0.006) (0.006) (0.008) 

DS t-2×TE t-1 
-0.0019 -0.0001 -0.0022 -0.0217* -0.0099 -0.0110* -0.0068 -0.0014 

(0.016) (0.008) (0.005) (0.011) (0.013) (0.005) (0.005) (0.005) 

DS t-2×TE t-1×Support t-1 
-0.0030 -0.0074 0.0105* 0.0232+ 0.0118 0.0009 -0.0016 -0.0015 

(0.016) (0.008) (0.005) (0.012) (0.013) (0.005) (0.005) (0.005) 

# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 
# hospital 499 499 499 499 499 499 499 499 

R2 0.045 0.039 0.323 0.096 0.035 0.112 0.106 0.173 

Part II. Models for DSt-1, TEt-2, and Supportt-2 

DS t-1 ×Support t-2 
0.0079 -0.0041 -0.0001 -0.0004 -0.0217 -0.0065 -0.0013 -0.0101* 

(0.017) (0.010) (0.006) (0.013) (0.014) (0.006) (0.006) (0.005) 

TE t-2 ×Support t-2 
-0.0288 -0.0022 0.0122 0.0138 0.0134 -0.0262* -0.0251* -0.0017 

(0.024) (0.015) (0.008) (0.018) (0.018) (0.011) (0.012) (0.006) 

DS t-1 ×TE t-2 
0.0059 0.0048 -0.0058 -0.0035 -0.0043 0.0058 0.0069 -0.0032 
(0.014) (0.009) (0.005) (0.010) (0.013) (0.008) (0.009) (0.004) 

DS t-1 ×TE t-2 ×Supportt-2 
-0.0142 -0.0098 0.0109+ 0.0053 -0.0031 0.0022 -0.0046 0.0019 

(0.017) (0.011) (0.006) (0.018) (0.015) (0.009) (0.009) (0.005) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# hospital 499 499 499 499 499 499 499 499 

R2 0.039 0.033 0.325 0.102 0.034 0.123 0.123 0.173 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 

2.4.5 The Cube View of Three-Way Complementarities 

To understand the nature of complementarities among the three HIT applications, we present the 

system effect by employing performance difference tests and a cube view of complementarities. 

We examine each significant three-way interaction from Tables 2.2-2.5 to assess if three-way 

complementarities exist. Figure 2.2 is a generic representation of the cube view of 

complementarity. In the figure, the x-axis represents DS, the y-axis represents TE, and the z-axis 

represents support IT. Depending on the three-way complementarity we intend to examine, the 

three axes can represent DS, TE and support IT, time lagged one period or two periods. To 

assign coordinates in the cube, we use 0 and 1 to represent low and high levels of 

implementation, respectively. For example, the coordinate (1, 0, 1) indicates that a hospital 

implemented a high level of DS, a low level of TE, and a high level of support IT.  
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Figure 2.2 Cube View of Complementarities 

In order to assess three way complementarity, we verify if each of the three pairs of 

variables is complementary and if all three variables are complementary together (Aral et al. 

2012; Brynjolfsson and Milgrom 2012; Tambe et al. 2012). For each pair of variables, we 

calculate two differences: 1) when two variables are at high level, then what is the performance 

difference when the third variable is high vs. when it is low, and 2) when two variables are at 

low level, then what is the performance difference when the third variable is high vs. when it is 

low. If the former performance differential is larger than the latter for outcomes, such as 

revenues, profitability, productivity, or lower for outcomes, such as costs, and mortality, then 

there is partial evidence for three-way complementarity. For example, to assess whether a high 

level of DS reduces IQI 91 mortality rate more in the presence of high levels of TE and Support, 

we test if F(1,1,1) - F(0,1,1) < F(1,0,0) - F(0,0,0). Similarly, to test whether a high level of DS 

increases experiential quality more in the presence of TE and Support, we test if F(1,1,1) - 

F(0,1,1) > F(1,0,0) - F(0,0,0). For a comprehensive analysis of three-way complementarity, these 

tests are performed two more times, once to assess if high level of TE enhances performance 

more in the presence of high levels of DS and Support, and if high level of Support enhances 

performance more in the presence of high levels of DS and TE. The final and fourth test is a 

system test considering all three pairs of the edges simultaneously. 
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In Tables 2.6-2.13, we present the system test of complementarity for all three-way 

interactions found significant in Tables 2.2-2.5. Out of thirteen three-way interactions found 

significant in Tables 2.2-2.5, three-way complementarity is supported for nine interaction and 

not supported for the other four. Simultaneous complementarity is supported for two three-way 

interactions and not supported for one such interactions, and sequential complementarity is 

supported for seven three-way interactions and not supported for three such interactions. We find 

evidence of three-way complementarity for experiential quality, clinical quality, and the cost 

measures. 

Table 2.6 System Tests of Complementarities: DS t-1×TE t-1×Support t-1 

Complementarity Between: Test IQI 91 Chronic 

Composite 

TE and Support IT F(1,1,1) - F(0,1,1) > F(1,0,0) - F(0,0,0) Fail p=0.087 

DS and Support IT F(1,1,1) - F(1,0,1) > F(0,1,0) - F(0,0,0) Fail p=0.064 

TE and DS F(1,1,1) - F(1,1,0) > F(0,0,1) - F(0,0,0) Fail p=0.085 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) - F(1,1,0)] - [F(1,0,0) 

- F(0,0,0) + F(0,1,0) - F(0,0,0) + F(0,0,1) - F(0,0,0)] < 0 
 

p=0.032* 

 

Table 2.7 System Tests of Complementarities: DS t-2×TE t-2×Support t-2 

Complementarity Between: Test Communication 

Score 

Recommendation 

Score 

TE and Support IT F(1,1,1) - F(0,1,1) > F(1,0,0) - F(0,0,0) Fail p=0.066 Fail p=0.126 

DS and Support IT F(1,1,1) - F(1,0,1) > F(0,1,0) - F(0,0,0) Fail p=0.083 Fail p=0.182 

TE and DS F(1,1,1) - F(1,1,0) > F(0,0,1) - F(0,0,0) 
 

p=0.001*** Fail p=0.215 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) - 

F(1,1,0)] - [F(1,0,0) - F(0,0,0) + F(0,1,0) - F(0,0,0) 

+ F(0,0,1) - F(0,0,0)] > 0 

 
p=0.003** Fail p=0.082 

 

Table 2.8 System Tests of Complementarities: DS t-1×TE t-1×Support t-2 

Complementarity Between: 

Test IQI 91 Chronic 

Composite  

IQI 91 Acute Cost 

TE and Support IT F(1,1,1) - F(0,1,1) < F(1,0,0) - F(0,0,0) Fail p=0.300 Fail p=0.097 

DS and Support IT F(1,1,1) - F(1,0,1) < F(0,1,0) - F(0,0,0) Fail p=0.102 Fail p=0.124 

TE and DS F(1,1,1) - F(1,1,0) < F(0,0,1) - F(0,0,0) Fail p=0.101 
 

p=0.022* 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) 

- F(1,1,0)] - [F(1,0,0) - F(0,0,0) + F(0,1,0) - 

F(0,0,0) + F(0,0,1) - F(0,0,0)] < 0 

Fail p=0.081 
 

p=0.019* 
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Table 2.9 System Tests of Complementarities: DS t-2×TE t-2×Support t-1 

Complementarity Between: Test Communication 

Score 

TE and Support IT F(1,1,1) - F(0,1,1) > F(1,0,0) - F(0,0,0) 
 

p=0.002** 

DS and Support IT F(1,1,1) - F(1,0,1) > F(0,1,0) - F(0,0,0) Fail p=0.370 

TE and DS F(1,1,1) - F(1,1,0) > F(0,0,1) - F(0,0,0) Fail p=0.168 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) - F(1,1,0)] - [F(1,0,0) 

- F(0,0,0) + F(0,1,0) - F(0,0,0) + F(0,0,1) - F(0,0,0)] > 0 
 

p=0.030* 

 

Table 2.10 System Tests of Complementarities: DS t-1×TE t-2×Support t-1 

Complementarity Between: Test Communication 

Score 

Cost per 

Discharge 

TE and Support IT F(1,1,1) - F(0,1,1) > F(1,0,0) - F(0,0,0) 
 

p=0.024* Fail 0.057 

DS and Support IT F(1,1,1) - F(1,0,1) > F(0,1,0) - F(0,0,0) Fail p=0.071 Fail 0.674 

TE and DS F(1,1,1) - F(1,1,0) > F(0,0,1) - F(0,0,0) Fail p=0.063 Fail 0.672 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) - 

F(1,1,0)] - [F(1,0,0) - F(0,0,0) + F(0,1,0) - F(0,0,0) + 

F(0,0,1) - F(0,0,0)] > 0 

 
p=0.011* Fail 0.392 

 

Table 2.11 System Tests of Complementarities: DS t-2×TE t-1×Support t-2 

Complementarity Between: Test Communication 

Score 

Rating Score 

TE and Support IT F(1,1,1) - F(0,1,1) > F(1,0,0) - F(0,0,0) 
 

p=0.007** 
 

p=0.050* 

DS and Support IT F(1,1,1) - F(1,0,1) > F(0,1,0) - F(0,0,0) 
 

p=0.001*** Fail p=0.368 

TE and DS F(1,1,1) - F(1,1,0) > F(0,0,1) - F(0,0,0) 
 

p=0.000*** 
 

p=0.009** 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) 

- F(1,1,0)] - [F(1,0,0) - F(0,0,0) + F(0,1,0) - 

F(0,0,0) + F(0,0,1) - F(0,0,0)] > 0 

 
p=0.000*** 

 
p=0.025* 

 

Table 2.12 System Tests of Complementarities: DS t-2×TE t-1×Support t-1 

Complementarity Between: Test Communication 

Score 

Rating Score 

TE and Support IT F(1,1,1) - F(0,1,1) > F(1,0,0) - F(0,0,0) 
 

p=0.046* Fail p=0.225 

DS and Support IT F(1,1,1) - F(1,0,1) > F(0,1,0) - F(0,0,0) Fail p=0.051 Fail p=0.188 

TE and DS F(1,1,1) - F(1,1,0) > F(0,0,1) - F(0,0,0) 
 

p=0.035* 
 

p=0.023* 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) - 

F(1,1,0)] - [F(1,0,0) - F(0,0,0) + F(0,1,0) - F(0,0,0) 

+ F(0,0,1) - F(0,0,0)] > 0 

 
p=0.013* Fail p=0.057 

 

Table 2.13 System Tests of Complementarities: DS t-1×TE t-2×Support t-2 
Complementarity Between: Test Communication Score 

TE and Support IT F(1,1,1) - F(0,1,1) > F(1,0,0) - F(0,0,0) Fail p=0.324 

DS and Support IT F(1,1,1) - F(1,0,1) > F(0,1,0) - F(0,0,0) 
 

p=0.004** 

TE and DS F(1,1,1) - F(1,1,0) > F(0,0,1) - F(0,0,0) 
 

p=0.003** 

The System [F(1,1,1) - F(0,1,1) + F(1,1,1) - F(1,0,1) + F(1,1,1) - F(1,1,0)] - 

[F(1,0,0) - F(0,0,0) + F(0,1,0) - F(0,0,0) + F(0,0,1) - F(0,0,0)] > 0 
 

p=0.010* 
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2.4.6 Post-hoc Analyses  

To better understand the three-way complementarity effects, we conducted predictive margin 

plots in Figure 2.3-2.11 as the post-hoc analyses, which analyses provide us further insights on 

the complementarity relationship among different types of HIT implementation levels and the 

healthcare performance. For instance, Figure 2.3 demonstrates the relationship between DS 

implementation and IQI 91 chronic quality at high and low levels of TE and Support IT when 

each of the three IT applications is lagged one-year. From this graph, we can infer that if a 

hospital has high TE and high Support IT, it will show about 0.66% decrease in chronic mortality 

rate as its DS increases from low to high. Similarly, if a hospital has low TE and low Support IT, 

it will show about 0.56% decrease in chronic mortality rate as its DS increases from low to high. 

On the other hand, if a hospital has high TE and low Support IT, it will show about 1.61% 

increase in chronic mortality rate as its DS increases from low to high. If a hospital has low TE 

and high Support IT, it will show about 0.94% increase in chronic mortality rate as its DS 

increases from low to high. The detailed description of each figure is presented from Figure 2.3 

to 2.11. Overall, we find that if a hospital has matched TE and Support IT at either high or low 

level, it will show enhanced healthcare performance as DS increases from low to high. Yet, we 

also find that if a hospital has high TE but low Support IT, it will show decreased healthcare 

performance as DS increases from low to high. If a hospital has high Support IT and low TE, 

sometimes it will show slightly enhanced healthcare performance while the other times it will 

show decreased healthcare performance.  
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Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

IQI 91 chronic quality at high and low levels of TE and Support IT when 

each of the three IT applications is lagged one-year. From this graph, we can 

infer that if a hospital has high TE and high Support IT, it will show about 

0.66% decrease in chronic mortality rate as its DS increases from low to 

high. Similarly, if a hospital has low TE and low Support IT, it will show 

about 0.56% decrease in chronic mortality rate as its DS increases from low 

to high. On the other hand, if a hospital has high TE and low Support IT, it 

will show about 1.61% increase in chronic mortality rate as its DS increases 

from low to high. If a hospital has low TE and high Support IT, it will show 

about 0.94% increase in chronic mortality rate as its DS increases from low 

to high. 

 

Figure 2.3 Three Way Interaction (DS t-1×TE t-1×Support t-1) Plot for IQI 91 Chronic Composite 

Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

communication score at high and low levels of TE and Support IT when each 

of the three IT applications is lagged two-year. If a hospital has high TE and 

high Support IT, it will show about 0.27% increase in communication score 

as its DS increases from low to high. Similarly, if a hospital has low TE and 

low Support IT, it will show about 0.25% improvement in communication 

score as its DS increases from low to high. If a hospital has low TE and high 

Support IT, it will show about 0.04% increase in communication score as its 

DS increases from low to high. On the other hand, if a hospital has high TE 

and low Support IT, it will show about 0.39% decrease in communication 

score as its DS increases from low to high.  

 

 

Figure 2.4 Three Way Interaction (DS t-2×TE t-2×Support t-2) Plot for Communication Score 
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Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

IQI 91 acute cost at high and low levels of TE and Support IT when DS and 

TE are lagged one-year and Support IT lagged two-year. If a hospital has 

high TE and high Support IT, it is associated with about $301 decrease in 

average acute patient cost as its DS increases from low to high. Similarly, if 

a hospital has low TE and low Support IT, it will show about $337 decrease 

in average acute patient cost as its DS increases from low to high. On the 

other hand, if a hospital has high TE and low Support IT, it will show about 

$393 increase in average acute patient cost as its DS increases from low to 

high. If a hospital has low TE and high Support IT, it will show about $59 

increase in average acute patient cost as its DS increases from low to high. 

 

Figure 2.5 Three Way Interaction (DS t-1×TE t-1×Support t-2) Plot for IQI 91 Acute Cost 

Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

communication score at high and low levels of TE and Support IT when DS 

and TE are lagged two-year and Support IT lagged one-year. If a hospital has 

high TE and high Support IT, it will show about 0.64% increase in 

communication score as its DS increases from low to high. Similarly, if a 

hospital has low TE and low Support IT, it will show about 0.31% 

improvement in communication score as its DS increases from low to high. If 

a hospital has low TE and high Support IT, it will show about 0.01% increase 

in communication score as its DS increases from low to high. On the other 

hand, if a hospital has high TE and low Support IT, it will show about 0.19% 

decrease in communication score as its DS increases from low to high.  

 
 

Figure 2.6 Three Way Interaction (DS t-2×TE t-2×Support t-1) Plot for Communication Score 
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Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

communication score at high and low levels of TE and Support IT when DS 

and Support IT are lagged one-year and TE lagged two-year. If a hospital has 

high TE and high Support IT, it will show about 0.38% increase in 

communication score as its DS increases from low to high. Similarly, if a 

hospital has low TE and low Support IT, it will show about 0.37% 

improvement in communication score as its DS increases from low to high. 

On the other hand, if a hospital has high TE and low Support IT, it will show 

about 0.36% decrease in communication score as its DS increases from low 

to high. If a hospital has low TE and high Support IT, it will show about 

0.29% decrease in communication score as its DS increases from low to 

high. 

 

Figure 2.6 Three Way Interaction (DS t-1×TE t-2×Support t-1) Plot for Communication Score 

Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

communication score at high and low levels of TE and Support IT when DS 

and Support IT are lagged two-year and TE lagged one-year. If a hospital has 

high TE and high Support IT, it will show about 0.56% increase in 

communication score as its DS increases from low to high. Similarly, if a 

hospital has low TE and low Support IT, it will show about 0.45% 

improvement in communication score as its DS increases from low to high. 

If a hospital has low TE and high Support IT, it will show about 0.07% 

increase in communication score as its DS increases from low to high. On 

the other hand, if a hospital has high TE and low Support IT, it will show 

about 0.39% decrease in communication score as its DS increases from low 

to high.  

 

Figure 2.7 Three Way Interaction (DS t-2×TE t-1×Support t-2) Plot for Communication Score 
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Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

rating score at high and low levels of TE and Support IT when DS and 

Support IT are lagged two-year and TE lagged one-year. If a hospital has 

high TE and high Support IT, it will show about 0.48% increase in rating 

score as its DS increases from low to high. Similarly, if a hospital has low 

TE and low Support IT, it will show about 0.40% improvement in rating 

score as its DS increases from low to high. If a hospital has low TE and high 

Support IT, it will show about 0.32% increase in rating score as its DS 

increases from low to high. On the other hand, if a hospital has high TE and 

low Support IT, it will show about 0.72% decrease in rating score as its DS 

increases from low to high.  

 

 

Figure 2.8 Three Way Interaction (DS t-2×TE t-1×Support t-2) Plot for Rating Score 

Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

communication score at high and low levels of TE and Support IT when TE 

and Support IT are lagged one-year and DS lagged two-year. If a hospital 

has high TE and high Support IT, it will show about 0.40% increase in 

communication score as its DS increases from low to high. Similarly, if a 

hospital has low TE and low Support IT, it will show about 0.44% 

improvement in communication score as its DS increases from low to high. 

If a hospital has low TE and high Support IT, it will show about 0.04% 

increase in communication score as its DS increases from low to high. On 

the other hand, if a hospital has high TE and low Support IT, it will show 

about 0.11% decrease in communication score as its DS increases from low 

to high.  

 

Figure 2.9 Three Way Interaction (DS t-2×TE t-1×Support t-1) Plot for Communication Score 
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Three-Way Interaction Plot Description 

 

The graph demonstrates the relationship between DS implementation and 

communication score at high and low levels of TE and Support IT when TE 

and Support IT are lagged two-year and DS lagged one-year. If a hospital 

has high TE and high Support IT, it will show about 0.08% increase in 

communication score as its DS increases from low to high. Similarly, if a 

hospital has low TE and low Support IT, it will show about 0.33% 

improvement in communication score as its DS increases from low to high. 

On the other hand, if a hospital has high TE and low Support IT, it will show 

about 0.40% decrease in communication score as its DS increases from low 

to high. If a hospital has low TE and high Support IT, it will show about 

0.15% decrease in communication score as its DS increases from low to 

high. 

 

Figure 2.10 Three Way Interaction (DS t-1×TE t-2×Support t-2) Plot for Communication Score 
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2.5 Robustness Checks 

We investigate the robustness of our main results by applying a variety of alternative models and 

specifications. We first show that our findings are robust to alternative model specifications to 

rule out the possibility of specification bias. We then apply a different approach to 

operationalizing the independent variables in the model to rule out the possible bias from 

variable operationalization. Finally, we show that our findings are robust to the inclusion of 

additional covariates to rule out the possibility of omitted variables bias. These results are 

reported in Appendix 2F.  

 Since the baseline FE models may have contemporaneous cross-equation error 

correlations with each other due to potential associations between health care quality and cost, 

we conducted seemingly unrelated regressions (SUR) to examine the relationship between health 

care quality and cost measures. We conducted the robustness test in a system of four SUR 

analyses to allow correlation among the error terms of different sets of quality and cost models 

(Appendix 2F, Table 2F1-2F4). The results of SUR models broadly agree with the baseline 

model, which indicates that our FE model results are robust. 

 We performed two additional sets of robustness analyses. First, we operationalized our 

explanatory HIT variables using a different approach. Besides using the count of technologies, 

the Saidin Index is also applied widely to operationalize HIT adoption by researchers (Sharma et 

al. 2016). The Saidin Index is a weighted sum that takes into account the rarity of HIT 

implementation by giving higher weights to rare technologies compared to those widely used by 

other hospitals. The results using Saidin Index are largely consistent with those using the count 

of technologies (Table 2F5-2F8). Finally, we include additional control variables in the models 

to assuage concerns that some important missing variables may drive our results (Table F9-F12). 
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These include hospital characteristic variables such as female patient percentage, percentages of 

Medicare and Medicaid patients, and health system affiliation. Results obtained from these 

analyses broadly agree with those from our baseline model. 

2.6 Discussion and Conclusion 

Hospitals in the United States are under increasing pressure from multiple stakeholders to 

enhance the quality of health care while decreasing costs, and to improve patients’ experience 

during their stay at hospitals. Policy makers and researchers have deliberated if HITs may 

facilitate these outcomes. With the meaningful use (MU) program firmly in place, the focus of 

researchers has shifted from examining the adoption of HITs to assessing their impacts. Agarwal 

et al. (2010) posit that a coherent understanding of the relationship between HIT and health care 

performance has not yet been reached, especially as discussions pertain to conflicting impacts of 

HIT on quality and cost. Our study contributes to this stream of research by examining pairwise 

and three-way complementarities of HITs. Previous research has found evidence that 

simultaneous complementarities improve productivity and performance (Aral et al. 2012; Tambe 

et al. 2012). However, little research has examined complementarity from a temporal perspective 

and in a health care context. Additionally, there is limited research on three-way 

complementarity in the IS literature. We move the IT complementarity and HIT literature 

forward by examining both simultaneous and temporal complementarity in the health care 

industry. Rather than studying the effects of HITs individually, we examine how a system of 

technological innovations, such as DS, TE, and support IT work together to generate superior 

performance. 

 Overall, we discover that HIT applications simultaneously and temporally complement 

each other to generate higher health care performance than when they are implemented 
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separately. Moreover, our results indicate that different combinations of technologies impact 

hospital performance differently in terms of cost and clinical and experiential quality. As a result, 

health care providers need to identify optimal combinations of technological investments over 

time according to their priority of the performance improvement. We next discuss the impact of 

HIT on experiential quality, cost measures, and IQI 91 quality measures, subsequent to which we 

discuss the complementarity effects. 

 Our results suggest that significant pairwise interaction effects between DS and support 

IT, between TE and support IT, and between DS and TE may sometimes lead to decreased 

experiential quality; however, the significant three-way interaction effects always lead to the 

experiential quality enhancement. DS and support IT may jointly affect experiential quality 

because when DS is integrated with clinical documentation and results viewing systems, 

clinicians are enabled to provide customized advice to patients about medications, treatment 

procedures and post-discharge care, increasing the value of such communication for patients. 

Further, with the integration between DS and support IT, clinicians can send customized 

reminders, which may be especially useful for post-discharge care of patients (Bardhan and 

Thouin 2013). Similarly, the complementarity effect between TE and support IT facilitates 

clinicians to prescribe medications, lab tests and treatment procedures based on patients’ clinical 

records and outcomes of prior treatments. The access to patients’ clinical records and prior 

results enables clinicians to be more effective in prescribing and communicating with patients 

regarding their treatment, enhancing patient satisfaction. Three-way complementarity between 

DS, TE and support IT potentially combines these two effects during the advice and prescription 

processes and therefore enhances experiential quality.  
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 Examining the impact of HIT on cost, we find that although the direct effects of DS, TE, 

and support IT both increase and decrease costs (direct effects are not presented in Table 2.2-

2.5), pairwise HIT interaction effects lead to reductions in costs. This result may explain why 

some prior studies, which examine the effects of HIT in isolation, find it to be associated with 

increased medical expenditures (Agha 2014; Sidorov 2006). When implemented in combination, 

HITs appear to improve cost performance for hospitals. The joint application of HITs can allow 

clinicians to provide specific services to patients, to offer necessary screening tests, to check for 

drug-drug and drug allergy interactions, to enforce greater compliances of clinical guidelines, 

and to support both, the adoption of standard operating procedures and evidence-based practices 

(Bardhan and Thouin 2013). The complementary effects of HITs are engendered because their 

joint application reduces unnecessary and duplicative care, and provides necessary care 

proactively in order to reduce the occurrence of adverse events during patients’ stays in the 

hospital, which can increase costs substantially. Three-way interactions of DS, TE, and support 

IT result in two significant impacts on cost. When support IT is implemented one time period 

before DS and TE, the three-way interactions lowers IQI 91 acute cost (p<.1; see Table 2.3, Part 

I), whereas when TE is implemented one time period before DS and support IT, the three-way 

interactions increases cost per discharge (p<.1; see Table 2.4, Part I). 

 Our results show that pairwise complementarity between TE and support IT improves 

clinical performance for chronic patients when both are lagged two year, along with DS (p<.01; 

see Table 2.2, Part II). The use of support IT and TE together for clinical care enables clinicians 

to provide medications and conduct tests and procedures that are patient-specific, resulting in 

lower occurrence of serious medication and procedures errors, which leads to enhanced clinical 

quality (Queenan et al. 2011). However, we find that pairwise complementarity between DS and 
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support IT have no impact on clinical performance for both acute and chronic patients. We also 

noticed that when patient information and prior results are available through supportt-2, the 

complementarity between DSt-1 and TE t-1 results in enhanced quality performance for IQI 91 

acute composite. Similarly, support IT can possibly complement DS and generate patient-

specific suggestions and treatment guidelines. Finally, we find that two three-way interactions 

between DS, TE and support IT, when all three HIT applications are lagged one year and when 

support IT is implemented one time period before TE and DS reduces IQI 91 chronic mortality, 

and thus enhances quality of care. 

2.6.1 Summarized Pairwise and Three-Way Complementarity Effects 

In order to facilitate a broad understanding of pairwise and three-way complementarity effects 

between DS, TE and support IT, both from simultaneous and sequential perspectives, we next 

discuss these effects. Our analysis uncovers four key results. First, from the correlation analysis, 

we find that DS, TE, and support IT implementations are mutually correlated, and this 

relationship grows over time. Further, we find that the three HITs simultaneously and temporally 

complement one another to produce higher experiential quality than when each is implemented 

separately. Second, our results indicate that different combination of technologies impacts 

hospital performance differently with regard to clinical quality, experiential quality and cost. For 

example, experiential quality is enhanced by the pairwise complementarity between DS and 

support IT and between TE and support IT; IQI 91 chronic quality is improved by the pairwise 

complementarity between TE and support IT; IQI 91 acute quality is improved by the pairwise 

complementarity between DS and TE; and health care cost is reduced by the pairwise 

complementarity between DS and support IT, TE and support IT, and between DS and TE. 

Third, different implementation stages of the technologies also affect health care performance 
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differently. For instance, we find the pairwise complementarity of TE and support IT performs 

best when they are both implemented for two years. Specifically, we find the pairwise 

complementarity of TE and support IT only enhances chronic quality and reduces cost when they 

are simultaneously implemented for two time periods and DS is implemented in the same year or 

one-year later. In contrast, misconfiguration of technologies may lead to lower performance. For 

example, Part II in Table 2.3 indicates the pairwise complementarity of TE and support IT may 

lead to decreased communication score if TE is implemented one year before support IT. Finally, 

we find that out of 20 significant pairwise effects found in Tables 2.2-2.5, 3 does not support 

complementarity, 11 support symbiotic complementarity and 6 support pooled complementarity. 

Note that we characterize interaction between DS and TE as pooled, and those between DS and 

support IT and TE and support IT as symbiotic. We are unable to firmly support the conjecture 

of Ennen and Richter (2010), but we do have some rough indication that dissimilar innovations 

may be more powerful when applied together. Based on these results, we posit that care 

providers need to identify optimal combinations of technologies over time according to their 

priority, and pay attention to the coordination mechanism of these technologies. 

2.6.2 Limitations of the Research 

Our study suffers from several limitations. First, we used data from only seven states in the U.S. 

Other researchers may wish to consider collecting data from a larger number of states in the 

country. We note that states chosen in this study account for approximately 35 percent of U.S. 

population, spread across different geographical areas, allowing us to study a broad cross-section 

of the U.S. population. Second, we aggregated individual discharge-level information up to the 

level of a hospital. Although consistent with our objective to examine performance outcomes of 

HIT applications in isolation and in combination at the organization level, aggregation doesn’t 
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allow us to study quality and/or cost differentials at the level of individual patients or diseases. In 

fact, aggregation may dampen and hide some of the effects that may be found at the individual 

patient level. Third, due to the lack of data, we are unable to study the impact of HIT 

applications on operational and financial performance metrics. Finally, this study examined 

complementarity only among technology elements. Future research can examine 

complementarity between technology and other hospital characteristics and settings. 

2.6.3 Research Contributions and Implications 

There is a rich tradition of complementarity research in IS, strategy, operations and economics 

fields. In the IS field, the complementarity perspective has been used for exploring joint effects 

of IT and R&D (Bardhan et al. 2013), technology and knowledge (Aral and Weill 2007; Lee 

2008), technology and strategy (Gilsing et al. 2008; Tanriverdi 2006), technology and 

organizational structure or process (Tiwana and Konsynski 2010), and technology and policies or 

practices (Hitt and Brynjolfsson 1997; Tambe et al. 2012). However, prior research in IS has 

examined simultaneous complementarity exclusively and ignored the temporal perspective. We 

move this stream of literature forward by considering both simultaneous and temporal 

perspectives to explain performance differences generated by technologies. These technologies 

may create synergies with others that are implemented in the same, or a different, time period. 

We propose, and our results strongly suggest, that researchers need to incorporate temporal 

complementarity in future research. Previous research indicates changing only one or a subset of 

organizational practices may lead to lower performance, and therefore, recommends changing 

entire practices in a system simultaneously to reap the maximum benefits (Brynjolfsson and 

Milgrom 2012; Milgrom and Roberts 1990). Yet, in practice, simultaneously implementing all 

the changes can be difficult because of coordination and synchronization problems (Brynjolfsson 
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and Milgrom 2012). Our study examines both simultaneous and temporal impacts of technology 

innovations on organizational performance. We demonstrate that the complementarity effect can 

lead to better performance under both simultaneous and temporal regimes. We further reveal 

how the complementarity effects on technologies impact healthcare performance. We find that 

when TE and Support IT implementation level matches, it would lead to enhanced healthcare 

performance when DS increases from low to high level. This view studied in the health care 

context can be extended to studies in both service industries and manufacturing industries when 

exploring the interaction effects among technologies that facilitate task execution, decision 

making, and supporting activities. 

In order to understand the impacts of various IT applications in totality, it is critical that 

researchers not examine their effects in isolation. As discussed earlier, prior research in HIT has 

reached some contradictory conclusions because it examined HIT applications in isolation. When 

multiple technologies are brought to bear simultaneously or in sequence, their joint effects can 

easily surpass the sum of their individual effects. We find evidence of this in our study. We 

suggest that future research examine pairwise and three-way complementarities between various 

technologies, and also between technologies and organizational practices, to appreciate and 

appropriate the overall potential of HIT. We suggest that it may be worthwhile to consider the 

functional aspects of various IT applications, as in which functionalities do these enable 

organizations to accomplish. In contrast to much extant work on IT complementarity, which 

conceptualizes IT at the generic level, this study adopts such a functional approach in 

conceptualizing various technologies, and applies it in the context of health care. 

This research demonstrates the importance of context in assessing complementarity 

between HIT applications. We note that HIT determinants of chronic and acute quality and costs 
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are largely different. In fact, among all the pairwise and three-way effects examined, we find 

only two interactions, between DSt-2 and TE t-2 when support IT is also implemented at t-2 (Table 

2.2) and between TE t-2 and supportt-2 when DS is implemented at t-1 (Table 2.5), lowers costs 

for both chronic and acute conditions. In all other instances, we find that direct or interaction 

effects that impact chronic quality or cost do not significantly impact acute quality and cost, and 

vice versa. We believe that this is a strong result and an important contribution to the HIT and IT 

complementarity literature. This result clearly illustrates the need to for researchers to consider 

the impact of HIT on chronic and acute conditions separately. We further suggest that 

researchers jointly examine the application of HIT and the clinical workflows specific to chronic 

and acute conditions to throw additional light on value creation possibilities in hospitals. 

Finally, we suggest that researchers examine a wide variety and dimensions of 

performance outcomes to examine complementarity. Firms typically have multiple objectives 

related to revenues, costs, profitability, product and service quality, and customer satisfaction. 

Our results suggest there are trade-offs among these outcomes. Thus, studying a comprehensive 

set of performance metrics can unveil the systematic effect of HIT on hospitals. Additionally, we 

suggest that researchers obtain a panel long-enough to discern temporal trends of how various 

combinations of HIT applications impact different organizational outcomes. We are able to 

analyze a panel comprising six years of data; we speculate that a longer panel may provide even 

more robust results. For instance, we are unable to detect any impact of HIT that is more than 

two time periods lagged. It may be possible in a longer panel to detect such effects. 

2.6.4 Implications for Practice 

This study has significant pragmatic implications for decisions makers in hospitals. In particular, 

managers need to be aware of how different HIT functions complement one another to 
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systematically impact health care performance. They also need to implement HIT applications 

strategically in different stages to realize various performance improvements. For example, 

pairwise complementarity effect of TE and support IT leads to superior health care performance 

when the two are implemented simultaneously.  

Our research introduces the idea that different HITs impact chronic and acute diseases 

differently. Therefore, health care providers also need to consider how systems of technologies 

integrate into different disease workflows when they allocate HIT resources. Furthermore, it is 

important for managers to realize that there are trade-offs among various performance outcomes 

and that HIT applications, even in combination, are not a panacea for all that ails the health care 

industry. Managers may want to prioritize different combinations of technologies contingent on 

which performance variables are important, and also realize that technology may not impact all 

outcomes. 

2.6.5 Conclusion 

As the largest single item of expense in the health care industry, hospitals constitute a vital 

organizational setting in which to analyze the impact of health information technologies. This 

research has examined pairwise and three-way complementarity effects of three HIT applications 

from both simultaneous and sequential perspectives. We paid particular attention to the context 

of technology application by examining the impacts of various HIT applications separately and 

in combination on chronic and acute conditions. We attempted to address several limitations in 

extant literature in IS, HIT and health services research by examining a large number of 

performance outcomes variables, including clinical quality, cost and experiential quality. We 

leveraged data from five different data sources, collected over six years, and created a unique 

panel to analyze complementarity of health information technologies. We conducted a series of 
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robustness tests to confirm the validity of our results. The results reported in this paper have 

considerable implications for both researchers and practitioners. We believe that this study 

makes key contributions to the literature and represents an important step into an area of inquiry 

– simultaneous and sequential IT complementarity in health care, and more broadly, other 

contexts – that is under-represented in the literature, yet presents a significant potential for 

theoretical and practical advancement.  
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Appendix 
Appendix 2A: Variables, Definitions, References and Data Sources 

Variable Description Reference in the Literature Data Source 

IQI 91 Chronic Composite 
Measured by chronic mortality rate from IQI 91 composite5; we apply logit 

transformation to this number. Menachemi et al. (2008); 

Mutter et al. (2008) 

HCUP 

IQI 91 Acute Composite  
Measured by acute mortality rate from IQI 91 composite; we apply logit 

transformation to this number. 

HCUP 

Communication score  

Measured by average communication percentage score =  
𝑄𝑖

1−𝑄𝑖
 , where Qi is the 

sum of the average percentage of patients who perceived the communication from 

the hospital to be always good or usually good; we apply logit transformation to 

this number. Sharma et al. (2016); Senot et 

al. (2016); Angst et al. (2012); 

Boulding et al. (2011); 

Chandrasekaran et al. (2012) 

HCAHPS survey 

Rating Score  

Measured by rating percentage score 𝑅𝑎𝑡𝑖𝑛𝑔𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑅𝑖

1−𝑃𝑅𝑖
 , where 𝑃𝑅𝑖 is the 

percentage of patients who gave the hospital a rating of 7 to 10 (medium or high); 

we apply logit transformation to this number. 

HCAHPS survey 

Recommendation Score  

Measured by percentage score 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑆𝑐𝑜𝑟𝑒 =  
𝑅𝑖

1−𝑅𝑖
 , where Ri is the 

percentage of patients who would definitely or probably recommend the hospital; 

we apply logit transformation to this number. 

HCAHPS survey 

IQI 91 Chronic Cost  

Measured by hospital’s average cost (total charge × cost-to-charge ratio/the 

number of discharges) from 3 chronic diseases included in IQI 91 composite; we 

apply natural log to this number. 

N/A 

HCUP and cost-to-

charge ratio file 

IQI 91 Acute Cost  

Measured by hospital’s average cost (total charge × cost-to-charge ratio/the 

number of discharges) from 3 acute diseases included in IQI 91 composite; we 

apply natural log to this number. 

N/A 

HCUP and cost-to-

charge ratio file 

Cost Per Discharge (CMS)  

Measured by a hospital’s total inpatient charge reported by the CMS cost report, 

multiplied by the cost-to-charge ratio and divided by the number of discharges; we 

apply natural log to this number. 

Sharma et al. (2016); Senot et 

al. (2016) 

CMS cost report, 

HCUP, and cost-to-

charge ratio file 

Decision Support IT  Measured by the total number of fully implemented decision support IT features. 
Burke and Menachemi (2004); 

Menachemi et al. (2006); 

Angst et al. (2012) 

AHA IT survey 

Task Execution  Measured by the total number of fully implemented CPOE features. AHA IT survey 

Support IT  
Measured by the total number of result viewing and electronic clinical 

documentation features. 

AHA IT survey 

Hospital Size  Number of beds in a hospital; we apply natural log to this number. Kwon and Johnson (2014) AHA survey 

Not-For-Profit  Dummy variable: 1 for not-for profit hospitals; 0 for for-profit hospitals. Angst et al. (2012) AHA survey 

Teaching Dummy variable: 1 for teaching hospitals; 0 for non-teaching hospitals. Kwon and Johnson (2014) AHA survey 

Market Competition (HHI) 

Measured by Herfindahl-Hirschman Index (HHI), which is the sum of squared 

market shares for all of the hospitals in a hospital referral region (HRR). Market 

share is calculated as the number of discharges from that hospital divided by the 

total number of discharges from all hospitals in the market. 

Mutter et al. (2008) 

AHA survey and 

HCUP 

IT Network Effect  
Measured by average IT implementation level in hospitals, excluding the focal 

hospital in the HRR in which the focal hospital belongs. 

Miller and Tucker (2009); 

Tucker (2008) 

AHA survey and 

AHA IT survey 

                                                 
5 Acute Myocardial Infarction (AMI), Heart Failure, and Acute Stroke are chronic conditions, and Gastrointestinal Hemorrhage, Hip Fracture, and Pneumonia are acute conditions.  
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Appendix 2B: Calculation of IQI 91 Composite Quality Measures 

The calculation of IQI 91 composite quality measures is involved. This appendix provides 

information on how the measures are calculated using the guidelines and SAS software code 

provided by AHRQ.6 The code is easily available, and used widely by researchers to calculate 

IQI 91 quality. The steps are below: 

Step 1. The first step is to calculate the mortality rate for each of the six IQI 91 composite 

conditions. Determine the total number of patients, aged 18 or older, who die from a particular 

IQI 91 condition, in relation to the total number of discharges of patients with the same age 

profile and disease condition in a hospital. The ratio of the two numbers provides the mortality 

rate, called observed mortality rate. 

Step 2. Next, the expected mortality rate is calculated, which estimates the mortality rate 

a hospital would have if it had the same patient mix as the reference population (RP).7  

Step 3. Risk-adjusted rate is computed for each IQI 91 condition by dividing observed rate by 

the expected rate. This calculated rate is then scaled by the RP to obtain the risk-adjusted ratio 

(RR).   

Step 4. Reliability-adjusted ratio (RAR) is calculated using the weighted average of the RR and 

the RP, where the weight depends on reliability degree for the IQI 91 indicator and the 

healthcare provider: RAR = (RR × weight) + [RP × (1 – weight)]. 

Step 5. IQI 91 composite quality measure is obtained by using the weighted RARs following the 

listed expression: Composite = [indicator1 RAR × weight1] + [indicator2 RAR × weight2] + . . . + 

[indicatorN RAR × weightN], where the weight used in the expression depends on the relative 

                                                 
6 Quality indicator user guide for IQI composite measures can be obtained at: 

https://www.qualityindicators.ahrq.gov/Downloads/Modules/IQI/IQI_Composite_Development.pdf 
7 The reference population consists of the discharges from all the participating states in the HCUP-SID from 2001-2003. 
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frequency of the denominator for each IQI in the RP and reflects the amount of risk of mortality 

in the selected IQIs from a given population8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
8 IQI 91 in these conditions are weighted 0.1468 (IQI15), 0.2704 (IQI16), 0.1356 (IQI17), 0.1312(IQI18), 0.0679 (IQI19), and 0.248 (IQI20) in 

order to calculate the overall IQI 91 composite quality measure. The weight of IQI 15-17 are used for IQI 91 chronic composite calculation and 
the weights of IQI 18-20 are used for IQI 91 acute composite calculation (www.qualityindicators.ahrq.gov/Downloads/Modules/IQI/V43/ 

Composite_User_Technical_Specification_IQI_4.3.pdf). 
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Appendix 2C: Measures 

 

Part I. Survey Items for Experiential Quality (Source: HCAHPS Survey) 

The core of the HCAHPS survey comprises 21 items measuring patient’s perception on hospital 

experience. These items encompass 11 key topics that related to communication with doctors, 

communication with nurses, responsiveness of hospital staff, pain management, communication 

about medicines, discharge information, cleanliness of the hospital environment, quietness of the 

hospital environment, transition of care, hospital rating, and willingness to recommend hospital. 

This survey was asked to a random sample of recently discharged patients (between 48 hours and 

6 weeks after discharge). Only patients who admitted in the medical, surgical and maternity care 

service lines are eligible for the survey. There are four methods to collect the data: 1) mail only, 

2) telephone only, 3) mixed (mail followed by telephone), and 4) active interactive voice 

response. This patient-level data later aggregated into the hospital-level data with patient-mix 

adjusted by CMS, and published in Hospital Compare website. For the purpose of this study, we 

select 4 topics related to communication, 1 topic related to overall rating, and 1 topic related to 

patients’ willingness to recommend. The topics related to communication are composites that 

constructed from two or three survey items. We present the topics and items in the following list 

with items formatted in italics:  

Communication  

(1) How often did nurses communicate well with patients? 

During this hospital stay... 

How often did nurses treat you with courtesy and respect? 
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How often did nurses listen carefully to you? 

How often did nurses explain things in a way you could understand? 

(2) How often did doctors communicate well with patients?  

During this hospital stay... 

How often did doctors treat you with courtesy and respect? 

How often did doctors listen carefully to you? 

How often did doctors explain things in a way you could understand? 

 (3) How often did staff explain about medicines before giving them to patients? 

Before giving you any new medicine… 

How often did hospital staff tell you what the medicine was for? 

How often did hospital staff describe possible side effects in a way you could understand? 

(4) Were patients given information about what to do during their recovery at home? (Yes /No) 

During this hospital stay... 

Did hospital staff talk with you about whether you would have the help you needed when you left 

the hospital? 

Did you get information in writing about what symptoms or health problems to look out for after 

you left the hospital? 

The response categories for question (1) to (3) are “Never/Sometimes”, “Usually” or “Always”, 

and the response categories for question (4) are “Yes” or “No”.  
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Rating 

How do patients rate the hospital overall? 

What number would you use to rate this hospital during your stay? 

The response categories are “0-6” (Low), “7-8” (Medium), or “9-10” (High). 

Recommendation 

Would patients recommend the hospital to friends and family? 

Would you recommend this hospital to your friends and family? 

The response categories are “Yes, definitely recommend the hospital”, “Probably recommend the 

hospital”, or “Not recommend the hospital”. 

 

Part II. IT Items Scale (Source: AHA IT Supplement Files) 

HIT implementation is measured by a six-point scheme as follows:  

1 = Fully implemented across all units                          

2 = Fully implemented in at least one unit 

3 = Beginning to implement in at least one unit            

4 = Have resources to implement in the next year 

5 = Do not have resources but considering implementing  

6 = Not in place and not considering implementing 
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Appendix 2D: HIT Variable List 

IT Indicators Full Implementation Percentages  

2008 2009 2010 2011 2012 

Decision Support IT: CDSS Clinical guidelines 17.36% 19.76% 23.23% 33.95% 47.31% 

Clinical reminders 23.83% 25.00% 27.36% 39.34% 51.84% 

Drug allergy alerts 55.18% 53.83% 56.10% 65.63% 80.17% 

Drug-drug interaction alerts 53.63% 52.62% 56.89% 64.60% 79.89% 

Drug-Lab interaction alerts 39.12% 39.52% 42.52% 51.55% 68.27% 

Drug dosing support 34.20% 36.29% 40.94% 49.28% 61.47% 

Task-Execution IT: CPOE Laboratory tests 19.17% 23.39% 24.41% 31.68% 52.69% 

Radiology tests 20.47% 23.19% 23.82% 32.09% 52.97% 

Medications 19.69% 19.56% 21.46% 30.23% 52.41% 

Consultation requests 17.88% 17.54% 18.90% 28.36% 48.16% 

Nursing orders 22.02% 24.40% 24.61% 34.16% 55.24% 

Support IT: Results Viewing Lab reports 91.97% 89.72% 89.57% 92.75% 97.17% 

Radiology reports 91.97% 90.32% 89.37% 92.34% 97.17% 

Radiology images 81.87% 83.27% 87.20% 89.23% 95.18% 

Diagnostic test results  62.18% 67.74% 66.54% 72.26% 83.29% 

Diagnostic test images  40.93% 51.41% 56.10% 63.35% 69.69% 

Consultant reports 57.77% 62.50% 62.80% 67.08% 76.77% 

Support IT: Electronic Clinical 

Documentation 

Patient demographics 87.82% 88.31% 88.39% 92.55% 96.32% 

Physician notes 11.66% 13.31% 12.99% 18.22% 31.16% 

Nursing Notes 40.16% 43.95% 45.47% 57.14% 75.92% 

Problem lists 27.20% 31.65% 26.97% 42.24% 62.32% 

Medication lists 51.55% 54.84% 54.92% 64.80% 83.00% 

Discharge summaries 48.70% 52.22% 56.50% 55.90% 71.95% 

Advanced directives 40.67% 41.94% 46.85% 58.18% 72.52% 
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Appendix 2E: Heckman Selection and Reverse Causality Tests 

To estimate the Heckman selection models, we first calculated the average values of both 

dependent and independent variables across six years. We then estimated choice and outcome 

models (Heckman 1979). In the choice model, we included two variables, hospital bed size and 

IT network effect because both variables are indicators of technology innovations. As a proxy of 

resources, bed size may influence IT implementation because large hospitals are more likely to 

use HIT than smaller ones (Kazley and Ozcan 2007; Menachemi et al. 2008). As a measure of 

network externalities, IT network effect influences technology adoption by generating network 

benefits with spillover effects (Lee et al. 2013; Miller and Tucker 2009). For the outcome 

models, we used different sets of variables to predict IQI 91 composites, experiential quality, and 

cost measures. We include HIT implementation variables as they impact performance. We 

include teaching status because compared to non-teaching hospitals, teaching hospitals are more 

likely to have advanced resources (Bardhan and Thouin 2013) and to treat a more complex case 

mix (Senot et al. 2016). Thus, teaching status may affect quality measures (Bardhan and Thouin 

2013) and cost measures (Senot et al. 2016). We include bed size because can potentially 

influences performance outcomes (Menachemi et al. 2008). Being a member of a health system 

has been associated with healthcare performance (Bazzoli et al. 2000, Carey 2003), hence we 

include it in our analysis. Previous research shows market competition influences both 

experiential measures (Rego et al. 2013) and cost measures (Gaynor and Town 2012). Prior 

literature also shows female gender is a significant risk factor for adverse drug events (Rommers 

et al. 2007), which is associated with increased cost. Hence, we used percentage of female 

patients to predict cost measures. Overall, for IQI 91 composite quality outcome models, we 

used HIT implementation, teaching status, hospital size, and system member indicator; for 

experiential quality outcome models, we used HIT implementation, teaching status, hospital size, 
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system member indicator, and market share; for cost outcome models, we included HIT 

implementation, teaching status, hospital size, system member indicator, market share, and 

percentage of female patients. Our Heckman selection model results are presented in Table 2E1. 

We find no evidence of selection bias based on the results of the likelihood-ratio tests of 

independence. 

 To account for the potential reverse causality, we used lagged one-year dependent 

variables to predict HIT implementation levels. The results presented in Tables 2E2-E4 indicate 

that we can rule out the possible existence of reverse causality. 
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Table 2E1. Heckman Selection Models 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

VARIABLES IQI 91 Chronic 

Composite  

IQI 91 Acute 

Composite  

Communication 

score  

Rating Score  Recommendation 

score 

IQI 91 

Chronic Cost  

IQI 91 

Acute Cost  

Cost Per 

Discharge  

Outcome Model         

DS 0.1774* 0.0428+ -0.0064 -0.0228 -0.0437 -0.0360 -0.0326+ -0.0607** 

 (0.071) (0.025) (0.017) (0.028) (0.034) (0.023) (0.018) (0.022) 

TE 0.0659 0.0446* -0.0104 -0.0015 0.0120 -0.0030 0.0082 0.0174 

 (0.062) (0.022) (0.015) (0.024) (0.030) (0.020) (0.016) (0.019) 

Support IT -0.1228* -0.0762*** 0.0524*** 0.1046*** 0.1338*** 0.0042 -0.0048 0.0128 

 (0.060) (0.022) (0.015) (0.024) (0.029) (0.020) (0.016) (0.019) 

Teaching 0.2656+ 0.1782*** 0.0694* 0.0981+ 0.1542* 0.2557*** 0.1386*** 0.1239** 

 (0.138) (0.049) (0.035) (0.057) (0.069) (0.047) (0.038) (0.045) 

Hospital Size (log) -0.1789*** -0.1768*** -0.1145*** -0.1287*** -0.1103*** 0.2115*** 0.0365* 0.0298+ 

 (0.015) (0.006) (0.014) (0.023) (0.029) (0.019) (0.015) (0.018) 

System Member -0.2296** -0.0608* -0.0132 0.0145 -0.0209 -0.0052 -0.0498* -0.0123 

 (0.081) (0.029) (0.020) (0.033) (0.040) (0.027) (0.022) (0.026) 

HHI   0.3987*** 0.4644*** 0.6235*** -0.2300** -0.2421*** -0.1213 

   (0.064) (0.103) (0.126) (0.085) (0.068) (0.080) 

Female      -0.5202* 0.3156 -2.0117*** 

      (0.263) (0.210) (0.249) 

Choice Model         

Hospital Size (log) 0.2632*** 0.2569*** 0.2301*** 0.2406*** 0.2347*** 0.2401*** 0.2429*** 0.2408*** 

 (0.067) (0.066) (0.065) (0.065) (0.065) (0.063) (0.064) (0.064) 

IT Network Effect -0.0011* -0.0011* -0.0015** -0.0013* -0.0014** -0.0014** -0.0013* -0.0013* 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

# Observations 866 866 866 866 866 866 866 866 

# Censored  121 121 121 121 121 121 121 121 

rho 0.233 0.220 -0.281 -0.0597 -0.191 -0.293 -0.0383 -0.0585 

sigma 1.082 0.386 0.260 0.423 0.513 0.353 0.278 0.330 

lambda 0.252 0.0848 -0.0730 -0.0253 -0.0979 -0.103 -0.0107 -0.0193 

chi2 316.8 1765 156.8 86.71 76.03 327.8 63.12 123.2 

Independent Test (chi2) 0.99 0.67 1.07 0.04 0.35 0.97 0.02 0.06 
Independent Test (p 

Value) 
0.3188 0.4134 0.3020 0.8417 0.5569 0.3239 0.8978 0.8043 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1     
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Table 2E2. Reverse Causality Test: DS Model Results 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

VARIABLES IQI 91 Chronic 

Composite 

IQI 91 Acute 

Composite 

Communication 

score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic Cost 

IQI 91 

Acute Cost 

Cost Per 

Discharge 

         

DVt-1 -0.0619 -0.5476+ -0.7186 -0.2704 -0.1476 0.2996 1.1070+ -0.1125 

 (0.146) (0.332) (0.633) (0.246) (0.220) (0.628) (0.628) (0.678) 

DSt-1 0.4252** 0.4345** 0.3973** 0.4094** 0.4199** 0.4260** 0.4094** 0.4273** 

 (0.146) (0.147) (0.139) (0.143) (0.146) (0.146) (0.144) (0.147) 

DSt-2 0.1245 0.1274 0.1144 0.1191 0.1248 0.1263 0.1241 0.1246 

 (0.094) (0.093) (0.091) (0.093) (0.094) (0.094) (0.093) (0.094) 

IT Network Effect t -0.0012 -0.0014 -0.0013 -0.0012 -0.0013 -0.0012 -0.0011 -0.0012 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

HHI t -1.9727 -1.6192 -1.8120 -2.1019 -1.8679 -1.6897 -1.4647 -1.8332 

 (3.341) (3.460) (3.216) (3.154) (3.162) (3.238) (3.103) (3.214) 

Hospital Size (log) t -0.4269 -0.4184 -0.4544 -0.4019 -0.4268 -0.4254 -0.4721 -0.4265 

 (0.394) (0.391) (0.398) (0.402) (0.393) (0.391) (0.367) (0.397) 

Teaching t 0.2328 0.2232 0.2334 0.2373 0.2511 0.2305 0.2271 0.2389 

 (0.521) (0.516) (0.513) (0.532) (0.534) (0.518) (0.513) (0.519) 

Not-For-Profit t  -0.5192 -0.5210 -0.4737 -0.4756 -0.5240 -0.5388 -0.5638 -0.5057 

 (0.503) (0.503) (0.517) (0.507) (0.505) (0.520) (0.462) (0.515) 

Medicare t -5.7825** -5.2741** -5.6363** -5.9365** -5.8387** -5.7256** -5.4610** -5.7617** 

 (1.835) (1.878) (1.828) (1.819) (1.818) (1.842) (1.828) (1.834) 

Medicaid t -5.5564* -5.4993* -5.4348* -5.6167* -5.6691* -5.3908* -5.1622* -5.6048* 

 (2.444) (2.466) (2.398) (2.427) (2.445) (2.404) (2.408) (2.445) 

System Member t 0.1151 0.1161 0.1569 0.1206 0.1305 0.1072 0.0778 0.1127 

 (0.346) (0.339) (0.346) (0.337) (0.345) (0.349) (0.341) (0.346) 

# Observations 384 384 384 384 384 384 384 384 

# Hospital 252 252 252 252 252 252 252 252 

Degree of Freedom 13 13 13 13 13 13 13 13 

Chi-square 50.95 50.19 52.58 53.80 52.16 50.62 52.59 50.69 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Constant is included 
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Table 2E3. Reverse Causality Test: TE Model Results 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

VARIABLES IQI 91 Chronic 

Composite 

IQI 91 Acute 

Composite 

Communication 

score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic Cost 

IQI 91 

Acute Cost 

Cost Per 

Discharge 

         
DVt-1 -0.0686 -0.1415 0.4044 0.1090 0.0174 -0.7187 -0.3865 0.0939 

 (0.135) (0.335) (0.527) (0.210) (0.163) (0.493) (0.462) (0.262) 

TEt-1 0.4900** 0.4923** 0.4989** 0.4907** 0.4858** 0.4641* 0.4839** 0.4845** 

 (0.185) (0.187) (0.183) (0.183) (0.184) (0.184) (0.184) (0.184) 

TEt-2 0.0844 0.0839 0.0866 0.0826 0.0823 0.0727 0.0803 0.0819 

 (0.098) (0.098) (0.098) (0.098) (0.098) (0.098) (0.097) (0.098) 

IT Network Effect t 0.0022+ 0.0021 0.0023+ 0.0022+ 0.0022+ 0.0022+ 0.0021+ 0.0022+ 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

HHI t 7.6419* 7.8473* 7.7923* 7.8781* 7.7575* 7.2552* 7.6111* 7.7383* 

 (3.407) (3.437) (3.526) (3.529) (3.493) (3.496) (3.449) (3.502) 

Hospital Size (log) t -0.3021 -0.3002 -0.2858 -0.3132 -0.3017 -0.3024 -0.2842 -0.3020 

 (0.375) (0.374) (0.376) (0.370) (0.373) (0.366) (0.374) (0.373) 

Teaching t -0.1071 -0.1053 -0.1001 -0.1012 -0.1025 -0.0818 -0.0975 -0.1014 

 (0.135) (0.141) (0.136) (0.139) (0.137) (0.133) (0.136) (0.137) 

Not-For-Profit t  -1.0756* -1.0689* -1.0884* -1.0765* -1.0583* -0.9683+ -1.0362* -1.0624* 

 (0.501) (0.491) (0.506) (0.495) (0.492) (0.510) (0.497) (0.488) 

Medicare t -1.0270 -0.8708 -1.0235 -0.8980 -0.9782 -1.0067 -1.0555 -0.9940 

 (1.769) (1.785) (1.752) (1.775) (1.773) (1.762) (1.779) (1.754) 

Medicaid t 0.3288 0.3388 0.2695 0.3536 0.3363 -0.0418 0.2150 0.3458 

 (2.569) (2.573) (2.570) (2.578) (2.573) (2.487) (2.582) (2.554) 

System Member t 0.1747 0.1715 0.1430 0.1666 0.1690 0.1845 0.1837 0.1708 

 (0.300) (0.304) (0.303) (0.298) (0.300) (0.297) (0.297) (0.300) 

# Observations 384 384 384 384 384 384 384 384 

#  Hospital 252 252 252 252 252 252 252 252 

Degree of Freedom 13 13 13 13 13 13 13 13 

Chi-square 74.70 73.06 73.79 72.97 73.28 80.79 74.84 72.94 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Constant is included 
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Table 2E4. Reverse Causality Test: Support IT Model Results 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

VARIABLES IQI 91 Chronic 

Composite 

IQI 91 Acute 

Composite 

Communication 

score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic Cost 

IQI 91 

Acute Cost 

Cost Per 

Discharge 

         

DVt-1 -0.0543 -0.2528 0.6116 0.1115 0.1005 0.4535 0.5373 -0.4372 

 (0.119) (0.297) (0.485) (0.253) (0.171) (0.514) (0.458) (0.365) 

Supportt-1 0.4943** 0.4969** 0.5133** 0.4980** 0.4927** 0.4893** 0.4721** 0.5067** 

 (0.161) (0.163) (0.160) (0.158) (0.160) (0.161) (0.158) (0.163) 

Supportt-2 0.1974* 0.2014* 0.2036* 0.2004* 0.1970* 0.2047* 0.1945* 0.1974* 

 (0.098) (0.098) (0.099) (0.098) (0.098) (0.098) (0.097) (0.098) 

IT Network Effect t -0.0005 -0.0006 -0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

HHI t -3.1903 -2.9841 -3.1203 -2.9816 -3.0858 -2.8416 -2.9032 -3.0187 

 (2.344) (2.346) (2.354) (2.338) (2.297) (2.294) (2.297) (2.302) 

Hospital Size (log) t -0.5865 -0.5825 -0.5661 -0.5967 -0.5863 -0.5815 -0.6030 -0.5905 

 (0.394) (0.401) (0.407) (0.387) (0.396) (0.390) (0.385) (0.397) 

Teaching t -0.7512 -0.7561 -0.7537 -0.7493 -0.7565 -0.7548 -0.7396 -0.7488 

 (0.640) (0.652) (0.637) (0.633) (0.627) (0.636) (0.629) (0.640) 

Not-For-Profit t  -0.5514 -0.5447 -0.5777 -0.5543 -0.5299 -0.5727 -0.5515 -0.5393 

 (0.578) (0.566) (0.597) (0.578) (0.580) (0.556) (0.552) (0.588) 

Medicare t -0.8127 -0.5443 -0.8032 -0.6945 -0.7159 -0.7169 -0.6574 -0.7798 

 (1.285) (1.325) (1.257) (1.270) (1.261) (1.291) (1.297) (1.300) 

Medicaid t 0.7692 0.8058 0.7366 0.7937 0.8398 0.9985 0.8955 0.6829 

 (1.852) (1.843) (1.835) (1.851) (1.852) (1.836) (1.849) (1.860) 

System Member t -0.1802 -0.1826 -0.2285 -0.1879 -0.1960 -0.1886 -0.1940 -0.1833 

 (0.269) (0.268) (0.264) (0.270) (0.266) (0.267) (0.264) (0.273) 

# Observations 384 384 384 384 384 384 384 384 

# Hospital 252 252 252 252 252 252 252 252 

Degree of Freedom 13 13 13 13 13 13 13 13 

Chi-square 43.83 43.64 45.40 44.98 46.02 44.38 45.27 45.77 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Constant is included 
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Appendix 2F: Robustness Checks 

 

Table 2F1.  Results for SUR Models: Simultaneous Complementarity 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite  

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Composit

e 

IQI 91 Acute 

Cost 

Communic

ation 

Score 

Rating 

Score 

Recommendation 

score 

Cost per 

Discharge  

Part I. Models for DSt-1, TEt-1, and Supportt-1  

DS t-1×Support t-1 
-0.0045 -0.0001 0.0059 -0.0057 0.0022 0.0086 -0.0111 -0.0085* 

(0.013) (0.005) (0.007) (0.005) (0.004) (0.009) (0.011) (0.004) 

TE t-1×Support t-1 
-0.0045 -0.0066 0.0012 -0.0003 0.0064 0.0095 0.0133 -0.0086 

(0.016) (0.006) (0.008) (0.006) (0.006) (0.011) (0.014) (0.005) 

DS t-1×TE t-1 
0.0031 -0.0074 -0.0075 0.0009 0.0006 0.0006 0.0022 0.0013 

(0.013) (0.005) (0.007) (0.005) (0.005) (0.009) (0.012) (0.004) 

DS t-1×TE t-1×Support t-1 
-0.0226+ 0.0052 -0.0078 -0.0011 0.0063 0.0141 0.0000 -0.0029 

(0.013) (0.005) (0.007) (0.005) (0.005) (0.009) (0.012) (0.004) 

# Observations 2,054 2,054 2,054 2,054 2,049 2,049 2,049 2,049 

Breusch-Pagan test (p Value) 0.1238 0.0000 0.0000 

Part II. Models for DSt-2, TEt-2, and Supportt-2 

DS t-2 ×Support t-2 
0.0142 0.0021 0.0015 0.0000 0.0050 0.0177+ -0.0032 -0.0067 

(0.015) (0.005) (0.008) (0.005) (0.005) (0.010) (0.014) (0.005) 

TE t-2 ×Support t-2 
-0.0477* -0.0187** -0.0055 -0.0187** 0.0029 -0.0010 -0.0086 0.0064 

(0.020) (0.007) (0.010) (0.007) (0.006) (0.013) (0.018) (0.007) 

DS t-2 ×TE t-2 
0.0259+ -0.0004 0.0052 0.0004 -0.0047 -0.0120 0.0004 -0.0093+ 

(0.016) (0.005) (0.008) (0.005) (0.005) (0.011) (0.014) (0.006) 

DS t-2 ×TE t-2 ×Support t-2 
-0.0115 -0.0026 0.0051 -0.0060 0.0099* 0.0113 0.0242+ 0.0018 

(0.016) (0.005) (0.008) (0.005) (0.005) (0.011) (0.014) (0.006) 

# Observations 1,548 1,548 1,548 1,548 1,541 1,541 1,541 1,541 

Breusch-Pagan test (p Value) 0.7327 0.0000 0.0000 
(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All control variables including hospital-level 

variables (e.g., size, profit status, and teaching status), IT network effect, market competition effect, and year effect are included (5) Constant is included 
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Table 2F2.  Results for SUR Models: Temporal Complementarity of Support IT 

  

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite  

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Composite 

IQI 91 

Acute 

Cost 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

Cost per 

Discharge  

Part I. Models for DSt-1, TEt-1, and Supportt-2  

DS t-1×Support t-2 
0.0082 -0.0104+ 0.0005 -0.0034 -0.0039 0.0090 -0.0266+ -0.0109+ 

(0.018) (0.006) (0.009) (0.006) (0.006) (0.012) (0.015) (0.006) 

TE t-1×Support t-2 
-0.0024 0.0017 -0.0017 -0.0009 0.0125+ -0.0195 0.0251 0.0037 

(0.021) (0.008) (0.011) (0.007) (0.007) (0.014) (0.018) (0.007) 

DS t-1×TE t-1 
0.0087 -0.0024 -0.0176+ 0.0043 0.0043 0.0117 -0.0065 0.0003 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

DS t-1×TE t-1×Support t-2 
-0.0300 -0.0074 -0.0025 -0.0126+ -0.0006 0.0255* -0.0118 -0.0092 

(0.020) (0.007) (0.010) (0.007) (0.006) (0.013) (0.016) (0.007) 

# Observations 1,191 1,191 1,191 1,191 1,188 1,188 1,188 1,188 

Breusch-Pagan test (p Value) 0.1238 0.0000 0.0000 

Part II. Models for DSt-2, TEt-2, and Supportt-1 

DS t-2 ×Support t-1 
0.0005 0.0063 -0.0000 0.0039 0.0061 0.0068 0.0009 -0.0015 

(0.018) (0.006) (0.009) (0.006) (0.006) (0.012) (0.015) (0.006) 

TE t-2 ×Support t-1 
-0.0051 -0.0021 0.0145 0.0022 -0.0124+ -0.0077 -0.0242 0.0038 

(0.020) (0.007) (0.011) (0.007) (0.006) (0.014) (0.017) (0.007) 

DS t-2 ×TE t-2 
0.0031 -0.0103+ 0.0086 -0.0100+ 0.0015 -0.0008 0.0059 -0.0084 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

DS t-2 ×TE t-2 ×Support t-1 
0.0225 -0.0034 -0.0115 -0.0066 0.0130* 0.0073 0.0225 0.0001 

(0.018) (0.006) (0.009) (0.006) (0.006) (0.012) (0.015) (0.006) 

# Observations 1,191 1,191 1,191 1,191 1,188 1,188 1,188 1,188 

Breusch-Pagan test (p Value) 0.7865 0.0000 0.0000 
(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All control variables including  

hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market competition effect, and year effect are included (5) Constant is included 
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Table 2F3.  Results for SUR Models: Temporal Complementarity of TE 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite  

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Composite 

IQI 91 

Acute Cost 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

Cost per 

Discharge  

Part I. Models for DSt-1, TEt-2, and Supportt-1  

DS t-1×Support t-1 
-0.0048 0.0024 -0.0005 0.0032 0.0009 0.0089 -0.0140 -0.0073 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

TE t-2×Support t-1 
0.0152 -0.0044 0.0172 -0.0019 -0.0062 -0.0056 -0.0068 0.0063 

(0.020) (0.007) (0.010) (0.007) (0.006) (0.013) (0.016) (0.007) 

DS t-1×TE t-2 
-0.0169 0.0010 -0.0072 0.0011 -0.0007 -0.0033 -0.0040 -0.0094 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

DS t-1×TE t-2×Support t-1 
0.0137 -0.0041 -0.0026 -0.0076 0.0161** 0.0225* 0.0036 0.0069 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

# Observations 1,191 1,191 1,191 1,191 1,188 1,188 1,188 1,188 

Breusch-Pagan test (p Value) 0.8667 0.0000 0.0000 

Part II. Models for DSt-2, TEt-1, and Supportt-2 

DS t-2 ×Support t-2 
0.0071 -0.0040 0.0011 -0.0073 0.0066 0.0178 -0.0021 -0.0078 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

TE t-1 ×Support t-2 
-0.0192 -0.0026 -0.0051 -0.0043 0.0073 -0.0013 0.0071 -0.0034 

(0.018) (0.006) (0.010) (0.006) (0.006) (0.012) (0.015) (0.006) 

DS t-2 ×TE t-1 
0.0101 -0.0048 0.0008 -0.0017 -0.0039 -0.0140 -0.0122 -0.0008 

(0.015) (0.005) (0.008) (0.005) (0.005) (0.010) (0.012) (0.005) 

DS t-2 ×TE t-1 ×Support t-2 
-0.0218 -0.0047 -0.0024 -0.0049 0.0155** 0.0195+ 0.0156 -0.0019 

(0.016) (0.005) (0.008) (0.005) (0.005) (0.010) (0.013) (0.005) 

# Observations 1,191 1,191 1,191 1,191 1,188 1,188 1,188 1,188 

Breusch-Pagan test (p Value) 0.8746 0.0000 0.0000 
(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All control variables including  

hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market competition effect, and year effect are included (5) Constant is included 
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Table 2F4.  Results for SUR Models: Temporal Complementarity of DS 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite  

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Composite 

IQI 91 

Acute Cost 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

Cost per 

Discharge  

Part I. Models for DSt-2, TEt-1, and Supportt-1  

DS t-2×Support t-1 
0.0059 0.0081 0.0072 0.0053 0.0014 0.0083 -0.0021 0.0008 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

TE t-1×Support t-1 
-0.0104 0.0041 0.0062 0.0053 0.0036 0.0124 -0.0093 -0.0074 

(0.020) (0.007) (0.010) (0.007) (0.006) (0.013) (0.016) (0.007) 

DS t-2×TE t-1 
-0.0019 -0.0110+ -0.0001 -0.0068 -0.0022 -0.0217+ -0.0099 -0.0013 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

DS t-2×TE t-1×Support t-1 
-0.0030 0.0009 -0.0074 -0.0016 0.0105+ 0.0232* 0.0118 -0.0030 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

# Observations 1,191 1,191 1,191 1,191 1,188 1,188 1,188 1,188 

Breusch-Pagan test (p Value) 0.9211 0.0000 0.0000 

Part II. Models for DSt-1, TEt-2, and Supportt-2 

DS t-1 ×Support t-2 
0.0079 -0.0065 -0.0041 -0.0013 -0.0001 -0.0004 -0.0217 -0.0093 

(0.017) (0.006) (0.009) (0.006) (0.005) (0.011) (0.014) (0.006) 

TE t-2 ×Support t-2 
-0.0288 -0.0262*** -0.0022 -0.0251*** 0.0122+ 0.0138 0.0134 -0.0002 

(0.021) (0.007) (0.011) (0.007) (0.007) (0.014) (0.017) (0.007) 

DS t-1 ×TE t-2 
0.0059 0.0058 0.0048 0.0069 -0.0058 -0.0035 -0.0043 -0.0032 

(0.016) (0.006) (0.009) (0.005) (0.005) (0.011) (0.013) (0.005) 

DS t-1 ×TE t-2 ×Support t-2 
-0.0142 0.0022 -0.0098 -0.0046 0.0109+ 0.0053 -0.0031 0.0015 

(0.019) (0.006) (0.010) (0.006) (0.006) (0.012) (0.015) (0.006) 

# Observations 1,191 1,191 1,191 1,191 1,188 1,188 1,188 1,188 

Breusch-Pagan test (p Value) 0.9766 0.0000 0.0000 
(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All control variables including  

hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market competition effect, and year effect are included (5) Constant is included 
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Table 2F5. Results for Fixed Effect Models with Saidin Index: Simultaneous 

Complementarity 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 
Cost 

IQI 91 

Acute 
Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-1, and Supportt-1  

DS t-1×Support t-1 
0.0020 0.0063 -0.0003 0.0079 -0.0172 -0.0013 -0.0049 -0.0060 

(0.011) (0.006) (0.005) (0.009) (0.011) (0.005) (0.004) (0.004) 

TE t-1×Support t-1 
-0.0037 -0.0004 0.0060 0.0034 0.0138 -0.0003 0.0028 -0.0045 

(0.015) (0.008) (0.006) (0.010) (0.013) (0.005) (0.005) (0.005) 

DS t-1×TE t-1 
0.0054 -0.0073 0.0015 0.0037 0.0055 -0.0073 0.0012 -0.0004 
(0.012) (0.008) (0.005) (0.009) (0.011) (0.006) (0.006) (0.004) 

DS t-1×TE t-1×Support t-1 
-0.0223* -0.0066 0.0049 0.0117 -0.0006 0.0010 -0.0029 -0.0019 

(0.011) (0.006) (0.004) (0.008) (0.010) (0.004) (0.004) (0.004) 

# Observations 2,054 2,054 2,049 2,049 2,049 2,054 2,054 2,054 

# Hospital 715 715 713 713 713 715 715 715 

R2 0.044 0.044 0.373 0.119 0.038 0.129 0.124 0.229 

Part II. Models for DSt-2, TEt-2, and Supportt-2  

DS t-2 ×Support t-2 
-0.0032 0.0035 0.0032 0.0082 -0.0154 0.0019 0.0022 -0.0070 

(0.015) (0.008) (0.005) (0.010) (0.015) (0.005) (0.004) (0.005) 

TE t-2 ×Support t-2 
-0.0382* -0.0062 -0.0005 -0.0012 -0.0057 -0.0160* -0.0164* 0.0015 

(0.017) (0.010) (0.005) (0.011) (0.015) (0.008) (0.008) (0.006) 

DS t-2 ×TE t-2 
0.0273* 0.0064 -0.0035 -0.0105 0.0002 0.0000 0.0005 -0.0076+ 

(0.014) (0.008) (0.004) (0.009) (0.011) (0.009) (0.009) (0.004) 

DS t-2 ×TE t-2 ×Support t-2 
-0.0115 -0.0004 0.0079* 0.0089 0.0255* -0.0017 -0.0045 0.0025 

(0.014) (0.008) (0.004) (0.009) (0.012) (0.007) (0.007) (0.005) 
# Observations 1,548 1,548 1,541 1,541 1,541 1,548 1,548 1,548 

# Hospital 646 646 644 644 644 646 646 646 

R2 0.045 0.041 0.327 0.092 0.025 0.123 0.119 0.174 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 
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Table 2F6.  Results for Fixed Effect Models with Saidin Index: Temporal Complementarity 

of Support IT  

 
  (1) (2) (3) (4) (5) (6) (7) (8) 

 

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communi

-cation 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-1, and Supportt-2  

DS t-1×Support t-2 
0.0034 0.0003 -0.0074 -0.0026 -0.0308* -0.0049 0.0020 -0.0073 

(0.016) (0.009) (0.006) (0.012) (0.014) (0.006) (0.005) (0.005) 

TE t-1×Support t-2 
-0.0149 -0.0038 0.0110+ -0.0167 0.0178 -0.0021 -0.0027 0.0025 
(0.022) (0.012) (0.007) (0.016) (0.015) (0.007) (0.007) (0.006) 

DS t-1×TE t-1 
0.0085 -0.0172+ 0.0042 0.0151 -0.0030 -0.0030 0.0030 -0.0019 

(0.013) (0.009) (0.005) (0.012) (0.014) (0.005) (0.005) (0.004) 

DSt-1×TEt-1×Supportt-2 
-0.0175 -0.0014 0.0027 0.0229 -0.0005 -0.0043 -0.0098+ -0.0058 

(0.016) (0.009) (0.005) (0.015) (0.014) (0.006) (0.005) (0.005) 

# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 
# Hospital 499 499 499 499 499 499 499 499 

R2 0.042 0.042 0.324 0.109 0.038 0.108 0.108 0.169 

Part II. Models for DSt-2, TEt-2, and Supportt-1  

DS t-2 ×Support t-1 
-0.0047 0.0009 0.0051 0.0044 -0.0055 0.0033 0.0037 0.0001 

(0.015) (0.009) (0.005) (0.010) (0.015) (0.006) (0.006) (0.008) 

TE t-2 ×Support t-1 
-0.0010 0.0147 -0.0088 -0.0059 -0.0163 0.0033 0.0037 0.0055 
(0.018) (0.009) (0.005) (0.010) (0.014) (0.006) (0.007) (0.006) 

DS t-2 ×TE t-2 
0.0016 0.0083 0.0010 -0.0007 0.0061 -0.0098 -0.0086 -0.0084+ 

(0.013) (0.007) (0.004) (0.009) (0.012) (0.007) (0.007) (0.005) 

DS t-2 ×TEt-2 ×Supportt-1 
0.0128 -0.0158* 0.0088* 0.0053 0.0164 -0.0044 -0.0083 -0.0027 

(0.014) (0.008) (0.004) (0.012) (0.012) (0.006) (0.006) (0.005) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.044 0.041 0.323 0.093 0.035 0.109 0.110 0.173 

(1) Robust standard errors in parentheses (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  

87 

Table 2F7.  Results for Fixed Effect Models with Saidin Index: Temporal Complementarity 

of TE 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 
Cost 

IQI 91 

Acute 
Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-2, and Supportt-1  

DS t-1×Support t-1 
-0.0052 -0.0041 0.0008 0.0092 -0.0137 0.0017 0.0020 -0.0047 

(0.013) (0.008) (0.005) (0.010) (0.014) (0.005) (0.005) (0.005) 

TE t-2×Support t-1 
0.0111 0.0134 -0.0067 -0.0120 0.0010 0.0010 0.0001 0.0061 

(0.017) (0.011) (0.006) (0.013) (0.015) (0.007) (0.007) (0.006) 

DS t-1×TE t-2 
-0.0154 -0.0047 -0.0000 0.0008 -0.0027 -0.0010 0.0009 -0.0097* 

(0.012) (0.009) (0.005) (0.011) (0.013) (0.007) (0.007) (0.004) 

DS t-1×TE t-2×Support t-1 
0.0102 -0.0037 0.0127** 0.0194 -0.0051 -0.0037 -0.0069 0.0036 

(0.012) (0.007) (0.004) (0.014) (0.012) (0.006) (0.006) (0.004) 

# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.041 0.034 0.322 0.097 0.031 0.103 0.103 0.175 

Part II. Models for DSt-2, TEt-1, and Supportt-2  

DS t-2 ×Support t-2 
-0.0088 0.0014 0.0048 0.0104 -0.0059 -0.0039 -0.0057 -0.0082 

(0.016) (0.008) (0.005) (0.011) (0.013) (0.006) (0.005) (0.005) 

TE t-1 ×Support t-2 
-0.0208 -0.0048 0.0035 -0.0036 0.0007 -0.0030 -0.0027 -0.0013 

(0.016) (0.009) (0.005) (0.009) (0.012) (0.006) (0.007) (0.006) 

DS t-2 ×TE t-1 
0.0114 0.0008 -0.0033 -0.0138 -0.0121 -0.0044 -0.0024 -0.0016 
(0.014) (0.008) (0.004) (0.009) (0.012) (0.007) (0.007) (0.005) 

DS t-2 ×TE t-1 ×Support t-2 
-0.0187 -0.0063 0.0124** 0.0147 0.0170 -0.0020 -0.0035 -0.0007 

(0.015) (0.009) (0.004) (0.011) (0.012) (0.006) (0.006) (0.004) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.048 0.038 0.335 0.107 0.038 0.108 0.107 0.168 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 
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Table 2F8.  Results for Fixed Effect Models with Saidin Index: Temporal Complementarity 

of DS 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 
Cost 

IQI 91 

Acute 
Cost 

Cost per 

Discharge 

Part I. Models for DSt-2, TEt-1, and Supportt-1  

DS t-2×Support t-1 
0.0063 0.0103 0.0008 0.0023 -0.0043 0.0064 0.0055 0.0038 

(0.014) (0.007) (0.005) (0.011) (0.015) (0.006) (0.006) (0.007) 

TE t-1×Support t-1 
-0.0123 0.0019 0.0038 0.0092 -0.0085 0.0050 0.0033 -0.0048 

(0.017) (0.008) (0.005) (0.010) (0.015) (0.005) (0.005) (0.007) 

DS t-2×TE t-1 
-0.0039 0.0000 -0.0007 -0.0195+ -0.0076 -0.0088 -0.0057 -0.0027 

(0.014) (0.007) (0.005) (0.010) (0.012) (0.005) (0.005) (0.004) 

DS t-2×TE t-1×Support t-1 
-0.0045 -0.0115+ 0.0061 0.0178 0.0065 -0.0019 -0.0037 -0.0027 

(0.012) (0.006) (0.004) (0.011) (0.012) (0.005) (0.005) (0.005) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.044 0.040 0.323 0.096 0.036 0.111 0.106 0.172 

Part II. Models for DSt-1, TEt-2, and Supportt-2  

DS t-1 ×Support t-2 
-0.0023 -0.0027 -0.0063 -0.0082 -0.0307* -0.0039 0.0027 -0.0073 

(0.016) (0.010) (0.005) (0.011) (0.012) (0.005) (0.005) (0.005) 

TE t-2 ×Support t-2 
-0.0278 -0.0034 0.0102 0.0139 0.0202 -0.0219* -0.0220* -0.0020 

(0.022) (0.013) (0.007) (0.016) (0.016) (0.009) (0.010) (0.005) 

DS t-1 ×TE t-2 
0.0065 0.0056 -0.0040 -0.0013 -0.0037 0.0053 0.0064 -0.0035 
(0.013) (0.009) (0.005) (0.010) (0.012) (0.008) (0.008) (0.004) 

DS t-1 ×TE t-2 ×Supportt-2 
-0.0084 -0.0097 0.0103* 0.0053 -0.0003 0.0015 -0.0051 0.0011 

(0.013) (0.009) (0.005) (0.016) (0.012) (0.007) (0.007) (0.004) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.041 0.036 0.329 0.105 0.039 0.120 0.126 0.168 

 (1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status), IT network effect, market 

competition effect, and year effect are included (5) Constant is included 
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Table 2F9.  Results for Fixed Effect Models with Extra Control Variables: Simultaneous 

Complementarity  

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 
Cost 

IQI 91 

Acute 
Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-1, and Supportt-1  

DS t-1×Support t-1 
-0.0052 0.0060 0.0021 0.0089 -0.0107 -0.0005 -0.0056 -0.0094* 

(0.012) (0.006) (0.005) (0.010) (0.011) (0.005) (0.004) (0.004) 

TE t-1×Support t-1 
-0.0024 0.0018 0.0064 0.0100 0.0138 -0.0063 -0.0003 -0.0087 

(0.016) (0.008) (0.006) (0.010) (0.014) (0.006) (0.006) (0.006) 

DS t-1×TE t-1 
0.0022 -0.0074 0.0007 -0.0001 0.0011 -0.0069 0.0011 0.0014 
(0.013) (0.008) (0.005) (0.009) (0.012) (0.006) (0.006) (0.004) 

DS t-1×TE t-1×Support t-1 
-0.0220+ -0.0079 0.0064 0.0144 0.0005 0.0051 -0.0012 -0.0026 

(0.013) (0.007) (0.005) (0.010) (0.011) (0.005) (0.004) (0.004) 

# Observations 2,054 2,054 2,049 2,049 2,049 2,054 2,054 2,054 

# Hospital 715 715 713 713 713 715 715 715 

R2 0.050 0.048 0.373 0.121 0.041 0.135 0.126 0.233 

Part II. Models for DSt-2, TEt-2, and Supportt-2  

DS t-2 ×Support t-2 
0.0124 0.0008 0.0056 0.0180+ -0.0015 0.0021 0.0002 -0.0069 

(0.015) (0.008) (0.005) (0.010) (0.015) (0.005) (0.005) (0.005) 

TE t-2 ×Support t-2 
-0.0458* -0.0046 0.0022 -0.0014 -0.0106 -0.0187* -0.0189* 0.0054 

(0.018) (0.011) (0.005) (0.011) (0.015) (0.009) (0.010) (0.007) 

DS t-2 ×TE t-2 
0.0258+ 0.0054 -0.0048 -0.0126 0.0000 -0.0006 0.0003 -0.0093+ 

(0.015) (0.008) (0.004) (0.009) (0.012) (0.009) (0.010) (0.005) 

DS t-2 ×TE t-2 ×Support t-2 
-0.0108 0.0057 0.0099* 0.0112 0.0245+ -0.0030 -0.0057 0.0020 

(0.016) (0.009) (0.004) (0.010) (0.013) (0.008) (0.008) (0.006) 
# Observations 1,548 1,548 1,541 1,541 1,541 1,548 1,548 1,548 

# Hospital 646 646 644 644 644 646 646 646 

R2 0.048 0.046 0.334 0.098 0.030 0.137 0.126 0.187 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status, female patient percentage, 

percentages of Medicare and Medicaid patient, and health system affiliation), IT network effect, market competition effect, and 

year effect are included  (5) Constant is included 
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Table 2F10.  Results for Fixed Effect Models with Extra Control Variables: Temporal 

Complementarity of Support IT 

 
  (1) (2) (3) (4) (5) (6) (7) (8) 

 

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communi

-cation 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 

Cost 

IQI 91 

Acute 

Cost 

Cost per 

Discharg

e 

Part I. Models for DSt-1, TEt-1, and Supportt-2  

DS t-1×Support t-2 
0.0093 0.0005 -0.0038 0.0099 -0.0256+ -0.0111+ -0.0033 -0.0120+ 

(0.016) (0.009) (0.006) (0.015) (0.015) (0.006) (0.006) (0.006) 

TE t-1×Support t-2 
-0.0040 -0.0025 0.0127+ -0.0202 0.0249 0.0016 -0.0015 0.0032 
(0.021) (0.013) (0.007) (0.018) (0.016) (0.008) (0.008) (0.008) 

DS t-1×TE t-1 
0.0083 -0.0177+ 0.0042 0.0113 -0.0072 -0.0017 0.0047 0.0001 

(0.013) (0.010) (0.006) (0.013) (0.014) (0.006) (0.006) (0.005) 

DS t-1×TE t-1×Support t-2 
-0.0301+ -0.0017 -0.0011 0.0252 -0.0132 -0.0070 -0.0122+ -0.0089 

(0.016) (0.011) (0.006) (0.017) (0.016) (0.008) (0.007) (0.007) 

# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 
# Hospital 499 499 499 499 499 499 499 499 

R2 0.047 0.045 0.322 0.109 0.044 0.119 0.113 0.181 

Part II. Models for DSt-2, TEt-2, and Supportt-1  

DS t-2 ×Support t-1 
0.0001 0.0002 0.0060 0.0061 -0.0001 0.0070 0.0043 -0.0022 

(0.016) (0.008) (0.005) (0.011) (0.015) (0.006) (0.006) (0.008) 

TE t-2 ×Support t-1 
-0.0034 0.0149+ -0.0123* -0.0068 -0.0228 -0.0019 0.0024 0.0033 
(0.018) (0.009) (0.006) (0.012) (0.016) (0.007) (0.008) (0.007) 

DS t-2 ×TE t-2 
0.0032 0.0091 0.0012 -0.0009 0.0053 -0.0101 -0.0097 -0.0084+ 

(0.014) (0.007) (0.004) (0.010) (0.013) (0.008) (0.008) (0.005) 

DS t-2 ×TE t-2 ×Supportt-1 
0.0204 -0.0121 0.0130** 0.0063 0.0211 -0.0032 -0.0072 -0.0003 

(0.016) (0.008) (0.004) (0.014) (0.015) (0.007) (0.007) (0.006) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.051 0.045 0.327 0.096 0.042 0.120 0.113 0.179 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status, female patient percentage, 

percentages of Medicare and Medicaid patient, and health system affiliation), IT network effect, market competition effect, and 

year effect are included  (5) Constant is included 
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Table 2F11.  Results for Fixed Effect Models with Extra Control Variables: Temporal 

Complementarity of TE 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 
Cost 

IQI 91 

Acute 
Cost 

Cost per 

Discharge 

Part I. Models for DSt-1, TEt-2, and Supportt-1  

DS t-1×Support t-1 
-0.0045 -0.0005 0.0009 0.0095 -0.0134 0.0020 0.0032 -0.0085+ 

(0.015) (0.008) (0.005) (0.011) (0.014) (0.006) (0.006) (0.005) 

TE t-2×Support t-1 
0.0156 0.0175 -0.0062 -0.0053 -0.0062 -0.0039 -0.0020 0.0051 

(0.017) (0.011) (0.006) (0.013) (0.016) (0.008) (0.008) (0.006) 

DS t-1×TE t-2 
-0.0168 -0.0066 -0.0011 -0.0040 -0.0051 0.0017 0.0016 -0.0087+ 

(0.014) (0.010) (0.005) (0.012) (0.014) (0.008) (0.008) (0.004) 

DS t-1×TE t-2×Support t-1 
0.0139 -0.0031 0.0164*** 0.0230 0.0044 -0.0047 -0.0078 0.0068 

(0.013) (0.008) (0.004) (0.014) (0.014) (0.007) (0.008) (0.004) 

# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.050 0.041 0.326 0.100 0.037 0.113 0.108 0.183 

Part II. Models for DSt-2, TEt-1, and Supportt-2  

DS t-2 ×Support t-2 
0.0061 0.0007 0.0065 0.0176 -0.0027 -0.0045 -0.0074 -0.0093+ 

(0.017) (0.008) (0.005) (0.011) (0.014) (0.007) (0.006) (0.006) 

TE t-1 ×Support t-2 
-0.0203 -0.0054 0.0074 -0.0018 0.0065 -0.0024 -0.0045 -0.0040 

(0.018) (0.010) (0.005) (0.009) (0.012) (0.008) (0.008) (0.007) 

DS t-2 ×TE t-1 
0.0106 0.0007 -0.0038 -0.0136 -0.0115 -0.0053 -0.0017 -0.0006 
(0.015) (0.008) (0.004) (0.009) (0.012) (0.007) (0.007) (0.005) 

DS t-2 ×TE t-1 ×Support t-2 
-0.0219 -0.0019 0.0153*** 0.0193+ 0.0151 -0.0040 -0.0049 -0.0006 

(0.016) (0.009) (0.004) (0.011) (0.013) (0.007) (0.007) (0.005) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.048 0.041 0.337 0.113 0.044 0.119 0.112 0.178 

(1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status, female patient percentage, 

percentages of Medicare and Medicaid patient, and health system affiliation), IT network effect, market competition effect, and 

year effect are included  (5) Constant is included 
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Table 2F12.  Results for Fixed Effect Models with Extra Control Variables: Temporal 

Complementarity of DS 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  

IQI 91 

Chronic 

Composite 

IQI 91 

Acute 

Composite 

Communication 

Score 

Rating 

Score 

Recommendation 

score 

IQI 91 

Chronic 
Cost 

IQI 91 

Acute 
Cost 

Cost per 

Discharge 

Part I. Models for DSt-2, TEt-1, and Supportt-1  

DS t-2×Support t-1 
0.0055 0.0075 0.0012 0.0075 -0.0032 0.0091 0.0057 -0.0002 

(0.015) (0.007) (0.005) (0.011) (0.013) (0.006) (0.006) (0.007) 

TE t-1×Support t-1 
-0.0081 0.0064 0.0040 0.0142 -0.0068 0.0033 0.0055 -0.0079 

(0.020) (0.009) (0.006) (0.012) (0.016) (0.006) (0.006) (0.009) 

DS t-2×TE t-1 
-0.0025 -0.0005 -0.0022 -0.0220* -0.0101 -0.0116* -0.0069 -0.0017 
(0.016) (0.008) (0.005) (0.011) (0.013) (0.005) (0.005) (0.005) 

DS t-2×TE t-1×Support t-1 
-0.0020 -0.0072 0.0107* 0.0242+ 0.0131 0.0011 -0.0018 -0.0015 

(0.015) (0.008) (0.005) (0.013) (0.013) (0.005) (0.005) (0.005) 

# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.050 0.043 0.325 0.101 0.041 0.122 0.110 0.178 

Part II. Models for DSt-1, TEt-2, and Supportt-2  

DS t-1 ×Support t-2 
0.0078 -0.0048 0.0002 0.0001 -0.0209 -0.0075 -0.0014 -0.0104* 

(0.017) (0.010) (0.006) (0.013) (0.014) (0.005) (0.006) (0.005) 

TE t-2 ×Support t-2 
-0.0273 -0.0007 0.0118 0.0142 0.0135 -0.0251* -0.0247* -0.0009 

(0.025) (0.015) (0.008) (0.017) (0.018) (0.011) (0.011) (0.006) 

DS t-1 ×TE t-2 
0.0063 0.0053 -0.0060 -0.0038 -0.0048 0.0066 0.0073 -0.0027 
(0.014) (0.009) (0.005) (0.010) (0.012) (0.008) (0.009) (0.004) 

DS t-1 ×TE t-2 ×Supportt-2 
-0.0156 -0.0106 0.0111+ 0.0047 -0.0040 0.0015 -0.0047 0.0014 

(0.017) (0.011) (0.006) (0.018) (0.015) (0.009) (0.009) (0.005) 
# Observations 1,191 1,191 1,188 1,188 1,188 1,191 1,191 1,191 

# Hospital 499 499 499 499 499 499 499 499 

R2 0.045 0.038 0.327 0.106 0.041 0.133 0.127 0.179 

 (1) Robust standard errors in parentheses  (2) *** p<0.001, ** p<0.01, * p<0.05, + p<0.1  (3) Direct IT effect is included  (4) All 

control variables including hospital-level variables (e.g., size, profit status, and teaching status, female patient percentage, 

percentages of Medicare and Medicaid patient, and health system affiliation), IT network effect, market competition effect, and 

year effect are included  (5) Constant is included 
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CHAPTER 3 A BIVARIATE DYNAMIC LATENT DIFFERENCE SCORE MODEL FOR 

LONGITUDINAL DATA ANALYSIS 

Abstract 

This research introduces a BDLDSM to analyze the dynamic lead-lag association between 

predictor and outcome variables in a longitudinal framework. The BDLDSM is a powerful tool 

for IS researchers aiming to use a panel data set to explore longitudinal theories related to 

change. In contrast to traditional longitudinal analysis techniques, BDLDSM allows IS 

researchers to (1) examine dynamic lead-lag associations between two variables over time; (2) 

simultaneously model change trajectories in both variables over time; (3) test for a reciprocal 

relationship between two variables over time; and (4) identify different types of dynamic effects.  

Here, we first review the longitudinal analysis techniques most commonly applied in the 

IS field from 2008–2017, and then compare BDLDSM with these widely applied techniques. 

Second, we discuss the need for BDLDSM in the IS field and introduce BDLDSM with both 

linear and nonlinear functional forms of change. Third, we apply BDLDSM in a HIT impact 

context and unveil the dynamic interplay between different HIT functions and various 

dimensions of hospital performance. We next compare BDLDSM using linear and nonlinear 

functional forms and compare BDLDSM with latent growth modeling. We conclude with a 

discussion of BDLDSM’s implications for longitudinal data analysis in the IS field. 

Keywords: Bivariate Dynamic Latent Difference Score Model, Latent Growth Model, Quality 

of Care, Cost of Care, Health Information Technology (HIT), Business Value of IT, Longitudinal 

Research 
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3.1 Introduction  

In recent years, an increasing number of empirical papers in the IS field have been using 

traditional longitudinal data analysis techniques, such as linear unobserved effects panel data 

models (e.g., fixed/random effects models), random-coefficient models, and structural equation 

modeling (SEM) (Zheng et al. 2014). However, these traditional panel data models suffer from 

two major drawbacks. First, they fail to incorporate time-dependent changes in the variables, 

despite the fact that IS phenomena often have two constantly changing variables in a dynamic 

relationship. For example, IT usage may evolve over time such that its mean trajectory is 

nonlinear, while IT usage’s impact on task performance may also evolve, but with a linear mean 

trajectory (Benlian 2015). Traditional panel data analyses, such as fixed-effects modeling, can 

neither support trajectory change assessment nor answer research questions such as How does 

the nonlinear change in IT usage impact the linear change in task performance? Research 

examining time-dependent changes in variables, however, is important in theory building—both 

to understand change patterns and to explore the longitudinal and dynamic relationships among 

variables (Zheng et al. 2014).  

LGM, which was recently introduced into IS, addresses the time-dependent change issue, 

and researchers can use it to model how the change process evolves (Zheng et al. 2014). For 

example, some researchers have used LGM to evaluate how trust in a new IT artifact develops 

over time (Söllner et al. 2016) or to examine the longitudinal dynamics of knowledge artifacts 

(Babik et al. 2015). LGM has also been used to develop longitudinal theories. For instance, it has 

been applied to examine how employee job characteristics change during an enterprise system 

implementation (Bala and Venkatesh 2013); to uncover feature-level changes in IT usage over 

time, as well as the impact of those changes on an individual’s task performance (Benlian 2015); 
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and to test the relationship between competitive repertoire and performance over time (Li et al. 

2015). Taken together, we can infer that LGM use has enabled IS researchers to make inroads 

into developing change-associated theories.  

LGM does not, however, address the second drawback of traditional panel data models—

namely, their inability to examine the reciprocal relationship, or feedback loop, between 

variables over time. IT researchers could benefit from an analysis technique that addressed this 

issue. For example, while the IT business value literature has established that IT investment can 

improve productivity, recent research suggests that such improvements also lead to subsequent 

IT investment (Baker et al. 2017). Neither traditional panel data models nor LGM can examine 

whether a positive feedback loop exists between IT investment and productivity improvement in 

a single model while incorporating the time-dependent changes.  

This study addresses the two drawbacks mentioned above and introduces a more 

comprehensive and advanced LGM—a BDLDSM, also known as a latent change score model—

to understand how variable relationships evolve over time. BDLDSM both answers the research 

questions LGM addresses and lets IS researchers test the reciprocal relationship and the dynamic 

feedback loop between variables to examine dynamic lead-lag associations between two 

variables over time. It does this by testing how previous changes in both variables can be used to 

predict an outcome variable’s subsequent changes and to decompose that variable’s dynamic 

effects (Grimm et al. 2016a).  

Here, we illustrate BDLDSM application in the HIT context by investigating the 

longitudinal relationship between different HIT functions and various hospital performance 

measures. The rationale is that extant HIT research largely relies on a static framework to 

examine the relationship between HIT implementation and healthcare performance, and such a 
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framework might be unable to reveal the dynamic relationship between HIT and healthcare 

performance. Further, the few studies that have applied a dynamic framework have overlooked 

the influence of the variables’ trajectory change and the dynamic lead-lag associations between 

HIT and healthcare performance (Furukawa et al. 2010; Menon and Kohli 2013; Sharma et al. 

2016). Considering the trajectory changes for both the HIT implementation and healthcare 

performance is important when examining the time-dependent dynamic lead-lag association 

between them because this trajectory change can be either linear or nonlinear. Moreover, HIT 

implementation and healthcare performance may have different functional forms of trajectory 

change. Overlooking the trajectory change forms could lead the model to inaccurately estimate 

the causal relationship between predictor and outcome variables. Furthermore, HIT 

implementation and healthcare performance might have a dynamic, reciprocal relationship over 

time. Understanding how HIT implementation and healthcare performance evolve over time has 

practical importance, yet researchers have never studied this dynamic association. Exploring this 

complex relationship in a dynamic change rate framework provides a more comprehensive 

account of the interplay between HIT implementation and healthcare performance. 

This study aims to make two major contributions to the IS literature. First, it extends 

current understanding of LGM in the IS field and gives IS researchers guidelines for developing 

a BDLDSM, which is a model ideally suited to studying the dynamic, longitudinal relationship 

between variables while incorporating their change trajectories. Despite its significant potential 

for confirming longitudinal theoretical models, BDLDSM has not, to our knowledge, been 

applied in the IS literature. Second, we extend the current literature on HIT impact on healthcare 

performance by offering a dynamic, nonlinear growth rate perspective. Emphasizing the role of 

context (Banger and Graber 2015), we examine two types of healthcare cost measures 
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(experiential and clinical quality) and three types of HIT functions (ECD, CPOE, and DS) to 

develop a more comprehensive understanding of the relationship between HIT implementation 

and healthcare performance.  

3.2 Literature Review  

3.2.1 Review of Longitudinal Research in the IS Field 

Longitudinal, or panel, data refers to data collected through repeated observations over time on 

the same cross-sectional units (Frees 2004; Wooldridge 2010) such as individuals, households, 

firms, or countries. To uncover state-of-the-art analysis techniques in longitudinal analysis, we 

began by reviewing the longitudinal research published in the AIS website’s “Senior Scholars' 

Basket of Journals.” The journals we reviewed for 2008–2017 included European Journal of 

Information Systems (EJIS), Information Systems Journal (ISJ), Information Systems Research 

(ISR), Journal of the Association for Information Systems (JAIS), Journal of Information 

Technology (JIT), Journal of Management Information Systems (JMIS), MIS Quarterly (MISQ), 

and Journal of Strategic Information Systems (JSIS). We started the search process using the 

keyword “longitudinal” on the ISI Web of Science database, initially identifying 170 articles 

with “longitudinal” in the title, abstract, or keywords. We then scanned these papers to determine 

whether they were longitudinal research papers. Of these, we identified 164 papers as 

longitudinal research papers; they included 77 quantitative papers, 73 qualitative papers, 2 design 

science papers, 9 review papers, and 3 method papers. 

For our study, we examined only the 77 quantitative longitudinal papers, the majority of 

which were published in MISQ (28 papers) and ISR (24 papers). Of the remaining papers, 8 were 

published in EJIS, 8 in JAIS, 5 in JMIS, 2 in JSIS, 1 in JIT, and 1 in ISJ. Of the 77 papers, 29 

were published from 2008–2012, while 48 were published from 2013–2017, suggesting an 
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increased interest in longitudinal research. We coded the articles based on four dimensions: 

research question, hypotheses, time span of collected data, and analysis techniques used. The 

collected data’s time span ranged from 75 minutes to 28 years. As Table 3.1 shows, the three 

most common analysis techniques used were SEM (24 papers), linear unobserved effects panel 

data model (12 papers), and random-coefficient model (11 papers). We now discuss the 

advantages and disadvantages of these and other quantitative research techniques used in the 

longitudinal papers.   

Table 3.1 Review of Longitudinal Papers in the IS Field 

Research 

Technique 
IS Papers from 2008 – 2017 

SEM/PLS Wu et al. (2017); Zhang and Venkatesh (2017); Sykes and Venkatesh (2017); 

Sun and Fang (2016); Steinbart et al. (2016); Boss et al. (2015); 

Bhattacherjee and Lin (2015); Barnett et al. (2015); Hu et al. (2015); Sykes 

(2015); Bhattacherjee and Park (2014); Tsai and Bagozzi (2014); Ou et al. 

(2013); Sun (2013); Venkatesh and Sykes (2013); Venkatesh and Windeler 

(2012); Goh and Wasko (2012); Venkatesh et al. (2011a); Venkatesh et al. 

(2011b); Chengalur-Smith et al. (2010); Kim (2009); Kim et al. (2009); 

Sykes et al. (2009); Venkatesh et al. (2008) 

Linear 

Unobserved 

Effects 

Model 

Baker et al. (2017); Atasoy et al. (2016); Luo et al. (2016)；Kim et al. 

(2016); Yan et al. (2015); Peng et al. (2014); Parker and Weber (2014); 

Menon and Kohli (2013); Dedrick et al. (2013); Wang et al. (2013); Butler 

and Wang (2012); Hahn et al. (2009) 

Random-

Coefficient 

Models 

Angst et al. (2017); Zhang (2017); Safi and Yu (2017); Venkatesh et al. 

(2016); Ma et al. (2014); Sasidharan et al. (2012); Setia et al. (2012); Ko and 

Dennis (2011); Goes et al. (2010); Lu and Ramamurthy (2010); Rai et al. 

(2009) 

The SEM method is a multivariate statistical analysis technique that analyzes causal 

relationships among latent variables (Bollen 2011). SEM has been widely adopted by IS 

researchers over the past two decades. However, SEM, whether based on linear equations or 

covariance structures, collects data at a single time point and thus cannot be used to establish 

causality, and it cannot handle nonlinearities (Zheng and Pavlou 2010). IS researchers therefore 

attempt to use longitudinal data to overcome the causality inference limitation. A common 
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approach here is to collect the predictor and outcome variables at different time points. To study 

technology adoption’s impact and the effectiveness of system use, for example, IS researchers 

can collect data at separate time points for pre-adoption intention, actual adoption usage, and 

post-adoption proficiency or performance variables (Sun 2013; Sykes et al. 2009; Venkatesh et 

al. 2011a; Venkatesh et al. 2011b). Yet, most papers collect the predictor and outcome variables 

only at single, separate time points, and thus the predictors are measured at a point in time that 

precedes measurement of the outcome variable(s). While such an approach deals with temporal 

precedence, it does not lend itself to tracking changes in the predictor or outcome variables over 

time. To examine the change trajectory of predictor and outcome variables, IS researchers apply 

LGM in the SEM framework (Bala and Venkatesh 2013; Benlian 2015); we discuss LGM in 

detail later.   

Another longitudinal analysis technique commonly applied in the IS field is the linear 

unobserved effects panel data model. In this model, unobserved effects from time-constant 

variables capture the features of individual units that do not change over time (Wooldridge 

2010). Two commonly used linear unobserved effects models are the fixed-effects model and the 

random-effects model. In the fixed-effects model, the unobserved effects are treated as fixed 

effects, which lets unobserved effects arbitrarily correlate with the predictors (Wooldridge 2010). 

For example, to control the arbitrary dependence between unobserved effects and the 

independent variables, Butler and Wang (2012) employed a fixed-effect analysis technique at the 

newsgroup level to test content boundary reshaping’s effect on member dynamics and 

community responsiveness, while Luo et al. (2016) applied a fixed-effects model at the firm 

level to examine the impact of technologies on cross-channel capabilities and managerial actions. 

In the random-effects model, the unobserved effects are treated as random effects, which does 
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not let unobserved effects arbitrarily correlate with the predictors (Wooldridge 2010). Random-

effects models are used when unobserved effects are uncorrelated with independent variables 

(e.g. Baker et al. (2017) or when time-invariant estimators are important (e.g., Langer et al. 

(2014). While both fixed- and random-effects models can examine whether a certain relationship 

between the predictor and outcome variables exists over time, these models fail to address the 

change trajectories in variables over time. 

The third longitudinal analysis technique commonly used in the IS field is random-

coefficient models, which allow slopes to differ across individuals. This technique is usually 

applied to analyze hierarchically nested data; over the past 10 years, hierarchical linear modeling 

(HLM) has been the most popular random-coefficient model applied in the IS field. Researchers 

can use HLM to study the relationships within and between hierarchical units. For example, with 

a multilevel longitudinal dataset, Rai et al. (2009) used HLM to study the impact of relational 

factors on strategic offshore IS project success, using cultural differences framing at two levels—

the project-leader level and the project level. Venkatesh et al. (2016) applied HLM to examine 

how ICT interventions can improve high infant mortality with variables at the village level and 

the infant level. Although HLM can test hypotheses related to hierarchical units, it also fails to 

incorporate the change trajectories in variables over time. 

In addition to these three commonly used longitudinal analysis techniques, IS researchers 

also use other models and techniques to analyze longitudinal datasets. To study the change rate’s 

impact on the relationship between predictor and outcome variables, IS researchers may collect 

data from multiple time points, analyze the data from each time point in the same structural 

model, and then compare the results. For example, Peng and Eunni (2011) analyzed data from 

1984, 1989, 1993, 1997, 2001, and 2003 in the same research model to study the change of wage 
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premium for employees with computer skills. They found that the wage premium increased from 

1984–1993, remained the same in 2001, and decreased in 2003, concluding that the change in 

wage premium followed an inverted-U shape over time. As another example, to study the 

trajectory changes in the evolution of content management systems, Vitari and Ravarini (2009) 

collected data at three phases of that evolution. However, this technique fails to incorporate the 

variables’ within-unit changes in the model over time.  

To study the duration of time until one event happens, IS researchers have applied 

survival analysis. For example, Yaraghi et al. (2015) used this approach with an accelerated 

failure-time model to test hypotheses related to the time it takes to adopt health information 

exchanges, while Scherer et al. (2015) applied survival analysis using Cox’s proportional hazard 

model to study customer defection in self-service settings. This approach is not relevant for our 

research questions, however, as we do not focus on research questions related to time duration.  

3.2.2 Review of LGM Research in the IS Field 

While IS researchers have widely implemented traditional SEM, their use of LGM has been 

limited (Li et al. 2015b; Zheng et al. 2014). LGM’s major advantage over other traditional SEM, 

however, is that it offers precise information on longitudinal inter-unit change patterns—that is, 

on the change trajectories in variables over time (Benlian 2015; Zheng et al. 2014) which are 

important from a theoretical perspective. Zheng et al. (2014) have discussed the importance of 

introducing LGM in the IS field from both theoretical and practical perspectives, and provided 

analysis guidelines to help IS researchers better describe, measure, analyze, and theorize 

longitudinal change. They have also discussed LGM’s advantages and limitations compared to 

other longitudinal approaches, such as repeated-measures ANOVA, fixed or random effects, 

time-series analysis techniques, functional data analysis, and traditional SEM models (Zheng et 
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al. 2014). A few IS researchers have applied LGM in their research. Bala and Venkatesh (2013) 

used LGM analysis techniques to develop a job characteristic change model during an enterprise 

system implementation and found that job characteristic changes are associated with employee 

job satisfaction. To measure the functional forms of change, they considered four different types 

of growth models: a no-growth model, a linear growth model, a quadratic model, and an optimal 

growth model. As another example, Benlian (2015) adopted LGM and tested three functional 

forms of change in IT usage, including a no-growth model, a linear model, and a free-form 

model; he found that IT usage at the feature level increases nonlinearly over time, but with 

diminishing growth rates, which suggests that employee IT system usage is different at early and 

later stages. This research gives researchers and practitioners a dynamic view of feature-level IT 

usage and its impact on individuals’ task performance.  

Despite its benefits, LGM has three limitations. First, it cannot uncover the reciprocal 

relationship or feedback loop between variables over time, which is important to IS analysis. In 

the IT business value research area, Baker et al. (2017) tried to examine a positive feedback loop 

between IT investment and a firm’s productivity over time. The authors applied a linear 

unobserved effects panel data model to examine whether improved productivity leads to 

additional IT investment, but they failed to examine whether additional IT investment improved 

productivity in the same model. To test the feedback loop between IT investment and a firm’s 

productivity, researchers need a dynamic, reciprocal analysis framework. The need to examine 

reciprocal relationships or reciprocity behaviors is not uncommon in IS research. For instance, 

Ou et al. (2013) studied guanxi—the Chinese term for a close relationship based on a reciprocal 

favor—in a computer-mediated communication platform in an online marketplace context. 

Reciprocal favor refers to positive benefits that come from the interaction between buyers and 
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sellers (Ou et al. 2013). Untangling the positive feedback loop between buyers and sellers in an 

online marketplace makes it possible to test nuanced hypotheses about these reciprocal favors. 

As another example, in the IS field, the norm of reciprocity is studied as a relational factor within 

a dyadic relationship in the knowledge exchange context (Beck et al. 2014). If we can open the 

black box of the norm of reciprocity, we can unveil the dynamic exchange relationship between 

knowledge seeker and knowledge contributor. Reciprocity can also play an important role in the 

application of social network theories (Bapna et al. 2017; Goh et al. 2016), as revealing 

reciprocal behaviors among social network members can help IS researchers understand the 

network’s dynamics.  

Second, LGM captures only the time-invariant, or static, associations between these two 

constructs, although it can be used to simultaneously model the time-contingent changes in both 

the dependent and independent variables (Grimm et al. 2016a). This static association between 

constructs cannot be used to examine effects related to subsequent change or movement. This 

can lead to an inadequate development of dynamic change theories. For instance, Zheng et al. 

(2014) used LGM to examine the relationship between word-of-mouth (WOM) communication 

and book sales over time. They found a negative correlation between the slope (individual rate of 

change) of WOM communication and the slope of Amazon sales rank, indicating that products 

with a slower growth of WOM communication tend to see a faster decrease in sales compared to 

other products studied. This negative association is a static between-person association; that is, it 

fails to unveil the dynamic association between the predictor and outcome variables by 

examining whether changes in the predictor variable precede changes in the outcome variable 

(Grimm et al. 2016a). For example, LGM cannot be used to examine whether the changes in 

WOM communication precede the changes in the sales rank, and thus cannot be used to conclude 
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that a slower growth of WOM communication is predicted to lead to a faster decrease in book 

sales.  

Third, LGM cannot decompose the dynamic change effect from the time-variant 

variables. For example, changes in the dependent variable may be influenced by the prior state of 

the dependent and independent variables and by the dependent variable’s overall mean change 

trajectory over time. Likewise, the independent variable’s change may be influenced by the prior 

state of the independent and dependent variables and the independent variable’s overall mean 

change trajectory over time. To comprehensively understand the relationship between 

independent and dependent variables, we must consider all of the dynamic effects that determine 

the relationship between dependent and independent variables in a single model. 

To uncover the reciprocal relationship between variables over time, to examine the 

dynamic association between the predictor and outcome variables over time, and to decompose 

the dynamic change effect from the outcome variable, we must extend our current understanding 

of LGM and introduce an advanced dynamic LGM—that is, BDLDSM. Figure 3.1 presents the 

relationships between SEM, LGM, and BDLDSM: SEM comprises LGM, while LGM comprises 

BDLDSM. 

 

Figure 3.1 Relationship Diagram for SEM, LGM, and BDLDSM 
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3.2.3 The Choice of Statistics Techniques in Longitudinal Research 

We created four guidelines for IS researchers to determine which statistical techniques to use 

when conducting longitudinal research. First, researchers should identify the role of time in the 

theory-building process and ensure that their paper’s design and analysis align with the theory 

(George and Jones 2000; Mitchell and James 2001). If researchers want to address the time lag 

between the predictor variable X and the outcome variable Y for causal inference, they can use 

SEM, a linear unobserved effects model, or a random-coefficients model. If they want to 

incorporate the mean trajectory change of X or Y in the longitudinal model, they can use either 

LGM or BDLDSM. If researchers want to examine the dynamic interrelations or reciprocal 

relationship between X and Y, they can use BDLDSM. Also, if they want to decompose the 

dynamic effect of variables, they can use BDLDSM. Or, if researchers want to study other 

aspects of time—such as frequency, cycles, intensity, and duration—they can use other specific 

analysis techniques to examine time’s role. For example, if researchers want to study when 

events occur by using time duration as an outcome, they can use survival analysis techniques. 

Second, researchers should consider how many waves of repeated measures are collected. 

While linear unobserved effects models and random-coefficients models need at least two time 

points of repeated measures, LGM and BDLDSM need at least three time points of data (Zheng 

et al. 2014). At least three waves of data are needed to identify and conceptualize the trajectory 

of change (Bala and Venkatesh 2013; Chan 1998), while at least four points of repeated 

measures are needed to distinguish nonlinearities in LGM and BDLDSM (Raudenbush 2001). 

Third, researchers should consider whether they need to test multilevel hypotheses. If so, they 

need to use either a random-coefficients model or multi-level SEM/LGM/BDLDSM. Fourth, 

researchers should consider the hypothesized underlying the model of change and choose a 
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research analysis technique accordingly (Ferrer and McArdle 2003). For example, if identifying 

growth in each variable is important in the hypotheses and may be detected in the data, they can 

use LGM or BDLDSM. If identifying growth is not important to the hypotheses or the theory, 

researchers do not need to use growth analysis techniques. Table 3.2 compares the characteristics 

of the longitudinal models.  

Table 3.2 Model Characteristic Comparison 

  SEM LGM  BDLDSM Linear 

Unobserved 

Effects 

Model 

Random 

Coefficient 

Model 

Time periods  1 >=2 >=3 >=3 >=2 >=2 

Within-unit Change No No Yes Yes Yes Yes 

Between-unit Change No Yes Yes Yes Yes Yes 

Change of Mean Trajectory No No Yes Yes No No 

Dynamic Relationship  No No No Yes No No 

Dynamic Effect Identification No No No Yes No No 

Reciprocal Relationship (X<->Y) No No No Yes No No 

3.3 BDLDSM Model 

In the following sections, we first discuss the value of and need for BDLDSM in the IS field, 

then introduce autoregressive models, the latent change score model, and latent growth models. 

After introducing BDLDSM and describing how to incorporate the functional form of change 

into it, we describe our modeling approach, which aligns with the structural models for 

multivariate longitudinal data analysis (Ferrer and McArdle 2003; Grimm et al. 2016; McArdle 

and Nesselroade 1994; Nesselroade and Cable 1974). Finally, we propose a four-step process to 

conduct BDLDSM analysis. 

3.3.1 The Value of and Need for BDLDSM in the IS Field 

Contemporary research on longitudinal data analysis is shifting its focus toward tracking change 

trajectories over time; as such, it calls for new techniques that combine features of existing 
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analysis techniques, including factor analysis, multivariate analyses of variance, and time series 

techniques (Ferrer and McArdle 2003; McArdle 2009). These new techniques help researchers 

better interpret longitudinal data, answer new research questions, test change-related hypotheses, 

and promote time-related theory development. By incorporating features of hierarchical linear 

models, multilevel models, random-coefficient models, LGM, linear unobserved effects models, 

and SEM, BDLDSM examines not only the trajectory change of each individual unit, or the 

within-unit change, but also the between-unit change, which describes how individual units vary 

in their trajectories (Raudenbush 2001). BDLDSM not only answers the research questions that 

LGM answers, but it can also answer more complicated and nuanced research questions about 

dynamic associations between two variables across time by using the change in one variable 

from t-1 to time t as the outcome instead of directly using the variable at a given time point. 

Researchers can use this model to test whether prior changes, including within-unit and between-

unit changes, predict subsequent changes and to examine the reciprocal relationship between 

variables over time.  

BDLDSM has been applied in various contexts—including education, sociology, and 

psychology—to study the dynamic interplay between two or more constructs (Grimm et al. 

2016a). For example, Grimm et al. (2016a) used BDLDSM to examine the lead-lag relationship 

between children’s mathematics ability and their visual motor integration. They found that 

children with higher visual motor integration have more positive subsequent changes in their 

mathematics ability. To capture the dynamic interplay between students’ motivation and their 

perceived competences during their first semester in high school, Ferrer and McArdle (2003) 

applied BDLDSM to examine the growth rate of and dynamic relationship between these two 

constructs over time and found that, while motivation has relatively flat trajectories, the 
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trajectories of competence scores increase over time. They discovered that, over time, motivation 

is the leading indicator in the interrelations between competence and motivation. BDLDSM can 

be applied to study developmental theories as well. Grimm (2007) studied the relationship 

between depression and academic achievement, implementing BDLDSM to examine how the 

time-dependent change of depression can be predicted by previous academic achievement scores, 

and vice versa. In another example, to study the relationship between two developmental 

processes—changes in memory performance and changes in brain size—Grimm et al. (2012) 

applied BDLDSM to unveil how the effects from recent changes from one developmental 

process led to subsequent changes in the other developmental process. They found, for example, 

that an increase in the lateral ventricle size leads to subsequent declines in memory performance 

for seniors. In the psychology field, Sbarra and Allen (2009) used BDLDSM to study 

development issues related to sleep and mood disturbances, while Kim and Deater‐Deckard 

(2011) applied BDLDSM to study development issues related to dynamic changes in anger and 

to externalizing and internalizing problems.  

BDLDSM offers IS researchers a comprehensive, dynamic view of trajectory change. IS 

researchers can use BDLDSM to unpack research questions that cannot be answered by 

traditional longitudinal research models. Those questions include the following: 

1. What are the shapes of the trajectories of the outcome and predictor variables?  

2. What are the dynamic lead-lag associations between two variables across time? 

Specifically, what is the best model for explaining the relationship between predictor (X) 

and outcome (Y) variables?  

(1) BDLDSM with no coupling effects 

(2) BDLDSM with a coupling effect from X to the change of Y (ΔY)  
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(3) BDLDSM with full coupling effects, including a coupling effect from X to ΔY and a 

coupling effect from Y to ΔX 

3. How can we decompose the dynamic change effects of Y?  

3.3.2 A Brief Introduction of BDLDSM  

Latent change score or latent difference score models are jointly analyzed by integrating aspects 

of autoregressive models, the latent change score model, and LGM for longitudinal panel data 

analysis. Thus, we will introduce these three models before introducing BDLDSM.  

Auto-Regressive Model 

Embracing a rich history across disciplines ranging from econometrics to psychology to 

sociology, the auto-regressive (AR) model assumes that the dependent variable in a given point 

in time, t, depends linearly on its earlier assessment (Hoyle 2012). For an observed variable, Y, 

with order of p at time t, this relationship is expressed as follows: 

𝑌𝑡 = 𝛽0 + ∑ 𝛽𝑝𝑌𝑡−1

𝑝

𝑗=1

+ 𝜀𝑡. 

Figure 3.2a, adapted from McArdle (2009), demonstrates the AR model with two waves 

of data. Suppose Y[1] and Y[2] are two repeated scores, with Y[1] preceding Y[2] in time. To 

predict Y[2] by Y[1], we then regress Y[2] on Y[1]. The figure shows all model parameters, where 

observed variables are in squares; the unobserved variables are in circles; the constant of 1 is in a 

triangle; one-headed arrows represent group or fixed effects, such as 𝜇1, 𝛽0, and 𝛽1; and two-

headed arrows represent individual or random effects, such as 𝜎1
2 and 1.  
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a. Autoregression Model b. Latent Change Score Model 

Figure 3.2 Autoregressive and Change Score Models  

Source: Adapted from McArdle (2009) 

Latent Change Score Model 

Unlike the AR model, which uses the observed variable (Y) as the outcome of interest, the latent 

change (or latent difference) score model adopts time-dependent change of the observed variable 

(ΔY) as the outcome of interest. The latent change score model can be applied to examine change 

across individual units (within-unit change) or to study time-sequential associations within and 

between different constructs (Grimm et al. 2016a; Grimm et al. 2016b). We specify each 

observed repeated measure as a function of a true score and an unobserved random error. The 

model is specified as 

𝑦𝑡𝑖 = 𝑙𝑦𝑡𝑖 +  𝑢𝑡𝑖 , 

where 𝑦𝑡𝑖 is the observed score for individual unit i at time t, 𝑙𝑦𝑡𝑖  is the true score for individual 

unit i at time t, and 𝑢𝑡𝑖  is the corresponding random errors. The latent difference score of 

𝑦𝑡𝑖  (Δ𝑦𝑡𝑖) is then specified as the differences between the true scores at time t and t-1 in 

individual unit i. In this case, we can model the change of true scores in the following equation: 
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Δ𝑦𝑡𝑖 = 𝑙𝑦𝑡𝑖 − 𝑙𝑦𝑡−1𝑖 , 

where Δ𝑦𝑡𝑖  is the true change score for individual unit i from time t-1 to time t, 𝑙𝑦𝑡𝑖  is the true 

score for individual unit i at time t, and 𝑙𝑦𝑡−1𝑖  is the true score for individual unit i at time t-1. 

Figure 3.2b shows a latent change score model, adapted from McArdle (2009) using the 

same waves of data, Y[1] and Y[2]. The latent change (or difference) score between Y[1] and Y[2] 

is Y[2]−Y[1], labeled as Δ. To demonstrate the result of Y[2] = 1∗Y[1] + 1∗ Δ, we used “1” as a 

fixed value on the arrows to Y[2]. δ1 is the change score coefficient.  

Latent Growth Model 

To uncover the nature of the trajectory in the predictor and outcome variables, we must first use 

LGM to test which functional form of change is the best fit for the variables. In this section, we 

first introduce the no-growth model, and then present linear growth and nonlinear growth models 

for this purpose. We adapted the equations here from Grimm et al. (2016b). 

The no-growth models have only one latent variable (the intercept), which represents the 

overall level of variables over time. All the no-growth and growth models are two-level models: 

level-1 is the individual level, while level-2 is the sample level—that is, the level for the entire 

sample. This two-level model not only allows individual scores to change over time, but also 

allows change among individual units.  

 We model the level-1 (individual) equation for the no-growth model as follows: 

𝑦𝑡𝑖 = 𝑏1𝑖 + 𝑢𝑡𝑖 , 
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where 𝑦𝑡𝑖 is the repeatedly measured variable at time t for individual unit i, 𝑏1𝑖 is the random 

intercept or predicted score for individual unit i when t = 0, and 𝑢𝑡𝑖  is the time-dependent 

residual.  

We model the level-2 (sample) equation by specifying the random intercept, 𝑏1𝑖 , with a 

sample mean for the intercept,  𝛽1 , and an individual deviation from the sample mean, or fixed 

effect, 𝑑1𝑖 :  

𝑏1𝑖 = 𝛽1 + 𝑑1𝑖 . 

Combining level-1 and level-2 equations, we get the following complete no-growth 

model equation: 

𝑦𝑡𝑖 = (𝛽1 + 𝑑1𝑖 ) + 𝑢𝑡𝑖 . 

Unlike the no-growth models, which have only one latent variable (the intercept), the 

linear growth model has two latent variables: the intercept, 𝑏1𝑖 , and the linear rate of change, or 

random slope, 𝑏2𝑖 .  

We model the level-1 linear growth model as 

𝑦𝑡𝑖 = 𝑏1𝑖 + 𝑏2𝑖  × 𝑡 +  𝑢𝑡𝑖 , 

where 𝑦𝑡𝑖 is the repeatedly measured variable at time t for individual unit i, 𝑏1𝑖 is the random 

intercept or predicted score for individual unit i when t = 0, 𝑏2𝑖 is the linear rate of change (linear 

slope) for individual unit i when t = 0, and 𝑢𝑡𝑖  is the time-dependent residual.  

Besides specifying the random intercept, we also need to specify the linear slope for the 

level-2 linear growth equation, where 𝛽2  is the sample-level mean for the linear slope and 𝑑2𝑖  is 

the individual deviations from the sample-level mean: 
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𝑏2𝑖 = 𝛽2 + 𝑑2𝑖. 

Combining level-1 and level-2 equations, we get the following complete linear growth 

model equation: 

𝑦𝑡𝑖 = (𝛽1 + 𝑑1𝑖 ) + (𝛽2 + 𝑑2𝑖 ) ×  𝑡 + 𝑢𝑡𝑖 . 

However, if the variables are measured over a relatively long period, we will likely detect 

some degree of nonlinearity in their trajectories, meaning that the variables will likely change at 

different rates. To measure the nonlinear functional forms of change, we can apply different 

nonlinear growth models. There are two major types of nonlinear growth models. The first 

comprises growth models with nonlinearity in time; in these models, changes depend only on the 

known time assessment. The second type comprises growth models with nonlinearity in 

parameters, in which changes depend on unknown entities (Grimm et al. 2016). Examples of 

growth models with nonlinearity in time are quadratic and cubic models, which account for 

nonlinearity by adding a quadratic term of time (in the quadradic model) and both a quadratic 

term and a cubic term of time (in the cubic model); and spline models, which allow for separate 

growth models for distinct spans of time. Examples of growth models with nonlinearity in 

parameters are the Jenss-Bayley growth model, which combines linear and exponential 

trajectories, and the latent basis growth model, which allows free factor loadings of time. Here, 

we introduce only the growth models with nonlinearity in time, such as quadratic and cubic 

growth models. 

We specify the level-1 quadratic growth model with three latent variables: the intercept, 

𝑏1𝑖 ; the linear rate of change, 𝑏2𝑖 ; and the quadratic rate of change, 𝑏3𝑖 : 

𝑦𝑡𝑖 = 𝑏1𝑖 + 𝑏2𝑖 ×  𝑡 + 𝑏3𝑖 ×  𝑡 2 +  𝑢𝑡𝑖 . 
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The level-2 equation for quadratic slope, 𝑏3𝑖 , is written as  

𝑏3𝑖 = 𝛽3 + 𝑑3𝑖 , 

where 𝛽3  is the sample-level mean for the quadratic slope and 𝑑3𝑖  is the individual deviations 

from the sample-level mean of the quadratic slope. 

Combining level-1 and level-2 equations, we get the following complete quadratic 

growth model equation: 

𝑦𝑡𝑖 = (𝛽1 + 𝑑1𝑖 ) + (𝛽2 + 𝑑2𝑖 ) ×  𝑡 + (𝛽3 + 𝑑3𝑖 ) × 𝑡2  +  𝑢𝑡𝑖 . 

Similarly, we can specify the level-1 cubic growth model as  

𝑦𝑡𝑖 = 𝑏1𝑖 + 𝑏2𝑖 × 𝑡 + 𝑏3𝑖 ×  𝑡2  + 𝑏4𝑖 ×  𝑡3 +  𝑢𝑡𝑖 , 

where 𝑏4𝑖 is the cubic change for the individual unit i when t = 0.  

The level-2 equation for the cubic slope is  

𝑏4𝑖 = 𝛽4 + 𝑑4𝑖 , 

where 𝛽4  is the sample-level mean for the cubic slope and 𝑑4𝑖  is the individual deviations from 

the sample-level mean of the cubic slope. Combing level-1 and level-2 equations, the cubic 

growth model can be specified as 

𝑦𝑡𝑖 = (𝛽1 + 𝑑1𝑖 ) + (𝛽2 + 𝑑2𝑖 ) ×  𝑡 + (𝛽3 + 𝑑3𝑖 ) ×  𝑡2  +  (𝛽4 + 𝑑4𝑖 ) ×  𝑡3 +  𝑢𝑡𝑖 , 

where 𝛽4  is sample-level mean for the cubic slope and 𝑑4𝑖  is the individual deviations from the 

sample-level mean of the cubic slope. 

To incorporate the above growth models into a structural equation modeling framework, 

we fitted growth models with latent variables for the intercept and slope to represent the change: 
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𝒚𝒊 = 𝜦𝜼𝒊 +  𝒖𝒊 , 

where 𝒚𝑖 is a T × 1 vector of the repeatedly measured observed scores for individual unit i; T 

represents the number of repeated assessments based on the selected time metric; 𝜦 is a T ×  R 

matrix of factor loadings defining the latent growth factors; R is the number of growth factors (R 

= 1 for the no-growth model, R = 2 for the linear growth model, R = 3 for the quadratic growth 

model, and R = 4 for the cubic growth model); and 𝜂𝑖 is an R × 1 vector of the factor scores for 

the individual unit i. For example, the linear growth model has two factor scores: 𝜂1 is the 

intercept factor score, and 𝜂2 is the linear factor score. In addition to intercept and linear factor 

scores, the quadratic growth model has 𝜂3 as the quadratic factor score, and the cubic growth 

model has both the quadratic factor score, 𝜂3 , and the cubic factor score, 𝜂4.  𝒖𝑖  is an R × 1 

vector of residual for the individual unit i. Figure 3.3 shows the path diagrams for the linear 

(Figure 3.3a), quadratic (Figure 3.3b), and cubic growth models (Figure 3.3c). In Figure 3.3, y1 

to y5 represent the measurement of y in five different time periods, and the numbers in the arrows 

are the default fixed time score loadings. The number in the path represents time values that 

remain constant for the intercept (𝜂1), change linearly for the linear factor score (𝜂2), change 

quadratically for the quadratic factor score (𝜂3), and change in a cubic way for the cubic factor 

score (𝜂4).  
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a. Linear Growth Model b. Quadratic Growth 

Model 

c. Cubic Growth Model 

Figure 3.3 Path Diagram of Growth Models 

Source: Adapted from Grimm et al. (2016b) 

BDLDSM Model 

BDLDSM combines elements from AR models, latent change score models, and LGM. For 

BDLDSM, the specification of the latent difference (or latent change) scores must account for 

measurement error and time-specific, construct-irrelevant variance in the observed scores at each 

time point. We adapted the equations here from Ferrer and McArdle (2003) and specify that each 

observed repeated measure is a function of a true score and an unobserved random error. The 

model is specified as 

𝑦𝑡𝑖 = 𝑙𝑦𝑡𝑖 +  𝑢𝑡𝑖  , 

𝑥𝑡𝑖 = 𝑙𝑥𝑡𝑖 +  𝑠𝑡𝑖  , 

where 𝑦𝑡𝑖 and 𝑥𝑡𝑖 are the observed scores for the individual unit i at time t, 𝑙𝑦𝑡𝑖  and 𝑙𝑥𝑡𝑖  are the 

true scores at time t for the individual unit i, and 𝑢𝑡𝑖  and 𝑠𝑡𝑖   are the corresponding random 

errors. We then specify the latent difference scores of 𝑦𝑡𝑖 (Δ𝑦𝑡𝑖) and 𝑥𝑡𝑖  (Δ𝑦𝑡𝑖) as the differences 
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between the true scores at time t and t-1 in the individual unit i. In this case, we can model the 

change of true scores in the following equations: 

Δ𝑦𝑡𝑖 = 𝑙𝑦𝑡𝑖 − 𝑙𝑦𝑡−1𝑖 , 

Δ𝑥𝑡𝑖 = 𝑙𝑥𝑡𝑖 − 𝑙𝑥𝑡−1𝑖 , 

where Δ𝑦𝑡𝑖  and Δ𝑥𝑡𝑖  are the true change scores for the individual unit i from time t-1 to time t, 

𝑙𝑦𝑡𝑖  and 𝑙𝑥𝑡𝑖  are the true scores for the individual unit i at time t, and 𝑙𝑦𝑡−1𝑖  and 𝑙𝑥𝑡−1𝑖  are the 

true scores for the individual unit i at time t-1. 

The trajectory of each set of change scores over time is parameterized using a random 

slope factor, with loadings adjustable to reflect linear or nonlinear trajectories. The following 

two equations represent models that have linear mean trajectories. The latent change score at 

each time period is then a function of the random slope factor as well as the prior level of both 𝑦 

and 𝑥. That is, 

𝛥𝑦𝑡𝑖 = 𝑔𝑖 + 𝛽𝑦 𝑙𝑦𝑡−1𝑖 + 𝛾𝑦 𝑙𝑥𝑡−1𝑖 , 

 𝛥𝑥𝑡𝑖 = 𝑗𝑖 + 𝛽𝑥 𝑙𝑥𝑡−1𝑖 + 𝛾𝑥 𝑙𝑦𝑡−1𝑖 , 

where 𝑔𝑖 and 𝑗𝑖 are constant growth factors; 𝛽𝑦  and 𝛽𝑥 , called proportional effects, are within-

variable proportional changes; and 𝛾𝑦  and 𝛾𝑥  , called coupling effects, are the coupling 

parameters that specify the cross-variable effects. From these equations, we can infer that the 

changes in 𝑦 and 𝑥 for the individual unit i from time t-1 to time t come from three sources: the 

constant change components (g and j), the within-variable proportional effects (𝛽𝑥 and 𝛽𝑦 ), and 

the cross-variable coupling effects (𝛾𝑥  and 𝛾𝑦 ).  
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To account for the change scores’ nonlinear trajectory, we first need to specify the 

growth models based on the latent change scores, which require the first derivative of the 

functional form of change with respect to time. For example, the first derivative of the level-1 

cubic growth model can be written as  

Δ𝑦𝑡𝑖 = 𝑏2𝑖 + 2𝑏3𝑖𝑡 + 3𝑏4𝑖 𝑡
2.  

We then incorporate the derivative function into the latent change score model: 

Δ𝑦𝑡𝑖 = 𝑏2𝑖 + 2𝑏3𝑖𝑡 + 3𝑏4𝑖 𝑡
2 + 𝛽𝑦 𝑙𝑦𝑡−1𝑖 + 𝛾𝑦 𝑙𝑥𝑡−1𝑖 ,  

where 𝑏2𝑖 , 𝑏3𝑖, and 𝑏4𝑖 are latent growth factors for the latent changes scores. 𝑏2𝑖 𝑖𝑠 the constant 

growth factor (same as 𝑔𝑖), 𝑏3𝑖 is the linear growth factor, and 𝑏4𝑖 is the quadratic growth factor. 

𝛽𝑦  represents within-variable proportional changes and 𝛾𝑦  represents the cross-variable coupling 

parameters.  

This BDLDSM can be extended to multiple-group settings to explore group differences 

in the relationship; it can also be extended to multilevel modeling to study how changes proceed 

in different subsamples.  

3.3.3 The Four Steps of Modeling BDLDSM 

Following prior research (Chan 1998; Grimm et al. 2016b), we propose a four-step process to 

develop and conduct the BDLDSM analysis.  

Step 1: Establish Measurement Invariance over Time 

This step is a prerequisite to latent growth or change model analysis because we must 

ensure that the same construct is measured using the same metric with the same precision at each 

wave (Bala and Venkatesh 2013; Benlian 2015; Grimm et al. 2016b; McArdle 2009). 
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Measurement invariance allows the interpretation of growth trajectories in direct, meaningful 

ways and ensures that observed changes reflect changes in individual units, but not changes in 

measurement (Chan 1998; Grimm et al. 2016b). The two types of measurement invariance are 

configural invariance and factorial invariance. Configural invariance indicates that the construct 

operationalized by measured variables remains the same across different data waves. Configural 

invariance is established if the same number of factors is obtained at each wave with the same 

factor loadings on each factor (Bala and Venkatesh 2013; Bentein et al. 2005; Chan 1998). 

Factorial invariance indicates that the relationship between different measures and their 

corresponding construct are invariant across waves. Factorial invariance is established if the 

factor loadings corresponding to the same items remain the same over time (Bala and Venkatesh 

2013; Bentein et al. 2005; Chan 1998). However, the test of measurement invariance is 

underpowered if the sample size is small (Grimm et al. 2016b). In other words, we must ensure 

that the measurement invariance test includes a sufficient number of observations.  

Step 2: Modeling Growth Trajectories  

To determine the nature of growth trajectories in the predictor and outcome variables, we 

examine the predictor and outcome variables in LGMs, such as the no change model, linear 

change model, and nonlinear change model. We then compare these models using the chi-square 

difference test to identify the LGM model with the best fit.  

Step 3: Modeling BDLDSM 

Next, we incorporate step 2’s functional forms of change for predictor and outcome 

variables into the BDLDSM model. To better understand the dynamic relationship between 

predictor (X) and outcome (Y) variables, we can test four BDLDSM models: 
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(1) BDLDSM with no coupling effects 

(2) BDLDSM with a coupling effect from X to the change of Y (ΔY)  

(3) BDLDSM with a coupling effect from Y to the change of X (ΔX)  

(4) BDLDSM with full coupling effects, including coupling effects from X to ΔY and Y to 

ΔX 

From a theory development perspective, however, we suggest testing and comparing only 

the no-coupling effect model, the coupling effect from X to ΔY model, and the full coupling 

effect model (models 1, 2, and 4). We then compare these three models using the chi-square 

difference test to select the model with the best model specification.  

Step 4: Model Estimation and Result Interpretation  

In this step, we estimate the BDLDSM model based on the best model specification (step 

3) and interpret the result.  

3.4 An Example of BDLDSM  

We now illustrate the application of BDLDSM to examine the dynamic, longitudinal relationship 

between HIT implementation level and hospital performance, which we measure in terms of 

healthcare quality and cost. We chose to use BDLDSM because the association between HIT 

implementation and hospital performance is complex and may be reciprocal. Several studies 

have examined the impacts of HIT implementation on healthcare performance; however, their 

findings have been mixed and inconclusive. Indeed, empirical results suggest that HIT may have 

positive (Amarasingham et al. 2009; Buntin et al. 2011; Lee et al. 2013), negative (Ash et al. 

2004; Nebeker et al. 2005), or little to no significant impact (Agha 2014; Parente and 
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McCullough 2009) on healthcare quality. The same is true for healthcare costs, where empirical 

results suggest that HIT may decrease (Bardhan and Thouin 2013), increase (Agha 2014), or 

have little to no significant impact (Furukawa et al. 2010; Sharma et al. 2016). These conflicting 

results underscore the need for further research to examine the relationship between HIT and 

healthcare performance using a more advanced analysis technique and a fine-grained dataset. In 

addition, the literature has yet to sufficiently explore whether the relationship between HIT 

implementation levels and healthcare performance is reciprocal; it may be that an increased HIT 

implementation level drives healthcare performance improvement, and that hospitals that 

experience this improved quality and reduced cost are more likely to adopt additional HIT. We 

describe this dynamic and potentially reciprocal relationship between HIT implementation level 

and hospital performance over time in the following analysis, which we conducted using Mplus 

7.  

3.4.1 Sample and Data Collection 

In this study, we use data from four sources. First, to obtain hospital-level clinical quality data, 

we use the HCUP-SID dataset, which contains 97 percent of all discharges from community 

hospitals in 48 U.S. states. HCUP-SID contains nonclinical variables, such as patient 

demographics characteristics and total charges, and clinical information, such as diagnoses, 

procedures, chronic indicators, admission and discharge status, the length of stay and severities 

related to each inpatient discharge case (HCUP 2016). We have access to an HCUP-SID dataset 

for seven states: California, Florida, Maryland, New Jersey, New York, North Carolina, and 

Washington. The datasets span six years (2008–2013) for all but California; that dataset is for 

2008–2011. Second, to obtain experiential quality data, we use the HCAHPS survey data. This 

dataset records patients’ perceptions of the quality of care they received during their inpatient 
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hospital stays. Third, to measure the cost, we use the Medicare cost report, which provides total 

cost data at the hospital level. Fourth, to obtain HIT implementation data, we use AHA’s IT 

supplement files for 2008–2012. The AHA IT supplement database is a hospital-level database 

containing healthcare IT implementation-level information on three different IT functions: ECD, 

CPOE, and DS (AHA 2016). After mapping the four datasets, our resulting dataset is an 

unbalanced panel data set consisting of 835 hospital-level observations from 2008–2013.  

3.4.2 Measures 

Healthcare Quality and Cost 

To access healthcare quality levels at each wave, we used both clinical and experiential quality 

measures to analyze healthcare quality. For the clinical quality measures, we obtained inpatient 

quality indicators (IQI) from AHRQ. IQI measures are risk-adjusted, validated quality measures 

that are used to compare quality across hospitals (Encinosa and Bernard 2005; Miller et al. 2005; 

Weiner et al. 2006) and to study HIT impact on quality (Menachemi et al. 2008; Menachemi et 

al. 2007). We chose to use mortality for selected conditions (IQI91). This measure comprises 

mortality indicators for certain diagnostic conditions for which 1) mortality varies substantially 

across institutions, and 2) evidence suggests that high mortality may be associated with 

deficiencies in the quality of care. IQI91 is a “weighted average of the reliability-adjusted ratios 

for the mortality indicators for patients” and “the reliability-adjusted ratio is a weighted average 

of the risk-adjusted ratio and the reference population ratio, where the weight is determined 

empirically” (AHRQ 2011).  

We used the communication score to measure experiential quality. This score is 

calculated using responses to four questions in the HCAHPS survey: (1) How often did nurses 

communicate well with patients? (2) How often did doctors communicate well with patients? (3) 
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How often did staff explain about medications before giving them to patients? (4) Were patients 

given information about what to do during their recovery at home? The response categories for 

Questions 1–3 are “never/sometimes,” “usually,” or “always,” and the response categories for 

Question 4 are “yes” or “no.” To measure the communication score, we used the percentage of 

respondents who answered “always” for Question 1–3 and “yes” for Question 4 (Senot et al. 

2016) and calculated the average score for these four items. In keeping with recent research 

(Chandrasekaran et al. 2012; Senot et al. 2016; Sharma et al. 2016) and statistical theory (Collett 

2003), we applied a logit transformation on the computed average score. The following equation 

gives the communication score, with i as the individual hospitals and Q as the average score for 

four items: 

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝑖 = 𝐿𝑛 [
𝑄𝑖

1− 𝑄𝑖
 ].   

To obtain the healthcare cost, we used the cost per discharge, which is measured by a 

hospital’s total inpatient charge, as indicated in the CMS cost report, divided by the number of 

discharges calculated from the HCUP database. We then log transformed the cost per discharge 

to satisfy the normality requirement for further analysis (Senot et al. 2016; Sharma et al. 2016). 

HIT Implementation  

To assess the levels of HIT function implementation at each wave, we used a total of 18 items to 

create three HIT constructs: ECD, which lets care providers access and record patient 

information; CPOE, which facilitates task execution by letting care providers give instructions to 

nurses and technicians; and DS, which supports decision making by giving care providers access 

to information that helps them accurately diagnose patient conditions, consult the latest evidence, 

and provide patient-specific care. Although the original items were measured on a six-point 
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ordinal scale, we coded each item on a four-point scale so that a single lowest category would 

reflect all forms of non-implementation. The resulting ordered IT implementation scheme is as 

follows: 0 (no implementation), 1 (beginning to implement in at least one unit), 2 (fully 

implemented in at least one unit), and 3 (fully implemented across all units), with full 

implementation indicating that IT has completely replaced paper record functionally. We derived 

and validated the hypothesized three-factor structure—ECD, CPOE, and DS—using categorical 

factor analysis.   

Control Variables 

To account for other factors that may influence HIT impact on hospital performance, our 

analysis included four control variables: hospital bed size, profit status, teaching status, and 

hospital market competition. We obtained the first three variables from AHA survey datasets and 

measured market competition using the HHI. For a focal hospital, we operationalized market 

competition at the hospital referral region (HRR) level and aggregated hospitals into HRRs.  

3.4.3 Data Analysis and Results 

Establish Measurement Invariance over Time 

To ensure that the same HIT construct is measured using the same metric with the same 

precision at each wave, we test measurement invariance for HIT measures over time. We 

confirmed both configural invariance and factorial invariance of the three-factor structure. 

Consequently, we computed the resultant factors score for each hospital at each wave and used 

them as the HIT implementation variables in the subsequent joint longitudinal models.  

Modeling Growth Trajectories 
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To examine the mean trajectories of HIT and healthcare performance variables, we first plotted 

the variables’ trajectories over time (2008–2013) as Figure 3.4 shows. We found that both the 

trajectories of HIT and healthcare performance variables were not exactly linear. Consequently, 

we fit the HIT and healthcare performance variables into three types of growth models—a linear 

growth model, a quadratic growth model, and a cubic growth model—to identify the best 

functional form of change. Since all variable trajectories were clearly either increasing or 

decreasing over time, there was no need to test a no-growth model in this case.  

   

ECD CPOE DS 

   

Communication  IQI91 Cost 

Figure 3.4 Mean Trajectory of HIT and Healthcare Performance 

We used five fit indices to access model fit: (1) the chi-square goodness of fit test; (2) the 

root mean square error of approximation (RMSEA); (3) the comparative fit index (CFI); (4) 

Tucker-Lewis index (TLI), sometimes referred to as NNFI; and (5) the standardized root mean 

square residual (SRMR). Table 3.3 shows the linear growth model’s fit statistics and growth 
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factors. Tables 3.4 and 3.5 show the two nonlinear—quadratic and cubic—growth models, 

respectively. We also compared these three latent growth models using chi-square difference 

tests (see Table 3.6). As Table 3.6 shows, HIT measures have the best-fit statistics on the 

quadratic growth models, while the healthcare performance variables have the best-fit statistics 

on the cubic growth models. 

Table 3.3 Linear Growth Model 

  

Independent Variables (HIT 

Functions) 

Dependent Variables (Healthcare 

Performance) 

ECD CPOE DS Communication IQI91 Cost 

χ2 92.155 111.951 74.908 126.859 53.409 56.311 

DF 10 10 10 16 16 16 

RMSE

A 
0.1 0.111 0.089 0.093 0.057 0.056 

CFI 0.871 0.811 0.878 0.969 0.987 0.963 

TLI 0.871 0.881 0.878 0.97 0.988 0.965 

SRMR 0.089 0.095 0.073 0.047 0.022 0.156 

𝜂1 -0.364*** -0.375*** -0.361*** 0.868*** -0.64*** 9.639*** 

𝜂2 0.144*** 0.188*** 0.155*** 0.046*** -0.015*** 0.052*** 

*** p<0.001, ** p<0.01, * p<0.05 

 

Table 3.4 Quadratic Growth Model 

  

Independent Variables (HIT 

Functions) 

Dependent Variables (Healthcare 

Performance) 

ECD CPOE DS Communication IQI91 Cost 

χ2 8.544 11.082 4.156 69.596 22.33 75.766 

DF 6 6 6 12 12 12 

RMSE

A 
0.023 0.032 0 0.078 0.03 0.082 

CFI 0.997 0.992 1 0.99 0.999 0.989 

TLI 0.995 0.987 1.005 0.987 0.998 0.986 

SRMR 0.02 0.025 0.017 0.045 0.008 0.094 

𝜂1 -0.148*** -0.087***  -0.131*** 0.961*** -0.673***  9.738*** 

𝜂2 0.14*** 0.178***  0.149*** 0.047*** -0.016***  0.05*** 

𝜂3 0.04*** 0.05***  0.042*** -0.001 0.002 0.002**  

*** p<0.001, ** p<0.01, * p<0.05 
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Table 3.5 Cubic Growth Model 

  

Independent Variables (HIT 

Functions) 

Dependent Variables (Healthcare 

Performance) 

ECD CPOE DS Communication IQI91 Cost 

χ2 3.642 2.012 2.164 34.967 9.191 17.674 

DF 1 1 1 7 7 7 

RMSE

A 
0.057 0.035 0.038 0.071 0.021 0.044 

CFI 0.997 0.998 0.998 0.995 1 0.998 

TLI 0.97 0.985 0.982 0.99 0.999 0.996 

SRMR 0.011 0.009 0.01 0.033 0.004 0.081 

𝜂1 -0.152*** -0.089***  -0.13***  0.96***  -6.729***  9.736***  

𝜂2 0.117*** 0.147***  0.158***  0.048***  -0.169***  0.053***  

𝜂3 0.04*** 0.049***  0.042***  -0.001 0.016 0.003***  

𝜂4 0.008 0.009 -0.003 0 0.003 -0.001 

*** p<0.001, ** p<0.01, * p<0.05 

 

Table 3.6 Model Comparison of Change Form 

  

Independent Variables 

(HIT Functions) 

Dependent Variables (Healthcare 

Performance) 

ECD CPOE DS Communication IQI91 Cost 

Linear Growth Model vs Quadratic Growth Model 

Δχ2 83.611 100.869 70.752 57.263 31.079 19.455 

ΔDF 4 4 4 4 4 4 

p p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

Linear Growth Model vs Cubic Growth Model 

Δχ2 88.513 109.939 72.744 91.892 44.218 38.637 

ΔDF 9 9 9 9 9 9 

p p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

Quadratic Growth Model vs Cubic Growth Model 

Δχ2 4.902 9.07 1.992 34.629 13.139 58.092 

ΔDF 5 5 5 5 5 5 

p p<0.5 p<0.5 p<0.5 p<0.001 p<0.05 p<0.001 
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Modeling BDLDSM 

Next, to test the causal relationship between HIT and healthcare performance, we evaluated the 

following three models: 

Model 1: BDLDSM with no coupling effects 

Model 2: BDLDSM with a coupling effect from HIT to the change of healthcare performance 

(ΔPerformance)  

Model 3: BDLDSM with full coupling effects 

Because healthcare performance measures have the best fit in the cubic growth model 

and HITs have the best fit in the quadratic models, we fit the healthcare performance measures 

into BDLDSM with the first derivative cubic growth function and fit the HITs into BDLDSM 

with the first derivative quadratic growth function. Table 3.7 displays the chi-square model 

comparison among the three models. Models with no coupling effects best represented the 

dynamic association between IQI91 and the three HIT functions, as well as between cost and 

CPOE. This indicates that there is no dynamic association between IQI91 and HIT variables or 

between cost and CPOE when we incorporate their mean trajectory functional forms of change 

into the models. Models with the coupling effects from HIT to the ΔPerformance best 

represented the dynamic association between communication and CPOE, between cost and ECD, 

and between cost and DS. The full coupling models best represented the dynamic associations 

between communication and ECD and between communication and DS. We will now analyze 

the BDLDSM model with the best model fit.  
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Table 3.7 Model Comparison of BDLDSM (Nonlinear Change Function) 

    M1: No Coupling M2: IV to ΔDV M3: Full Coupling M1 vs M2 M1 vs M3 M2 vs M3 Best Model 

Communication and ECD 
χ2 132.445 112.999 106.505 

p<0.001 p<0.001 p=0.0108 M3: Full Coupling 
DF 77 76 75 

Communication and CPOE 
χ2 141.648 115.523 114.047 

p<0.001 p<0.001 p=0.2244 M2: IV to ΔDV 
DF 77 76 75 

Communication and DS 
χ2 133.79 104.476 98.962 

p<0.001 p<0.001 p=0.0189 M3: Full Coupling 
DF 77 76 75 

IQI91 and ECD 
χ2 107.706 107.7 104.865 

p=0.9383 p=0.2416 p=0.0922 M1: No Coupling 
DF 77 76 75 

IQI91 and CPOE 
χ2 121.735 121.086 120.768 

p=0.4205 p=0.6166 p=0.5728 M1: No Coupling 
DF 77 76 75 

IQI91 and DS 
χ2 105.447 105.374 104.444 

p=0.7870 p=0.6056 p=0.3349 M1: No Coupling 
DF 77 76 75 

Cost and ECD 
χ2 368.897 363.316 362.021 

p=0.0182 p=0.0321 p=0.2551 M2: IV to ΔDV 
DF 98 97 96 

Cost  and CPOE 
χ2 373.559 370.04 368.569 

p=0.0607 p=0.0825 p=0.2252 M1: No Coupling 
DF 98 97 96 

Cost and DS 
χ2 361.81 352.453 350.532 

p=0.0022 p=0.036 p=0.1657 M2: IV to ΔDV 
DF 98 97 96 
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Model Estimation and Result Interpretation 

The BDLDSM with the no-coupling effect models can be written as:    

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑏2𝑖 + 2𝑏3𝑖𝑡 + 3𝑏4𝑖 𝑡
2 + 𝛽ℎ𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖[𝑡−1] , 

∆𝐻𝐼𝑇𝑖𝑡 = 𝑎2𝑖 + 2𝑎3𝑖𝑡 + 𝛽𝐼𝑇𝐻𝐼𝑇𝑖[𝑡−1], 

where 𝑏2𝑖  and 𝑎2𝑖  represent the constant growth factor, 𝑏3𝑖  and 𝑎3𝑖  represent the linear growth 

factor, 𝑏4𝑖  represents the quadratic growth factor, and 𝛽 is the self-feedback coefficient, which 

captures proportional change—that is the effect of the same variable at the previous state of the 

change. Since no-coupling effect models cannot reveal the dynamic relationship between 

predictor and outcome variables, we will not estimate those models here.  

The BDLDSM with a coupling effect from HIT to the change of healthcare performance 

(ΔPerformance) can be written as:    

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑏2𝑖 + 2𝑏3𝑖𝑡 + 3𝑏4𝑖 𝑡
2 + 𝛽ℎ𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖[𝑡−1] + 𝛾ℎ𝐻𝐼𝑇𝑖[𝑡−1] , 

∆𝐻𝐼𝑇𝑖𝑡 = 𝑎2𝑖 + 2𝑎3𝑖𝑡 + 𝛽𝐼𝑇𝐻𝐼𝑇𝑖[𝑡−1], 

where 𝛾ℎ is the coupling coefficient, representing a coupling effect from HIT to the change of 

healthcare performance (ΔPerformance). Figure 3.8 shows the reported parameters and fit 

indices; as it shows, all the models have good overall fit, as demonstrated by the standard SEM 

fit indices. Model 1 in Table 3.8 presents the dynamic association between the communication 

score and the CPOE implementation. The change equations are  
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Table 3.8 Model Estimation of BDLDSM with coupling effect from HIT to Δ Performance 

(Nonlinear Change Function) 

  

Model 1 

Communication and CPOE 

Model 2 

Cost and ECD 

Model 3 

Cost and DS 

Goodness of Fit 

χ2 115.523 363.316 352.453 

DF 76 97 97 

RMSEA 0.026 0.059 0.058 

CFI 0.996 0.961 0.962 

TLI 0.988 0.934 0.935 

SRMR 0.016 0.051 0.051 

Latent Means   

 Estimate p-Value Estimate p-Value Estimate p-Value 

𝑏2𝑖  9.343 <0.001 1.152 0.032 1.187 0.026 

𝑏3𝑖  0.693 0.052 0.028 <0.001 0.031 <0.001 

𝑏4𝑖  0.091 0.186 -0.006 0.189 -0.005 0.318 

𝑎2𝑖  2.038 0.004 0.94 <0.001 0.931 <0.001 

𝑎3𝑖  0.234 0.408 0.419 <0.001 0.47 <0.001 

Dynamic Coefficients 

Proportion 𝛽ℎ -0.965 <0.001 -0.006 0.276 -0.006 0.24 

Proportion 𝛽𝐼𝑇 0.427 0.294 -0.050 0.054 -0.073 0.046 

Coupling 𝛾ℎ -0.519 0.187 -0.009 0.018 -0.013 0.002 

∆𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 9.343 + 1.386𝑡 + 0.273𝑡2−0.965𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖[𝑡−1] −

0.519𝐶𝑃𝑂𝐸𝑖[𝑡−1] , 

∆𝐶𝑃𝑂𝐸𝑖𝑡 = 2.038 + 0.468𝑡 + 0.427𝐶𝑃𝑂𝐸𝑖[𝑡−1]. 

The proportional change effect 𝛽ℎ for communication is significantly negative, indicating 

that there is a proportional effect on changes in communication based on prior communication 

scores. However, the proportional change effect 𝛽𝐼𝑇 for CPOE is insignificantly negative, 

indicating that there is no proportional effect for CPOE. The coupling effects of 𝛾ℎ are not 

significant, indicating that CPOE is not a significant leading indicator of subsequent changes in 

communication score. The constant growth factor (𝑏2𝑖 ) for communication is significant at the 
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p<0.001 level and the linear growth factor (𝑏3𝑖 ) for communication is significant at the p<0.1 

level, implying that there is both a constant and a linear growth change in the changes in 

communication score each year. The constant growth factor (𝑎2𝑖 ) for HIT is significant, 

indicating that there is also a constant growth change in the HIT changes each year. 

Model 2 in Table 3.8 shows the relationship between healthcare cost and ECD 

implementation. The change equations are  

∆𝐶𝑜𝑠𝑡 = 1.152 + 0.056𝑡 − 0.018𝑡2 − 0.006𝐶𝑜𝑠𝑡𝑖[𝑡−1] − 0.009𝐸𝐶𝐷𝑖[𝑡−1] , 

∆𝐸𝐶𝐷𝑖𝑡 = 0.94 + 0.838𝑡− 0.050𝐸𝐶𝐷𝑖[𝑡−1]. 

Model 3 in Table 3.8 shows the relationship between healthcare cost and DS 

implementation. The change equations are  

∆𝐶𝑜𝑠𝑡 = 1.187 + 0.062𝑡 − 0.015𝑡2− 0.006𝐶𝑜𝑠𝑡𝑖[𝑡−1] − 0.013𝐷𝑆𝑖[𝑡−1] , 

∆𝐷𝑆𝑖𝑡 = 0.931 + 0.94𝑡 − 0.073𝐷𝑆𝑖[𝑡−1]. 

The proportional change effect 𝛽ℎ for cost is insignificant in both models, indicating that 

changes in healthcare cost are not associated with healthcare cost in the previous year. In 

contrast, the proportional change effects 𝛽𝐼𝑇 for ECD and DS are weakly significant with Model 

2 (at the 0.1 level) and significant in Model 3 (at the 0.5 level), implying that there is a 

proportional effect on changes in ECD or DS based on prior ECD or DS implementation levels. 

The coupling effects of 𝛾ℎ are negatively significant in both models, indicating that both ECD 

and DS are leading indicators for the subsequent change of cost. That is, hospitals that have 

higher ECD or DS implementation levels show greater decreases in healthcare cost. Both the 

constant growth factor (𝑏2𝑖 ) and the linear growth factor (𝑏3𝑖 ) for cost are significant, implying 
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both a constant and a linear change of growth on the changes in healthcare cost each year. 

Similarly, both the constant growth factor (𝑎2𝑖 ) and the linear growth factor (𝑎3𝑖 ) for ECD and 

DS are significant, indicating both a constant change of growth and a linear change of growth on 

ECD and DS implementation levels each year. 

The BDLDSM with full coupling, a coupling effect from HIT to ΔPerformance, and a 

coupling effect from Performance to ΔHIT can be written as    

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑏2𝑖 + 2𝑏3𝑖𝑡 + 3𝑏4𝑖 𝑡
2 + 𝛽ℎ𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖[𝑡−1] + 𝛾ℎ𝐻𝐼𝑇𝑖[𝑡−1], 

∆𝐻𝐼𝑇𝑖𝑡 = 𝑎2𝑖 + 2𝑎3𝑖𝑡 + 𝛽𝐼𝑇𝐻𝐼𝑇𝑖[𝑡−1] + 𝛾𝐼𝑇𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖[𝑡−1], 

where 𝛾𝐼𝑇 is the coupling coefficient, representing the coupling effect from healthcare 

performance to the change of HIT implementation (ΔHIT). Table 3.9 shows the parameters and 

fit indices. Model 1 presents the relationship between the communication score and the ECD 

implementation. The change equations are  

∆𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 12.139 + 0.934𝑡 + 0.111𝑡2 − 1.248𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖[𝑡−1] −

0.251𝐸𝐶𝐷𝑖[𝑡−1], 

∆𝐸𝐶𝐷𝑖𝑡 = −15.837 − 0.948𝑡 + 0.841𝐸𝐶𝐷𝑖[𝑡−1] + 2.025𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖[𝑡−1]. 

Model 2 presents the relationship between the communication score and DS 

implementation. The change equations are  

∆𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 12.583 + 1.146𝑡 + 0.156𝑡2− 1.303𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖[𝑡−1] −

0.362𝐷𝑆𝑖[𝑡−1], 

∆𝐷𝑆𝑖𝑡 = −13.26 − 0.75𝑡 + 0.733𝐷𝑆𝑖[𝑡−1] + 1.721𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖[𝑡−1]. 
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Table 3.9 Model Estimation of BDLDSM with Full Coupling Effect (Nonlinear Change 

Function) 

  

Model 1 

Communication and ECD 

Model 2 

Communication and DS 

Goodness of Fit 

χ2 106.505 98.962 

DF 75 75 

RMSEA 0.023 0.02 

CFI 0.996 0.997 

TLI 0.99 0.992 

SRMR 0.015 0.016 

Latent Means   

 Estimate p-Value Estimate p-Value 

𝑏2𝑖  12.139 <0.001 12.583 <0.001 

𝑏3𝑖  0.467 <0.001 0.573 <0.001 

𝑏4𝑖  0.037 0.007 0.052 0.023 

𝑎2𝑖  -15.837 0.05 -13.26 0.154 

𝑎3𝑖  -0.474 0.257 -0.375 0.449 

Dynamic Coefficients 

Proportion 𝛽ℎ -1.248 <0.001 -1.303 <0.001 

Coupling 𝛾ℎ -0.251 0.006 -0.362 0.019 

Proportion 𝛽𝐼𝑇 0.841 0.09 0.733 0.131 

Coupling 𝛾𝐼𝑇 2.025 0.03 1.721 0.112 

First, the standard SEM fit indices show that both models have excellent overall fit. The 

proportional change effect 𝛽ℎ for the communication score is significantly negative in both 

models, indicating a proportional effect on changes in communication score based on prior 

communication scores. The proportional change effects 𝛽𝐼𝑇 for ECD is weakly significant at the 

p<0.1 level; for DS it is insignificant, implying a weak proportional effect on changes in ECD 

based on prior ECD implementation levels, but there is no proportional effect on changes in DS. 

The coupling effects of 𝛾ℎ are negatively significant in both models, indicating that an increased 

implementation level of both ECD and DS are leading indicators for the subsequent decreased 

communication score. The coupling effects of 𝛾𝐼𝑇 are significant in Model 1, implying that an 

increased communication score leads to a higher subsequent ECD implementation level. This 
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results in a feedback loop between ECD and communication score. Yet, the coupling effects of 

𝛾𝐼𝑇 are insignificant in Model 2, indicating that the communication score is not a leading 

indicator for the subsequent changes in DS implementation. For the growth scores in 

communication, the constant growth factor (𝑏2𝑖 ), the linear growth factor (𝑏3𝑖 ), and the 

quadratic growth factor (𝑏4𝑖 ) are all significant in both models, implying a quadratic change of 

growth in communication score each year. The constant growth factor (𝑎2𝑖 ) for ECD in Model 1 

is significant, indicating a constant change of growth for ECD implementation over time. 

In sum, we identified the dynamic relationship between different HIT function 

implementation levels and healthcare performance measures using BDLDSM. Our findings are 

as follows. First, we find that the mean trajectories of HIT implementation levels and healthcare 

performance grow in a polynomial manner. While HIT implementation levels grow in a 

quadratic manner over time, healthcare performance grows in a cubic manner over time. Next, 

we use BDLDSM to examine how the quadratic change in HIT implementation levels impact the 

cubic change in healthcare quality and cost. We discover that there is no causal relationship 

between IQI 91 and the three HIT functions, between cost and CPOE, or between 

communication score and CPOE. We also find that an increased DS implementation level is 

predicted to decrease both healthcare cost and communication score over time, while an 

increased ECD implementation level is predicted to reduce healthcare cost over time. Finally, we 

identified one feedback loop between communication score and ECD implementation, where an 

increased ECD implementation level is a leading indicator for a decrease in the subsequent 

communication score; however, increased communication score is a leading indicator for an 

increase in the subsequent ECD implementation level. 
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3.5 Model Comparison  

3.5.1 Comparing Nonlinear BDLDSM with Linear BDLDSM 

To draw attention to the importance of selecting the mean trajectory functional form of change, 

we test the BDLDSM with a linear functional form of change for both the healthcare 

performance and HIT implementation variables. We then compare the result with the BDLDSM 

models with the best-fit trajectory functional form of change. 

The BDLDSM with a linear change function for both the healthcare performance and 

HIT are 

∆𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖𝑡 = μpi + 𝛽ℎ𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖[𝑡−1] + 𝛾ℎ𝐻𝐼𝑇𝑖[𝑡−1] , 

∆𝐻𝐼𝑇𝑖𝑡 = μITi + 𝛽𝐼𝑇𝐻𝐼𝑇𝑖[𝑡−1] + 𝛾𝐼𝑇𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖[𝑡−1], 

where μ𝑝𝑖 and μITi represent the loadings associated with the constant growth factors; 𝛽ℎ and 𝛽𝐼𝑇 

are proportional change scores that capture the effect of the same variable at the previous state of 

the change; and 𝛾ℎ and 𝛾𝐼𝑇 are the coupling change scores, representing the effect of the other 

variable at the previous state of the change. 

First, we test and compare the dynamic association between HIT and healthcare 

performance with no coupling effect, with the coupling effect from HIT to ΔPerformance, and 

with the full coupling effects. Table 3.10 shows the result. Next, we select the best-fit BDLDSM 

with linear change forms. We then compare the best-fit BDLDSM with linear change forms with 

the best-fit BDLDSM incorporating the nonlinear functional form of change; as Table 3.11 

shows, BDLDSMs with nonlinear functional form of change have a better model fit than 

BDLDSMs with linear functional form of change. Although we know BDLDSMs with the 

nonlinear functional form of change best represent the dynamic association between HIT 
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implementation and healthcare performance, we still present the result of BDLDSM with linear 

change forms in Tables 3.12 and 3.13 to demonstrate the importance of functional form 

selection. Table 3.12 shows the model estimation of BDLDSM with the coupling effect from 

HIT to ΔPerformance, while Table 3.13 shows the model estimation of BDLDSM with full 

coupling effects.  

Table 3.10 Model Comparison of BDLDSM (Linear Change Function) 

    M1: No 

Coupling 

M2: IV to 

ΔDV 

M3: Full 

Coupling 

M1 vs 

M2 

M1 vs 

M3 

M2 vs 

M3 

Best 

Model 

Communication 

and ECD 

χ2 604.126 547.016 543.43 p<0.00

1 

p<0.00

1 

p=0.05

83 
M2 

DF 133 132 131 

Communication 

and CPOE 

χ2 590.955 550.898 546.405 p<0.00

1 

p<0.00

1 

p=0.03

40 
M3 

DF 133 132 131 

Communication 

and DS 

χ2 568.671 506.982 500.878 p<0.00

1 

p<0.00

1 

p=0.01

35 
M3 

DF 133 132 131 

IQI91 and ECD 
χ2 411.094 398.556 348.769 p<0.00

1 

p<0.00

1 

p<0.00

1 
M3 

DF 133 132 131 

IQI91 and CPOE 
χ2 398.572 398.305 394.348 p=0.60

54 

p=0.12

10 

p=0.04

67 
M1 

DF 133 132 131 

IQI91 and DS 
χ2 356.322 349.508 348.769 p=0.00

90 

p=0.03

31 

p=0.39

00 
M2 

DF 133 132 131 

Cost and ECD 
χ2 516.323 507.809 505.981 p=0.00

35 

p=0.01

42 

p=0.17

64 
M2 

DF 133 132 131 

Cost and CPOE 
χ2 500.932 496.345 491.342 p=0.03

22 

p=0.00

83 

p=0.02

53 
M3 

DF 133 132 131 

Cost and DS 
χ2 488.285 476.115 470.49 p<0.00

1 

p<0.00

1 

p=0.01

77 
M3 

DF 133 132 131 
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Table 3.11 Model Comparison between Nonlinear and Linear BDLDSM 

 
 BDLDSM with 

Nonlinear Change 

Trajectory 

BDLDSM with 

Linear Change 

Trajectory 

Nonlinear vs 

Linear 

BDLDSM 

Better Model 

Communication 

and ECD 

χ2 106.505 547.016 
p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
75 132 

Communication 

and CPOE 

χ2 115.523 546.405 
p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
76 131 

Communication 

and DS 

χ2 98.962 500.878 
p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
75 131 

IQI91 and ECD 
χ2 107.706 348.769 

p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
77 131 

IQI91 and 

CPOE 

χ2 121.735 398.572 
p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
77 133 

IQI91 and DS 
χ2 105.447 349.508 

p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
77 132 

Cost and ECD 
χ2 363.316 507.809 

p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
97 132 

Cost and CPOE 
χ2 373.559 491.342 

p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
98 131 

Cost and DS 
χ2 352.453 470.49 

p<0.001 

BDLDSM with 

Nonlinear Change 

Trajectory DF 
97 131 
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Table 3.12 Model Estimation of BDLDSM with Coupling Effect from HIT to 

ΔPerformance (Linear Change Function) 

  

Model 1 

Communication and ECD 

Model 2 

IQI91 and DS 

Model 3 

Cost and ECD 

Goodness of Fit 

χ2 547.016 349.508 507.809 

DF 132 132 132 

RMSEA 0.063 0.046 0.06 

CFI 0.942 0.976 0.945 

TLI 0.928 0.997 0.932 

SRMR 0.04 0.149 0.079 

Latent Means   

  Estimate P-Value Estimate P-Value Estimate P-Value 

μpi 1.473 <0.001 -0.36 <0.001 0.474 0.32 

μITi 1.024 <0.001 1.172 <0.001 1.012 <0.001 

Dynamic Coefficients 

Proportion 𝛽ℎ -0.102 <0.001 -0.032 <0.001 0 0.933 

Proportion 𝛽𝐼𝑇 0.026 <0.001 -0.012 0.009 -0.011 0.004 

Coupling 𝛾ℎ -0.049 <0.001 -0.008 0.775 -0.037 0.053 
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Table 3.13 Model Estimation of BDLDSM with Full Coupling Effect (Linear Change 

Function) 

 
Model 1 

Communication and 

CPOE 

Model 2 

Communication 

and DS 

Model 3 

IQI91 and ECD 

Model 4 

Cost and CPOE 

Model 5 

Cost and DS 

Goodness of Fit 

χ2 546.405 500.878 394.989 491.342 470.49 

DF 131 131 131 131 131 

RMSEA 0.063 0.06 0.051 0.059 0.057 

CFI 0.941 0.947 0.971 0.946 0.949 

TLI 0.925 0.933 0.964 0.932 0.936 

SRMR 0.037 0.035 0.15 0.08 0.149 

Latent Means   

 Estimate P-Value Estimate P-Value Estimate P-Value Estimate P-Value Estimate P-Value 

μpi 1.427 <0.001 1.44 <0.001 -0.37 <0.001 0.376 0.156 -0.358 <0.001 

μITi 2.02 <0.001 1.89 <0.001 0.784 <0.001 -3.456 <0.001 1.058 <0.001 

Dynamic Coefficients 

Proportion 

𝛽ℎ -0.098 <0.001 -0.098 <0.001 -0.033 <0.001 0.001 0.594 -0.032 <0.001 

Coupling 

𝛾ℎ 0.023 <0.001 0.032 <0.001 -0.013 0.002 -0.01 0.008 -0.011 0.02 

Proportion 

𝛽𝐼𝑇  -0.055 0.034 -0.042 0.14 -0.032 0.088 -0.138 <0.001 -0.005 0.864 

Coupling 

𝛾𝐼𝑇 -0.076 0.04 -0.082 0.017 -0.039 0.046 0.047 <0.001 -0.02 0.383 

After comparing the result from BDLDSM with nonlinear change forms and BDLDSM 

with linear change forms, we can infer the importance of selecting the mean trajectory functional 

form of change. This is because selecting inaccurate change trajectory functions may lead to the 

erroneous representation of the dynamic associations between HIT implementation and 

healthcare performance. For example, Model 1 in Table 3.13 shows that 𝛾ℎ is positively 

significant, meaning that an increased CPOE implementation level will lead to the subsequent 

enhanced communication score. However, Model 1 in Table 3.8 shows that 𝛾ℎ is insignificant, 

indicating CPOE is not a leading predictor of communication score. Selecting inaccurate change 

trajectory functions may also lead to different statistical significant levels. For example, Model 3 

in Table 3.12 shows that the coupling effect (𝛾ℎ) between cost and the ECD implementation 
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level is negatively significant at the p<0.1 level; Model 2 in Table 3.8 shows that the coupling 

effect (𝛾ℎ) between cost and ECD implementation level is negatively significant at the p<0.5 

level. In sum, researchers must choose the best-fit change trajectory functions before 

implementing BDLDSM to ensure accurate representation of the dynamic associations between 

predictor and outcome variables. 

3.5.2 Comparing BDLDSM with LGM 

We now compare our BDLDSM with bivariate LGM to demonstrate the value of our proposed 

research model. Because HIT measures have the best-fit statistics on quadratic growth models, 

and healthcare performance variables have the best-fit statistics on cubic growth models, we 

implement LGM with the quadratic functional form of change for HIT measures and the cubic 

functional form of change for healthcare performance measures. We then compare the model fit 

between LGM and BDLDSM. As Table 3.14 indicates, BDLDSMs have a better model fit than 

bivariate LGMs. Besides, as we mentioned earlier, while LGM can incorporate trajectory change 

forms, it cannot capture the dynamic lead-lag associations between predictor and outcome 

variables. For example, LGM cannot be used to examine whether the changes in the 

implementation level of ECD and DS precede the changes in healthcare cost, and consequently 

cannot be used to conclude that a slower growth of ECD and DS is predicted to have a faster 

decrease in the subsequent change in healthcare cost. Further, LGM fails to identify different 

dynamic effects from the overall mean trajectory change components, the within-variable 

proportional changes, and the cross-variable coupling effects. For example, as Model 2 in Table 

3.9 shows, when using BDLDSM, we find that changes in the communication score come from 

overall mean trajectory change, prior communication scores, and the DS implementation level in 

the previous year. With LGM, however, we cannot identify such a result. Further, we cannot use 
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LGM to examine the reciprocal relationship between two variables. For example, employing 

BDLDSM, we find a feedback loop between ECD and the communication score (Model 1, Table 

3.9), but this result cannot be found using LGM. In sum, BDLDSM is a better choice than LGM 

for researchers seeking to better understand the dynamic association between the predictor and 

outcome variables and to better unveil the predictors’ dynamic effects. 

Table 3.14 Model Comparison between LGM and BDLDSM 

   BDLDSM LGM LGM vs BDLDSM Better Model 

Communication and ECD 
χ2 106.505 261.863 

p<0.001 BDLDSM 
DF 75 87 

Communication and CPOE 
χ2 115.523 274.904 

p<0.001 BDLDSM 
DF 76 87 

Communication and DS 
χ2 98.962 214.204 

p<0.001 BDLDSM 
DF 75 87 

IQI91 and ECD 
χ2 107.706 223.742 

p<0.001 BDLDSM 
DF 77 87 

IQI91 and CPOE 
χ2 121.735 228.054 

p<0.001 BDLDSM 
DF 77 87 

IQI91 and DS 
χ2 105.447 181.379 

p<0.001 BDLDSM 
DF 77 87 

Cost and ECD 
χ2 363.316 246.11 

p<0.001 BDLDSM 
DF 97 87 

Cost and CPOE 
χ2 373.559 237.742 

p<0.001 BDLDSM 
DF 98 87 

Cost and DS 
χ2 352.453 213.798 

p<0.001 BDLDSM 
DF 97 87 

3.6 Discussion  

3.6.1 Key Contribution 

This study makes two major contributions to the IS field. First, it methodically extends current 

LGM understanding and introduces a sophisticated data analysis model, BDLDSM, to examine 

trajectory changes and analyze the dynamic lead-lag association between the predictor and 

outcome variables in a longitudinal data setting. We offer guidelines to test the dynamic lead-lag 
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relationship between dependent and independent variables, while also considering the functional 

forms of change. Further, our study presents the first description of how to incorporate nonlinear 

change form in a BDLDSM in the IS field. For example, using BDLDSM, we identified that 

healthcare performance changes faster than HIT implementation levels over time. Incorporating 

such nonlinear trajectory changes in both healthcare performance and HIT implementation level 

variables, we examined the lead-lag relationship between HIT and healthcare performance. This 

analysis technique lets IS researchers modify the change equations of the predictor and outcome 

variables in different functional forms of change to represent the theory of change.  

Our work also provides the first demonstration in the IS literature of quantitatively 

studying the reciprocal relationship between variables over time. Neither traditional panel data 

models nor LGM can examine this reciprocal relationship or the feedback loop between 

variables while incorporating time-dependent changes. Using a process or system perspective, 

BDLDSM can potentially be extended as an analysis tool for studying the time ordering of 

events in the process model or for examining the reciprocal relationships or interactions among 

events in the system model. As such, our proposed BDLDSM should shed light on how to 

empirically examine theories related to time-dependent changes and reciprocal relationships.  

Second, from the HIT value perspective, we extend the current literature that studies HIT 

impact on healthcare performance to include a dynamic and nonlinear perspective. We find that 

all HIT implementation levels increase in a quadratic way over time, and healthcare performance 

measures grow with cubic trajectories over time. This suggests the need for researchers to 

examine the relationship between HIT impact on healthcare performance using a model that 

incorporates nonlinear functional forms of change for both the HIT and healthcare performance 

variables. Further, we tested dynamic lead-lag relationships between three HIT functions and 
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healthcare performance using BDLDSM and obtained a more comprehensive understanding of 

how different types of HIT functions impact changes in healthcare quality and cost. Given that 

prior research has conflicting findings on HIT impact on healthcare quality and cost, our research 

provides further empirical tests of HIT value when considering the trajectory change of both HIT 

and healthcare performance variables. We identified that the implementation level of ECD and 

DS could be used to predict subsequent changes in healthcare cost and experiential quality. 

However, we did not find a dynamic lead-lag relationship between healthcare technologies and 

clinical quality. One potential explanation is that experiential quality is an intermediate 

performance measure, while clinical quality that measures mortality rate is an end performance 

measure (Sharma et al. 2016). HIT may impact the end performance measure through 

intermediate performance measures, such as experiential quality. Also, factors other than HIT 

may influence end performance measure. Another plausible explanation for this result is that one 

HIT function may not impact clinical quality in isolation; we may need to test combinations of 

HIT functions and how their complementarity effects impact clinical quality. A third possibility 

is that a learning curve may exist between the HIT implementation and clinical quality 

improvement. If we have data over a longer time period, we may observe the HIT effects on 

clinical quality. 

Taken together, our findings offer a comprehensive view of the longitudinal relationship 

between HIT functions and various healthcare performance measures. Our analysis technique 

can also be extended to explore other longitudinal dynamic relationships in the IS field.  

3.6.2 Limitations and Suggestions for Future Research 

BDLDSM has its limitations. First, its complexity may lead to difficulties in interpreting results. 

Researchers must not only explain the form of change for both predictor and outcome variables, 
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but also interpret the various BDLDSM parameters. Also, given the model’s complexity, it is 

difficult to use graphs to illustrate BDLDSM. Consequently, we suggest that researchers use this 

model only if they want to probe the dynamic interplay between variables over time. Second, the 

causal lag examined in the BDLDSM may be limited by the data sample (Sbarra and Allen 

2009). For example, we used one-year spacing between measurements, but it is likely that the 

causal lag between HIT and healthcare performance may be shorter than that. If the true causal 

lag has a lower measurement resolution, however, it will lead to inflation of the parameter 

estimation (Sbarra and Allen 2009). Consequently, researchers should take the causal lag into 

consideration when using BDLDSM. Future research may collect data using a higher resolution 

of the measurement. This could help researchers test the causal lag with different time spacing 

between measurements and identify a causal lag that is closest to the true causal lag.  

Moving forward, future research can extend BDLDSM application in multiple-group 

settings to explore group differences in the dynamic relationship. Future research can also 

explore how to test the moderating effect in the dynamic relationship using BDLDSM. For 

example, in the healthcare setting, we can examine the moderating effect of patient safety culture 

in the dynamic relationship between HIT and healthcare performance by separating the sample 

into two groups: one with a relatively high patient safety culture score, and the other with a 

relatively low patient safety culture score.  
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CHAPTER 4 A MULTI-STATE MARKOV MODEL FOR PATIENT HEALTH STATUS 

PREDICTION 

Abstract 

This chapter focuses on an important research gap in the predictive health analytics literature in 

the IS field—that is, that the majority of predictive health analytics research can predict the 

transition only from an initial state to a single endpoint. This is called a single-event prediction. 

However, it is rare that only one event would occur in the course of hospitalization. Here, we 

propose multi-state models that examine multiple events to advance predictive health analytics 

research in the IS field. Specifically, we aim to examine various types of observable transitions 

(chronic to acute, acute to chronic, chronic to death, and acute to death) and underlying, 

unobservable transitions (minor to major disease and major disease to death) that occur as 

diseases progress over time, and how different HIT applications, hospital characteristics, and 

patient profile impact these transitions. With a rich longitudinal dataset, we apply a multi-state 

Markov model to examine the observable transitions and a multi-state hidden Markov model to 

study the underlying, unobservable transitions. We find that HIT’s implementation level, hospital 

characteristics, and patient profile are significantly associated with the transition risk among 

various states. These proposed multi-state models advance current predictive health analytics 

research in the IS field for examining multiple events as a disease progresses over time. 

Additionally, studying HIT’s value at a granular level provides both scholars and practitioners a 

more complete picture of HIT’s impact.  

Keywords: Predictive Healthcare Analytics, Health Information Technology (HIT), Business 

Value of IT, Longitudinal Research, Multi-State Model 
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4.1 Introduction  

The widespread diffusion of HIT applications within U.S. hospitals has given researchers access 

to more patient-level clinical and administrative data. This increased availability of such fine-

grained data has triggered an emerging stream of predictive health analytics research. Using 

models that predictive health analytics researchers have developed, we can better profile and 

identify patients with high risk and reduce the failures and delays in preventive interventions 

(Lin et al. 2017). The majority of predictive health analytics research predicts the transition from 

an initial state, such as the start of a treatment, to a single endpoint, such as readmission or death 

(Amarasingham et al. 2010; Bardhan et al. 2015). This transition from one state to another state 

is defined as an event (Andersen and Keiding 2002). However, it is rare that only one event 

would occur as a disease unfolds (Lin et al. 2017); rather, as a disease progresses over time, it is 

more likely that multiple events would occur. For example, patients with coronary artery disease 

may experience myocardial infarction, ischemic stroke, and/or hemorrhagic stroke, which may 

result in either a fatal cardiovascular disease or a fatal non-cardiovascular disease (Asaria et al. 

2016). Given this, the transitions between these five states—myocardial infarction, ischemic 

stroke, hemorrhagic stroke, fatal cardiovascular disease, and fatal non-cardiovascular disease—

need to be examined. In a more general case, patients may experience a series of more severe 

disease stages before entering the final stage, death. Researchers are interested in studying the 

types of events and when they occur, as well as each event’s history. In the transition process, 

patients may either enter the adjacent disease stages or enter the death stage directly from any 

disease stage (Jackson 2011). If we analyze each event separately, we can neither capture the 

relations among different types of events nor uncover the dynamic of how patients transition 

among different events (Jackson 2011; Putter et al. 2006). In this chapter, we propose a 
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predictive model that examines multiple events to advance predictive health analytics research in 

the IS field.  

Our first research objective is to use HIT implementation levels, hospital characteristics, 

and patient profiles to predict the likelihood of a future transition from a minor to a more severe 

state and, finally, to death. Additionally, in our predictive model, we plan to explicitly account 

for the transition between chronic and acute states as a disease progresses over time. We focus 

on this because both literature and statistical evidence suggest that the transition between chronic 

and acute states is a good indicator of the underlying patient health status (Bernstein et al. 2017; 

Greenberg 2012; Zile et al. 2008) and yet, surprisingly, no research that we know of has yet 

explored how to use this transition at outcome variables in predictive modeling. To address this, 

we suggest using a multi-state hidden Markov model, which lets us use available data to uncover 

a patient’s unobserved and hidden health status and thus determine the patient’s true state of 

health.  

Our second research objective is to study the impact of various HIT functions on the 

patient-transition-level intermediate performance. Patient-transition level refers to the case in 

which the unit of analysis is at both the patient level and the transition level, while the unit of 

observation is only at the transition level. HIT can provide value to clinical processes by 

improving the workflow of the core processes, such as by enhancing communication between 

healthcare providers and customers and reducing patients’ transition between health states during 

hospitalization. We refer to such impacts as intermediate performance measures—that is, 

measures of the intermediate stages in a clinical process—to differentiate them both from 

traditional end performance measures, such as mortality rate and healthcare cost, and from 

operational measures, such as capital resource utilization and clinician and administrative 
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efficiency (Brandyberry et al. 1999). Prior HIT value studies have typically examined HIT’s 

impact on hospital-level end performance outcomes, which cannot capture HIT’s impact on 

lower-level, intermediate performance outcomes. The clinical workflow enhancement that 

technologies facilitate (Amarasingham et al. 2009; Bardhan and Thouin 2013) and the new types 

of errors they introduce (Coiera et al. 2016; Kannampallil et al. 2017; Weiner et al. 2007) would 

likely impact this intermediate performance. Thus, it is vital to empirically study HIT’s impact 

on lower-level outcomes and gain a clearer and deeper understanding of HIT’s positive or 

negative effects and how these effects impact intermediate healthcare performance. This crucial 

area is our focus here, as we explore HIT’s impact on the intermediate performance outcomes—

that is, on the patient’s transition between chronic and acute conditions, and the transition 

between minor and more severe health statuses. 

Our contributions are twofold. First, our study contributes to predictive health analytics 

by proposing a predictive model that detects when a disease progresses from a minor to a more 

severe state; healthcare providers can use this information to intervene early with appropriate 

treatments and to slow the worsening cycle of a disease. Our model advances current predictive 

health analytics research in the IS field by incorporating the dynamic transitions between chronic 

and acute diseases in predicting patient health status and by introducing a multi-state Markov 

model to examine multiple events in the disease progression process. 

Second, our study contributes to the HIT business value literature by examining HIT’s 

value at the patient-transition level. We find empirical evidence that the majority of HIT 

functions improve patient-transition-level outcomes, and only one HIT function harms health 

outcomes. The assessment of how different HIT functions impact different types of transitions 
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can help healthcare providers effectively allocate investment across various IT resources to 

achieve enhanced health outcomes.  

In this chapter, we first review related literature in three areas: predictive analytics on 

disease progression; multi-state Markov models and multi-state hidden Markov models; and 

HIT’s value for patient-transition-level performance. We then describe our data and how we 

measured it, followed by a discussion of our model development and our results. Next, we 

discuss our study’s contribution to predictive health analytics and the HIT value literature, as 

well as to healthcare providers and policymakers. In the final section, we present the study’s 

limitations and future research.  

4.2 Literature Review 

4.2.1 Predictive Analytics on Disease Progression 

Characterized by predictive—rather than explanatory—power, predictive health analytics studies 

use clinical and/or nonclinical data to predict the likelihood of future events or outcomes (Lin et 

al. 2017) such as risk of readmission (Amarasingham et al. 2010; Bardhan et al. 2015), death 

(Amarasingham et al. 2010), and adverse health events (Lin et al. 2017). Models developed by 

predictive health analytics researchers can better profile and identify patients with a high risk of 

readmission or death, as well as reduce failures and delays in preventive interventions. 

As Lin et al. (2017) point out, predictive health analytics models can be developed in two 

ways. One approach, commonly used in the medical field (and discussed below in section 4.2.2), 

is to develop the model based on intentionally collected data in clinical trials. The other 

approach, commonly used in the IS field, is to develop the model based on existing and routinely 

collected data. We identified three gaps in extant predictive health analytics research based on 

existing data in the IS field. First, the extant predictive health analytics research typically 
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examines a two-state model that predicts only the transition from an initial state to a single 

endpoint. As Figure 4.1 shows, a typical two-state model research effort aims to study the 

probabilities of being in either an initial state—e.g., alive—or at a single endpoint, e.g., dead. For 

example, Tabak et al. (2013) developed a predictive model to predict mortality based on 

laboratory test results, patient characteristics, and hospital characteristics. Bardhan et al. (2015) 

used a beta geometric Erlang-2 hurdle model to predict the propensity, frequency, and timing of 

the readmission rate for patients with congestive heart failure. However, it is rare that only one 

transition or event would happen in the course of a disease (Lin et al. 2017). As a disease 

progresses, several events or endpoints occur at different time points. For example, as Figure 4.2 

shows, a typical illness–death model has three states: disease-free (state 1), diseased (state 2), 

and dead (state 3) (Andersen and Keiding 2002). A patient may move from state 1 to state 2 

before entering state 3, or move from state 1 to state 2 and back to state 1, and so on. If we only 

analyze each event separately, we cannot capture transition rates among different types of states 

and cannot examine which variables impact those transition rates (Jackson 2011; Putter et al. 

2006).  

 

Figure 4.1 The Two-State Model 

 

Figure 4.2 The Illness-Death Model 
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In the IS field, few predictive health analytics research studies have examined more than 

one event and considered the relationships among multiple events, and no extant research has 

examined the development of different patient states over time. A recently published study by 

Lin et al. (2017), for example, examined three adverse health events. The authors constructed an 

array of independent models, with each examining a specific adverse event. To account for the 

fact that events may correlate with each other, they created a unified framework to coordinate the 

models. However, their approach cannot examine the transition rate between different events, 

and cannot predict any subsequent event—such as death—after these three adverse events. Our 

proposed models differ from prior work is that they can be used to answer broader research 

questions related to disease evolution, including the following: 

• What is a patient’s risk for a certain health event at a certain time point given his or her 

health history? 

• What is the transition rate from chronic condition to acute condition as diseases progress 

over time?  

• How do time-constant or time-varying variables impact the transition rates? 

Second, predictive health analytics researchers usually consider the chronic status of a 

discharge as a covariate in the model, but not as dynamic transitions over time. That is, they 

ignore the dynamic transitions between the chronic and the acute states. We find that both 

literature and statistical evidence suggest that the transition between chronic and acute conditions 

would be a good indicator of the underlying patient health status. They also suggest that patients 

that transition between chronic and acute conditions may experience deteriorate health 

conditions. And yet, surprisingly, no extant study explores how to use such transition 

information in predictive modeling. Further, the transition between chronic and acute conditions 
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can happen in the same body system or a different body system. These body systems include the 

digestive, circulatory, respiratory, nervous, and muscular systems, etc.; each system is an 

organized group of tissue that performs a particular function (Lysis 2018).  

Literature shows that it is possible for chronic and acute conditions to transition between 

each other in the same body system as a disease progresses over time. For example, low back 

pain is a highly prevalent and costly health condition that 70–85% of adults experience at some 

point in their lives (Bernstein et al. 2017). Among the individuals who suffer from low back 

pain, 5% will develop subacute back pain, which will further develop into chronic low back pain 

(Bernstein et al. 2017) leading to limited functional capacity, work absenteeism, altered emotion, 

and high healthcare expenditure (Kamper et al. 2015). As another example, heart failure is the 

most common primary diagnosis for hospital admissions for patients over 65 in the United 

States; heart failure has a high readmission rate and a direct treatment cost of more than $34 

billion per year (Desai and Stevenson 2012; Greenberg 2012). Chronic heart failure is a long-

term condition that can be stabilized by treatment, but patients can experience acute 

decompensated heart failure, which is a symptom that signals a sudden worsening of the 

condition (Greenberg 2012; Lepage 2008; Zile et al. 2008). Hospitalization for acute heart failure 

predicts an increased risk of subsequent mortality, as well as hospitalizations for chronic heart 

failure (Joseph et al. 2009).  

Literature also shows that it is likely for patients to transition between chronic and acute 

conditions among different body systems over time. For example, a patient with a chronic mental 

disorder may develop a nutritional disorder, which is an acute disease; in turn, the resulting 

nutritional deficiencies may lead to a worsening of the patient’s mental illnesses (Rao et al. 

2008). As another example, patients who experience acute heart attacks, which belong to 
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circulatory system, may further develop acquired brain injuries—a chronic disease of the 

nervous system and sense organ that occurs if blood flow decreases to the brain during heart 

attacks (Sims 2018).  

As we discuss later, statistics from our dataset also confirm that the transition between 

chronic and acute conditions is a common activity during hospitalization and reflects a patient’s 

health status. Capturing this transition between chronic and acute states of a disease is important; 

a major difference between our study and the extant literature is that we specifically account for 

this transition in predictive modeling.  

Third, current predictive studies focus primarily on specific chronic diseases and ignore 

the acute patients. For example, Lin et al. (2017) and Meyer et al. (2014) studied diabetes 

patients because of the disease’s large patient population, high medical costs, and broad societal 

impact. Bardhan et al. (2015) studied patients with congestive heart failure—a chronic condition 

that can last for years. However, patients are almost equally likely to be admitted to a hospital 

with either an acute or a chronic condition as their primary diagnosis. Podulka et al. (2008) 

analyzed patients admitted to hospitals in 15 U.S. states in 2008 and found that 4,553,900 (52%) 

of discharges had a chronic condition as their primary diagnosis and 4,169,800 (48%) of 

discharges had an acute condition as their primary diagnosis. In addition, as we mentioned 

above, it is very likely that chronic patients will develop acute conditions and becomes acute 

patients. Therefore, instead of being limited to one or more particular types of chronic disease, 

we find that both chronic and acute patients are certainly worthy of investigation. Thus, our 

study covers both chronic and acute patients and the transitions between these two states.  

In sum, this chapter fills the three gaps in predictive health analytics research by using a 

multi-state framework to assess the dynamics between chronic and acute conditions in the course 
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of a disease unfolding, and by exploring how to apply the transition between chronic and acute 

conditions to uncover a patient’s underlying health status. We now describe a multi-state Markov 

model and a multi-state hidden Markov model that enable us to study the transition dynamics 

between different states in a multi-state framework. 

4.2.2 Multi-State Markov Model and Multi-State Hidden Markov Model 

A multi-state Markov model can be used to represent continuous, multi-state processes and to 

study the course of disease stages. By defining various states that represent the evolution of a 

patient’s health status over time, a multi-state Markov model captures the progression from one 

state to the other states. During this process, patients may advance into adjacent stages of a 

disease, recover from adjacent stages of a disease, or die at any stage of a disease (Jackson 

2011). A multi-state Markov model can be applied to estimate transition rates between different 

states; researchers can then use these transition rates to obtain important insights into the 

relationships among different states. For example, given the transition rates among different 

states, researchers can estimate loco-regional recurrence and distant metastasis in breast cancer, 

or platelet recovery and survival in bone-marrow transplantation (Putter et al. 2006). A multi-

state Markov model can also be applied to obtain predictions of the clinical prognoses for 

patients at certain time points within their illness or recovery process based on covariates and the 

occurrence of intermediate events. For example, with a given set of covariates and a post-surgery 

event, Putter et al. (2006) applied a multi-state Markov model to obtain a post-surgery 

prediction, such as the probability of a patient being in a certain state at a certain time and the 

probabilities of all possible future trajectories for each state.   

The multi-state Markov model is widely applied in the fields of statistics and medicine to 

model the course of disease stages. Using a multi-state Markov model, researchers can predict 
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patients’ clinical prognoses at certain time points in their recovery or illness process (Putter et al. 

2006). For example, Longini et al. (1989) applied a multi-state Markov model to study the 

natural history of human immunodeficiency virus (HIV) infection. They estimated the 

distribution and mean length of the incubation period—that is, the period from infection to the 

development of clinical acquired immunodeficiency syndrome (AIDS)—for HIV-infected 

individuals. The researchers followed these individuals through five stages of infection: (1) 

infected but antibody‐negative, (2) antibody‐positive but asymptomatic, (3) pre‐AIDS symptoms 

and/or abnormal hematologic indicator, (4) clinical AIDS, and (5) death due to AIDS. They 

estimated a mean AIDS incubation period of 9.8 years, as well as survival rates for individuals in 

each stage of the infection. As another example, Putter et al. (2006) examined how treatment and 

prognostic factors impact the course of disease for patients with breast cancer. They studied 

patients with early breast cancer who had either radical mastectomy or breast conserving therapy. 

Their study identified five states: (1) event-free after surgery, (2) loco-regional recurrence only, 

(3) distant metastasis only, (4) both local recurrence and distant metastasis and alive, and (5) the 

absorbing state, death. They estimated the transition rates between the states, and used these 

transition rates to obtain predictions for patients, at a certain time after surgery, based on a given 

event history and a set of covariates.  

Researchers can apply a multi-state Markov model to estimate event history if the disease 

progression states are obvious and observable. However, if the disease process is hidden and 

unobservable, we must use a hidden Markov model to uncover the hidden states. In a hidden 

Markov model, the observed data are governed by probability distribution conditionally on the 

unobserved true state (Jackson 2011). The model was first used in a discrete-time underlying 

Markov chain to study speech and signal processing and biological sequence data. Applications 
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of the hidden Markov model in medical field, where continuous-time processes are usually more 

appropriate, are limited (Bureau et al. 2000; Jackson 2011). One area in which medical 

researchers often use a multi-state hidden Markov model is in the screening process to identify 

classification errors by examining the probability that true and observed states are equal (Jackson 

et al. 2003; Zare et al. 2014).  

Extant studies that apply a multi-state Markov model and/or a multi-state hidden Markov 

model typically focus on proposedly collective data in clinical trials, which usually focus on a 

single disease with a limited sample size. For example, multi-state models have been applied in 

studies to screen for abdominal aortic aneurysms using data from 156 male patients (Jackson et 

al. 2003); to estimate the state transition probabilities for patients with early breast cancer using 

data from 2,795 patients (Putter et al. 2006); and to predict lifetime outcomes and costs for 

patients with coronary artery disease using data from 94,966 patients (Asaria et al. 2016). As we 

noted earlier, patients often develop diseases in different body systems over time. Developing 

multi-state models on a single disease fails to capture the transitions characteristics for those with 

diseases among different body systems. In addition, to the best of our knowledge, researchers 

have never applied both a multi-state Markov model and a multi-state hidden Markov model in 

the IS field to estimate and understand disease progressions. In this study, we use a multi-state 

model to model patient transition processes between chronic and acute states in continuous time, 

and a multi-state hidden Markov model to uncover transitions between hidden health statuses, 

where the states of the Markov chain are not directly observed. To develop both models, we use 

a large panel of 3,479,424 patients with two or more admissions and a variety of diseases in 17 

different body systems.  
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Multi-state Markov models and multi-state hidden Markov models both support the 

estimation of the impact of constant or time-varying variables on the transition rates. This lets us 

examine how different HIT functions, along with different hospital characteristics and patient 

profiles, impact various types of transitions as diseases progress over time. These include 

observable transitions (chronic to acute, acute to chronic, chronic to death, and acute to death) 

and underlying and unobservable transitions (minor to major disease and major disease to death). 

We now discuss the importance of studying HIT’s value in relation to these patient transitions.  

4.2.3 HIT’s Value for Patient-Transition-Level Performance  

HIT improves clinical workflow efficiency, promotes medication order standardization, prevents 

medical errors, and leads to enhanced healthcare quality and reduced healthcare cost 

(Amarasingham et al. 2009; Bardhan and Thouin 2013). Meanwhile, however, HIT introduces 

new types of errors—called e-iatrogenesis—including inappropriate text entries, mismatches 

between newly introduced HIT and existing workflows, and problematic electronic data 

presentation, which lead to unintended consequences, such as incorrect or delayed treatment 

(Coiera et al. 2016; Kannampallil et al. 2017; Weiner et al. 2007). 

Prior HIT value studies have typically examined HIT’s impact on hospital-level 

outcomes, including quality of care (Agha 2014; Aron et al. 2011; Menachemi et al. 2008; 

O’Connor et al. 2011), efficiency (Watcharasriroj and Tang 2004), and financial performance 

(Agha 2014; Bardhan and Thouin 2013; Borzekowski 2009; Menachemi et al. 2006). For 

example, Menachemi et al. (2008) studied HIT’s impact on various morality rates and found that 

hospitals that have a greater number of HIT applications have lower morality rates for several 

health conditions. As another example, Sharma et al. (2016) examined HIT’s impact on hospital 

cost and found no association between HIT adoption and healthcare cost.  
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However, these hospital-level performance outcomes are usually end performance 

outcomes and cannot capture how HIT impacts lower-level, intermediate performance outcomes. 

The clinical workflow enhancement that technologies facilitate (Amarasingham et al. 2009; 

Bardhan and Thouin 2013) and the new types of errors technologies introduce (Coiera et al. 

2016; Kannampallil et al. 2017; Weiner et al. 2007) would likely impact intermediate 

performance. Yet, to the best of our knowledge, no extant study has examined HIT’s impact on 

patient-transition-level intermediate performance outcomes. As we noted earlier, both literature 

and statistical evidence suggest that patients that transition between chronic and acute conditions 

may experience deteriorating health conditions. Thus, it is important to examine whether HIT 

functions lead to reduced or increased transitions. We therefore aim, in this chapter, to 

empirically study the impact of various HIT functions on the patient-transition-level intermediate 

performance. We believe this study will provide a nuanced view of how HIT facilitates clinical 

workflow and/or generates unintended consequences within the intermediate clinical process.  

4.3 Data and Measurement 

4.3.1 Sample and Data Collection 

This study uses data from three sources. First, to obtain patient-level clinical data, we use data 

from the HCUP-SID database, which contains 97 percent of all discharges from community 

hospitals in 48 U.S. states. HCUP-SID contains nonclinical variables, such as patient 

demographic characteristics and total charges, and clinical information, such as diagnoses, 

procedures, chronic indicators, admission and discharge status, length-of-stay (LOS), and 

severities related to each inpatient discharge case. To capture disease progression between 

hospital visits, we focus only on readmitted patients; we therefore use HCUP-SID data only on 

patients with two or more hospital admissions. We also excluded discharges related to 
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pregnancy, childbirth, and the puerperium, because the transition pattern between the chronic 

and acute statuses of women in this group is significantly different from people in other patient 

groups. Finally, we excluded discharges of patients under 18 years old because their treatment 

often differs from treatment on adults (Schmidt et al. 2014).  

Second, to obtain hospital demographics and organization structure data, we use data 

from AHA’s annual surveys of Florida and New York for 2009–2013 in conjunction with 

HCUP-SID data on hospitals in these two states. 

Third, to obtain HIT implementation data, we use AHA’s IT supplement files for 2008–

2012. This hospital-level database contains healthcare IT implementation-level information on 

five different IT functions: DS, CPOE, ECD, RV, and telehealth (AHA 2016). DS supports the 

decision-making process by helping care providers accurately diagnose patient conditions, 

consult the latest evidence, and provide patient-specific care. CPOE facilitates task execution by 

allowing care providers to offer instructions to nurses and technicians. ECD lets care providers 

access and record patient information, while RV gives healthcare providers access to patients’ 

prior test results. Finally, telehealth gives patients access to vital healthcare services through 

remote monitoring, wireless communication, video-conferencing, and electronic consults. 

We mapped the three datasets with HIT variables lagged one year; the resulting dataset is 

an unbalanced panel data set that consists of 3,479,424 distinct patients with more than 13.4 

million admissions from 338 hospitals from 2009–2013. We sampled 5% of the patients for the 

data analysis to keep the sample size manageable. This sample is random selected to avoid 

systematic bias. This sample contained 669,641 admissions that originated from 173,971 

patients, among whom 43.9% had two admissions, 21.1% had three admissions, 11.9% had four 

admissions, and the rest had more than four admissions.  
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4.3.2 Measures 

HIT Implementation  

HIT implementation is measured on a six-point scale, where 1 indicates “fully implemented 

across all units,” and 6 indicates “not in place and not considering implementing.” Appendix 4A 

shows the HIT implementation items and the original measurement scale. To calculate HIT 

implementation levels, we first recoded the original data. Responses between 2 and 6 were 

recoded as 0, and we retained the original coding of 1 as 1. This coding scheme separates full 

implementation—that is, IT has completely replaced paper record functionality—from partial or 

no implementation. Next, we constructed four HIT variables (DS, CPOE, RV, and ECD) by 

counting the number of technologies completely implemented at a hospital in each HIT category; 

this approach has been widely used in both the IS and health care literature (Angst et al. 2012; 

Borzekowski 2009; Burke and Menachemi 2004; Menachemi et al. 2008). Telehealth is a 

dummy variable, for which 0 indicates no implementation and 1 indicates implementation. 

Hospital Characteristics and Patient Profile Variables 

To account for other factors that may influence transition intensity between different states, our 

model includes both hospital characteristics variables and patient profile variables. For hospital 

characteristics, we include hospital bed size, teaching status, and profit status, which we obtained 

from AHA survey datasets at the hospital level. We measure patient profiles both at the patient 

and discharge levels using HCUP-SID data. At the patient level, we include gender and number 

of total admissions, which we construct by counting the number of admissions the patient had at 

discharge time. At the discharge level, we include: a dummy variable that records whether the 

patient is an emergency or urgent admission; insurance type; discharge age; LOS; total number 
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of comorbidities9 at the current admission; a dummy variable that records whether the patient 

was transferred from another hospital at the current admission; a dummy variable that records 

whether the patient’s primary diagnosis is in the same body system10 at the current admission 

compared to the last admission; and total number of discharges with the primary diagnosis in the 

same the body system as the current admission.  

Summary Statistics 

Table 4.1 offers an overview of our sample data. Among all patients with two or more 

admissions, 52.2% are female, 84.5% are emergency type or urgent admission type, 59.8% are 

Medicare patients, and 15.1% are Medicaid patients. The average discharge age is 64, while the 

average LOS is 5.8 days and the average number of hospital visits is 3.9. Among sampled 

patients, 24.2% transferred from another hospital at the current admission and 48.1% were 

diagnosed as having a disease transfer to a different body system at the current admission 

compare to the prior admission. Patients’ primary diagnosis was in the same body system as the 

prior admissions two times on average; the average number for total comorbidity at the current 

admissions is 2.8.  

                                                 
9 We include 29 different types of comorbidity in the study including congestive heart failure, valvular disease, 

pulmonary circulation disorders, peripheral vascular disorders, hypertension, paralysis, other neurological disorders, 

chronic pulmonary disease, uncomplicated diabetes, complicated diabetes, hypothyroidism, renal failure, liver 

disease, peptic ulcer disease excluding bleeding, acquired immune deficiency syndrome(aids), lymphoma, metastatic 

cancer, solid tumor without metastasis, rheumatoid arthritis/collagen vascular diseases, coagulopathy, obesity, 

weight loss, fluid and electrolyte disorders, blood loss anemia, deficiency anemias, alcohol abuse, drug abuse, 

psychoses, depression  
10 We include 17 different types of body system in the study including infectious and parasitic disease, neoplasms, 

endocrine, nutritional, and metabolic diseases and immunity disorders, diseases of blood and blood-forming organs, 

mental disorders, diseases of the nervous system and sense organs, diseases of the circulatory system , diseases of 

the respiratory system, diseases of the digestive system, diseases of the genitourinary system, diseases of the skin 

and subcutaneous tissue, diseases of the musculoskeletal system, congenital anomalies, certain conditions 

originating in the perinatal period, symptoms, signs, and ill-defined conditions, injury and poisoning, factors 

influencing health status and contact with health services 
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From our dataset, we find that, for patients who have two or more admissions within five 

years, 60.1% experienced a transition between chronic and acute diseases. We also find that 

patients who suffer from disease transitions between chronic and acute conditions have reduced 

health status and higher medical expenses. Compared with patients remaining within either a 

chronic or an acute status, discharges with transitions between chronic and acute status have a 

$7,791 higher average charge per stay, 0.97 days longer LOS, 0.37% higher death rate, and 3.7% 

higher probability of using emergency department services. 

Table 4.1 Summary Statistics 

Variables Mean Stdev Min Max 

Health IT         

No. of DS (lagged) 3.282 2.377 0 6 

No. of CPOE (lagged) 2.009 2.304 0 5 

No. of RV (lagged) 5.061 1.247 0 6 

No. of ECD (lagged) 4.035 2.144 0 7 

Telehealth (lagged) 0.136 0.343 0 1 

Hospital Characteristic     
No. of beds 574 513 4 2,396 

Teaching 0.289 0.453 0 1 

For-profit 0.198 0.399 0 1 

Patient Profile     
Female 0.522 0.500 0 1 

Emergency or Urgent 0.845 0.362 0 1 

Medicare 0.598 0.490 0 1 

Medicaid 0.151 0.358 0 1 

Discharge Age 64.061 18.267 18 108 

LOS 5.847 7.818 0 353 

No. of Visits 3.973 5.309 1 114 

Transfer Hospital 0.242 0.428 0 1 

Transfer Body System 0.481 0.500 0 1 

No. of same body system 2.088 3.373 1 97 

No. of comorbidity 2.802 1.870 0 13 
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4.4 Model Development and Data Analysis  

4.4.1 A Multi-State Markov Model 

To estimate the transition rate between a chronic and an acute status, we developed a multi-state 

Markov model for disease progression in continuous time. We propose three different states: 

admission with a chronic condition11 as the primary diagnosis (state 1), admission with an acute 

condition as the primary diagnosis (state 2), and the absorbing state, death (state 3). Patients in 

state 1 can move to any state, as can patients in state 2; death (state 3), however, is the absorbing 

state so it is impossible to go from state 3 to the other states. Figure 4.3 shows our multi-state 

Markov model. 

 

Figure 4.3 Multi-State Markov Model 

We assume that the sampling scheme is non-informative—that is, that an observation 

made at a certain time does not provide information on that observation’s value. We assume that 

we observe the admission state, O(t), when patients visit hospitals at time t. Figure 4.4 shows an 

example of the sampling situation: a patient is observed on five occasions over a three-year 

period. The patient is observed at times 0, 1.5, 1.8, 2.5, and 3, and occupies the states of 1, 1, 2, 

1, and 3, respectively. The state occupancy in between the observation times and the times of 

                                                 
11 A chronic condition is defined as a condition that lasts 12 months or longer and meets one or both of the 

following tests: (a) it places limitations on self-care, independent living, and social interactions; and (b) it results in 

the need for ongoing intervention with medical products, services, and special equipment (https://www.hcup-

us.ahrq.gov/db/vars/chronn/kidnote.jsp). 
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movement between the states are unobserved. Thus, the exact value for the times of changes in 

state is unknown, but the change occurs within a certain bounded interval—a situation referred to 

as interval censored. At the same time, unless the last observation is in state 3 (death), the 

remaining observations are subject to right censoring. However, right censoring does not bias our 

estimation because we are interested only in the transition risk between the states. We assume 

that censoring is non-informative—that is, that patients who are right censored have the same 

probability of experiencing a subsequent event as patients who remain in the study. In this case, 

the standard multi-state model likelihood is applicable.  

 

Figure 4.4 An Example of the Evolution of a Multi-State Model 

The movement on the discrete state space 1,…R is governed by the transition intensities, 

or the hazard rate, which represents the instantaneous risk of progression from state r to state s, 

𝑞𝑟𝑠, which is defined as 

𝑞𝑟𝑠 = 𝑞𝑟𝑠(𝑡 , 𝑧(𝑡), 𝐹(𝑡)) = lim
∆𝑡→0

𝑃(𝑂(𝑡 + ∆𝑡) = 𝑠|𝑂(𝑡) = 𝑟, 𝑧(𝑡), 𝐹(𝑡))/∆𝑡. 

This hazard function 𝑞𝑟𝑠 provides the hazard rate that a patient who is at state 𝑟 by time t, 

will transition to state s during the infinitesimally small time interval, ∆𝑡. 𝑧(𝑡) are time-

dependent explanatory variables. 𝐹(𝑡) is the collection of events that represents the observation 

history. Because the Markov assumes that future evolution depends only on the current state, 
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𝑞𝑟𝑠(𝑡, 𝑧(𝑡), 𝐹(𝑡)) is independent of 𝐹(𝑡). We assume that transition intensities 𝑞𝑟𝑠 depends on 

time only through 𝑧(𝑡). We call this a time-inhomogeneous model. 

We model the effect of covariates on the transition from state r to state s using Cox’s 

proportional hazards model, a commonly applied survival model, on the transition hazards. For a 

patient with covariates 𝑧(𝑡), the transition hazard 𝑞𝑟𝑠(𝑡) for transition state r to state s is 

𝑞𝑟𝑠(𝑡, 𝑧(𝑡)) =  𝑞𝑟𝑠
(0)

exp (𝜷𝑟𝑠
𝑇 𝑧(𝑡)), 

where 𝑞𝑟𝑠
(0)

 is the baseline hazard of transition from state r to state s, 𝑧(𝑡) are time-dependent 

covariates specific to the transition from state r to state s, and 𝜷𝑟𝑠
𝑇  is a vector of regression 

coefficients. 

We include three sets of covariates in the model: 

1) HIT variables (DS, CPOE, RV, ECD, and telehealth) 

2) Hospital characteristics variables (bed size, teaching status, and for-profit status) 

3) Patient profile variables at the patient level (female indicator and number of total 

admissions) and the discharge level (emergency and urgent admission indicator, insurance type, 

discharge age, LOS, indicator for hospital transfer, total number of comorbidities at current 

admission, indicator for body system transfer, number of discharges with the primary diagnosis 

in the same the body system as the current admission) 

The transition intensities form a transition intensity matrix Q, where the sum of each row 

is zero. This means that the diagonal entries are defined by 𝑞𝑟𝑟 = −∑𝑠≠𝑟𝑞𝑟𝑠. For a three-state 

multi-state model, the transition intensity matrix is as follows: 
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𝑄 = (
−(𝑞12 + 𝑞13) 𝑞12 𝑞13

𝑞21 −(𝑞21 + 𝑞23) 𝑞23

0 0 0

). 

Maximum likelihood estimates Q can be computed from the transition probability matrix 

𝑃𝑡1
(𝑡2 − 𝑡1), with (r, s) entry being 𝑝𝑟𝑠{𝑡2 − 𝑡1, 𝑧(𝑡)}. Suppose Q is constant over the interval (𝑡1, 

𝑡2) , then 𝑃𝑡1
(𝑡2 − 𝑡1)  = 𝑃(𝑡) , where 𝑡  is the time interval between 𝑡2  and 𝑡1 . The transition 

probability matrix 𝑃(𝑡) is as follows:  

𝑃(𝑡) = exp(𝑡𝑄). 

The contribution to the likelihood for a pair of successive observed disease states S(tj), 

S(tj+1) at times tj, tj+1 for individual i is as follows: 

𝐿𝑖,𝑗 = 𝑃𝑆(𝑡𝑖,𝑗)𝑆(𝑡𝑖,𝑗+1)(𝑡𝑖,𝑗+1 −  𝑡𝑖,𝑗). 

This likelihood is the entry of the transition matrix P(t) at the S(tj) row and S(tj+1) column. 

We calculate the full likelihood using the product of transition probabilities between observed 

states, over all individuals i and observation times j, which is presented as follows: 

𝐿(𝑄) = ∏ 𝐿𝑖𝑖 = ∏ 𝐿𝑖,𝑗𝑖,𝑗 = ∏ 𝑃𝑆(𝑡𝑖,𝑗)𝑆(𝑡𝑖,𝑗+1)𝑖,𝑗 (𝑡𝑖,𝑗+1 −  𝑡𝑖,𝑗), 

where each 𝐿𝑖,𝑗 is the entry of the transition matrix P(t) at the S(𝑡𝑖,𝑗) row and the S(𝑡𝑖,𝑗+1) 

column, which is evaluated at 𝑡 =  𝑡𝑖,𝑗+1 − 𝑡𝑖,𝑗. The likelihood L(Q) is maximized in terms of 

log(𝑞𝑟𝑠) to compute the estimates of 𝑞𝑟𝑠. We chose the quasi-Newton method as our optimization 

algorithm because it is often used for multi-state models and gives the greatest speed of converge 

(Jackson et al. 2003). We computed the standard errors from the Hessian at the optimum. We run 

the model with diverse sets of initial values to ensure that our model converges to a global rather 

than local maximum of the likelihood surface. To implement the multi-state Markov model and 
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the multi-state hidden Markov model, we use an open source R package called msm (Jackson 

2011).  

4.4.2 A Multi-State Hidden Markov Model 

We also aim to develop a continuous-time three-state hidden Markov model to uncover the true 

state or the hidden state of a patient’s health status. Suppose 𝑆𝑖𝑡 represents the true state for patient 

i at time t, and it evolves as an unobserved Markov process. 𝑆𝑖𝑡  is assumed to have three states: 

admission with minor disease (state 1), admission with major disease (state 2), and death (state 3). 

We assume that major disease is a more severe disease than minor disease, and is more likely to 

result in mortality than minor disease. The minor disease state can only go through major disease 

state before entering the final state, death. We therefore assume that patients with minor disease 

(state 1) at the current admission can stay in the current state (state 1) or move to a major disease 

(state 2) at the next moment. Patients with minor disease (state 1) cannot move to death (state 3) 

directly; they must go through the major disease (state 2) first. We also assume that patients with 

major disease (state 2) can advance to the next state, death (state 3), stay in the same state (state 

2), or recover and move to a minor disease state (state 3). Again, death (state 3) is the absorbing 

state and cannot move to the other states. Figure 4.5 shows the multi-state hidden Markov model. 

The definition of transition intensity for a multi-state hidden Markov model is the same as for a 

multi-state Markov model. Thus, the transition intensity matrix for a three-state hidden Markov 

model is presented as follows: 

Q𝐻 = (
−𝑞12 𝑞12 0
𝑞21 −(𝑞21 + 𝑞23) 𝑞23

0 0 0

). 
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Figure 4.5 The Multi-State Hidden Markov Model 

Because the exact state of health status is difficult to determine, we form the emission 

probability density based on the observed chronic and acute statuses for patient i at time t, Q𝐻𝑖𝑡
. 

As we discussed earlier, the three observed statuses are: admission with a chronic condition (state 

1), admission with an acute condition (state 2), and death (state 3). 

A hidden Markov model has two types of parameters: transition probabilities and emission 

probabilities. As we noted earlier, maximum likelihood estimates can be computed from the 

transition probability matrix 𝑃𝐻(𝑡), with (r, s) entry from time 𝑡1 to time 𝑡2 as 𝑝𝑟𝑠{𝑡2 − 𝑡1, 𝑧(𝑡)}. 

We include the same time-dependent covariates, 𝑧(𝑡), as we introduced above. We will now 

discuss the emission probabilities, with (r, s) entry for patient i at observation time j, ers =

Pr(𝑂(𝑡𝑖𝑗) = s | 𝑆(𝑡𝑖𝑗) = r). 

Detailed emission probability density is as follows: 

Because state 3 is exactly observed, we have:  

Pr(𝑂(𝑡𝑖𝑗) =3| 𝑆(𝑡𝑖𝑗) =1) = Pr(𝑂(𝑡𝑖𝑗) =3| 𝑆(𝑡𝑖𝑗) =2) = Pr(𝑂(𝑡𝑖𝑗) =1| 𝑆(𝑡𝑖𝑗) =3) = 

Pr(𝑂(𝑡𝑖𝑗)=2|𝑆(𝑡𝑖𝑗)=3) = 0 

Pr(𝑂(𝑡𝑖𝑗)=3|𝑆(𝑡𝑖𝑗)=3) =1. 

Given that 𝑆𝑖𝑗=1, we can observe only 𝑂𝑖𝑗=1 or 𝑂𝑖𝑗=2, so we also have: 

Pr(𝑂(𝑡𝑖𝑗)=1|𝑆(𝑡𝑖𝑗)=1) + Pr(𝑂(𝑡𝑖𝑗)=2|𝑆(𝑡𝑖𝑗)=1) = 1.  

Likewise, given that 𝑆𝑖𝑗=2, we can observe only 𝑂𝑖𝑗=1 or 𝑂𝑖𝑗=2, so we also have: 

Pr(𝑂(𝑡𝑖𝑗)=1|𝑆(𝑡𝑖𝑗)=2) + Pr(𝑂(𝑡𝑖𝑗)=2|𝑆(𝑡𝑖𝑗)=2) = 1. 
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Here, we can assume that both Pr(𝑂𝑖𝑗 | 𝑆𝑖𝑗 =1) and Pr(𝑂𝑖𝑗 | 𝑆𝑖𝑗 =2) follow binomial 

distribution, Binomial (n, p). Next, we need to set the initial values for Pr(𝑂(𝑡𝑖𝑗)=1|𝑆(𝑡𝑖𝑗)=1), 

Pr(𝑂(𝑡𝑖𝑗)=2|𝑆(𝑡𝑖𝑗)=1), Pr(𝑂(𝑡𝑖𝑗)=1|𝑆(𝑡𝑖𝑗)=2), and Pr(𝑂(𝑡𝑖𝑗)=2|𝑆(𝑡𝑖𝑗)=2). We assume that the 

closer the admission time is to the death time, the more severe the disease is. From our dataset, we 

find that, on first admission, 49.93% of patients had chronic conditions and 50.07% of patients had 

acute conditions. From this, we assume the initial value for Pr(𝑂(𝑡𝑖𝑗)=1|𝑆(𝑡𝑖𝑗)=1) is 0.5 and the 

initial value for Pr(𝑂(𝑡𝑖𝑗)=2|𝑆(𝑡𝑖𝑗)=1) is 0.5. We also find that, on the admissions closest to death, 

40.04% patients had chronic conditions and 59.96% patients had acute conditions; from this, we 

assume the initial value for  Pr(𝑂(𝑡𝑖𝑗) =1| 𝑆(𝑡𝑖𝑗) =2) is 0.4 and the initial value for 

Pr(𝑂(𝑡𝑖𝑗)=2|𝑆(𝑡𝑖𝑗)=2) is 0.6. We also assume that several patient profile variables influence the 

emission distributions or hidden Markov outcome distributions, so we use these variables as 

covariates for the emission distributions. These variables are female indicator, number of total 

admissions, emergency admission indicator, insurance type, indicator for hospital transfer, total 

number of comorbidities at current admission, indicator for body system transfer, and number of 

discharges with the primary diagnosis in the same the body system as the current admission. 

For discrete time hidden Markov model, researchers often use the forward-backward, or 

Baum-Welch, algorithm. Baum-Welch is the previous version of expectation-maximization (EM) 

algorithm, when applied to hidden Markov model, they are essentially the same. Bureau et al. 

(2000) proposed generalizing the Baum-Welch algorithm to continuous time, which we will follow 

in this essay.  

The likelihood of patient i is given as follows: 

𝐿𝑖 = Pr(𝑂𝑖1, … , 𝑂𝑖𝑛𝑖
) 
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= ∑ Pr(𝑂𝑖1, … , 𝑂𝑖𝑛𝑖
 |𝑆𝑖1  … , 𝑆𝑖𝑛𝑖

) Pr(𝑆𝑖1, … , 𝑆𝑖𝑛𝑖
). 

The assumed Markov property is 

Pr(𝑆𝑖𝑗 | 𝑆𝑖,𝑗−1,  … , 𝑆𝑖1) = Pr(𝑆𝑖𝑗 | 𝑆𝑖,𝑗−1 ). 

The contribution 𝐿𝑖 is a product of matrix: 

Li= ∑ Pr (O
i1
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i1
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where 

1) Pr(𝑂𝑖𝑗| 𝑆𝑖𝑗) is the emission probability density.  

2) Pr(𝑆𝑖𝑗 | 𝑆𝑖,𝑗−1 ) is the transition probability (𝑝𝑟𝑠) of the hidden Markov chain.  

4.4.3 Multi-State Markov Model Results 

Table 4.2 provides the frequencies of admissions between different states. We find that 154,788 

(31.1%) chronic admissions are followed by chronic admissions; 141,948 (28.36%) acute 

admissions are followed by acute admissions; 98,488 (19.74%) chronic admissions are followed 

by acute admissions; and 88,452 (17.77%) acute admissions are followed by chronic admissions. 

We further discover that 7,196 (1.46%) are dead after chronic admissions and 7,982 (1.58%) are 

dead after acute admissions.  

Table 4.2 Frequencies for Transitions to the Next Stage 

Initial Stage  1 = Chronic Status 2 = Acute Status 3 = Death 

1 154,788 (31.10%) 98,488 (19.74%) 7,196 (1.46%) 

2 88,452 (17.77%) 141,948 (28.36%) 7,982 (1.58%) 

3 0 0 0 

To compare the goodness of fit among the models with various covariance sets, we 

employed the likelihood-ratio test. The null model (Model 1) is a multi-state Markov model with 
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no covariates. In Model 2, we added IT variables; in Model 3, we added hospital characteristics 

variables; and in Model 4 we added patient profile variables. Table 4.3 presents the likelihood-

ratio test for models 1–4 and shows that the likelihood-ratio test favors our proposed model 

(Model 4) over the other models. 

Table 4.3 Likelihood-Ratio Test for Multi-State Markov Models 

Model -2*Log-

Likelihood 

Test Likelihood Ratio 

Statistic 

∆DF P-Value AIC 

Model 1: Null 1,002,667 
    

1,002,676 

Model 2: Add IT Variables 1,002,266 1 vs 2 401 20 <0.0001 1,002,314 

Model 3: Add Hospital 

Characteristics  

1,001,954 2 vs 3 312 12 <0.0001 1,002,026 

Model 4: Add Patient Profile  315,283 3 vs 4 23747 32 <0.0001 978,343 

Table 4.4 shows the results of the estimated hazard ratios with a 95% confidence interval 

(CI) on the transition intensities. We find that DS has no significant effect on any of the 

transitions. The hazard ratio estimate of the CPOE implementation level on the chronic-to-death 

transition is 1.059 (95% CI: 1.003, 1.087), implying that, for patients in state 1 (chronic), higher 

CPOE implementation is associated with a higher risk of progression to state 3 (death). CPOE 

has no significant effect on the transition from chronic to acute, acute to chronic, or acute to 

death. The hazard ratio estimates for the RV implementation level on the chronic-to-acute 

transition is 0.928 (95% CI: 0.885, 0.973) and on the acute-to-chronic transition, it is 0.916 (95% 

CI: 0.873, 0.961), implying that a higher level of RV implementation is associated with a lower 

risk of transition between chronic and acute states. RV has no significant effect on the transition 

from chronic to death or acute to death. ECD has no significant effect on any of the transitions. 

The hazard ratio estimates of the telehealth implementation level on the acute-to-death transition 

is 0.729 (95% CI: 0.546, 0.974), implying that a higher level of telehealth implementation is 
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associated with a lower risk of transition from the acute to the death state. Telehealth has no 

significant effect on chronic-to-acute, acute-to-chronic, or chronic-to-death transitions.  

Besides HIT implementation levels, we notice that hospital characteristics and patient 

profile variables are also significantly associated with transition risks among various states. For 

example, a higher number of hospital beds is associated with a lower risk of transition from 

chronic to death states, but a higher risk of transition from acute to deaths states. Teaching 

hospitals are associated with a higher risk of transition from chronic to acute and chronic to 

death, but a lower risk of transition from acute to death. Female patients are associated with 

higher risk of transition between chronic and acute conditions, but lower risk of transition from 

chronic to death and from acute to death. Emergency or urgent admission type is associated with 

lower risk of transition between chronic and acute conditions, but higher risk of transition from 

chronic or acute to death. Medicare or Medicaid patients are associated with a lower risk of 

transition between chronic and acute and from chronic to death, but a higher risk of transition 

from acute to death. Higher age when admitted is associated with higher risk of transition 

between chronic and acute conditions and from chronic to death. Increased LOS is associated 

with a lower risk of transition between chronic and acute conditions but a higher risk of 

transition from chronic to death and acute to death. Patients who have an increased number of 

visits, diagnoses changed to a different body system at the current vs. last admission, or a higher 

number of comorbidities are associated with higher risk of transition between chronic and acute, 

and from chronic or acute to death. Transferring hospitals is associated with a higher risk of 

transition between the chronic and acute status, but a lower risk of transition from acute to death. 

A higher number of discharges with the primary diagnosis in the same the body system as the 



  

  

  174 

current admission is associated with a higher risk of transition from chronic to death but a lower 

risk of transition from chronic to acute.  
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Table 4.4 Results for Multi-State Markov Model 

Variable 
State 1–State 2 State 1–State 3 State 2–State 1 State 2–State 3 

Chronic–Acute Chronic–Death Acute–Chronic Acute–Death 

Health IT         

No. of DS 1.028 ( 0.997-1.060 ) 0.996 ( 0.973-1.019 ) 1.029 ( 0.998-1.061 ) 1.000 ( 0.955-1.047 ) 

No. of CPOE 0.983 ( 0.957-1.011 ) 1.059 ( 1.033-1.087 ) 0.986 ( 0.960-1.014 ) 1.035 ( 0.980-1.093 ) 

No. of RV 0.928 ( 0.885-0.973 ) 0.981 ( 0.939-1.024 ) 0.916 ( 0.873-0.961 ) 1.020 ( 0.923-1.128 ) 

No. of ECD 1.018 ( 0.984-1.052 ) 1.001 ( 0.970-1.033 ) 1.003 ( 0.970-1.037 ) 0.972 ( 0.912-1.036 ) 

Telehealth 0.937 ( 0.808-1.085 ) 0.966 ( 0.855-1.091 ) 0.927 ( 0.798-1.076 ) 0.729 ( 0.546-0.974 ) 

Hospital Characteristic    

No. of beds（log） 1.082 ( 0.986-1.189 ) 0.869 ( 0.805-0.937 ) 1.094 ( 0.994-1.203 ) 1.182 ( 1.016-1.375 ) 

Teaching 1.220 ( 1.056-1.410 ) 1.193 ( 1.052-1.352 ) 1.153 ( 0.995-1.336 ) 0.686 ( 0.525-0.895 ) 

For-profit 1.045 ( 0.867-1.259 ) 0.924 ( 0.803-1.063 ) 1.040 ( 0.861-1.257 ) 0.939 ( 0.704-1.252 ) 

Patient Profile     

Female 1.325 ( 1.192-1.473 ) 0.768 ( 0.706-0.834 ) 1.145 ( 1.029-1.275 ) 0.762 ( 0.646-0.899 ) 

Emergency 0.278 ( 0.236-0.328 ) 1.782 ( 1.523-2.085 ) 0.282 ( 0.238-0.333 ) 1.336 ( 1.015-1.758 ) 

Medicare 0.691 ( 0.600-0.797 ) 0.829 ( 0.724-0.949 ) 0.737 ( 0.638-0.852 ) 1.441 ( 1.068-1.944 ) 

Medicaid 0.713 ( 0.620-0.819 ) 0.685 ( 0.549-0.856 ) 0.843 ( 0.731-0.971 ) 1.701 ( 1.260-2.295 ) 

Discharge Age 1.031 ( 1.027-1.035 ) 1.058 ( 1.055-1.062 ) 1.022 ( 1.019-1.026 ) 1.005 ( 0.997-1.013 ) 

LOS（log） 0.434 ( 0.404-0.467 ) 1.941 ( 1.829-2.060 ) 0.382 ( 0.354-0.411 ) 1.194 ( 1.010-1.412 ) 

No. of Visits 1.152 ( 1.131-1.174 ) 1.031 ( 1.021-1.041 ) 1.142 ( 1.120-1.165 ) 1.032 ( 1.021-1.043 ) 

Transfer Hospital 1.363 ( 1.186-1.568 ) 1.045 ( 0.930-1.174 ) 1.437 ( 1.246-1.659 ) 0.795 ( 0.633-0.997 ) 

Transfer Body System 4.292 ( 3.266-5.641 ) 1.185 ( 1.023-1.374 ) 3.714 ( 2.820-4.890 ) 2.682 ( 2.093-3.437 ) 

No. of same body system 0.066 ( 0.055-0.080 ) 1.265 ( 1.097-1.457 ) 0.092 ( 0.076-0.111 ) 1.196 ( 0.945-1.514 ) 

No. of comorbidity 1.696 ( 1.624-1.773 ) 1.168 ( 1.143-1.194 ) 1.686 ( 1.613-1.763 ) 1.211 ( 1.158-1.266 ) 

Note: 95% of confidence interval is reported in the parentheses 
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4.4.4 Multi-State Hidden Markov Model Results 

To compare the goodness of fit among the models with various covariance sets, we again used 

the likelihood-ratio test. The null model (Model 1) is a multi-state hidden Markov model with no 

covariates. We added HIT variables in Model 2, hospital characteristics variables in Model 3, 

and patient profile variables in Model 4. Table 4.5 shows the likelihood-ratio test for models 1–

4; it also shows that the likelihood-ratio test favors our proposed model (Model 4) over the other 

models. 

Table 4.5 Likelihood-Ratio Test for Multi-State Hidden Markov Model 

Model -2*Log-

Likelihood 

Test Likelihood 

Ratio Statistic 

∆DF P-Value AIC 

Model 1: Null 1,302,305 
    

1,302,315 

Model 2: Add IT Variables 1,301,979 1 vs 2 326 15 <0.0001 1,302,019 

Model 3: Add Hospital 

Characteristics  

1,301,746 2 vs 3 233 9 <0.0001 1,301,804 

Model 4: Add Patient Profile  369,510 3 vs 4 15,937 24 <0.0001 1,285,916 

Table 4.6 presents the result of the estimated hazard ratios with a 95% CI on the 

transition intensities. We find that DS and RV have insignificant effects on both transitions. The 

hazard ratio estimate of CPOE implementation level on major disease to death transition is 1.056 

(95% CI: 1.044, 1.068), indicating that a higher level of CPOE implementation is associated with 

a 5.6% higher risk of transition from major disease to death. CPOE has no significant effect on 

the transition from minor to major disease. Next, we find that hazard ratio estimates of the ECD 

and telehealth implementation levels on the transition from major disease to death is 0.977 (95% 

CI: 0.963, 0.990) and 0.876 (95% CI: 0.820, 0.935), implying that a higher level of ECD or 

telehealth implementation is associated with a lower risk of transition from major disease to 

death. Both ECD and telehealth have no significant effect on the transition between minor and 

major disease.  
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Besides HIT implementation level, we find that one hospital variable and most patient 

profile variables are also significantly associated with the transition risk among various health 

states. We find that teaching hospitals are associated with a higher risk of transition from minor 

to major disease. Female patients are associated with a lower risk of transition from major 

disease to death. Emergency or urgent admission type is associated with a higher risk of 

transition from minor to major disease and from major disease to death. Medicare patients are 

associated with a lower risk of transition from minor to major disease. Medicaid patients are 

associated with a lower risk of transition from minor to major disease, but a higher risk of 

transition from major disease to death. Higher age, longer LOS, and increased number of visits 

are associated with higher risk of transition from minor to major disease and from major disease 

to death. Transferring hospitals is associated with a lower risk of transition from minor to major 

disease but a higher risk of transition from major disease to death. Primary diagnosis changed to 

a different body system at the current admission compared to the last admission and a higher 

number of comorbidities are associated with higher risk of transition from minor to major disease 

and from major disease to death. A higher total number of discharges with the primary diagnosis 

in the same the body system as the current admission is associated with a higher risk of transition 

from major disease to death. 
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Table 4.6 Results for Multi-State Hidden Markov Model 

Variable 
State 1–State 2 State 1–State 3 

Minor–Major Major–Death 

Health IT     

No. of DS 1.005 ( 0.968-1.043 ) 1.001 ( 0.988-1.013 ) 

No. of CPOE 0.991 ( 0.960-1.024 ) 1.056 ( 1.044-1.068 ) 

No. of RV 0.964 ( 0.912-1.020 ) 0.989 ( 0.970-1.008 ) 

No. of ECD 1.009 ( 0.967-1.052 ) 0.977 ( 0.963-0.990 ) 

Telehealth 1.013 ( 0.842-1.218 ) 0.876 ( 0.820-0.935 ) 

Hospital Characteristic 

No. of beds（log） 0.913 ( 0.818-1.019 ) 0.990 ( 0.953-1.029 ) 

Teaching 1.298 ( 1.081-1.558 ) 0.952 ( 0.893-1.016 ) 

For-profit 1.083 ( 0.867-1.354 ) 0.965 ( 0.894-1.042 ) 

Patient Profile  

Female 0.922 ( 0.816-1.043 ) 0.678 ( 0.648-0.708 ) 

Emergency 1.317 ( 1.011-1.715 ) 1.495 ( 1.391-1.607 ) 

Medicare 0.606 ( 0.505-0.726 ) 1.064 ( 0.992-1.142 ) 

Medicaid 0.725 ( 0.586-0.897 ) 1.190 ( 1.085-1.305 ) 

Discharge Age 1.044 ( 1.039-1.049 ) 1.035 ( 1.033-1.036 ) 

LOS（log） 1.422 ( 1.294-1.563 ) 1.658 ( 1.607-1.711 ) 

No. of Visits 1.045 ( 1.032-1.058 ) 1.020 ( 1.014-1.027 ) 

Transfer Hospital 0.776 ( 0.644-0.936 ) 1.060 ( 1.001-1.123 ) 

Transfer Body System 4.227 ( 3.497-5.109 ) 1.319 ( 1.255-1.387 ) 

No. of same body system 0.927 ( 0.790-1.088 ) 1.828 ( 1.690-1.977 ) 

No. of comorbidity 1.338 ( 1.286-1.393 ) 1.187 ( 1.172-1.203 ) 

Note: 95% of Confidence Interval is reported in the parentheses 

Figure 4.6 plots the estimated transition probabilities between states within five years. As 

the figure shows, we find that the transition probabilities from minor to major diseases and from 

major to minor disease increase over time, with the former transition probability consistently 

lower than the latter. We also discover that the transition probabilities from minor disease to 

death and from major disease to death increase over time, with the former transition probability 

consistently lower than the latter. 
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Figure 4.6 Probabilities of Transitions Over Time 

4.4.5 Predictive Analytics Performance  

In this section, we first assess the goodness of fit of the multi-state models and then examine the 

sampling variability. To assess the goodness of fit of the multi-state and multi-state hidden 

Markov models, we compare the observed and expected prevalence of each state over time, 

which is a common approach for multi-state model assessment (Jackson 2011). Prevalence or 

prevalence rate is the measure of disease occurrence—that is, the proportion of individuals in a 

population who have a particular disease or condition at a specified point in time or over a 

specified time period (Porta 2014). We follow the procedures suggested by prior literature to 

calculate the prevalence rate for both the multi-state and multi-state hidden Markov models 

(Gentleman et al. 1994; Titman and Sharples 2010).  

For the multi-state Markov model, assuming we have a series of observations Oi1,…Oin at 

fixed set of times t1,…,tn for patients i=1,…, N, with model parameters 𝜃 and the covariate 

vectors 𝑧𝑖, the observed and expected counts in each state are calculated as follows: 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

2
.9

3
.0

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

3
.9

4
.0

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

5
.0

T
ra

n
si

ti
o

n
 P

ro
b

a
b

il
it

ie
s

Year

Probabilities of Transitions Over Time

Minor->Major

Major->Minor

Minor->Death

Major->Death



  

  

  180 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑗𝑟 =  ∑ 1{𝑂𝑖(𝑡𝑗) = 𝑟}

𝑁

𝑖=1

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑗𝑟 = ∑ 𝑝𝑟0𝑖𝑟(0, 𝑡𝑗; 𝜃, 𝑧𝑖),

𝑁

𝑖=1

 

where 𝑝𝑟0𝑖𝑟(0, 𝑡𝑗; 𝜃, 𝑧𝑖 ) = 𝑃(𝑂(𝑡𝑗) = 𝑟|𝑂(𝑡0) = 𝑟0𝑖) and 𝑟0𝑖 is the initial state at time 0 for the 

patient i.  

Because the observation scheme is unbalanced, it is impossible to find a set of time that 

includes all patients in the study. Gentleman et al. (1994) suggest a method for calculating the 

observed prevalence at a common time frame: assume that patients are still in the state they were 

in at the last observation. Thus, we have 

𝑂�̃�(𝑡) = 𝑂(𝑡𝑖
∗), 

where 𝑡𝑖
∗ is the maximum time below t at which patient i was observed. Because the choice of 

t1,…,tn can be important to determining a model’s goodness of fit, we use a graphical 

generalization of prevalence counts. Instead of using 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑗𝑟 and 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑗𝑟 at a discrete 

set of times, we use  

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑟(𝑡) = ∑ 1 {𝑂�̃�(𝑡) = 𝑟}

𝑁

𝑖=1

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑟(𝑡) = ∑ 𝑝𝑟0𝑖𝑟(0, 𝑡; 𝜃, 𝑧𝑖),

𝑁

𝑖=1

 

where 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑟(𝑡) is a step function. To obtain the prevalence rate at each state, we use 

prevalence counts at a particular time divided by the population at that time. 
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For the multi-state hidden Markov model, we use prevalence rate to assess the goodness 

of fit for the observed states. The calculation for observed counts of the multi-state hidden 

Markov model in each state is the same as the calculation for the multi-state Markov model. For 

the expected counts of the multi-state hidden Markov model, assuming that n(t) individuals are 

under observation at time t and the initial probability of occupying the true state r is fr, the 

expected number of individuals in true state r at time t is the rth element of the vector n(t)fP(t) 

(Jackson 2018). The expected number of individuals in the observed state s is the sth element of 

the vector n(t)fP(t)E, where 𝐸 is the emission probability matrix. 

To assess the predictive analytics performance for our proposed models, we randomly 

sampled 1% from the entire dataset, which is separate from the in-sample dataset. Figures 4.7 

and 4.8 plot the graphical prevalence chart for the multi-state Markov model and the multi-state 

hidden Markov model, respectively. As the figures show, our models perform well in predict 

prevalence rate over three years.
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Figure 4.7 Observed and Expected Prevalence Rate for Multi-State Markov Model  

 

   

Figure 4.8 Observed and Expected Prevalence Rate for Multi-State Hidden Markov Model  
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Next, we test sampling variability to rule out the possibility that our estimates may vary 

between different random samples. To do so, we randomly select another 5% of the sample from 

the entire dataset, which is a separate sample from the sample selected to estimate the proposed 

models. We first estimate the same proposed models using the new sample. We then compare the 

CIs of this sample with those of the sample used to estimate the proposed model. The literature 

indicates that nonoverlap of two CIs implies a significant difference (Belia et al. 2005; Schenker 

and Gentleman 2001). Our results show that all of the CIs are overlapping between the two 

samples, so we find no evidence of significant difference between them in terms of CI overlap. 

We can therefore rule out sampling variability for the 5% random sample selected to estimate 

our models.  

4.5 Discussion 

Our study makes several research contributions to predictive health analytics research and HIT 

business value literature. For predictive health analytics research, our model advances current 

predictive health analytics research in the IS field in three ways. First, the model examines 

multiple events as a disease progresses over time. To the best of knowledge, this is the first 

predictive health analytics research in the IS field that studies event history and predicts 

transitions between different health events over time. Compared with existing predictive health 

analytics in the IS field, our models can answer a broader research questions related to disease 

evolution.  

Second, we develop predictive health analytics models based on a variety of patient 

groups, including those with chronic and acute conditions in 17 body systems. Predictive models 

in the IS field focus primarily on a specific chronic disease and ignore the acute patients. 

Predictive models in the medical field are usually based on a single disease and a limited sample 
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size. However, it is likely that many patients will transition between acute and chronic conditions 

and between conditions in different body systems. Predictive models based on only chronic 

patients or a single disease are unlikely to capture transitions information for patients with 

diseases that transition between chronic and acute conditions and/or across different body 

systems. Our proposed models shed light on the predictive health analytics research to 

incorporate a variety of patient groups.  

Third, extant predictive health analytics research typically considers the chronic status of 

a discharge as a model covariate, not as a dynamic state in a discrete state space. Our research 

suggests that transitions between chronic and acute states—along with HIT implementation 

levels, hospital characteristics, and patient profiles—are good indicators of the underlying patient 

health status. The predictive models we propose detect future time points at which a disease may 

transition between chronic and acute states and progress from a minor to a more severe state; 

healthcare providers can use this information to intervene early to offer appropriate treatments 

and slow the worsening cycle of a disease.  

Our study contributes to the HIT business value literature by examining HIT’s value at 

the patient-transition level. We find empirical evidence that the majority of HIT functions 

improve patient-transition-level outcomes, and that only the CPOE function increases transition 

risk from other states to death. Prior literature has found that CPOE has the potential to improve 

healthcare quality, effectiveness, and safety, but that it can also introduce significant safety 

issues and unintended consequences (Coiera et al. 2016; Weiner et al. 2007). However, no extant 

study empirically examines CPOE’s impact on patient-transition-level outcomes. This study 

provides empirical evidence that COPE is negatively associated with patient-transition-level 

intermediate performance outcomes. Many other factors related to organizational, technical, or 
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human-machine interface also contribute to unintended consequences (Weiner et al. 2007). One 

plausible explanation is that human-computer interfaces may not be suitable for the highly 

interruptive and flexible healthcare context (Coiera et al. 2016). Issues in healthcare are usually 

complex and multidimensional, yet technologies are typically designed to process healthcare 

work in a linear manner (Ash et al. 2004; Ash et al. 2007). Misrepresenting clinical process as a 

linear process, however, can lead to inflexibility, workarounds, and errors in the information 

entered (Coiera et al. 2016). Another plausible explanation is that human-to-human 

communication, rather than documentation, is healthcare’s primary information task as it 

facilitates sense-making in communication and includes the constant human diligence for error 

catching (Coiera 2000; Coiera et al. 2016). Technologies that are not designed to meet the needs 

of clinical practices and communication processes can lead to errors in both communication and 

coordination (Coiera et al. 2016). The unintended consequences caused by misconfigurations 

between workflow, users, and technologies may increase the transition risk between different 

health statuses.  

In addition to our research contribution, our study also makes practical contributions. 

Assessing how different HIT functions impact different types of transitions can help healthcare 

providers effectively allocate investments across various IT resources to achieve enhanced health 

outcomes. Specifically, our findings can help healthcare providers identify which technologies to 

adopt to reduce different types of health-status transitions. For example, our results suggest that 

investments in RV will reduce the transition risk between chronic and acute conditions, while 

investments in ECD and telehealth will reduce the transition risk from major disease to death.  
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4.6 Limitations and Future Work 

With a rich longitudinal dataset, this study estimates patient health status based on the transition 

between chronic and acute states and studies the impact of HIT implementation on these 

transitions. Notwithstanding our research contributions, this study has limitations and presents 

multiple opportunities for future research. A first limitation is that our study examines the 

transition information for all diseases as a whole, without separately examining each disease 

individually. And, as we know, different diseases may progress in various ways. Future work can 

extend our results and examine how HIT’s value impacts individual diseases.  

Second, the multi-state model we applied is a time-homogeneous model, which assumes 

that the transition intensity matrix is constant in time. However, we find that the transition 

intensity matrix changes after three years. Future work may account for this change and use a 

time-inhomogeneous multi-state model to examine how transition intensities change with time.  

Third, we apply this Markov property in the essay—the probability of a state only 

depends on the probability of the previous state. However, in the future, we can relax this 

assumption and incorporate more event history in our states by employing a higher order Markov 

model, e.g., second-order Markov model that takes into account the two previous states.  

Fourth, the multi-state Markov model we propose cannot be used to predict a patient’s 

next readmission. Future work can study both one-time patients and readmitted patients and 

apply a hurdle model to separate one-time hospital patients from multi-visit patients and model a 

patient’s next admission time.  

Finally, our study considers only how individual HIT functions impact the transition 

between chronic and acute health statuses. But, very often, the complementarity effects that 
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improve healthcare performance come only from combining HIT functions. We encourage 

researchers to explore how HIT’s complementarity effects impact the transitions between 

different health statuses in the future. 
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Appendix 

Appendix 4A: HIT Items List and Scale (Source: AHA IT Supplement Files) 

HIT implementation items are listed as follows: 

1. Decision Support:  

1) Clinical guidelines 

2) Clinical reminders 

3) Drug allergy alerts 

4) Drug-drug interaction alerts 

5) Drug-Lab interaction alerts 

6) Drug dosing support 

 

2. CPOE: 

1) Laboratory tests 

2) Radiology tests 

3) Medications 

4) Consultation requests 

5) Nursing orders 

 

3. Results Viewing: 

1) Lab reports 

2) Radiology reports 

3) Radiology images 

4) Diagnostic test results  

5) Diagnostic test images  

6) Consultant reports 

4. Electronic Clinical Documentation: 

1) Patient demographics 

2) Physician notes 

3) Nursing Notes 

4) Problem lists 

5) Medication lists 

6) Discharge summaries 

7) Advanced directive 

 

HIT implementation is measured by a six-point scheme as follows:  

1 = Fully implemented across all units                          

2 = Fully implemented in at least one unit 

3 = Beginning to implement in at least one unit            

4 = Have resources to implement in the next year 

5 = Do not have resources but considering implementing  

6 = Not in place and not considering implementing 
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