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EMPIRICAL LIKELIHOOD INFERENCES IN SURVIVAL ANALYSIS

by

XUE YU

Under the Direction of Yichuan Zhao, Phd

ABSTRACT

In survival analysis, different regression models are used to estimate the effects of covari-

ates on the survival time. The proportional hazards model is commonly applied. However,

the proportional hazards model does not always give good fit in the real life. Other models,

such as proportional odds models, additive hazards models are useful alternative. Motivated

by this limitation, we investigate empirical likelihood method and make inference for semi-

parametric transformation models and accelerated failure time models in this dissertation.

The proposed empirical likelihood methods can solve several challenging and open problems.



These interesting problems include semiparametirc transformation model with length-biased

sampling, semiparametric analysis based on weighted estimating equations with missing co-

variates. In addition, a more computationally efficient method called jackknife empirical

likelihood (JEL) is proposed, which can be applied to make statistical inference for the ac-

celerated failure time model without computing the limiting variance. We show that under

certain regularity conditions, the empirical log-likelihood ratio test statistic converges to a

standard chi-squared distribution.

Finally, computational algorithms are developed for utilizing the proposed empirical

likelihood and jackknife empirical likelihood methods. Extensive simulation studies on cov-

erage probabilities and average lengths of confidence intervals for the regression parameters

for those topics indicate good finite samples performance under various settings. Further-

more, for each model, real data sets are analyzed for illustration of the proposed methods.

INDEX WORDS: Empirical likelihood, Semiparametirc transformation model, Jackknife,
Length-biased sampling, Missing covariates, Accelerated failure time
model.
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CHAPTER 1

INTRODUCTION

1.1 Survival analysis

Survival analysis is a collection of statistical approaches for data analysis, for which

the outcome variable of interest is the time until an event occurs (Kleinbaum (1998)). In

survival analysis, we refer the time variable as a survival time. The time to event can be

measured in hours, days, weeks, years from the beginning of follow-up of an individual until

an event occurs. Furthermore, the event of interest can be various things, such as death,

an occurrence of a disease, relapse from remission, a machine part breaks down and so

on. Although the terminology survival analysis was initially developed by biostatisticians to

analyze the occurrence of deaths in medical science, the methods are then applied in different

fields including engineering, economics, actuarial science, etc.

In survival analysis, the observations are censored, which is a unique feature. In essence,

censoring occurs when we have some information about individual survival time, but not

all subjects’ survival time are fully observed. Thus, the data about their survival time is

incomplete. For instance, in a medical study, censoring can occur if a subject chooses to

quit participating in the study, or dies from some unrelated events, or when there is a loss of

follow-up. Most survival data are right-censored, meaning that the data is censored at the

right side of the observed survival time interval.

1.2 Empirical likelihood

In statistics, the empirical function is the cumulative distribution function (CDF) asso-

ciated with the empirical measure of the sample. Let X1, X2, ..., Xn be independent random

vectors in Rp and for p ≥ 1 with common distribution function F0, δx be a point mass at x.



2

The empirical distribution is defined as

Fn =
1

n

n∑
i=1

δxi , (1.1)

where Fn is the nonparametric maximum likelihood estimate of F0 based on X1, X2, ..., Xn.

Empirical likelihood (EL) is a statistical approach for nonparametric inference. To

make inference for parameters, it adds weights in an estimating equation, which results in

a new objective function containing weights and depending on the parameters. The empiri-

cal likelihood is a different approach to other non-parametric methods, which has sampling

properties that are similar to the bootstrap. The basic idea of bootstrap is that inference

about a population can be modeled by resampling the sample data and performing deduction

on them.

The classical empirical likelihood (EL) was proposed by Thomas and Grunkemeier

(1975), who inverted a nonparametric likelihood ratio test to obtain confidence intervals

for the survival probability for right censored data. In the empirical likelihood (EL) theory,

we can estimate an unknown parameter vector by maximizing the empirical likelihood under

constraints.

Based on this idea, Owen (1988) developed the empirical likelihood method. EL is

very appealing because by using EL method, researchers can respect the shape of confidence

regions without having to specify a parametric family for the data. EL methods are more

general than usual parametric likelihood method, and EL can be applied to many estimat-

ing equations as well. Many researchers have implemented this method in many interesting

research fields. For example, Qin and Lawless (1994) linked estimating equations and empir-

ical likelihood, they also developed ways of combining information about parameters. Zhao

and Jinnah (2011) applied a variant of plug-in empirical likelihood by calculating the cu-

mulative baseline hazard function and made inference for Cox regression models. Zhao and

Chen (2008) made empirical likelihood inference for censored median regression models via

nonparametric kernel estimation, and the linear transformation model with interval-censored
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failure time data was also studied in Zhang and Zhao (2013), among others.

More recently, Chen et al. (2015) proved the asymptotic normality of the log empirical

likelihood-ratio statistic when the sample size and the data dimension are large. Huang and

Zhao (2018) developed empirical likelihood confidence intervals for the bivariate survival

function in the presence of univariate censoring. Other research works include Yang and

Zhao (2012b), Yang and He (2012), Wang et al. (2013), Wang et al. (2017). It is noticeable

that EL has been recognized as a useful tool in statistical sciences. Moreover, we can improve

EL by reducing the numerical difficulties coming from the constrained optimization, which

leads to a closed-form expression as a function of the parameters from the constraints and

the Lagrangian multipliers.

1.3 Jackknife empirical likelihood

Although empirical likelihood approach shows attractive properties, the computational

cost might be expensive when dealing with more complicated problems. A simpler and more

computationally reliable method, jackknife empirical likelihood (JEL), has been widely used.

Quenouille (1956) invented the jackknife as a resampling method, and it has been shown that

jackknife is still useful when the sample size n is small. The JEL method is proposed by Jing

et al. (2009), which combines EL and jackknife resampling method. “The jackknife empirical

likelihood (JEL) is the combined version of jackknife and empirical likelihood method. The

fundamental idea of the JEL method is to turn the statistic of interest into a sample mean

based on the jackknife pseudo-values“ (see Jing et al. (2009)).

JEL enables us to construct confidence regions by introducing jackknife pseudo-values

into the EL method. A significant advantage of the JEL method is its simplicity, and it is

a natural application of empirical likelihood to the sample mean of jackknife pseudo-values.

Let Z1, ..., Zn be independent random variables, and let

Tn = T (Z1, ..., Zn)
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be the estimator of the parameter θ. The jackknife pseudo-values is defined as

V̂i = nTn − (n− 1)T
(−i)
n−1 , i = 1, ..., n

where T
(−i)
n−1 := T (Z1, ..., Zi−1, Zi+1, ..., Zn). Actually, T

(−i)
n−1 is computed on the sample n− 1

variables formed from the original data set by deleting the ith observation. Thus, the

jackknife estimator of θ is the average of all the pseudo-values

T̂n,jack :=
1

n

n∑
i=1

V̂i.

Since the empirical likelihood is an easy tool, while calculating the sample mean, empir-

ical likelihood is applied to the jackknife pseudo-values. Let Gp(x) =
n∑
i=1

piI
{
V̂i ≤ x

}
and

θp =
n∑
i=1

piEV̂i. Then the empirical likelihood L(θ) is evaluated at θ,

L(θ) = max

{
n∏
i=1

pi :
n∑
i=1

piV̂i = θp,
n∑
i=1

pi = 1

}
.

The jackknife empirical likelihood ratio at θ is

R(θ) =
L(θ)

n−n
= max

{
n∏
i=1

npi :
n∑
i=1

piV̂i = θp,
n∑
i=1

pi = 1, pi ≥ 0

}
.

Using Lagrange multipliers, when

min
1≤i≤n

V̂i < θp < max
1≤i≤n

V̂i,

we can obtain that

pi =
1

n

1

1 + λ(V̂i − θp)
,
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where λ satisfies

f(λ) ≡ 1

n

n∑
i=1

V̂i − θp
1 + λ(V̂i − θp)

= 0.

Then we get the jackknife empirical log-likelihood ratio

logR(θ) = −
n∑
i=1

log
{

1 + λ(V̂i − θ)
}
.

According to Jing et al. (2009), the Wilks’ theorem holds

−2logR(θ)
d→ χ2

1.

Moreover, JEL is very appealing because it is more general than usual parametric like-

lihood as it can be applied to test complicated hypotheses. For instance, Zhao et al. (2015b)

proposed using JEL to study the mean absolute deviation, and Lin et al. (2017) developed

JEL for the error variance in a linear regression model. Furthermore, JEL is commonly

used in survival analysis. It not only provides efficient evaluation over survival functions

regardless of complete or censored data but also can be applied in different models, such

as accelerated failure time models (Bouadoumou et al. (2015)) and linear transformation

models (Yang et al. (2016)). JEL has other applications in clinical experiments, for exam-

ple, receiver operating characteristic (ROC) curve, a widely used graphical plot evaluating

the discriminating power of a diagnostic test. Liu and Zhao (2012) proposed semi-empirical

likelihood-based confidence intervals for ROC curves of two populations with missing data.

Then An and Zhao (2017) extended to the difference of two volumes under ROC surfaces.

Yang and Zhao (2013) constructed smoothed jackknife EL confidence intervals for the differ-

ence of ROC curves. Yang and Zhao (2015) made smoothed JEL inference for ROC curves

with missing data. Furthermore, Yang et al. (2017) made JEL inference for the partial area

under ROC curves. In addition, there are more research works about the difference of quan-

tiles and differences of two Gini indices, like Wang and Zhao (2016), Yang and Zhao (2017),
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Yang and Zhao (2018), etc. These research works indicate that the JEL based methods are

employed in many biostatistical fields, and they can be handy in dealing with more general

statistics beyond classical U -statistics. Notably, JEL methods can be easily implemented

in a standard software environment, and it will ease the computational burden for practical

use.

1.4 Linear transformation models

Counting processes have been used to describe event history data. The traditional

survival data can be characterized as a counting process with a single jump at the survival

time. Some statistical models were proposed to formulate the effects of covariates on counting

processes (see Andersen et al. (2012)).

In survival analysis, the data can be represented as counting process notation, N(t),

which is the count of the number of events observed in a time interval [0, t]. Let Z(t) be a

vector of time-varying covariates. Define T as the survival time. The proportional intensity

model has the form that

ΛZ(t) =

∫ t

0

Y (u)eβ
TZ(u)dΛ(u), (1.2)

where Y (t) = I(T ≥ t), Λ(·) is an unspecified increasing function, and β is a vector of

unknown regression parameters (Zeng and Lin (2006)).

For survival data, model (1.2) becomes the classical proportional hazards model (Cox

(1972)). The proportional hazards model estimates the relative risk of experiencing an event

of interest between two groups of subjects and assumes the hazard ratio to be constant. One

of the advantages of the proportional hazards model is the estimation of the regression pa-

rameters does not depend on the unspecified baseline hazard function. Cox (1975) proposed

a partial likelihood estimation technique to make inference about the regression parameters.

Other research work includes Tsiatis (1981), Andersen and Gill (1982), and Lin and Ying

(1993), etc.

One of the important assumptions of the proportional hazards model is that the hazards
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ratio is constant over the observed survival times. However, when this assumption is not

met, a useful alternative model, is proposed, the proportional odds model (Bennett (1983);

Pettitt (1984)). The proportional odds model assumes the ratio of the odds of survival as-

sociated with two sets of covariate values to be constant over time. This model was studied

by many researchers, for example, Aalen (1980), Buckley (1984), Pierce and Preston (1984),

Huffer and McKeague (1991), among others.

The proportional hazards and proportional odds models belong to the class of semipara-

metric linear transformation models (Dabrowska and Doksum (1988)). The transformation

models provide many other potential choices in survival analysis. This class of models were

studied in Dabrowska and Doksum (1988), Cheng et al. (1995), Chen et al. (2002), Huang

and Wang (2010), Wang and Wang (2015), etc.

1.5 Summary

For the complete and censored data, the traditional EL procedures have been devel-

oped to make inference for linear transformation models. However, not many research works

studied length-biased data. Therefore, we consider EL inference for semiparametric transfor-

mation models with length-biased sampling. The biased sampling occurs when the sampling

distribution is different from the population distribution, commonly seen in survey studies.

Qin (2017) pointed out that when the sampling plan is adopted, this bias happens because

not every unit in the population has an equal chance to be sampled. Moreover, length-biased

sampling appears when the probability of selecting an interval is proportional to the length

of the interval. We will explore this problem in Chapter 2.

Missing data are a frequently encountered problem in epidemiology and biostatistics.

The complete-case analysis is one of the most commonly used methods, which is only includ-

ing those participants without missing observations. However, when dealing with missing

covariates, this method will naturally reduce the statistical power and produce biased es-

timates. An idea based on weighted estimating equations has been proposed and it shows

an advantage of dealing with missing covariates. We also introduced EL method to make
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a reliable inference for semiparametric transformation models with missing covariates. We

will discuss this topic in Chapter 3.

An alternative to the commonly used proportional hazards model is the accelerated

failure time (AFT) model. An AFT model assumes that the effect of a covariate is to ac-

celerate the life course of a disease by some constant, while the proportional hazards model

assumes that the effect of a covariate is to multiply the hazard rate by some constant. A

critical estimation procedure for the accelerated failure time model is the rank-based esti-

mating equations with Gehan-type weight (see Fygenson and Ritov (1994)). However, when

the rank-based estimating equation is not smoothed, it is difficult to compute the estimator

of regression parameters. To overcome that difficulty, Brown and Wang (2007) and Heller

(2007) used an induced smoothing approach that smoothed the estimating functions to ob-

tain point and variance estimators. We proposed a more computationally efficient method

(jackknife empirical likelihood) to make statistical inference for the AFT model without

computing the limiting variance, which will be discussed in Chapter 4.

The rest of the dissertation is organized as follows. We describe empirical likelihood

inference for semiparametric transformation models with length-biased sampling in Chapter

2. In Chapter 3, we discuss empirical likelihood inference for semiparametric transformation

models with missing covariates. In Chapter 4, we develop the jackknife empirical likelihood

inference for the accelerated failure time model. Summary and future research directions are

discussed in Chapter 5. Chapters 2, 3 and 4 are written in manuscript style and have been

submitted to statistical journals. Moreover, Chapter 2 is under minor revision, and Chapter

4 has been accepted for publication.
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CHAPTER 2

EMPIRICAL LIKELIHOOD INFERENCE FOR SEMIPARAMETRIC

TRANSFORMATION MODELS WITH LENGTH-BIASED SAMPLING

2.1 Background

A general class of semiparametric regression models, the so-called linear transformation

models, have been explored by many authors, who proposed various estimation approaches

and made statistical inferences. The transformation models are defined in Chen et al. (2002)

as

H(T ) = −β′Z + ε,

where H is an unknown monotone function, Z is a vector of covariates, β is an p×1 unknown

vector of regression parameters of interest, ε’s are the random variables with an unspecified

distribution, and we assume that ε’s are independent of Z. The proportional hazards model

is a special case with ε following the extreme value distribution, and if ε follows the standard

logistic distribution, it becomes a proportional odds model.

The empirical likelihood approach was introduced by Owen (1988, 1990, 2001) based

on the original idea proposed by Thomas and Grunkemeier (1975). The empirical likeli-

hood method provides a way to construct confidence regions of regression estimators, an

empirical log-likelihood ratio test statistic is developed. In addition, Owen (1990) showed

that under certain regularity conditions, the Wilk’s theorem (Wilks (1938)) of chi-squired

limiting distribution of log-likelihood ratio still holds. This approach offers the advantages

of eliminating the need to specify a distribution of the data, and often yields more efficient

estimates of the parameters than many common estimators.

As censored data are very common, empirical likelihood approach has been extended

to the area of survival analysis as well. Wang and Jing (2001) applied the empirical likeli-
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hood method to a class of functionals of the survival function, and showed that it follows a

chi-squared distribution. Zhou (2005) used the empirical likelihood method to make a con-

fidence interval based on the rank estimators of the regression coefficient in the accelerated

failure time model. Zhao (2010) applied an empirical likelihood ratio method and derived its

limiting distribution via U-statistics. Lu and Liang (2006) showed that the limiting distribu-

tion of the empirical likelihood ratio is a weighted sum of standard chi-squared distribution.

Subsequently, Yu et al. (2011) appropriately modified some constructions based on Lu and

Liang (2006), thereby deducing that the limiting distribution follows a standard chi-squared

distribution. More recently, in the light of Owen’s work, Chen et al. (2008) developed the

adjusted empirical likelihood for general estimating equations, which has been interpreted in

various research paper, such as Wang et al. (2016), Zhao et al. (2015b) and Lin et al. (2017).

In recent decades, not only have censored data appeared in the survival analysis, but

also an abundance of length-biased data have been identified. Length time bias is a form of

selection bias, and length-biased data are left-truncated and right censored data under the

stationary assumption, that states, the initial times follow a stationary Poisson process. As

a matter of fact, length time bias is often discussed in the context of observational studies.

More accurate cancer screenings is just one of the most common benefits that this method-

ology has provided. Numerous more examples can be found in Shen et al. (2009). The

observed samples are not randomly selected from the population of interest, but with some

probability proportional to their lengths. Under the length-biased sampling, the subjects

who have been at risk before entering the study might have longer observed time intervals

from initiation to failure than those from the underlying distribution of the general popula-

tion.

Length-biased data have been studied extensively. Notably, Shen et al. (2009) made in-

ferences for semiparametric transformation models with length-biased sampling based on the

ranks of observed failure times, while Wang and Wang (2015) obtained the estimators from

counting process-based unbiased estimating equations. The crucial step of the latter method

was to construct martingale estimating equations. However, having discussed the advan-
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tages of the Normal Approximation (NA) method (Wang and Wang (2015)), it is important

to note that the computational cost of NA method is not only costly due to complicated

variance estimation, but also may introduce a bias. In this Chapter, we endeavor to over-

come these cost issues by proposing empirical likelihood (EL) inferences for semiparametric

transformation models. Nevertheless, we will still consider the martingale type estimation

equations proposed by Wang and Wang (2015), and derive a empirical log-likelihood ratio

test statistic that has a standard chi-squared limiting distribution.

The remainder of this chapter is organized as follows. In Section 2.2, empirical like-

lihood (EL) method and adjusted empirical likelihood (AEL) method inference procedure

will be introduced. In Section 2.3, simulation studies are carried out to demonstrate the

performance of the proposed EL and AEL methods. Furthermore, a real data analysis is

shown in Section 2.4. We will be discussing about our findings, along with our further work

will be covered in Section 2.5. Proofs are provided in the Appendix.

2.2 Main results

2.2.1 Notation

We adopted the notations from Wang and Wang (2015). Assume that T0 is the time

measured from the initiating event to failure, A is the truncation variable, which measures the

time from the initiating event to exam. The residual censoring time is denoted by C, T is the

observed failure time satisfying T0 > A, and V = T −A. We also define T̃ = min(T,A+C)

and δ = I(V ≤ C). We assume that C and (A, V ) are independent given Z.

2.2.2 Normal approximation method

Let (β0, H0) be the true values of (β,H), λε(·) and Λε(·) be the hazard and cumulative

hazard functions of ε. For i = 1, 2, ..., n, we have the following counting process notations:

Yi(t) = I(T̃i ≥ t), Ni(t) = δiI(T̃i ≤ t),
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Mi(t) = Ni(t)−
∫ t

0

Yi(u)r(t, T̃i, δi)dΛε {β0
′Zi +H0(u)} .

Here r(t, T̃ , δ) = δω(t)/ω(T̃ ), where ω(t) =
∫ t

0
SC(u)du and SC(·) is the survival function for

the residual censoring time C. Under certain filtration (Fleming and Harrington (2011)),

M(t) is a martingale process.

Wang and Wang (2015) proposed the following estimation equations:

n∑
i=1

[
dNi(t)− Yi(t)r̂(t, T̃i, δi)dΛε{β′Zi +H(t)}

]
= 0, (0 ≤ t ≤ τ) (2.1)

n∑
i=1

∫ ∞
0

Zi

[
dNi(t)− Yi(t)r̂(t, T̃i, δi)dΛε{β′Zi +H(t)}

]
= 0. (2.2)

where τ = inf{t : P (T̃ > t) = 0}, r̂(t, T̃ , δ) = δω̂(t)/ω̂(T̃ ), ω̂(t) =
∫ t

0
ŜC(u)du, ŜC is the

Kaplan-Meier estimator of the censoring time C.

They used the solution of equations (2.1) and (2.2), which is denoted by (β̂, Ĥ) to be

the estimator of (β0, H0). For any u, t ∈ [0, τ ], define

B1(t) = E[Y (t)r(t, T̃ , δ)λ̇ε{β′0Z +H0(t)}],

B2(t) = E[Y (t)r(t, T̃ , δ)λε{β′0Z +H0(t)}],

BZ
1 (t) = E[ZY (t)r(t, T̃ , δ)λ̇ε{β′0Z +H0(t)}],

BZ
2 (t) = E[ZY (t)r(t, T̃ , δ)λε{β′0Z +H0(t)}],

B(t, u) = exp

{∫ t

u

{
B−1

2 (u)B1(u)
}
dH0(u)

}
,

z(t) = B−1
2 (t)

[
BZ

2 (t) +

∫ τ

t

{
BZ

1 (u)−B−1
2 (u)BZ

2 (u)B1(u)
}
B(u, t)dH0(u)

]
, (2.3)
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and

a(t) =

∫ τ
0
E
[
ZδY (u)

ω(T̃ )

(
I(t ≤ u)

∫ u
t
SC(u)du− ω(u)

ω(T̃ )
I(t ≤ T̃ )

∫ T̃
t
SC(u)du

)
× dΛε {β′0Zi +H0(u)}

]
π(t)

.

(2.4)

Denote

Σ∗(β0) = E

[∫ τ

0

{Z − z(t)}Z ′Y (t)r(t, T̃ , δ)λ̇ε{β′0Z +H0(t)}dH0(t)

]
,

Σ∗(β0) = E

[∫ τ

0

({Z − z(t)}dM(t) + a(t)dMC(t))

]⊗2

,

where λ̇ε = dλε(t)/dt, MC(t) = I(V ∧ C ≤ t, δ = 0)−
∫ t

0
I(V ∧ C ≥ u)dΛC(u), ΛC(t) is the

cumulative hazard function of C, and π(t) = P (T̃ − A ≥ t).

Under the conditions (D.1)-(D.5) given in the Appendix, Wang and Wang (2015) proved

that
√
n(β̂ − β0)

d→N(0,Σ∗
−1Σ∗(Σ∗

−1)′).

To establish the asymptotic properties of β̂, some definitions are given first. Define

B̂1(β, t) = n−1

n∑
i=1

Yi(t)r̂(t, T̃i, δi)λ̇ε{β′Zi + Ĥ(β, t)},

B̂2(β, t) = n−1

n∑
i=1

Yi(t)r̂(t, T̃i, δi)λε{β′Zi + Ĥ(β, t)},

B̂Z
1 (β, t) = n−1

n∑
i=1

ZiYi(t)r̂(t, T̃i, δi)λ̇ε{β′Zi + Ĥ(β, t)},

B̂Z
2 (β, t) = n−1

n∑
i=1

ZiYi(t)r̂(t, T̃i, δi)λε{β′Zi + Ĥ(β, t)},

B̂(β, t, u) = exp

{∫ t

u

{
B̂−1

2 (β, u)B̂1(β, u)
}
dĤ(β, u)

}
,
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ẑ(β, t) = B̂−1
2 (β, t)

[
B̂Z

2 (β, t) +

∫ τ

t

{
B̂Z

1 (β, u)− B̂−1
2 (β, u)B̂Z

2 (β, u)B̂1(β, u)
}
B̂(β, u, t)dĤ(β, u)

]
,

(2.5)

and

â(β, t) =

∫ τ

0

n−1

n∑
i=1

[
ZiδiYi(u)

ω̂(T̃i)

(
I(t ≤ u)

∫ u

t

ŜC(u)du− ω̂(u)

ω̂(T̃i)
I(t ≤ T̃i)

∫ T̃i

t

ŜC(u)du

)

×dΛε

{
β′Zi + Ĥ(u)

}]/[
n−1

n∑
i=1

I(T̃i − Ai ≥ t)

]
. (2.6)

Furthermore, one can also define the Σ̂∗(β) and Σ̂∗(β), the consistent estimators of Σ∗ and

Σ∗ as follows, respectively.

Σ̂∗(β) =
n∑
i=1

[∫ τ

0

{Zi − ẑ(β, t)}Zi′Yi(t)r̂(t, T̃i, δi)λ̇ε{β′Zi + Ĥ(β, t)}dĤ(β, t)

]/
n,

Σ̂∗(β) =
n∑
i=1

[∫ τ

0

(
{Zi − ẑ(β, t)} dM̂i(β, t) + â(β, t)dM̂Ci(t)

)]⊗2
/

n,

where

M̂i(β, t) = N̂i(t)−
∫ t

0

Yi(u)r̂(u, T̃i, δi)dΛε{β′Zi + Ĥ(β, u)}, (2.7)

M̂Ci
(t) = I(Vi ∧ Ci ≤ t, δi = 0)−

∫ t

0

I(Vi ∧ Ci ≥ u)dΛ̂C(u), (2.8)

and Λ̂C(t) is the Nelson-Aalen estimator of the residual censoring time C.

Thus, the 100(1− α)% NA-based confidence region for β can be established as

RNA
α =

{
β : n(β̂ − β)′Σ̂∗(β̂)(Σ̂∗(β̂))

−1
(Σ̂∗(β̂))

′
(β̂ − β) ≤ χ2

p(α)
}
,

where χ2
p(α) is the upper α-quantile of distribution of χ2

p.

2.2.3 Empirical likelihood method

As can be seen, Wang and Wang (2015) put forward a good concept to make inferences

of β. However, it does not bypass perplexed variance computations. In this subsection, an
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empirical likelihood method for the length-biased data are proposed, and the asymptotic

chi-squared distribution of the empirical log-likelihood ratio and the confidence intervals of

regression parameters are developed.

Motivated by the estimating equation (2.2), for i = 1, ..., n, we propose

Wni(β) =

∫ ∞
0

{Zi − ẑ(β, t)} dM̂i(β, t) + â(β, t)dM̂Ci
(t),

where ẑ(β, t), â(β, t), M̂i(β, t) and M̂Ci
(t) are defined in equations (2.5) to (2.8).

In addition to the standard unit total probability constraints, another constraint
n∑
i=1

piWni(β) = 0 is added. Subsequently, the following empirical likelihood ratio is devel-

oped as

Rn(β) = sup

{
n∏
i=1

npi :
n∑
i=1

piWni(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0, i = 1, ..., n

}
.

Also, we can define the empirical log-likelihood ratio ln(β) = −2 logRn(β), therefore,

the empirical log-likelihood ratio can be expressed as

ln(β) = −2sup

{
n∑
i=1

log(npi) :
n∑
i=1

piWni(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0, i = 1, ..., n

}
.

Using Lagrange multipliers, it can be shown that

ln(β) = 2
n∑
i=1

log
(
1 + (θ(β))′Wni(β)

)
,

where θ(β) is the solution to the below equation

1

n

n∑
i=1

Wni(β)

1 + (θ(β))′Wni(β)
= 0. (2.9)

After all, at the true value β0 of β, the proposed empirical log-likelihood ratio test

statistic can be shown following a standard chi-squared limiting distribution. In order to
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derive the Wilks theorem, some results are needed first.

Theorem 2.1. Under the conditions (D.1)-(D.5) given in the Appendix, as n −→ ∞, one

has that

1√
n

n∑
i=1

Wni(β0)
d→N(0,Σ∗(β0)).

Moreover, as n −→∞, one has that

1

n

n∑
i=1

Wni(β0)Wni(β0)′
p→Σ∗(β0).

By using the results of Theorem 2.1, the limiting distribution of the estimated empirical

log-likelihood ratio can be shown in the following theorem.

Theorem 2.2. Assume that the same regularity conditions given in Theorem 2.1 hold. As

n −→∞, one has that

ln(β0)
d→χ2

p,

where χ2
p is a standard chi-squared random variable with p degrees of freedom.

Hence, the 100(1− α)% empirical likelihood confidence region for β can be established

as

REL
α =

{
β : ln(β) ≤ χ2

p(α)
}
,

where χ2
p(α) is the upper α-quantile of distribution of χ2

p.

In practice, if we are only interested in a part of parameters. Define β = (β′1, β
′
2)′, where

β1 ∈ Rq and β2 ∈ Rp−q. We construct the empirical likelihood confidence region for β1. The

above proposed procedure can be used, and the profile empirical likelihood ratio is defined

as

l∗n(β1) = inf
β2
ln(β′1, β

′
2)′.

We obtain Theorem 2.3 for the proposed profile log-empirical likelihood ratio l∗n(β1).

Theorem 2.3. Assume that the same regularity conditions given in Theorem 2.1 hold. As
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n −→∞, one has that

l∗n(β10)
d→χ2

q,

where β10 is the true value of the parameter of interest β1, and χ2
q is a standard chi-squared

random variable with q degrees of freedom.

Thus, the 100(1− α)% profile EL confidence region for β1 can be established as

REL∗
α =

{
β1 : l∗n(β1) ≤ χ2

q(α)
}
,

where χ2
q(α) is the upper α-quantile of distribution of χ2

q.

2.2.4 Adjusted empirical likelihood method

Afterwards, Chen et al. (2008) developed the adjusted empirical likelihood (AEL)

method to improve the performances of the empirical likelihood methods in terms of cover-

age probability. The key idea of the AEL method is to add one more value to Wni(β), which

is Wn,n+1(β) = −(an/n)
n∑
i=1

Wni(β), where an = max(1, log(n)/2). Then W ad
ni (β) = Wni(β),

i = 1, ..., n+ 1.

Motivated by their idea, we introduce the adjusted empirical likelihood ratio function

as follows

Rad
n (β) = sup

{
n+1∏
i=1

(n+ 1)pi :
n+1∑
i=1

piW
ad
ni (β) = 0,

n+1∑
i=1

pi = 1, pi ≥ 0, i = 1, ..., n+ 1

}
.

Therefore, define the adjusted empirical log-likelihood ratio to be

logRad(β) = −
n+1∑
i=1

log
(
1 + (θad(β))′W ad

ni (β)
)
,

by the same arguments that in subsection 2.2.3, θad(β) satisfies

1

n+ 1

n+1∑
i=1

W ad
ni (β)

1 + (θad(β))′W ad
ni (β)

= 0. (2.10)
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As in Chen et al. (2008), the following result holds for the AEL procedure.

Theorem 2.4. Assume that the same regularity conditions given in Theorem 2.1 hold. De-

fine ladn (β0) = −2 logRad(β0). As n −→∞, one has that

ladn (β0)
d→χ2

p.

Thus, the 100(1 − α)% adjusted empirical likelihood confidence region for β can be

constructed as

Rad
α =

{
β : ladn (β) ≤ χ2

p(α)
}
.

Similarly, we can construct the profile adjusted empirical likelihood confidence region

for β1. The profile adjusted empirical likelihood ratio is defined as

l∗,adn (β1) = inf
β2
ladn (β′1, β

′
2)′.

One can get Theorem 2.5 for the proposed profile adjusted log-empirical likelihood ratio

l∗,adn (β1). Combined Theorems 2.3 and 2.4, the proof of Theorem 2.5 can be obtained.

Theorem 2.5. Assume that the same regularity conditions given in Theorem 2.1 hold. As

n −→∞, one has that

l∗,adn (β10)
d→χ2

q,

where β10 is the true value of the parameter of interest β1, and χ2
q is a standard chi-squared

random variable with q degrees of freedom.

Thus, the 100(1−α)% profile adjusted empirical likelihood confidence region for β1 can

be established as

R∗,adα =
{
β1 : l∗,adn (β1) ≤ χ2

q(α)
}
,

where χ2
q(α) is the upper α-quantile of distribution of χ2

q.
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2.3 Simulation studies

In this section, a series of simulation studies are conducted to assess our proposed EL

and AEL methods, and to compare the relative performances with NA method proposed by

Wang and Wang (2015).

In order to compare EL, AEL and NA methods, we adopted as the same simulation

settings as that in Wang and Wang (2015). Like Wang and Wang (2015), failure times T0

were simulated from the transformation model

H(T0) = −β′Z + ε,

where H(t) = 2 log(t), β = (β1, β2)′, Z = (Z1, Z2)′, and Z1, Z2 are drawn from a jointly

normal distribution with each mean 0, standard deviation 1, and correlation 0.5. The trun-

cation variable A was generated from a uniform distribution (0, τ), where τ was chosen such

that it is larger than the upper bound of T0. We only kept paired data (Ai, T0i) satisfying

Ai ≤ T0i (i = 1, ..., n).

Moreover, we set β0 = (0, 0)′ or (1, 1)′. The residual censoring variable C was gener-

ated independently from the uniform distribution on (0, c), where the constant c was chosen

to yield three different censoring rates (CR): 0%, 10%, and 30%. In addition, the sample

sizes were 100 and 200, and all the simulations were based on 1000 replications.

Proportional hazards model and proportional odds model are considered in our simula-

tions. Under proportional hazards model , we generated ε from extreme value distribution.

Then the 95% coverage probabilities (CP) and average lengths (AL) of confidence intervals

for the estimators of β = (β1, β2)′ were calculated .

From Table 2.1, we can see that the coverage probabilities of estimators for all methods

improve as the sample sizes increase from 100 to 200. For most scenarios, we lose more infor-

mation as the censoring rates increase, which causes the coverage probability to decrease and

average lengths of the confidence intervals to get wider. For all the three methods, when the

sample sizes become larger, the lengths of confidence intervals become shorter. Moreover,
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AEL preforms slightly better than EL in terms of coverage probability. For instance, when

the sample size n = 100, (β1, β2) = (1, 1), and CR = 30%, the coverage probability of

EL confidence intervals is (0.924, 0.928), while the coverage probability of AEL confidence

intervals is (0.931, 0.930). This result is expected because AEL procedure can reduce the

amount of deviation. Under proportional odds model, ε was simulated from standard logistic

distribution. Table 2.2 shows as the same patterns as the results in Table 2.1. Generally

speaking, our results are consistent with those in Wang and Wang (2015) for all cases. No-

tably , all the coverage probabilities are reasonably close to the nominal level 95% and AEL

method outperforms in most cases especially when the censoring rate is 30%.

2.4 Application to real data

In this section, dementia data were analyzed to illustrate the proposed EL and AEL

methods. The data chosen are acquired from a multi-center epidemiological study, that

is, the Canadian Study of Health and Aging (CSHA). Dementia is a chronic or persistent

disorder of the mental processes caused by brain disease or injury, which is a progressive

degenerative medical condition. In the United States and Canada, dementia is one of the

leading causes of all deaths. (See Shen et al. (2009))

In the study, more than 14,000 subjects were 65 years or older. They were randomly

chosen to be invited for a health survey in Canada. A total of 10,263 subjects agreed to

participate. The participants were screened for dementia in 1991, and 1132 of 10263 people

were identified as having dementia. All those patients had been followed until 1996, and their

dates of death or last follow-up were recorded from the time of screening. Besides medical

records, the data included three dementia categories, which were probable Alzheimer’s dis-

ease, possible Alzheimer’s disease and vascular dementia. Other than that, date of screening

for dementia, date of death or censoring and death indicators were recorded. Patients with

worse prognosis of dementia had higher chances to die before the study recruitment. Thus,

Shen et al. (2009) pointed out that by excluding missing data of disease onset or dementia

type, the rest of 818 participants are length-biased with stationary assumption. It was also
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validated in Addona and Wolfson (2006).

Among all patients, 393 had probable Alzheimer’s disease, 252 had possible Alzheimer’s

disease, and 173 had vascular dementia. Since 638 out of 818 patients died at the end of

study, others were determined as right censored data. The goal of the study is to evaluate

if three dementia types had different impacts on patients’ survival time. We chose one of

the three types named probable Alzheimer’s disease as the baseline variable and other two

(Alzheimer’s disease and vascular dementia) as indicators. Under proportional hazards and

proportional odds models, lengths of confidence intervals of covariates for all three methods

(NA, EL and AEL) are compared.

In Table 2.3, we reported the lower bound (LB) and upper bound (UB) of the param-

eters as well as the 95% confidence interval lengths by using NA, EL and AEL methods.

Similar results are shown by three methods indicate our proposed EL and AEL methods

do provide valid inferences. In conclusion, there are little associations between the type of

dementia and patients’ survival time.

2.5 Discussion

In this chapter, we propose empirical likelihood and adjusted empirical likelihood meth-

ods to make statistical inferences for the semiparametric transformation models under length-

biased sampling. Motivated by Wang and Wang (2015), who constructed unbiased estimating

equations based on counting processes. An empirical log-likelihood ratio is developed. More-

over, the test statistic put forward is proven to follow the standard chi-squared distribution.

Therefore, when we make statistical inferences about the regression parameters of interest,

complicated variance covariance matrix estimations can be avoided. Our approaches offer

the advantages of easy implementation, and can be applied in other regression models with

length-biased data. This will be our future research topics.
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Table 2.1 Simulation results for the proportional hazards model

NA EL AEL

CR CP AL CP AL CP AL

n = 100 (β1, β2)=(0, 0)

0% (0.956, 0.958) (1.117, 0.919) (0.947, 0.946) (1.284, 1.139) (0.957, 0.954) (1.471, 1.404)

10% (0.938, 0.917) (1.126, 1.297) (0.933, 0.930) (1.352, 1.298) (0.940, 0.939) (1.467, 1.621)

30% (0.920, 0.896) (2.952, 3.518) (0.924, 0.901) (3.377, 3.492) (0.931, 0.928) (3.567, 3.661)

n = 100 (β1, β2)=(1, 1)

0% (0.939, 0.940) (0.820, 0.868) (0.941, 0.940) (1.336, 1.284) (0.942, 0.942) (1.564, 1.603)

10% (0.937, 0.935) (0.994, 0.839) (0.939, 0.935) (1.400, 1.369) (0.940, 0.942) (1.783, 1.821)

30% (0.918, 0.924) (1.359, 1.385) (0.924, 0.928) (2.081, 2.304) (0.931, 0.930) (2.640, 2.357)

n = 200 (β1, β2)=(0, 0)

0% (0.955, 0.949) (0.832, 0.715) (0.949, 0.948) (1.128, 1.302) (0.949, 0.949) (1.288, 1.312)

10% (0.939, 0.924) (1.101, 1.413) (0.943, 0.932) (1.227, 1.204) (0.945, 0.943) (1.358, 1.421)

30% (0.935, 0.937) (2.075, 2.014) (0.934, 0.935) (2.493, 2.361) (0.941, 0.939) (2.699, 2.853)

n = 200 (β1, β2)=(1, 1)

0% (0.954, 0.948) (0.726, 0.823) (0.942, 0.942) (1.179, 1.201) (0.944, 0.943) (1.307, 1.249)

10% (0.941, 0.936) (0.814, 1.248) (0.943, 0.936) (1.289, 1.290) (0.944, 0.942) (1.583, 1.697)

30% (0.921, 0.930) (1.893, 1.582) (0.925, 0.939) (2.364, 2.461) (0.938, 0.938) (2.011, 2.176)
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Table 2.2 Simulation results for the proportional odds model

NA EL AEL

CR CP AL CP AL CP AL

n = 100 (β1, β2)=(0, 0)

0% (0.944, 0.948) (1.106, 1.109) (0.940, 0.947) (1.224, 1.351) (0.948, 0.947) (1.508, 1.473)

10% (0.931, 0.926) (1.130, 1.116) (0.935, 0.933) (1.405, 1.398) (0.938, 0.940) (1.664, 1.790)

30% (0.922, 0.901) (2.014, 2.015) (0.934, 0.928) (2.904, 2.887) (0.932, 0.928) (3.081, 3.114)

n = 100 (β1, β2)=(1, 1)

0% (0.941, 0.942) (1.096, 1.066) (0.936, 0.939) (1.335, 1.374) (0.941, 0.941) (1.614, 1.409)

10% (0.934, 0.914) (1.227, 1.368) (0.931, 0.937) (1.621, 1.503) (0.940, 0.940) (1.881, 1.892)

30% (0.932, 0.936) (2.121, 2.242) (0.934, 0.935) (2.228, 2.404) (0.935, 0.936) (2.399, 2.514)

n = 200 (β1, β2)=(0, 0)

0% (0.951, 0.948) (0.784, 0.800) (0.948, 0.947) (1.077, 0.987) (0.951, 0.951) (1.410, 1.427)

10% (0.941, 0.952) (0.921, 0.976) (0.943, 0.950) (1.114, 1.281) (0.946, 0.944) (1.523, 1.408)

30% (0.944, 0.951) (1.639, 1.564) (0.938, 0.947) (2.003, 2.186) (0.942, 0.942) (2.245, 2.379)

n = 200 (β1, β2)=(1, 1)

0% (0.945, 0.945) (0.729, 0.702) (0.943, 0.932) (1.229, 1.208) (0.949, 0.947) (1.482, 1.411)

10% (0.942, 0.943) (1.317, 1.333) (0.949, 0.950) (1.504, 1.397) (0.947, 0.947) (1.704, 1.693)

30% (0.937, 0.940) (1.635, 2.164) (0.932, 0.944) (1.881, 1.924) (0.932, 0.934) (1.995, 1.908)
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Table 2.3 Interval lengths (LB, UB) of regression parameters for dementia data

Method Model Vascular dementia Alzheimer’s disease

EL Proportional Hazards 0.312 (-0.108, 0.204) 0.183 (-0.156, 0.027)

AEL 0.391 (-0.213, 0.178) 0.248 (-0.245, 0.003)

NA 0.249 (-0.092, 0.157) 0.189 (-0.193, -0.004)

EL Proportional odds 0.729 (-0.235, 0.494) 0.550 (-0.582, -0.032)

AEL 0.751 (-0.178, 0.573) 0.607 (-0.603, 0.004)

NA 0.564 (0.084, 0.648) 0.397 (-0.576, -0.179)
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CHAPTER 3

EMPIRICAL LIKELIHOOD INFERENCE FOR SEMIPARAMETRIC

TRANSFORMATION MODELS WITH MISSING COVARIATES

3.1 Background

The proportional hazards model was proposed by Cox (1972), which is the most popular

approach used in survival analysis. The proportional odds model is an natural alternative

method. As a generalization of these two well-known models, the semiparametric trans-

formation model provides many other choices. Let T be the failure time; Z be a vector

of covariates; β, a p × 1 unknown vector of regression parameters of interest. Then, the

transformation model is defined as follows (see Chen et al. (2002))

H(T ) = −β′Z + ε,

where H is an unknown monotone increasing transformation function, and ε’s are the random

error components with an unspecified distribution. Moreover, ε’s are assumed independent

of Z.

Empirical likelihood (EL) is one of the most notable methodologies for nonparametric

inference, which is based on a data-driven likelihood ratio function. Thomas and Grunk-

emeier (1975) proposed the original idea, and then Owen (1988, 1990, 2001) completely

summarized it. Moreover, Owen (1988) showed that EL approach has the advantage of

eliminating the requirement to specify a distribution of the data, and the log-likelihood ratio

follows a chi-squared limiting distribution. The approach has rapidly drawn many atten-

tions and since then been extended to various cases. For instance, it has been applied to

generalized linear models (Kolaczyk (1994)), linear regression with censored data (Zhou and

Li (2008)), and general estimating equations introduced by Qin and Lawless (1994). More
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recently, Zhao (2010) applied an empirical likelihood ratio method and derived its limiting

distribution via U -statistics. Yang and Zhao (2012b) developed EL confidence regions for

regression parameters of the survival rate. More research works are developed, including

Zhao et al. (2015a), Yang et al. (2016), Wang et al. (2016), Wang and Zhao (2016), Wang

et al. (2017), Yang et al. (2017), Lin et al. (2017), An and Zhao (2017), Huang and Zhao

(2018), Yang and Zhao (2018), among others.

In recent decades, as missing data are frequently seen in biostatistics and epidemiolog-

ical studies, it is essential to select efficient approaches to deal with the missing covariates.

Rubin (1976) defined a missing data process called missing at random (MAR). MAR implies

that the missing data process depends only on the observed covariates and the outcome. In

this chapter, we assume MAR assumption holds.

As a matter of fact, missing covariates have been studied extensively. For instance, one

of the heavily used methods is complete case analysis, that is, one would rule out the subjects

with missing covariates from the dataset, then perform the analysis. However, complete case

analysis is biased and inefficient, especially when the data are not missing completely at ran-

dom. Other research work include Lin and Ying (1993), Chen and Little (1999), and Qi et al.

(2005), etc. Notably, Qi et al. (2005) proposed the weighted estimating equations for pro-

portional hazards models with missing covariates by using the inverse probability weighted

idea. However, having discussed the advantages of the Cox regression model, it is important

to note that the Cox model has some limitations in practice. Considering other models, such

as additive hazards model (Qi et al. (2018)), or more general semiparametric transformation

model is necessary. Huang and Wang (2010) proposed inverse probability weighted estima-

tors for linear transformation models with missing covariates, and furthermore proved that

the estimators are consistent and asymptotically normal. Notwithstanding, the methodology

of Huang and Wang (2010) involves complicated covariance matrix estimations. Motivated

by Yang and Zhao (2012a) and Zhao and Yang (2012), we proposed the empirical likelihood

method for the transformation model to avoid the variance matrix calculation.

The remainder of this chapter is organized as follows. In Section 3.2, an empirical
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likelihood (EL) based inference procedure are introduced. Extensive simulation studies are

carried out to demonstrate the performance of proposed EL method in Section 3.3. In Sec-

tion 3.4, we conduct a real data analysis. Furthermore, Section 3.5 presents a discussion of

our findings and some recommendations. Proofs of theorems are provided in the Appendix.

3.2 Main results

Throughout the paper, we adopt the same notations as Huang and Wang (2010). Sup-

pose some components of Z are missing. Define Zc to be the covariates that are available

and Zm to be the covariates that are sometimes missing. Therefore, one can express the

covariates as Z = (Zc, Zm). Assume the censoring time is denoted by C, X is the observed

failure time satisfying X = min(T,C), and δ = I(T ≤ C). We assume that T and C are

independent given Z.

3.2.1 Normal approximation method

For i = 1, 2, ...n, we introduce the following counting process notations:

Yi(t) = I(Xi ≥ t), Ni(t) = δiI(Xi ≤ t),

Mi(β0, t) = Ni(t)−
∫ t

0

Yi(u)dΛ {β′0Zi +H0(u)} ,

where (β0, H0) is the true value of (β,H), Λ(·) is the cumulative hazard functions of ε.

Moreover, consider a non-missingness indicator V , if Zm is available, V = 1; if Zm is missing,

V = 0. Under the assumption MAR, define the non-missingness probability

πi = P (Vi = 1 |Xi, δi, Z
c
i , Z

m
i ) = P (Vi = 1 |Xi, δi, Z

c
i ).

Define τ = inf{t : P (X > t) = 0}. If π is known, Chen et al. (2002) proposed a unified

estimation process to analyze the linear transformation model. Combining with the inverse

probability weighted idea, Huang and Wang (2010) developed the following estimation equa-
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tions:
n∑
i=1

Vi
πi

[dNi(t)− Yi(t)dΛ{β′Zi +H(t)}] = 0 (0 ≤ t ≤ τ), (3.1)

n∑
i=1

∫ ∞
0

Vi
πi
Zi [dNi(t)− Yi(t)dΛ{β′Zi +H(t)}] = 0. (3.2)

The solution of equations (3.1) and (3.2), denoted by (β̃, H̃), is used as the estimator

of (β0, H0), where H̃ is a nondecreasing step functions with H(0) = −∞.

Let λ(t) be the hazard function, λ̇ = dλ(t)/dt. For any u, t ∈ [0, τ ], define

B(β0, t, u) = exp

{∫ t

u

{
E[Y (t)λ̇{β′0Z +H0(u)}]
E[Y (t)λ{β′0Z +H0(u)}]

}
dH0(u)

}
, (3.3)

µZ(β0, t) =
E[ZY (t)λ{β′0Z +H0(X)}B(t,X)]

E[Y (t)λ{β′0Z +H0(t)}]
, (3.4)

M∗(β0) =

∫ τ

0

{Z − µZ(β0, t)}dM(β0, t), (3.5)

A(β0) = E

[∫ τ

0

{Z − µZ(β0, t)}Z ′Y (t)λ̇{β′0Z +H0(t)}dH0(t)

]
, (3.6)

Σ1(β0) = E

[
1

π

(∫ τ

0

{Z − µZ(β0, t)}dM(β0, t)

)⊗2
]
, (3.7)

where M∗ is a martingale process with mean E[M∗] = 0, A and Σ1 are assumed to be finite

and nonsingular (see Huang and Wang (2010)).

In addition, Huang and Wang (2010) proved that

√
n(β̃ − β0)→ N(0, A−1(β0)Σ1(β0)(A−1(β0))′),

in distribution, as n→∞.

However, π is unknown, that is, more common in practice. Intuitively, to perform the

estimation of β and H(·), the non-missingness probability π in (3.1) and (3.2) can be replaced
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by its nonparametric estimator π̂. Then the estimating equations become

n∑
i=1

Vi
π̂i

[dNi(t)− Yi(t)dΛ{β′Zi +H(t)}] = 0, (3.8)

and
n∑
i=1

∫ ∞
0

Vi
π̂i
Zi [dNi(t)− Yi(t)dΛ{β′Zi +H(t)}] = 0. (3.9)

Denote the solution of (3.8) and (3.9) as (β̂, Ĥ(·)), Huang and Wang (2010) proved that

under the regularity conditions given in the Appendix, one has that

√
n(β̂ − β0)→N(0, A−1(β0)Σ2(β0)(A−1(β0))′),

in distribution, as n→∞, where

Σ2(β0) = Σ1(β0)− E
[(

1

π
− 1

)
(E(M∗ |W ))⊗2

]
. (3.10)

The procedure to estimate the non-missingness probability π is introduced as follows.

Let W = (W (1),W (2)) be the variable on which π is allowed to depend, where W (1) denotes

continuous components and W (2) denotes discrete components. A consistent estimator of

π(·) is defined as

π̂(w(1), w(2)) =

n∑
j=1

VjI(W
(2)
j = w(2))Khn(w(1) −W (1)

j )

n∑
j=1

I(W
(2)
j = w(2))Khn(w(1) −W (1)

j )
, (3.11)

where Khn(·) = K(·/hn), K(·) is a kernel function, hn is a bandwidth. Two special cases are

considered, when W is discrete, π̂(w) in equation (3.11) reduces to

π̂(w) =

n∑
j=1

VjI(Wj = w)

n∑
j=1

I(Wj = w)
, (3.12)
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while W is continuous, π̂(w) in equation (3.11) reduces to

π̂(w) =

n∑
j=1

VjKhn(w −Wj)

n∑
j=1

Khn(w −Wj)
, (3.13)

which is Nadaraya-Watson estimator.

Then, to establish the confidence region of β, some definitions are given as follows.

Define

B̂(β, t, u) = exp


∫ t

u


n∑
i=1

ViYi(u)λ̇{β′Zi + Ĥ(β, u)}/π̂i
n∑
i=1

ViYi(t)λ{β′Zi + Ĥ(β, u)}/π̂i

 dĤ(β, u)

 ,

M̂i(β, t) = Ni(t)−
∫ t

0

Yi(u)dΛ
{
β′Zi + Ĥ(β, u)

}
,

Z̄(β, t) =

n∑
i=1

ViZiYi(t)λ{β′Zi + Ĥ(β, t)}B̂(β, t,Xi)/π̂i

n∑
i=1

ViYi(t)λ{β′Zi + Ĥ(β, t)}/π̂i
,

and let M∗∗(W ) = E[M∗ |W ], we have the estimation equation of M∗∗(W ) is

M̂∗∗,i(β, w
(1)
i , w

(2)
i ) =

n∑
j=1

VjM̂∗,j(β)I(W
(2)
j = w

(2)
i )Khn(w

(1)
i −W

(1)
j )

n∑
j=1

VjI(W
(2)
j = w

(2)
i )Khn(w

(1)
i −W

(1)
j )

, (3.14)

where

M̂∗,j(β) =

∫ τ

0

{Zj − Z̄(β, t)}dM̂j(β, t)

=

∫ τ

0

{Zj − Z̄(β, t)}
[
dNj(t)− Yj(t)dΛ

{
β′Zj + Ĥ(β, t)

}]
.
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Also, one can define the consistent estimators of A and Σ2, as Â(β) and Σ̂2(β),

Â(β) =
1

n

n∑
i=1

Vi
π̂i

∫ τ

0

{
Zi − Z̄(β, t)

}
Z ′iYi(t)λ̇{β′Zi + Ĥ(β, t)}dĤ(β, t),

Σ̂2(β) =
1

n

n∑
i=1

Vi
π̂2
i

(∫ τ

0

{
Zi − Z̄(β, t)

}
dM̂i(β, t)

)⊗2

− 1

n

n∑
i=1

Vi(1− π̂i)
π̂2
i

M̂∗∗,i(β, w
(1)
i , w

(2)
i )
⊗2
.

Therefore, the 100(1− α)% normal approximation (NA) based confidence region for β

can be established as

RNA
α =

{
β : n(β̂ − β)′Â(β̂)(Σ̂2(β̂))

−1
(Â(β̂))

′
(β̂ − β) ≤ χ2

p(α)
}
,

where χ2
p(α) is the upper α-quantile of distribution of χ2

p.

3.2.2 Empirical likelihood method

Huang and Wang (2010) provided a good way to make inferences for β. However, the

methodology sacrificed the computational resource on estimating the variance covariance

matrices. In this subsection, motivated by Huang and Wang (2010), we construct empirical

likelihood for the transformation model, which avoids estimating the complicated matrices.

Define

dM̂∗∗,i(β, t, w
(1)
i , w

(2)
i ) =

n∑
j=1

VjdM̂∗,j(β, t)I(W
(2)
j = w

(2)
i )Khn(w

(1)
i −W

(1)
j )

n∑
j=1

VjI(W
(2)
j = w

(2)
i )Khn(w

(1)
i −W

(1)
j )

,

where

dM̂∗,j(β, t) = (Zi − Z̄(β, t))dM̂j(β, t).
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Motivated by the estimating equation (3.9), for i = 1, ..., n, we propose

Uni(β) =
Vi
π̂i

∫ τ

0

(Zi − Z̄(β, t))dM̂i(β, t) +

(
1− Vi

π̂i

)∫ τ

0

E[(Zi − Z̄(β, t))dM̂i(β, t) |Wi ]

=
Vi
π̂i

∫ τ

0

(Zi − Z̄(β, t))dM̂i(β, t) +

(
1− Vi

π̂i

)∫ τ

0

E[dM̂∗,i(β, t) |Wi ]

=
Vi
π̂i

∫ τ

0

(Zi − Z̄(β, t))dM̂i(β, t) +

(
1− Vi

π̂i

)∫ τ

0

dM̂∗∗,i(β, t, w
(1)
i , w

(2)
i ).

The empirical likelihood Ln(β) at β is defined as

Ln(β) = sup

{
n∏
i=1

pi :
n∑
i=1

piUni(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0, i = 1, ..., n

}
.

Since under the constrains that
n∑
i=1

pi = 1, and pi ≥ 0,
n∏
i=1

pi reaches its maximum n−n at

pi = n−1. The empirical likelihood ratio at β is defined as

Rn(β) = sup

{
n∏
i=1

npi :
n∑
i=1

piUni(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0, i = 1, ..., n

}
.

Therefore, the corresponding empirical log-likelihood ratio, ln(β) = −2 logRn(β), can

be expressed as

ln(β) = −2sup

{
n∑
i=1

log(npi) :
n∑
i=1

piUni(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0, i = 1, ..., n

}
.

By using Lagrange multiplier method, one has

ln(β) = 2
n∑
i=1

log
(
1 + (λ(β))′Uni(β)

)
,

where λ(β) is a Lagrange multiplier that satisfies the following equation

1

n

n∑
i=1

Uni(β)

1 + (λ(β))′Uni(β)
= 0. (3.15)
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Theorem 3.1. Let β0 be the true value of β. Under the conditions (D.1)-(D.9) given in the

Appendix, we have that

1√
n

n∑
i=1

Uni(β0)→N(0,Σ2(β0)),

in distribution, as n −→∞. Moreover, we have that

1

n

n∑
i=1

Uni(β0)Uni(β0)′→Σ2(β0),

in probability, as n −→∞.

By using Theorem 3.1, the limiting distribution of ln(β0) is given in Theorem 3.2.

Theorem 3.2. Assume that the same regularity conditions given in Theorem 3.1 hold. Let

β0 be the true value of β, one has that

ln(β0)→χ2
p,

in distribution, as n −→ ∞, where χ2
p is a standard chi-squared random variable with p

degrees of freedom.

Thus, by Theorem 3.2, the 100(1−α)% empirical likelihood (EL) confidence region for

β can be constructed as

REL
α =

{
β : ln(β) ≤ χ2

p(α)
}
,

where χ2
p(α) is the upper α-quantile of distribution of χ2

p.

Theorem 3.2 enables us to make global inference about β0. But sometimes we may

be interested in some components of the regression parameters, for instance, β1, which is a

sub-vector of β. Define β0 = (β′10, β
′
20)′. We are only interested in the inference about the

q-dimensional sub-vector β10. Then we can propose profile empirical likelihood method to

handle nuisance parameters, and construct confidence region for β1.
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Define the profile empirical likelihood ratio as follows:

l∗n(β1) = inf
β2
ln(β′1, β

′
2)′.

The similar result can be obtained in Theorem 3.3 for the proposed profile log-empirical

likelihood ratio l∗n(β1).

Theorem 3.3. Assume that the same regularity conditions given in Theorem 3.1 hold. Let

β10 be the true value of β1, one has that

l∗n(β10)→ χ2
q,

in distribution, as n −→ ∞, where χ2
q is a standard chi-squared random variable with q

degrees of freedom.

According to Theorem 3.3, the 100(1− α)% profile EL confidence region for β1 can be

established as

REL∗
α =

{
β1 : l∗n(β1) ≤ χ2

q(α)
}
,

where χ2
q(α) is the upper α-quantile of distribution of χ2

q.

3.3 Simulation studies

A comprehensive simulation study is conducted to investigate the proposed EL method.

We adopt the same simulation settings as those in Huang and Wang (2010), and compare

the coverage probability of empirical likelihood confidence region for relatively small samples

to large samples with normal approximation (NA) confidence region proposed by Huang

and Wang (2010). We select β1 = −0.5 and β2 = 0.5. The transformation function is

H0(t) = log(t), and the hazard function of ε is generated form λ(t) = exp(t)/{1 + r exp(t)}.

When r = 0 and r = 1, the models become the proportional hazards model and the propor-

tional odds model, respectively. In this simulation study, we consider r = 1 and r = 1.5.

Sample sizes n are chosen as 20, 50 and 100 for simulations.



35

Moreover, we generate missing covariate Zm and observed covariate Zc independently.

Zm follows the standard normal distribution, and Zc is Bernoulli distributed with a param-

eter of 0.5. We simulate censoring times from three different distributions. For the first

data setting, we use a uniform censoring time, which is independent of covariates and with

upper limit selected. In other two settings, the censoring times depend on covariates Zm

and Zc, and it follows uniform distribution from 0 to c, where c is chosen to adjust the

censoring rate. Then, non-missingness probabilities in the three simulation settings are asso-

ciated with different variables. The first setting gives π1(δ) = 0.9δ+ 0.4(1− δ). In addition,

π2(X, δ) = (1 + exp(1.5 − δ − X))−1 and π3(X, δ, Zc) = (1 + exp(2 − δ − X − Zc))−1 are

considered in the second and third data settings, respectively.

Furthermore, we calculate the estimators β1 and β2 for the following different cases:

full cohort assuming that all data are available and using all cases, complete-case analysis

are using only the available data and selected cases, ”true π(·)” and π̂(·) are used. The

kernel function K(·) is selected as K(u) = 3(1 − u2)/4, |u| ≤ 1, and the bandwidth hn is

considered to be hn = n−1/3. Then the 95% coverage probabilities (CP) and average lengths

(AL) of confidence intervals for the regression parameters are calculated. We repeat all the

simulations 1000 times.

Table 3.1 shows the first simulation setting results. The complete-case analysis estima-

tors have the lowest coverage probabilities for both methods, while the estimators based on

π̂(δ,X, Zc) have the highest coverage probabilities. Due to using more information from par-

tially incomplete data, the coverage probabilities for β1 and β2 are improved. Furthermore,

when n = 20, the EL method has better performs than the NA does in terms of coverage

probability. For instance, CPs of confidence intervals with estimators based on π̂(δ) are 0.851

and 0.869 for the NA method; while 0.884 and 0.887 for the EL method. When the sample

size is 50, the EL method performs slightly better than the NA method in most cases. More-

over, as the sample size increases from 50 to 100, the coverage probabilities become close to

95% nominal levels. Both approaches perform well under large sample sizes.

Table 3.2 displays the results from the second simulation setting. The complete-case
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analysis still has the lowest coverage probabilities for NA and EL methods. While very

similar coverage probabilities are obtained for both methods in most cases, especially for

n = 100. For instance, CPs for β1 calculated by EL based on π̂(δ,X, Zc) is 0.946, and CPs

calculated by NA is 0.944. These results indicate that when the non-missingness probability

relies on more variables, the coverage probability is getting improved.

In addition, we obtain the similar findings in Table 3.3. For both methods, when the

non-missingness probabilities are calculated based on (X, δ), it leads to the lower coverage

probabilities than those CPs based on true π and π̂(δ,X, Zc). We also consider r = 1.5 in the

fourth simulation setting. Just like r = 1, we find the same trends for coverage probabilities

in Table 3.4.

3.4 Application to real data

In this section, we analyze the mouse leukemia study (Kalbfleisch and Prentice (1980))

to illustrate the proposed EL method. This study was conducted to investigate if the genetic

and viral factors may have impacts in the progress of spontaneous leukemia in mice. The

original dataset contains 204 observations with both mortalities caused by thymic or non-

thymic leukemia. Other information includes sex, coat color, survival times, ”Type” of death

(natural or terminated), MHC phenotype, antibody level and so on. Among all factors, two

covariates that are the Gpd-1 phenotype and the level of endogenous murine leukemia virus

are examined. According to Huang and Wang (2010), we have the MAR assumption in this

application.

Following Qi et al. (2005) and Huang and Wang (2010), 29 observations with missing

endogenous murine leukemia virus are excluded, and we used 175 mice in our analysis. More-

over, if a virus level < 104 PFU/ml, the virus level is categories with Zc = 0, otherwise,

Zc = 1. We conduct two separate analyses for the death of thymic leukemia and the death of

thymic or nonthymic leukemia as the endpoints, respectively. Two different transformation

models are considered. The hazard function of ε has the form λ(t) = exp(t)/{1 + r exp(t)}

with r = 1 and 1.5. To estimate the non-missingness probability, the kernel function is



37

selected as K(u) = 3(1− u2)/4, |u| ≤ 1, and bandwidth is hn = n−1/3.

First, we consider the survival time of the mice, whose mortality is due to thymic

leukemia as the endpoint. Table 3.5 displays the lower bound (LB) and upper bound (UB)

of the Gpd-1 and Virus level and the lengths of 95% confidence interval by using the NA

and EL methods. By examining Table 3.5, both approaches show that the Gpd-1 genotype

and virus level are significantly related to thymic leukemia mortality. Furthermore, all re-

sults indicate the negative association between Gpd-1 and death, while the virus level has

a positive impact. Also, when the non-missingness probabilities based on all variables, the

shortest CI lengths are produced for both methods, indicating that using incomplete cases

is helpful to the statistical analysis.

Moreover, we also consider the time to mortality due to thymic or nonthymic leukemia

as the failure time. We summarize the results in Table 3.6. The same trend for Gpd-1

genotype is shown, while the interval lengths for virus suggest that the level of endogenous

murine leukemia virus does not play a significant role on nonthymic leukemia mortality as

it does on thymic leukemia mortality. There is a weaker association between virus level and

the death caused by either thymic or nonthymic leukemia. Overall, the interval lengths for

regression parameters based on π̂(X, δ, Zc) are the shortest, and our findings are consistent

with the conclusion in Huang and Wang (2010).

3.5 Discussion

Motived by Huang and Wang (2010), we apply empirical likelihood method to make

inferences for semiparametric transformation models with missing covariates. The theoret-

ical results provide asymptotic properties, including limiting distribution of the empirical

likelihood ratio statistics, which follows the standard chi-squared distribution. Furthermore,

the simulation results demonstrate that coverage probability of EL confidence interval is

higher than the coverage probability for the NA method with the relatively small sample

size. Compared with the traditional normal approximation method, the EL method has less

computational cost. There are other topics, such as making inferences for other regression
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models for survival data with missing covariates, which could be studied in the future.
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Table 3.1 Simulation results when the true non-missing probability is π1(δ).

Approach NA EL

CP AL CP AL

r = 1, n = 20, censoring rate=31%, and missing rate=25%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.903 0.911 2.851 2.757 0.914 0.913 2.748 3.011

Complete-case 0.689 0.702 3.569 3.388 0.713 0.712 2.844 2.679

True π1(δ) 0.842 0.864 3.447 3.335 0.881 0.875 2.964 3.217

π̂1(δ) 0.851 0.869 3.114 3.206 0.884 0.887 3.014 3.418

π̂1(δ, Zc) 0.836 0.844 3.126 3.181 0.893 0.902 3.224 3.257

π̂1(δ,X) 0.852 0.861 3.417 3.069 0.884 0.891 3.175 3.241

π̂1(δ,X, Zc) 0.873 0.893 3.016 3.157 0.911 0.911 3.003 3.179

r = 1, n = 50, censoring rate=28%, and missing rate=22%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.932 0.939 1.084 1.042 0.927 0.935 1.377 1.284

Complete-case 0.749 0.801 1.256 1.221 0.761 0.775 1.504 1.429

True π1(δ) 0.908 0.927 1.207 1.197 0.914 0.914 1.414 1.337

π̂1(δ) 0.911 0.917 1.183 1.168 0.916 0.917 1.328 1.191

π̂1(δ, Zc) 0.915 0.919 1.138 1.150 0.922 0.923 1.284 1.297

π̂1(δ,X) 0.917 0.920 1.149 1.159 0.922 0.923 1.379 1.484

π̂1(δ,X, Zc) 0.924 0.923 1.140 1.138 0.925 0.928 1.390 1.328

r = 1, n = 100, censoring rate=29%, and missing rate=23%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.944 0.945 0.847 0.652 0.948 0.944 1.013 0.947

Complete-case 0.834 0.856 0.896 0.753 0.805 0.843 1.123 0.845

True π1(δ) 0.922 0.930 1.324 0.894 0.935 0.934 1.243 1.179

π̂1(δ) 0.928 0.934 1.175 0.883 0.934 0.939 1.204 1.155

π̂1(δ, Zc) 0.918 0.927 1.114 1.135 0.930 0.939 1.243 1.211

π̂1(δ,X) 0.934 0.941 0.957 0.765 0.933 0.939 1.147 1.032

π̂1(δ,X, Zc) 0.937 0.943 0.938 0.764 0.943 0.943 1.154 1.008
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Table 3.2 Simulation results when the true non-missing probability is π2(δ,X).

Approach NA EL

CP AL CP AL

r = 1, n = 20, censoring rate=43%, and missing rate=41%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.902 0.916 2.492 2.314 0.912 0.926 2.743 2.829

Complete-case 0.783 0.795 2.892 2.650 0.768 0.810 2.944 2.732

True π2(δ,X) 0.840 0.841 2.690 2.575 0.893 0.896 2.823 2.685

π̂2(δ,X) 0.851 0.868 2.379 2.388 0.899 0.914 2.521 2.503

π̂2(δ,X, Zc) 0.876 0.887 2.579 2.355 0.910 0.914 2.814 2.499

r = 1, n = 50, censoring rate=42%, and missing rate=45%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.944 0.941 0.973 1.003 0.940 0.940 1.855 1.732

Complete-case 0.819 0.788 1.197 1.246 0.821 0.814 1.723 1.904

True π2(δ,X) 0.912 0.906 1.174 1.205 0.909 0.920 1.624 1.523

π̂2(δ,X) 0.914 0.903 1.087 0.978 0.923 0.918 1.511 1.425

π̂2(δ,X, Zc) 0.928 0.939 1.004 0.998 0.929 0.934 1.408 1.693

r = 1, n = 100, censoring rate=42%, and missing rate=46%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.951 0.953 0.835 0.558 0.944 0.950 1.033 1.204

Complete-case 0.845 0.877 1.146 1.242 0.792 0.804 1.179 1.084

True π2(δ,X) 0.926 0.941 1.007 1.152 0.930 0.934 1.335 1.317

π̂2(δ,X) 0.935 0.944 1.002 0.731 0.939 0.946 1.256 1.203

π̂2(δ,X, Zc) 0.944 0.951 0.914 0.824 0.946 0.945 1.179 1.287
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Table 3.3 Simulation results when the true non-missing probability is π3(δ,X, Zc) and
r = 1.

Approach NA EL

CP AL CP AL

r = 1, n = 20, censoring rate=38%, and missing rate=42%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.843 0.896 1.902 2.004 0.884 0.911 2.411 2.286

Complete-case 0.741 0.767 2.754 2.831 0.773 0.784 2.579 2.603

True π3(δ,X, Zc) 0.852 0.864 2.459 2.678 0.864 0.872 2.210 2.117

π̂3(δ,X) 0.821 0.849 2.219 2.449 0.843 0.858 2.164 2.335

π̂3(δ,X, Zc) 0.885 0.890 2.339 2.403 0.874 0.915 2.479 2.415

r = 1, n = 50, censoring rate=40%, and missing rate=44%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.924 0.936 1.134 1.108 0.924 0.934 1.284 1.359

Complete-case 0.771 0.811 1.682 1.427 0.812 0.776 1.738 1.405

True π3(δ,X, Zc) 0.902 0.914 1.442 1.378 0.914 0.926 1.643 1.512

π̂3(δ,X) 0.919 0.925 1.602 1.388 0.910 0.922 1.764 1.503

π̂3(δ,X, Zc) 0.920 0.927 1.408 1.221 0.931 0.934 1.507 1.444

r = 1, n = 100, censoring rate=41%, and missing rate=42%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.943 0.944 1.006 0.751 0.946 0.946 1.085 1.179

Complete-case 0.826 0.835 1.402 0.951 0.824 0.847 1.521 1.400

True π3(δ,X, Zc) 0.937 0.942 1.426 0.999 0.938 0.937 1.254 1.307

π̂3(δ,X) 0.922 0.935 1.448 1.086 0.924 0.939 1.499 1.452

π̂3(δ,X, Zc) 0.939 0.941 1.226 0.910 0.948 0.948 1.370 1.228
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Table 3.4 Simulation results when the true non-missing probability is π3(δ,X, Zc) and
r = 1.5.

Approach NA EL

CP AL CP AL

r = 1.5, n = 20, censoring rate=41%, and missing rate=42%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.884 0.868 1.539 1.412 0.909 0.914 1.823 1.794

Complete-case 0.710 0.723 2.329 2.092 0.725 0.794 2.011 1.805

True π3(δ,X, Zc) 0.841 0.863 1.675 1.872 0.852 0.870 1.771 1.813

π̂3(δ,X) 0.803 0.812 1.732 1.844 0.814 0.838 1.728 1.903

π̂3(δ,X, Zc) 0.864 0.851 1.706 1.641 0.885 0.874 1.804 1.883

r = 1.5, n = 50, censoring rate=41%, and missing rate=42%

β1 β2 β1 β2 β1 β2 β1 β2

Full cohort 0.918 0.931 1.174 1.244 0.923 0.931 1.447 1.358

Complete-case 0.735 0.797 1.785 1.607 0.750 0.804 1.908 1.792

True π3(δ,X, Zc) 0.884 0.899 1.647 1.826 0.866 0.885 1.504 1.693

π̂3(δ,X) 0.832 0.901 1.589 1.446 0.842 0.904 1.684 1.724

π̂3(δ,X, Zc) 0.894 0.920 1.504 1.407 0.910 0.934 1.778 1.650
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Table 3.5 Interval lengths (LB, UB) of regression parameters for the mouse leukemia data
(Thymic leukemia)

Model Method

r = 1
NA EL

Gpd-1 Virus Gpd-1 Virus

Complete-case 1.08 (-2.22, -1.14) 1.37 (0.73, 2.09) 1.11 (-2.17, -1.06) 1.33 (0.52, 1.85)

π̂(X) 1.17 (-2.29, -1.13) 1.28 (0.68, 1.96) 1.23 (-2.26, -1.03) 1.41 (0.74, 2.15)

π̂(X, δ) 0.93 (-2.10, -1.18) 1.18 (0.86, 2.04) 0.88 (-2.33, -1.45) 1.25 (0.79, 2.04)

π̂(X, δ, Zc) 0.76 (-1.97, -1.21) 1.16 (1.18, 2.34) 0.82 (-2.01, -1.19) 1.12 (1.18, 2.30)

r = 1.5
NA EL

Gpd-1 Virus Gpd-1 Virus

Complete-case 1.14 (-2.36, -1.22) 1.36 (0.79, 2.15) 1.23 (-2.19, -0.96) 1.47 (0.95, 2.42)

π̂(X) 1.35 (-2.51, -1.17) 1.40 (0.69, 2.09) 1.41 (-2.30, -0.89) 1.33 (0.84, 2.17)

π̂(X, δ) 1.13 (-2.36, -1.24) 1.37 (0.82, 2.18) 1.12 (-2.48, -1.36) 1.50 (0.90, 2.40)

π̂(X, δ, Zc) 0.92 (-2.15, -1.23) 1.28 (1.21, 2.49) 0.94 (-2.04, -1.10) 1.39 (1.14, 2.53)
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Table 3.6 Interval lengths (LB, UB) of regression parameters for the mouse leukemia data
(Thymic and nonthymic leukemia)

Model Method

r = 1
NA EL

Gpd-1 Virus Gpd-1 Virus

Complete-case 1.08 (-2.23, -1.15) 1.34 (0.73, 2.07) 1.08 (-2.10, -1.02) 1.32 (0.42, 1.74)

π̂(X) 1.08 (-2.44, -1.36) 1.28 (0.67, 1.95) 1.10 (-2.42, -1.32) 1.28 (0.47, 1.75)

π̂(X, δ) 1.02 (-2.34, -1.32) 1.22 (0.67, 1.89) 1.09 (-2.27, -1.18) 1.36 (0.73, 2.09)

π̂(X, δ, Zc) 0.90 (-2.22, -1.32) 1.13 (1.18, 2.32) 0.94 (-2.45, -1.51) 1.07 (0.65, 1.72)

r = 1.5
NA EL

Gpd-1 Virus Gpd-1 Virus

Complete-case 1.34 (-2.53, -1.19) 1.36 (0.81, 2.17) 1.35 (-2.39, -1.04) 1.45 (0.51, 1.96)

π̂(X) 1.24 (-2.73, -1.49) 1.41 (0.70, 2.10) 1.25 (-2.48, -1.21) 1.47 (0.82, 2.29)

π̂(X, δ) 1.22 (-2.70, -1.48) 1.36 (0.87, 2.23) 1.22 (-2.31, -1.09) 1.39 (0.80, 2.19)

π̂(X, δ, Zc) 1.18 (-2.72, -1.54) 1.24 (1.24, 2.49) 1.07(-2.50, -1.43) 1.18 (0.76, 1.94)
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CHAPTER 4

JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE FOR THE

ACCELERATED FAILURE TIME MODEL

4.1 Background

In survival analysis, covariate effects are considered to be associated with failure time.

Researchers proposed the well-known proportional hazards model with right censoring (Cox

(1972)) to explore the relationship between survival time of a patient and several explanatory

variables. However, the proportional hazards model does not always fit the real data set. In

fact, not satisfying the model assumption will result in incorrect regression parameter esti-

mations. The accelerated failure time (AFT) model is a direct generalization of linear model

to censored survival data analysis. It relates the logarithm of the failure time linearly to the

covariates (Kalbfleisch and Prentice (1980)). As a result of its direct physical interpretation,

the accelerated failure time model can be viewed as an alternative to proportional hazards

model.

Various tools have been developed to perform nonparametric estimations. Among which,

two approaches have drawn special attention. One is the Buckley-James estimator proposed

by Buckley and James (1979), which provides an adjustment for censored observations us-

ing the Kaplan-Meier weights. Another is the rank-based estimator motivated by Prentice

(1978). This rank-based method is heavily used by many researchers, for instance, Tsiatis

(1990), Wei et al. (1990), and Ying (1993). An important estimation procedure for the ac-

celerated failure time model is the rank-based estimating equations with a general weight,

and a common choice is Gehan-type weight. Fygenson and Ritov (1994) used Gehan weight

function that can lead to the monotone estimating equation in the accelerated failure time

model, and linear programming for computation is required. Jin et al. (2003) estimated

the variance through re-sampling method, and obtained the Gehan estimators via linear
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programming. Zeng and Lin (2008) proposed a simpler re-sampling strategy that does not

require solving estimating equations.

Unfortunately, the re-sampling programming technique is still computationally demand-

ing due to the lack of smoothness of estimating functions, especially, when many covariates

and large sample sizes are involved. Furthermore, in order to bypass the computation chal-

lenge caused by the non-smooth step estimating functions, several authors further have

promoted a useful induced smoothing approach with Gehan weight arising in the acceler-

ated failure time model. This idea proposes to smooth the non-smooth estimating functions

by adding a continuous normal noise to the regression coefficients, which leads to contin-

uously differentiable estimating equation that can be dealt with using standard numerical

methods, for example, Brown and Wang (2007), Heller (2007), Johnson and Strawderman

(2009), Wang and Fu (2011) and Chiou et al. (2014a).

Despite the advantages of smoothing methods, the performances are often limited when

used in small to moderate samples due to lack of accuracy of variance estimations. Fur-

thermore, while such procedure can be implemented with relative numerical methods, the

computational burden can still be high, especially with large datasets. An empirical likeli-

hood (EL) approach can overcome these present challenges nevertheless.

Thomas and Grunkemeier (1975) were the earliest to propose inverting a nonparametric

likelihood ratio test to obtain confidence intervals for the survival probability. Following that,

Owen (1988) pioneered the empirical likelihood (EL) method, and this idea became more

popular among researchers. By using EL method, researchers can determine the shape of

confidence region without estimating the variance. A number of researchers today implement

this method, and it has been recognized as a useful tool in statistical sciences. The biggest

advantage of EL method is that it can avoid the need for specifying a distribution for the

data. Theoretical results have also been established by Owen (1990), which states that the

Wilk’s theorem (Wilks (1938)) holds under mild conditions. For the high-dimensional case,

Chen et al. (2015) established the asymptotic normality of the log empirical likelihood-ratio

statistic when the sample size and the dimension of the data are comparable by adding two
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pseudo-observations to the original data set.

In this chapter, we provide a simpler and more computationally reliable method, jack-

knife empirical likelihood (JEL) method, for implementing the aforementioned estimators.

JEL method is proposed by Jing et al. (2009), and this method constructs confidence region

by introducing jackknife pseudo-values into EL methods. When dealing with more compli-

cated computational problems, the JEL method has shown to offer more advantages. JEL

method has been widely used ever since, and most recently seen in Zhao et al. (2015b) and

Yang et al. (2016). These research studies indicate that the JEL might come in handy in

dealing with more general statistics, and also substantially ease the computational burden of

covariance matrix estimation. Building on Brown and Wang (2007), we apply JEL approach

to the induced smoothed Gehan estimating equation to construct the confidence region for

the parameters of interest.

The rest of the chapter is organized as follows. In Section 4.2, an inference procedure by

using the jackknife empirical likelihood method is introduced. Simulation studies are then

carried out to demonstrate the performance of the proposed JEL method in Section 4.3. In

Section 4.4, we move on to present a real data application, followed by further discussions

and concluding remarks in Section 4.5. Proofs are provided in the Appendix.

4.2 Main results

4.2.1 Accelerated failure time model and Gehan-type weight function

Let {Ti, Ci, Xi}, i = 1, ..., n, be n independent copies of {T,C,X}, where Ti and Ci are

log-transformed failure time and log-transformed censoring time, Xi is a p × 1-dimensional

covariate vector (see Chiou et al. (2014a)). The accelerated failure time model is defined as

Ti = Xi
Tβ + εi, i = 1, ..., n,

where β is an q×1 unknown vector of regression parameters, ε’s are the random variables with

an unspecified distribution, and we assume that ε’s are independent of X. Due to censoring,
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one can observe {Yi,∆i, Xi}, i = 1, ..., n, where Yi = min(Ti, Ci), and ∆i = I[Ti < Ci].

Fygenson and Ritov (1994) proposed a rank based estimating equation with Gehan’s

weight that is written as

S̃n(β) =
n∑
i=1

n∑
j=1

∆i(Xi −Xj)I[ej(β) ≥ ei(β)], (4.1)

where ei(β) = Yi−XT
i β. It has been proven by Tsiatis (1990) that the solution to equation

(4.1) is a consistent estimator of the true parameter β0 and is asymptotically normal. How-

ever, solving the estimating equation is challenging because S̃n(β) is a discontinuous step

function, due to lack of smoothness, estimating the regression parameters is computation-

ally problematic. Moreover, if the derivative does not exist, it is more difficult to obtain the

covariance matrix.

Then Brown and Wang (2007) proposed an induced smoothing approach for rank-based

inference with Gehan’s weight. They replaced the estimating function S̃n(β) in (4.1) with

E[S̃n(β + Γ
1/2
n W )], where W is p-dimensional standard normal random vector, and Γn is a

working covariance matrix of β̂n. Chiou et al. (2015) claimed that the forms of Γn generally

have minimal impact on the bias and standard error (see Johnson and Strawderman (2009)

and Chiou et al. (2014a)), and a choice of Γn is the identity matrix (see Brown and Wang

(2005, 2007)). The induced smoothing approach smooths the discontinuous estimating func-

tion in a way that keeps the asymptotic property of the non-smooth estimating function.

According to Brown and Wang (2007), the weight-adjusted estimating equation becomes

Sn(β) =
n∑
i=1

n∑
j=1

∆i(Xi −Xj)Φ

[
ej(β)− ei(β)

rij

]
, (4.2)

where r2
ij = (Xi −Xj)

T (Xi −Xj)/n, and Φ(·) is the distribution function of N(0, 1).

Recall that Heller (2007) directly approximated the indicator function with 1−Υ(u/h),

where Υ(·) denotes a local distribution function and h is a bandwidth. The resulting esti-
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mating equation becomes

S∗n(β) =
n∑
i=1

n∑
j=1

∆i(Xi −Xj)Υ

[
ej(β)− ei(β)

h

]
. (4.3)

Comparing equations (4.2) and (4.3), if taking Υ(·) to be the standard normal distribution

Φ(·), and replacing the bandwidth h with rij, the equation (4.3) becomes equation (4.2).

However, obtaining efficient and optimal bandwidth h is a very challenging task, which

requires intensive computations. One of the potential advantages of utilizing the covariate-

dependent bandwidth r2
ij = (Xi −Xj)

T (Xi−Xj)/n in equation (4.2) is that expression of rij

provides a closed-form of bandwidth. The other advantage is that equation (4.2) uses some

information from data set X, and the smoothing parameter respects the scaling structure of

the solution sequence.

Furthermore, the solution to equation (4.2) is still consistent to β0 and has the

same asymptotic distribution to equation (4.1). Brown and Wang (2007) suggest that

asymptotic covariance is another sandwich formula, which is Dn(β0)−1Bn(β0)(Dn(β0)−1)T ,

where Dn(β0) = E[∂Sn(Y; β)}/∂β]β0 , and Bn(β0) = cov{Sn(Y ; β0)}. It is worth to note

that as n → ∞, when ej(β) > ei(β), Φ
[
ej(β)−ei(β)

rij

]
→ 1; while when ej(β) < ei(β),

Φ
[
ej(β)−ei(β)

rij

]
→ 0. Thus, Sn(β) is a proper approximation to S̃n(β). Johnson and Straw-

derman (2009) further showed that under regularity conditions, Sn in (4.2) is asymptotically

equivalent to S̃n in (4.1).

4.2.2 Jackknife empirical likelihood method

In order to avoid complicated covariance matrix estimation, we propose a jackknife em-

pirical likelihood method to make inference for the accelerated failure time model in this

subsection. Then we establish the asymptotic chi-square distribution of the empirical log-

likelihood ratio and construct the confidence region.

Let Zi = (Yi,∆i, Xi). We can rewrite the weight and weight-adjusted estimating equa-

tions, given in (4.1) and (4.2) as U -statistic of degree 2 with symmetric kernel functions,
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respectively. See Appendix for details.

S̃n(β) =

 n

2



 n

2

−1 ∑
1≤i<j≤n

H(Zi, Zj; β)

 ≡
 n

2

Wn(β).

The kernel function is defined below

H(Zi, Zj; β) = (Xi −Xj) {∆iI[ej(β) ≥ ei(β)]−∆jI[ei(β) ≥ ej(β)]} .

Also,

Sn(β) =

 n

2



 n

2

−1 ∑
1≤i<j≤n

K(Zi, Zj; β)

 ≡
 n

2

Un(β),

with the kernel function is defined as follows

K(Zi, Zj; β) = (Xi −Xj)

{
∆iΦ

[
ej(β)− ei(β)

rij

]
−∆jΦ

[
ei(β)− ej(β)

rij

]}
.

The above U -statistic Un(β) is considered as a version of analogue in Sn(β). Thus, we can

apply JEL to this U -statistic instead of Sn(β) to get a smoothed JEL.

Motivated by Jing et al. (2009), we construct the jackknife pseudo-sample for Un(β).

Denote the jackknife pseudo-values Q̂i(β) = nUn(β) − (n − 1)U
(−i)
n−1 (β), i = 1, ..., n, where

U
(−i)
n−1 (β) = U(Z1, ..., Zi−1, Zi+1, ..., Zn) is computed on the n − 1 samples formed from the

original data set by deleting the ith observation. It can be shown that

Un(β) =
1

n

n∑
i=1

Q̂i(β).

Furthermore, according to the consistency (Johnson and Strawderman (2009)), we have that

as n→∞, EUn(β0)→ 0.
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Moreover, define U
(−i)
n−1 (β) as

U
(−i)
n−1 (β) =

1

(n− 1)(n− 2)

∑
1≤q<j≤n,q 6=i

K
(−i)
n−1 (Zq, Zj; β),

where K
(−i)
n−1 (β) is the kernel function corresponding to U

(−i)
n−1 (β) based on n − 1 samples

formed from the original data set by deleting the ith observation. Then, for i = 1, ..., n,

EQ̂i(β0) = nEUn(β0)− (n− 1)EU
(−i)
n−1 (β0)

=
n

n(n− 1)
E

[ ∑
1≤i<j≤n

K(Zi, Zj; β0)

]

− n− 1

(n− 1)(n− 2)
E

[ ∑
1≤q<j≤n,q 6=i

K
(−i)
n−1 (Zq, Zj; β0)

]

=
1

n− 1

∑
1≤i<j≤n

E [K(Zi, Zj; β0)]− 1

n− 2

∑
1≤q<j≤n,q 6=i

E
[
K

(−i)
n−1 (Zq, Zj; β0)

]
=

1

n− 1
× n(n− 1)

2
E [K(Z1, Z2; β0)]− 1

n− 2
× (n− 1)(n− 2)

2
E [K(Z1, Z2; β0)]

=

(
n

2
− n− 1

2

)
E [K(Z1, Z2; β0)]

=
E [K(Z1, Z2; β0)]

2
.

Since E [K(Z1, Z2; β0)]→ 0, we can derive that EQ̂i(β0)→ 0 as n→∞.

Then the empirical likelihood at β is defined by

L(β) = max

{
n∏
i=1

pi :
n∑
i=1

piQ̂i(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0

}
.

Hence, the jackknife empirical likelihood ratio at β is as follows

R (β) =
L(β)

n−n
= max

{
n∏
i=1

{npi} :
n∑
i=1

piQ̂i(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0

}
.
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Using Lagrange multipliers, we get the jackknife empirical log-likelihood ratio as follows,

l(β) = −2 log{R(β)} = 2
n∑
i=1

log{1 + λ(β)T Q̂i(β)}, (4.4)

where λ is the solution to the equation

f(λ) =
1

n

n∑
i=1

Q̂i(β)

1 + λ(β)T Q̂i(β)
= 0. (4.5)

Let β0 denote the true value of β. We establish the Wilk’s theorem as follows.

Theorem 4.1. Under some mild regularity conditions stated in the Appendix, as n −→∞,

one has

−2 logR(β0)
d→χ2

p,

where χ2
p is a standard chi-squared random variable with p degrees of freedom.

The 100(1− α)% JEL confidence region for β can be established as

Rα =
{
β : −2 logR(β) ≤ χ2

p(α)
}
,

where χ2
p(α) is the upper α-quantile of distribution of χ2

p.

In practice, if we are interested in certain component of the regression parameter, the

aforementioned procedure can be used to tackle the nuisance parameter by profiling the

empirical likelihood. Denote β = (βT1 , β
T
2 )T , where β1 ∈ Rq and β2 ∈ Rp−q. Similar to

Yang and Zhao (2012a) and Zhao and Yang (2012), we define the profile JEL ratio and

log-likelihood ratio as follows:

R∗(β1) = max
β2

R(β),

and

l∗(β1) = −2 log{R∗(β1)}.

We obtain the standard result as Theorem 4.1 for the proposed profile JEL.
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Theorem 4.2. Under some mild regularity conditions stated in the Appendix, as n −→∞,

one has

−2 logR∗(β10)
d→χ2

q,

where β10 is the true value of the parameter of interest β1.

Thus, the 100(1− α)% JEL confidence region for β1 can be established as

R∗α =
{
β1 : −2 logR∗(β1) ≤ χ2

q(α)
}
,

where χ2
q(α) is the upper α-quantile of distribution of χ2

q.

4.3 Simulation studies

In this section, we carry out simulation studies to compare the relative performance of

the proposed JEL method with normal approximation (NA) procedure proposed by Brown

and Wang (2007), which requires variance estimations.

For the comparison of the JEL and NA methods, we adopt the same simulation settings

as that of Chiou et al. (2014a). As in Chiou et al. (2014a), we simulate failure times T from

the accelerated failure time model

log(T ) = 2 +X1 +X2 +X3 + ε,

where X1 is generated from Bernoulli with rate 0.5, X2 and X3 are uncorrelated standard

normal variables. ε is sampled from standard normal distribution. We assume censoring

rate (CR) as four levels, approximately 15%, 30%, 45% and 60%, representing the different

disease status. We choose three sample sizes n = 30, 60 and 100. All the simulations are

conducted with 1000 repetitions.

Tables 4.1 to 4.4 display coverage probabilities and average lengths of confidence inter-

vals for the 90% and 95% nominal confidence levels under four different censoring rates 15%,

30%, 45% and 60%, respectively. Abbreviations JEL and ISMB are used to denote JEL and
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NA methods, IS indicates the induced smoothing approach and MB is using the multiplier

bootstrap for variance calculation. R package aftgee developed by Chiou et al. (2014b) is

used for the variance computation.

Comparing Table 4.1 to Table 4.4, at the same sample size, the average lengths of both

methods increase as the CR increases. The JEL and NA methods have similar performances

when the sample sizes are 60 and 100. Especially, when the censoring rate is 15%, the

estimated coverage probabilities for JEL and NA are close to nominal levels. Overall, for

both methods, when the sample size increases, the average lengths of confidence intervals

are getting shorter.

When the sample size is small, n = 30, the JEL outperforms the NA method in terms of

converge probabilities. We can observe that the JEL method has higher coverage probability

than the NA method in most of cases. For instance, when CR = 15%, for β1, under nominal

level 0.95, the coverage probability of the JEL method is 0.931 whereas that of the ISMB

is 0.924. Another example, that, is, when CR = 30%, for β3, under nominal level 0.90, the

coverage probability of the JEL method is 0.865, while that of the ISMB is 0.835. This shows

that JEL method does have advantage when the sample size is 30.

Tables 4.3 and 4.4 show the performances for both JEL and NA methods under heavy

censoring settings (CR = 45% and CR = 60%). When the censoring rate is getting higher,

indicating we have less information about the data. Two methods perform similarly when

the sample size is 100. However, when the sample size is only 30, the JEL performs sightly

better than the NA method.

4.4 Application to real data

In this section, we analyzed two real data sets to illustrate the proposed JEL method.

The first data set is Kidney catheter data, and the other one is National Wilm’s tumor study

data.

The first data set kidney catheter data can be found in the R package survival . This

data set has been analyzed by McGilchrist and Aisbett (1991) using a log-normal frailty
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distribution. In this data set, recurrence times of kidney patients using portable dialysis

equipment at the point of insertion of the catheter were recorded. When the infection

occurs, the catheter is removed, and reinserted after certain time. The time to infection

is considered as censored when the catheters are removed for some reasons, that are not

infection. The risk variables are age (in years), sex (0 = male, 1 = female), and disease

type coded as 0 = GN, 1 = AN, 2 = PKD, 3 = other. Thus, the five regression variables

considered are age, sex, and presence/absence of disease types GN, AN, PKD. The data set

contains 76 data points, which contain 38 patients, with each having exactly two-insertion

information, and the censoring rate is 24%.

We fit the data set using the accelerated failure time model for the recurrence times T ,

that is,

log(T ) =
5∑
i=1

βiXi + ε,

where X1 is the age, X2 is the sex, X3 is the disease-GN, X4 is the disease-AN, and X5 is

the disease-PKD.

The second data set selected to demonstrate the performance of our proposed method

is National Wilm’s Tumor Study data (D’angio et al. (1989)). This data set can be found in

the R package survival as well. Wilms tumor is a type of cancer that starts in the kidneys.

It is the most common type of kidney cancer in young children. The study was conducted

by the National Wilm’s Tumor Study Group (NWTSG) and the interest of the study was

to assess the relationship between the tumor histology measurement (histol) and the time

to tumor relapse (edrel). Depending on the cell type, the tumor histology can be classified

into favorable or unfavorable categories. Besides histology measurement, other covariates are

patient age (age), disease stages (stage) and study group (study). More detailed introduction

was given in Chiou et al. (2014a).

In this data set, there were a total of 4028 subjects, among whom, 571 were cases

who experienced the relapse of tumor (rel=1) and 3457 patients did not (rel=0). Thus, the

censoring rate is about 86 %. We consider the accelerated failure time model for the time to
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relapse T , that is,

log(T ) =
4∑
i=1

βiXi + ε.

The covariates that are taken into account are: X1 = central histology measurement (1 =

favorable, 0 = unfavorable), X2 = age (measure in year) at diagnosis, X3 = tumor stage

indicators (with 4 being the latest and most severest) and X4 = a study group indicator

(NWTSG-3 and NWTSG-4).

To check the performance of the proposed method, for both application cases, we use R

package aftgee to estimate β and obtain confidence intervals. The sandwich variance estima-

tion method used is IS-MB. Tables 4.5 and 4.6 report interval estimates based on JEL and

NA methods, along with the point estimator (PE) from NA method. LB, UB and Length

denote the lower bound, upper bound and length of the 95% confidence interval.

In Table 4.5, we can conclude that the only statistically significant covariate is sex,

indicating that gender had a significant effect on the time to infection. This suggests that

female patients tend to have longer recurrence times to infection. This is a consistent finding

as in McGilchrist and Aisbett (1991).

In Table 4.6, the lower and upper bounds indicate that the coefficients of central his-

tological diagnosis for both methods are negative and significantly different from zero. This

suggests that patients with unfavorable central histology measurement tend to have shorter

time to tumor relapse.

4.5 Discussion

Based on Brown and Wang (2007), we propose a jackknife empirical likelihood method

to make statistical inference for the accelerated failure time model with right censored data.

The empirical log-likelihood ratio is proved to have the standard chi-squared distribution

and the corresponding confidence intervals are developed. The simulation results suggest

that the proposed JEL outperforms the normal approximation method in terms of coverage

probability, especially when the sample size is small. Moreover, JEL method performs well
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when the censoring rate is higher than 45%. Therefore, it is worthwhile to apply the pro-

posed method to heavy censored data sets. The results of two real data applications support

our conclusion.

In summary, for the small to moderate sample sizes, when the censoring rate is heavy,

we recommend to use the proposed JEL method to make inference for the accelerated failure

time model, which improves the existing methods. Another advantage of the proposed JEL

method is that it can be easily implemented in a standard software environment. Moreover,

JEL methods can be applied to the kernel estimating equation with bandwidth h (see equa-

tion (4.3)) as well. Since it is very similar to our proposed estimators, which allows more

broad applications than existing estimations in practice.
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Table 4.1 Simulation results with the CR = 15%. AL is the average length of confidence
intervals of β; CP is the coverage probability.

JEL (90%) ISMB (90%) JEL (95%) ISMB (95%)
AL CP AL CP AL CP AL CP

n = 30
β1 0.874 0.879 0.799 0.875 1.041 0.931 0.929 0.924
β2 0.853 0.880 0.789 0.855 1.016 0.929 0.931 0.914
β3 0.866 0.879 0.795 0.876 1.032 0.937 0.937 0.929

n = 60
β1 0.721 0.880 0.532 0.889 0.859 0.941 0.635 0.937
β2 0.704 0.874 0.533 0.892 0.839 0.942 0.636 0.933
β3 0.710 0.875 0.538 0.888 0.846 0.940 0.641 0.937

n = 100
β1 0.428 0.887 0.396 0.904 0.510 0.950 0.488 0.949
β2 0.427 0.890 0.367 0.887 0.509 0.949 0.489 0.945
β3 0.428 0.884 0.368 0.888 0.510 0.949 0.488 0.949
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Table 4.2 Simulation results with the CR = 30%.

JEL (90%) ISMB (90%) JEL (95%) ISMB (95%)
AL CP AL CP AL CP AL CP

n = 30
β1 0.962 0.871 0.931 0.871 1.146 0.917 1.109 0.912
β2 0.953 0.869 0.938 0.857 1.135 0.914 1.118 0.917
β3 0.944 0.865 0.929 0.835 1.125 0.912 1.107 0.914

n = 60
β1 0.811 0.874 0.515 0.886 0.966 0.930 0.614 0.933
β2 0.814 0.860 0.518 0.861 0.970 0.922 0.617 0.920
β3 0.828 0.871 0.523 0.879 0.987 0.930 0.623 0.933

n = 100
β1 0.566 0.890 0.398 0.910 0.674 0.942 0.474 0.943
β2 0.579 0.893 0.397 0.889 0.510 0.942 0.474 0.946
β3 0.581 0.892 0.398 0.883 0.692 0.944 0.475 0.938
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Table 4.3 Simulation results with the CR = 45%.

JEL (90%) ISMB (90%) JEL (95%) ISMB (95%)
AL CP AL CP AL CP AL CP

n = 30
β1 1.104 0.860 0.861 0.862 1.315 0.914 1.026 0.916
β2 1.102 0.848 0.848 0.839 1.313 0.910 1.012 0.899
β3 0.997 0.851 0.862 0.845 1.188 0.900 1.025 0.896

n = 60
β1 0.945 0.866 0.583 0.878 1.126 0.921 0.694 0.920
β2 0.941 0.866 0.587 0.871 1.121 0.922 0.695 0.924
β3 0.939 0.862 0.586 0.881 1.119 0.918 0.699 0.929

n = 100
β1 0.684 0.872 0.443 0.886 0.815 0.927 0.528 0.937
β2 0.683 0.872 0.444 0.884 0.814 0.929 0.528 0.926
β3 0.683 0.872 0.437 0.896 0.814 0.929 0.521 0.933
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Table 4.4 Simulation results with the CR = 60%.

JEL (90%) ISMB (90%) JEL (95%) ISMB (95%)
AL CP AL CP AL CP AL CP

n = 30
β1 1.254 0.830 0.948 0.828 1.494 0.908 1.130 0.893
β2 1.247 0.823 0.964 0.802 1.486 0.909 1.159 0.882
β3 1.245 0.814 0.972 0.804 1.483 0.901 1.164 0.868

n = 60
β1 1.009 0.860 0.664 0.885 1.206 0.910 0.791 0.909
β2 1.012 0.851 0.662 0.852 1.205 0.893 0.784 0.908
β3 1.015 0.848 0.673 0.852 1.208 0.890 0.802 0.899

n = 100
β1 0.720 0.864 0.537 0.885 0.858 0.911 0.640 0.929
β2 0.715 0.861 0.526 0.852 0.854 0.912 0.637 0.918
β3 0.717 0.863 0.525 0.852 0.851 0.909 0.626 0.912
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Table 4.5 Interval lengths of CIs for the kidney catheter data.

JEL ISMB
LB UB Length LB UB Length PE

Age -0.014 0.071 0.085 -0.019 0.023 0.042 0.002
Sex 1.025 2.223 1.198 0.923 2.191 1.267 1.557

disease-GN -1.200 0.592 1.792 -1.267 0.319 1.586 -0.474
disease-AN -0.271 1.277 1.548 -1.339 0.145 1.484 -0.597

disease-PKD -1.042 1.871 2.913 -0.765 1.861 2.626 0.548
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Table 4.6 Interval lengths of CIs for the National Wilm’s tumor study.

JEL ISMB
LB UB Length LB UB Length PE

Histol -3.516 -2.874 0.642 -3.126 -2.592 0.533 -2.859
Age -0.257 -0.114 0.143 -0.223 -0.113 0.110 -0.168

Stage -0.612 -0.329 0.283 -0.757 -0.483 0.274 -0.620
Study -0.429 0.174 0.603 -0.479 0.199 0.678 -0.140
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CHAPTER 5

CONCLUSIONS

In the first part of this dissertation, we apply empirical likelihood (EL) method to

construct confidence intervals for the regression parameters in the semiparametric transfor-

mation models with length-biased sampling. The transformation model plays an essential

role in survival analysis. Length-biased data are left-truncated and right censored data under

the stationary assumption, which is commonly seen in the context of observational studies.

Motivated by Wang and Wang (2015), we introduce the EL inference procedure and prove

that the log-likelihood ratio has the asymptotic distribution of χ2
p. One of the most signifi-

cant advantages of the empirical likelihood method is that it avoids estimating the complex

covariance matrix comparing to normal approximation method. Furthermore, to improve the

performances of the empirical likelihood method regarding coverage probability, we propose

the adjusted empirical likelihood (AEL), which is initially developed by Chen et al. (2008).

In the simulation study, compared to the normal approximation method, our proposed AEL

method outperforms in most cases, especially when the censoring rate is relatively heavy.

Next, missing covariates are frequently encountered problems in survey studies. Moti-

vated by the weighted estimating idea proposed by Qi et al. (2005) and Huang and Wang

(2010), we employ EL method to make statistical inference for the semiparametric trans-

formation model with missing covariates. Kernel smoothing technique is used to estimate

the non-missingness probability. Under mild conditions, we prove that the empirical log-

likelihood ratio is asymptotically chi-squared distribution. Numerically, we carry out an

extensive simulation study to demonstrate the performance of our proposed method. In

contrast to the normal approximation method, our approach shows better performance in

the small samples.

The accelerated failure time (AFT) is a direct generalization of a linear model to cen-
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sored survival data analysis. As a result of its straightforward physical interpretation, one

can view the accelerated failure time model as an alternative to the proportional hazards

model. We generate pseudo-jackknife sample to develop the jackknife empirical likelihood

and propose the JEL method for the inference of the AFT model. Moreover, by using the

jackknife pseudo-sample technique for the estimation equation, we prove that the Wilks’

theorem for the JEL still holds. Comparing to the traditional empirical likelihood method,

the JEL has a significant advantage in saving computational cost. Furthermore, we conduct

the simulation studies. The coverage probability and average length of confidence intervals

are calculated to support our conclusions.

In addition to the extensive simulation studies, we also provide four real date examples

(Dementia disease, Mouse leukemia study, Kidney catheter, National Wilm’s tumor study)

to illustrate the use of the proposed methods, and demonstrate the comparability and supe-

riority of our methods to some existing approaches. Moreover, we present some discussions

on each topic and suggest some further research ideas.
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APPENDICES

Appendix A

Proof of theorems for Chapter 2

In this Appendix, we provide the proofs of Theorems 2.1, 2.2, 2.3 and 2.4.

Proof of Theorem 2.1.

In order to ensure the central limit theorem for counting process martingales, certain

regularity conditions, which can be found in Fleming and Harrington (2011), need to hold.

On the other hand, as the same conditions as in Wang and Wang (2015) are stated.

(D.1) λ(·) is positive and λ̇(·) is bounded and continuous on (−∞, B), where B is a finite

constant.

(D.2) For some constant C > 0, P (‖Z‖ < C) = 1.

(D.3) H0(·) has continuous and positive derivatives on [0, τ ].

(D.4) Σ∗ and Σ∗ are assumed to be finite and nondegenerate.

(D.5) E
[∫∞

0
ZY (t)r(t, T̃ , δ)dΛε{β′0Z +H0(t)}

]2

<∞.

Notice that

n∑
i=1

dM̂i(β0, t) =
n∑
i=1

[
dNi(t)− Yi(t)r̂(t, T̃i, δi)dΛε{β′0Zi + Ĥ(β0, t)}

]
= 0.

In addition, following Zhao and Yang (2012), and recall that

dΛ̂C =
n∑
i=1

dI(Vi ∧ Ci ≤ t, δ = 0)

/
n∑
i=1

I(Vi ∧ Ci ≥ t)

satisfies

n∑
i=1

dM̂Ci
(t) =

n∑
i=1

{
dI(Vi ∧ Ci ≤ t, δ = 0)− I(Vi ∧ Ci ≥ t)dΛ̂C(t)

}
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=
n∑
i=1

dI(Vi ∧ Ci ≤ t, δ = 0)− I(Vi ∧ Ci ≥ t)×

n∑
i=1

dI(Vi ∧ Ci ≤ t, δ = 0)

n∑
i=1

I(Vi ∧ Ci ≥ t)


=

n∑
i=1

I(Vi ∧ Ci ≤ t, δ = 0)−
n∑
i=1

I(Vi ∧ Ci ≥ t)×

n∑
i=1

dI(Vi ∧ Ci ≤ t, δ = 0)

n∑
i=1

I(Vi ∧ Ci ≥ t)

= 0.

It is easy to show that

1√
n

n∑
i=1

Wni(β0) =
1√
n

n∑
i=1

∫ τ

0

{
(Zi − ẑ(β0, t)) dM̂i(β0, t) + â(β0, t)dM̂Ci

(t)
}

=
1√
n

n∑
i=1

∫ τ

0

ZidM̂i(β0, t)−
1√
n

∫ τ

0

ẑ(β0, t)
n∑
i=1

dM̂i(β0, t)

+
1√
n

∫ τ

0

â(β0, t)
n∑
i=1

dM̂Ci(t)

=
1√
n

n∑
i=1

∫ τ

0

Zi

[
dNi(t)− Yi(t)r̂(t, T̃i, δi)dΛε{β′0Zi + Ĥ(β0, t)}

]
=

1√
n

n∑
i=1

Wi(β0) + op(1).

The last equation directly comes from the Appendix of Wang and Wang (2015). Therefore,

according to the conclusion of proofs in Step 3 in the Appendix of Wang and Wang (2015),

one has that when n→∞,

1√
n

n∑
i=1

Wni(β0)
d→N(0,Σ∗(β0)).

It can also be shown that for i = 1, ..., n,

Wni(β0) = Wi(β0) +

∫ τ

0

[z(t)− ẑ(β0, t)]dNi

+ Zi

(∫ τ

0

Yi(t)r̂(t, T̃i, δi)dΛε{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

Yi(t)r(t, T̃i, δi)dΛε{β′0Zi +H0(t)}
)
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+

(∫ τ

0

ẑ(β0, t)Yi(t)r̂(t, T̃i, δi)dΛε{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

z(t)Yi(t)r(t, T̃i, δi)dΛε{β′0Zi +H0(t)}
)

+

∫ τ

0

(â(β0, t)− a(t))d (I(Vi ∧ Ci ≤ t, δi = 0))

+

(∫ τ

0

â(β0, t)I(Vi ∧ Ci ≥ t)dΛ̂C(t)−
∫ τ

0

a(t)I(Vi ∧ Ci ≥ t)dΛC(t)

)
= Wi(β0) + ri1 + ri2 + ri3 + ri4 + ri5.

First, let us prove the following result holds,

∥∥∥∥∫ τ

0

Yi(t)r̂(t, T̃i, δi)dΛε{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

Yi(t)r(t, T̃i, δi)dΛε{β′0Zi +H0(t)}
∥∥∥∥ = op(1).

(A.1)

By the consistency of r̂(t, T̃i, δi) to r(t, T̃i, δi) and (A.9)

Ĥ(β0, t)−H0(t) =
1

n

n∑
j=1

∫ t

0

B(s, t)

B2(s)
dMj(s) + op(n

−1/2)

in the Appendix of Wang and Wang (2015), one can have that

∫ τ

0

Yi(t)r̂(t, T̃i, δi)dΛε{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

Yi(t)r(t, T̃i, δi)dΛε{β′0Zi +H0(t)}

= (1 + op(1))

∫ τ

0

Yi(t)r(t, T̃i, δi)d[Λε{β′0Zi + Ĥ(β0, t)} − Λε{β′0Zi +H0(t)}]

= (1 + op(1))

∫ τ

0

Yi(t)r(t, T̃i, δi)d
[
Λε{β′0Zi +H0(t)}(Ĥ(β0, t)−H0(t))

]
= (1 + op(1))

∫ τ

0

Yi(t)r(t, T̃i, δi)d

[
Λε{β′0Zi +H0(t)}

(
1

n

n∑
j=1

∫ t

0

B(u, t)

B2(u)
dMj(u) + op(n

−1/2)

)]

= (1 + op(1))

∫ τ

0

{
Yi(t)r(t, T̃i, δi)

[
Λε{β′0Zi +H0(t)}

(
1

n

n∑
j=1

B(t, t)

B2(t)
dMj(t)

)

+

(
1

n

n∑
j=1

∫ t

0

B(u, t)

B2(u)
dMj(u) + op(n

−1/2)

)
dΛε{β′0Zi +H0(t)}

]}
.

By condition (D.5),
∣∣∣∫ τ0 Y (t)r(t, T̃i, δ)dΛε{β′0Z +H0(t)}

∣∣∣ has a finite second moment.

As B(u, t)/B2(t) is bounded and Mj(t) (j = 1, ..., n) is a martingale, the above equation will
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be op(1). Thus, (A.1) is valid.

It follows the uniform consistency of Kaplan-Meier and Nelson-Aalen estimators ŜC ,

Λ̂C and ω̂(t, T̃i, δi), recalling the definition of z(t) and a(t), one can obtain the uniform

consistency of ẑ(β0, t) and â(β0, t), that are,

sup
0≤t≤τ

|ẑ(β0, t)− z(t)| p→ 0, (A.2)

and

sup
0≤t≤τ

|â(β0, t)− a(t)| p→ 0. (A.3)

Given condition (D.2), (A.1), (A.2) and (A.3), ‖ri1‖ = op(1), ‖ri2‖ = op(1), ‖ri3‖ = op(1)

and ‖ri4‖ = op(1) hold.

Furthermore, we have that

ri5 =

∫ τ

0

â(β0, t)I(Vi ∧ Ci ≥ t)dΛ̂C(t)−
∫ τ

0

a(t)I(Vi ∧ Ci ≥ t)dΛC(t)

=

∫ τ

0

â(β0, t)I(Vi ∧ Ci ≥ t)dΛ̂C(t)−
∫ τ

0

â(β0, t)I(Vi ∧ Ci ≥ t)dΛC(t)

+

∫ τ

0

â(β0, t)I(Vi ∧ Ci ≥ t)dΛC(t)−
∫ τ

0

a(t)I(Vi ∧ Ci ≥ t)dΛC(t)

=

∫ τ

0

â(β0, t)I(Vi ∧ Ci ≥ t)d(Λ̂C(t)− ΛC(t))

+

∫ τ

0

(â(β0, t)− a(t))d (I(Vi ∧ Ci ≤ t, δi = 0))

= (1 + op(1))

∫ τ

0

a(t)I(Vi ∧ Ci ≥ t)d(Λ̂C(t)− ΛC(t))

+

∫ τ

0

(â(β0, t)− a(t))d (I(Vi ∧ Ci ≤ t, δi = 0))

= (1 + op(1))

∫ τ

0

a(t)I(Vi ∧ Ci ≥ t)
n∑
j=1

dMCj(t)

n∑
j=1

I(Vj ∧ Cj ≥ t)
+ op(1).

For each i, since a(t)I(Vi ∧ Ci ≥ t)

/
n∑
j=1

I(Vj ∧ Cj ≥ t) is predicable and finite, MCj(t) (j =
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1, ..., n) is a martingale. The following term

∫ τ

0

a(t)I(Vi ∧ Ci ≥ t)
n∑
j=1

dMCj(t)

/
n∑
j=1

I(Vj ∧ Cj ≥ t)

is a martingale integral (Andersen et al. (2012)), which converges to 0 in probability. It

results in that ‖ri5‖ = op(1).

As a result, for i = 1, 2, ..., n,

Wni(β0) = Wi(β0) + op(1). (A.4)

Subsequently, for any k ∈ Rp, the following decompositions is provided,

k′

(
1

n

n∑
i=1

Wni(β0)(Wni(β0))′ − 1

n

n∑
i=1

Wi(β0)(Wi(β0))′

)
k

=
1

n

n∑
i=1

[k′ (Wni(β0)−Wi(β0))]
2

+
2

n

n∑
i=1

(k′Wi(β0))

× [k′(Wni(β0)−Wi(β0)] .

By (A.4), it can be shown that the two parts of right-hand side of the above equation

are both op(1). Then one has

1

n

n∑
i=1

Wni(β0)(Wni(β0))′ =
1

n

n∑
i=1

Wi(β0)(Wi(β0))′ + op(1).

According to the law of large numbers, as n→∞,

1

n

n∑
i=1

Wi(β0)(Wi(β0))′
p→E [Wi(β0)(Wi(β0))′] = Σ∗(β0).

Furthermore, as n→∞,

1

n

n∑
i=1

Wni(β0)(Wni(β0))′
p→Σ∗(β0).
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�

Proof of Theorem 2.2.

Similar to Yu et al. (2011), we need to show that (1): max
1≤i≤n

‖Wni(β0)‖ = op(n
1/2) and

(2): θ = Op(n
−1/2), where θ is the solution of equation (2.9).

Recall that Wni(β0) = Wi(β0) + op(1) (i = 1, 2, ..., n) is proven, hence, we only need to

show that max
1≤i≤n

‖Wi(β0)‖ = op(n
1/2). Having that Wi(β0) are i.i.d. random variables, and

E [Wi(β0)(Wi(β0))′] = Σ∗(β0) < ∞, which indicates that Wi(β0) has finite second moment,

by Lemma 11.2 of Owen (2001), one has that (1): max
1≤i≤n

‖Wni(β0)‖ = op(n
1/2) is valid.

Next, similar arguments in the proofs of the Theorem 3.2 of Owen (2001) and Lu and

Liang (2006) are followed. Let g(θ) =

(
n∑
i=1

Wni(β0)/(1 + θ′Wni(β0))

)/
n, θ = ρη, where

ρ > 0 and ‖η‖ = 1, we obtain that

0 = ‖g(θ)‖

= ‖g(ρη)‖

≥ |η′g(ρη)|

≥ 1

n

∣∣∣∣∣η′
n∑
i=1

Wni(β0)

1 + θ′Wni(β0)

∣∣∣∣∣
=

1

n

∣∣∣∣∣η′
{

n∑
i=1

Wni(β0)− ρ
n∑
i=1

Wni(β0)η′Wni(β0)

1 + ρη′Wni(β0)

}∣∣∣∣∣
≥ ρ

n
η′

n∑
i=1

Wni(β0)(Wni(β0))′

1 + ρη′Wni(β0)
η− 1

n

∣∣∣∣∣
n∑
i=1

Wni(β0)

∣∣∣∣∣
≥ ρη′Qn(β0)η

1 + ρWn(β0)
− 1

n

∣∣∣∣∣
n∑
i=1

Wni(β0)

∣∣∣∣∣ ,
where Qn(β0) = 1

n

n∑
i=1

Wni(β0)(Wni(β0))′, and Wn(β0) = max
1≤i≤n

‖Wni(β0)‖ = op(n
1/2).

By the law of large numbers, one has Qn(β0) = 1
n

n∑
i=1

Wi(β0)(Wi(β0))′+op(1). Therefore,
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as n→∞, lim
n→∞

Qn(β0) = E [Wi(β0)(Wi(β0))′] = Σ∗(β0). In addition, based on Theorem 2.1,

1

n

∣∣∣∣∣
n∑
i=1

Wni(β0)

∣∣∣∣∣ = Op(n
−1/2)

is valid. Thus, one can prove that (2): θ = Op(n
−1/2) is also true.

From the results (1) and (2) above, it can be shown that

θ =

(
1

n

n∑
i=1

Wni(β0)(Wni(β0))′

)−1(
1

n

n∑
i=1

Wni(β0)

)
+ op(n

−1/2).

Then, by Taylor expansion, we can derive that

ln(β0) = 2
n∑
i=1

θ′Wni(β0)−
n∑
i=1

θ′Wni(β0)(Wni(β0))′θ + op(1)

=

(
1√
n

n∑
i=1

Wni(β0)

)′(
1

n

n∑
i=1

Wni(β0)(Wni(β0))′

)−1(
1√
n

n∑
i=1

Wni(β0)

)
+ op(1).

Combining the Slutsky Lemma and Theorem 2.1, we complete the proof of Theorem 2.2. �

Proof of Theorem 2.3.

The proof is to follow the arguments in Yu et al. (2011). Note that β0 = (β′10, β
′
20)′, and the

corresponding Z = (Z ′1, Z
′
2)′. Define

Σ̃∗(β0) = E

[∫ τ

0

{Z − z(t)}Z ′2Y (t)r(t, T̃ , δ)λ̇ε{β′0Z +H0(t)}dH0(t)

]
.

Since Σ∗ is positive definite, Σ̃∗ is of rank p− q. Denote β̂2(β10) = arg inf
β2
ln(β′10, β

′
2)′. Let

Π = Σ̃∗(β0)′Σ∗(β0)−1Σ̃∗(β0).

By similar arguments to Qin and Lawless (1994) and Yu et al. (2011), we can show that

√
n(β̂2 − β20) = −Π(β0)−1Σ̃∗(β0)′Σ∗(β0)−1 1√

n

n∑
i=1

Wni(β0) + op(1),
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and the Lagrange multiplier θ2 satisfies that

√
nθ2 =

(
I − Σ∗(β0)−1Σ̃∗(β0)Π(β0)−1Σ̃∗(β0)′

)
Σ∗(β0)−1 1√

n

n∑
i=1

Wni(β0) + op(1).

Thus, by Taylor’s expansion, we have that

l∗n(β10) =

(
1√
n

n∑
i=1

Wni(β0)

)′ (
Σ∗(β0)−1 − Σ∗(β0)−1Σ̃∗(β0)(Σ̃∗(β0)′Σ∗(β0)−1Σ̃∗(β0))

−1
Σ̃∗(β0)′Σ∗(β0)−1

)
×

(
1√
n

n∑
i=1

Wni(β0)

)
+ op(1)

=

(
Σ∗(β0)−1/2 1√

n

n∑
i=1

Wni(β0)

)′
S

(
Σ∗(β0)−1/2 1√

n

n∑
i=1

Wni(β0)

)
+ op(1),

where

S = I − Σ∗(β0)−1/2Σ̃∗(β0)(Σ̃∗(β0)′Σ∗(β0)−1Σ̃∗(β0))−1Σ̃∗(β0)′Σ∗(β0)−1/2

is a symmetric and idempotent matrix with trace q. By Theorem 2.1,

Σ∗(β0)−1/2 1√
n

n∑
i=1

Wni(β0)
d→N(0, I).

We proved Theorem 2.3. �

Proof of Theorem 2.4.

As Chen et al. (2008) did, we can obtain Theorem 2.4 from Theorem 2.2. Similarly, we

need to show that θad = Op(n
−1/2). Define

v(θad) =
1

n+ 1

n+1∑
i=1

W ad
ni (β0)

1 + (θad)′W ad
ni (β0)

,

and θad = ρ1η1, where ρ1 > 0 and ‖η1‖ = 1. Using the result of Theorem 2.2 and equation

(2.10), one has

0 =
∥∥v(θad)

∥∥
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= ‖v(ρ1η1)‖

≥ |η′1v(ρ1η1)|

≥ 1

n

∣∣∣∣∣η′1
n+1∑
i=1

W ad
ni (β0)

1 + (θad)′W ad
ni (β0)

∣∣∣∣∣
=

1

n

∣∣∣∣∣η′1
{
n+1∑
i=1

W ad
ni (β0)− ρ1

n+1∑
i=1

W ad
ni (β0)η′1W

ad
ni (β0)

1 + ρ1η′1W
ad
ni (β0)

}∣∣∣∣∣
≥ ρ1

n(1 + ρ1W ad
n (β0))

n∑
i=1

(η′1W
ad
ni (β0))

2 − 1

n

∣∣∣∣∣
n∑
i=1

W ad
ni (β0)

∣∣∣∣∣ (1− an/n)

=
ρ1

n(1 + ρ1W ad
n (β0))

n∑
i=1

(η′1W
ad
ni (β0))

2 − 1

n

∣∣∣∣∣
n∑
i=1

W ad
ni (β0)

∣∣∣∣∣+Op(n
−2/3an),

where W ad
n (β0) = max

1≤i≤n

∣∣W ad
ni (β0)

∣∣. Following the same steps in the proof of Theorem 2.2 and

Chen et al. (2008), one has θad = Op(n
−1/2) as an = op(n).

Moreover, one has

θad =

(
1

n

n∑
i=1

W ad
ni (β0)(W ad

ni (β0))′

)−1 n∑
i=1

W ad
ni (β0) + op(n

−1/2).

The adjusted EL ratio is as follows.

ladn (β0) = −2 logRad(β0)

= 2
n+1∑
i=1

log(1 + (θad)′W ad
ni (β0))

= 2
n+1∑
i=1

{(θad)′W ad
ni (β0)− (θad)′W ad

ni (β0)(W ad
ni (β0))′θad/2}+ op(1).

Substituting the expansion of θad, one can get that

ladn (β0) =

(
1√
n

n∑
i=1

W ad
ni (β0)

)′(
1

n

n∑
i=1

W ad
ni (β0)(W ad

ni (β0))′

)−1(
1√
n

n∑
i=1

W ad
ni (β0)

)
+ op(1).

Thus, ladn (β0) converges to χ2
p distribution. We proved Theorem 2.4. �
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Appendix B

Proof of theorems for Chapter 3

In this Appendix, we prove Theorems 3.1, 3.2 and 3.3 presented in Section 3.2.

Proof of Theorem 3.1.

We assume that the same conditions as in Huang and Wang (2010).

(D.1) P (Y (τ) = 1) > 0.

(D.2) For some constant C > 0, P (‖Z‖ < C) = 1.

(D.3) A, Σ1 and Σ2 are assumed to be positive definite.

(D.4) (i) The selection probability π(w) has r continuous and bounded partial derivatives

with respect to the continuous components of W almost surely;

(ii) infw(π(w)) > 0.

(D.5) (i) The probability function f(w) of W has r continuous and bounded partial deriva-

tives with respect to the continuous components of W almost surely;

(ii) 0 < infwf(w) ≤ supwf(w) <∞.

(D.6) The kernel function K(·) is a bounded kernel function with bounded support, and

K(·) is a kernel of order r(> d), where d is the number of elements in W (1).

(D.7) nh2d
n →∞ and nh2r

n →∞ as n→∞.

(D.8) The conditional expectation E[M∗ |W ] has r continuous and bounded partial deriva-

tives with respect to the continuous components of W almost surely.

(D.9) P (X ≥ t) is continuous for t ∈ [0, τ ].

Here, we have the following result.

n∑
i=1

Vi
π̂i
dM̂i(β0, t) =

n∑
i=1

Vi
π̂i

[
dNi(t)− Yi(t)dΛ{β′0Zi + Ĥ(β0, t)}

]
= 0.

Mimicking Qi et al. (2005), to prove Theorem 3.1, in addition to the regularity conditions



85

(D.1)-(D.9), the following regularity conditions are needed:

(c.1) supt∈[0,τ ]

∥∥M̄Edn(t)
∥∥→ 0 in probability as n→∞, where

M̄Edn(t) =
1√
n

n∑
i=1

(
1− Vi

πi

)∫ t

0

[
E[dM̂i(u) |Wi ]− E[dMi(u) |Wi ]

]
.

(c.2) supt∈[0,τ ]

∥∥M̄Eqn(t)
∥∥→ 0 in probability as n→∞, where

M̄Eqn(t) =
1√
n

n∑
i=1

(
1− Vi

π̂i

)∫ t

0

[
E[dM̂i(u) |Wi ]− E[dMi(u) |Wi ]

]
.

(c.3) M̄En(t) converges to a mean-zero Gaussian process with continuous sample paths,

where

M̄En(t) =
1√
n

n∑
i=1

Vi(π̂i − πi)
π2
i

E[Mi(t) |Wi ].

From Lemma A.3 in Huang and Wang (2010), we can easily obtain that

1√
n

n∑
i=1

(
1− Vi

πi

)
E[M∗,i |Wi ] =

1√
n

n∑
i=1

Vi
π̂i
M∗,i −

1√
n

n∑
i=1

Vi
πi
M∗,i + op(1).

Combining with Lemma A.1 in Huang and Wang (2010), we have that

1√
n

n∑
i=1

(
1− Vi

πi

)
E[M∗,i |Wi ] = op(1). (B.1)

Furthermore, by Taylor expansion of 1/π̂i about 1/πi, one has that

1√
n

n∑
i=1

(
1− Vi

π̂i

)
E[M∗,i |Wi ]

=
1√
n

n∑
i=1

(
1− Vi

πi

)
E[M∗,i |Wi ]−

1√
n

n∑
i=1

Vi(π̂i − πi)
π2
i

E[M∗,i |Wi ] + op(1). (B.2)

Then by the condition (c.3), equation (B.2) can be written as

1√
n

n∑
i=1

(
1− Vi

π̂i

)
E[M∗,i |Wi ] =

1√
n

n∑
i=1

(
1− Vi

πi

)
E[M∗,i |Wi ] + op(1).
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According to the condition (c.2) and equation (B.1), we can obtain that

1√
n

n∑
i=1

(
1− Vi

π̂i

)
E[M̂∗,i |Wi ]

=
1√
n

n∑
i=1

(
1− Vi

π̂i

)
E[M∗,i |Wi ] + op(1)

=
1√
n

n∑
i=1

(
1− Vi

πi

)
E[M∗,i |Wi ] + op(1)

= op(1). (B.3)

It is clear that one has that

1√
n

n∑
i=1

Uni(β0) =
1√
n

n∑
i=1

∫ τ

0

{
Vi
π̂i

(Zi − Z̄(β0, t))dM̂i(β0, t) +

(
1− Vi

π̂i

)
dM̂∗∗,i(β0, t, w

(1)
i , w

(2)
i )

}
=

1√
n

n∑
i=1

∫ τ

0

Vi
π̂i

(Zi − Z̄(β0, t))dM̂i(β0, t) +
1√
n

n∑
i=1

(
1− Vi

π̂i

)
E[M̂∗,i |Wi ]

=
1√
n

n∑
i=1

∫ τ

0

Vi
π̂i
ZidM̂i(β0, t)−

∫ τ

0

Z̄(β0, t)
n∑
i=1

Vi
π̂i
dM̂i(β0, t)

+
1√
n

n∑
i=1

(
1− Vi

π̂i

)
E[M̂∗,i |Wi ]

=
1√
n

n∑
i=1

Ui(β0) + op(1).

By proofs in the Appendix of Huang and Wang (2010), one has that

1√
n

n∑
i=1

Ui(β0)→N(0,Σ2(β0)),

in distribution, as n→∞.

Moreover, we can have that

1√
n

n∑
i=1

Uni(β0)→N(0,Σ2(β0)),

in distribution, as n→∞.
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Furthermore, one need to prove that

Uni(β0) = Ui(β0) + op(1). (B.4)

Write

Uni(β0) = Ui(β0) +
Vi
π̂i

∫ τ

0

Zi

(
dM̂i(β0, t)− dMi(β0, t)

)
+
Vi
π̂i

∫ τ

0

(
µZdMi(β0, t)− Z̄(β0, t)dM̂i(β0, t)

)
+

(
1− Vi

π̂i

)∫ τ

0

(
dM̂∗∗,i(β0, t, w

(1)
i , w

(2)
i )− dM∗∗,i(β0, t, w

(1)
i , w

(2)
i )
)

=: Ui(β0) + ri1 + ri2 + ri3,

where

ri1 =
Vi
π̂i
Zi

(∫ τ

0

Yi(t)dΛ{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

Yi(t)dΛ{β′0Zi +H0(t)}
)

ri2 =
Vi
π̂i

∫ τ

0

(
µZdMi(β0, t)− Z̄(β0, t)dM̂i(β0, t)

)
ri3 =

(
1− Vi

π̂i

)∫ τ

0

(
dM̂∗∗,i(β0, t, w

(1)
i , w

(2)
i )− dM∗∗,i(β0, t, w

(1)
i , w

(2)
i )
)
.

It suffices to show that

∥∥∥∥∫ τ

0

Yi(t)dΛ{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

Yi(t)dΛ{β′0Zi +H0(t)}
∥∥∥∥ = op(1). (B.5)

Some arguments similar to the proofs of Theorems 2.1 and 2.2 in the Appendix of Huang

and Wang (2010) can be used here. Recall B(β0, t, u) in equation (3.3). Let a > 0, define

λ∗{H0(t)} = B(β0, t, a),

B1(β0, t) =

∫ t

a

E[Y (t)λ̇{β′0Z +H0(u)}]dH0(u),
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B2(β0, t) = E[Y (t)λ{β′0Z +H0(u)}].

Like Huang and Wang (2010), it is easy to prove that

B(β0, t, u) = λ∗{H0(t)}/λ∗{H0(u)},

and

dλ∗{H0(t)} = [λ∗{H0(t)}/B2(β0, t)]dB1(β0, t).

Since

n∑
i=1

dMi(β0, t) =
n∑
i=1

dNi(t)−
n∑
i=1

Yi(t)dΛ{β′0Zi +H0(t)}

=
n∑
i=1

Yi(t)dΛ{β′0Zi + Ĥ(β0, t)} −
n∑
i=1

Yi(t)dΛ{β′0Zi +H0(t)}

= (1 + op(1))
n∑
i=1

Yi(t)d
(
λ{β′0Zi +H0(t)}

[
Ĥ(β0, t)−H0(t)

])
,

similar to the equation (A.9) in Wang and Wang (2015), one has that

Ĥ(β0, t)−H0(t) =
1

n

n∑
j=1

∫ t

0

B(β0, u, t)

B2(β0, u)
dMj(β0, u) + op(n

−1/2). (B.6)

Then by equation (B.6), one has that

∫ τ

0

Yi(t)dΛ{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

Yi(t)dΛ{β′0Zi +H0(t)}

=

∫ τ

0

Yi(t)d[Λ{β′0Zi + Ĥ(β0, t)} − Λ{β′0Zi +H0(t)}]

=

∫ τ

0

Yi(t)d
[
Λ{β′0Zi +H0(t)}(Ĥ(β0, t)−H0(t))

]
=

∫ τ

0

Yi(t)d

[
Λ{β′0Zi +H0(t)}

(
1

n

n∑
j=1

∫ t

0

B(β0, u, t)

B2(β0, u)
dMj(β0, u) + op(n

−1/2)

)]

=

∫ τ

0

{
Yi(t)

[
Λ{β′0Zi +H0(t)}

(
1

n

n∑
j=1

B(β0, t, t)

B2(β0, t)
dMj(β0, t)

)
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+

(
1

n

n∑
j=1

∫ t

0

B(β0, u, t)

B2(β0, u)
dMj(β0, u) + op(n

−1/2)

)
dΛ{β′0Zi +H0(t)}

]}

= op(1).

Thus, (B.5) is valid.

Then since

ri2 =
Vi
π̂i

∫ τ

0

(
µZdMi(β0, t)− Z̄(β0, t)dM̂i(β0, t)

)
=
Vi
π̂i

[∫ τ

0

(µZ − Z̄(β0, t))dNi

−
(∫ τ

0

µZYi(t)dΛ{β′0Zi +H0(t)} −
∫ τ

0

Z̄(β0, t)Yi(t)dΛ{β′0Zi + Ĥ(β0, t)}
)]

=
Vi
π̂i

[∫ τ

0

(µZ − Z̄(β0, t))dNi

−
∫ τ

0

µZYi(t)dΛ{β′0Zi +H0(t)}+

∫ τ

0

Z̄(β0, t)Yi(t)dΛ{β′0Zi +H0(t)}

+

∫ τ

0

Z̄(β0, t)Yi(t)dΛ{β′0Zi + Ĥ(β0, t)} −
∫ τ

0

Z̄(β0, t)Yi(t)dΛ{β′0Zi +H0(t)}
]

=
Vi
π̂i

[∫ τ

0

(µZ − Z̄(β0, t))dNi

−
∫ τ

0

(
µZ − Z̄(β0, t)

)
Yi(t)dΛ{β′0Zi +H0(t)}

+

∫ τ

0

Z̄(β0, t)
[
Yi(t)dΛ{β′0Zi + Ĥ(β0, t)− Yi(t)dΛ{β′0Zi +H0(t)}

]]
,

this together with the uniform consistency of Z̄(β0, t) to µZ , that is,

sup
0≤t≤τ

∣∣Z̄(β0, t)− µZ
∣∣→ 0, (B.7)

in probability, as n→∞, we can obtain that ‖ri2‖ = op(1). Moreover, from condition (D.2),

equations (B.5) and (B.7), ‖ri1‖ = op(1) can be proven.

Furthermore, we have that

ri3 =

(
1− Vi

π̂i

)∫ τ

0

(
dM̂∗∗,i(β0, t, w

(1)
i , w

(2)
i )− dM∗∗,i(β0, t, w

(1)
i , w

(2)
i )
)
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=

(
1− Vi

π̂i

)(∫ τ

0

E[(Zi − Z̄(β0, t))dM̂i(β0, t) |Wi ]−
∫ τ

0

E[(Zi − µZ(β0, t))dMi(β0, t) |Wi ]

)
=

(
1− Vi

π̂i

)(
E

[∫ τ

0

(Zi − Z̄(β0, t))dM̂i(β0, t) |Wi

]
− E

[∫ τ

0

(Zi − µZ(β0, t))dMi(β0, t) |Wi

])
.

Define

R =

∫ τ

0

(Zi − Z̄(β0, t))dM̂i(β0, t)− (Zi − µZ(β0, t))dMi(β0, t)

=

∫ τ

0

(µZ(β0, t)− Z̄(β0, t))dNi

−
(∫ τ

0

µZYi(t)dΛ{β′0Zi +H0(t)} −
∫ τ

0

Z̄(β0, t)Yi(t)dΛ{β′0Zi + Ĥ(β0, t)}
)
.

Similar arguments lead to R = op(1). In addition, we can obtain that

∫ τ

0

(Zi − Z̄(β0, t))dM̂i(β0, t)→
∫ τ

0

(Zi − µZ(β0, t))dMi(β0, t)

in probability. Moreover,
∫ τ

0
(Zi − µZ(β0, t))dMi(β0, t) and

∫ τ
0

(Zi − Z̄(β0, t))dM̂i(β0, t) are

bounded, one has that

E

(∫ τ

0

(Zi − Z̄(β0, t))dM̂i(β0, t) |Wi

)
→ E

(∫ τ

0

(Zi − µZ(β0, t))dMi(β0, t) |Wi

)
,

in probability. Therefore, ‖ri3‖ = op(1). The proof of equation (B.4) is completed.

Then we conduct the following decompositions,

c′

(
1

n

n∑
i=1

Uni(β0)(Uni(β0))′ − 1

n

n∑
i=1

Ui(β0)(Ui(β0))′

)
c

=
1

n

n∑
i=1

[c′ (Uni(β0)− Ui(β0))]
2

+
2

n

n∑
i=1

(c′Ui(β0))

× [c′(Uni(β0)− Ui(β0)] ,

where c is some constant.

From equation (B.4), it can be easily shown that the two parts of right-hand side of the
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above equation are both op(1). Hence

1

n

n∑
i=1

Uni(β0)(Uni(β0))′ =
1

n

n∑
i=1

Ui(β0)(Ui(β0))′ + op(1).

By the law of large numbers,

1

n

n∑
i=1

Ui(β0)(Ui(β0))′→E [Ui(β0)(Ui(β0))′] = Σ2(β0),

in probability, as n→∞.

Thus,

1

n

n∑
i=1

Uni(β0)(Uni(β0))′→Σ2(β0),

in probability, as n→∞. Finally, we proved Theorem 3.1. �

Proof of Theorem 3.2.

We need to show that

max
1≤i≤n

‖Uni(β0)‖ = op(n
1/2), (B.8)

and

λ = Op(n
−1/2), (B.9)

where the Lagrange multiplier λ is the solution of equation (3.15).

Since Ui(β0) are i.i.d. random variables, and E [Ui(β0)(Ui(β0))′] = Σ2(β0) < ∞, Ui(β0)

has finite second moment. Moreover, for i = 1, 2, ..., n, Uni(β0) = Ui(β0) + op(1) is proven.

It is sufficient to show that max
1≤i≤n

‖Ui(β0)‖ = op(n
1/2). It follows by Lemma 11.2 of Owen

(2001), we have equation (B.8) is true.

Then, following the similar steps in the proofs of the Theorem 3.2 of Owen (2001) and

Lu and Liang (2006), we can prove equation (B.9) is valid as well.

Let f(λ) =

(
n∑
i=1

Uni(β0)/(1 + λ′Uni(β0))

)/
n, λ = ρθ, where ρ > 0 and ‖θ‖ = 1, we obtain
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that

0 = ‖f(λ)‖

= ‖f(ρθ)‖

≥ |θ′f(ρθ)|

≥ 1

n

∣∣∣∣∣θ′
n∑
i=1

Uni(β0)

1 + λ′Uni(β0)

∣∣∣∣∣
=

1

n

∣∣∣∣∣θ′
{

n∑
i=1

Uni(β0)− ρ
n∑
i=1

Uni(β0)θ′Uni(β0)

1 + ρθ′Uni(β0)

}∣∣∣∣∣
≥ ρ

n
θ′

n∑
i=1

Uni(β0)(Uni(β0))′

1 + ρθ′Uni(β0)
θ− 1

n

∣∣∣∣∣
n∑
i=1

Uni(β0)

∣∣∣∣∣
≥ ρθ′Sn(β0)θ

1 + ρUn(β0)
− 1

n

∣∣∣∣∣
n∑
i=1

Uni(β0)

∣∣∣∣∣ ,
where Sn(β0) =

(
n∑
i=1

Uni(β0)(Uni(β0))′
)/

n, and Un(β0) = max
1≤i≤n

‖Uni(β0)‖ = op(n
1/2).

By the law of large numbers, one has that

Sn(β0) =
1

n

n∑
i=1

Ui(β0)(Ui(β0))′ + op(1).

Therefore, as n→∞,

lim
n→∞

Sn(β0) = E [Ui(β0)(Ui(β0))′] = Σ2(β0).

Combining with Theorem 3.1, we have that

1

n

∣∣∣∣∣
n∑
i=1

Uni(β0)

∣∣∣∣∣ = Op(n
−1/2).

We complete that proof of equation (B.9).
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Using the results (B.8) and (B.9), we can obtain that

λ =

(
1

n

n∑
i=1

Uni(β0)(Uni(β0))′

)−1(
1

n

n∑
i=1

Uni(β0)

)
+ op(n

−1/2).

It follows from the Taylor expansion, Slutsky lemma and Theorem 3.1,

ln(β0) = 2
n∑
i=1

λ′Uni(β0)−
n∑
i=1

λ′Uni(β0)(Uni(β0))′λ+ op(1)

=

(
1√
n

n∑
i=1

Uni(β0)

)′(
1

n

n∑
i=1

Uni(β0)(Uni(β0))′

)−1(
1√
n

n∑
i=1

Uni(β0)

)
+ op(1).

We complete the proof of Theorem 3.2. �

Proof of Theorem 3.3.

Following the arguments as in Yu et al. (2011), we prove the theorem. Corresponding to

(β′10, β
′
20)′, we denote Z = (Z ′1, Z

′
2)′. Define

A∗(β0) = E

[∫ τ

0

{Z − µZ(β0, t)}Z2
′Y (t)λ̇{β′0Z +H0(t)}dH0(t)

]
.

Since A is positive definite, A∗ is of rank p− q. Let

β̂2 = arg inf
β2
ln(β10, β2),

similar to Qin and Lawless (1994), we can show that

√
n(β̂2 − β20) = −(A∗

′
Σ−1

2 A∗)−1A∗
′
Σ−1

2 n−1/2

n∑
i=1

Uni(β0) + op(1),

√
nλ2 =

(
I − Σ−1

2 A∗(A∗
′
Σ−1

2 A∗)
−1
A∗

′
)

Σ−1
2 n−1/2

n∑
i=1

Uni(β0) + op(1),

where λ2 is the corresponding Lagrange multiplier.
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Hence, by Taylor’s expansion, we have that

l∗n(β10) =

(
1√
n

n∑
i=1

Uni(β0)

)′ (
Σ−1

2 − Σ−1
2 A∗(A∗

′
Σ−1

2 A∗)
−1
A∗

′
Σ−1

2

)
×

(
1√
n

n∑
i=1

Uni(β0)

)
+ op(1)

=

(
Σ
−1/2
2

1√
n

n∑
i=1

Uni(β0)

)′
Γ

(
Σ
−1/2
2

1√
n

n∑
i=1

Uni(β0)

)
+ op(1),

where

Γ = I − Σ
−1/2
2 A∗(A∗

′
Σ−1

2 A∗)−1A∗
′
Σ
−1/2
2

is a symmetric and idempotent matrix with trace q. By Theorem 3.1,

Σ
−1/2
2 (β0)

1√
n

n∑
i=1

Uni(β0)→ N(0, I),

in distribution, as n→∞. The proof of Theorem 3.3 is completed. �
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Appendix C

Proof of theorems for Chapter 4

To derive the asymptotic properties of l(β0) and l∗(β10), we assume some regularity

conditions hold.

(D.1) X is bounded, that is, P (‖X‖ ≤M) = 1 for some 0 < M <∞.

(D.2) The conditional distribution Fe1(β)|X1 (t) of e1(β) = Y1 − βTX1 given X1 is twice

continuously differentiable in t for all X.

(D.3) For any X, the conditional density function F ′e1(β)|X1 (t) = fe1(β)|X1 (t) > 0 for t in a

neighborhood of 0.

Firstly, we re-express the smoothed rank estimating function Sn(β) in (4.2) as a U -

statistic with a symmetric kernel function.

Sn(β) =
n∑
i=1

n∑
j=1

∆i(Xi −Xj)Φ

[
ej(β)− ei(β)

rij

]
=

∑
1≤i<j≤n

∆i(Xi −Xj)Φ

[
ej(β)− ei(β)

rij

]
+

∑
1≤j<i≤n

∆i(Xi −Xj)Φ

[
ej(β)− ei(β)

rij

]
=

∑
1≤i<j≤n

∆i(Xi −Xj)Φ

[
ej(β)− ei(β)

rij

]
+

∑
1≤i<j≤n

∆j(Xj −Xi)Φ

[
ei(β)− ej(β)

rji

]
,

because of r2
ij = (Xi −Xj)

T (Xi −Xj)/n, one has that rij = rji,

Sn(β) =
∑

1≤i<j≤n

(Xi −Xj)

{
∆iΦ

[
ej(β)− ei(β)

rij

]
−∆jΦ

[
ei(β)− ej(β)

rij

]}

=

 n

2



 n

2

−1 ∑
1≤i<j≤n

K(Zi, Zj; β)


≡

 n

2

S∗n(β),
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where S∗n(β) is a U -statistic of degree 2

S∗n(β) =

 n

2

−1 ∑
1≤i<j≤n

K(Zi, Zj; β) ≡ Un(β),

with the kernel function

K(Zi, Zj; β) = (Xi −Xj)

{
∆iΦ

[
ej(β)− ei(β)

rij

]
−∆jΦ

[
ei(β)− ej(β)

rij

]}
.

Similarly, we can also derive S̃n(β) in (4.1) as a U -statistic with a symmetric kernel function,

that is,

S̃n(β) =
n∑
i=1

n∑
j=1

∆i(Xi −Xj)I[ej(β) ≥ ei(β)],

=
∑

1≤i<j≤n

∆i(Xi −Xj)I[ej(β) ≥ ei(β)] +
∑

1≤j<i≤n

∆i(Xi −Xj)I[ej(β) ≥ ei(β)]

=
∑

1≤i<j≤n

∆i(Xi −Xj)I[ej(β) ≥ ei(β)] +
∑

1≤i<j≤n

∆j(Xj −Xi)I[ei(β) ≥ ej(β)]

=
∑

1≤i<j≤n

(Xi −Xj) {∆iI[ej(β) ≥ ei(β)]−∆jI[ei(β) ≥ ej(β)]}

=

 n

2



 n

2

−1 ∑
1≤i<j≤n

H(Zi, Zj; β)


≡

 n

2

Wn(β),

with the kernel function

H(Zi, Zj; β) = (Xi −Xj) {∆iI[ej(β) ≥ ei(β)]−∆jI[ei(β) ≥ ej(β)]} .

Fygenson and Ritov (1994) pointed out that when evaluated at β = β0, Wn(β0) is asymptot-

ically normal and has expectation zero. Furthermore, by (A.7) in the Appendix of Johnson
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and Strawderman (2009), we can have the asymptotically equivalence of Un(β0) to Wn(β0),
√
n ‖Un(β0)−Wn(β0)‖ p−→ 0, that is,

Un(β0) = Wn(β0) + op(n
−1/2). (C.1)

Then EUn(β0) = EWn(β0) + E
[
op(n

−1/2)
]
. Hence, we can have EUn(β0)→ 0 as n→∞.

Before proving Theorem 4.1, we first list some notations. Define



V̂i(β) = nWn(β)− (n− 1)W
(−i)
n−1 (β), i = 1, ..., n,

Wn(β) = 1
n

n∑
i=1

V̂i(β),

G(β) = 1
n

n∑
i=1

V̂i(β)V̂ T
i (β),

G∗(β) = 1
n

n∑
i=1

Q̂i(β)Q̂T
i (β),

φ(z, β) = (φ1(z, β), ..., φp(z, β))T = EH(z, Z1; β),

ψ(x, y, β) = H(x, y; β)− φ(x, β)− φ(y, β),

g(z, β) = (g1(z, β), ..., gp(z, β))T = 2φ(z, β),

σ2
l (β) = V ar(φl(Z1, β)), l = 1, ..., p,

σ2
st(β) = Cov(φs(Z1, β), φt(Z1, β)), s, t = 1, ..., p,

Σ
(β)
p×p : the asymptotic variance− covariance matrix of

√
nWn(β),

with elements 4σst(β), s, t = 1, ..., p.

Under conditions (D.1)-(D.3), following Jing et al. (2009) and Li et al. (2016), we will

prove Lemmas A.1 to A.5.

Lemma A.1. Under conditions (D.1)-(D.3), as n→∞, we have

√
nUn(β0)

d−→ N(0,Σ
(β0)
p×p).

Proof. From Li et al. (2016), we can conclude that
√
nWn(β0) tends to have a normal

distribution with mean 0 and covariance Σ
(β0)
p×p. Then as n → ∞, by (C.1), we can derive
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that

E[
√
nUn(β0)] = E[

√
n(Wn(β0) + op(n

−1/2))]

= E[
√
nWn(β0) + op(1)] = E[

√
nWn(β0)] + op(1)→ 0,

and

cov(
√
nUn(β0)) = cov(

√
n(Wn(β0) + op(n

−1/2))) = cov(
√
nWn(β0) + op(1))

= cov(
√
nWn(β0)) + 2cov(

√
nWn(β0), op(1)) + cov(op(1))

= cov(
√
nWn(β0)) + 2

[
E(
√
nWn(β0)× op(1))− E(

√
nWn(β0))× E(op(1))

]
+ op(1)

= Σ
(β0)
p×p + op(1)

→ Σ
(β0)
p×p.

Thus, Lemma A.1 holds. �

Lemma A.2. Under conditions (D.1)-(D.3), with probability tending to one as n→∞, the

zero vector is contained in the interior of the convex hull of
{
Q̂1(β0), ..., Q̂n(β0)

}
. Proof. To

get the representation of Q̂i(β0), by the Hoeffding decomposition, from Li et al. (2016), we

have that

Wn,l(β0) =
2

n

n∑
i=1

φl(Zi, β0) +

 n

2

−1
n∑
i<j

ψl(Zi, Zj, β0). (C.2)

Combining (C.1) with (C.2), we can derive that

Un,l(β0) =
2

n

n∑
i=1

φl(Zi, β0) +

 n

2

−1
n∑
i<j

ψl(Zi, Zj, β0) + op(n
−1/2).
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By some calculations, one has that

Q̂i,l(β0) = 2φl(Zi, β0) +
2

n− 1

n∑
j=1,j 6=i

ψl(Zi, Zj, β0)

−

 n− 1

2

−1
n∑

i1<i2,i1 6=i,i2 6=i

ψl(Zi1, Zi2, β0) + op(n
−1/2)

:= gl(Zi, β0) + rni,l(β0) + op(n
−1/2).

Note Li et al. (2016) proved that

Er2
ni,l(β0) ≤ Cn−1Eψ2

l (Zi, Zj, β0) + Cn−2Eψ2
l (Zi, Zj, β0)

→ 0, (C.3)

where C is some generic constant. From (C.3), it is clear that

rni,l(β0) = Op(n
−1/2)→ 0.

Thus,

Q̂i,l(β0)
p−→ gl(Zi, β0), i = 1, ....n, l = 1, ..., p. (C.4)

Similar to Li et al. (2016), we have the following conclusions,

E max
1≤i≤n,1≤l≤p

∣∣∣∣∣ 2

n− 1

n∑
j=1,j 6=i

ψl(Zi, Zj, β0)

∣∣∣∣∣
4

= O(n−1),

and

E max
1≤i≤n,1≤l≤p

∣∣∣∣∣∣∣
 n− 1

2

−1
n∑

i1<i2,i1 6=i,i2 6=i,

ψl(Zi1 , Zi2 , β0)

∣∣∣∣∣∣∣
2

= O(n−1).
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For the random vector g(X1, β0), any arbitrary C > 0, one has that

inf
ω∈Ω

P (g(X1, β0)Tω ≥ C) > 0,

and we claim that there exists a positive constant C0 such that

a = inf
ω∈Ω

P (g(X1, β0)Tω ≥ C0) > 0. (C.5)

Because the variance covariance matrix of g(X1, β0) is Σ
(β0)
p×p, the function g(X1, β0) is non-

degenerate. Then following the proof of Lemma A.2 in Owen (1990), we can prove that there

exists a unit vector ω0 such that

P (g(X1, β0)Tω0 ≥ C) = 0.

Because of the arbitrariness of C, we conclude that

P (g(X1, β0)Tω0 > 0) = 0,

which also indicates that

P (g(X1, β0)Tω0 < 0) = 0.

However, the assumption Eg(X1, β0)Tω0 = 0 leads to that g(X1, β0)Tω0 = 0 a.s. This is a

contradiction to the condition that Σ
(β0)
p×p is positive definite. Thus, (C.5) is correct.

Following Li et al. (2016), we have that as n→∞,

sup
ω∈Ω

∣∣∣∣∣P (g(X1, β0)Tω ≥ C0)− 1

n

n∑
i=1

I
(
g(Xi, β0)Tω ≥ C0

)∣∣∣∣∣→ 0 a.s.

Based on (C.4), it can be shown that as n→∞,

P

(
inf
ω∈Ω

1

n

n∑
i=1

I
(
Q̂T
i (β0)ω > C0/2

)
> a/2

)
→ 1,
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where a is defined in (C.5).

We complete the proof of Lemma A.2. �

Lemma A.3. Under conditions (D.1)-(D.3), we have G∗(β0) = Σ
(β0)
p×p + o(1), a.s.

Proof. Combining Lemma A.1 in Li et al. (2016) and strong law of large numbers for U -

statistics, we get Wn(β0) = o(1) a.s. For l = 1, ..., r, let σ2
H,l(β0) = V ar(Hl(Z1, Z2; β0)).

Since E[H2
l (Z1, Z2; β0)] <∞, σ2

H,l(β0) <∞. As a result,

G(β0) =
1

n

n∑
i=1

V̂i(β0)V̂ T
i (β0)

=
1

n

n∑
i=1

[
V̂i(β0)−Wn(β0) +Wn(β0)

] [
V̂i(β0)−Wn(β0) +Wn(β0)

]T
=

1

n

n∑
i=1

[
V̂i(β0)−Wn(β0)

] [
V̂i(β0)−Wn(β0)

]T
+Wn(β0)W T

n (β0)

=
1

n

n∑
i=1

[
nWn(β0)− (n− 1)W

(−i)
n−1 (β0)−Wn(β0)

] [
nWn(β0)− (n− 1)W

(−i)
n−1 (β0)−Wn(β0)

]T
+Wn(β0)W T

n (β0)

=
(n− 1)2

n

n∑
i=1

[
Wn(β0)−W (−i)

n−1 (β0)
] [
Wn(β0)−W (−i)

n−1 (β0)
]T

+ o(1) a.s.
(C.6)

From Lemma A.3 in Li et al. (2016), we have that

G(β0) = Σ
(β0)
p×p + o(1) a.s.

Also, since

Wn(β0) =
1

n

n∑
i=1

V̂n(β0) =
1

n

n∑
i=1

[
nWn(β0)− (n− 1)W

(−i)
n−1 (β0)

]
= nWn(β0)− n− 1

n

n∑
i=1

W
(−i)
n−1 (β0), (C.7)
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which leads to

n∑
i=1

W
(−i)
n−1 (β0) = nWn(β0). (C.8)

Furthermore,

G∗(β0) =
1

n

n∑
i=1

Q̂i(β0)Q̂T
i (β0)

=
1

n

n∑
i=1

[
Q̂i(β0)− Un(β0) + Un(β0)

] [
Q̂i(β0)− Un(β0) + Un(β0)

]T
=

1

n

n∑
i=1

[
Q̂i(β0)− Un(β0)

] [
Q̂i(β0)− Un(β0)

]T
+ Un(β0)UT

n (β0). (C.9)

Note that the first term
n∑
i=1

Q̂i(β0)Q̂T
i (β0)/n in equation (C.9) can be proved as Σ

(β0)
p×p +

o(1) a.s.

1

n

n∑
i=1

[
Q̂i(β0)− Un(β0)

] [
Q̂i(β0)− Un(β0)

]T
=

1

n

n∑
i=1

[
nUn(β0)− (n− 1)U

(−i)
n−1 (β0)− Un(β0)

] [
nUn(β0)− (n− 1)U

(−i)
n−1 (β0)− Un(β0)

]T
=

(n− 1)2

n

n∑
i=1

[
Un(β0)− U (−i)

n−1 (β0)
] [
Un(β0)− U (−i)

n−1 (β0)
]T

=
(n− 1)2

n

n∑
i=1

[
(Wn(β0)−W (−i)

n−1 (β0)) + o(n−1/2))
] [

(Wn(β0)−W (−i)
n−1 (β0)) + o(n−1/2))

]T
=

(n− 1)2

n

n∑
i=1

[
Wn(β0)−W (−i)

n−1 (β0)
] [
Wn(β0)−W (−i)

n−1 (β0)
]T

+ o(1)

+
2(n− 1)2

n

n∑
i=1

o(n−1/2)
[
Wn(β0)−W (−i)

n−1 (β0)
]

=
(n− 1)2

n

n∑
i=1

[
Wn(β0)−W (−i)

n−1 (β0)
] [
Wn(β0)−W (−i)

n−1 (β0)
]T

+ o(1)

+
2(n− 1)2

n
o(n−1/2)

(
nWn(β0)−

n∑
i=1

W
(−i)
n−1 (β0)

)
= G(β0) + o(1)
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= Σ
(β0)
p×p + o(1) a.s.

Also, based on the strong law of large number for U -statistics, we can have Un(β0) = o(1)

a.s. Therefore, G∗(β0) = Σ
(β0)
p×p + o(1) a.s. �

Lemma A.4. Let An = max1≤i 6=j≤n ‖K(Z1, Z2; β0)‖. Under the condition (D.1), we have

An = o(n1/2) a.s.

Proof. By a chaining argument, it suffices to prove that 2−n/2×max1≤j≤2n ‖K(Zj, Z2n ; β0)‖ →

0 a.s. For each ε > 0, we have

∞∑
n=1

P
{

max1≤j≤2n ‖K(Zj, Z2n ; β0)‖ ≥ ε2n/2
}

≤
∞∑
n=1

2nP
{
‖K(Zj, Z2n ; β0)‖ ≥ ε2n/2

}
=
∞∑
n=1

∞∑
m=n

2nP
{

2(m+1)/2 > ε−1 ‖K(Zj, Z2n ; β0)‖ ≥ 2m/2
}

=
∞∑
m=1

m∑
n=1

2nP
{

2(m+1)/2 > ε−1 ‖K(Zj, Z2n ; β0)‖ ≥ 2m/2
}

≤
∞∑
m=1

2m+1P
{

2(m+1)/2 > ε−1 ‖K(Zj, Z2n ; β0)‖ ≥ 2m/2
}

≤ 2ε−2E[‖K(Z1, Z2; β0)‖2]

≤ 2ε−2 × 16E[
∥∥XXT

∥∥2
]

≤ 32ε−2M2

<∞.

Then by Borel-Cantelli Lemma, we have 2−n/2×max1≤j≤2n ‖K(Zj, Z2n ; β0)‖ → 0 a.s. Thus,

An = o(n1/2) a.s. �

Lemma A.5. Let Bn = max1≤i≤n

∥∥∥Q̂i(β0)
∥∥∥. Under conditions (D.1)-(D.3), Bn = o(n1/2)

and n−1
n∑
i=1

∥∥∥Q̂i(β0)
∥∥∥3

= o(n1/2).
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Proof. We can check that

Un(β0) =
1

n(n− 1)

n∑
l=1

n∑
j=1,j 6=l

K(Zl, Zj; β0)

=
2

n(n− 1)

n∑
j=1,j 6=i

K(Zi, Zj; β0) +
n− 2

n
U

(−i)
n−1 (β0).

Then for any 1 ≤ i ≤ n,

∥∥∥Q̂i(β0)
∥∥∥ =

∥∥∥∥∥ 2

n− 1

n∑
j=1,j 6=i

K(Zi, Zj; β0)− U (−i)
n−1 (β0)

∥∥∥∥∥
≤ 3 max

1≤i 6=j≤n
|K(Zi, Zj; β0)|

= 3An. (C.10)

Combining (C.10) and the result of Lemma A.4, that is, An = o(n1/2) a.s. Thus,

Bn = max
1≤i≤n

∥∥∥Q̂i(β0)
∥∥∥ = o(n1/2),

and

1

n

n∑
i=1

∥∥∥Q̂i(β0)
∥∥∥3

≤ Bn ×
1

n

n∑
i=1

∥∥∥Q̂i(β0)
∥∥∥2

= o(n1/2).

�

Proof of Theorem 4.1

Following Owen (2001) and Lu and Liang (2006), we let λ = ρθ, where ρ ≥ 0 and ‖θ‖ = 1.

According to (4.5), we obtain that

0 = ‖f(λ)‖

= ‖f(ρθ)‖

≥
∣∣θTf(ρθ)

∣∣
=

1

n

∣∣∣∣∣θT
{

n∑
i=1

Q̂i(β0)− ρ
n∑
i=1

Q̂i(β0)θT Q̂i(β0)

1 + ρθT Q̂i(β0)

}∣∣∣∣∣
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≥ ρ

n
θT

n∑
i=1

Q̂i(β0)Q̂T
i (β0)

1 + ρθT Q̂i(β0)
θ− 1

n

∣∣∣∣∣
p∑
j=1

eTj

n∑
i=1

Q̂i(β0)

∣∣∣∣∣
≥ ρθTG∗(β0)θ

1 + ρBn

− 1

n

∣∣∣∣∣
p∑
j=1

eTj

n∑
i=1

Q̂i(β0)

∣∣∣∣∣ ,
where ej is the unit vector on the jth coordinate direction.

By the central limit theorem, the second term is Op(n
−1/2). We also have G∗(β0) =

Σ
(β0)
p×p + o(1) a.s. from Lemma A.3. Thus, one has

‖λ‖ = ρ = Op(n
−1/2). (C.11)

Denote ηi = λT Q̂i(β0), from Lemma A.5 and (C.11), it can be proved that

max
1≤i≤n

|ηi| = Op(n
−1/2)op(n

1/2) = op(1),

and

1

n

n∑
i=1

∥∥∥∥Q̂(β0)
η2
i

1 + ηi

∥∥∥∥ = op(n
1/2)Op(n

−1)Op(1) = op(n
1/2).

Note that

0 = f(λ) =
1

n

n∑
i=1

Q̂(β0)(1− ηi +
η2
i

1 + ηi
)

=
1

n

n∑
i=1

Q̂(β0)− 1

n

n∑
i=1

Q̂(β0)ηi +
1

n

n∑
i=1

Q̂(β0)
η2
i

1 + ηi

=
1

n

n∑
i=1

Q̂(β0)−G∗(β0)λ+
1

n

n∑
i=1

Q̂(β0)
η2
i

1 + ηi
.

Therefore, we can write

λ = (G∗(β0))−1Un(β0) + γ,

where ‖γ‖ = op(n
−1/2).
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Then, by Taylor expansion, we can obtain that

l(β0) = 2
n∑
i=1

log(1 + ηi) = 2
n∑
i=1

ηi −
n∑
i=1

η2
i + op(1)

= 2nλTUn(β0)− nλTG∗(β0)λ+ op(1)

= nUT
n (β0)(G∗(β0))−1Un(β0)− nγTG∗(β0)γ + op(1). (C.12)

In (C.12), the first term can be shown converging to the chi-squared distribution, which

is nUT
n (β0)(G∗(β0))−1Un(β0)

d→χ2
p. Moreover, for the second term, we can obtain that

nγTG∗(β0)γ = nop(n
−1/2)Op(1)op(n

−1/2) = op(1). Therefore, −2 logR(β0)
d→χ2

p. �

Proof of Theorem 4.2

We follow the similar arguments in Yu et al. (2011) and Yang and Zhao (2012a). Corre-

sponding to β0 = (βT10, β
T
20)T , we denote Z = (ZT

1 , Z
T
2 )T . Recall that under some suitable

regularity conditions,
√
n(β̂−β0) was shown to be asymptotically normally distributed with

mean zero and variance-covariance matrix Dn(β0)−1Bn(β0)(Dn(β0)−1)T .

Define

D̄(β0) = lim
n→∞

E[∂Sn/∂β2]β0 .

Since D is positive definite, D̄ is of rank p− q. Denote

β̂2 = arg inf
β2
l
[
(βT10, β

T
2 )

T
]
.

Similar to Qin and Lawless (1994), we can show that

√
n(β̂2 − β20) = −(D̄(β0)T (Σ

(β0)
p×p)

−1D̄(β0))−1D̄(β0)T (Σ
(β0)
p×p)

−1 1√
n

n∑
i=1

Q̂i(β0) + op(1),

and

√
nλ2 =

(
I − (Σ

(β0)
p×p)

−1
D̄(β0)(D̄(β0)T (Σ

(β0)
p×p)

−1
D̄(β0))

−1

D̄(β0)T
)

(Σ
(β0)
p×p)

−1 1√
n

n∑
i=1

Q̂i(β0)+op(1),
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where λ2 is the corresponding Lagrange multiplier.

Recall that

Un(β) =
1

n

n∑
i=1

Q̂i(β).

Hence, by Taylor’s expansion, one has that

l∗(β10) =

(
1√
n

n∑
i=1

Q̂i(β0)

)T (
(Σ

(β0)
p×p)

−1
− (Σ

(β0)
p×p)

−1
D̄(β0)(D̄(β0)T (Σ

(β0)
p×p)

−1
D̄(β0))

−1

D̄(β0)T (Σ
(β0)
p×p)

−1
)

×

(
1√
n

n∑
i=1

Q̂i(β0)

)
+ op(1)

=

(
(Σ

(β0)
p×p)

−1/2 1√
n

n∑
i=1

Q̂i(β0)

)T

Ψ

(
(Σ

(β0)
p×p)

−1/2 1√
n

n∑
i=1

Q̂i(β0)

)
+ op(1)

=
(

(Σ
(β0)
p×p)

−1/2√
nUn(β0)

)T
Ψ
(

(Σ
(β0)
p×p)

−1/2√
nUn(β0)

)
+ op(1),

where

Ψ = I − (Σ
(β0)
p×p)

−1/2D̄(β0)(D̄(β0)T (Σ
(β0)
p×p)

−1D̄(β0))−1D̄(β0)T (Σ
(β0)
p×p)

−1/2.

Note that Ψ is a symmetric and idempotent matrix with trace q. By Lemma A.1,

(Σ
(β0)
p×p)

−1/2
√
nUn(β0)

d−→ N(0, Ip×p).

Then we have that

−2 logR∗(β10)
d→χ2

q.

The proof of Theorem 4.2 is completed. �
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