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ABSTRACT

Essays on Risk Pricing in Insurance

BY

Qiheng Guo

May 21th, 2018

Committee Chair: Daniel Bauer

Major Academic Unit: Department of Risk Management and Insurance

Pricing risks in the insurance business is an essential task for actuaries. Implementing the ap-

propriate pricing techniques to improve risk management and optimize its financial gain requires a

thorough understanding of underlying risks and their interactions. In this dissertation, I address risk

pricing in the context of insurance company by reviewing methods applied in practice, proposing

new models, and also exploring different aspects of insurance risks.

This dissertation consists of three chapters. The first chapter provides a survey of existing

capital allocation methods, including common approaches based on the gradients of risk measures

and “economic” allocation arising from counterparty risk aversion. All methods are implemented

in two example settings: binomial losses and using loss realizations from a catastrophe reinsurer.

The stability of allocations is assessed based on sensitivity analysis with regards to losses. The

results show that capital allocations appear to be intrinsically (geometrically) related, although

the stability varies considerably. Stark differences exist between common and “economic” capital

allocations.

The second chapter develops a dynamic profit maximization model for a financial institution

with liabilities of varying maturity, and uses it for determining the term structure of capital costs.

iii



As a key contribution, the theoretical, numerical, and empirical results show that liabilities with

different terms are assessed differently, depending on the company’s financial situation. In partic-

ular, for a financially constrained firm, value-adjustments due to financial frictions for liabilities in

the far future are less pronounced than for short-term obligations, resulting in a strongly downward

sloping term structure. The findings provide guidance for performance measurement in financial

institutions.

The third chapter estimates a flexible affine stochastic mortality model based on a set of US term

life insurance prices using a generalized method of moments approach to infer forward-looking,

market-based mortality trends. The results show that neither mortality shocks nor stochasticity in

the aggregate trend seem to affect the prices. In contrast, allowing for heterogeneity in the mortality

rates across carriers is crucial. The major conclusion is that for life insurance, rather than aggregate

mortality risk, the key risks emanate from the composition of the portfolio of policyholders. These

findings have consequences for mortality risk management and emphasize important directions of

mortality-related actuarial research.

iv



ACKNOWLEDGEMENTS

First and foremost, I express a deep gratitude to my parents for their priceless support: for

providing me with the best resources possible, for trusting their teenage boy’s decision to study

thousands of miles away from home by himself, and for giving their encouragement and love that

have propelled me through the years of study life in the U.S.

In completing this dissertation, I am highly indebted to my doctoral advisor and chair Daniel

Bauer, who has been guiding me with kindness, patience and occasionally needed tough love. I am

grateful for his incisive insights into the essays and committed supervision to best prepare me for

an academic career. I would also like to thank George Zanjani, Ajay Subramanian, and Stephen

Mildenhall for serving in my committee, for sharing your incredible knowledge in actuarial science

and insurance, and for giving many valuable comments and critiques on the dissertation. I am also

grateful to Jeff Beckley, who inspired me with an early interest in teaching and researching in

actuarial science.

This dissertation is made possible by various sources of financial support, including but not

limited to grants from the Casualty Actuarial Society and the Society of Actuaries, as well as

scholarships and fellowships from the Huebner Foundation and CEAR.

Last but not least, I would like to give a shout-out to a few current and former RMI Ph.D.

students for their amazing support, help, research conversations, and friendship: Thorsten, Nan,

Sampan, Jinyu, Xiaohu, Jinjing, Yiling, Philippe, Hongjun, Jia Min, Yas, Dan, Xing, Qianlong,

Xiaochen, Patrick, Haitao, and Boheng.

v



Contents

Abstract iii

Acknowledgments v

List of Figures ix

List of Tables xi

Chapter 1 Capital Allocation Techniques: Review and Comparison 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Foundations of Capital Allocation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Why Allocate Capital? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Capital Allocation Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Capital Allocation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 The Euler Method and Some Different Ways to Get There . . . . . . . . . . 6

1.3.2 Distance-Minimizing Allocations . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Allocations by Co-Measures and the RMK Algorithm . . . . . . . . . . . . 11

1.3.4 Consumptive vs. Non-consumptive Capital . . . . . . . . . . . . . . . . . . 15

1.3.5 Capital Allocation by Percentile Layer . . . . . . . . . . . . . . . . . . . . 15

1.3.6 “Economic” Counterparty Allocation . . . . . . . . . . . . . . . . . . . . . 16

1.3.7 Some Connections between the Allocations . . . . . . . . . . . . . . . . . . 18

1.4 Comparison of Capital Allocation Methods . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Allocation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 The Case of Heterogeneous Bernoulli Losses . . . . . . . . . . . . . . . . . . . . . 22

1.6 The Case of Catastrophe Reinsurance Losses . . . . . . . . . . . . . . . . . . . . . 23

1.6.1 Description of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



1.6.2 Comparisons for the Unmodified Portfolio . . . . . . . . . . . . . . . . . . 28

1.6.3 Stability of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.8 Appendix A: Bauer-Zanjani Allocation Implementation . . . . . . . . . . . . . . . 35

1.8.1 The Case of Heterogeneous Bernoulli Losses . . . . . . . . . . . . . . . . . 35

1.8.2 The Case of Catastrophe Reinsurance Losses . . . . . . . . . . . . . . . . . 36

1.9 Appendix B: Additional Tables and Figures . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 2 The Term Structure of Capital Costs 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Multi-Period Profit Maximization with Loss History . . . . . . . . . . . . . . . . . 43

2.2.1 Loss Structure for a P&C Company . . . . . . . . . . . . . . . . . . . . . . 43

2.2.2 A Multi-Line Multi-Period Profit Maximization Model . . . . . . . . . . . . 45

2.2.3 Term Structure of Capital Costs . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.4 Implementation – Two Lines and Two Development Years . . . . . . . . . . 51

2.2.5 Results – Two Lines and Two Development Years . . . . . . . . . . . . . . 53

2.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Appendix A: Technical Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5.1 Proofs of the Lemmas and Propositions . . . . . . . . . . . . . . . . . . . . 67

2.5.2 2L2DY Loss Distribution Assumptions . . . . . . . . . . . . . . . . . . . . 72

2.5.3 Numerical Solution of 2L2DY Model . . . . . . . . . . . . . . . . . . . . . 73

2.6 Appendix B: Additional Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 3 Different Shades of Risk: Mortality Trends Implied by Term Insurance Prices 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Estimation with Insurance Price Data . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Insurance Price GMM Estimator . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2 Data and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



3.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.4 Robustness: Time Period and Market Segment . . . . . . . . . . . . . . . . 93

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 98

viii



List of Figures

1.1 Overview of capital allocation methods . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Comparison of allocations–heterogeneous Bernoulli losses . . . . . . . . . . . . . . 25

1.3 Histograms for aggregate loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Histograms for four aggregated lines . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Comparison of allocations–catastrophe insurance losses . . . . . . . . . . . . . . . 37

1.6 Stability of allocations: distance between allocations on basic and modified portfo-

lios for all methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.7 Stability of allocations: distance between allocations on basic and modified portfo-

lios for allocation methods (except Exp and VaR) . . . . . . . . . . . . . . . . . . . 38

2.1 Loss triangle for a P&C insurer in business line n with t accident years and dn

development years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Losses for a company under 2L2DY . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Losses relevant to the bellman equation for a company under 2L2DY . . . . . . . . 51

2.4 Value function, optimal external capital raising and exposure decision under small

previous shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 2-dimensional representations of value function (small previous shock) . . . . . . . 56

2.6 2-dimensional representations of long-tailed line exposure (small previous shock) . 56

2.7 2-dimensional representations of short-tailed line exposure (small previous shock) . 56

2.8 Value function, optimal external capital raising and exposure decision under large

previous shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9 2-dimensional representations of value function (large previous shock) . . . . . . . 58

2.10 2-dimensional representations of long-tailed line exposure (large previous shock) . . 58

ix



2.11 2-dimensional representations of short-tailed line exposure (large previous shock) . 58

2.12 Term structure of loss reserves for representative company with normal capitalization 65

2.13 Term structure of loss reserves for representative company with high capitalization . 65

2.14 2-dimensional representations of external capital raising (small previous shock) . . 77

2.15 2-dimensional representations of external capital raising (large previous shock) . . . 78

2.16 Convergence of value function and choice variables . . . . . . . . . . . . . . . . . 78

3.1 Illustration of the insurance price data . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Company effect in three representations . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Comparison of the model specifications . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Illustration of the insurance price data for age 40, male, non-smoker, regular,

$500,000 face value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Monthly British annuity rates data from January 2000 (0) to December 2005 (70),

open market option, male, age 60, purchase price £10,000 . . . . . . . . . . . . . . 94

x



List of Tables

1.1 Implementation of allocation methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Conventional allocation results–heterogeneous Bernoulli case . . . . . . . . . . . . 24

1.3 Optimization and allocation results: Bauer-Zanjani allocation heterogeneous

Bernoulli losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Conventional allocation results–catastrophe reinsurance case . . . . . . . . . . . . . 31

1.6 Optimization and allocation results: Bauer-Zanjani allocation catastrophe reinsur-

ance losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Numerical calculation of V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Regression results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Regression results with robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Parameters relevant to the insurance contracts. . . . . . . . . . . . . . . . . . . . . 89

3.2 Estimated parameters (company effect estimates not shown) for four models based

on GMM. Standard errors for each parameter are shown in parentheses. . . . . . . . 96

3.3 Model comparison results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Company effects vs. A.M. Best ratings and company size (-,o,+, belonging to the

group with negative, insignificant, and positive company effects, respectively) . . . 97

xi



Chapter 1

Capital Allocation Techniques: Review and

Comparison1

1.1 Introduction

The question of how to allocate risk capital to different units or lines of business has generated

considerable attention in the actuarial literature. This chapter reviews the form and the intellectual

foundation of a variety of methods, and then compares their results in the context of a theoretical

loss model and a specific real-world example. The goal is to offer insights on the similarities,

differences, and stability of the different methods.

We find considerable variation in the results from different methods, although all of the alloca-

tions appear to be geometrically related. More precisely, depending on the example, the allocations

seem to constitute a lower-dimensional manifold relative to the dimension of the allocation prob-

lem. Expected value allocations lie at one end of the frontier while extreme tail allocations are at

the other. Furthermore, we also find significant differences in stability. Small changes in the un-

derlying dataset can have dramatic effects on the allocation results associated with certain methods.

In particular, allocations generated by Value-at-Risk (VaR) as well as those generated by extreme
1This essay is co-authored with Daniel Bauer and George Zanjani. We gratefully acknowledge funding from the Casualty

Actuarial Society (CAS) Committee on the Theory of Risk (COTOR) under the project “Allocation of Costs of Holding Capital.” In
particular, we are indebted to Richard Derrig for his insights and his support. We are grateful for helpful comments from Stephen
Mildenhall and Ajay Subramanian. Parts of this essay are taken from the CAS report “The Marginal Cost of Risk in a Multi-Period
Risk Model”, particularly Sections 1, 2, and 4.2.
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tail risk measures prove to be unstable due to their focus on a small number (in the case of VaR,

just one) sample outcomes.

There are various surveys on capital allocation techniques and methods (Burkett et al., 2001;

Albrecht, 2004; Venter, 2004; Bauer and Zanjani, 2013). It is important to stress that, in this

chapter, we are not attempting to endorse or favor any particular method. While we have writ-

ten elsewhere on the origins of “economic allocations” from a theoretical perspective (Bauer and

Zanjani, 2016, 2018), the goal here is to gain perspective on practical differences. To elaborate,

theoretical differences between two methods are less concerning if, in practice, they produce simi-

lar answers. Moreover, a theoretically appealing method is of little use if, in practice, it is unstable.

Thus, we view the comparison of different allocation methods as a worthwhile endeavor to inform

practice.

The rest of this essay is organized as follows. We start in Section 1.2 by reviewing the founda-

tions of the capital allocation problem. In particular, we address the question of why—or, rather,

under which conditions—the capital allocation problem is relevant, and what precisely we mean

by a capital allocation. Section 1.3 then provide details on how capital is allocated. We commence

by discussing the most popular conventional allocation approach, the so-called Euler or Gradient

allocation principle, including its economic underpinnings. However, we also review alternative

approaches, including so-called “distance minimizing” approaches, allocation by percentile layers,

and “economic allocations” originating from counterparty risk aversion. We discuss relationships

between the methods. We present a pedagogical allocation exercise illustrating the connections

between “economic” methods and conventional methods in Section 1.5. In Section 1.6, we then

implement all allocation methods in the context of data provided from a catastrophe reinsurer.

We first describe the data and the specifics of the approaches. We then discuss and compare the

resulting allocations and test their stability. Finally, Section 1.7 concludes.

2



1.2 The Foundations of Capital Allocation

1.2.1 Why Allocate Capital?

We must first establish why we allocate capital. The simple answer from the practitioner side is

that allocation is a necessity for pricing and performance measurement. When setting benchmarks

for lines of business within a multi-line firm, one must ensure that the benchmarks put in place are

consistent with the firm’s financial targets, specifically the target return on equity.

This seems logical at first glance, yet some of the academic literature has been skeptical.

Phillips et al. (1998) noted that a “financial” approach to pricing insurance in a multi-line firm

rendered capital allocation unnecessary, a point reiterated by Sherris (2006). The “financial”

approach relies on applying the usual arbitrage-free pricing techniques in a complete market setting

without frictional costs. In such a setting, one simply pulls out a market consistent valuation

measure to calculate the fair value of insurance liabilities. Capital affects this calculation in the

sense that the amount of capital influences the extent to which insurance claims are actually paid in

certain states of the world, but, so long as the actuary is correctly evaluating the extent of claimant

recoveries in various states of the world (including those where the insurer is defaulting), there is

no need to apportion the capital across the various lines of insurance.

Once frictional costs of capital are introduced, the situation changes, as seen in Froot and

Stein (1998), Zanjani (2002, 2010), and Bauer and Zanjani (2013, 2016, 2018). Frictions open up

a gap between the expected profits produced by “financial” insurance prices and the targeted level

of profits for the firm. In such a case, the “gap” becomes a cost that must be distributed back to

business lines, like overhead or any other common cost whose distribution to business lines is not

immediately obvious.

As a practical example, consider catastrophe reinsurers. Natural catastrophe risk is often ar-

gued to be “zero beta” in the sense of being essentially uncorrelated with broader financial markets.

If we accept this assessment, basic financial theory such as the CAPM would then imply that a mar-

ket rate of return on capital exposed to such risk would be the risk-free rate. Yet, target ROEs at

these firms are surely well in excess of the risk-free rate. The catastrophe reinsurer thus has the

problem of allocating responsibility for hitting the target ROE back to its various business lines

3



without any guidance from the standard arbitrage-free pricing models.

Viewed in this light, “capital allocation” is really shorthand for “capital cost allocation.” Cap-

ital itself, absent the segmentation of business lines into separate subsidiaries, is available for all

lines to consume. A portion allocated to a specific line is not in any way segregated for that line’s

exclusive use. Hence, the real consequence of allocation lies in the assignment of responsibility

for capital cost: A line allocated more capital will have higher target prices.

An important point, to which we shall return later, is the economic meaning of the allocation.

Merton and Perold (1993) debunk the notion that allocations could be used to guide business

decisions involving inframarginal or supramarginal changes to a risk portfolio (e.g., entering or

exiting a business line). The more common argument is that allocation is a marginal concept—

offering accurate guidance on small, infinitesimal changes to a portfolio. As we will see, many

methods do indeed have a marginal interpretation, but the link to marginal cost is not always a

strong one.

1.2.2 Capital Allocation Defined

We first start with notation and by defining capital allocation.2 Consider a one period model with

N business lines with loss realizations L(i), 1 ≤ i ≤ N, modeled as square-integrable random-

variables in an underlying probability space (Ω,F ,P). At the beginning of the period, the insurer

decides on a quantity of exposure in each business line and receives a corresponding premium p(i),

1 ≤ i ≤ N , in return. The exposure is an indemnity parameter q(i), so that the actual exposure to

loss i ∈ {1, 2, . . . , N} is:

I(i) = I(i)(L(i), q(i)).

We assume that an increase in exposure shifts the distribution of the claim random variable so that

the resulting distribution has first order stochastic dominance over the former:

P
(
I(i)(L(i), q̂(i)) ≥ z

)
≥ P

(
I(i)(L(i), q(i)) ≥ z

)
∀z ≥ 0, q̂i ≥ qi.

2This subsection and the next borrows notation and approaches from Bauer and Zanjani (2013).

4



For simplicity, we typically consider q(i) representing an insurance company’s quota share of a

customer i’s loss:

I(i) = L(i) × q(i).

Other specifications could be considered, but the specification above implies that the claim dis-

tribution is homogeneous with respect to the choice variable q(i). This simplifies capital alloca-

tion, although it should be noted that insurance claim distributions are not always homogeneous

(Mildenhall, 2004), and the “adding up” property associated with a number of methods depends

on homogeneity. Extensions to more general (non-linear) contracts are possible when generalizing

the setting (Frees, 2017; Mildenhall, 2017).

We denote company assets as a and capital as k, where to fix ideas we adopt a common spec-

ification of the difference between the fair value of assets and the present value of claims. We

denote by I the aggregate claims for the company, with the sum of the random claims over the

sources adding up to the total claim:
N∑
i=1

I(i) = I.

However, actual payments made only amount to min{I, a} because of the possibility of default.

We can also decompose actual payments, where the typical assumption in the literature is of equal

priority in bankruptcy, so that the payment to loss i is:

min
{
I(i),

a

I
I(i)
}
⇒

N∑
i=1

min
{
I(i),

a

I
I(i)
}

= min{I, a}.

Allocation is simply a division of the company’s capital or assets across the N sources of

risk, with k(i) representing the capital per unit of exposure assigned to the i-th source (and a(i)

representing a similar quantity for assets). Of course, a full allocation requires that the individual

amounts assigned to each of the lines “add up” to the total amount for the company:

N∑
i=1

q(i) k(i) = k and
N∑
i=1

q(i) a(i) = a.

It is worth noting that the question of what to allocate is not necessarily straightforward. Are

5



we to allocate the book value of equity? The market value of equity? Assets? In general, the

answer to this question is going to be guided by the nature of costs faced by the firm. Even then,

the costs may be difficult to define, as the decomposition of capital costs offered by Mango (2005)

suggests.

1.3 Capital Allocation Techniques

Assuming we have answered the question of what to allocate, the remaining question is how to do

it. Unfortunately, the answer is not straightforward: There is a bewildering variety of peddlers in

the capital allocation market. Mathematicians bearing axioms urge us to adhere to their methods—

failure to do so will result in some immutable law of nature being violated. Economists assure

us that only their methods are “optimal.” Game theorists insist that only their solution concepts

can be trusted. Practitioners wave off all of the foregoing as the raving of ivory tower lunatics,

all the while assuring us that only their methods are adapted to the “real world” problems faced by

insurance companies. Everyone has a “pet method,” perhaps one that has some intuitive appeal, or

one that is perfectly adapted to some particular set of circumstances.

Given such variety, it is not surprising that allocation methods defy easy categorization. Many

do end up in essentially the same place—the so-called Euler or Gradient Principle—a convergence

noted by Urban et al. (2004) and Albrecht (2004). But others do not. In the following, we attempt

to give an overview on the primary approaches. We keep the focus on concepts and examples. At

the end of the section, we present in Table 1.1 a summary of the allocation examples and Figure

1.1 showing their relationship.

1.3.1 The Euler Method and Some Different Ways to Get There

Consider setting capitalization based on a differentiable risk measure ρ(I) = k and further imagine

allocating capital to line i based on:

k(i) =
∂ρ(I)

∂q(i)
. (1.1)

This allocation is commonly referred to as gradient or Euler allocation, the latter being a ref-
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erence to Euler’s homogeneous function theorem. This theorem states that for every positive

homogeneous function of degree one (q(1), . . . , q(N)) 7→ ρ(q(1), . . . , q(N))—which is equivalent

to requiring that the risk measure ρ(I) = ρ(
∑

i q
(i) L(i)) be homogeneous—we automatically ob-

tain the “adding up” property: ρ(I) =
∑N

i=1 q
(i) ∂ρ(I)

∂q(i) . The basic Euler approach can be found in

Schmock and Straumann (1999) and Tasche (2004), among others.

The Euler or gradient allocation can also be implemented without requiring that ρ(I) = k by

normalizing:
k(i)

k
=

∂ρ(I)

∂q(i)

ρ(I)
. (1.2)

One of the major advantages of the Euler allocation is that it is possible to directly calculate (ap-

proximative) allocations given that one has an Economic Capital framework available that allows

to derive ρ(I) and k.3 More specifically, we can approximate the derivative occurring in the al-

location rule by simple finite differences (although more advanced approaches may be used), that

is:
∂ρ(I)

∂q(i)
≈ ρ(I + ∆L(i))− ρ(I)

∆
, (1.3)

where ∆ > 0 is “small.”

A number of different paths lead to the Euler allocation. Denault (2001) proposes a set of

axioms that define a coherent capital allocation principle when ρ(I) = k. His axioms required:

1. Adding up – The sum of allocations must be k.

2. No undercut – Any sub-portfolio would require more capital on a stand-alone basis.

3. Symmetry – If risk A and risk B yield the same contribution to capital when added to any

disjoint subportfolio, their allocations must coincide.

4. Riskless allocation – A deterministic risk receives zero allocation in excess of its mean (see

also Panjer (2002)).
3This is not at all to say that this task is simple. In fact, the computational complexity associated with evaluating economic

capital presents a serious problem for financial institutions and frequently leads them to adopt second-best calculation techniques
(Bauer et al., 2012). However, the availability of a suitable model for the different risk within a company’s portfolio and their
interplay clearly is a necessity for the derivation for any coherent allocation of capital.
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Denault shows that the risk measure must necessarily be linear in order for a coherent alloca-

tion to exist. This result essentially echoes the findings of Merton and Perold (1993), but shows

that allocation based on a linear risk measure constitutes an exception to their indictment of using

allocations to evaluate inframarginal or supramarginal changes to a portfolio. Linear risk measures

are obviously of limited application, but Denault (2001) finds more useful results when analyzing

marginal changes in the portfolio. In particular, he uses five axioms to define a “fuzzy” coher-

ent allocation principle that exists for any given coherent, differentiable risk measure—and this

allocation is given by the Euler principle applied to the supplied risk measure.

Kalkbrener (2005) uses a different set of axioms:

1. Linear aggregation – Which combines axioms 1 and 4 of Denault.

2. Diversification – Which corresponds to axiom 2 of Denault.

3. Continuity – Small changes to the portfolio should only have a small effect on the capital

allocated to a subportfolio.

He finds that the unique allocation under these axioms is given by the Gâteaux derivative in the

direction of the subportfolio, which again collapses to the Euler allocation:

k(i) = lim
ε→0

ρ(I + εL(i))− ρ(I)

ε
=
∂ρ(I)

∂q(i)
.

Some common homogeneous risk measures used in this axiomatic context are:

• Standard Deviation – derived from the so-called standard deviation premium principle (De-

prez and Gerber, 1985);

• Value-at-Risk (VaR);

• Expected Shortfall (ES)/Tail Value at Risk (TVaR);

• Risk-Adjusted TVaR (RTVaR) – Furman and Landsman (2006) and under a different name

in Venter (2010);

• Exponential risk measure – Venter et al. (2006);
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• Distortion risk measures (Denneberg, 1990; Wang, 1996)

– Proportional hazards transform (Wang, 1995, 1998);

– Wang transform (Wang, 2000).

An alternative approach to the capital allocation problem is from the perspective of game the-

ory. Lemaire (1984) and Mango (1998) both note the potential use of the Shapley Value, which

rests on a different set of axioms, in solving allocation problems in insurance. The Shapley

Value (Shapley, 1953) is a solution concept for cooperative games that assigns each player a unique

share of the cost. Denault (2001) formally applies this idea to the capital allocation problem, in

particular by relying on the theory of fuzzy cooperative games introduced by Aubin (1981). The

key idea here is that the cost functional c of a cooperative game is defined via the risk measure ρ:

c(q(1), q(2), . . . , q(N)) = ρ(q(1), q(2), . . . , q(N)).

The problem is then to allocate shares of this “cost” to the players, with the set of valid solutions

being defined as (see also Tsanakas and Barnett (2003)):

C =
{

(k(1), k(2), . . . , k(N))
∣∣c(q(1), q(2), . . . , q(N)) =

∑
k(i) q(i)

& c(u) ≥
∑

k(i) ui, u ∈ [0, q(1)]× . . .× [0, q(N)]
}
.

Thus, for allocations in this set, any (fractional) subportfolio will feature an increase in aggregated

per-unit costs, which connects to the usual solution concept in cooperative games requiring any

solution to be robust to defections by subgroups of the players. The Aumann-Shapley solution is:

k(i) =
∂

∂ui

∫ 1

0

c(γ u) dγ

∣∣∣∣
uj=q(j) ∀j

.

If the risk measure is subadditive, positively homogeneous, and differentiable, the solution boils

down to the Euler method when loss distributions are homogeneous.4

4Aumann-Shapley values can also be used to cope with the problem of inhomogeneous loss distributions. In this case, Powers
(2007) demonstrates that although the Euler principle will not apply, the Aumann-Shapley value can be used for the risk-allocation
problem. Similarly, it may offer a solution if the underlying risk measure does not satisfy the homogeneity condition. For instance,
Tsanakas (2009) shows how to allocate capital with convex risk measures, although the absence of homogeneity is shown to
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The Euler method is also recovered in a number of “economic” approaches to capital allocation,

where the risk measure is either embedded as a constraint in a profit maximization problem (e.g.,

Meyers (2003) or Stoughton and Zechner (2007)) or embedded in the preferences of policyholders

(Zanjani, 2002). In either case, the marginal cost of risk ends up being defined in part by the

gradient of the risk measure. To illustrate, consider the optimization problem adapted from Bauer

and Zanjani (2016):

max
k,q(1),q(2),...,q(N)

{ N∑
i=1

p(i)(q(i))− V (min{I, a})− C
}

︸ ︷︷ ︸
=Π

(1.4)

subject to

ρ(q(1), q(2), . . . , q(N)) ≤ k.

From the optimality conditions associated with this problem, assuming a non-explosive solution

exists, one can obtain:
∂Π

∂q(i)
=

(
−∂Π

∂k

)
× ∂ρ

∂q(i)
(1.5)

at the optimal exposures and capital level. Hence, for the optimal portfolio, the risk adjusted

marginal return
∂Π

∂q(i)

∂ρ

∂q(i)

for each exposure i is the same and equals the cost of a marginal unit of

capital −∂Π
∂k
. More to the point, the right hand side of (1.5) allocates a portion of the marginal cost

of capital to the i-th risk, an allocation that is obviously equivalent to the Euler allocation. In this

sense, the Euler allocation is indeed “economic,” but it is important to stress that any economic

content flows from the imposition of a risk measure constraint.

1.3.2 Distance-Minimizing Allocations

Not all approaches lead to the Euler principle. Laeven and Goovaerts (2004), whose work was later

extended by Dhaene et al. (2003) and Dhaene et al. (2012), derive allocations based on minimizing

a measure of the deviations of losses from allocated capital. Specifically, Laeven and Goovaerts

potentially produce an incentive for infinite fragmentation of portfolios. The intuition for this rather undesirable feature are risk
aggregation penalties within inhomogeneous convex risk measures.

10



propose solving:

 mink(1),k(2),...,k(N) ρ
(∑N

i=1

(
I(i)(L(i), q(i))− q(i) k(i)

)+
)
,

s.th.
∑N

i=1 q
(i) k(i) = k,

to identify an allocation, whereas Dhaene et al. (2012) consider:

 mink(1),k(2),...,k(N)

∑N
i=1 q

(i)E
[
θ(i)D

(
I(i)(L(i),q(i))

q(i) − k(i)
)]
,

s.th.
∑N

i=1 q
(i) k(i) = k,

where D is a (distance) measure and θ(i) are weighting random variables with E[θ(i)] = 1.

In the approach by Dhaene et al. (2012), certain choices for D and θ(i) can reproduce various

allocation methods. For instance, for D(x) = x2 and k =
∑

E[θ(i)I(i)], they arrive at so-called

weighted risk capital allocations k(i) = E[θ(i)L(i)] studied in detail by Furman and Zitkis (2008).

Examples include the allocation based on the Esscher transform and the premium principle by

Kamps (1998). Other choices lead to other allocation principles, including several that can be

derived from the application of the Euler principle such as weighted TVaR (WTVaR).

1.3.3 Allocations by Co-Measures and the RMK Algorithm

Euler methods require calculation of gradient of risk measures, which sometimes can present a

numerical challenge. An alternative approach is the Ruhm-Mango-Kreps (RMK) algorithm (Ruhm

et al., 2003; Kreps, 2005), a popular approach of capital allocation in practice, partly due to its

ease of implementation. According to Kreps (2005), it commences by defining k =
∑

i q
(i) k(i) =

E[I] + R as the total capital to support the company’s aggregate loss I , where E[I] is the mean

(reserve) and R is the risk load. Then the capital allocations q(i) k(i) for risks i emanating from the

asset or the liability side are defined as:

q(i) k(i) = E[I(i)] +Ri

= E
[
I(i)
]

+ E
[(
I(i) − E[I(i)]

)
φ(I)

]
, (1.6)
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where φ is the riskiness leverage, and “all” that one needs to do is to find the appropriate form of

φ. This allocation method adds up by definition, it scales with a currency change if φ(λx) = φ(x)

for a positive constant λ.

Different interpretations are possible, but key advantage ease of implementation since it solely

relies on taking “weighted averages” (Ruhm, 2013):

Algorithm 1. RMK Algorithm

• Simulate possible outcomes by component and total.

• Calculate expected values E[I(i)] by taking simple averages.

• Select a risk measure on total company outcomes and express the risk measure as leverage

factors.

• Calculate risk-adjusted expected values E[I(i) φ(I)] by taking “weighted averages”.

• Allocate capital in proportion to risk, by:5

q(i) k(i)

k
=

E[I(i) φ(I)] + E[I(i)](1− E[φ(I)])

E[I φ(I)] + E[I](1− E[φ(I)])
.

Of course, the RMK algorithm only presents the general framework. The crux lies in the

determination of the riskiness leverage φ. Various examples are presented in Kreps (2005), some

of which result in familiar allocation principles that can be alternatively derived by the gradient

principles.

More generally, Venter (2004) and Venter et al. (2006) introduce so-called co-measures. Specif-

ically, consider the risk measure:6

ρ(I) = E

[∑
j

hj(I)φj(I)
∣∣Condition on I

]
,

5We adjust Ruhm’s formula here to be in line with the allocation above.
6The definition in Venter (2010) allows for different conditions for the different j.
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where the h are linear functions. They then define the co-measure as:

r(I(i)) = E

[
J∑
j=1

hj(I
(i))φj(I)

∣∣Condition on I

]
,

which satisfies
∑n

i=1 r(I
(i)) = ρ(I) and thus serves as an allocation.

As Venter (2010) points out, even for one risk measure there may be different co-measures,

i.e. the representation is not unique. Some of them yield representations that are equivalent to

the gradient allocation, but this is not necessarily the case. In Table 1.1, the last column lists the

riskiness leverage / co-measures of some common allocation methods. We introduce two allocation

approaches by directly relying on their implementation via the RMK algorithm and co-measures.

Myers-Read Approach

Myers and Read (2001) argue that, given complete markets, default risk can be measured by the

default value, i.e. the premium the insurer would have to pay for guaranteeing its losses in the

case of a default. They then propose that “sensible” regulation will require companies to maintain

the same default value per dollar of liabilities and effectively choose this latter ratio as their risk

measure.

More precisely, following Mildenhall (2004), the default value can be written as:7

D(q(1), q(2), . . . , q(N))

= E
[
1{I≥a}(I − a)

]
= E

[
1{I≥E[I]+k(1) q(1)+...+k(N) q(N)}

(
I − [E[I] + k(1) q(1) + . . .+ k(N) q(1)]

)]
,

and the company’s default-to-liability ratio is:

c =
D

E[I]
=

E[1{I≥a}(I − a)]

E[I]
.

Myers and Read (2001) verify the “adding up” property for D—which again shows a relationship
7In contrast to Myers and Read (2001), we ignore the asset side and possible adjustments in calculating the “option value”.
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to the Euler principle. They continue to demonstrate that in order for the default value to remain

the same as an exposure is expanded, it is necessary that:

c =

∂D
∂q(i)

E[L(i)]
,

which in turn yields:

cE[L(i)] = E
[(
L(i) −

(
E[L(i)] + k(i)

))
1{I≥a}

]
⇒ k(i) = E

[(
L(i) − E[L(i)]

) ∣∣I ≥ a
]
− c E[L(i)]

P(I ≥ a)
.

This is similar to the allocation found by Venter et al. (2006), although they allocate assets

rather than capital so E[L(i)] does not occur in the first term. As indicated in their paper, it is

possible to represent this allocation as a co-measure using J = 2, h1(I) = I − E[I], φ1(I) =

1{I≥a}, h2(I) = I, and φ2(I) = − c
Pr[I≥a]

.

D’Arcy (2011) Allocation

D’Arcy (2011) considers allocations by the RMK algorithm but identifies the flexibility in choosing

the riskiness leverage as its “greatest flaw.” To uniquely identify the “right” function, he proposes to

use capital market concepts, particularly cost-of-capital to “reflect the actual cost of recapitalizing

the firm.” Specifically, he allows the riskiness leverage to depend both on the size of the loss

realization as well as on the type of shock leading to the loss (idiosyncratic, industry-wide, or

systemic). The riskiness leverage factor is the ratio of the cost of capital divided by the normal cost

of capital, where the “realized” cost of capital, in addition to systemic factors, depends additively

on the ratio of aggregate losses to the firm’s actual capital:

φ(I) =
1{I≥C}(CoCmarket + I−a

a
)

CoCnormal
. (1.7)

It is important to note that D’Arcy (2011) only proposes the RMK algorithm for the “consumptive”

aspect of capital allocation, whereas he also includes a “non-consumptive” allocation in the spirit

of Mango (2005) (see Section 1.3.4).
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1.3.4 Consumptive vs. Non-consumptive Capital

Mango (2005) argues that capital costs consist of two parts: On the one hand, an insurer’s capital

stock can be depleted if a loss realization exceeds the reserves for a certain segment or line, or

when reserves are increased. He refers to this as a consumptive use of capital since in this case,

funds are transferred from the (shared) capital account to the (segment-specific) reserve account.

The second, non-consumptive component arises from a “capacity occupation cost” that compen-

sates the firm for preclusion of other opportunities. It is thought to originate from rating agency

requirements in the sense that taking on a certain liability depletes the underwriting capacity.

The importance of this distinction for our purposes is that it complicates practice in cases where

the two sources of costs require different approaches to allocation. For example, D’Arcy (2011)

follows Mango’s suggestion by first allocating consumptive capital via the RMK algorithm, where

the riskiness leverage or capital call cost factor φ is associated with the cost of capital (see also

Bear (2006) and D’Arcy (2011)). He then allocates capital according to regulatory rules, and the

final allocation ends up as an average of the two allocations. Thus, the two different motivations

for holding capital are reflected in a hybridization of allocation methods.

1.3.5 Capital Allocation by Percentile Layer

Bodoff (2009) argues that allocations according to Value at Risk or according to tail risk measures

do not consider loss realizations at smaller percentiles, even though the firm’s capital obviously

supports these loss levels as well. Thus, in order to allocate, he advocates considering all loss

layers up to the considered confidence level. His approach considers allocating capital to loss

events, but since we are interested in allocating capital to lines we follow the description from

Venter (2010).

Assume the capital k is determined by some given risk measure. For instance, VaR is used in

Bodoff (2009). Then the allocation for the layer of capital [z, z + dz] is:

E
[
I(i)

I

∣∣I ≥ z

]
× dz.
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Going over all layers of capital, we obtain the allocation:

q(i) k(i) =

∫ k

0

E
[
I(i)

I

∣∣I ≥ z

]
dz,

where obviously:
N∑
i=1

q(i) k(i) =

∫ k

0

E
[
I

I

∣∣I ≥ z

]
dz =

∫ k

0

dz = k.

As Venter (2010) points out, even if k is set equal to a risk measure and allowed to change with the

volume of the writings, the resulting allocation does not collapse to the gradient allocation in any

known cases.

When implementing the approach based on a sample of size N , obviously it is necessary to

approximate the integral formulation above. When we base it on VaRα and use the simple empirical

quantile for its estimation, we can set:

q(i) k(i) =
αN∑
j=1

E
[
I(i)

I

∣∣I ≥ I(j)

] [
I(j) − I(j−1)

]
,

where we set I(0) = 0. Since the conditional expectations within the sum have to be also ap-

proximated by taking averages, the implementation in a spreadsheet may be cumbersome (or even

infeasible) for large samples.

1.3.6 “Economic” Counterparty Allocation

The previous Sections 1.3.1 to 1.3.5 outline so-called “conventional” capital allocation methods.

While all conventional methods vary in techniques, they consider capital allocation as a technical

problem but do not contemplate the motivation for holding capital in the first place. In contrast,

Bauer and Zanjani (2016) argue that the demand side’s risk preferences would have an impact

on the optimal capital and allocation decision. More precisely, Bauer and Zanjani introduce a

theoretical framework of capital allocation that is derived from the insurer’s profit maximization

subject to counterparty risk aversion. The concept is fundamentally different from problem (1.4),

where the premium and risk measure are exogenously determined. Here, the premium is a choice

variable for the insurer, subject to a participation constraint for the counterparty. In particular,
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there is no risk measure to be imposed in the first place, but an endogenous expression for the risk

measure can be derived from the allocation rule. In the remainder of the essay, we will refer to this

allocation as Bauer-Zanjani allocation.

To elaborate on the setup, it is assumed that we have a group of N consumers/policyholders.

Each consumer has wealth wi and is susceptible to a loss Li, which is random. Each consumer

is risk averse by default, and has utility function Ui and expected utility vi. Each consumer can

purchase insurance to recover a portion qi ∈ [0, 1] of the loss at premium rate pi. Both pi and

qi are chosen by the insurer. The insurer will collect the premium upfront and deliver a total of

I =
∑
qiLi for indemnity payments. The expected payback to each consumer is ei = E[Ri] =

min(qiLi, qiLia/I), with the latter amount triggered by insurer’s default, or when its asset a are

less than total indemnity payment I . The insurer then solves the following one-period optimization

problem:

max
a,{qi},{pi}

N∑
i=1

pi −
N∑
i=1

ei − τa (1.8)

subject to participation constraints for each consumer:

vi = E[Ui(wi − pi − Li +Ri)] ≥ E[Ui(wi − Li)] ∀i.

The solution suggests that an allocation weight for each consumer/policyholder is:

ki
k

=
E
[
1{I≥a}

∑
k

U ′k
v′k

Ik
I2
∂Ii
∂qi

]
E
[
1{I≥a}

∑
k

U ′k
v′k

Ik
I

] . (1.9)

The supporting risk measure takes the form:

ρ(I) = exp
{
EP̃ [log(I)]

}
,

where the measure P̃ is given by its likelihood ratio:

∂P̃
∂P

=
1{I≥a}

∑
k

U ′k
v′k

Ik
I

E
[
1{I≥a}

∑
k

U ′k
v′k

Ik
I

] .
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It turns out that this risk measure does not satisfy the common axioms of coherence and con-

vexity. It is important to note that within this framework, the allocation results are determined

through optimization. In particular, the exposure parameters qi are not fixed but determined in the

optimization procedure – unlike in the “conventional” approaches.

1.3.7 Some Connections between the Allocations

Table 1.1 presents implementation of all allocation methods mentioned in the previous sections.

As a side note, there are several connections between the various allocation methods beyond what

has been pointed out so far in this section. We list them here:

• For elliptical distributions, the Euler allocation yields to the same relative amounts of capital

allocated to each line, irrespective of which (homogeneous) risk measure we use (McNeil

et al., 2015, Corollary 6.27).

• Asimit et al. (2012) show that risk capital allocation based on TVaR is asymptotically pro-

portional to the corresponding Value-at-Risk (VaR) risk measure as the confidence level goes

to 1.

Moreover, Figure 1.1 illustrates graphically the relationship between various methods discussed

in this section. In the next three sections, we compare the methods based on two example settings.

1.4 Comparison of Capital Allocation Methods

Next, we analyze the allocation problems and methods discussed in the previous sections in the

context of (i) a Binomial loss model and (ii) real-world catastrophe insurance losses. Specifi-

cally for comparison (ii), we gained access to (scaled) simulated loss data for a global catastrophe

reinsurance company. We believe this data offers a degree of realism missing from previous con-

tributions where proposed allocation methods are only studied in the context of stylized examples

or based on Normal distributions (which is particularly limiting as discussed in Section 1.3.7).

We start by outlining the allocation approaches in Section 1.4.1. In the following two Sections

1.5 and 1.6, we present the implementation in the two settings. In Section 1.6, we also present a
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Allocation Risk Measure/ Capital to Hold ρ(I) Allocation to Line i: ∂ρ(I)/∂q(i) RMK Riskiness Leverage / Co-Measures

CoVar E[I] + βStDev[I] E[I(i)] + β
Cov(I(i), I)√

Var[I]
φ(I) = β

I − E[I]

StDev(I)

VaR VaRα(I) = inf{x : FI(x) ≥ α} E
[
L(i)

∣∣I = VaRα(I)
]

φ(I) =
dirac.δ(I − VaRα(I))

fI(VaRα(I))

TVaR TVaRα(I) = E
[
I
∣∣I ≥ VaRα(I)

]
E
[
L(i)

∣∣I ≥ VaRα(I)
]

φ(I) =
1{I≥VaRα(I)}

1− α

RTVaR E
[
I
∣∣I ≥ VaRα(I)

]
E
[
L(i)|I ≥ VaRα(I)

]
h1(x) = h2(x) = x, φ1 ≡ 1,

+βStDev[I|I ≥ VaRα(I)] +β
Cov (Ii, I|I ≥ VaRα(I))

StDev (I|I ≥ VaRα(I))
φ2 = β

I − E[I]

StDev(I|I ≥ VaRα(I))

Exponential E
[
I exp

{
c I

E[I]

}]
E
[
L(i) exp

{
c I

E[I]

}]
+ c

E[L(j)]

E[I]
h1(I) = I, φ1(I) = e

cI

E[I] + c
Ie

cI

E[I]

E[I]

×E
[
I exp

{
c I

E[I]

}
×
(

L(i)

E[L(i)]
−

I

E[I]

)]
h2(I) = −E[I], φ2(I) =

c I2 e

cI

E[I]

E[I2]

Distortion E [I g′(SI (I))] E
[
L(i) g′(SI (I))

]
—

∗Proportional Hazard g(p) = pa

* Wang Transformation
g(p) = 1− Φ

(
Φ−1(1− p)− λ

)
Myers-Read E[1{I≥a}(I − a)] E

[(
L(i) − E[L(i)]

) ∣∣I ≥ a] h1(I) = I − E[I], φ1(I) = 1{I≥a},

−
E[1{I≥a}(I − a)]

E[I]

E[L(i)]

P(I ≥ a)
h2(I) = I, φ2(I) = −

c

Pr[I ≥ a]
.

Esscher
E
[
Iet I

]
E [et I ]

E
[
L(i)et I

]
E [et I ]

—

Kamps
E
[
I(1− e−t I)

]
E [(1− e−t I)]

E
[
L(i)(1− e−t I)

]
E [(1− e−t I)]

—

D’Arcy — — φ(I) =
1{I≥C}(CoCmarket +

I − a
a

)

CoCnormal

Bodoff VaRα(I)
∑αN
j=1 E

[
L(i)

I

∣∣I ≥ I(j)
] [

I(j) − I(j−1)

]
—

Bauer-Zanjani exp
{
EP̃ [log(I)]

}
ρ(I) · EP̃

[
Ii

I

]
—

Table 1.1: Implementation of allocation methods
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Figure 1.1: Overview of capital allocation methods

sensitivity analysis to examine the stability of allocations.

1.4.1 Allocation Approaches

For allocation techniques in both examples, we consider the following approaches:

• Allocation by expected values.

• A covariance allocation. Here we choose the parameter β = 2 due to the similarities of the

supporting risk measure to a quantile for a Normal distribution, where 2 (or rather 1.96 for a

two-sided confidence interval of 95%) is a common choice.

• TVaR (Expected Shortfall) allocations for confidence levels α = 75%, 90%, 95%, and 99%.
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• VaR based allocations for confidence levels α = 95% and 99%. In example (ii), in addition

to estimating the allocations based on splitting up the corresponding empirical quantile in its

loss components (labeled “simple”), we consider an estimation that takes into account the

surrounding realizations by imposing a bell curve centered at the quantile with a standard

deviation of three (labeled “bell”).

• Exponential allocations for parameters c = 0.1, 0.25, and 1.

• Allocations based on a distortion risk measure–in particular proportional hazard transform

and Wang transform. For the proportional hazard transform parameters, we use a = 0.6,

a = 0.8, and a = 0.95, where we follow Wang (1998) indicating that a typical transform

parameter ranges from 0.5 to 1, depending on the ambiguity regarding the best-estimate

loss distribution. For the Wang transform parameters, we use λ = 0.25, λ = 0.5, and

λ = 0.75, where we follow Wang (2012) indicating that a typical transform parameters in

the reinsurance domain range between 0.5 and 0.77, whereas 0.25 is a typical assumption for

long-termed Sharpe ratios in the financial market.

• Myers-Read allocations for different capital levels (Section 1.3.3). In particular, we choose

the capital equal to the 99.94% quantile, which roughly depends on capital levels to support

an AM Best AA+ rating; three times the premium which is roughly consistent with NAIC

aggregate levels; and the 99% VaR just for comparison purposes.

• Weighted/transform-based allocations based on the Esscher and Kamps transform. Here we

choose transform parameters such that an evaluation is possible (non-explosive) but suffi-

ciently different from the expected value allocation (which results for t = 0).

• The D’Arcy (2011) implementation of the RMK algorithm (Section 1.3.3), where we rely

two on the same (first) two capital levels as for the Myers-Read allocation.

• Allocations based on the percentile layer (Bodoff in Section 1.3.5), where we allocate the

90%, 95%, and 99% VaR.

• RTVaR allocations with α = 75%, 90%, and 95% and β = 2 as for the covariance allocation.
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• Allocation on the (simple) average of the four considered TVaRs.

• Bauer-Zanjani allocations. Since their approach relies on the solution of an optimization

problem, we need to specify the necessary ingredients. We provide details on the solution

within both settings in Appendix Section 1.8.

1.5 The Case of Heterogeneous Bernoulli Losses

We consider individuals that face Bernoulli-distributed losses belonging to three groups. More

precisely, we assume:

• m = 3 groups of identical consumers, with N1 = N2 = N3 = 5, with the same probability

of loss π1 = π2 = π3 = 0.1;

• The size of the losses differ among groups, with l1 = 1, l2 = 2, and l3 = 3;

For conventional allocation, we consider allocation of capital three groups of consumer and

assume full exposure in all groups. Therefore, the total loss indemnity in each group is Ii = kili,

where ki ∼ Binomial(Ni, πi) and the total indemnity of the company is I = k1l1 +k2l2 +k3l3. The

computation of expectation, standard deviation, VaR, TVaR, and other moments of I are trivial and

those statistics are used to calculate allocation weights. The results are listed in Table 1.2.

For Bauer-Zanjani allocation, we assume that all groups have the same CARA preferences and

absolute risk aversion parameters α1 = α2 = α3 = α and solve the allocation problem using

α from 0.1 to 2. It is well known that with CARA preferences, initial wealth is irrelevant. We

impose a frictional cost of τ = 0.01. We optimize objective function (1.8), obtain the parameters,

and use equation (1.10) in Appendix 1.8.1 to obtain the allocation weights. The optimization and

allocation results are shown in Table 1.3.

Figure 1.2 provides a direct comparison of the different allocation methods (except for Exp

c=1). More precisely, since we have three different groups and allocation percentages ki/k add up

to one, we can depict allocations by two numbers. We choose allocation percentages to groups 1

and 3, where of course the allocation to Group 2 can be calculated as the difference of their sum

and one.
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Surprisingly, all methods lies along a line that shows a trade off between allocating more to

Group 3, which has the biggest loss size, and allocating more to Group 1, which has the smallest

loss size. We observe that the tail-focused allocations such as Myers-Read lie on one extreme end

and allocates the most to Group 3, while expected value allocation lies on the other extreme end

and allocates the least to Group 3. Methods with distortion risk measures and weighted distribution

transformation result in allocations closer to expected value method. VaR, TVaR and Risk-adjusted

TVaR methods are in between, with RTVaR (more tailed focused) allocating more to Group 3,

followed by TVaR and VaR.

The Bauer-Zanjani allocations also adhere to the same relationship, where a higher risk aversion

parameter α pushes towards the tail risk measures – e.g. BZ-2.0 (the Bauer-Zanjani allocation

with α = 2) resembles the TVaR 95% allocation (seen in Figure 1.2(a)). For smaller risk aversion,

the allocation is closer to the allocations focusing on the whole distribution – e.g. BZ-0.1 (the

Bauer-Zanjani allocation with α = 0.1) resembles the Bodoff, Wang transformation with large λ,

proportional hazard with small a, and the Kamps allocations (seen in Figure 1.2(b)).

Overall, we find that despite the variety in capital allocation methods proposed, it appears that

they produce rather similar results with differences being explained by a single parameter that

roughly corresponds to how much tail scenarios are emphasized.

1.6 The Case of Catastrophe Reinsurance Losses

For this application, we begin by describing in detail the data and the approach to aggregation in

Section 1.6.1. In particular, for our analyses, we limit the presentation to an aggregation to four

lines only in order to facilitate interpretation of the results. Here we follow Bauer and Zanjani

(2018) where the same data and aggregations are used. We then compare allocation methods in

Section 1.6.2. Finally, we consider their stability in Section 1.6.3.

1.6.1 Description of the Data

We are given 50,000 joint loss realizations for 24 distinct lines differing by peril and geographical

region. Figure 1.3 provides a histogram of the aggregate loss distribution, and Table 1.4 lists the
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Allocation Group 1 Group 2 Group 3 Sum RiskMeas

Exp Val 0.5000 1.0000 1.5000 3.0000 3.0000
16.67% 33.33% 50.00% 100.00%

CovWBeta 0.8586 2.4343 4.7271 8.0200 8.0200
beta = 2 10.71% 30.35% 58.94% 100.00%

VaR 95% 0.6611 2.4447 4.8942 8.0000 8.0000
8.26% 30.56% 61.18% 100.00%

VaR 99% 0.8780 2.9425 6.1795 10.0000 10.0000
8.78% 29.42% 61.80% 100.00%

TVaR 75% 0.6656 2.0093 3.7754 6.4502 6.4502
10.32% 31.15% 58.53% 100.00%

TVaR 90% 0.7582 2.0146 4.5103 7.2832 7.2832
10.41% 27.66% 61.93% 100.00%

TVaR 95% 0.7810 2.5699 5.6869 9.0378 9.0378
8.64% 28.44% 62.92% 100.00%

TVaR 99% 0.8953 3.0652 6.9330 10.8935 10.8935
8.22% 28.14% 63.64% 100.00%

Exponential 0.5445 1.1633 1.8607 3.5684 3.5684
c = 0.1 15.26% 32.60% 52.14% 100.00%

Exponential 0.6026 1.4657 2.6257 4.6939 4.6939
c = 0.25 12.84% 31.22% 55.94% 100.00%

Exponential -1.6958 4.5706 22.1425 25.0172 25.0172
c = 1 -6.78% 18.27% 88.51% 100.00%

Proportional Hazard 0.6464 1.5479 2.8057 5.0000 5.0000
a = 0.6 12.93% 30.96% 56.11% 100.00%

Proportional Hazard 0.5599 1.2152 1.9970 3.7722 3.7722
a = 0.8 14.84% 32.22% 52.94% 100.00%

Proportional Hazard 0.5133 1.0467 1.6054 3.1653 3.1653
a = 0.95 16.22% 33.07% 50.72% 100.00%

Wang Trans. 0.5713 1.2297 1.9857 3.7868 3.7868
λ = 0.25 15.09% 32.47% 52.44% 100.00%

Wang Trans. 0.6428 1.4808 2.5548 4.6784 4.6784
λ = 0.5 13.74% 31.65% 54.61% 100.00%

Wang Trans. 0.7148 1.7523 3.2058 5.6729 5.6729
λ = 0.75 12.60% 30.89% 56.51% 100.00%

Myers-Read 0.2463 1.7674 4.9863 7.0000 7.0000
a = 10 3.52% 25.25% 71.23% 100.00%

Myers-Read 0.1080 1.2239 3.6681 5.0000 5.0000
a = 8 2.16% 24.48% 73.36% 100.00%

Esscher 0.5468 1.1949 1.9563 3.6981 3.6981
t = 0.1 14.79% 32.31% 52.90% 100.00%
Kamps 0.6391 1.5347 2.6560 4.8299 4.8299
t = 0.1 13.23% 31.78% 54.99% 100.00%

Esscher 0.5045 1.0181 1.5410 3.0637 3.0637
t = 0.01 16.47% 33.23% 50.30% 100.00%
Kamps 0.6487 1.5926 2.8280 5.0694 5.0694

t = 0.01 12.80% 31.42% 55.79% 100.00%
Esscher 0.5005 1.0018 1.5041 3.0063 3.0063

t = 0.001 16.65% 33.32% 50.03% 100.00%
Kamps 0.6499 1.5993 2.8478 5.0969 5.0969

t = 0.001 12.75% 31.38% 55.87% 100.00%
D’Arcy 0.5073 1.0380 1.6067 3.1519 3.1519

a = 10 16.09% 32.93% 50.98% 100.00%
D’Arcy 0.5312 1.1442 1.9093 3.5847 3.5847

a = 8 14.82% 31.92% 53.26% 100.00%
Bodoff 90% 0.9016 1.9442 3.1542 6.0000 6.0000

15.03% 32.40% 52.57% 100.00%
Bodoff 95% 1.0894 2.5262 4.3844 8.0000 8.0000

13.62% 31.58% 54.80% 100.00%
Bodoff 99% 1.2622 3.0769 5.6610 10.0000 10.0000

12.62% 30.77% 56.61% 100.00%
RTVaR 95% 0.9740 3.1442 7.6200 11.7382 11.7382

8.30% 26.79% 64.92% 100.00%
RTVaR 99% 0.9909 3.5364 8.7626 13.2899 13.2899

7.46% 26.61% 65.93% 100.00%

Table 1.2: Conventional allocation results–heterogeneous Bernoulli case
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(a) (b)

Figure 1.2: Comparison of allocations–heterogeneous Bernoulli losses
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Optimization Results Allocation Results

α a p1 p2 p3 q1 q2 q3 Group 1 Group 2 Group 3

0.1 5.2608 0.0913 0.1961 0.3023 0.9232 0.9747 1.0000 12.73% 31.03% 56.25%
0.2 6.3701 0.1023 0.2270 0.3719 0.9584 0.9846 1.0000 11.89% 31.82% 56.29%
0.3 6.9498 0.1085 0.2542 0.4375 0.9589 0.9889 1.0000 10.17% 31.13% 58.70%
0.4 7.4627 0.1162 0.2820 0.5087 0.9773 0.9912 1.0000 10.53% 30.72% 58.75%
0.5 7.7758 0.1226 0.3114 0.5868 0.9810 0.9927 1.0000 10.53% 30.65% 58.82%
0.6 8.0124 0.1290 0.3429 0.6720 0.9835 0.9936 1.0000 10.59% 29.23% 60.18%
0.7 8.2992 0.1356 0.3766 0.7639 0.9855 0.9943 1.0000 10.58% 29.21% 60.22%
0.8 8.5196 0.1425 0.4126 0.8607 0.9871 0.9948 1.0000 10.57% 29.19% 60.24%
0.9 8.6959 0.1495 0.4507 0.9606 0.9884 0.9952 1.0000 10.56% 29.17% 60.27%
1.0 8.8415 0.1569 0.4909 1.0617 0.9894 0.9955 1.0000 10.55% 29.16% 60.29%
1.1 8.9645 0.1646 0.5327 1.1617 0.9903 0.9957 1.0000 9.71% 28.19% 62.10%
1.2 9.1344 0.1725 0.5759 1.2592 0.9909 0.9960 1.0000 9.68% 30.09% 60.23%
1.3 9.2885 0.1807 0.6200 1.3527 0.9915 0.9962 1.0000 9.67% 30.06% 60.27%
1.4 9.4235 0.1892 0.6647 1.4412 0.9920 0.9964 1.0000 9.66% 30.04% 60.30%
1.5 9.5434 0.1980 0.7096 1.5242 0.9924 0.9965 1.0000 9.66% 30.01% 60.33%
1.6 9.6511 0.2071 0.7541 1.6015 0.9928 0.9967 1.0000 9.65% 29.99% 60.35%
1.7 9.7489 0.2165 0.7981 1.6731 0.9931 0.9968 1.0000 9.65% 29.97% 60.38%
1.8 9.8384 0.2261 0.8411 1.7392 0.9934 0.9969 1.0000 9.64% 29.96% 60.40%
1.9 9.9211 0.2360 0.8829 1.8001 0.9937 0.9970 1.0000 9.64% 29.94% 60.42%
2.0 10.0048 0.2461 0.9233 1.8563 0.9939 0.9971 1.0000 9.06% 28.94% 62.00%

Table 1.3: Optimization and allocation results: Bauer-Zanjani allocation heterogeneous Bernoulli losses

lines and provides some descriptive statistics about each line. The largest lines for our reinsurer

(by premiums and expected losses) are “US Hurricane,” “N American EQ West” (North American

Earthquake West), and “ExTropical Cyclone” (Extratropical Cyclone). The expected aggregate

loss is $187,819,998 with a standard deviation of $162,901,154, and the aggregate premium in-

come is $346,137,808.

We consider an aggregation to four lines, with line numbers listed in Column “Agg.” Here,

where we lump together all lines by perils. In particular, we can think of Line 1 as “earthquake,”

Line 2 as “storm and flood,” Line 3 as “fire & crop,” and Line 4 as “terror & casualty.” In order to

keep the results comprehensible, we limit the exposition to this four-line aggregation level. Figure

1.4 shows histograms for each of these four lines.

We notice that the “earthquake” distribution is concentrated at low loss levels with only rela-

tively few realizations exceeding $50,000,000 (the 99% VaR only slightly exceeds $300,000,000).

However, the distribution depicts relatively fat tails with a maximum loss realization of only

slightly under one billion. The (aggregated) premium for this line is $46,336,664 with an expected

loss of $23,345,695.
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Line Premiums Expected Loss Standard Deviation Agg

N American EQ East 6,824,790.67 4,175,221.76 26,321,685.65 1

N American EQ West 31,222,440.54 13,927,357.33 47,198,747.52 1

S American EQ 471,810.50 215,642.22 915,540.16 1

Australia EQ 1,861,157.54 1,712,765.11 13,637,692.79 1

Europe EQ 2,198,888.30 1,729,224.02 5,947,164.14 1

Israel EQ 642,476.65 270,557.81 3,234,795.57 1

NZ EQ 2,901,010.54 1,111,430.78 9,860,005.28 1

Turkey EQ 214,089.04 203,495.77 1,505,019.84 1

N Amer. Severe Storm 16,988,195.98 13,879,861.84 15,742,997.51 2

US Hurricane 186,124,742.31 94,652,100.36 131,791,737.41 2

US Winterstorm 2,144,034.55 1,967,700.56 2,611,669.54 2

Australia Storm 124,632.81 88,108.80 622,194.10 2

Europe Flood 536,507.77 598,660.08 2,092,739.85 2

ExTropical Cyclone 37,033,667.38 23,602,490.43 65,121,405.35 2

UK Flood 377,922.95 252,833.64 2,221,965.76 2

US Brushfire 12,526,132.95 8,772,497.86 24,016,196.20 3

Australian Terror 2,945,767.58 1,729,874.98 11,829,262.37 4

CBNR Only 1,995,606.55 891,617.77 2,453,327.70 4

Cert. Terrorism xCBNR 3,961,059.67 2,099,602.62 2,975,452.18 4

Domestic Macro TR 648,938.81 374,808.73 1,316,650.55 4

Europe Terror 4,512,221.99 2,431,694.65 8,859,402.41 4

Non Certified Terror 2,669,239.84 624,652.88 1,138,937.44 4

Casualty 5,745,278.75 2,622,161.64 1,651,774.25 4

N American Crop 21,467,194.16 9,885,636.27 18,869,901.33 3

Table 1.4: Descriptive Statistics
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Figure 1.3: Histograms for aggregate loss

“Storm & flood” is by far the largest line, both in terms of premiums ($243,329,704) and

expected losses ($135,041,756). The distribution is concentrated around loss realizations between

25 and 500 million, though the maximum loss in our 50,000 realizations is almost four times that

size. The 99% VaR is approximately 700 million USD.

In comparison, the “fire & crop” and “terror & casualty” lines are small with an (aggregated)

premiums (expected loss) of about 34 (19) million and 22.5 (11) million, respectively. The max-

imal realizations are around 500 million for “fire & crop” (99% VaR = 163,922,557) and around

190 million for “terror & casualty” (99% VaR = 103,308,358).

We consider the same allocation approaches outlined in Section 1.4.1. For the Bauer-Zanjani

allocations, we again consider CARA preferences with different absolute risk aversion levels. The

results of the optimization procedure are provided in Table 1.6. For details on the implementation

procedure, we refer to Appendix 1.8.2.

1.6.2 Comparisons for the Unmodified Portfolio

Table 1.5 presents conventional allocation results for the (unmodified) portfolio of the company.

Here for each allocation method, we list the capital levels for each line, their sum, as well as the

risk measure evaluated for the aggregate loss distributions. Obviously, the last two numbers should
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(a) Line 1: earthquake (b) Line 2: storm & flood

(c) Line 3: fire & crop (d) Line 4: terror & casualty

Figure 1.4: Histograms for four aggregated lines

coincide—which can serve as a simple check for the calculations.

These aggregate risk measures vary tremendously, and thus so do the by-line allocations. For

instance, it is trivial that the 99% quantile (VaR) is far greater than the 95% quantile (VaR). Thus,

in the second line for each method, Table 1.5 again lists the allocations as a percentage of the

aggregate risk measure. These are the percentages on which we will base our comparisons. This is

not only because it facilitates comparisons, but also because this is in line with practice where the

actual capital of a company may not be given in terms of a risk measure at all, or even if it is this

may not be the measure used for allocation.

The first observation when comparing the allocations is the realizations that many of them look

quite similar, which resonates with observations in other studies. For instance, in the context of

assumptions used for the CAS DFA modeling challenge (“Bohra-Weist DFAIC distributions”),
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Vaughn (2007) points out that a variety of methods, including allocations based on “covariance,

Myers/Read, RMK with Variance, Mango Capital Consumption, and XTVaR99 are all remarkably

similar.” We find similar results in the context of an example from life insurance (Bauer and Zan-

jani, 2013). There are a few outliers, however, most notably the Exponential Allocation with c = 1.

The reason is that here there is an extreme weight on the extreme tail—that in turn is driven by

very extreme realizations of line 2. Indeed there are various realizations in the aggregate tail where

the line realizations for lines 1, 3, and 4 are under the expected loss, which explains the resulting

negative allocations to these lines.

For comparing the remaining allocations, in analogy to the comparison in Section 1.5, we note

that each allocation in our four-line context is characterized by three—not four—real numbers,

since the fourth follows by subtracting the sum of the others from 100%. Hence, similarly to

Figure 1.2 we can compare allocations as points in a three-dimensional space, and moreover we

can evaluate the “distance” between two allocations by identifying it with the distance between the

two points in terms of its Euclidean norm.

Figure 1.5(a) plots all of our allocations except for the aforementioned exponential allocation

with c = 1. From Panel 1.5(a), we see that there are a few other outliers in the sense that the dis-

tance to other allocation methods is quite significant: Three value at risk allocations, namely the

“simple” calculation (VaR1S, VaR2S) for both confidence levels and the bell-curve based calcula-

tion for the higher confidence level (VaR2B); and the Esscher allocation for the (high) parameter

of 1E-7 (Essch1). The intuition for the latter is, again, the exponential weight pushing all rele-

vance to the extreme tail where line 2 dominates the others. Hence, both the exponential allocation

and the Esscher allocations are extremely sensitive to the choice of the parameter (although this

sensitivity does not appear to apply to the Kamps allocation). For VaR, on the other hand, it is

well-known that estimation based on Monte Carlo simulation is erratic (Kalkbrener, 2005)—so it

may be numerical errors driving these outliers (at least for VaR1S).

Interestingly, aside from the “outlier” allocations mentioned above and two Myers-Read al-

locations, the points all appear to lie on a parabola-shaped curve in three-dimensional space that

is suggestive of a systematic pattern. Hence, similarly to the findings in Section 1.5, the differ-

ences among allocation seems to be explained by a single parameter. In order to zoom in on the
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Allocation Line 1 Line 2 Line 3 Line 4 Sum RiskMeas

Exp Val 23,345,695 135,041,756 18,658,134 10,774,413 187,819,998 187,819,998
12.43% 71.90% 9.93% 5.74% 100%

CovWBeta 62,292,648 398,599,625 38,938,608 13,791,425 513,622,306 513,622,306
β = 2 12.13% 77.61% 7.58% 2.69% 100%
TVaR75% 51,212,126 301,490,365 34,960,054 13,571,979 401,234,524 401,234,524

12.76% 75.14% 8.71% 3.38% 100%
TVaR90% 72,975,560 462,489,152 42,432,578 12,350,749 590,248,038 590,248,038

12.36% 78.36% 7.19% 2.09% 100%
TVaR95% 85,607,782 596,451,028 44,523,108 11,979,729 738,561,647 738,561,647

11.59% 80.76% 6.03% 1.62% 100%
TVaR99% 106,293,324 869,605,928 58,168,596 11,294,985 1,045,362,832 1,045,362,832

10.17% 83.19% 5.56% 1.08% 100%
VaR95% (simple) 9,776,274 330,811,906 173,984,700 14,118,944 528,691,824 528,691,824

1.85% 62.57% 32.91% 2.67% 100%
VaR95% (bell) 62,367,597 404,259,189 51,869,109 10,157,414 528,653,309 528,653,309

11.80% 76.47% 9.81% 1.92% 100%
VaR99% (simple) 7,170,815 816,870,497 39,256,266 4,060,778 867,358,356 867,358,356

0.83% 94.18% 4.53% 0.47% 100%
VaR99% (bell) 40,819,623 780,226,792 29,835,131 16,807,649 867,689,194 867,689,194

4.70% 89.92% 3.44% 1.94% 100%
Exponential 27,850,426 166,607,986 20,890,454 10,989,763 226,338,629 226,338,629
c = 0.1 12.30% 73.61% 9.23% 4.86% 100%
Exponential 37,216,272 245,941,709 23,451,637 8,755,958 315,365,576 315,365,576
c = 0.25 11.80% 77.99% 7.44% 2.78% 100%
Exponential -3,671,904,055 23,720,252,516 -4,880,193,171 -3,252,109,822 11,916,045,468 11,916,045,468
c = 1 -30.81% 199.06% -40.95% -27.29% 100%
Proportional Hazard 36,080,499 226,703,991 25,110,583 11,640,570 299,535,643 299,535,643
a = 0.6 12.05% 75.69% 8.38% 3.89% 100%
Proportional Hazard 28,192,014 168,301,360 21,223,234 11,199,323 228,915,932 228,915,932
a = 0.8 12.32% 73.52% 9.27% 4.89% 100%
Proportional Hazard 24,363,235 141,822,074 19,212,540 10,880,196 196,278,045 196,278,045
a = 0.95 12.41% 72.26% 9.79% 5.54% 100%
Wang 27,893,622 164,362,273 21,313,685 11,452,085 225,021,665 225,021,665
λ = 0.25 12.40% 73.04% 9.47% 5.09% 100%
Wang 33,402,026 201,407,441 24,294,793 12,004,713 271,108,972 271,108,972
λ = 0.5 12.32% 74.29% 8.96% 4.43% 100%
Wang 39,867,730 247,043,116 27,573,810 12,410,105 326,894,761 326,894,761
λ = 0.75 12.20% 75.57% 8.44% 3.80% 100%
MyersRead, 120,879,204 1,006,221,885 50,599,598 -7,876,720 1,169,823,967 1,169,823,967
a =1,357,643,965 10.33% 86.01% 4.33% -0.67% 100%
MyersRead, 64,285,407 756,847,100 37,746,242 -8,285,324 850,593,426 850,593,426
a =1,038,413,423 7.56% 88.98% 4.44% -0.97% 100%
MyersRead, 60,821,986 606,579,733 21,827,406 -9,690,768 679,538,358 679,538,358
a =867,358,356 8.95% 89.26% 3.21% -1.43% 100%
Esscher, t = 8,226,240 1,987,777,539 54,262,714 72,291,051 2,122,557,544 2,122,557,544
1.E-07 0.39% 93.65% 2.56% 3.41% 100%
Esscher, t= 27,359,301 163,201,071 20,690,228 11,031,052 222,281,653 222,281,653
1.E-09 12.31% 73.42% 9.31% 4.96% 100%
Kamps, t= 26,654,710 155,020,509 20,725,105 11,406,228 213,806,553 213,806,553
1.E-08 12.47% 72.51% 9.69% 5.33% 100%
Kamps, t= 40,195,291 249,028,113 27,434,525 12,082,021 328,739,950 328,739,950
1.E-11 12.23% 75.75% 8.35% 3.68% 100%
D’Arcy, a = 55,387,701 408,352,811 25,296,290 5,487,442 494,524,244 494,524,244
1,357,643,965 11.20% 82.57% 5.12% 1.11% 100%
D’Arcy, a = 104,209,232 875,467,350 62,492,051 11,388,390 1,053,557,023 1,053,557,023
1,038,413,423 9.89% 83.10% 5.93% 1.08% 100%
Bodoff, 47,772,088 273,086,001 36,572,490 18,591,385 376,021,964 376,021,964
VaR90% 12.70% 72.63% 9.73% 4.94% 100%
Bodoff, 66,892,452 393,236,293 46,970,415 21,592,664 528,691,824 528,691,824
VaR95% 12.65% 74.38% 8.88% 4.08% 100%
Bodoff, 104,581,664 670,427,703 66,183,982 26,165,006 867,358,356 867,358,356
VaR99% 12.06% 77.30% 7.63% 3.02% 100%
RTVaR 93,544,093 654,561,402 50,055,237 11,458,019 809,618,751 809,618,751
α = 75%, β = 2 11.55% 80.85% 6.18% 1.42% 100%
RTVaR 107,255,495 824,861,293 53,516,378 11,599,036 997,232,202 997,232,202
α = 90%, β = 2 10.76% 82.72% 5.37% 1.16% 100%
RTVaR 114,157,530 935,144,574 61,454,489 11,804,261 1,122,560,854 1,122,560,854
α = 95%, β = 2 10.17% 83.30% 5.47% 1.05% 100%
AvgTVaR 79,022,198 557,509,118 45,021,084 12,299,361 693,851,760 693,851,760

11.39% 80.35% 6.49% 1.77% 100%

Table 1.5: Conventional allocation results–catastrophe reinsurance case

31



Optimization Results Allocation Results

α a q(1) q(2) q(3) q(4) Line 1 Line 2 Line 3 Line 4

5.00E-10 2.89E+08 0.8290 0.6538 0.5235 0.4896 16.06% 77.86% 4.70% 1.38%
7.00E-10 3.98E+08 0.9076 0.7990 0.6436 0.6268 13.70% 80.54% 4.47% 1.30%
1.00E-09 5.02E+08 0.9467 0.8863 0.7300 0.7284 11.33% 83.07% 4.38% 1.23%
2.00E-09 6.94E+08 0.9761 0.9616 0.8359 0.8457 7.72% 86.91% 4.32% 1.05%
3.00E-09 8.13E+08 0.9832 0.9799 0.8766 0.8752 5.86% 88.78% 4.35% 1.02%
4.00E-09 9.18E+08 0.9874 0.9874 0.9007 0.8758 4.32% 90.28% 4.27% 1.13%
5.00E-09 1.02E+09 0.9902 0.9913 0.9195 0.8615 3.54% 91.10% 3.99% 1.38%
6.00E-09 1.13E+09 0.9925 0.9934 0.9348 0.8431 2.93% 91.76% 3.59% 1.72%
7.00E-09 1.22E+09 0.9942 0.9949 0.9457 0.8299 2.25% 92.64% 3.08% 2.03%
8.00E-09 1.31E+09 0.9954 0.9958 0.9526 0.8237 1.66% 93.20% 2.85% 2.28%
9.00E-09 1.39E+09 0.9963 0.9965 0.9574 0.8235 1.39% 93.48% 2.67% 2.47%
1.00E-08 1.45E+09 0.9970 0.9971 0.9610 0.8272 1.15% 93.68% 2.57% 2.60%

Table 1.6: Optimization and allocation results: Bauer-Zanjani allocation catastrophe reinsurance losses

remaining allocations, Figure 1.5(b) re-plots the same points, but this time we exclude outlying

allocations as well as the two outer Myers-Read allocations. Again, the allocations seem related

and we find that the expected value allocation (EV) plays an “extreme role.” This may not come

as a surprise since suitable allocation methods should penalize risk “more than linearly” (Venter,

2010).

A number of allocation methods are very close to the expected value allocation: The Kamps

allocations, the Wang allocations, the Bodoff allocations, and the Covariance allocation are all

within 0.06 of the EV allocation. In contrast, all but one TVaR/RTVaR/AvgTVaR allocations,

the D’Arcy allocations, and the Myers-Read allocations all bunched together between 0.07 and

0.19—and all roughly along the parabola-shaped curve, where the order appears to be driven by

the parameters. The former methods are all driven by the entire distribution, whereas the focus of

the latter allocation methods is on the tails (though the Myers-Read allocation does depend on the

entire distribution).

Figure 1.5(a) shows that Bauer-Zanjani allocations (BZα) roughly lie along the parabola when

the risk aversion parameters are large, so that the allocations roughly coincide with many tail-based

allocation when the counterparty is more risk-averse. However, when the counterparty is approach-

ing risk neutrality, or when α is small, Bauer-Zanjani allocations produce results that deviate from

other allocations. A key reason for this finding lies in the underpinning optimization problem that

delivers an optimal portfolio on which the allocation is based. As is evident from Table 1.6, espe-
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cially for smaller choices of α, the portfolio weights vary in their values. In particular, the weight

for line 3, q(3), is relatively low explaining why less capital is allocated to it.

All in all, two key observations emerge. First, we observe a dissonance between tail-based allo-

cations and allocations that are based on the entire distribution. But which one is more appropriate?

Should we, or should we not, focus on tails? Venter (2010) argues that from an economic stance,

risk-taking is not risk free—any modification to risk taking should carry some charge, so that a fo-

cus on the tails is misguided. He supports using marginal (i.e., Euler-based) methods that are based

on the entire distribution such as the Wang transform, since they are most “the most commensurate

with pricing theory.” However, D’Arcy (2011) and Myers and Read (2001) also present approaches

with an economic motivations. Second, “conventional” allocations behave qualitatively different

than the “economic” Bauer-Zanjani allocations.

1.6.3 Stability of the Methods

In this section, we study the stability of the allocation methods. In particular, we recalculate the

allocations from the previous subsection for two distorted portfolios:

• Sensitivity 1: We eliminate 1,000 arbitrary sample realizations leaving us with 49,000 real-

izations.

• Sensitivity 2: We replace the five worst case (aggregate) scenarios with the sixth worst ag-

gregate scenario (so that our sample now contains six identical scenarios).

The intuition behind the first stability test is clear: An allocation should be robust to unsys-

tematic changes in the sample. When adding, changing, or subtracting from the sample in an

unsystematic way, we would hope to see the allocation staying more or less the same. And since

we cannot add to or change the sample because we do not know the data-generating process, we

subtract.

The second test is motivated by ideas from Kou et al. (2013), who discuss robustness proper-

ties of risk measures and—based on the observation that coherent risk measures are not always

robust—define so-called natural risk statistics. It is important to note that our angle is different in

that we consider allocations and not risk measures, even though the underlying issues are the same.
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Specifically, extreme tail scenarios are very hard to assess—for instance, even with 5,000 observa-

tions one can not distinguish between the Laplace distribution and the t-distributions (Heyde and

Kou, 2004). Therefore, modifications in the extreme tail should not have a tremendous impact on

the allocation.

As indicated in the previous subsection, we can identify allocations for our four business lines

with points in three dimensional space, and we can identify the “difference” between two allo-

cations with the (Euclidean) distance between the corresponding points. For a yardstick when

assessing allocations, note that the difference between the 90% TVaR and the 99% TVaR is 0.056,

which is thus a sizable difference. The difference between the 95% and the 99% TVaR is 0.026,

which is still considerable.

Figure 1.6 plots the distance between the allocations for the original portfolio and the modified

portfolio for both sensitivity portfolios and all considered allocations methods. Again, we find that

VaR-based allocations and the Exp3 allocation stand out as extreme outliers, though on different

tests. More specifically, VaR allocations respond particularly poorly to unsystematic changes in

the portfolio, whereas the exponential allocation is particularly sensitive to changes in the tail.

This contrasts with Kou et al. (2013), who argue that VaR has good robustness properties for risk

measurement. We eliminate (all) VaR-based and exponential allocations and plot the differences

for the remaining methods for both tests separately. Figure 1.7 displays the results.

Figure 1.7(a) shows the results for the (unsystematic) modification via eliminating 1,000 sam-

ples. We find that when ignoring VaR-based allocations, all methods are relatively stable. The max-

imal difference now is about 0.0025 which is not too sizable for the Myers-Read 2 allocation: the

corresponding allocation vectors are (7.56%;88.98%;4.44%;-0.97%) and (7.78%;88.85%;4.38%;-

1.01%), respectively.

In contrast, when eliminating tail scenarios, the impact can be considerable. Figure 1.7(b)

shows that in some cases it can amount to more than 0.04. The most sensitive methods are the

Myers-Read allocations, the D’Arcy allocations, the Esscher, and the Bauer-Zanjani allocation

for high α—all of which are “tail-focused.” However, we do not find the same for TVaR based

allocations, which again is contrary to the findings from Kou et al. (2013) for risk measurement.

Also noteworthy is the stability of the proportional hazard, the Wang, the Kamps, and the Bodoff
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allocations, so it appears that stability is less critical for non-tail-focused methods.

1.7 Conclusion

The actuarial literature entails numerous contributions on capital allocation. While the theoretical

questions are not settled and deserve continued attention, questions concerning implementation

issues have received much less attention in the literature but are of great importance to practitioners.

This chapter attempts to contribute by exploring differences and commonalities between various

methods that have been proposed.

We find substantial differences across the universe of methods, although we find that all allo-

cations appear systematically related in the context of our example. Stability issues, predictably,

arise in methods where allocations are keyed to one outcome or to a small set of outcomes—as is

the case with VaR-based allocations and allocations based on tail risk measures. While the analysis

here is based on specific data, we find the systematic relationship surprising and also encouraging

in view of the companies’ problem of choosing the “correct” method. More research is obviously

needed to verify whether these findings carry over to other situations.

1.8 Appendix A: Bauer-Zanjani Allocation Implementation

1.8.1 The Case of Heterogeneous Bernoulli Losses

We consider consumers that face Bernoulli distributed losses. We allow for heterogeneity in con-

sumer preferences as well as in the losses. More specifically, we assume that there are m groups of

consumers, where group i containsNi identical consumers with wealth levelwi and utility function

Ui() that face independent losses li occurring with a probability πi, i = 1, ...,m. The participation

constraint again is given by their autarky levels:

γi = E[Ui(wi − li)] = πiUi(wi − li) + (1− πi)Ui(wi).

The optimization problem in the one period model without a regulatory constraint can then be con-

veniently set up by observing that the number of losses in the different groups follow independent
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Binomial(Ni, πi) distributions.

For counterparty-based allocation, we obtain for each group i:

qiφ̃i = c̃

N1∑
k1=0

· · ·
Ni∑
ki=1

· · ·
Nm∑
km=0

(
N1

k1

)
· · ·
(
Ni − 1

ki − 1

)
· · ·
(
Nm

km

)
×πk1

1 · · · π
ki
i · · · πkmm (1− π1)N1−k1 · · · (1− πi)Ni−ki · · · (1− πm)Nm−km

×

1{∑m
s=1 ksqsls≥a}


m∑
j=1

kjU
′
j

(
wj − pj − lj + qjlj

a∑m
s=1 ksqsls

)
qjlj

v′j ×
∑m

s=1 ksqsls




× qili∑m
s=1 ksqsls

, (1.10)

where c̃ is a constant such that
∑

iNiqiφ̃i = 1.

1.8.2 The Case of Catastrophe Reinsurance Losses

We assume each line represents a counterparty with CARA preference. The indemnity of each

line follows the simulated distribution from the data. We consider the profit maximization problem

(1.8) and we can show that under CARA preference, the solution does not depend on initial wealth

and

pi =
1

αi
log

E[eαiL
(i)

]

E[eαiL(i)(1−q(i))1{I≤a} + eαiL
(i)(1−q(i) a

I
)1{I>a}]

, i = 1, 2, 3, 4.

Therefore, we can simplify the optimization problem (1.8) to five choice variables

a, q(1), q(2), q(3), q(4). The allocation are calculated based on optimized variables and equation (1.9).

1.9 Appendix B: Additional Tables and Figures
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(a) All methods (w/o Exp3)

(b) Restricted methods (squared area in (a))

Figure 1.5: Comparison of allocations–catastrophe insurance losses
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Figure 1.6: Stability of allocations: distance between allocations on basic and modified portfolios for all
methods

(a) Sensitivity Test 1 (b) Sensitivity Test 2

Figure 1.7: Stability of allocations: distance between allocations on basic and modified portfolios for allo-
cation methods (except Exp and VaR)
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Chapter 2

The Term Structure of Capital Costs1

2.1 Introduction

How do financial institutions discount liability cash flows in the near and distant future? It has

long been established that capital costs are an important valuation component for financial institu-

tions facing risk, particularly in the insurance sector (Cummins and Phillips, 2005), and market-

consistent valuation frameworks such as IFRS 17 and Solvency II include corresponding “risk mar-

gins” for non-replicable risks (Albrecher et al., 2018).2 Such firm-specific risk penalties arise in

financial models with financing frictions (Froot and Stein, 1998; Zanjani, 2002; Bauer and Zanjani,

2016). However, thus far little is known about the effect of the markups on liabilities materializing

in the near and far future, that is, about the term structure of these capital costs. This essay closes

this gap in literature by analyzing how markups affect liabilities with different maturities, both

theoretically and empirically.

Relying on an extension of such risk management models with financial frictions, we devise
1This essay is co-authored with Daniel Bauer and George Zanjani. We gratefully acknowledge funding from the Casualty

Actuarial Society (CAS) under a Committee on Theory of Risk (COTOR) research project. A previous version of this essay was
circulated under the title “The Marginal Cost of Risk and Capital Allocation in a Property and Casualty Insurance Company.” We
are grateful for helpful comments from Tim Boonen, Alietia Caughron, Richard Derrig, Cameron Ellis, Michael Hoy, Dongchen
Li, Lawrence Marcus, Lawrence McTaggart, Stephen Mildenhall, Ajay Subramanian, Ruilin Tian, Mary Weiss, Huan Zhang and
seminar participants at the 2016 Insurance: Mathematics and Economics Congress (IME 2016), the 51st Actuarial Research Con-
ference (ARC 2016), the American Risk and Insurance Association (ARIA) 2016 Annual Meeting, the UGA 2017 Ph.D. Research
Symposium, Illinois State University, and the University of St. Thomas.

2Solvency II is a directive within the European Union that codifies and harmonizes insurance regulation. International Financial
Reporting Standard (IFRS) 17 is the new international accounting standard for insurance contracts, and particularly their valuation.
Both emphasize market-consistent valuation principles.
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a theoretical model for the firm-specific term structure of capital costs. We develop our theory

in the context of a property and casualty (P&C) insurer, which typically carry business lines that

vary in the length of time it takes for claims to be reported and to settle—referred to as short

and long tailed business lines.3 Hence, this industry provides an ideal laboratory setting for our

ideas, also since unique data are available due to regulatory reporting requirements. We estimate

discount curves (net of discounting at risk-free rates) that depend on firm characteristics. Our key

theoretical and empirical finding is that firms that face financial constraints include hefty markups

for liabilities in the near future, with a term structure that is rapidly declining. In contrast, well

capitalized firms include a relatively modest markup that is less steep over time—and can even

be negative and increasing for companies with extremely high capital levels. The key intuition is

that due to the generally profitable though risky business, capital costs—that are high for meagerly

capitalized firms and modest for well capitalized firms—have a mean-reverting character at the

firm level.

Within the theoretical model, we integrate a general P&C loss structure given via so-called loss

triangles into a dynamic profit maximization model for an insurer that economizes on different

capitalization options similar to that from Bauer and Zanjani (2018). The model is set in an eco-

nomic environment with financing frictions (Duffie, 2010), and includes both internal and external

capital that can be raised at different costs (Brunnermeier et al., 2012). We derive our key equation

of the marginal cost of risk from the company’s optimality conditions, along with a rule for the

economic allocation of capital to the different lines. In line with Bauer and Zanjani (2018), we

find that while the marginal cost takes the conventional form of the value of future liabilities plus

allocated capital costs, the company evaluates uncertain liabilities under adjusted probabilities that

reflect company effective risk aversion (Froot and Stein, 1998). However, we demonstrate that

the adjustment differs for payments due in the next year versus payments in future development

years, since the associated probability weights depend on the company’s (expected) financial sit-

uation. This difference in treatment for liabilities with different durations implies differences in

the assessment of shorter versus longer tailed business lines. In particular, both differences in the
3Indeed, this is one of the primary aspects addressed in the vast actuarial literature on loss reserving in non-life insurance. We

refer to the textbooks by Wűthrich and Merz (2008), Taylor (2012), and Radtke et al. (2016) for details.
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loss distribution as well as expected settlement times between business lines will interact with the

financial situation of the company to determine their valuations.

We explore this relationship by solving our model numerically in a setting with two business

lines and two development periods for the long-tailed line (2L2DY). More precisely, we consider

a business selling a workers’ compensation insurance as the long-tailed line, where we assume

that the losses develop according to a Chain-Ladder model with jointly normal innovations (Mack,

1993), and selling commercial automobile insurance as the short-tailed line. We implement the

firm’s profit maximization problem by dynamic programming on a discretized state space. In

line with Bauer and Zanjani (2018), we find that the value of the P&C insurer is concave with

an optimal point that results from balancing profit expectations and capital costs. However, our

differentiation between the long- and short-tailed business lines allows for analyzing the impact of

firm capitalization on the optimal line mix. We find that exposure in the long-tailed line—where

payments occur further in the future—is relatively higher for financially constrained firms, whereas

the opposite is true for the short-tailed line. This is due to the former facing high capital costs in

the short-term and lower capital costs in the long term, so that ”delaying” indemnity payments by

increasing exposure to the long-tailed line is optimal.

To obtain firm-specific markups empirically, we aggregate the marginal cost equation across

lines so that we express aggregate company premiums in terms of expected aggregate discounted

liability payments and capital costs—where the expected value features risk adjustment terms due

to future capital costs. We can then identify a firm-specific term structure of risk adjustments

since different companies have a different mix of business lines, so that the risk adjustment terms

will have a different impact on the firm’s right-hand side of marginal cost equation. We rely

on a simple version of the term structure specification by Nelson and Siegel (1987), where the

parameters depend on firm capitalization as measured by the surplus to asset ratio or the leverage

ratio. Our estimation delivers current period industry cost-of-capital, and parameters governing the

company-specific term structure as a function of firm characteristics.

Our industry cost of capital figures vary between 7.5% and 13%, depending on the considered

year. The term structure of firm-specific markups differs markedly in the financial situation of

the firm. More precisely, for a firm with an average capitalization level (equity to asset ratio '
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0.5), its valuation of near-future (due in 1-3 years) liabilities is 20-80% higher than their present

values. However, for liabilities that are due much later (in 4-10 years), the markups are around

10-20% or even less. This pattern is similar for poorly capitalized firms, although here short-term

markups are even higher and the term structure is even more steeply downward sloping. For firms

with high capitalization level, in contrast, we observe much lower markup levels overall—and they

may even display markdowns with an a upward sloping term structure. That is, extremely well

capitalized firms may evaluate near-term liabilities below their expected discounted value, though

this markdown subsides for liabilities in the far future. The findings are in line with our theory, and

they are robust to the inclusion of additional firm characteristics.

Related Literature and Organization of the Essay

This essay relates to several strands of literature. First, we bring together economic approaches

for risk pricing in financial institutions with actuarial loss forecasting methods, for the purpose

of deriving the term structure of capital costs in P&C insurance. A seminal contribution with

regards to the former literature is Froot and Stein (1998), who present economic foundations for

risk pricing in a setting with costly capital. We directly build on the dynamic extension of Froot and

Stein’s work by Bauer and Zanjani (2018), where different modes of capitalization are included.

The actuarial literature on loss forecasting and claims reserving methods is extensive (Taylor and

Ashe, 1983; Wűthrich and Merz, 2008; Radtke et al., 2016, e.g.). We rely on the common Chain-

Ladder forecasting approach (Mack, 1993), although generalizations are possible.

The empirical section borrows from the literature on yield curve specification and estimation,

particularly from Nelson and Siegel (1987). The drivers for the choice between long- and short

tailed lines and associated costs relate to the the finance literature on debt maturity (Custódio et al.,

2013; Mian and Santos, 2011; Xu, 2016). Finally, we contribute to the literature on cost of capital

estimation in the insurance sector (Cox and Griepentrog, 1988; Cummins and Lamm-Tennant,

1994; Lee and Cummins, 1998; Cummins and Phillips, 2005). In particular, while we rely on

a completely different approach, it is comforting that resulting figures fall in the same region as

previous estimates.

The remainder of the chapter is organized as follows: Section 2.2 presents the term structure
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equation derived from a general model of multi-period profit maximization with a general loss

structure in a P&C company, an implementation of the model and numerical results; Section 2.3

presents details of the empirical study on estimating the term structure of capital costs; Section 2.4

concludes.

2.2 Multi-Period Profit Maximization with Loss History

2.2.1 Loss Structure for a P&C Company

Setting up a profit maximization framework for a P&C company requires modeling the asset and

the liability sides. For simplicity, we assume the company’s assets bear no risk and that all the

uncertainty originates from the liability side, modeled via claim payment amounts.

A P&C company writes new insurance contracts in each of its business lines at the beginning

of every year (accident year), during which accidents occur and losses are reported. However,

some of the losses are not reported until the next year or even years after the origination of the

contract. Furthermore, only a portion of the payments is settled in the accident year, whereas the

remainder of the (unrealized) payments will take several years to settle. The lags in reporting

and paying losses are accounted for by considering so-called loss development years. Such a loss

structure is typically represented via so-called loss triangles, with one triangle recording incurred

(reported) losses, and another triangle recording paid losses. To illustrate, in Figure 2.1 we consider

a P&C insurance company with N business lines with corresponding (paid) loss random variables

L
(n,i+j−1)
i,j , with line identifier n = 1, 2, . . . , N , accident year (AY) i = 1, 2, . . . , t− dn, . . . , t, . . . ,

development year (DY) j = 1, 2, . . . , dn, and i + j − 1 being the calendar year (period). For each

variable, we only need to identify the development and calendar year and thus drop the accident

year subscripts for simplicity.

In the paid loss triangle, for example, L(n,1)
1 to L

(n,dn)
dn

denote amounts paid (if positive, or

amount received if negative) for insurance sold at the beginning of year 1 in line n. Thus, ev-

ery year, there are payments for losses incurred in the current year, as well as for losses devel-

oped from previous years. Specifically, payments in the same calendar year consist of the diag-

onal entries in the paid loss triangle. For example, payments in calendar year t correspond to
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Figure 2.1: Loss triangle for a P&C insurer in business line n with t accident years and dn development
years

(L
(n,t)
1 , L

(n,t)
2 , . . . , L

(n,t)
dn

), which are double-boxed inside Figure 2.1. L(n,t)
1 represents losses from

the contract sold in period t. Other losses (L
(n,t)
2 , . . . , L

(n,t)
dn

) are developed from previous years’

losses, which are in oval boxes and themselves make up a triangle in Figure 2.1. We denote this

“historical” loss triangle at time t−1 as ∆(n,t−1) = {L(n,i)
j , t−dn+1 ≤ i ≤ t−1}, which contains

(partial) loss information from t − dn + 1 to t − 1 and is the only source of uncertainty. Denote

L(n,t) = (L
(n,t)
2 , . . . , L

(n,t)
dn

) as losses paid in year t that developed from ∆(n,t−1). To account for

the loss development in each accident year, it is common to assume that the paid losses triangles

have a Markov structure:

P(∆(n,t)|∆(n,t−1),∆(n,t−2), . . . ,∆(n,1)) = P(∆(n,t)|∆(n,t−1)).

Also, as is common, we assume independence across accident years. A Markov structure and the

independence assumptions together fit most of the loss reserving methods in the P&C industry. It

is possible to relax the independence assumption and allow cross-sectional correlations between

accident years, at the cost of more complex derivations.

Under independence and Markov assumptions, loss random variables in each accident year are
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related as follows:

P
(
L

(n,t)
j | h(L

(n,t−j+1:t−1)
1:j−1 ), . . . , h(L

(n,t−j+1)
1 )

)
= P

(
L

(n,t)
j | h(L

(n,t−j+1:t−1)
1:j−1 ))

)
.

The losses in the jth development year only depend on the information of the same accident year

and on a function h of loss information on the previous development years. For example, in the

most popular stochastic loss reserving method, the so-called Chain-Ladder approach (Mack, 1993),

h is the cumulative summation operation:

P
(
L

(n,t)
j | h(L

(n,t−j+1:t−1)
1:j−1 ), . . . , h(L

(n,t−j+1)
1 )

)
= P

(
L

(n,t)
j |

j−1∑
k=1

L
(n,t−k)
k

)
.

2.2.2 A Multi-Line Multi-Period Profit Maximization Model

To fully describe the dynamic liabilities that the P&C company faces, we assume the following

underwriting process: At the beginning of every period t, the insurer chooses to underwrite certain

amounts in each line of business and charges premium p(n,t) in return. The underwriting deci-

sion corresponds to choosing an exposure parameter q(n,t). The losses will be realized over the

development years, but the payments are always contingent on the exposure parameter and paid

loss random variables. Also note that in each period, the total indemnity payment includes losses

incurred and paid in the current year, as well as losses developed from the past years and to be paid

in the current calendar year. Thus, for business line n in period t, the indemnity payment can be

presented via the following function I(n)
t (.):

I(n,t) = I(n,t)

{q(n,t), L
(n,t)
1︸ ︷︷ ︸

current

}, {Q(n,t−1),L(n,t)︸ ︷︷ ︸
history

}

 ,

where we assume I(n,t)
(
{q(n,t), 0}, {Q(n,t−1),0}

)
= 0. Q(n,t−1) is the vector of exposure pa-

rameters associated with triangle ∆(n,t−1) and losses L(n,t). In what follows, we will assume that

indemnity payments are proportional to the exposure parameters:

I(n,t) = q(n,t) × L(n,t)
1 + Q(n,t−1) × L(n,t),
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but generalizations are possible at the expense of a more cumbersome analysis (Frees, 2017;

Mildenhall, 2017). We denote the aggregate period indemnity across business lines by I(,t) =∑N
n=1 I

(n,t).4

The company collects the full premium p(n,t) at the beginning of each period t on each line.

The aggregate period premium is p(,t) =
∑N

n=1 p
(n,t). The company can raise capital B(t) ≥ 0 (or

shed capital B(t) < 0). The cost of raising capital B(t) is c(B(t)) if B(t) ≥ 0. There is no cost of

shedding capital, i.e. c(B(t)) = 0 if B(t) < 0. The company carries over capital a(t−1)(1− τ) from

the last period, with τ denoting the unit frictional cost of internal capital. Raising external capital is

always marginally more expensive than keeping internal capital, so we always have c′(.) > τ > 0.

Thus, the company’s assets at the beginning of period t are

a(t−1)(1− τ) +B(t) − c(B(t)) + p(,t).

During period t, the assets are invested at a fixed annual interest rate r. At the end of period t, the

company pays the aggregate indemnity I(,t) from its insurance policies sold in the current period

and previous periods. The surplus of assets over aggregate indemnity, denoted by a(t), can then be

carried over to period t+ 1. Thus, we have the following law of motion for the company’s capital:

a(t) =
(
a(t−1)(1− τ) +B(t) − c1(B(t)) + p(,t)

)
(1 + r)− I(,t), (2.1)

assuming a(t) ≥ 0. If the company defaults, it pays out all remaining assets to policyholders. The

company cannot shed more capital than it has available. Hence, for a(t−1) ≥ 0, we require that:

B(t) ≥ −a(t−1)(1− τ). (2.2)

The objective function for each period can be derived using the revenue (premium collected),

minus the costs (indemnity, frictional costs on carrying capital, and financing costs). For each
4In the rest of the essay, we use X(,t) as the sum across the lines

∑N
n=1 X

(n,t). X(:,t) is used to represent the line-by-line
collection (vector) (X(1,t), . . . , X(N,t)), and its subset X(m:n,t) = (X(m,t), . . . , X(n,t)). X(n,t:t+s) represents a collection of
random variables over discrete time (X(n,t), X(n,t+1), . . . , X(n,t+s)).
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period, the expected aggregate indemnity takes the following form:

e(t) = E
[
I(,t)1{a(1)≥0,...,a(t)≥0} + (a(t) + I(,t))1{a(1)≥0,...,a(t)<0} | ∆(:,t−1)

]
.

Note that here we write the remaining assets in case of default as a(t) + I(,t) < I(,t).

Hence, the company’s period profit function f is:

f(st = {a(t−1),Q(:,t−1),∆(:,t−1)}, ct = {q(:,t), p(:,t), B(t)})

= (1 + r)p(,t) − e(t) − (1 + r)(τa(t−1) + c(B(t)))

= E
[
1{a(1)≥0,...,a(t)≥0}{(1 + r)p(,t) − I(,t) − (1 + r)(τa(t−1) + c(B(t)))}

− 1{a(1)≥0,...,a(t)<0}(1 + r)(a(t−1) +B(t)) | st
]
. (2.3)

The state “st” contains all the variables that determine the state of the company at the beginning

of period t. The control “ct” contains all the variables that the company chooses in maximizing the

objective function, also at the beginning of period t. In particular, both st and ct are predictable

with the information from the loss triangle ∆(:,t−1). The insurance company’s ultimate objective

is to maximize future expected discounted cash flows, which corresponds to the following infinite

horizon optimization problem:

max
ct

∞∑
t=1

E[βtf(st, ct)], (2.4)

where β = (1 + r)−1 is the discount factor. The objective function can be equivalently represented

as present value of future dividends as follows:

max
ct

E

[∑
t≤t∗
−βt−1B(t) − a(0)

]
, (2.5)

where t∗ is the time such that a(1) ≥ 0, a(2) ≥ 0, . . . , a(t∗−1) ≥ 0, a(t∗) < 0 (see Appendix 2.5.1 for

the proof).

We solve the optimization with constraints (2.1), (2.2), a premium function for each line n, and

a regulatory constraint if needed. For the premium function, we follow Bauer and Zanjani (2018)

and assume that the premium charged for one line is the expected present (actuarial) value of future
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losses multiplied by a markup function. The present value of future losses for each line at the end

of period t can be represented as

R(n,t) =
dn∑
j=1

βj−1q(n,t)L
(n,t+j−1)
j .

The markup function is a (decreasing) function of company risk φ and size θ = E
[
R(,t) | ∆(:,t−1)

]
,

defined as

π(n) = π(n)(φ, θ),

with the assumption on partial derivatives:

π
(n)
1 =

∂π(n)(φ, θ)

∂φ
< 0, and π(n)

2 =
∂π(n)(φ, θ)

∂θ
< 0,

so a company with greater risk and larger size charges a smaller markup over actuarial value.

φ is a risk metric that measures the risk of a company given its total indemnities and assets.

For measuring “risk,” we assume that the policyholders are concerned with the company’s period

solvency, so that the risk depends on total indemnities paid I(,t) and total end-of-periods assets

S(t):

φ = φ(I(,t), S(t)),

where S(t) =
(
a(t−1)(1− τ) +B(t) − c(B(t)) + p(,t)

)
(1+r). Here, similarly to Bauer and Zanjani

(2018), in addition to obvious monotonicity assumptions (φ(I, x) ≤ φ(I, x), x ≥ y, and φ(X, x) ≤

φ(Y, x), X ≤ Y ), we assume scale invariance of the risk metric, i.e. φ(aI, ax) = φ(I, x), a > 0.

The key example that we will rely on in our numerical applications is the conditional default

probability:

φ(I(,t), S(t)) = P(I(,t) > S(t) | ∆(:,t−1)).

We note that this specification assumes consumers are myopic in that they are only concerned with

the coming period—and not necessary the performance of their contract. This may be justified

with the assumption that consumers rely on company ratings that obviously do not depend on the

term of the obligation.
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Altogether, we have the following premium function for line n:

p(n,t) = E
[
βR(n,t) | ∆(:,t−1)

]
× π(n)(φ, θ). (2.6)

According to Bertsekas (1995), the optimization problem (2.4) is an infinite-horizon discrete-

time stochastic optimal control problem, resulting in the following Bellman equation:

Proposition 1. (Bellman Equation). The Bellman equation for problem (2.4) reads:

V (a(t−1),Q(:,t−1),∆(:,t−1))

= max
q(:,t),p(:,t),B(t)

E
[
1{I(,t)≤S(t)}

(
p(,t) − βI(,t) − τa(t−1) − c(B(t)) + βV (a(t),Q(:,t),∆(:,t))

)
− 1{I(,t)>S(t)}(a

(t−1) +B(t)) | ∆(:,t−1)
]
,

subject to (2.1), (2.2), and (2.6)

Here the default threshold for the company is S(t). Once the aggregate indemnity is greater

than S(t), the company defaults. We do not consider the option of raising emergency capital to

save the company as in Bauer and Zanjani (2018), since the focus of this essay is on how loss

history, i.e. past exposures Q(:,t−1) and losses ∆(:,t−1), affect the optimal exposure, raising, and

allocation decisions. However, incorporating emergency capital is theoretically straightforward.

In particular, when incorporating emergency raising capital, we note that the model in Bauer and

Zanjani (2018) will be a special case of the general model here with one development year in all

business lines, thus effectively reducing the value function to one dimension with a(t−1). In our

general setting, with the company having N lines and each line n having dn development years,

there are a total of 1 + 1
2

∑N
n=1(d2

n + dn − 2) state variables.

2.2.3 Term Structure of Capital Costs

We rely on the first order conditions of the Bellman equation in Proposition (1) to derive the

marginal cost of risk (the proof is provided in Appendix 2.5.1).

Proposition 2. (Term Structure Equation). We have the marginal cost of risks presented in the form
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of term structure of capital costs:

E

[
dn∑
j=1

βjL
(n,t+j−1)
j | ∆(:,t−1)

]
∗ π(n)

(
1 +

N∑
i=1

π
(i)
2

π(n)
E
[
R(i,t) | ∆(:,t−1)

])

=

dn−1∑
s=0

(1− c′(B(t))) ·
(
E
[
1{I(,t)≤S(t),...,I∗(,t+s)≤S∗(t+s)}β

s+1L
(n,t+s)
s+1 wt+s | ∆(:,t−1)

]
+ β

∂ρ(I(,t))

∂q(n,t)
E
[
1{I(,t)>S(t)}wt | ∆

(:,t−1)
])

, (2.7)

where wt =


1 + V1(a(t),Q(:,t),∆(:,t)) I(,t) ≤ S(t)

∑N
i=1

1
1−c′(B(t))

E
[
R(i,t) | ∆(:,t−1)

]
∗ π(i)

1
∂φ
∂S(t) I(,t) > S(t),

ρ is the risk measure associated with the risk metric φ, and V1 = ∂V/∂a.

wt is a weighting function similar to the function in Bauer and Zanjani (2018), with

E
[
(1− c′(B(t)))wt

]
= 1.

The weighting function wt+s = 1 + V1(a∗(t+s),Q∗(:,t+s),∆∗(:,t+s)) on I(,t) ≤ S(t), . . . , I∗(,t+s) ≤

S∗(t+s) from time t to t+dn−1, where a∗(t+s),Q∗(:,t+s) etc. are the (stochastic) future state variables

under the optimal policy.

The left-hand side of the equation represents the marginal premium income, adjusted down by

company size. The first line of the right-hand side of the equation consists of evaluation of future

losses for accident year t, namely, losses (L
(n,t)
1 , L

(n,t+1)
2 , . . . , L

(n,t+dn−1)
dn

), which are dependent

through a stochastic loss reserving model. The last line of the right-hand side of the equation are

about the capital allocation ∂ρ(I∗(,t))

∂q(n,t) multiplied by associated capital costs.

The interpretation of the term structure equation is that valuation of liability and capital al-

location should be done by line and development year in each line, in contrast to the previous

literature, where only by-line allocation is considered. Not only does the equation highlight the

importance of loss reserving in pricing P&C insurance, but it also redefines the capital allocation

and risk pricing goal in a P&C insurer. We are interested in the term structure of capital costs,

namely V1(a∗(t+s),Q∗(:,t+s),∆∗(:,t+s)) and how it varies with capitalization level. In what follows,
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we solve a basic version of our theoretical model numerically, we explore insurer’s decision at

optimality, and we analyze how V1 behaves in a dynamic setting.

2.2.4 Implementation – Two Lines and Two Development Years

In this section, we provide an implementation of our theory in the previous section in the context of

a P&C insurer. Specifically, the P&C insurer has two business lines and two development years on

the long-tailed line (2L2DY). We then calibrate and solve for the model using numerical methods.

In 2L2DY, Line 1 is the long-tailed line with development year loss, the paid loss triangle is

a 2x1 triangle, as illustrated in Figure 2.2. Line 2 is assumed to be the short-tailed line with no

development years beyond the accident year. The time period equals to AY + DY - 1. Therefore,

at the end of current period t, the insurer faces losses L(1,t)
1 and L(1,t)

2 from its long-tailed line 1,

and L(2,t)
1 from its short-tailed line 2. The loss random variables above the solid lines in Figure 2.2

are realized before t. The grayed-out L(1,t+1)
2 is not a part of the loss triangle and not realized until

the end of the next period t+ 1, but it is relevant to the premium written for the accident year t and

therefore related to the insurer’s problem.
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1 2

1 L
(1,1)
1 L

(1,2)
2

. . . . . . . . .
t-2 L
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2

t L
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Figure 2.2: Losses for a company under 2L2DY
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Figure 2.3: Losses relevant to the bellman equation for a company under 2L2DY

We simplify notations L(n,t−2+j)
j to L(n)

j and L(n,t−1+j)
j to L

′(n)
j , shown in Figure 2.3, as the
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prime “′” denotes state variables in the next period. We put three assumptions on loss triangles: (i)

Chain-Ladder in loss development; (ii) conditional normality of loss distribution; (iii) linear corre-

lation between lines. These assumptions make the model tractable and more efficient to calculate

the moments of loss random variables in the Bellman equation. Details of three distributional

assumptions are presented in Appendix 2.5.2 and useful in developing numerical solutions.

All in all, we solve the following simplified Bellman equation:

V (a, q(1), L
(1)
1 ) (2.8)

= max
q
′(1),q

′(2),p(1),p(2),B
βE
[
1{I≤S}(S − I) + 1{I≤S}V (a′, q

′(1), L
′(1)
1 )
]
− a−B,

where:

S = (a(1− τ) +B − c1(B) + p(1) + p(2))er a′ = S − I.

For the premium functions, akin to Bauer and Zanjani (2018), we assume the following specifica-

tion:

pn = E
[
βR(n)

]
× exp

{
αn − δnP(I > S)− γnE[R]

}
, n = 1, 2

where R(1) = q
′(1)L

′(1)
1 + βq

′(1)L
′(1)
2 , R(2) = q

′(2)L
′(2)
1 , and R = R(1) + R(2) representing the

aggregate risk in the premium p1 + p2. Note that the aggregate risk R does not equal to the

aggregate indemnity I , because of the long-tailed line. I reflects losses to be paid out in the current

time period, while R entails risks exposed in one accident year across two periods. E[R], instead

of E[I] used in the models without development year, reflects the aggregate scale of the insurance

business. The motivation for this specification is that policyholders assess company quality via

ratings that reflect the default probability, and increasing the scale of insurance business decreases

profit margins. We then can specify the premium function as the product of expected present value

of future exposed losses and a corresponding markup function.

In the numerical implementation, we calibrate the 2L2DY model with premium parameters,

loss triangle parameters and company level parameters listed in Table 2.1. We choose the same

premium parameters for both lines. Although a generalization to two distinct sets of premium

parameters is possible, it complicates the model solution and may yield results that are difficult
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Long-Tailed Line Short-Tailed Line

Premium

α 0.1 0.1
β -10.0 -10.0
γ -5.0E-10 -5.0E-10

Triangle

f 2.0 N/A
σ2 2.5E7 N/A
µ
(n)
1 1.0E8 1.0E8

(σ
(n)
1 )2 6.25E14 6.25E14
ρ 0.5

Company

τ 0.03
c
(1)
1 0.075
c
(2)
1 1E-10

Table 2.1: Model parameters

to interpret. We leave corresponding extensions for future research. We set the capital costs as

τ = 0.03, c(1)
1 = 0.075, c(2)

1 = 1.0E−10, and the risk-free interest rate is r = 0.03, as in the

“base case” scenario in Bauer and Zanjani (2018). We then use value iteration method to solve

the Bellman equation (2.8) numerically on discretized grids of a ∈ [0, 2.0E9], q(1) ∈ [0, 2.0], and

L(1) ∈ [5.0E7, 1.5E8]. A detailed solution to the 2L2DY model and corresponding numerical

techniques are detailed in Appendix 2.5.3.

2.2.5 Results – Two Lines and Two Development Years

Since the value function and optimal policies are functions of three state variables, it is impossible

to capture the results in a single graph. Therefore, we graph functions of capital a and previous

exposure on the long-tailed line q(1) on the x and y axis, given two extreme levels of the previous

shock L
(1)
1 (large and small). Figure 2.4 shows the value function and optimal policies under

an extremely small previous shock of two standard deviations below the mean at L(1)
1 = 5.0E7.

Figure 2.8 shows the solution under an extremely large previous shock of two standard deviations

above the mean at L(1)
1 = 1.5E8. We choose extreme levels to documents the effects.

The value function, optimal raising of external capital, and exposure to the short-tailed line all
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match the corresponding characteristics in Bauer and Zanjani (2018). More precisely, the value

function is concave with an optimal capitalization level that economizes on costly external financ-

ing, internal capital costs, and an optimal company size. The firm raises capital if it is severely

underfunded or sheds capital (pays dividends) if it is severely overfunded, but remains inactive

for capitalization levels around the optimal point. The optimal exposure to the short-tailed line is

concave and increasing in the capital level, up to a saturation point where costs associated with

scale do not warrant further expansion.

However, the solution here additionally provides insights on how previous exposure in the long-

tailed line affect the value function and optimal policies. The ridge in Figures 2.4(a) and 2.8(a)

depict the “optimal capital line”, which connects a’s that maximize V under q(1) ∈ [0, 2.0]. To the

left of the line, firm value decreases with capital, reflecting the cost of raising external financing;

to the right of the line, firm value decreases as the capital level increases, reflecting the cost of

carrying internal capital. The optimal capitalization point increases in both the previous exposure

q(1) and the loss realization L(1)
1 . The pattern is also shown in two-dimensional Figures 2.5(a) and

2.9(a).

The optimal capital raising decision is slightly more subtle as seen from Figures 2.4(b) and

2.8(b). While with a higher previous exposure on long-tailed line, the company will keep more

capital and will start raising capital earlier, with lower previous exposure the company will raise

more aggressively for low capital levels. This reflects the increased value with limited loss legacy.

The optimal long-tailed line exposure is depicted in Figures 2.4(c) and 2.8(c). Interestingly,

the optimal exposure is strictly increasing with previous exposure when the capital level is low—

which may be counterintuitive at first sight. As the insurer starts out with low capital, it would

sell more insurance on the long-tailed line, less on short-tailed line and raise external capital. The

reason is that the insurer will be paying 100% of the loss incurred in the short-tailed line, but only

a fraction of the loss incurred in the short-tailed line, while it earns full premium on both lines. As

a result, the long-tailed line offers a relatively attractive source of financing for a firm in need of

funds. In other words, the long-tailed line can serve to gain short-term financing, at lower cost than

raising external capital. This effect is more pronounced for a high previous exposure, since more

short-term financing is needed.
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(a) Value function (b) External capital

(c) Line 1 (long-tailed) exposure (d) Line 2 (short-tailed) exposure

Figure 2.4: Value function, optimal external capital raising and exposure decision under small previous
shock
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(a) Function of a (b) Function of q(1)

Figure 2.5: 2-dimensional representations of value function (small previous shock)

(a) Function of a (b) Function of q(1)

Figure 2.6: 2-dimensional representations of long-tailed line exposure (small previous shock)

(a) Function of a (b) Function of q(1)

Figure 2.7: 2-dimensional representations of short-tailed line exposure (small previous shock)
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(a) Value function (b) External capital

(c) Line 1 (long-tailed) exposure (d) Line 2 (short-tailed) exposure

Figure 2.8: Value function, optimal external capital raising and exposure decision under large previous shock
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(a) Function of a (b) Function of q(1)

Figure 2.9: 2-dimensional representations of value function (large previous shock)

(a) Function of a (b) Function of q(1)

Figure 2.10: 2-dimensional representations of long-tailed line exposure (large previous shock)

(a) Function of a (b) Function of q(1)

Figure 2.11: 2-dimensional representations of short-tailed line exposure (large previous shock)
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When the capital is over optimal capital line, the optimal exposure to the long-tailed line in-

creases first with previous long-tailed line exposure and then decreases. The need for financing

declines and the insurer’s objective is to balance the current long-tailed line exposure and previous

one. Thus, when the previous exposure is too high, the insurer chooses to decrease the current ex-

posure to long-tailed line business. In particular, Figure 2.6(b) shows that while optimal exposure

to line 1 is increasing in previous exposure for low a, the relationship inverts for large capital level

a. Similarly, for high capital levels, optimal exposure to the long-tailed line becomes flat as shown

in Figure 2.6(a).

The optimal exposure to the short-tailed line complements with the optimal exposure to the

short-tailed line as evident from Figures 2.4(d) and 2.8(d). As a company has more exposure

on its long-tailed line in the last period, it will be responsible for a greater amount of indemnity

developed from the last period. As a result, the insurer will keep more capital and reduce exposure

on its short-tailed line business. When the capital is high, the insurer would increase its short-

tailed line exposure as it complements with decreasing long-tailed line exposure, as we observe

at a = 1E09 in Figure pairs 2.6(b) & 2.7(b), and 2.10(b) & 2.11(b). In terms of exposure with

respect to capital, we can see in Figures 2.7(a) and 2.11(a) that the optimal short-tailed exposure

increases with capital but becomes flat when the capital is over optimal capital line, similar to the

findings in Bauer and Zanjani (2018). Most evidently in Figure 2.11(a) when q(1) = 2 and capital

is low, it is optimal for the insurer to almost completely shut down the short-tailed line. On the

other hand, when the capital is high, it is optimal for the insurer to almost completely shut down

the long-tailed line, as seen in Figure 2.10(a).

The value function also provides insight to the term structure of capital costs. According to

the term structure equation in Section 2.2.3, the gradient of value function with respect to capital

V1 forms the term structure of capital costs. Because of the concavity of the value function with

respect to capital as seen in Figures 2.5(a) and 2.9(a), when the company is undercapitalized or its

capital is less than the optimal capitalization level, then V1 > 0 and the company effectively apply

markup to losses in premium pricing. On the other hand, when the company is overcapitalized

or its capital is more than the optimal capitalization level, then V1 < 0 and the company marks

down on losses. Specifically in Figure 2.9(a), we observe that the value function displays greater
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At the beginning of period t At the end of period t At the end of period t+ 1

Financially constrained 0.0254 -0.0170
Well capitalized -0.0303 -0.0196

Table 2.2: Numerical calculation of V1

concavity when q(1) is high, thus larger V1, than when q(1) is low. As a result, the term structure

of capital costs is higher for firms that are financially constrained, lower for firms that are better

capitalized, and even negative for firms that are extremely well capitalized.

The natural next steps would be finding the term structure numerically by calculating V1 for

every development year. However, for our 2L2DY implementation, we can only obtain numerical

calculation of V1 for two periods. A sample calculation is shown in Table 2.2. When the company

begins the period with financial constraint, i.e. with low capitalization and high past exposure,

V1 at the end of the period is positive. For a company that starts with high capital and low past

exposure, V1 at the end of the period is positive. Both V1’s turn closer to zero at the end of period

t + 1. From the sample numerical results, we can see a downward sloping V1 for a financially

constrained company, who puts more adjustment to the expected losses in the current period than

the next period. On the other hand, we can see an upward sloping V1 for the well capitalized

company. Alas, the numerical calculation provides very limited information on the term structure,

which ideally spans for ten years for a P&C company. If we set out to numerically solve for a 10-

year term structure, it requires implementation of full 10×10 loss triangle. As discussed in Section

2.2.2, we will face a model with more than 100 state variables and such model is impossible to

be solved using dynamic programming approach. Instead, in the next section, we propose an

estimation of the term structure of capital costs in an empirical setting. Our empirical findings are

in line with our theoretical results.

2.3 Empirical Study

An insurer relies on premium income, and also capital to support its expected future losses. Capi-

tals are costly to hold, but necessary to obtain whenever the insurance businesses are less profitable

and/or the insurer does not do well financially. In calculating how much premium to charge for
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additional exposure in future losses, a company considers valuation other than simply pricing at

actuarial value of expected future losses. The reason is that companies are risk averse about loss

shocks that may happen in the future. If such shocks occur, they consume capital quickly and will

put the companies at great risk of default and/or out of competition. For most companies, the losses

to be paid out in the near future (e.g. 1-3 years) are of the most concern and companies choose

to price them higher than their actuarial value, while losses to be paid out in the far future (e.g.

4-10 years) are priced closer to their actuarial value. We are interested in how a P&C company

weighs on their valuation of expected future losses at different point of time, and how the valuation

changes among companies with different capitalization levels.

Our theoretical finding, i.e. term structure equation (2.7), shows that the valuation of loss re-

serve in each line of business involves two discount factors. The first one is a yield curve, in our

theory being flat at r. The second is a term structure of future losses, described in our theory by(
1 + V1(a(t),Q(:,t),∆(:,t))

)
from t to t+ dn − 1. Since V1 is ∂V/∂a and does not vary by business

lines, the term structure summarizes the sensitivity of premium (aggregate/by line) to future losses

(aggregate/by line) from development year 1 to dn. Although it makes sense to generalize term

structures of future losses by line, in this essay we remain focus on finding a term structure at com-

pany level for different years. Our goal is to estimate the sensitivity of premium to the expected

future losses and capital in a P&C company in an empirical study.

Now, we start from identifying the variables of interest and back out an equation for estimation.

From our theoretical results (2.7), multiplying exposure q(n,t) to both sides of the equation and

summing up by line, we obtain the following equation:

N∑
n=1

E

[
dn∑
j=1

βjq(n,t)L
(n,t+j−1)
j | ∆(:,t−1)

]
∗ π(n)

︸ ︷︷ ︸
Total Premium

(
1 +

N∑
i=1

π
(i)
2

π(n)
E
[
R(i,t) | ∆(:,t−1)

])

=

N∑
n=1

dn−1∑
s=0

(1− c′(B(t))) · E
[
1{I(,t)≤S(t),...,I∗(,t+s)≤S∗(t+s)}β

s+1q(n,t)L
(n,t+s)
s+1

(
1 + V

(t+s)
1

)
| ∆(:,t−1)

]
︸ ︷︷ ︸

Valuation of Total Loss Reserve

+ βρ(I(,t))
(

1− E
[
1{I(,t)≤S(t)}

(
1 + V

(t)
1

)
(1− c′(B(t))) | ∆(:,t−1)

])
︸ ︷︷ ︸

Capital Costs

(2.9)
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We obtain total premium for all lines plus a fraction on the left-hand-side and valuation of

loss reserve plus capital costs on the right-hand-side. The left-hand side of Equation 2.9 can

be identified using net premium written for all lines in company i in a given year, denoted by

Pi =
∑N

n=1 Pn,i, where Pn,i is the net premium written for line n. The capital costs component

on the right-hand side is identified using capital/surplus of a company multiplied by unit cost of

capital or return-on-capital, which is a parameter to be estimated. We denote surplus for company

i as SURPi and unit cost as c.

Next, we wish to identify both the expected future losses component and term structure com-

ponent V (t+s)
1 . The expected paid loss can be identified/constructed using chain-ladder approach.

Specifically, we use the following relationships introduced in the numerical implementation sec-

tion:

E
[
L

(n,t)
1

]
= p(n,t) · f1

E

[
s∑

m=1

L(n,t+m−1)
m |

s−1∑
m=1

L(n,t+m−1)
m

]
=

s−1∑
m=1

L(n,t+m−1)
m · fm+1, m = 1, 2, . . . , dn − 1,

where fs’s are the chain-ladder factor estimated using loss triangles in the last 10 years. Thus, in

addition to the chain-ladder factors, we need the premium for each line and we use net premium

written Pn,i The interest rate discount factor β, though being flat in our theoretical model, can be

identified using FRED yield curve of a given year, with m-year yield denoted by rm. We denote

expected future loss (adjusted for interest rate discount and without adjustment for term structure

of reserve) for company i as ELi with definition:

ELi =
N∑
n=1

(
(1 + r1)−1Pn,i · f1 +

dn∑
m=2

(1 + rm)−mPn,i · f1 · · · · · fm−1 · (fm − 1)

)
.

We use the following function from Nelson and Siegel (1987) to start identifying the term

structure component.

g(m; β0, β1, β2, τ) =

(
β0 + β1

(
1− e−mτ

m
τ

)
+ β2

(
1− (m+ τ)e−

m
τ

m

))
, m ∈ (0,∞).

Even though more complex modelings of yield curve have developed, the above function pro-
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vides a flexible fit for any yield curve while adds minimum complexity to the overall modeling. β0

describes the long-term value of f (as m goes to infinity). β0 + β1 describes the short-term value

of f (as m goes to zero). β2 gives f function a hump or S shape. τ can be understood as a tuning

parameter that determines how quickly the curve decays from the short-term value to its long-term

value.

To help with our estimation goal, we make three assumptions on the term structure. First,

the term structure is monotonic, i.e. β2 = 0. In this case, a positive β1 results in a decreasing

yield curve and a negative β1 results in an increasing one. Second, the term structure approaches

zero in infinite future, or lim
m→∞

g(m; β0, β1, β2, τ) = β0 = 0. The intuition is that companies

are effectively risk neutral about the losses in infinite future and thus evaluate them at actuarial

value. Also intuitively from our theoretical results, a firms capitalization level would approach

optimality as firm always choose optimal level of exposure and external capital raising in the

infinite future, thus V1 will approach zero when time goes to infinity. Third, β1 depends on how

well the company is capitalized. More precisely, β1 = b0 + b1 · Xi, where Xi is a variable that

assesses the capitalization of a company. Along with our assumptions, we can write down the term

structure function as follows:

gi(m) = (b0 + b1Xi)

(
1− e−mτ

m
τ

)
,

and together with expected paid loss, we have the identification for valuation of total loss reserve:

ELi + b0

N∑
n=1

dn∑
m=1

(1 + r1)−1

(
1− e−

1
τ

1
τ

)
· Pn,i · f1 +

dn∑
m=2

(1 + rm)−m

(
1− e−

m
τ

m
τ

)
· Pn,i · f1 · · · · · fm−1 · (fm − 1)


+b1Xi

N∑
n=1

dn∑
m=1

(1 + r1)−1

(
1− e−

1
τ

1
τ

)
· Pn,i · f1 +

dn∑
m=2

(1 + rm)−m

(
1− e−

m
τ

m
τ

)
· Pn,i · f1 · · · · · fm−1 · (fm − 1)


︸ ︷︷ ︸

V ELi

V ELi means the valuation of loss reserve for company i. Now Equation 2.9 looks like:

Pi − αi = ELi + b0 · V ELi + b1 ·Xi × V ELi + c · SURPi,

where αi correspond to the addition amount over/under total premium on the left-hand side of
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2006 2011 2017

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Pi 454,120 2,448,032 421,235 2,454,344 577,997 3,340,674

ELi 205,130 1,180,483 184,314 1,177,542 250,948 1,532,206

EPi 248,990 1,291,260 236,921 1,301,678 327,049 1,842,551

SURPi 473,793 2,866,170 580,728 4,112,805 758,166 5,790,749

SAi 0.4450 0.1988 0.4638 0.1958 0.4763 0.1890

No. Obs. 895 955 900

Table 2.3: Summary statistics

Equation 2.9. We write αi = α + εi, with E[εi] = 0. We define EPi = Pi − ELi as excess

premium over expected losses. Rearrange the equation above, we propose the following model for

estimation:

EPi = α + b0 · V ELi + b1 ·Xi × V ELi + c · SURPi + εi (2.10)

The estimation of the model takes two steps. We notice that there is a hidden parameter τ .

We follow the empirical approach in Nelson and Siegel (1987) and first find a grid of τ values.

Conditional on τ , the model essentially becomes a linear model and can be estimated using OLS

approach. We analyze the model for each τ on a grid and find the “best” fit with the least residual

standard deviation.

We use data obtained from combined NAIC5 annual statements of P&C insurance companies at

group level in the U.S. and across multiple years. From each company, we can obtain net premium

written and paid loss triangles (Schedule P part 3) for each business line. We have two candidates

for Xi: surplus to asset ratio SAi and logged leverage ratio LRi = log

(
1− SAi
SAi

)
. We obtain

SURPi, SAi and LRi for year 2006, 2011 and 2017. We use 10 years of triangle to compute ELi

and V ELi. For example, we obtain triangles from year 1996–2005 to estimate chain-ladder factors

for expected losses in year 2006.

The estimation results are listed in Table 2.4. We use τ values from 0.1 to 2 with 0.01 incre-

ment and τ ∗ is one that results in the least residual standard error. For both candidates of Xi, the

estimated unit capital cost c is about the same, with about 8% in 2006, 13% in 2011, and 7.5% in
5The National Association of Insurance Commissioners (NAIC) is the U.S. standard-setting and regulatory support organization

created and governed by the chief insurance regulators from the 50 states, the District of Columbia and five U.S. territories.
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Figure 2.12: Term structure of loss reserves for representative company with normal capitalization

Figure 2.13: Term structure of loss reserves for representative company with high capitalization

2017. The estimate for b0 and b1 are all significant. Our estimation is robust to additional regressors

as shown in Table 2.5.

We can use the estimates to back out term structure function gi(m). Figure 2.12 and 2.13

shows the term structure in three years for two different companies. The first company has lower

capitalization level than the second one. In year 2006 and 2017, both companies has downward

sloping term structure, but Company 1 price future expected losses at a much higher level. In year

2011, Company 2 has a upward sloping curve, which is not usually seen and only happens when the

company has a very high level of capitalization. Company 2 price the future losses below actuarial

value and the premium mostly recoup the high capital costs. Again, the empirical findings are in

line with our theoretical results presented in Section 2.2.5.

2.4 Conclusion

In this chapter, we set out to explore how a financial institution evaluates its future cash flows as

a term structure of capital costs in a P&C insurance company setting. We find both theoretical

and empirical implication that a well-capitalized insurer discount its future claim payments into
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2006 2011 2017

Xi = SAi LRi SAi LRi SAi LRi

(Intercept) 32558.96 32382.95 17498.88 17783.77 25307.95 25612.60
(5897.93) (5969.82) (4499.02) (4524.51) (5271.12) (5295.69)

V ELi 5.1050 1.8723 23.1275 5.7211 2.0026 1.1889
(0.1010) (0.0345) (0.3170) (0.1792) (0.0345) (0.0219)

Xi V ELi -5.5629 0.8747 -35.1023 7.9418 -1.5588 0.3395
(0.2373) (0.0399) (0.6866) (0.1566) (0.0850) (0.0192)

SURPi 0.0829 0.0783 0.1297 0.1297 0.0758 0.0753
(0.0045) (0.0045) (0.0065) (0.0065) (0.0026) (0.0026)

τ∗ 0.37 0.52 0.10 0.10 1.69 1.86

R2 0.9753 0.9747 0.9839 0.9837 0.9799 0.9797
Residual std. err. 172871 174963 134988 135766 153920 154662
No. Observation 895 895 955 955 900 900

Table 2.4: Regression results

2006 2011 2017

Original Robustness Original Robustness Original Robustness

(Intercept) 32558.96 -150131.8 17498.88 -114796.80 25307.95 -167300.30
(5897.93) (28491.26) (4499.02) (24427.16) (5271.12) (28274.30)

V ELi 5.1050 4.8677 23.1275 23.2212 2.0026 1.9356
(0.1010) (0.1063) (0.3170 ) (0.3779) (0.0345) (0.0412)

SAi V ELi -5.5629 -4.7650 -35.1023 -34.9597 -1.5588 -1.4460
(0.2373) (0.3019) (0.6866) (1.0240) (0.0850) (0.1321)

SURPi 0.0829 0.0303 0.1297 0.1286 0.0758 0.0804
(0.0045) (0.0151) (0.0065) (0.0142) (0.0026) (0.0074)

log(ASSET ) - 16593.96 - 12172.29 - 17289.7800
(2601.42) (2226.08) (2496.99)

Policyholder Dividend - 3.1151 - 0.1935 - -0.1940
(0.3111) (0.3654) (0.2959)

Investment Income - 0.3120 - -0.1276 - 0.0910
(0.0958) (0.0139) (0.0923)

R2 0.9753 0.9792 0.9839 0.9844 0.9799 0.9809
Residual std. err. 172871 158900 134988 133000 153920 150400
No. Observation 895 895 955 955 900 900

Table 2.5: Regression results with robustness
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premium and has a upward sloping term structure, while other insurers with lower capitalization

level mark up their future claim payments and have a downward sloping term structure.

The model presented in this chapter takes into account the loss structure of a P&C insurance

company, which is a novel feature relative to the previous literature. The general model is very

flexible and can be applied to insurance companies that have both short-tailed and long-tailed

business lines. The implementation of the model with two lines and two development years shows

previous loss exposure and loss realization significantly affect the company’s optimal policies.

We find that long-tailed lines are employed as short-term sources of financing, an insight that

considerably changes the characteristics and optimal policies relative to short-tailed lines.

Various extensions are possible. First, for tractability, we adopt a chain-ladder method with

normal distributions. In the actuarial literature, there are more advanced models for estimating and

forecasting loss triangles that may be considered. Second, we begin with the assumption that all

the assets are invested at a fixed interest rate. Adding securities markets to the general model as

well as other financing options or reinsurance would further bridge the gap between model and

reality.

2.5 Appendix A: Technical Appendix

2.5.1 Proofs of the Lemmas and Propositions

Lemma 2.1 The optimization problem (2.4) can be equivalently represented as a maximization of

the present value of future dividends:

max
ct

E

[∑
t≤t∗
−βt−1B(t) − a(0)

]
,

where t∗ is the time such that a(1) ≥ 0, a(2) ≥ 0, . . . , a(t∗−1) ≥ 0, a(t∗) < 0.

Proof. The capital motion equation (2.1) can be rewritten into:

βta(t) − βt−1a(t−1) − βt−1B(t) = βt
[
(1 + r)p(,t) − I(,t) − (1 + r)(τa(t−1) + c(B(t)))

]
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We can rewrite the objective function in (2.4) as the following:

∞∑
t=1

E
[
1{a(1)≥0,...,a(t)≥0}β

t{(1 + r)p(,t) − I(,t) − βt(1 + r)(τa(t−1) + c(B(t)))}

− 1{a(1)≥0,...,a(t)<0}(1 + r)(a(t−1) +B(t))
]
.

= E

[∑
t<t∗

βta(t) − βt−1a(t−1) − βt−1B(t) − βt∗−1(a(t∗−1) +B(t∗))

]

= E

[∑
t≤t∗
−βt−1B(t) + βt

∗−1a(t∗−1) − a(0) − βt∗−1a(t∗−1)

]
=

∑
t≤t∗

E
[
−βt−1B(t) − a(0)

]

Proposition 2.1 (Bellman Equation). The Bellman equation for problem (2.4) reads:

V (a(t−1),Q(:,t−1),∆(:,t−1))

= max
q(:,t),p(:,t),B(t)

E
[
1{I(,t)≤S(t)}

(
p(,t) − βI(,t) − τa(t−1) − c(B(t)) + βV (a(t),Q(:,t),∆(:,t))

)
− 1{I(,t)>S(t)}(a

(t−1) +B(t)) | ∆(:,t−1)
]
,

subject to (2.1), (2.2), (2.6)

Proof. Since our objective function in (2.4) is bounded from above, following Bertsekas (1995),

the infinite horizon optimization problem (2.4) subject to (2.1) is exactly resulting in the Bellman

equation (1).

Proposition 2.2 (Term Structure Equation). We have the marginal cost of risks presented in the
form of term structure of reserve and capital costs:

E

[
dn∑
j=1

βjL
(n,t+j−1)
j | ∆(:,t−1)

]
∗ π(n)

(
1 +

N∑
i=1

π
(i)
2

π(n)
E
[
R(i,t) | ∆(:,t−1)

])

=

dn∑
s=0

βs+1 E
[
1{I(,t)≤S(t),...,I∗(,t+s)≤S∗(t+s)}L

(n,t+s)
s+1

(
1 + V1(a∗(t+s),Q∗(:,t+s),∆(:,t+s))

)
(1− c′(B(t))) | ∆(:,t−1:t+s−1)

]
+ β

∂ρ(I(,t))

∂q(n,t)

(
N∑
i=1

E
[
R(i,t) | ∆(:,t−1)

]
∗ π(i)

1

∂φ

∂S(t)

)
(2.11)
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Proof. The Bellman equation reads:

V (a(t−1),Q(:,t−1),∆(:,t−1))

= max
q(:,t),p(:,t),B(t)

E
[
1{I(,t)≤S(t)}

(
p(,t) − βI(,t) − τa(t−1) − c(B(t)) + βV (a(t),Q(:,t),∆(:,t))

)
− 1{I(,t)>S(t)}(a

(t−1) +B(t)) | ∆(:,t−1)
]
,

where,

I(,t) =

N∑
n=1

(q(n,t) ∗ L(n,t)
1 + Q(n,t−1) ∗ L(n,t))

S(t) =
(
a(t−1)(1− τ) +B(t) − c(B(t)) + p(,t)

)
(1 + r)

R(n,t) =

dn∑
j=1

βj−1q(n,t)L
(n,t+j−1)
j

subject to:
a(t) = S(t) − I(,t)

p(n,t) = E
[
βR(n,t) | ∆(:,t−1)

]
∗ π(n)(φ, θ), n = 1, 2, . . . , N

The premium function is the product of conditional expected present value of R(n,t), or future

losses of the accident year t, and a markup function π(n). The markup function consists of two

arguments: a risk metric φ and company size. We assume the risk metric is scale invariant, or

φ(wI(,t), wS(t)) = φ(I(,t), S(t)), w > 0. Denote ∂π(n)(x,y)
∂x

= π
(n)
1 and ∂π(n)(x,y)

∂y
= π

(n)
2 .

In addition, we denote the gradients of the value function

V1(a,Q(:),∆(:)) = lim
δ→0

V (a+ δ,Q(:),∆(:))− V (a,Q(:),∆(:))

δ

For s = 1, 2, . . . , dn − 1

V
(n)
2,s (a,Q(:),∆(:)) = lim

δ→0

V (a,Q(1:n−1),

sth element in Q(n)︷ ︸︸ ︷
. . . , q(n) + δ, . . . ,Q(n+1:N),∆(:))− V (a,Q(1:n−1),

sth element in Q(n)︷ ︸︸ ︷
. . . , q(n) , . . .,Q(n+1:N),∆(:))

δ

The Lagrangian writes:

L(t) = E
[
1{I(,t)≤S(t)}

(
p(,t) − βI(,t) − τa(t−1) − c(B(t)) + βV (a(t),Q(:,t),∆(:,t))

)
− 1{I(,t)>S(t)}(a

(t−1) +B(t)) | ∆(:,t−1)
]

−
N∑
i=1

λ(i,t)
(
p(i,t) − E

[
βR(i,t) | ∆(:,t−1)

]
∗ π(i)(φ, θ)

)
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Take first order conditions:

∂L(t)

∂q(n,t)
= E

[
1{I(,t)≤S(t)}

(
−βL(n,t)

1 + β
(
−L(n,t)

1 V1(a(t),Q(:,t),∆(:,t)) + V
(n)
2,1 (a(t),Q(:,t),∆(:,t))

))
| ∆(:,t−1)

]
+ λ(n,t)

(
E

[
dn∑
j=1

βjL
(n,t+j−1)
j | ∆(:,t−1)

]
∗ π(n)

(
φ(I(,t), S(t)),Et−1

[
R(,t) | ∆(:,t−1)

]))

+

N∑
i=1

λ(i,t)E
[
βR(i,t) | ∆(:,t−1)

]
∗

(
π

(i)
1

∂φ

∂q(n,t)
+ π

(i)
2 E

[
dn∑
j=1

βjL
(n,t+j−1)
j | ∆(:,t−1)

])
= 0 (2.12)

∂L(t)

∂p(n,t)
= E

[
1{I(,t)≤S(t)}

(
1 + V1(a(t),Q(:,t),∆(:,t))

)
| ∆(:,t−1)

]
− λ(n,t) +

N∑
i=1

λ(i,t)E
[
βR(i,t) | ∆(:,t−1)

]
∗ π(i)

1

∂φ

∂p(n,t)
= 0 (2.13)

∂L(t)

∂B(t)
= E

[
1{I(,t)≤S(t)}

(
−c′(B(t)) + (1− c′(B(t))) V1(a(t),Q(:,t),∆(:,t))

)
− 1{I(,t)>S(t)} | ∆

(:,t−1)
]

+

N∑
i=1

λ(i,t)E
[
βR(i,t) | ∆(:,t−1)

]
∗ π(i)

1

∂φ

∂B(t)
= 0 (2.14)

The envelope theorem suggests that

V
(n)
2,1 (a(t),Q(:,t),∆(:,t))

= −β E
[
1{I∗(,t+1)≤S∗(t+1)}L

(n,t+1)
2

(
1 + V1(a∗(t+1),Q∗(:,t+1),∆(:,t+1))

)
+ V

(n)
2,2 (S∗(,t+1) − I∗(t+1), q∗(:,t+1), q(:,t), . . . , q(:,t−dn+2)︸ ︷︷ ︸

Q∗(:,t+1)

,∆(:,t+1)) | ∆(:,t)


V

(n)
2,2 (a(t+1),Q(:,t+1),∆(:,t+1))

= −β E
[
1{I∗(,t+2)≤S∗(t+2)}L

(n,t+2)
3

(
1 + V1(a∗(t+2),Q∗(:,t+2),∆(:,t+2))

)
+ V

(n)
2,3 (S∗(,t+2) − I∗(t+2), q∗(:,t+2), q(:,t+1), . . . , q(:,t−dn+3),∆(:,t+2)) | ∆(:,t+1)

]
.

.

.

V
(n)
2,dn−1(a(t+dn−2),Q(:,t+dn−2),∆(:,t+dn−2))

= −β E
[
1{I∗(,t+dn−1)≤S∗(t+dn−1)}L

(n,t+dn−1)
dn

(
1 + V1(a∗(t+dn−1),Q∗(:,t+dn−1),∆(:,t+dn−1))

)
+ V

(n)
2,dn

(S∗(,t+dn−1) − I∗(t+dn−1), q∗(:,t+dn−1), q(:,t+dn−2), . . . , q(:,t),∆(:,t+dn−1))︸ ︷︷ ︸
=0

| ∆(:,t+dn−2)


(2.15)
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In the end, we have

V
(n)
2,1 (a(t),Q(:,t),∆(:,t))

= −β E
[
1{I∗(,t+1)≤S∗(t+1)}L

(n,t+1)
2

(
1 + V1(a∗(t+1),Q∗(:,t+1),∆(:,t+1))

)
| ∆(:,t)

]
−β2 E

[
1{I∗(,t+1)≤S∗(t+1) & I∗(,t+2)≤S∗(t+2)}L

(n,t+2)
3

(
1 + V1(a∗(t+2),Q∗(:,t+2),∆(:,t+2))

)
| ∆(:,t),∆(:,t+1)

]
. . .

−βdn−1 E
[
1{I∗(,t+1)≤S∗(t+1),...,I∗(,t+dn−1)≤S∗(t+dn−1)}L

(n,t+dn−1)
dn

×
(

1 + V1(a∗(t+dn−1),Q∗(:,t+dn−1),∆(:,t+dn−1))
)
| ∆(:,t+dn−2), . . . ,∆(:,t)

]
= −

dn−1∑
s=1

βs E
[
1{I∗(,t+1)≤S∗(t+1),...,I∗(,t+s)≤S∗(t+s)}L

(n,t+s)
s+1

(
1 + V1(a∗(t+s),Q∗(:,t+s),∆(:,t+s))

)
| ∆(:,t:t+s−1)

]
(2.16)

Now, since

∂φ

∂B(t)
=

∂φ

∂S(t)

∂S(t)

∂B(t)
= (1 + r)(1− c′(B(t)))

∂φ

∂S(t)
= (1− c′(B(t)))

∂φ

∂S(t)

∂S(t)

∂p(n,t)
= (1− c′(B(t)))

∂φ

∂p(n,t)

From equations (2.13) and (2.14), we have

λ(n,t) =
1

1− c′(B(t))
, ∀n = 1, 2, . . . , N, t = 1, 2, . . .

and

N∑
i=1

1

1− c′(B(t))
E
[
R(i,t) | ∆(:,t−1)

]
∗ π(i)

1

∂φ

∂S(t)
=

1

1− c′(B(t))
− E

[
1{I(,t)≤S(t)}(1 + V1(a(t),Q(:,t),∆(:,t))) | ∆(:,t−1)

]
(2.17)

The scale invariance property of φ yields the following (cf. Bauer and Zanjani, 2018):

0 =
∂

∂w
φ(wI(,t), wS(t)) = S(t) ∂

∂S(t)
φ(wI(,t), wS(t)) + I(,t) ∂

∂I(,t)
φ(wI(,t), wS(t))

⇒ S(t) =

N∑
i=1

dn−1∑
j=0

q(i,t−j)
∂

∂q(i,t−j)
φ(I(,t), S(t))

− ∂

∂S(t) φ(I(,t), S(t))
(2.18)

Define ρ as the risk measure associated with the risk metric φ, with adding-up property:

N∑
i=1

dn−1∑
j=0

q(i,t−j) ∂ρ(I(,t))

∂q(i,t−j) =

N∑
i=1

dn−1∑
j=0

q(i,t−j)
∂

∂q(i,t−j)
φ(I(,t), S(t))

− ∂

∂S(t) φ(I(,t), S(t))
= S(t)
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Hence for every i, j and t, we have:

∂φ

∂q(i,t−j) = − ∂φ

∂S(t)
∗ ∂ρ(I(,t))

∂q(i,t−j) (2.19)

With equations (2.16), (2.17) and (2.19), (2.12) becomes:

∂L(t)

∂q(n,t)
= −β E

[
1{I(,t)≤S(t)}

(
L

(n,t)
1 (1 + V1(a(t),Q(:,t),∆(:,t)))

)
| ∆(:,t−1)

]
−

dn−1∑
s=1

βs+1 E
[
1{I(,t)≤S(t),...,I∗(,t+s)≤S∗(t+s)}L

(n,t+s)
s+1

(
1 + V1(a∗(t+s),Q∗(:,t+s),∆(:,t+s))

)
| ∆(:,t−1)

]

+
1

(1− c′(B(t)))
E

[
dn∑
j=1

βjL
(n,t+j−1)
j | ∆(:,t−1)

]
∗

(
π(n) +

N∑
i=1

π
(i)
2 E

[
R(i,t) | ∆(:,t−1)

])

− β ∂ρ(I(,t))

∂q(n,t)

(
N∑
i=1

1

1− c′(B(t))
E
[
R(i,t) | ∆(:,t−1)

]
∗ π(i)

1

∂φ

∂S(t)

)
= 0

Rearrange and obtain the term structure equation (2.7).

2.5.2 2L2DY Loss Distribution Assumptions

In loss triangle depicted by Figure 2.3, L(n)
1 are losses paid in the previous accident year t−1. L(1)

1 is

a realization included in the Markov structure, and therefore is a state variable in the optimal control

problem, Line 2 has no development year, so L(2)
1 is irrelevant in the optimal control problem.

L
′(1)
1 , L

′(2)
1 , and L(1)

2 are the losses to be paid in the current period t, with L
′(1)
1 and L

′(2)
1 being paid

losses for accident year t and L(1)
2 being the second development year paid loss for the previous

accident year t − 1 of line 1. Therefore, L
′(1)
1 , L

′(2)
1 , and L(1)

2 are the stochastic disturbances and

have distributions subject to probability measures p(dL
′(1)
1 |L

(1)
1 ), p(dL

′(2)
1 |L

(2)
1 ) and p(dL(1)

2 |L
(1)
1 ).

Meanwhile, L
′(1)
2 is the paid loss in the next period t + 1, developed from L

′(1)
1 and therefore

related to the current period’s premium in Line 1, L
′(1)
2 is also the stochastic disturbance subject to

probability measures p(dL
′(1)
2 |L

′(1)
1 ). We make the following assumptions for the properties of the

probability measures:

Following Chain-Ladder, we assume:

E(L
(1)
2 |L

(1)
1 ) = (f − 1)L

(1)
1 , E(L

′(1)
2 |L

′(1)
1 ) = (f − 1)L

′(1)
1 ,

V(L
(1)
2 |L

(1)
1 ) = σ2L

(1)
1 , V(L

′(1)
2 |L

′(1)
1 ) = σ2L

′(1)
1 .
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We assume conditional normality:

L
′(n)
1 |L

(n)
1 = L

′(n)
1 ∼ N (µ

(n)
1 , (σ

(n)
1 )2) n = 1, 2,

L
(1)
2 |L

(1)
1 ∼ N ((f − 1)L

(1)
1 , σ2L

(1)
1 ),

L
′(1)
2 |L

′(1)
1 ∼ N ((f − 1)L

′(1)
1 , σ2L

′(1)
1 ).

We assume a linear correlation between lines:

corr(L
(1)
1 , L

(2)
1 ) = corr(L

′(1)
1 , L

′(2)
1 ) = ρ.

The chain-ladder property follows Mack (1993), whose model assumes M (n)
t,j−1 = C

(n)
t,j−1. That

is, the cumulative paid loss in each accident year is a Markov chain, with the ultimate development

year being the time horizon of the chain. f and σ2 are respectively the chain-ladder factor and its

variance factor.

As is conventional in this context, the indemnity is assumed to be proportional to the current-

period exposures q′(n) and last-period exposures q(n). Hence, the indemnity random variable is

specified as I = q
′(1)L

′(1)
1 + q

′(2)L
′(2)
1 + q(1)L

(1)
2 . This linearity assumption entails that the marginal

claim distribution is fixed, so that the loss distribution is homogeneous. In addition to linearity

of indemnity, the conditional normality assumption ensures that I is also normal, with conditional

mean and variance:

µI = E(I|L(1)
1 ) = q

′(1)µ
(1)
1 + q

′(2)µ
(2)
1 + (f − 1)q(1)L

(1)
1 ,

σ2
I = V(I|L(1)

1 ) = (q
′(1))2(σ

(1)
1 )2 + (q

′(2))2(σ
(2)
1 )2 + (q(1))2σ2L

(1)
1 + 2q

′(1)q
′(2)ρσ

(1)
1 σ

(2)
1 .

Again, this is in line with typical assumptions, and generalizations are possible.

2.5.3 Numerical Solution of 2L2DY Model

To solve the Bellman equation, we rely on numerical methods. By our premium function assump-

tion, q′(1) , q′(2), and B endogenously determine the sum of premiums P , and therefore these are

the only choice variables. Note that the expectations of Equation (2.8) entail functions of L
′(1)
1
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and I , which renders the problem two-dimensional. To solve it, we use the numerical integration

method from Tanskanen and Lukkarinen (2003).

First, let X = L
′(1)
1 and Y = I|L(1)

1 . Note that X and Y , both univariate normal, can be

represented as a bivariate normal distribution:

(
X

Y

)
∼ N

( µ
(1)
1

µI

)
,

 (σ
(1)
1 )2 ρx,y σ

(1)
1 σI

ρx,y σ
(1)
1 σI σ2

I

 ,

where ρx,y =
q
′(1)σ

(1)
1 +q

′(2)ρσ
(2)
1

σI
. Hence, the conditional distribution of Y given X is also univariate

normal with mean and variance

µy|x = µI + ρx,yσI
x− µ(1)

1

σ
(1)
1

,

σ2
y|x = σ2

I (1− ρ2
x,y), (2.20)

respectively.

Let f(x, y) be the density of the bivariate normal ofX and Y , f(y|x) be the conditional density

of Y given X , and f(x) be the marginal density of X . Because of the nature of the value function

is unknown, we need to use the value iteration method to solve the Bellman equation (2.8) on a

discretized state-space. For 2L2DY model, there are three state variables: capital a, last-period

exposures on long-tailed line 1 q(1), and last-period loss realizations on long-tailed line 1 L(1)
1 .

Here are the steps of solving the Bellman equation using value iteration.

(1) Pick grids for a = (a1, a2, . . . , as), q(1) = (q1, q2, . . . , qn), and L(1)
1 = (x1, x2, . . . , xp). Set

V0 = v0(a, q(1), L
(1)
1 ), where v0 is an arbitrary function.

(2) Solve the optimization problem on the right hand side of the Bellman equation and get

optimized state variables c∗ and yield policy function c = u1((a, q(1), L
(1)
1 ); c∗). Then obtain the

next value function V1((a, q(1), L
(1)
1 );u1)...until Vj converges.
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We can obtain a simplified Bellman equation for implementation:

βE
{

1{I≤S}S − I
}

=

∫ S

−∞
β(S − y)f(y) dy

= βSΦI(S)− β
∫ S

−∞
y

1√
2πσI

e
− (y−µI )2

2σ2
I dy

= β ((S − µI) ΦI(S) + σI φI(S))

And

E
{

1{I≤S}V (a′, L
′(1)
1 )

}
=

∫ ∞
−∞

∫ S

−∞
V (a′, q

′(1), x)f(x, y) dy dx

=

∫ ∞
−∞

(∫ S

−∞
V (a′, q

′(1), x)f(y|x) dy

)
f(x) dx,

(2.21)

where Φ and φ, respectively, are the CDF and PDF of a standard normal distribution.

To solve the inner integral on a grid, we apply the Tanskanen and Lukkarinen (2003) method.

First, we interpolate on a. We pick (l+1)-point grids for I ≥ 0, say (y0, y1, . . . , yl), with 0 = y0 <

y1 < · · · < yl = S, let ϕi = V (a′(yi), q
′(1), L

′(1)
1 ).

For a′(yi) ∈ (ak, ak+1), we approximately have by linear interpolation:

ϕi =
ak+1 − a′(yi)
ak+1 − ak

V (ak, q
′(1), L

′(1)
1 ) +

a′(yi)− ak
ak+1 − ak

V (ak+1, q
′(1), L

′(1)
1 )

If a′(yi) > al, we can extrapolate:

ϕi =
a′(yi)− al−1

al − al−1

V (al, q
′(1), L

′(1)
1 ) +

a′(yi)− al
al − al−1

V (al−1, q
′(1), L

′(1)
1 )

The linear interpolation w.r.t. Y is

V (a′, q
′(1), L

′(1)
1 ) =

l−1∑
k=0

(
ϕk +

y − yk
yk+1 − yk

(
ϕk+1 − ϕk

))
1[yk,yk+1)(y)
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We then break down the integral into sums:

∫ S

−∞
V (a′, q

′(1), x)f(y|x) dy

=
l−1∑
k=0

[(
ϕk −

yk(ϕk+1 − ϕk)
yk+1 − yk

)∫ yk+1

yk

f(y|x)dy +

(
ϕk+1 − ϕk
yk+1 − yk

)∫ yk+1

yk

yf(y|x)dy

]

=
l−1∑
k=0

{(
ϕk −

yk(ϕk+1 − ϕk)
yk+1 − yk

)[
Φ

(
yk+1 − µy|x

σy|x

)
− Φ

(
yk − µy|x
σy|x

)]

+

(
ϕk+1 − ϕk
yk+1 − yk

)[
µy|x

(
Φ

(
yk+1 − µy|x

σy|x

)
− Φ

(
yk − µy|x
σy|x

))

−σy|x
(
φ

(
yk+1 − µy|x

σy|x

)
− φ

(
yk − µy|x
σy|x

))]}
= h(x) (2.22)

Therefore the right-hand side of our Bellman equation can be written as

β

(
(S − µI) Φ

(
S − µI
σI

)
+ σI φ

(
S − µI
σI

))
+

∫ ∞
−∞

βh(x)f(x)dx− a−B, (**)

which can be solved using a discretized grid of L
′(1)
1 .

For our interpolation, we choose am+1-point equally spaced grid on [µ
(1)
1 −5σ

(1)
1 , µ

(1)
1 +5σ

(1)
1 ],

say (x0, x1, . . . , xm). In our case the grid size is 26. Use the trapezoidal rule to break the integral

down into sums, say F (x) = β(g(x) + h(x))f(x), then the integral becomes:

∫ ∞
−∞

F (x) dx =
xm − x0

2m
(F (x0) + 2F (x1) + · · ·+ 2F (xm−1) + F (xm))

Hence we successfully convert double integrals into sums and therefore significantly reduce the

computation time without compromising the accuracy. The value iteration is implemented and run

in Julia. The optimization is executed using Julia’s NLopt package. The value function is defined

on a 21 x 21 x 3 discretized grid (with 21 grid points on a and q′(1)). We ran the program for 80

iterations and the value function converges for both value function and choice variables.

The total runtime was about 100,000s, on a Intel I7 dual-core CPU. In this specific numerical

task, Julia is six times faster than the popular high-level language such as R and MatLab. In
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particular, Julia is much faster with loops, which is heavily found in the iterations and numerical

integrals. According to Julia language developers, Julia is a high-performance language suitable

for dynamic programming and its syntax is easily adapted from R or Matlab. Julia’s high efficiency

helps shorten the runtime from one week that would have taken on R, to just under one day.

Compared to previous models without considering DY, which only has one state variable cap-

ital, the 2L2DY model suffers from “the curse of dimensionality”. As the general nLjDY model

has hundreds, million, or even trillion times more states, each iteration of value function would

take proportional more time to complete, resulting the value iteration to finish in months or even

years. Solving this high-dimensional problem seems infeasible even five years ago, but thanks to

the power of modern day computing, it is feasible under proper assumptions. We start with solving

2L2DY, which has the least dimension in the general nLjDY model. In the future, we will continue

to refine the algorithm and implement parallel computing to further shorten the running time.

2.6 Appendix B: Additional Figures

(a) Function of a (b) Function of q(1)

Figure 2.14: 2-dimensional representations of external capital raising (small previous shock)
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(a) Function of a (b) Function of q(1)

Figure 2.15: 2-dimensional representations of external capital raising (large previous shock)

Figure 2.16: Convergence of value function and choice variables
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Chapter 3

Different Shades of Risk: Mortality Trends

Implied by Term Insurance Prices1

3.1 Introduction

Term life insurance policies are typically considered to be fairly homogeneous products. Aside

from conversion options and financial strength ratings—the relevance of which is mitigated to some

extent by guaranty funds protection—the ensuing cash flows are typically relative congenerous

across issuers. The key risk factors are investment/interest and mortality risks, where in view

of the former investment opportunities and strategies again do not vary much across companies.

Thus, given competitive forces in this large and undifferentiated market, it seems proximate to

infer forward-looking, market-based estimates of future mortality dynamics from insurance prices

(Mullin and Philipson, 1997).

Building on this logic, we estimate the stochastic mortality model from Bauer and Kramer

(2016) with a set of US (term) life insurance prices using a generalized method of moments (GMM)

approach, where we allow for selection/underwriting effects, surrenders, pertinent expenses, etc.
1This essay is co-authored with Daniel Bauer and is forthcoming at the North American Actuarial Journal. A previous version

was presented at the Twelfth International Longevity Risk and Capital Markets Solutions Conference (Longevity 12) under the title
“Mortality Trends Implied by Term Insurance Prices”, and parts are taken from the earlier working paper “The Risk in Catastrophe
Mortality Securitization Transactions” by the second author. We are grateful for helpful comments from an anonymous referee,
Jin-Chuan Duan, Yue Kuen Kwok, Johnny Li, and other participants of the Insurance Risk and Finance Research Centre (IRFRC)
2017 Annual Conference, the Longevity 12 conference, Perspectives on Actuarial Risks in Talks of Young Researchers, and for
financial support under the Society of Actuaries CAE grant “New Trends in Longevity”.
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The model includes a catastrophe component to pick up mortality shocks associated with pan-

demics or natural disasters, a fairly flexible mortality trend component, and a diffusion term to

capture stochastic variations in the mortality trend. Our results are striking: Neither the catas-

trophe component nor the diffusion term is significant, and a model comparison favors a simple

deterministic mortality model. In contrast, allowing for heterogeneity among the carriers is of ut-

most importance: A model that does not incorporate differences in mortality trends between the

different companies is strongly rejected. The company effects are large in magnitude and point

towards three possible sub-markets.

Our interpretation is that for pricing and managing term life insurance products—potentially

in contrast to annuity and pension products (cf. Sec. 3.3.4)—the key risks emanate from the com-

position of the pool of policyholders, rather than the uncertainty in aggregate mortality trends.

Differences in underwriting criteria, primary distribution channels and distribution area, and other

factors jointly determine the composition of the insurer’s portfolio of policies in each rating class.

The relevant mortality rates for a given company will be based on the demographic evolution of this

subgroup, and their behavior with regards to lapsing their contracts. Given heterogeneity in mortal-

ity trends for different population subgroups and different causes of death, the cross-sectional risk

dimension dwarfs uncertainties in the aggregate trend. In other words, basis risk, i.e. the deviation

of the experience in the particular pool relative to the aggregate population, seems to dominate sys-

tematic mortality risk, i.e. uncertainties in the aggregate trend component. And, indeed, an active

management of the composition of the pool, by accepting certain risks and rejecting others, may

be a way to compete in the marketplace.

Our findings have consequences for mortality risk management and for the corresponding ac-

tuarial literature. On the one side, they do not support assertions that aggregate mortality risks are

important for life insurance products. For instance, papers presenting “natural hedging” between

life insurance and annuity lines as an internal way to manage a company’s mortality exposure

implicitly assume that the corresponding populations of policyholders are subject to the same vari-

ations. Thus, our results cast doubt on the effectiveness of such strategies, pointing to the necessity

of market-based solutions for managing longevity. On the other side, our conclusion that mortality

trends for different partitions of the population and different conditions determine the mortality
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profile of the relevant portfolio of policyholders, and that it may be possible to actively manage

this profile, emphasizes the importance of studying mortality at a more granular level.

Related Literature and Organization of the Essay

A closely related paper to ours is Mullin and Philipson (1997), who argue that under the assump-

tion that insurance companies are close to risk-neutral with respect to their mortality exposure,

it is possible to derive market-based estimates from zero expected profit (moment) conditions.

In contrast to Mullin and Philipson, however, we include additional institutional factors affecting

life insurance prices such as expenses, selection/underwriting effects, and policy surrenders/lapses.

Furthermore, we consider variations in mortality in the time and the cross-sectional (across compa-

nies) direction. The latter aspect, in particular, allows us to draw our primary conclusions. Several

papers in the actuarial literature also rely on prices of insurance products to obtain parameters in

mortality models. In particular, Lin and Cox (2005) and Bauer et al. (2010) use annuity quotes to

estimate risk premiums for longevity risk.

In the estimation process, we use the stochastic mortality model from Bauer and Kramer (2016).

As discussed in their paper, the model is flexible enough to fit a relatively long time series of US

mortality data, it includes a mortality catastrophe component, and it is tractable. The latter property

originates from it falling in the class of affine mortality models (Biffis, 2005; Dahl and Møller,

2006). In particular, this allows for an efficient computation of survival probabilities and, thus,

basic life insurance prices, which is essential for our estimation approach.

Our results relate to recent results in the economic and medical literature on the heterogeneity

of mortality trends across different subpopulations that show that there are large disparities in life

expectancy between different racial, regional, and socio-economic groups (Case and Deaton, 2015;

Chetty et al., 2016). Furthermore, they relate and endorse analyses of cause-specific mortality rates,

and how these in aggregate affect the mortality of a certain population (Boumezoued et al., 2017;

Arnold and Sherris, 2016, and references therein). An insurer’s underwriting process, together

with its regional presence, its advertising strategy, etc., determines the composition of the portfolio

of policyholders, and it is the mortality dynamics of that group that are relevant for the insurer’s

future cash flows.
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As indicated, our findings are relevant for so-called “natural hedging” approaches to managing

longevity risk by trading off annuity and life insurance exposures (Cox and Lin, 2007; Li and

Haberman, 2015, and references therein). In particular, our results suggest that beyond difficulties

with natural hedging within the same population (Zhu and Bauer, 2014), basis risk may inhibit the

effectiveness of such strategies.

The remainder of the chapter is structured as follows: Section 3.2 introduces the affine mor-

tality model from Bauer and Kramer (2016) with some extensions to suit our setting. Section 3.3

introduces our GMM estimation method, presents results, their implications, and a discussion on

their robustness. Finally, Section 3.4 concludes.

3.2 Model

In what follows, we introduce the mortality model from Bauer and Kramer (2016), which we rely

on in the remainder of the text. As discussed in their paper, the model consists of three parts:

1) a catastrophe component, 2) an age-dependent affine mortality component, and 3) a temporary

component. In contrast to their analysis, we use the third part to include selection/underwriting

effects, rather than a temporary deterministic trend. Furthermore, we subsequently augment the

model by company, risk class, and calendar year effects that account for heterogeneity in mortality

trends.

As in Bauer and Kramer (2016), we introduce the stochastic force of mortality by relying on

conventional concepts from credit risk modeling (Lando, 1998). More precisely, given a stochastic

process X = (Xt)0≤t≤T and a positive, continuous function µ(·, ·), we define an individual’s time

of death as the first jump time of a Cox-process with intensity µ(x0 + t,Xt):

τx0 = inf

{
t :

∫ t

0

µ(x0 + s,Xs) ds ≥ E

}
, (3.1)

where E is a Exp(1)-distributed random variable and independent among individuals.

Considering only one single insured for now, let the filtrations G = (Gt)0≤t≤T ∗ and

H = (Ht)0≤t≤T ∗ be given as the augmentations of the filtrations generated by (Xt)0≤t≤T ∗ and
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(
1{τx0≤t}

)
0≤t≤T ∗ , respectively, and set Ft = Gt ∨Ht. From Equation (3.1), we can then derive the

(T − t)-year survival probability at time t for an xt = x0 + t year old individual as

T−tpxt(t) := E
[

1{τx0>T}
∣∣Gt, τx0 > t

]
= E

[
exp

{
−
∫ T

t

µ (x0 + s,Xs) ds

}∣∣∣∣Gt, τx0 > t

]
,

(3.2)

and, from results of Lando (1998),

E
[

1{τx0>T}
∣∣Ft] = 1{τx0>t} T−tpx0+t(t)

Following Bauer and Kramer (2016), we use the following model for the baseline stochastic

force of mortality:

µt(x0) = µ(x0 + t, Yt,Γt) = eb (x0+t) Yt + Γt +Dt(x0), Y0 > 0, Γ0 ≥ 0. (3.3)

The catastrophe component follows the dynamics:

dΓt = −κΓt dt+ dJt, Γ0 ≥ 0,

where (Jt) is a compound Poisson process with intensity λ and Exp(ζ)-distributed jumps. And the

baseline component follows the dynamics:

dYt = α

((
Y0 − β(2)

)︸ ︷︷ ︸
β(3)

e−β
(1) t + β(2) − Yt

)
dt+ σ

√
Yt dWt, Y0 > 0,

where (Wt)0≤t≤T ∗ is a one-dimensional Brownian motion and α, β(1), β(2), and σ are positive

constants with α 6= β(1). Here β(2) +β(3) describes the trend level at time 0. We refer to their paper

for the motivation of the model in the context of demographic research.

We use the temporary component Dt(x0) to introduce selection effects acting to temporary

reduce mortality. Here the selection effect does not refer to the potential impact of adverse selection

on life insurance prices but the impact of underwriting during the early policy years.2 In particular,
2In insurance practice, actuaries rely on so-called “select-and-ultimate” tables to account for this type of selection, where the

“select” tables used in early policy years display lower mortality due to underwriting examinations.
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this is important for the evaluation of life insurance prices as here mandatory health examinations

lead to significant selection effects. Within our model, this can be captured via the temporary

component D by a roughly proportional structure akin to a proportional hazards model:

Dt(x0) = c−
(
c+ eb(x0+t) τ

)
× γ

T̄
× (T̄ − t)+.

Note that the component is still deterministic and it is only roughly proportional since we use

an approximation of the relevant force of mortality based on the initial values. Moreover, this

specification ofD only relies on the four additional parameters (c, τ , γ, T̄ ) minding the complexity

of the estimation process. We obtain:

D̄t,T (x0) =

∫ T

t

Ds(x0) ds

= c (T − t)− cγ

T̄

[(
(T̄ − t)+

)2 −
(
(T̄ − T )+

)2
]

−τ γ
T̄ b

[
(T̄ − T )+ exp

{
b(x0 + min{T, T̄ )}

}
− (T̄ − t)+ exp

{
b(x0 + min{t, T̄ )}

}]
− τ γ
T̄ b2

[
exp

{
b(x0 + min{T, T̄})

}
− exp

{
b(x0 + min{t, T̄})

}]
.

The (exponential-)affine structure enables us to write down an analytical representation of the

survival function (cf. Prop. 1 in Duffie et al. (2000)):

T−tpx0+t(t) = exp

{
u(T − t) + v(T − t)Yt −

Γt
κ

(
1− e−κ(T−t))− λ(T − t)

ζκ+ 1

}
× exp

{
λζ

ζκ+ 1
log

[
1 +

1

ζκ

(
1− e−κ(T−t))]− D̄t,T (x0)

}
, (3.4)

where u and v satisfy the following Riccati ODEs:

v′(s) = −eb(x0+T−s) − α v(s) +
1

2
σ2 v2(s), v(0) = 0,

u′(s) = v(s)α
(
e−β

(1) (T−s) Y0 + (1− e−β(1) (T−s)) β(2)
)
, u(0) = 0. (3.5)

Here, µt(x0) and T−tpx0+t(t) represent the baseline force of mortality and survival function, re-

spectively.
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We introduce heterogeneity in mortality trends by assuming that the aggregate force of mor-

tality in each company’s portfolio is proportional to the baseline. Thus, the force of mortality for

company i can be written as:

µit(x0) = µt(x0)(1 + Eco
i ),

∑
i

Eco
i = 0, i = 1, 2, ..., I,

where Eco
i is the company effect. We further add a risk class effect Erc

j and a calendar year effect

Eyear
h to the model to account for variation within a company and across different calendar years:

µ
(i,j,h)
t (x0) = µt(x0)(1 + Eco

i + Erc
j + Eyear

h ),∑
i

Eco
i =

∑
j

Erc
j =

∑
h

Eyear
h = 0, Eco

i + Erc
j + Eyear

h > −1 ∀i, j, h

with risk class j ranging from 1 (highest mortality risk, e.g. regular class) to J (lowest mortality

risk, e.g. preferred plus class) and year h spanning all calendar years of insurance prices. The three

effect components do not relate to the industry baseline force of mortality.

Therefore, the survival probabilities for company i, risk class j in calendar year h take the form:

T−tp
(i,j,h)
x0+t (t) = T−tpx0+t(t)

(1+Ecoi +Ercj +Eyearh ).

Given risk class, calendar year, and company effect parameters, it remains to calculate the survival

probabilities (3.4) and actuarial present values by simply solving the ODEs from Equation (3.5).

The full analytical representation of the survival probabilities facilitates the estimation process.

3.3 Estimation with Insurance Price Data

3.3.1 Insurance Price GMM Estimator

We are given annual term insurance premiums P (i,j,h)
x,n for age x, term n, risk class j ∈ 1, 2, ..., J ,

calendar year h ∈ 1, 2, ..., H, and a fixed benefit B payable upon death at the end of the year from

I companies, i.e. i ∈ {1, 2, . . . , I}, which we take to be i.i.d. Denote by C the collection of all

available age-term combinations (x, n) and we have Nx,n such combinations. As is common in
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actuarial modeling and in contrast to Mullin and Philipson (1997), we consider various types of

expenses to be reflected in our insurance price data. In particular, we include initial expenses both

as a percentage of the first premium c
(1)
IP and as a fixed amount depending on the death benefit c(2)

IP ,

as well as a fixed maintenance expense cM (Society of Actuaries, 2004).

We assume policyholders surrender at a fixed proportion q(l)
u in policy year u, u ≥ 1, immedi-

ately before premiums become due. Thus, policies remain in force for k years with a probability

of:

kp
(τ)(i,j,h)
x0

(0) = kp
(i,j,h)
x0

(0)
∏

1≤u≤k

(1− q(l)
u )︸ ︷︷ ︸

kp
(l)
x0

, k ≥ 1.

Upon surrendering at time k, policyholders may be entitled to so-called cash surrender values

(CSVs) kC
(i,j,h)
x,n , which are to be calculated according to the National Association of Insurance

Commissioners’ (NAIC) Standard Nonforfeiture Law for Life Insurance. This regulation essen-

tially entails the calculation of guaranteed reserve levels according to given interest rates, a given

mortality table, and given expense levels. For simplicity, we assume the cost parameters and sur-

render probabilities are the same across all companies.3

We start by writing down an insurance company’s loss function, or the negative profit function:

f(θ, P
(i,j,h)
x,n ) =∑n−1

k=0 p(0, k + 1)
[
kp

(l)
x

(
kp

(i,j,h)
x (0)− k+1p

(i,j,h)
x (0)

)
B + kp

(τ)(i,j,h)
x (0) p

(i,j,h)
x+k (0) q

(l)
k+1 k+1C

(i,j,h)
x,n

]
+c

(2)
IP + cM

∑n−1
k=0 p(0, k) kp

(τ)(i,j,h)
x (0)− P (i,j,h)

x,n

(∑n−1
k=0 p(0, k) kp

(τ)(i,j,h)
x (0)− c(1)IP

)
,

(3.6)

where p(t, τ) denotes the time t price of a zero coupon bond with maturity t + τ . Of course,

equation (3.6) depends on the (risk-neutral) parameters of the mortality model as well as on the

parameters governing expenses, selection, and surrenders, which we stack in the parameter vector

θ. The key assumption is now that the so-called equivalence principle holds, i.e. that the expected

present value of future benefits (including expenses) equals the expected present value of future

premiums for all of the company’s policies for one mortality profile, that is, for one risk class in

one calendar year. Thus, the equivalence principle must hold for each i, j, and h combination.
3This assumption, again, is motivated by competitive pressures in the market. Large differences in costs should be competed

away unless they are linked to aspects relating to underlying heterogeneity.
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That is to say, for each company and each risk class in one calendar year, the expected profit (loss)

from selling insurance contracts is zero. Therefore, we can write down our moment conditions for

the GMM estimation as follows:

Ex,n
[
f(θ, P (i,j,h)

x,n )
]

= 0, (x, n) ∈ C.

The efficient GMM estimator can be obtained using the so-called “two-step feasible GMM”

method, which yields efficient and consistent estimators. First, choose a weighting matrix W ,

where W is an I × J ×H dimensional square matrix. W can be any such matrix in the first step.

We choose W such that

W−1 = diag
{
σ2
i,j,h, (i, j, h)

}
,

where σ2
i,j,h = Varx,n

[
P

(i,j,h)
x,n

]
with corresponding sample version σ̂2

i,j,h. We obtain a GMM esti-

mate θ̂1 by minimizing the following function of θ:

θ̂1 = arg min
θ

[
1

Nx,n

Nx,n∑
x,n

f(θ, P (i,j,h)
x,n )

]′
(i,j,h)

W

[
1

Nx,n

Nx,n∑
x,n

f(θ, P (i,j,h)
x,n )

]
(i,j,h)

. (3.7)

Then, we update the weighting matrix using θ̂1:

Ŵ (θ̂1)−1 = diag

{
1

Nx,n

Nx,n∑
j=1

(
f(θ̂1, P

(i,j,h)
x,n )

)2

, (i, j, h)

}
(3.8)

and minimize function (3.7) using W = Ŵ (θ̂1) to obtain our estimate θ̂. We carry out both

minimizations numerically.

3.3.2 Data and Estimation

We use quotes for annual life insurance premiums from the CompuLife price quotation system

(historical data) for April 2012, 2013, 2014, and 2015. More precisely, we focus on contracts with

a face amount of $500,000 for male non-smokers under two underwriting categories: regular (Rg,

residual standard), and preferred plus (Pf+, super preferred). From 31 companies, we retrieved
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data for 33 age-term combinations, with terms of 10, 15, 20, and 30 years, and ages from 25 to

75, where for numerical convenience we use ages in five year intervals only. We only allow for a

single quote per company per age/term-combination. Since the records include several instances of

multiple quotes from the same company for different states—though prices usually coincide—we

average over these quotes. All in all, we rely on 7,688 different quotes in our estimation process.

Figures 3.1(a) and 3.1(b) plot the quotes by term in April 2012, for age 25 and 40, respectively.

For each risk class, the variance of insurance prices for each term is about the same and the co-

efficient of variation decreases as the term increases. This goes against the intuition of stochastic

mortality because it would imply an increasing variation in mortality (and likely insurance prices)

as the term increases. Similar characteristics of the variance of the insurance prices are observed

in the other calendar years and ages.

(a) Term life insurance quotes for age 25 in April 2012 (b) Term life insurance quotes for age 40 in April 2012

Figure 3.1: Illustration of the insurance price data

In addition to the parameters of the mortality model, the GMM estimator depends on various

business-related parameters. The CSVs kC
(i,j,h)
x,n , k ≥ 0, are calculated according to the NAIC

Standard Nonforfeiture Law for Life Insurance. The interest rates derive from Moody’s Corporate

Bond Yield Averages Index (we refer to Towers Watson (2015) for details and an illustration of the

relevant rates), and the relevant mortality rates are taken from the Commissioners Standard Ordi-

nary (CSO) 2017 mortality table (mandatory in 48 U.S. states and optional in all 50; see American

Academy of Actuaries (2008)). We do not include expense, surrender and other business-related

parameters in the minimization, but rather fix them according to Table 3.1, whose column 2 and 3
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list their values and the source, respectively.4

Parameter Value Source

c
(1)
IP 60% Avg. values from the 2005
c

(2)
IP $882.5 “Generally Recognized Expense Table”
cM $45 (see e.g. Society of Actuaries (2004))

T̄ 18 years Avg. value from Society of Actuaries (2007)
γ 60% Value matched to CSO 2017 mort. table

qi 15%, i ≤ 3, Roughly matches pattern (non-renewable)
5%, i > 3 according to Purushotham (2006)

Table 3.1: Parameters relevant to the insurance contracts.

For the numerical optimization in (3.7), we rely on the Julia language and apply the COBYLA

(constrained optimization by linear approximation) algorithm, suitable for a minimization task with

a large number of equality and inequality constraints of the parameters. For the numerical solution

of the ordinary differential equations arising in each time step, we rely on an implementation of

the Runge-Kutta method with a variable time step as available within Julia (ode45).

We estimate five versions of the model. The first model version (Full model) includes catas-

trophe component parameters (κ, λ and ζ). In the second version (w/o CAT), we exclude the

catastrophe component. In the third model (w/o Sigma), we assume that the stochastic diffusion

parameter σ is zero. In the fourth model (w/o Trend), we set the trend parameters α, β1, and β3

to zero so that Yt is fixed at β2. The fifth model (w/o Co. effect) takes away company effects

from the “w/o CAT” model. We record the estimates, standard errors, and also a likelihood-like

J -statistics, which is the basis for testing the overall specification and parametric restrictions as in

Sargan (1958) and Hansen (1982). It is calculated as follows:

J = Nx,n

[
1

Nx,n

Nx,n∑
x,n

f(θ̂, P (i,j,h)
x,n )

]′
(i,j,h)

W (θ̂)

[
1

Nx,n

Nx,n∑
x,n

f(θ̂, P (i,j,h)
x,n )

]
(i,j,h)

.

J , a Wald statistic, converges in distribution to χ2(L−K) under the null hypothesis that the model
4Including them in the estimation procedure leads to problems when including a complex mortality model, since the impact on

insurance prices is similar to those originating from certain components. We obtain reasonable magnitudes not too different from
the set values in the context of simple mortality models.
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is valid, or well-specified, where L is the number of moment equations and K is the number of

parameters. In terms of testing parametric restrictions, according to Newey and West (1987), the

difference of two J -statistics, the GMM counterpart to the likelihood ratio test statistic, converges

in distribution to χ2(K1 − K2), where K1 − K2 is the number of restricted parameters in model

2 compared to model 1. This “Likelihood-ratio-like” statistic can be used to test the parameter

restrictions and offer guidance to model comparison, which is highlighted in the next part.

3.3.3 Results and Discussion

Table 3.2 provides the parameter estimates for all five model versions, with the first four having the

company effect parameters. In the Full model, the catastrophe parameter estimates (κ, λ, ζ) have

large standard errors and are not significant, so do the trend parameter β1 and diffusion parameter

σ. In contrast, the trend parameter β2 and Gompertz parameter b are significant, pointing to a

simple deterministic mortality model. Parameters related to selection/underwriting effect (c, τ ,

γ) are significant in the first four model estimations, highlighting such effects in life insurance

underwriting.

The estimation results for company effects are shown in Figure 3.2(a). Note that estimations

of company effects in all models yield similar results, so we illustrate the company effects using

the estimates in “w/o Trend” model. Figure 3.2(c) summarizes the significance of the estimates

compared to zero and we find around one third of companies having mortality rates significantly

above the industry average, and around one third of companies having mortality rates significantly

below the average. In the fifth model, without the company effects capturing the heterogeneity of

mortality, parameter estimates turn out to have large standard errors and the overall specification

statistic J is much larger compared to the other four models, indicating that the “w/o Co. effect”

model is unlikely to be favorable. The estimation results strongly favor the model with company

effects, which overshadow the mortality catastrophe and diffusion parameters.

We conduct model comparisons using the difference of J statistics as discussed in the previous

subsection. Figure 3.3 shows the value of the statistics (referred to as “LR”) between models, with

arrows pointing toward the more favorable model. Table 3.3 shows the hypothesis testing results at

significance level 95%. The results suggest strong rejection of the “w/o Co. effect” model, again
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(a) Estimated company effect for 31 companies (b) Histogram of company effect estimates

(c) Company effect estimates and their significance to zero at 95%
confidence level (red lines serve as visual aid only and are not clas-
sification boundaries)

Figure 3.2: Company effect in three representations

highlighting the importance of including the company heterogeneity in the model. Among the four

models with company effects, we always fail to reject a simpler model with fewer parameters. As a

result, the preferred specification turns out to be the “w/o Trend” model, which has a simple deter-

ministic Gompertz mortality component and selection effect. These results suggest that company

effects matter while the catastrophe components and the stochastic diffusion are not important in

explaining the prices.

It is important to note that the estimated mortality rates correspond to mortality rates used in

pricing, and they may entail aggregated risk adjustments (as expectations under a risk-neutral mea-

sure). Hence, we do not propose these mortality rates adequately project population mortality, also

because they correspond to a special subpopulation, or that mortality catastrophes and stochasticity

are not relevant in forecasting population mortality. Rather, our estimation results and the model
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Figure 3.3: Comparison of the model specifications

comparisons point towards the relevance of company effects in life insurance pricing, whereas

other aspects (mortality catastrophes, stochastic trends) do not seem to be of key relevance.

The distribution of the company effects takes a roughly tri-modal shape as shown in Figure

3.2(b), with several companies bunching at positive effects (worse mortality experience) of around

0.1, some companies bunching around 0 (average mortality experience), and some companies

bunching at negative effects (better mortality experience) of around -0.1, also seen in Figure 3.2(c).

The results suggests that there are roughly three segments in the market.

We retrieve information from A.M. Best to check whether these groups can be explained by

company characteristics. More precisely, from A.M. Best Rating/Information Services, we obtain

company ratings and company size (two companies’ information are not available). Here, financial

strength rating means A.M. Best’s independent opinion of “an insurer’s financial strength and

ability to meet its ongoing insurance policy and contract obligations” and issuer credit rating refers

to A.M. Best’s independent opinion of “an entity’s ability to meet its ongoing financial obligations.”

Table 3.4 provides the information together with the company effects from our estimation. More

precisely, we code the companies according to the three segments, -,o,+, belonging to the group

with negative, insignificant, and positive company effects, respectively.
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There are no obvious relationships to company size or company ratings. There are very highly

rated companies and very large companies in each segment, and there are smaller and relatively

low-rated companies in each segment. In other words, company characteristics do not seem to ex-

plain the market segmentation—or, more generally, the significant heterogeneity in prices. Thus,

it appears that differences in the pools of policyholders between companies must lead to the seg-

mentation.

These differences in the mortality profile of each company’s portfolio of policies may arise from

different channels. First, underwriting criteria, and particularly the categorization of individuals

with a certain health history to rating classes, differ among carriers. Since in the end the mortality

experience is driven by morbidity rates and cause-specific mortality rates, and since these in aggre-

gate shape the mortality profile of the relevant pool, heterogeneity may arise (Boumezoued et al.,

2017; Arnold and Sherris, 2016, and references therein). Moreover, different companies penetrate

different regions dissimilarly and they use different distribution channels, which in turn affect the

demographic and socio-economic distribution of policyholders. Since there are large differences

in mortality across different subpopulations (Case and Deaton, 2015; Chetty et al., 2016), again

these aspects may generate heterogeneity in company mortality profiles.

3.3.4 Robustness: Time Period and Market Segment

In the estimation process, we rely on insurance price data for different ages and different terms

for the years 2012-2015. In particular, we use insurance quotes with terms of up to 30 years, so

that the relevant mortality experience for ex-post companies profits spans the period 2012-2045

(when the 30-year term policies sold in 2015 mature). To evaluate whether our results are driven

by idiosyncrasies of insurance prices in recent (post financial crisis) years, Figure 7 illustrates term

life quotes issued in January 2006 (panel 3.4(b)) relative to the quotes from 2012 (panel 3.4(a)).

We observe that the general pattern across companies is similar. In particular, although the 2006

quotes for term 30 are somewhat less dispersed, the insurance prices still exhibit a significant

variance across companies, which is indicative of the relevance of company effects.

While the 2006 quotes by themselves do not allow for an estimation of company effects, esti-

mating model versions without company effects results in similar parameter estimates as the “w/o
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(a) Term life insurance quotes in April 2012 (b) Term life insurance quotes in April 2006

Figure 3.4: Illustration of the insurance price data for age 40, male, non-smoker, regular, $500,000 face
value

Co. effects” model for the 2012-2015 time period (last column in Table 3.2). In particular, the

catastrophe, the stochastic diffusion, and the trend parameters are all insignificant, and the data

strongly favors the simple model.

To illustrate that the results here are not likely to carry over to other life-contingent product

classes such as annuities or pension products, Figure 3.5 taken from Bauer (2008) shows annuity

quotes in the UK market. More precisely, the figure depicts the evolution of annual annuity rates

for a purchase price £10,000 within open market option between January 2000 and December

2005, payable monthly in advance and without guarantee period, for leading companies in UK.

Figure 3.5: Monthly British annuity rates data from January 2000 (0) to December 2005 (70), open market
option, male, age 60, purchase price £10,000

Here, the findings appear to be quite different. In contrast to our term insurance quotes, the

annuity rates throughout the period show a relatively small variance at any point of time, and the
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relative order between the companies changes throughout the observation period. This suggests

that unlike our estimation results for term insurance prices, there are no persistent company effects

in this market.

These differences may not come as a surprise given the differences between the market seg-

ments. In the annuities market, there is no underwriting process (Hoermann and Ruß, 2008) so that

companies cannot actively control their portfolio. Life annuities cannot be surrendered, so that pol-

icy lapsation/surrender is not relevant. Moreover, the full price is paid upfront so that the contracts

are fully and solely exposed to longevity risk. In particular, Lin and Cox (2005) and Bauer et al.

(2010) rely on annuity for deriving a (usually positive) “market price of longevity risk” implied by

life annuity prices.

3.4 Conclusion

Our study of term life insurance prices goes against the common perception that life insurance is

fairly homogeneous and that aggregate mortality trends are highly relevant in this marketplace.

Our estimates do not reflect significance of mortality catastrophe or stochastic mortality trends.

The model comparison strongly rejects the model without company specific mortality effects, how-

ever, pointing to a significant heterogeneity in the mortality profiles among different life insurance

companies. Thus, “basis risk” seems to dominate systematic mortality risk in life insurance. This

questions the efficiency of so-called “natural hedging” of longevity risk using life insurance expo-

sure. Furthermore, it points to the relevance of understanding granular mortality trends.

Aside from explanations on the supply side, it is possible that demand-side effects contribute

to our findings. For instance, companies may be able to sell overpriced insurance to existing

customers in other business lines, or carriers may pursue certain segments of the market by their

pricing strategy. We leave exploring these angles for future research.
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Full w/o CAT w/o Sigma w/o Trend w/o Co. effects

α 1.8793 1.8176 1.8178 - 1.3609
(6.1387) (1.2603) (1.2613) - (13.7273)

β1 2.4470 2.4440 2.4446 - 2.6631
(10.5424) (2.2557) (2.2593) - (50.4369)

β2 1.20E-06 1.20E-06 1.20E-06 1.09E-06 1.01E-06
(5.58E-08) (5.99E-08) (6.00E-08) (5.90E-08) (2.64E-06)

σ 0.0002 0.0004 - - 0.0002
(1.4153) (0.4272) - - (98.2278)

b 0.1015 0.1018 0.1017 0.1027 0.0439
(0.0008) (0.0008) (0.0008) (0.0010) (0.0383)

κ 2.2554 - - - -
(76.0239) - - - -

λ 0.0007 - - - -
(0.0043) - - - -

ζ 19.4661 - - - -
(367.7243) - - - -

β3 2.15E-06 2.15E-06 2.15E-06 - 3.87E-06
(1.60E-06) (8.24E-07) (8.24E-07) - (2.33E-05)

c 0.0047 0.0047 0.0046 0.0047 0.0057
(0.0001) (0.0001) (0.0001) (6.00E-05) (0.0001)

γ 0.9628 0.9606 0.9603 0.9372 0.9603
(0.0071) (0.0070) (0.0070) (0.0073) (0.0073)

τ 3.00E-07 3.00E-07 3.00E-07 3.10E-07 3.53E-07
(1.06E-07) (1.13E-07) (1.13E-07) (1.14E-07) (4.52E-06)

Y0 3.35E-06 3.35E-06 3.35E-06 1.09E-06 4.88E-06
(1.60E-06) (8.26E-07) (8.26E-07) (5.90E-08) (2.34E-05)

Ecoi Yes Yes Yes Yes No

Erc1 0.3652 0.3651 0.3651 0.3652 0.3747
(0.0087) (0.0086) (0.0086) (0.0090) (0.0110)

Eyear2012 0.0131 0.0130 0.0130 0.0129 0.0148
(0.0122) (0.0121) (0.0121) (0.0127) (0.0155)

Eyear2013 -0.0043 -0.0044 -0.0044 -0.0043 -0.0037
(0.0121) (0.0120) (0.0120) (0.0125) (0.0153)

Eyear2014 0.0172 0.0173 0.0173 0.0173 0.0183
(0.0122) (0.0121) (0.0121) (0.0126) (0.0155)

J-stat 33.0087 38.5897 38.5755 35.3664 112.6926
df 202 205 206 209 235

Table 3.2: Estimated parameters (company effect estimates not shown) for four models based on GMM.
Standard errors for each parameter are shown in parentheses.

H0 H1 Reject H0 at 95% confidence?

w/o CAT Full No
w/o Sigma w/o CAT No
w/o Sigma Full No
w/o Trend w/o Sigma No
w/o Trend w/o CAT No
w/o Trend Full No

w/o Co. effect w/o CAT Yes
w/o Co. effect Full Yes

Table 3.3: Model comparison results
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Company Effect Financial Strength Rating Long-Term Issuer Credit Rating Financial Size Category

- A- (Excellent) a- (Excellent) X ($250 mil ∼ $500 mil)
- A (Excellent) a+ (Excellent) XV (>$2 billion)
o A (Excellent) a+ (Excellent) XIV ($1.5 bil ∼ $2 bil)
+ A- (Excellent) a- (Excellent) IX ($250 mil ∼ $500 mil)
- A+ (Superior) aa- (Superior) IX ($250 mil ∼ $500 mil)
- - - -
- A (Excellent) a+ (Excellent) VIII ($100 mil ∼ $250 mil)
+ A+ (Superior) aa- (Superior) XV (>$2 billion)
o A- (Excellent) a- (Excellent) VIII ($100 mil ∼ $250 mil)
+ A++ (Superior) aa+ (Superior) XV (>$2 billion)
+ A- (Excellent) a- (Excellent) VIII ($100 mil ∼ $250 mil)
- A+ (Superior) aa- (Superior) XV (>$2 billion)
o A (Excellent) a+ (Excellent) XV (>$2 billion)
o A+ (Superior) aa- (Superior) XV (>$2 billion)
+ A- (Excellent) a- (Excellent) VII ($50 mil ∼ $100 mil)
o - - -
+ A+ (Superior) aa- (Superior) XV (>$2 billion)
- A+ (Superior) aa- (Superior) XV (>$2 billion)
o A+ (Superior) aa- (Superior) XV (>$2 billion)
- A+ (Superior) aa- (Superior) XV (>$2 billion)
o A+ (Superior) aa- (Superior) XV (>$2 billion)
- A (Excellent) a+ (Excellent) VIII ($100 mil ∼ $250 mil)
o A+ (Superior) aa- (Superior) XV (>$2 billion)
+ A- (Excellent) a- (Excellent) VIII ($100 mil ∼ $250 mil)
+ A (Excellent) a+ (Excellent) XV (>$2 billion)
o A++ (Superior) aaa (Exceptional) XV (>$2 billion)
o A+ (Superior) aa- (Superior) XV (>$2 billion)
o A+ (Superior) aa- (Superior) XV (>$2 billion)
+ A+ (Superior) aa- (Superior) XV (>$2 billion)
+ A+ (Superior) aa (Superior) XV (>$2 billion)
- A+ (Superior) aa- (Superior) IX ($250 mil ∼ $500 mil)

Table 3.4: Company effects vs. A.M. Best ratings and company size (-,o,+, belonging to the group with
negative, insignificant, and positive company effects, respectively)
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