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ABSTRACT 

Deep learning a research field in artificial intelligence and also a fast-growing technology 

in helping human in different directions. This thesis will focus on two of its usages: chemistry 

and computer go. In the two fields, deep learning achieves state of art accuracy in prediction and 

game playing ability. 
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1 DEEP LEARNING IN CHEMISTRY  

After 2012 ImageNet competition, artificial intelligence (AI) technologies have become very 

useful tools in solving scientific and life problems. Specifically, deep learning (DL) especially 

convolutional neural network (CNN) shows its powerful ability in many fields including image, 

text, etc. Thus in my research, I conducted deep learning studies in chemistry to see how better we 

can utilize the state-of-the-art deep learning into real problems.  

1.1 Purpose of the Study  

In the field of machine learning in chemistry there is a long history. People have tried to 

use different machine learning methods in solving drug discovery problems. Especially in the area 

of small molecules properties prediction, there is a famous rule called Lipinski Rule of 5 in the 

beginning. After that, people tried to use machine learning to solve properties prediction called 

ADMET. ADMET are 5 items for prediction. They are adsorption, distribution, metabolism, 

excretion and toxicity. Medicinal chemists used nearly all machine learning methods including 

support vector machine (SVM), neural network (NN), decision tree (DT), random forest etc. They 

all give good results. However, the most important part in machine learning for drug discovery is 

feature extraction and selection.  

In chemistry, all inputs are small molecules. So it would be quite difficult compared with 

other fields of which all features are numbers. In chemistry, we have to extract features. Thus it 

would be interesting if there is a feature extraction method. Traditionally, medicinal chemists 

extract features by counting. For example, people can count how many atoms in a molecule, how 

many carbon atoms in a molecule, how many bonds in a molecule, molecular weight and son. Such 

as this, there are a bunch of software to extract feature even thousands of features. By using this 

method, people use these features inputs to feed machine learning models. Many models give good 
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results. However, there are many problems because of these methods. The reasons are that it takes 

time to get these features because we have to develop a program to calculate features. Some 

features are difficult calculate in terms of time, especially 3D features and quantum calculation 

based features. Because if you want to get a 3D feature you have to generate a 3D model and for 

quantum chemistry calculation it may take seconds. Thus it would be very time consuming if there 

are thousands of molecules. It is not a problem maybe 20 years ago because for that time people 

used QSAR to do such work in which there are only small datasets. Nowadays we go to big data 

era and there are so many molecules. Thus there is a need to extract features very fast. The second 

reason is the feature selection part. Because there are thousands of feature, they are not easy for 

machine learning. Such a big amount of features will cause dimension curse because models can’t 

learn from a small dataset of molecules. Another problem of these many features is underfitting. 

So there is a need to develop a good method to find good a good way to extract and select features. 

That’s why I plan to use deep learning to help solve this problem (Figure 1.1) by using SMILES.  

 
Figure 1.1 SMILES representation for one molecule. 

1.2 Experimental Design 

1.2.1 Data preparation 

To prepare the dataset the SMILES data of CYP1A2 inhibitor was used. The dataset its 

self is SMILES data of a list of small molecules with negative or positive properties. Negative 

means they are not CYP1A2 inhibitors while positive means they are CYP1A2 inhibitors. All 
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molecules data were preprocessed by adding protonation states on them because for CYP1A2 is 

very sensitive with positive charged molecules. For CYP1A2 inhibition negative molecules they 

will be labeled 0 while for positive molecules they will be labeled 1 (Figure 1.2). 

 

Figure 1.2 SMILES representation with labels for molecules. 

1.2.2 Data indexing 

Because computer can’t understand molecules in SMILES format. There is a need to treat 

them as text to prepare the data. Everything is similar to word2vec. So firstly all SMILES data 

were converted to 1D vectors based on indexing.  

 

Figure 1.3 Preprocessing for SMILES data. 
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1.2.3 Data splitting 

The dataset was split with a training set and a test set with a ratio 4:1 

1.2.4 Deep learning model building 

All deep learning models were built with Keras functions. Layers include embedding, lstm, 

conv, dense, pooling, activations, etc. Parameters were searched with different configuration to try 

to find the best one. 

1.2.5 Deep learning model training 

Adam was used to optimize the model with binary cross entropy as a loss function. All 

calculations are conducted on GPUs. Early stopping was used when the validation set accuracy 

does not move up by 10 epochs. Totally 100 epochs training was conducted with a batch size of 

100.  

1.3 Experimental Results 

1.3.1 Data preparation for deep learning  

Data was prepared with SMILES data (Figure 1.3) with a Python script below. SMILES is 

short for Simplified Molecular-Input Line-Entry System. SMILES is easy compared with other 

molecules structure like mol2 or SDF because SMILES is a one-line representation of molecules 

and It does not store the 3D information. It is a linear notation of chemical structures and molecules 

in this format can be easily translated to many 3D structures. The reason for me to use SMILES is 

that it saves a lot of space because of the linear notation feature. Otherwise for other formats like 

mol2 I have to prepare a line for each atom. Thus it would be easier to define a reader to read these 

sequences.  

THE SMIELS format is very easy to understand. For atoms, they are represented using 

standard abbreviation of atom names. For example, carbon atom be written as C. For bonds, 
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commonly there are 3 kinds of bonds: single bonds written as “-”, double bonds written as “=” and 

triple bonds written as “#”. Usually for single bond the “-” sign is usually omitted. For rings, people 

can label them with numbers for the two atoms connected. Thus if there are more than 1 rings 

people can just label more atoms. For branches, parentheses can be added after an atom. The first 

atom in the parentheses is the atom connected.   

SMILES is so easy to represent a molecule thus we can use it for deep learning inputs. 

Because SMILES representation for a molecule is a string of characters, we can consider them as 

texts. So it is easy to use simple natural language processing (NLP) method to build machine 

learning models. In NLP, there is an interesting concept called word2vec. This term is to translate 

a word into a vector. An interesting example is that king – man + woman equals to queen. Thus to 

implement a similar work, I tried to index all characters first with a  simple code below: 

#Find characters of sequences and build a library 

for index, SMILESsequence in X_SMILES.iterrows(): 

    for letter in SMILESsequence[0]: 

        if not letter in char_lib:             

            char_lib.append(letter) 

 

X=[] 

#SMILES sequence to an array 

for index, SMILESsequence in X_SMILES.iterrows(): 

    sequenceArray=[] 

    for letter in SMILESsequence[0]: 

        sequenceArray.append(char_lib.index(letter)) 

    X.append(sequenceArray) 

 

By calculating the results totally there are 11,922 data items. The longest length for 

SMILES is 226 which is used as the input length. For SMILES data with length less than 226 they 

are filled with zeros. Totally there are 43 different characters after indexing.  

All the data was split randomly as a training set and a test set with ratio 4:1. Training set 

will be used for machine learning models training while test set will be used for validate the model 



6 

robustness. Finally, the feature contains only numbers of the index of characters and the label is 0 

and 1 depending whether they are CYP1A2 inhibitors or not.  

1.3.2 Deep learning study 

It is critical to build a deep learning model because for shallow machine learning models 

the parameters tuning part is easy. While for deep learning there many architectures available. 

Deep learning is a kind of neural network but regularly with more layers. Neural network was a 

very hot idea 20 years ago. However, because during that time the computational resource is not 

power and the data is small, neural network has a lot of problems and other machine learning 

methods are widely used like SVM and RF. Interestingly, with the advanced technology 

improvement in graphics processing unit (GPU) and the storage/collection method. We can easily 

computer things more quickly and collect and store more data. Thus, previous shallow machine 

learning methods are not able to achieve good result because of underfitting.  

Neural network borrows the idea of biological neurons. So in a neural network the basic 

components are neurons and connections. A neural network has many layers. Each layer has many 

neurons. For the simple neural network, a neuron only connects with all neurons in its previous 

layer and next layer. Each neuron is a number and the connections are weights and biases. The 

first layer is also called input layer and the final layer is also called output layer. Backpropagation 

is the method to update weights by calculating errors from the output and the real result. Some 

kinds of layers are important to know before conducting deep learning study.  

Fully connected layer: it is a layer with all neurons connect directly from the previous layer 

to its layer and next layer to this layer. This is the most time-consuming layer because there is a 

matrix multiplication during this process. This is most common layer in the early version of neural 

networks. 
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Activation layer: it is a layer to introduce nonlinearity. There are many kinds of activation 

layers such as sigmoid and relu.  

Convolution layer: it is a layer to extract features with many small filters. It is very useful 

in extracting high-level information from images. It also shows its power in NLP. 

Pooling layer: it is a layer to reduce the number of features and computation. People also 

think it will help if there are small changes to the photo as they are not sensitive to pooling layer. 

Whether this concept is true is still under question.  

Dropout layer: it is a layer to reduce the overfitting problems by randomly cut some 

connections between neurons.  

Batch normalization layer: it is a layer to reduce the overfitting problem by changing the 

distribution of values.  

Embedding layer: it is a very useful layer in NLP because it converts a number to a vector 

of numbers. It saves time and has more information compared with 1 hot representation.  

After 200 experiments with different hyperparameter study, I finally determined to use an 

architecture with convolutional neural network shown in Figure 1.4. 

 

Figure 1.4 CNN architecture of SMILES prediction. 
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The details architecture can be found in Figure 1.5.  The first layer is an input layer with 

length 226 because the longest sentence has 226 characters. The second layer tis an embedding 

layer to convert the inputs into vectors with each vector length 50. A dropout layer was then used 

to reduce overfitting problem. Then it connects with different convolutional layers. Each 

convolutional layer has different number of kernel size. They are 3, 5 and 7 respectively. For filters 

the numbers are same: 128. Then leaky relu activation function was applied to each convolutional 

layer with an alpha value of 0.3. A dropout layer was again used to connect the activation layer to 

global max-pooling layer. After then, all layers were added together following by a dense layer 

with 500 neurons. A dropout layer was again used with a dropout rate 50%. A leaky relu activation 

was used with alpha value of 0.3. Another dense function with a sigmoid activation layer was used 

to predict the label.  

 

Figure 1.5 Detailed architecture. 

 

1.3.3 Results and conclusion 

The deep learning model achieves a good result with accuracy 0.819 and ROC_AUC 0.884 

on the validation set. It is better than published data PKCSM and ADMETSAR shown in Table 
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1.1. It is the first to use convolutional neural network to solve chemistry problem. This result 

suggests that deep learning is good choice when applying machine learning in predicting drug 

properties. However, there is still a need to use deep learning to implement other chemistry models. 

This is not done by me because I don’t have time to work on that. And I believe other people will 

also do a good job by applying more novel technologies.  

 

Table 1.1 Performance of Deep SMILES and published results 

 

METHOD ACCURACY ROC_AUC 

DEEP-SMILES 0.819 0.884 

PKCSM [1] 0.802 0.876 

ADMETSAR [2] 0.815 0.815 
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2 DEEP LEARNING IN COMPUTER-GO 

2.1 Introduction  

Go is a traditional China chess game. It is so interesting so that I learnt it when I was 10 

years old. When I was a child, I can hardly believe it is true that a computer can beat a professional 

Go player because it is so hard and complex. It is well-known that the number of steps is more 

than the number of atoms in the universe. It will use a lot of computational power so most of the 

go computer programs can’t even win me when I was 14 years old, the time I stopped learning the 

game of go. 

It is amazing that Google DeepMind developed a computer-go program AlphaGo[3] which 

beat professional go players. One of the methods behind is deep learning. It uses convolutional 

neural network to treat a go play as an image. Thus it would be very interesting whether we can 

use the latest convolutional neural network to give better result.  

 

2.2 Background  

2.2.1 Deep learning architectures in computer vision 

In the field of image recognition, deep learning is currently the most successfully method. 

Deep learning is kinds of a neural network but with more hidden layers than regular artificial neural 

network. Previously, there are only dense layers as hidden layers. Dense layers are all connected 

layers. Because people use backpropagation to update errors, all connected layers will consume a 

lot of computational power. Thus, this method is suitable for machine learning in the early days 

when the hardware is not that powerful. 
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2.2.1.1 LeNet-5 

However, in 1998, LeCun Yann developed LeNet-5[4] as shown in Figure 1. In this neural 

network, LeCun introduced two different kinds of layers. One is convolution layer, which used 

filter to generate features. The other is pooling layer, which is used for reducing the size of 

generated features. So for LeNet-5, there are totally 8 layers: input layer, convolution layer, 

maxpooling layer, convolution layer, maxpooling layer, two dense layers and 1 output layer which 

is also a dense layer. This neural network is very good in written number recognition with accuracy 

99.3%. 

  
Figure 2.1  Architecture of LeNet-5 

2.2.1.2 AlexNet 

Then neural network “died” for about 14 years because of the computational power 

limitation. In 2012, AlexNet [5] was shown to be very successful in ImageNet, which is a 

competition for image classification, because it beat the number 2 player with 10% more accuracy. 

The major reasons for the success of AlexNet are: 1. It used ReLu for non-linearity; 2. Data 

augmentation was used such as image translations, horizontal reflections; 3. Dropout was used 

reduce overfitting. The architecture can be seen in Figure 2. 
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Figure 2.2  Architecture of AlexNet 

2.2.1.3 VGG 

Different from AlexNet, VGG[6] used very small filters in the convolution layer. As in 

LeNet- 5 or Alexnet, their size is 11X11 in the first layer. However, VGG used 3X3 for all layers. 

The is because 2 3X3 layer is equal to 1 5X5 layer. This in turn simulates a larger filter while 

keeping the benefits of smaller filter sizes. This method achieves better accuracy with 7.3% error 

rate. 

  
 

Figure 2.3  Architecture of VGG 
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2.2.1.4 Inception 

Then winner for year 2014 is actually GoogleLenet[7] with error rate 6.7%. Their 

innovation is that they developed inception module. The naïve model has 4 options for machine to 

pick. They are 1x1 convolution, 3x3 convolution, 5x5 convolution and 3x3 maxpooling. However, 

this will have a lot of parameters for training. Thus the authors developed a new idea of 1x1 

convolution layer before 3x3 and 5x5. By using this method, they can reduce the number of 

parameters. 

  
Figure 2.4  Architecture of inception 

 

2.2.1.5 Network in Network 

For Network in Network[8] authors, they introduced mlp layer, which is used to increase the ability 

of convolution layer. Then they used global maxpooling to reduce the number of parameters. This 

method has less parameters, making it faster.  

  
Figure 2.5  Architecture of “network in network” 

2.2.1.6 ResNet 

ResNet[9] is the new winner of ImageNet with 3.6 error rate. In their structure, they used skip 

connection to avoid gradient vanishing. As shown in Figure 5, there are 5 different architectures 

for the skip connection implementation. As in their paper, they found that full pre- activation is 

the best. In the bottleneck, they should follow these steps: BN, ReLU, weight, BN, ReLU and 
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weight. They best model has more than 1000 layers.  

  
Figure 2.6  Architecture of Residual Network.  

2.2.1.7 Wide Residue Network 

Residual network is very long. So Wide Residue Network[10] authors came up with a new network 

which is short but wide[8]. What they mean by wide is that the k value in neural network is larger 

than 1. This gives better accuracy: 3.89% error rate.  

  
Figure 2.7  Architecture of Wide Residual Network.  

 

2.3 Experimental design 

2.3.1 Dataset preparation 

Gogod database was used to get go plays with SGF file format. Only data after 1980 was 

used because of the improvement of go theory in the last 26 years. To extract the “image” 

information from the go plays. Same as AlphaGo, each step is treated as one image to prepare 

input files. 1% of the dataset was used as a validation set.  
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2.3.2 Feature preparation 

Same as AlphaGo, 48 features were used to prepare as inputs. They are called planes. The 

planes are:   

1. Stone color, which has 3 features for player stone, enemy stone and empty, 

respectively.  

2. Ones feature, which is 1 plane of ones. 

3. Turns since feature, which is a list of the last 8 steps. 

4. Liberties feature, which is a list of liberties of black stones of while stones. The 

maximum liberty is 8. If it has more than 8 stones it was treated 8 liberties.  

5. Capture feature, which is the number of stones to be captured. The maximum number 

of stones is 8 and if the more than 8 stones it will be treated as there are 8 stones to be 

captures 

6. Self-atari feature, which is the like 5 but it is the number of stones to be captures in our 

side. 

7. Liberties after move feature, it is a feature of number of stones after the move 

8. Ladder capture feature, it is to see whether a position can capture enemies’ stones using 

ladder method. 

9. Ladder escape feature, it is also to see whether a position can leave from enemies’ 

ladder tactics. 

10. Sensibility feature, whether a step is legal and does not fill its eyes. 

11. Zeros feature, same as ones feature but they are all zeros.  
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2.3.3 Deep learning model building 

The policy network borrows ideas from ResNet. The first layer is the same as AlphaGo, it 

pads zeros to make 23X23 images and the convolve with 5X5 kernel size filters with stride 1. Then 

there is an activation layer plus a batch normalization layer. After that they are resnet blocks which 

is same as ResNet. For all ResNet variations, the full pre-activation architecture was adopted. 

Totally there are 19 residue blocks. The last layer is a softmax layer to map all possible next steps.  

2.3.4 Deep learning model training 

Gradient descent method was used to optimize the model. The initial learning rate is 0.01. 

Learning rate decay was applied for every 1milllion steps. The batch size is 32. 1 GPU card 

NVIDIA Tesla P100 was used to train the model for 18 days.  

 

2.4 Results  

Because ResNet shows very good result in images recognition tasks and it is very 

computation efficient, it was used to replace the old architectures of AlphaGo to train the network. 

The next of each go play was used to label. So, it is purely a supervised learning in the AlphaGo 

project. The reason more studies were not conducted is because I don’t have enough computers to 

work on that.  

2.4.1 Feature test 

To understand how the feature planes affect the prediction accuracy, different features 

based calculation was conducted. As we can see from features 2.8 to feature 2.15, the more 

features, the better the result. Ladder features do not improve the results but helps because it is 

very difficult to find this tactic.  The new AlphaGo zero does not have feature. They train theirs 

using a pretty long time.  
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Figure 2.8 Performance of Shouzhuo with final test-set accuracy 0.277.  

 

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes:  stone color and ones: 3 and 1.  

 

 

Figure 2.9 Performance of Shouzhuo with final test-set accuracy 0.295. 

 

 Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes: stone color, ones, liberties and capture size: 3,1, 8 and 8.  
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Figure 2.10 Performance of Shouzhuo with final test-set accuracy 0.398.  

 

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes:  stone color, ones, liberties, capture size and turns since: 3,1, 8, 8 and 8. 

 

 

Figure 2.11 Performance of Shouzhuo with final test-set accuracy 0.401.  

 

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes:  stone color, ones, liberties, capture size, self-atari size, and turns since: 3,1, 8, 8, 

8 and 8. 
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Figure 2.12 Performance of Shouzhuo with final test-set accuracy 0.402.  

 

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes:  stone color, ones, liberties, capture size, self-atari size, liberties after move and 

turns since: 3,1, 8, 8, 8, 8 and 8.  

 

 

Figure 2.13 Performance of Shouzhuo with final test-set accuracy 0.401. 

 

 Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes:  stone color, ones, liberties, capture size, self-atari size, liberties after move, 

sensibility and turns since: 3,1, 8, 8, 8, 8, 1 and 8. 
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Figure 2.14 Performance of Shouzhuo with final test-set accuracy 0.401. 

 

 Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes:  stone color, ones, liberties, capture size, self-atari size, zeros and turns since: 3,1, 

8, 8, 8, 1 and 8. 

 

Figure 2.15 Performance of Shouzhuo with final test-set accuracy 0.402.  

 

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number 

feature planes:  stone color, ones, liberties, capture size, self-atari size, liberties after move, 

sensibility, zeros and turns since: 3,1, 8, 8, 8, 8, 1, 1 and 8. 
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2.4.2 ResNet in computer go 

ResNet was developed in 2015. The basic model was shown in Figure 2.16. The best model 

is called full pre-activation model with structure: BN-Relu-Weight-BN-Relu-Weight to connect 

layers. It solves the vanishing gradients problem so that in my example I can use more than 13 

layers, which AlphaGo used for its first version.  

 

Figure 2.16 A residue block 

 

2.4.3 Deep learning model training 

With this architecture, I trained it on 1 GPU for 18 days. It is very interesting play with it 

when it is under training. Its accuracy reached 54% on the validation set.  

 

Figure 2.17 Performance of Shouzhuo 
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 Within half a day, it knows ko. After about one day it began to know seki. After 1 days it 

reaches 1 k level and begin to know the idea of ladder. After 2 days it reaches 1d level. To reach 

2d level it takes more time, about 5 days.  

Beause AlphaGo supervised model also compared with fuego and pachi, I tried to use it 

to play with my model. As we can see from Figure 3.6, it does better than AlphaGo after 1-week 

training.  

 

Figure 2.18 An online match between Shouzhuo and a 3D level player on KGS 

 

Within 2 weeks it reaches 3d level on KG8S and it did not improve a lot after that. I tried 

to use it play 3D level players. It can win 50%. Figure 3.7 shows a play of its paly with a 3D 

level player on KGS.  

 

Figure 2.19 An online match between Shouzhuo and a 3D level player on KGS 
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2.4.4 Conclusion 

Deep learning is a very powerful tool in terms of prediction. In computer-go, ResNet 

shows it ability to predict the next move with high accuracy. Thus, it can be very strong if 

combined with reinforcement learning for self-training.  
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APPENDICES  

Appendix A 

Appendix A.1 Code for early stopping and AUC calculating 

class CustomCallbacks(Callback): 

    def __init__(self, filename="best_weight.hdf5", monitor='val_acc', pat

ience=10, test_input=None, test_label=None): 

        super(Callback, self).__init__() 

        self.filename = filename 

        self.monitor = monitor 

        self.patience = patience 

        self.test_input=test_input 

        self.test_label=test_label 

 

        self.wait = 0 

         

        if 'acc' in self.monitor or 'val_acc' in self.monitor: 

                self.monitor_op = np.greater 

                self.best = -np.Inf 

        else: 

                self.monitor_op = np.less 

                self.best = np.Inf 

        self.losses = [] 

        self.acc = [] 

        self.val_acc =[] 

        self.val_losses=[]              

 

    def on_epoch_end(self, epoch, logs={}): 

        self.losses.append(logs.get('loss')) 

        self.acc.append(logs.get('acc')) 

        self.val_acc.append(logs.get('val_acc')) 

        self.val_losses.append(logs.get('val_loss'))   

         

        y_score=self.model.predict(X_test) 

        y_score_get_value=[] 

        for item in y_score: 

            y_score_get_value.append(item[0])     

        fpr, tpr, _ = roc_curve(y_test, y_score_get_value) 

        val_auc=auc(fpr,tpr) 

 

        print("acc: %0.3f" % logs.get('acc'),  

              ", loss: %0.3f" % logs.get('loss'), 

              ", val_acc: %0.3f" % logs.get('val_acc'), 

              ", val_loss: %0.3f" % logs.get('val_loss'), 

              ", val_auc: %0.3f" % val_auc)         

         

        current = logs.get(self.monitor) 

        if current is None: 

            warnings.warn('Can save best model only with %s available, ' 

                                  'skipping.' % (self.monitor), RuntimeWar

ning) 
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        else: 

            if self.monitor_op(current, self.best): 

                print('Epoch %05d: %s improved from %0.5f to %0.5f,' 

                                  ' saving model to %s' 

                                  % (epoch, self.monitor, self.best, 

                                     current, self.filename)) 

                self.best = current                        

                self.wait = 0 

                self.model.save(self.filename, overwrite=True) 

            else: 

                print('Epoch %05d: %s did not improve' %  (epoch, self.mon

itor)) 

                if self.wait >= self.patience:                    

                    self.model.stop_training = True 

                self.wait += 1 

 

    def on_train_end(self, logs=None): 

        if self.wait >= self.patience: 

            print('Warning: early stopping') 

        self.wait=0 

        if 'acc' in self.monitor or 'val_acc' in self.monitor: 

                self.monitor_op = np.greater 

                self.best = -np.Inf 

        else: 

                self.monitor_op = np.less 

                self.best = np.In 

         

my_callbacks=CustomCallbacks(filename="CYP1A2_conv1.hdf5", monitor='val_ac

c', patience=np.Inf, test_input=X_test, test_label=y_test) 

 

Appendix A.2 Code for model training 

inputs = Input(shape=(maxlen,)) 

embedding_1=Embedding(input_dim=max_features,output_dim=50, input_length=m

axlen)(inputs) 

dropout_1=Dropout(0.5)(embedding_1) 

 

conv1d_kernel_size=[7,3,5] 

conv1d_filters=[128,128,128] 

my_globalmaxpoolings=[] 

for i in range(0,len(conv1d_kernel_size)): 

    conv1d_1=Conv1D(filters=conv1d_filters[i], 

                    kernel_size=conv1d_kernel_size[i],  

                    padding='valid',  

                    strides=1)(dropout_1) 

    

    leakyrelu_1=LeakyReLU(0.3)(conv1d_1) #better than relu with 0.004 more

 accuracy... 

    dropout_conv=Dropout(0.5)(leakyrelu_1) 

    globalmaxpooling1d_1=GlobalMaxPooling1D()(leakyrelu_1) 

    my_globalmaxpoolings.append(globalmaxpooling1d_1) 

 

concatenate_1=Concatenate()(my_globalmaxpoolings) 
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#model.add(MaxPooling1D(pool_size=2)) 

 

dense_1=Dense(500)(concatenate_1) 

dropout_2=Dropout(0.5)(dense_1) 

leakyrelu_hidden=LeakyReLU(0.3)(dropout_2) 

 

dense2=Dense(1)(leakyrelu_hidden) 

prediction=Activation('sigmoid')(dense2) 

 

 

model = Model(inputs=inputs, outputs=prediction) 

adam=optimizers.Adam(lr=0.001, beta_1=0.99, beta_2=0.999, epsilon=1e-08, d

ecay=0.0) 

model.compile(loss='binary_crossentropy', 

              optimizer=adam, 

              metrics=['accuracy']) 
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