
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

8-7-2018

DEEP LEARNING IN CHEMISTRY AND COMPUTER-GO DEEP LEARNING IN CHEMISTRY AND COMPUTER-GO

Mengyuan Zhu

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Recommended Citation Recommended Citation
Zhu, Mengyuan, "DEEP LEARNING IN CHEMISTRY AND COMPUTER-GO." Thesis, Georgia State University,
2018.
https://scholarworks.gsu.edu/cs_theses/89

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/215175668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

DEEP LEARNING IN CHEMISTRY AND COMPUTER-GO

by

MENGYUAN ZHU

Under the Direction of Yi Pan, PhD

ABSTRACT

Deep learning a research field in artificial intelligence and also a fast-growing technology

in helping human in different directions. This thesis will focus on two of its usages: chemistry

and computer go. In the two fields, deep learning achieves state of art accuracy in prediction and

game playing ability.

INDEX WORDS: Deep learning, Chemistry, Computer-Go

Deep Learning in Chemistry and Computer-Go

by

MENGYUAN ZHU

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2018

Copyright by

Mengyuan Zhu

2018

DEEP LEARNING IN CHEMISTRY AND COMPUTER-GO

by

MENGYUAN ZHU

Committee Chair: Yi Pan

Committee: Yanqing Zhang

Zhipeng Cai

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2018

iv

DEDICATION

This study is wholeheartedly dedicated to our beloved parents, who let me grow up freely

without any limitations.

v

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Yi Pan for the

continuous support of my deep learning research. Besides, I would like to thank the rest of my

thesis committee Dr. Yanqing Zhang and Dr. Zhipeng Cai.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. V

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF ABBREVIATIONS .. XI

1 DEEP LEARNING IN CHEMISTRY .. 1

1.1 Purpose of the Study ... 1

1.2 Experimental Design ... 2

1.2.1 Data preparation .. 2

1.2.2 Data indexing ... 3

1.2.3 Data splitting .. 4

1.2.4 Deep learning model building ... 4

1.2.5 Deep learning model training .. 4

1.3 Experimental Results .. 4

1.3.1 Data preparation for deep learning ... 4

1.3.2 Deep learning study ... 6

1.3.3 Results and conclusion .. 8

2 DEEP LEARNING IN COMPUTER-GO .. 10

2.1 Introduction ... 10

2.2 Background ... 10

vii

2.2.1 Deep learning architectures in computer vision ... 10

2.3 Experimental design ... 14

2.3.1 Dataset preparation .. 14

2.3.2 Feature preparation ... 15

2.3.3 Deep learning model building ... 16

2.3.4 Deep learning model training .. 16

2.4 Results .. 16

2.4.1 Feature test ... 16

2.4.2 ResNet in computer go ... 21

2.4.3 Deep learning model training .. 21

2.4.4 Conclusion .. 23

REFERENCES .. 24

APPENDICES ... 26

Appendix A .. 26

Appendix A.1 Code for early stopping and AUC calculating 26

Appendix A.2 Code for model training .. 27

viii

LIST OF TABLES

Table 1.1 Performance of Deep SMILES and published results .. 9

ix

LIST OF FIGURES

Figure 1.1 SMILES representation for one molecule. .. 2

Figure 1.2 SMILES representation with labels for molecules. ... 3

Figure 1.3 Preprocessing for SMILES data. ... 3

Figure 1.4 CNN architecture of SMILES prediction. ... 7

Figure 1.5 Detailed architecture. ... 8

Figure 2.1 Architecture of LeNet-5 ... 11

Figure 2.2 Architecture of AlexNet ... 12

Figure 2.3 Architecture of VGG .. 12

Figure 2.4 Architecture of inception .. 13

Figure 2.5 Architecture of “network in network” .. 13

Figure 2.6 Architecture of Residual Network. ... 14

Figure 2.7 Architecture of Wide Residual Network. ... 14

Figure 2.8 Performance of Shouzhuo with final test-set accuracy 0.277. 17

Figure 2.9 Performance of Shouzhuo with final test-set accuracy 0.295. 17

Figure 2.10 Performance of Shouzhuo with final test-set accuracy 0.398. 18

Figure 2.11 Performance of Shouzhuo with final test-set accuracy 0.401. 18

Figure 2.12 Performance of Shouzhuo with final test-set accuracy 0.402. 19

Figure 2.13 Performance of Shouzhuo with final test-set accuracy 0.401. 19

Figure 2.14 Performance of Shouzhuo with final test-set accuracy 0.401. 20

Figure 2.15 Performance of Shouzhuo with final test-set accuracy 0.402. 20

Figure 2.16 A residue block .. 21

Figure 2.17 Performance of Shouzhuo ... 21

x

Figure 2.18 An online match between Shouzhuo and a 3D level player on KGS 22

Figure 2.19 An online match between Shouzhuo and a 3D level player on KGS 22

xi

LIST OF ABBREVIATIONS

AI – Artificial Intelligence

DL – Deep Learning

CNN – convolution Neural Network

RNN – Recurrent Neural Network

LSTM – Long short term memory

SMILES – Simplified Molecular-Input Line-Entry System

NLP – Natural Language Processing

GPU – Graphics Processing Unit

1

1 DEEP LEARNING IN CHEMISTRY

After 2012 ImageNet competition, artificial intelligence (AI) technologies have become very

useful tools in solving scientific and life problems. Specifically, deep learning (DL) especially

convolutional neural network (CNN) shows its powerful ability in many fields including image,

text, etc. Thus in my research, I conducted deep learning studies in chemistry to see how better we

can utilize the state-of-the-art deep learning into real problems.

1.1 Purpose of the Study

In the field of machine learning in chemistry there is a long history. People have tried to

use different machine learning methods in solving drug discovery problems. Especially in the area

of small molecules properties prediction, there is a famous rule called Lipinski Rule of 5 in the

beginning. After that, people tried to use machine learning to solve properties prediction called

ADMET. ADMET are 5 items for prediction. They are adsorption, distribution, metabolism,

excretion and toxicity. Medicinal chemists used nearly all machine learning methods including

support vector machine (SVM), neural network (NN), decision tree (DT), random forest etc. They

all give good results. However, the most important part in machine learning for drug discovery is

feature extraction and selection.

In chemistry, all inputs are small molecules. So it would be quite difficult compared with

other fields of which all features are numbers. In chemistry, we have to extract features. Thus it

would be interesting if there is a feature extraction method. Traditionally, medicinal chemists

extract features by counting. For example, people can count how many atoms in a molecule, how

many carbon atoms in a molecule, how many bonds in a molecule, molecular weight and son. Such

as this, there are a bunch of software to extract feature even thousands of features. By using this

method, people use these features inputs to feed machine learning models. Many models give good

2

results. However, there are many problems because of these methods. The reasons are that it takes

time to get these features because we have to develop a program to calculate features. Some

features are difficult calculate in terms of time, especially 3D features and quantum calculation

based features. Because if you want to get a 3D feature you have to generate a 3D model and for

quantum chemistry calculation it may take seconds. Thus it would be very time consuming if there

are thousands of molecules. It is not a problem maybe 20 years ago because for that time people

used QSAR to do such work in which there are only small datasets. Nowadays we go to big data

era and there are so many molecules. Thus there is a need to extract features very fast. The second

reason is the feature selection part. Because there are thousands of feature, they are not easy for

machine learning. Such a big amount of features will cause dimension curse because models can’t

learn from a small dataset of molecules. Another problem of these many features is underfitting.

So there is a need to develop a good method to find good a good way to extract and select features.

That’s why I plan to use deep learning to help solve this problem (Figure 1.1) by using SMILES.

Figure 1.1 SMILES representation for one molecule.

1.2 Experimental Design

1.2.1 Data preparation

To prepare the dataset the SMILES data of CYP1A2 inhibitor was used. The dataset its

self is SMILES data of a list of small molecules with negative or positive properties. Negative

means they are not CYP1A2 inhibitors while positive means they are CYP1A2 inhibitors. All

3

molecules data were preprocessed by adding protonation states on them because for CYP1A2 is

very sensitive with positive charged molecules. For CYP1A2 inhibition negative molecules they

will be labeled 0 while for positive molecules they will be labeled 1 (Figure 1.2).

Figure 1.2 SMILES representation with labels for molecules.

1.2.2 Data indexing

Because computer can’t understand molecules in SMILES format. There is a need to treat

them as text to prepare the data. Everything is similar to word2vec. So firstly all SMILES data

were converted to 1D vectors based on indexing.

Figure 1.3 Preprocessing for SMILES data.

4

1.2.3 Data splitting

The dataset was split with a training set and a test set with a ratio 4:1

1.2.4 Deep learning model building

All deep learning models were built with Keras functions. Layers include embedding, lstm,

conv, dense, pooling, activations, etc. Parameters were searched with different configuration to try

to find the best one.

1.2.5 Deep learning model training

Adam was used to optimize the model with binary cross entropy as a loss function. All

calculations are conducted on GPUs. Early stopping was used when the validation set accuracy

does not move up by 10 epochs. Totally 100 epochs training was conducted with a batch size of

100.

1.3 Experimental Results

1.3.1 Data preparation for deep learning

Data was prepared with SMILES data (Figure 1.3) with a Python script below. SMILES is

short for Simplified Molecular-Input Line-Entry System. SMILES is easy compared with other

molecules structure like mol2 or SDF because SMILES is a one-line representation of molecules

and It does not store the 3D information. It is a linear notation of chemical structures and molecules

in this format can be easily translated to many 3D structures. The reason for me to use SMILES is

that it saves a lot of space because of the linear notation feature. Otherwise for other formats like

mol2 I have to prepare a line for each atom. Thus it would be easier to define a reader to read these

sequences.

THE SMIELS format is very easy to understand. For atoms, they are represented using

standard abbreviation of atom names. For example, carbon atom be written as C. For bonds,

5

commonly there are 3 kinds of bonds: single bonds written as “-”, double bonds written as “=” and

triple bonds written as “#”. Usually for single bond the “-” sign is usually omitted. For rings, people

can label them with numbers for the two atoms connected. Thus if there are more than 1 rings

people can just label more atoms. For branches, parentheses can be added after an atom. The first

atom in the parentheses is the atom connected.

SMILES is so easy to represent a molecule thus we can use it for deep learning inputs.

Because SMILES representation for a molecule is a string of characters, we can consider them as

texts. So it is easy to use simple natural language processing (NLP) method to build machine

learning models. In NLP, there is an interesting concept called word2vec. This term is to translate

a word into a vector. An interesting example is that king – man + woman equals to queen. Thus to

implement a similar work, I tried to index all characters first with a simple code below:

#Find characters of sequences and build a library

for index, SMILESsequence in X_SMILES.iterrows():

 for letter in SMILESsequence[0]:

 if not letter in char_lib:

 char_lib.append(letter)

X=[]

#SMILES sequence to an array

for index, SMILESsequence in X_SMILES.iterrows():

 sequenceArray=[]

 for letter in SMILESsequence[0]:

 sequenceArray.append(char_lib.index(letter))

 X.append(sequenceArray)

By calculating the results totally there are 11,922 data items. The longest length for

SMILES is 226 which is used as the input length. For SMILES data with length less than 226 they

are filled with zeros. Totally there are 43 different characters after indexing.

All the data was split randomly as a training set and a test set with ratio 4:1. Training set

will be used for machine learning models training while test set will be used for validate the model

6

robustness. Finally, the feature contains only numbers of the index of characters and the label is 0

and 1 depending whether they are CYP1A2 inhibitors or not.

1.3.2 Deep learning study

It is critical to build a deep learning model because for shallow machine learning models

the parameters tuning part is easy. While for deep learning there many architectures available.

Deep learning is a kind of neural network but regularly with more layers. Neural network was a

very hot idea 20 years ago. However, because during that time the computational resource is not

power and the data is small, neural network has a lot of problems and other machine learning

methods are widely used like SVM and RF. Interestingly, with the advanced technology

improvement in graphics processing unit (GPU) and the storage/collection method. We can easily

computer things more quickly and collect and store more data. Thus, previous shallow machine

learning methods are not able to achieve good result because of underfitting.

Neural network borrows the idea of biological neurons. So in a neural network the basic

components are neurons and connections. A neural network has many layers. Each layer has many

neurons. For the simple neural network, a neuron only connects with all neurons in its previous

layer and next layer. Each neuron is a number and the connections are weights and biases. The

first layer is also called input layer and the final layer is also called output layer. Backpropagation

is the method to update weights by calculating errors from the output and the real result. Some

kinds of layers are important to know before conducting deep learning study.

Fully connected layer: it is a layer with all neurons connect directly from the previous layer

to its layer and next layer to this layer. This is the most time-consuming layer because there is a

matrix multiplication during this process. This is most common layer in the early version of neural

networks.

7

Activation layer: it is a layer to introduce nonlinearity. There are many kinds of activation

layers such as sigmoid and relu.

Convolution layer: it is a layer to extract features with many small filters. It is very useful

in extracting high-level information from images. It also shows its power in NLP.

Pooling layer: it is a layer to reduce the number of features and computation. People also

think it will help if there are small changes to the photo as they are not sensitive to pooling layer.

Whether this concept is true is still under question.

Dropout layer: it is a layer to reduce the overfitting problems by randomly cut some

connections between neurons.

Batch normalization layer: it is a layer to reduce the overfitting problem by changing the

distribution of values.

Embedding layer: it is a very useful layer in NLP because it converts a number to a vector

of numbers. It saves time and has more information compared with 1 hot representation.

After 200 experiments with different hyperparameter study, I finally determined to use an

architecture with convolutional neural network shown in Figure 1.4.

Figure 1.4 CNN architecture of SMILES prediction.

8

The details architecture can be found in Figure 1.5. The first layer is an input layer with

length 226 because the longest sentence has 226 characters. The second layer tis an embedding

layer to convert the inputs into vectors with each vector length 50. A dropout layer was then used

to reduce overfitting problem. Then it connects with different convolutional layers. Each

convolutional layer has different number of kernel size. They are 3, 5 and 7 respectively. For filters

the numbers are same: 128. Then leaky relu activation function was applied to each convolutional

layer with an alpha value of 0.3. A dropout layer was again used to connect the activation layer to

global max-pooling layer. After then, all layers were added together following by a dense layer

with 500 neurons. A dropout layer was again used with a dropout rate 50%. A leaky relu activation

was used with alpha value of 0.3. Another dense function with a sigmoid activation layer was used

to predict the label.

Figure 1.5 Detailed architecture.

1.3.3 Results and conclusion

The deep learning model achieves a good result with accuracy 0.819 and ROC_AUC 0.884

on the validation set. It is better than published data PKCSM and ADMETSAR shown in Table

9

1.1. It is the first to use convolutional neural network to solve chemistry problem. This result

suggests that deep learning is good choice when applying machine learning in predicting drug

properties. However, there is still a need to use deep learning to implement other chemistry models.

This is not done by me because I don’t have time to work on that. And I believe other people will

also do a good job by applying more novel technologies.

Table 1.1 Performance of Deep SMILES and published results

METHOD ACCURACY ROC_AUC

DEEP-SMILES 0.819 0.884

PKCSM [1] 0.802 0.876

ADMETSAR [2] 0.815 0.815

10

2 DEEP LEARNING IN COMPUTER-GO

2.1 Introduction

Go is a traditional China chess game. It is so interesting so that I learnt it when I was 10

years old. When I was a child, I can hardly believe it is true that a computer can beat a professional

Go player because it is so hard and complex. It is well-known that the number of steps is more

than the number of atoms in the universe. It will use a lot of computational power so most of the

go computer programs can’t even win me when I was 14 years old, the time I stopped learning the

game of go.

It is amazing that Google DeepMind developed a computer-go program AlphaGo[3] which

beat professional go players. One of the methods behind is deep learning. It uses convolutional

neural network to treat a go play as an image. Thus it would be very interesting whether we can

use the latest convolutional neural network to give better result.

2.2 Background

2.2.1 Deep learning architectures in computer vision

In the field of image recognition, deep learning is currently the most successfully method.

Deep learning is kinds of a neural network but with more hidden layers than regular artificial neural

network. Previously, there are only dense layers as hidden layers. Dense layers are all connected

layers. Because people use backpropagation to update errors, all connected layers will consume a

lot of computational power. Thus, this method is suitable for machine learning in the early days

when the hardware is not that powerful.

11

2.2.1.1 LeNet-5

However, in 1998, LeCun Yann developed LeNet-5[4] as shown in Figure 1. In this neural

network, LeCun introduced two different kinds of layers. One is convolution layer, which used

filter to generate features. The other is pooling layer, which is used for reducing the size of

generated features. So for LeNet-5, there are totally 8 layers: input layer, convolution layer,

maxpooling layer, convolution layer, maxpooling layer, two dense layers and 1 output layer which

is also a dense layer. This neural network is very good in written number recognition with accuracy

99.3%.

Figure 2.1 Architecture of LeNet-5

2.2.1.2 AlexNet

Then neural network “died” for about 14 years because of the computational power

limitation. In 2012, AlexNet [5] was shown to be very successful in ImageNet, which is a

competition for image classification, because it beat the number 2 player with 10% more accuracy.

The major reasons for the success of AlexNet are: 1. It used ReLu for non-linearity; 2. Data

augmentation was used such as image translations, horizontal reflections; 3. Dropout was used

reduce overfitting. The architecture can be seen in Figure 2.

12

Figure 2.2 Architecture of AlexNet

2.2.1.3 VGG

Different from AlexNet, VGG[6] used very small filters in the convolution layer. As in

LeNet- 5 or Alexnet, their size is 11X11 in the first layer. However, VGG used 3X3 for all layers.

The is because 2 3X3 layer is equal to 1 5X5 layer. This in turn simulates a larger filter while

keeping the benefits of smaller filter sizes. This method achieves better accuracy with 7.3% error

rate.

Figure 2.3 Architecture of VGG

13

2.2.1.4 Inception

Then winner for year 2014 is actually GoogleLenet[7] with error rate 6.7%. Their

innovation is that they developed inception module. The naïve model has 4 options for machine to

pick. They are 1x1 convolution, 3x3 convolution, 5x5 convolution and 3x3 maxpooling. However,

this will have a lot of parameters for training. Thus the authors developed a new idea of 1x1

convolution layer before 3x3 and 5x5. By using this method, they can reduce the number of

parameters.

Figure 2.4 Architecture of inception

2.2.1.5 Network in Network

For Network in Network[8] authors, they introduced mlp layer, which is used to increase the ability

of convolution layer. Then they used global maxpooling to reduce the number of parameters. This

method has less parameters, making it faster.

Figure 2.5 Architecture of “network in network”

2.2.1.6 ResNet

ResNet[9] is the new winner of ImageNet with 3.6 error rate. In their structure, they used skip

connection to avoid gradient vanishing. As shown in Figure 5, there are 5 different architectures

for the skip connection implementation. As in their paper, they found that full pre- activation is

the best. In the bottleneck, they should follow these steps: BN, ReLU, weight, BN, ReLU and

14

weight. They best model has more than 1000 layers.

Figure 2.6 Architecture of Residual Network.

2.2.1.7 Wide Residue Network

Residual network is very long. So Wide Residue Network[10] authors came up with a new network

which is short but wide[8]. What they mean by wide is that the k value in neural network is larger

than 1. This gives better accuracy: 3.89% error rate.

Figure 2.7 Architecture of Wide Residual Network.

2.3 Experimental design

2.3.1 Dataset preparation

Gogod database was used to get go plays with SGF file format. Only data after 1980 was

used because of the improvement of go theory in the last 26 years. To extract the “image”

information from the go plays. Same as AlphaGo, each step is treated as one image to prepare

input files. 1% of the dataset was used as a validation set.

15

2.3.2 Feature preparation

Same as AlphaGo, 48 features were used to prepare as inputs. They are called planes. The

planes are:

1. Stone color, which has 3 features for player stone, enemy stone and empty,

respectively.

2. Ones feature, which is 1 plane of ones.

3. Turns since feature, which is a list of the last 8 steps.

4. Liberties feature, which is a list of liberties of black stones of while stones. The

maximum liberty is 8. If it has more than 8 stones it was treated 8 liberties.

5. Capture feature, which is the number of stones to be captured. The maximum number

of stones is 8 and if the more than 8 stones it will be treated as there are 8 stones to be

captures

6. Self-atari feature, which is the like 5 but it is the number of stones to be captures in our

side.

7. Liberties after move feature, it is a feature of number of stones after the move

8. Ladder capture feature, it is to see whether a position can capture enemies’ stones using

ladder method.

9. Ladder escape feature, it is also to see whether a position can leave from enemies’

ladder tactics.

10. Sensibility feature, whether a step is legal and does not fill its eyes.

11. Zeros feature, same as ones feature but they are all zeros.

16

2.3.3 Deep learning model building

The policy network borrows ideas from ResNet. The first layer is the same as AlphaGo, it

pads zeros to make 23X23 images and the convolve with 5X5 kernel size filters with stride 1. Then

there is an activation layer plus a batch normalization layer. After that they are resnet blocks which

is same as ResNet. For all ResNet variations, the full pre-activation architecture was adopted.

Totally there are 19 residue blocks. The last layer is a softmax layer to map all possible next steps.

2.3.4 Deep learning model training

Gradient descent method was used to optimize the model. The initial learning rate is 0.01.

Learning rate decay was applied for every 1milllion steps. The batch size is 32. 1 GPU card

NVIDIA Tesla P100 was used to train the model for 18 days.

2.4 Results

Because ResNet shows very good result in images recognition tasks and it is very

computation efficient, it was used to replace the old architectures of AlphaGo to train the network.

The next of each go play was used to label. So, it is purely a supervised learning in the AlphaGo

project. The reason more studies were not conducted is because I don’t have enough computers to

work on that.

2.4.1 Feature test

To understand how the feature planes affect the prediction accuracy, different features

based calculation was conducted. As we can see from features 2.8 to feature 2.15, the more

features, the better the result. Ladder features do not improve the results but helps because it is

very difficult to find this tactic. The new AlphaGo zero does not have feature. They train theirs

using a pretty long time.

17

Figure 2.8 Performance of Shouzhuo with final test-set accuracy 0.277.

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color and ones: 3 and 1.

Figure 2.9 Performance of Shouzhuo with final test-set accuracy 0.295.

 Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color, ones, liberties and capture size: 3,1, 8 and 8.

18

Figure 2.10 Performance of Shouzhuo with final test-set accuracy 0.398.

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color, ones, liberties, capture size and turns since: 3,1, 8, 8 and 8.

Figure 2.11 Performance of Shouzhuo with final test-set accuracy 0.401.

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color, ones, liberties, capture size, self-atari size, and turns since: 3,1, 8, 8,

8 and 8.

19

Figure 2.12 Performance of Shouzhuo with final test-set accuracy 0.402.

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color, ones, liberties, capture size, self-atari size, liberties after move and

turns since: 3,1, 8, 8, 8, 8 and 8.

Figure 2.13 Performance of Shouzhuo with final test-set accuracy 0.401.

 Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color, ones, liberties, capture size, self-atari size, liberties after move,

sensibility and turns since: 3,1, 8, 8, 8, 8, 1 and 8.

20

Figure 2.14 Performance of Shouzhuo with final test-set accuracy 0.401.

 Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color, ones, liberties, capture size, self-atari size, zeros and turns since: 3,1,

8, 8, 8, 1 and 8.

Figure 2.15 Performance of Shouzhuo with final test-set accuracy 0.402.

Parameters: 5 layers’ convolutional neural network and 10 epochs. Features and number

feature planes: stone color, ones, liberties, capture size, self-atari size, liberties after move,

sensibility, zeros and turns since: 3,1, 8, 8, 8, 8, 1, 1 and 8.

21

2.4.2 ResNet in computer go

ResNet was developed in 2015. The basic model was shown in Figure 2.16. The best model

is called full pre-activation model with structure: BN-Relu-Weight-BN-Relu-Weight to connect

layers. It solves the vanishing gradients problem so that in my example I can use more than 13

layers, which AlphaGo used for its first version.

Figure 2.16 A residue block

2.4.3 Deep learning model training

With this architecture, I trained it on 1 GPU for 18 days. It is very interesting play with it

when it is under training. Its accuracy reached 54% on the validation set.

Figure 2.17 Performance of Shouzhuo

22

 Within half a day, it knows ko. After about one day it began to know seki. After 1 days it

reaches 1 k level and begin to know the idea of ladder. After 2 days it reaches 1d level. To reach

2d level it takes more time, about 5 days.

Beause AlphaGo supervised model also compared with fuego and pachi, I tried to use it

to play with my model. As we can see from Figure 3.6, it does better than AlphaGo after 1-week

training.

Figure 2.18 An online match between Shouzhuo and a 3D level player on KGS

Within 2 weeks it reaches 3d level on KG8S and it did not improve a lot after that. I tried

to use it play 3D level players. It can win 50%. Figure 3.7 shows a play of its paly with a 3D

level player on KGS.

Figure 2.19 An online match between Shouzhuo and a 3D level player on KGS

23

2.4.4 Conclusion

Deep learning is a very powerful tool in terms of prediction. In computer-go, ResNet

shows it ability to predict the next move with high accuracy. Thus, it can be very strong if

combined with reinforcement learning for self-training.

24

REFERENCES

[1] D. E. V. Pires, T. L. Blundell, and D. B. Ascher, “pkCSM: Predicting small-molecule

pharmacokinetic and toxicity properties using graph-based signatures,” J. Med. Chem.,

vol. 58, no. 9, pp. 4066–4072, 2015.

[2] F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P. W. Lee, and Y. Tang, “AdmetSAR:

A comprehensive source and free tool for assessment of chemical ADMET properties,” J.

Chem. Inf. Model., vol. 52, no. 11, pp. 3099–3105, 2012.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J.

Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.

Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree

search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2012.

[6] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition,” in International Conference on Learning Representations, 2015.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 07–12–June, pp. 1–9, 2015.

[8] M. Lin, Q. Chen, and S. Yan, “Network In Network,” in International Conference on

Learning Representations, 2014, pp. 1–10.

25

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9908 LNCS, pp. 630–645, 2016.

[10] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” in Computing Research

Repository, 2015.

26

APPENDICES

Appendix A

Appendix A.1 Code for early stopping and AUC calculating

class CustomCallbacks(Callback):

 def __init__(self, filename="best_weight.hdf5", monitor='val_acc', pat

ience=10, test_input=None, test_label=None):

 super(Callback, self).__init__()

 self.filename = filename

 self.monitor = monitor

 self.patience = patience

 self.test_input=test_input

 self.test_label=test_label

 self.wait = 0

 if 'acc' in self.monitor or 'val_acc' in self.monitor:

 self.monitor_op = np.greater

 self.best = -np.Inf

 else:

 self.monitor_op = np.less

 self.best = np.Inf

 self.losses = []

 self.acc = []

 self.val_acc =[]

 self.val_losses=[]

 def on_epoch_end(self, epoch, logs={}):

 self.losses.append(logs.get('loss'))

 self.acc.append(logs.get('acc'))

 self.val_acc.append(logs.get('val_acc'))

 self.val_losses.append(logs.get('val_loss'))

 y_score=self.model.predict(X_test)

 y_score_get_value=[]

 for item in y_score:

 y_score_get_value.append(item[0])

 fpr, tpr, _ = roc_curve(y_test, y_score_get_value)

 val_auc=auc(fpr,tpr)

 print("acc: %0.3f" % logs.get('acc'),

 ", loss: %0.3f" % logs.get('loss'),

 ", val_acc: %0.3f" % logs.get('val_acc'),

 ", val_loss: %0.3f" % logs.get('val_loss'),

 ", val_auc: %0.3f" % val_auc)

 current = logs.get(self.monitor)

 if current is None:

 warnings.warn('Can save best model only with %s available, '

 'skipping.' % (self.monitor), RuntimeWar

ning)

27

 else:

 if self.monitor_op(current, self.best):

 print('Epoch %05d: %s improved from %0.5f to %0.5f,'

 ' saving model to %s'

 % (epoch, self.monitor, self.best,

 current, self.filename))

 self.best = current

 self.wait = 0

 self.model.save(self.filename, overwrite=True)

 else:

 print('Epoch %05d: %s did not improve' % (epoch, self.mon

itor))

 if self.wait >= self.patience:

 self.model.stop_training = True

 self.wait += 1

 def on_train_end(self, logs=None):

 if self.wait >= self.patience:

 print('Warning: early stopping')

 self.wait=0

 if 'acc' in self.monitor or 'val_acc' in self.monitor:

 self.monitor_op = np.greater

 self.best = -np.Inf

 else:

 self.monitor_op = np.less

 self.best = np.In

my_callbacks=CustomCallbacks(filename="CYP1A2_conv1.hdf5", monitor='val_ac

c', patience=np.Inf, test_input=X_test, test_label=y_test)

Appendix A.2 Code for model training

inputs = Input(shape=(maxlen,))

embedding_1=Embedding(input_dim=max_features,output_dim=50, input_length=m

axlen)(inputs)

dropout_1=Dropout(0.5)(embedding_1)

conv1d_kernel_size=[7,3,5]

conv1d_filters=[128,128,128]

my_globalmaxpoolings=[]

for i in range(0,len(conv1d_kernel_size)):

 conv1d_1=Conv1D(filters=conv1d_filters[i],

 kernel_size=conv1d_kernel_size[i],

 padding='valid',

 strides=1)(dropout_1)

 leakyrelu_1=LeakyReLU(0.3)(conv1d_1) #better than relu with 0.004 more

 accuracy...

 dropout_conv=Dropout(0.5)(leakyrelu_1)

 globalmaxpooling1d_1=GlobalMaxPooling1D()(leakyrelu_1)

 my_globalmaxpoolings.append(globalmaxpooling1d_1)

concatenate_1=Concatenate()(my_globalmaxpoolings)

28

#model.add(MaxPooling1D(pool_size=2))

dense_1=Dense(500)(concatenate_1)

dropout_2=Dropout(0.5)(dense_1)

leakyrelu_hidden=LeakyReLU(0.3)(dropout_2)

dense2=Dense(1)(leakyrelu_hidden)

prediction=Activation('sigmoid')(dense2)

model = Model(inputs=inputs, outputs=prediction)

adam=optimizers.Adam(lr=0.001, beta_1=0.99, beta_2=0.999, epsilon=1e-08, d

ecay=0.0)

model.compile(loss='binary_crossentropy',

 optimizer=adam,

 metrics=['accuracy'])

	DEEP LEARNING IN CHEMISTRY AND COMPUTER-GO
	Recommended Citation

	tmp.1531147183.pdf.EeETn

