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ABSTRACT 

 The prevalence of obesity has doubled worldwide since the 1980s, and having a high 

body mass index contributes to more deaths worldwide than being underweight.  Over the past 

20 years, consumption of calorie-dense foods has increased, and this is considered one of the 

major causes of the rapid rise in obesity.  Thus, understanding the neural control of food intake is 

important for the development of new and effective treatments of obesity.  Two important brain 

regions that regulate food intake are the hypothalamus and the mesocorticolimbic dopamine 

system.  The hypothalamus is essential for the homeostatic control of feeding and body weight, 

while the mesocorticolimbic dopamine system, also known as the reward system, is the primary 

circuit for reward and motivated behavior.  The reward system also regulates food intake and 



food reward, and there is increasing evidence that hypothalamic feeding-related neuropeptides 

alter dopamine neuron activity to affect feeding.  Nevertheless, how these neuropeptides interact 

with the reward system to regulate feeding is not fully understood.  For example, centrally 

delivered neurotensin and neuropeptide-Y (NPY) increase dopamine release in the nucleus 

accumbens, but cause opposite effects on food reward.  In addition, injection of the hypothalamic 

neuropeptides neurotensin, NPY, or alpha-melanocyte-stimulating hormone (-MSH) into the 

ventral tegmental area (VTA), where reward-related dopamine neurons are located, alters 

multiple aspects of feeding, but how these neuropeptides interact with the reward system to alter 

feeding at both the circuit and cellular levels is not fully understood.  In these studies, I have 

used whole cell patch-clamp electrophysiology in acute brain slices from mice to examine how 

neurotensin, -MSH, and NPY affect VTA dopamine neuron activity.  I have demonstrated that 

these neuropeptides use multiple mechanisms to alter VTA dopamine neuron activity, including 

both pre- and post-synaptic mechanisms.  Neurotensin and -MSH increased dopamine neuron 

activity, while NPY had both excitatory and inhibitory effects on dopamine neuron activity.  

Overall, these studies provide an important advancement in our understanding of the different 

mechanisms utilized by hypothalamic neuropeptides to alter VTA dopamine neuron activity and 

how hypothalamic neuropeptides interact with the mesocorticolimbic dopamine system to 

control food intake and food reward. 
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1 INTRODUCTION AND LITERATURE REVIEW  

Obesity is a worldwide epidemic and global health crisis that is on the rise.  Obesity 

rates have more than doubled worldwide since 19801,2.  Obesity and a high body mass index 

(BMI) are detrimental to one’s health.  A high BMI (overweight: BMI ≥25, obese: BMI ≥30) is 

a major risk factor for several diseases such as musculoskeletal disorders, diabetes mellitus, 

chronic kidney disease, stroke, cancer, and cardiovascular disease2.  Remarkably, being 

overweight or obese contributes to more deaths than being underweight worldwide1, and a high 

BMI contributed to 4 million deaths and a 120 million disability-adjusted life-years among 

adults around the world in 20152.  Obesity is not only a substantial health burden but also an 

economic burden.  An estimated $147 billion was spent on obesity related medical costs in the 

United States in 20083.  Thus, the global rise in BMI is a substantial problem. 

The rise in body weight over the last couple of decades is largely due to an increase in 

food consumption4-7.  The availability of food has increased over the past several decades, and 

calorie-dense foods such as chocolate, cakes, and chips are cheap and abundant4-7.  This has 

lead to an environment that promotes overeating and weight gain4-7.  Understanding the neural 

mechanisms that drive the over consumption of food is significantly important for the 

development of methods, policies, and treatments that can be used to prevent and reverse weight 

gain and obesity.  

Two biological systems that regulate food intake are the homeostatic energy system and 

the reward system.  The homeostatic system comprises hypothalamic and brainstem circuits, 

numerous neuropeptides, and hormonal gastrointestinal and fat signals that work together to 

control calorie intake and expenditure to maintain energy balance8.  Thus, proper function of the 

homeostatic energy system should prevent people from gaining weight, and yet in the U.S., 
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there are more overweight and obese people than people with a healthy BMI9-11.  In contrast to 

the homeostatic system, the reward system or mesocorticolimbic dopamine system, regulates 

feeding and body weight by reinforcing behaviors that result in food intake.  This especially 

holds true for intake of food that is high in fat and sugar, as these foods are highly rewarding 

and reinforcing.  It has been hypothesized that the reward system overrides the homeostatic 

system in an environment rich in rewarding calorie-dense foods, leading to a net positive of 

calories consumed over calories burned12.  Put simply, people are highly motivated to eat 

calorie-dense, sugary/fatty foods even as the homeostatic brain system signals for one to stop 

eating.  Thus, it is important to understand how the brain’s reward system regulates food intake, 

weight gain, and food reward-related behaviors and how the reward and homeostatic systems 

interact to regulate these behaviors.  The homeostatic control of energy balance encompasses 

numerous circuits, hormones, and neuropeptides, and although the homeostatic energy system is 

often considered independent of the reward system, the homeostatic energy system does interact 

with the reward system to control food intake and body weight.  Yet how these two systems 

interact is not completely understood.  Here I describe our studies testing how three distinct 

hypothalamic feeding neuropeptides alter the activity of mesocorticolimbic dopamine neurons 

to regulate food intake, body weight, and reward-related behaviors.  

 

1.1 Overview of the mesocorticolimbic dopamine system  

Dopamine is a key neurotransmitter that regulates many different behaviors and 

physiological processes including motor learning, incentive motivation, reward and 

reinforcement, learning, aversion, and food intake and body weight13-18.  Furthermore, 

disruptions in dopamine circuits are implicated in psychiatric disorders such as Parkinson’s 
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disease, schizophrenia, depression, and drug addiction, as well as obesity.  The two most 

studied populations of dopamine neurons that are involved in these disorders are the dopamine 

neurons of the substantia nigra pars compacta (SNc) and of the ventral tegmental area (VTA).  

These two populations of neurons are located in the midbrain, and the SNc laterally borders the 

VTA with some overlap between the two areas.  SNc dopamine neurons are part of the 

mesostriatal dopamine system, and predominantly regulate movement and motor coordination 

and project to dorsal striatum.  VTA dopamine neurons are part of the mesocorticolimbic 

dopamine system and predominantly regulate reward and reinforcement behavior and project to 

ventral striatum.  In addition, as mentioned above, the mesocorticolimbic dopamine system also 

regulates food intake, food reward, and body weight, so the studies described here examine how 

hypothalamic feeding-related neuropeptides specifically affect VTA dopamine neurons.   

The mesocorticolimbic dopamine system comprises not only dopamine neurons in the 

VTA but also the afferents inputs to the VTA and the projection targets of the dopamine 

neurons.  VTA dopamine neurons receive afferent inputs from numerous brain areas including 

but not limited to the lateral hypothalamus (LH), ventral pallidum, amygdala, nucleus 

accumbens (NAc), cortex, and dorsal raphe nucleus19,20.  In addition, dopamine neurons are 

innervated by local VTA inhibitory GABA neurons and excitatory glutamate neurons21-23.  VTA 

dopamine neurons send efferent projections to many brain regions such as the NAc, olfactory 

tubercle, hippocampus, amygdala, bed nucleus of the stria terminalis, and prefrontal cortex 

(PFC).  VTA GABA and glutamate neurons send long-range projections to both distinct and 

parallel dopamine neuron efferent sites24-27.  The mesocorticolimbic dopamine system is truly a 

complex circuit with broad connections. 
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The VTA is made up primarily of dopamine neurons (~55-65%), which are defined as 

neurons that express tyrosine hydroxylase, the enzyme for catecholamine production28,29.  The 

rest of the VTA is comprised of GABA and glutamate neurons. Approximately 20-35% are 

identified as GABA neurons and 2-3% as glutamate neurons28,30,31.  Interestingly, a small 

portion of VTA neurons co-release both glutamate and GABA32-34.  Dopamine neurons were 

once thought to be a uniform population, but recent studies show that the VTA contains a 

heterogeneous dopamine neuron population.  Distinct subpopulations of dopamine neurons have 

been identified by their power to control distinct behaviors and by a variety of distinct 

characteristics such as projection site, electrophysiological properties, pharmacological 

properties, and molecular markers16,17,35,36.  In addition, a subpopulation of VTA dopamine 

neurons co-releases GABA37,38, and another population co-releases glutamate39-41.  Thus, VTA 

dopamine neurons are not one distinct neuronal group but a mixture of multiple neuronal groups 

that express dopamine.   

1.1.1  The mesocorticolimbic dopamine system and reward behavior 

The role of dopamine in reward and reinforcement behavior is well established.  Our 

first knowledge of the brain circuitry regulating reward behavior came from Olds and Milner’s 

famous 1954 study demonstrating that rats will learn to lever press for electrical stimulation of 

specific brain regions (intracranial self-stimulation or ICSS)42.  Several studies in the 1970s 

revealed the importance of dopamine for the regulation of reward behavior as injection of 

dopamine receptor antagonists decreases ICSS in rats43-48.  After these initial studies, a detailed 

description of how dopamine regulates reward behavior soon emerged from a number of 

experiments (for review see14,15,18,49-51).   
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Dopamine acts as a salient signal or learning cue that reinforces or “stamps in” 

behaviors and responses that lead to rewards, and these learned behaviors are repeated until that 

behavior no longer leads to an obtained reward14,15,49.  Dopamine acts as a learning cue, because 

dopamine neuron activity and dopamine release increase in response to a reward.  Dopamine 

neurons fire tonically, but in response to an unexpected reward such as food, water, or sex 

dopamine neurons fire in bursts causing an increase in dopamine release14,15,18,49-51.  If a cue 

consistently predicts a reward, then the timing of dopamine neuron burst firing will shift to the 

cue predicting the reward18,50,51.  Dopamine neuron firing and dopamine release also increase if 

a reward is greater than predicted, but there is a decrease or pause in firing and dopamine 

release if an expected reward is less than predicted or not obtained18,50,51.  Thus, dopamine acts 

as a reward prediction error that encodes the deviation between what is predicted and what is 

actually obtained18,50,51.   

1.1.2 Dopamine neuron tonic and burst firing 

Grace and Bunny first characterized the activity states of dopamine neurons 35 years 

ago and identified three different activity states of midbrain dopamine neurons: silent and 

hyperpolarized, slow pacemaker firing (2-10 Hz)/irregular firing, and phasic burst firing52-58.  

These first studies were primarily conducted on anesthetized and unanesthetized paralyzed rats 

in vivo, and were later confirmed in unanesthetized behaving rats59,60.  The slow pacemaker 

firing or “tonic firing” of dopamine neurons causes tonic release of dopamine at efferent target 

sites, and burst firing causes a phasic increase in dopamine release61-63 which is triggered by 

rewards and cue-associated rewards18,50,51.  This phasic release of dopamine is what encodes the 

reward prediction error discussed above.  Since the first studies by Grace and Bunney 

illuminating the firing characteristic of dopamine neuron activity, extensive research has been 
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conducted aimed at understanding how dopamine neuron activity is controlled and how 

dopamine neurons transition from a tonic to a bursting state.  

Spontaneous pacemaker firing in VTA dopamine neurons is primarily dependent on two 

Na+ currents: a tetrodotoxin (TTX) insensitive Na+ leak current, and a TTX-sensitive voltage-

dependent Na+ current64,65.  In contrast, spontaneous pacemaker firing in SNc dopamine neurons 

is primarily dependent on Ca2+ currents and a Ca2+-activated K+ current, while pacemaker firing 

in VTA dopamine neurons is comparatively unaffected by Ca2+ channel blockers64-66.  The 

transition from slow pacemaker firing to burst firing is regulated by afferent inputs to dopamine 

neurons.  In fact, dopamine neurons in vitro fire at a slow pacemaker rate but do not burst fire, 

indicating the critical importance of afferent inputs for burst firing67,68.  Afferent inputs to 

dopamine neurons are critical for burst firing but do not act in isolation; rather, they interact 

with cellular conductances to generate bursts.  For example, Ca2+ is a key component for the 

generation of bursts, as chelating intracellular Ca2+ with EGTA has been shown to prevent burst 

firing, whereas intracellular injection of Ca2+ increases burst firing57.  It is hypothesized that 

Ca2+ conducted through excitatory NMDA receptors (NMDAR) and voltage-gated Ca2+ 

channels are key to generating bursts in VTA dopamine neurons57,69. 

Glutamatergic synaptic input to dopamine neurons is sufficient and necessary for burst 

firing.  For example, locally applied glutamate to midbrain dopamine neurons increases burst 

firing57, and central or intra-midbrain injected antagonists of fast ionotropic glutamate receptors 

abolishes burst firing70,71.  Previous work indicates that the glutamatergic inputs driving burst 

firing primarily originate from the PFC, pedunculopontine nucleus, and the subthalamic 

nucleus, as stimulation of these brain regions causes burst firing in midbrain dopamine 

neurons63,72-76.  Numerous pharmacological studies suggest that the ionotropic glutamate 
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receptor, NMDAR, is responsible for glutamate-induced burst firing.  Indeed, intra-midbrain 

NMDAR agonists increase bursting, whereas NMDAR antagonists decrease spontaneous and 

evoked bursting in vivo75,77-79.  In addition, genetic inactivation of NMDARs in midbrain 

dopamine neurons decreases burst firing80.  In contrast, agonists and antagonists to the 

ionotropic glutamate AMPA receptor (AMPAR) do not affect spontaneous or evoked burst 

firing in midbrain dopamine neurons75,78,79.  Nevertheless, AMPAR agonists do increase the 

firing rate of dopamine neurons78, and an increase in firing rate is highly correlated with burst 

firing57.  

GABAergic afferents are also an important regulator of dopamine neuron firing. 

Midbrain dopamine neurons are innervated by GABAergic neurons from the striatum, globus 

pallidus, rostromedial tegmental nucleus, ventral pallidum, and NAc19,81-85, as well as local 

GABAergic interneurons21,23.  Numerous pharmacological studies examining the role of GABA 

in regulating dopamine neuron firing have shown the importance of GABAergic synapses and 

GABA receptors.  GABA inhibits dopamine neurons through two receptors: fast ionotropic 

GABAA receptors (GABAAR), and slow metabotropic GABAB receptors (GABABR) that 

activate G-coupled inward rectifying potassium (GIRK) channels.  Midbrain application of 

GABAAR antagonists causes a shift from slow irregular/pacemaker firing to burst firing and 

increases the overall firing rate of dopamine neurons, while GABABR antagonists shift the 

number of dopamine neurons firing in a slow irregular pattern to a pacemaker-firing pattern86,87.  

In addition, removing a GABAAR conductance after applying a constant NMDAR and 

GABAAR conductance in vitro drives dopamine neuron burst firing, demonstrating that removal 

of GABAAR input can drive burst firing88.  In contrast, systemic and intra-midbrain injected 

GABABR agonists decrease firing rate and burst firing89-91, and GABAAR and GABABR 
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agonists block spontaneous tonic firing and NMDA-induced burst firing in dopamine neurons in 

vitro88,92,93.  Lastly, GABAergic transmission may also contribute to pauses in dopamine neuron 

burst firing in behaving animals69.  Pauses in firing occur in behaving animals when an expected 

reward is not obtained, and as dopamine neurons are abundantly innervated by GABAergic 

afferents, GABA is a likely candidate for mediating these pauses.  Indeed, increasing GABAAR 

conductance causes a pause in tonic dopamine neuron firing88.  However, a decrease in 

excitatory glutamate transmission may also contribute to dopamine neuron pauses69, as removal 

of NMDAR conductance also causes a pause in tonic firing88.  Thus, GABAergic afferents are 

an important regulator of dopamine neuron activity and burst firing. 

In addition to fast ionotropic glutamate and GABA receptors, dopamine neurons express 

slow metabotropic receptors such as the GABABR mentioned above and the metabotropic 

glutamate receptor (mGluR).  These slow acting metabotropic receptors also play a role in the 

regulation of dopamine neuron firing.  For example, along with the pauses in firing that occur in 

dopamine neurons in behaving animals, pauses also occur after spontaneous burst firing in vivo 

and evoked burst firing in vitro, and it is hypothesized that mGluRs mediate the pause following 

spontaneous in vivo and evoked in vitro bursts66,69,94.  Indeed, stimulation of midbrain 

glutamatergic afferents using a current pulse train protocol that mimics burst firing causes a 

slow acting inhibitory post-synaptic current (IPSC) in dopamine neurons that is mediated by 

mGluRs94.  This mGluR IPSC occurs because activation of mGluRs activates the PLC pathway, 

causing Ca2+ release from intracellular stores and subsequent activation of an inhibitory current 

mediated by small-conductance Ca2+-dependent K+ (sK) channels94.  Thus, glutamate activates 

ionotropic and metabotropic receptors causing dopamine neurons to burst fire, followed by 

mGluR induced-hyperpolarization and a pause in firing66,94.  In addition, activation of other 
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metabotropic receptors coupled to the PLC pathway can also cause sK channels to open through 

a rise in intracellular Ca2+ and thus may also mediate the pause following a burst66.   

Another important metabotropic receptor that regulates dopamine neuron activity is the 

dopamine D2 receptor (D2R).  Dopamine neuron firing causes local midbrain release of 

dopamine from the soma and dendrites of dopamine neurons95-99, and this somatodendritic 

release inhibits neighboring dopamine neurons through D2R mediated activation of GIRK 

channels98,100-102.  Thus, tonic dopamine neuron firing and dopamine release in the midbrain 

decreases the activity of dopamine neurons, and burst firing causes an even greater decrease in 

dopamine neuron activity.  Indeed, evoking dopamine release in vitro causes a D2R mediated 

IPSC and pause in tonic pacemaker firing in midbrain dopamine neurons98, and systemic 

injection of a D2R agonist decreases evoked dopamine release in the NAc in vivo103.  In 

contrast, systemic and midbrain injection of D2R antagonists increases the firing rate of 

midbrain dopamine neurons in vivo104,105.  It has also been hypothesized that D2R activation 

terminates bursts of action potentials and is responsible for the pause following spontaneous in 

vivo and evoked in vitro bursts in midbrain dopamine neurons98.  Indeed, evoking midbrain 

dopamine release causes a pause in dopamine neuron firing98, and inhibition of D2Rs abolishes 

spontaneous pauses in dopamine neuron firing in vitro106.  Thus, D2Rs are key regulators of 

dopamine neuron activity and dopamine release.  

1.1.3 Synaptic plasticity in VTA dopamine neurons  

The idea that dopamine neurons express experience-dependent plasticity was first 

supported by behavioral studies in animals repeatedly exposed to cocaine and amphetamine107.  

For example, animals repeatedly exposed to cocaine and amphetamine develop increased 

locomotor responses to these drugs known as behavioral sensitization, and intra-VTA injected 
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NMDAR antagonists prevent the development of cocaine induced locomotor sensitization in 

rats107,108.  In addition, systemically injected cocaine causes increased glutamate levels in the 

VTA109, and NMDAR antagonists block cocaine induced conditioned place preference in 

rats110.  Taken together, these early studies (and numerous others not mentioned here) suggested 

that plasticity at excitatory synapses on VTA dopamine neurons is important for the 

development of behavioral sensitization to drugs.   

The first study to show that VTA dopamine neurons express plasticity was by Bonci and 

Malenka in 1999111.  They showed that NMDAR dependent long-term potentiation (LTP) can 

be induced at excitatory glutamate synapses on VTA dopamine neurons using a stimulus pairing 

protocol used to induce LTP in CA1 hippocampal neurons111.  Shortly thereafter, Ungless et al. 

(2001) demonstrated that excitatory synapses at VTA dopamine neurons are strengthened in 

rodents after a single exposure to cocaine112.  Rodents exposed to cocaine exhibit a greater ratio 

of AMPAR to NMDAR excitatory post-synaptic currents (EPSCs) and larger AMPAR currents 

in VTA dopamine neurons compared to saline treated controls112.  This cocaine-induced 

plasticity is due to insertion of AMPARs lacking the GLuA2 subunit at the post-synaptic 

membrane113.  Midbrain dopamine neurons also exhibit LTP of NMDAR-mediated currents, 

independent of AMPARs currents114-117.  Corticotropin-releasing factor potentiates NMDAR 

currents117, and applying a train of afferent stimulation that is paired with evoked post-synaptic 

burst firing also potentiates NMDAR currents in dopamine neurons114.  This form of electrically 

evoked NMDAR LTP is dependent on enhancement of burst-induced Ca2+ signals114.  Ca2+ 

signals are enhanced by activation of PLC coupled metabotropic receptors (such as mGluRs) 

and the subsequent release of Ca2+ from intracellular stores114.  Interestingly, VTA dopamine 

neurons are less sensitive to NMDAR LTP than SNc dopamine neurons, but NMDAR LTP in 
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VTA dopamine neurons is sensitized after exposure to amphetamine or social isolation through 

a PKA dependent mechanism115,116.  Thus, glutamatergic synapses on VTA dopamine neurons 

exhibit different forms of LTP. 

Glutamatergic synapses on VTA dopamine neurons also exhibit long-term depression 

(LTD), and there are two known mechanisms of this glutamatergic LTD.  Stimulating afferents 

in the VTA at 1 Hz repeatedly with small depolarization triggers Ca2+-dependent LTD at 

excitatory synapses on dopamine neurons118,119.  However, this form of LTD is not dependent 

on NMDARs or mGluRs, suggesting that Ca2+ most likely enters the cell through voltage-gated 

Ca2+ channels118,119.  Applying brief bursts of afferent stimulation can also evoke LTD, but this 

form of LTD is dependent on activation of mGluRs120.  mGluR dependent LTD occurs through 

an exchange of GluA2-lacking calcium permeable AMPARs for GluA2-containing calcium 

impermeable AMPARs120.  Thus, LTD occurs at glutamatergic synapses on VTA dopamine 

neurons through different mechanisms. 

GABAergic synapses on VTA dopamine neurons also exhibit plasticity.  For example, 

guinea pigs chronically treated with morphine exhibit potentiation of GABAergic synaptic 

transmission at VTA dopamine neurons during morphine withdrawal121, and a single exposure 

to ethanol has also been shown to potentiate GABAergic synaptic transmission122.  In addition, 

repeated cocaine exposure depresses GABAergic synaptic transmission at VTA dopamine 

neurons123.  GABAergic synaptic plasticity at VTA dopamine neurons can also be induced in 

vitro.  For example, GABAergic transmission is depressed after brain slices containing the VTA 

are exposed to opioids23,121, and high frequency stimulation of VTA afferents also induces LTP 

of GABAergic synapses through a pre-synaptic increase in GABA release124.  Interestingly, 

although this form of LTP occurs through a pre-synaptic mechanism, it is dependent on post-
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synaptic Ca2+, NMDARs, and generation of nitric oxide, a retrograde signal124.  This form of 

GABAergic LTP is blocked after in vivo exposure to morphine124, and after exposure to 

cocaine, nicotine, or a stressful stimulus in rats125.  Thus, GABAergic synapses on VTA 

dopamine neurons can undergo both LTP and LTD through different mechanisms.  

D2R and GABAB IPSCs also exhibit plasticity in midbrain dopamine neurons.  As 

mentioned above, D2R and GABABR activation causes an IPSC by opening GIRK channels in 

VTA dopamine neurons.  Low frequency electrical stimulation in the VTA/SNc causes LTD of 

stimulus evoked D2R IPSCs in vitro126.  Interestingly, low frequency stimulation also causes a 

depression of evoked GABABR IPSCs, but only a short-term depression as the IPSC eventually 

recovers126.  LTD of D2R IPSCs is dependent on intracellular Ca2+ and occurs through 

desensitization of D2Rs126.  The IPSCs generated by GABA acting on GABABRs and dopamine 

acting on D2Rs can also be potentiated, and unlike LTD of the D2R IPSC, this form of 

plasticity does not affect the D2R but rather the GIRK channels activated by D2Rs and 

GABABRs127.  Plasticity of GIRK channels is dependent on the firing state of VTA dopamine 

neurons127.  High-frequency stimulation that mimics burst firing or depolarization in VTA 

dopamine neurons potentiates GABABR and D2R currents, whereas stimulating dopamine 

neurons with a frequency that mimics tonic firing decreases GABABR currents127.  Taken 

together, it is apparent that dopamine neurons express plasticity at many different synapses, and 

many different synaptic currents exhibit LTP and LTD through both pre- and postsynaptic 

mechanisms.  
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1.2 The mesocorticolimbic dopamine system and feeding  

There are many factors that control when we eat, how much we eat, and what we eat.  

For example, internal metabolic signals from the gut signal one’s energy state so that food 

intake and metabolism are adjusted based on one’s energy demands.  Nevertheless, many other 

factors besides energy state trigger food intake and control the types of food eaten; stress, 

environmental cues, social factors, and food availability can all play a role.  Life experience will 

tell one that this is true, but this has also been demonstrated experimentally.  Satiated rats feed 

in response to a cue previously associated with food, demonstrating that the energy state of the 

animal is not the only factor influencing the initiation of feeding128.  Satiated rats will also 

endure noxious cold or foot shock to eat highly palatable food such as cake, meat pâté, soda, 

peanut butter, or candy, even when standard chow is freely available in a neutral 

environment129,130.  Thus, animals are highly motivated to obtain palatable food, and dopamine 

is essential for reward and reinforcement behavior.  For example, food deprived rats will lever 

press for palatable food even when standard chow is available, but will consume standard chow 

rather than lever press for the more palatable food when systemically treated with a dopamine 

D1 receptor (D1R) antagonist, or when a D1R or D2R antagonist is injected into the NAc131,132.  

Overall, it is clear that many factors control when to eat and what is eaten, and the 

mesocorticolimbic dopamine system is critical for reinforcement behavior and the motivation to 

work for food.   

There are many studies showing the importance of dopamine not only for food 

reinforcement behavior but also for feeding.  Indeed, dopamine deficient mice are aphagic and 

will starve to death by 4 weeks of age if they are not treated with L-DOPA, a dopamine 

precursor133, and peripheral injection of the D2R antagonist pimozide decreases free feeding and 
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food reward in rats134,135.  In addition, free feeding and lever pressing for food increase 

dopamine release in the NAc in food-restricted rats136-138.  Similarly, dopamine injection into 

the NAc increases food and water intake, while D2R antagonism blocks dopamine induced 

feeding139, and injecting low doses of amphetamine into the accumbens to stimulate dopamine 

release increases food intake, while higher doses decrease food intake140.  The importance of the 

reward system in feeding behavior has also been demonstrated in humans; for example, 

Parkinson’s patients treated with dopamine agonists develop compulsive eating habits141, and in 

human imaging studies there is an increase in activity in brain reward areas in response to 

pictures of food, and an even greater response to pictures of high-calorie palatable foods 

compared to low-calorie foods142.  In addition, striatal D2R levels are lower in obese individuals 

compared to lean individuals143, and brain reward areas of obese individuals show greater 

increases in activity in response to pictures of palatable food than in lean individuals144-147.  

Interestingly, there is decreased activity in brain reward areas in obese individuals in response 

to food consumption compared to lean individuals144, and weight gain in women causes 

decreased activity in the striatum after palatable food consumption148.  Thus, the 

mesocorticolimbic dopamine system is clearly an important regulator of feeding behavior, and it 

is essential to understand how the reward system regulates feeding, food reward, and weight 

gain, as the circuitry and function of the reward system appears to be altered in obese 

individuals.  

1.2.1 Homeostatic regulators of energy balance and interactions with the mesocorticolimbic 

dopamine system 

The homeostatic control of energy balance encompasses neural circuits, neuropeptides, 

and hormonal adipose and gastrointestinal signals that coordinate to balance energy intake with 



15 

energy expenditure to maintain energy equilibrium8.  Thus, the homeostatic system increases 

food intake and decreases metabolic rate during an energy deficit and decreases food intake and 

increase metabolic rate during an energy surplus.  Previous studies suggest that the homeostatic 

energy system interacts with the mesocorticolimbic dopamine system to regulate food intake 

and body weight.  For example, the activity of brain reward areas and dopamine release in the 

NAc and VTA change with energy state.  Indeed, chronically food restricted underweight rats 

have lower basal dopamine levels in the NAc149,150.  Food restriction increases dopamine release 

in the NAc during feeding151-153 and during a sucrose binge in rats154.  In addition, food 

restriction increases the effects of drugs of abuse155, the locomotor response to dopamine 

receptor agonists156,157, and operant responding for cocaine158 and food159.  Acute food 

restriction also increases evoked somatodendritic release of dopamine in the VTA160, and 

chronic food restriction increases burst firing and glutamatergic transmission in SNc dopamine 

neurons161.  In human imaging studies, fasting increases the response of brain reward areas to 

pictures of highly palatable food and the subjective appeal of highly palatable food162.  Thus, 

the reward system is affected by energy state, which may be due to homeostatic regulators of 

energy balance acting on the mesocorticolimbic dopamine system.   

The hypothalamus is one of the primary brain areas of the homeostatic energy system 

that integrates peripheral satiety signals to regulate energy intake and body weight8,163.  The 

hypothalamus is composed of distinct nuclei including the arcuate nucleus, ventromedial 

nucleus, dorsomedial nucleus, LH, and paraventricular nucleus, among others8,163.  There is 

extensive evidence that the hypothalamus and mesocorticolimbic dopamine system interact to 

regulate food intake and food reward.  Neurons of different hypothalamic nuclei project to brain 

areas of the reward system and vice versa19,20,163-165.  For example, the LH is a key interface 
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connecting the hypothalamus with the mesocorticolimbic dopamine system, because the LH 

heavily innervates the mesocorticolimbic dopamine system and is connected to other 

hypothalamic nuclei163,166.  The LH is also an important regulator of food intake and reward 

behavior163,166.  Indeed, stimulation of the LH elicits feeding and causes an increase in 

dopamine release in the NAc136, and peripheral injection of a dopamine receptor antagonist 

blocks LH stimulated feeding167.  Thus, the LH may serve as a key connection between the 

circuits controlling homeostatic and reward feeding.  

1.2.2 Hypothalamic feeding-related neuropeptides and interactions with the 

mesocorticolimbic dopamine system 

Multiple classes of neurons in different hypothalamic regions produce orexigenic and 

anorexigenic neuropeptides that regulate energy balance8,163,168.  Evidence suggests that these 

hypothalamic feeding-related neuropeptides can interact with the mesocorticolimbic dopamine 

system to regulate food intake and food reward168.  For example, VTA dopamine neurons 

express receptors for many of these hypothalamic neuropeptides, and numerous studies have 

shown that hypothalamic neuropeptides modulate VTA dopamine neuron activity through 

multiple mechanisms, such as directly activating currents in dopamine neurons and/or by 

modulating excitatory and inhibitory inputs to dopamine neurons168.  In addition, intra-VTA or 

NAc injection of several hypothalamic feeding-related neuropeptides alters food intake, food 

reward, and other feeding-related behaviors168.  The interaction between hypothalamic feeding 

neuropeptides and the mesocorticolimbic dopamine system may be an important linkage 

between energy state and the motivational state of an animal.  Nevertheless, how hypothalamic 

neuropeptides and the reward system interact to regulate feeding and food reward is not fully 

understood.  For example, centrally injected neurotensin or neuropeptide-Y (NPY) both 
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increase dopamine release in the NAc, but cause opposite effects on the motivation for food168.  

In addition, injection of the hypothalamic neuropeptides neurotensin, alpha-melanocyte-

stimulating hormone (-MSH), or NPY into the VTA alters multiple aspects of feeding169-175, 

but how these neuropeptides interact with the mesocorticolimbic dopamine system to alter food 

intake, food reward, and weight gain at both the circuit and cellular levels is not fully 

understood.  Thus, in these studies I have tested how three distinct hypothalamic feeding-related 

neuropeptides, neurotensin, α-MSH, and NPY, affect VTA dopamine neuron activity to further 

elucidate how these peptides interact with the mesocorticolimbic dopamine system to regulate 

feeding and other dopamine dependent behaviors. 

1.2.2.1 Neurotensin  

Neurotensin is a tricapeptide that is widely expressed in both the central and peripheral 

nervous systems.  Neurotensin regulates many different physiological processes and behaviors 

including analgesia, blood pressure, body temperature, locomotor behavior, drinking, feeding, 

and drug intake.  There is substantial evidence that neurotensin interacts with the VTA to 

regulate dopamine-dependent behaviors.  For example, neurotensin expressing neurons project 

to the VTA, primarily from the LH and the medial and lateral preoptic areas,176-178, neurotensin 

positive fibers heavily innervate midbrain dopamine neurons179,180, and VTA neurons express 

neurotensin receptors181-187.  Intra-VTA neurotensin increases locomotor activity188,189, induces 

conditioned place preference190,191, and rats will operant respond for intra-VTA infusions of 

neurotensin192.  In addition, activation of neurotensin LH neurons increases locomotor activity 

and dopamine release in the NAc193.   

Extensive evidence shows neurotensin regulates food intake and food reward.  Central 

and peripheral injection of neurotensin decreases food intake in both fasted and fed rodents194-
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196, and neurotensin antagonism or knockout of the neurotensin receptor NTS1 blocks the 

anorectic effects of leptin197,198.  Intra-VTA injection of neurotensin increases latency to eat, 

reduces food intake, and reduces operant responding for food169-171.  Interestingly, ablation of 

VTA NTS1 receptor expressing neurons in adult mice reduces body weight but increases food 

intake compared to control mice187.  Previous studies suggest neurotensin signaling in the VTA 

modulates feeding and other dopamine dependent behaviors through an increase in dopamine 

neuron activity and dopamine release188,199-207.  However, how neurotensin increases dopamine 

neuron activity is not fully understood.   

1.2.2.2 NPY  

NPY is abundantly expressed throughout the body and central nervous systems.  NPY 

regulates many different behaviors and physiological process including anxiety, pain, stress, 

cardiovascular function, circadian rhythms, and feeding; in addition, NPY has also been 

implicated in many diseases including obesity, depression, and alcoholism208.  NPY is 

expressed centrally in the hippocampus, amygdala, locus coeruleus, NAc, cerebral cortex, and 

hypothalamus209,210.  Within the hypothalamus, NPY is most abundantly expressed in agouti-

related protein/NPY (AgRP/NPY) neurons of the arcuate nucleus209,210.  NPY is a strong 

orexigenic neuropeptide and regulator of body weight.  Indeed, central administration of NPY 

or activation of AgRP/NPY neurons causes robust feeding in rodents211-213.  In addition, 

ablation of AgRP/NPY neurons reduces food intake and body weight214,215, and NPY knockout 

decreases fasting-induced feeding216.  Substantial evidence suggests that NPY also interacts 

with VTA neurons to affect feeding.  For example, intra-VTA NPY increases motivation for 

food174.  In addition, NPY receptors are expressed in the VTA217,218, and NPY decreases the 
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firing rate of VTA neurons217.  However, how NPY decreases VTA dopamine neuron activity is 

unknown.  

1.2.2.3 -MSH 

-MSH is a peptide hormone that regulates multiple physiological functions throughout 

the body including pigmentation, inflammation, pain, and sexual arousal.  -MSH is also an 

anorexigenic neuropeptide and an important regulator of energy homeostasis and body weight.  

Within the brain, -MSH is found in pro-opiomelanocortin (POMC) expressing neurons of the 

arcuate nucleus of the hypothalamus and is a derivative of the propeptide POMC.  The central 

actions of α-MSH (as well as β- and γ-MSH) are mediated by the centrally expressed 

melanocortin receptors, melanocortin-3 receptor (MC3R) and melanocortin-4 receptor 

(MC4R)165.  Collectively, α-, β-, and γ-MSH from POMC neurons, MC3/4Rs, and AgRP (an 

inverse agonist to the MC3/4Rs) from AgRP/NPY neurons make up the melanocortin system165.  

Numerous studies have shown the importance of the melanocortin system and -MSH for the 

homeostatic regulation of energy balance.  For example, activation of POMC neurons or 

injection of MC3/4R agonists suppresses food intake211,219,220, and knockout of the MC3/4Rs is 

associated with obesity, increased fat mass, and reduced activity221.  In addition, there is 

evidence that -MSH interacts with VTA neurons to regulate food intake, food reward, and 

other dopamine-dependent behaviors.  For example, POMC neurons project to the VTA222, and 

MC3/4Rs are expressed in the VTA223-226, although the literature indicates that MC3Rs are the 

primary melanocortin receptor expressed in the VTA with little expression of MC4Rs223,225,226.  

Intra-VTA -MSH increases grooming, rearing, and locomotor behavior227-230, and intra-VTA 

MC4R agonist decreases ethanol intake231.  In addition, we previously showed that intra-VTA 

MTII (-MSH analog) decreases food and sucrose intake and operant responding for sucrose 
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pellets, while intra-VTA SHU9119 (MC3/4R antagonist) increases food intake and operant 

responding for sucrose pellets172,173,175.  Chronic blockage of MC3/4Rs with SHU9119 also 

increases body weight172.  Intra-VTA -MSH increases dopamine turnover in the NAc, 

suggesting that -MSH modulates food intake and dopamine-dependent behaviors through an 

increase in dopamine neuron activity228-230,232,233.  However, the cellular mechanism underlying 

the effect of intra-VTA MC3/4R agonists on food intake and reward behavior is unknown.  

 

1.3 Summary of Introduction 

Overall, the neural control of food intake and body weight is not fully understood.  

Determining the neural mechanisms of food intake is crucial for developing new and effective 

treatments for weight gain and obesity, as the global rise in obesity has largely been contributed 

to increased food consumption.  Presented here are two important central systems that regulate 

food intake and body weight, the hypothalamus and the mesocorticolimbic dopamine system.  

The hypothalamus primarily regulates homeostatic feeding while the mesocorticolimbic 

dopamine system primarily regulates reward-based feeding.  Thus, the hypothalamus and 

reward system are often studied independently of one another; yet substantial evidence suggest 

that they do interact to regulate food intake and food reward.  Thus, I describe here our studies 

testing how the hypothalamic feeding-related neuropeptides neurotensin, NPY, and, -MSH 

regulate VTA dopamine neuron activity to advance our understanding of how the hypothalamus 

and mesocorticolimbic dopamine system interact to regulate food intake and food reward.  
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2 OVERALL MATERIALS AND METHODS 

For the below experiments I used whole-cell patch clamp and loose-cell attached 

electrophysiology in brain slices containing the VTA from mice160,234-236 to test how 

hypothalamic neuropeptides affect dopamine neuron activity.  Electrophysiological recordings 

were collected using an Axon multiclamp 700B microelectrode amplifier and Axograph 

software160,234,236.  Putative dopamine neurons were identified by their location relative to the 

medial terminal nucleus of the accessory optic tract, presence of hyperpolarization-activated 

cation currents, spontaneous slow pacemaker firing (≤ 10 Hz), broad action potential waveform 

(≥ 1.2 ms), and sensitivity to dopamine68,237-240.  Data were stored and analyzed using Axograph 

X (v1.3.5), LabChart (v7.3.6; ADInstruments), and Excel (v14.0; Microsoft Corporation) 

software.  Statistics were calculated using SigmaStat (v11.0; Systat Software, Inc.). 
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K. Stuhrman, A.G. Roseberry (2015) Neurotensin inhibits both dopamine- and GABA-mediated 

inhibition of ventral tegmental area dopamine neurons. Journal of Neurophysiology, 114(3): 

1734-45  
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3 NEUROTENSIN INHIBITS BOTH DOPAMINE AND GABA MEDIATED 

INHIBITION OF VENTRAL TEGMENTAL AREA DOPAMINE NEURONS 

 

3.1 Abstract  

Dopamine is an essential neurotransmitter that plays an important role in a number of 

different physiological processes and disorders.  There is substantial evidence that the 

neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate 

dopamine neuron activity.  In these studies we have used whole-cell patch clamp 

electrophysiology in brain slices from mice to examine how neurotensin regulates dopamine 

neuron activity by examining the effect of neurotensin on the inhibitory post-synaptic current 

generated by somatodendritic dopamine release (D2R IPSC) in ventral tegmental area (VTA) 

dopamine neurons.  Neurotensin inhibited the D2R IPSC and activated an inward current in 

VTA dopamine neurons that appeared to be at least partially mediated by activation of a 

transient receptor potential C-type channel.  Neither the inward current nor the inhibition of the 

D2R IPSC was affected by blocking PKC or calcium release from intracellular stores, and the 

inhibition of the D2R IPSC was greater with neurotensin compared to activation of other Gq-

coupled receptors.  Interestingly, the effects of neurotensin were not specific to D2R signaling 

as neurotensin also inhibited GABAB inhibitory post-synaptic currents in VTA dopamine 

neurons.  Finally, the effects of neurotensin were significantly larger when intracellular Ca2+ 

was strongly buffered, suggesting that reduced intracellular calcium facilitates these effects.  

Overall, these results suggest that neurotensin may inhibit the D2R and GABAB IPSCs 

downstream of receptor activation, potentially through regulation of G-protein coupled inwardly 
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rectifying potassium channels.  These studies provide an important advance in our 

understanding of dopamine neuron activity and how it is controlled by neurotensin.  

 

3.2 Introduction 

Dopamine (DA) is an essential neurotransmitter involved in many different behaviors 

including motor behavior, incentive motivation, reward and reinforcement, learning, memory, 

drug intake, and habit formation15, and disruptions in DA signaling have been implicated in 

many disorders such as drug addiction, obesity, Parkinson’s disease, and 

schizophrenia13,58,164,241,242.  Most DA producing neurons are found in the ventral tegmental area 

(VTA) and the substantia nigra pars compacta (SNc) of the midbrain15.  At rest VTA/SNc DA 

neurons fire tonically (2-10 Hz) causing a baseline low level of DA at efferent target sites, but 

in response to a reward DA neurons fire in bursts causing phasic increases in DA release58,66,69.  

Phasic increases in DA release at efferent target sites are thought to be a salient signal and 

learning cue58,66,69.  DA burst firing is primarily controlled by glutamatergic afferent inputs, but 

DA neuron activity can also be modulated by other neurotransmitters and neuropeptides acting 

either directly on DA neurons or indirectly through regulation of GABAergic or glutamatergic 

inputs to DA neurons58,66,69.  Characterizing how DA neuron activity is regulated is important 

for understanding the function of DA under normal and pathological conditions.    

In addition to releasing DA from their axon terminals, DA neurons release DA locally 

within the VTA/SNc from their soma and dendrites95-99.  This somatodendritic DA release 

inhibits neighboring DA neurons through dopamine D2 receptor (D2R) mediated activation of 

G-coupled inward rectifying potassium (GIRK) channels98,100-102.  D2Rs in VTA DA neurons 

regulate DA neuron activity and also regulate DA mediated behaviors.  For example, injection 
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of quinpirole, a D2R agonist, directly into the VTA causes conditioned place aversion, blocks 

food induced conditioned place preference, decreases food intake, and decreases cocaine-

induced reinstatement243,244.  Furthermore, selective knockout of autoreceptor D2Rs within 

midbrain DA neurons causes increased motor activity to a novel environment, increased food 

self-administration, and increased responses to cocaine such as increased locomotor activity and 

conditioned place preference compared to wild type mice245,246.  In addition, DA neuron burst 

firing is followed by a pause, and it has been proposed that D2R mediated inhibition terminates 

bursts of action potentials and is responsible for the pause following burst firing98.  Thus, this 

autoinhibitory D2R signaling in the VTA plays an important role in the regulation of DA 

activity and DA mediated behaviors.  

Neurotensin is a tricapeptide that was first isolated and characterized from bovine 

hypothalamus247, and is widely expressed in both the central and peripheral nervous systems.  

The actions of neurotensin are mediated by three known neurotensin receptors: NTS1, NTS2, 

and NTS3 (for review see248).  There is abundant evidence that neurotensin interacts with the 

DA system (for review see184), and dysregulation of these interactions has been proposed to be 

involved in pathologies such as schizophrenia, drug abuse, and Parkinson’s disease184,249-251.  

Fibers containing neurotensin heavily innervate midbrain DA neurons179,180, and DA neurons of 

the VTA and SNc express neurotensin receptors, primarily the NTS1 receptor181-186.  

Furthermore, D2Rs and NTS1 receptors have been shown to form heteromers in heterologous 

expression systems, which resulted in a decrease in D2R agonist binding and decreases in D2R 

signaling after treatment with neurotensin252,253.  Previous research has shown that neurotensin 

modifies midbrain DA neuron activity through two NTS1 receptor dependent mechanisms: 

increased DA neuron firing through activation of a non-selective cation channel199-204 and a 
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reduction in the inhibition of firing caused by D2R activation201,202,204,254-256.  The majority of 

evidence suggests that the effects of neurotensin on DA neurons occur through activation of 

signaling pathways downstream of Gq-proteins, specifically through PKC, IP3, and 

calcium201,203,257-259, although neurotensin has also been reported to affect DA neuron activity 

through a PKA dependent mechanism256.  In these studies we sought to examine the 

mechanisms by which neurotensin reduces the D2R-mediated inhibition of DA neuron activity 

by testing the hypothesis that neurotensin inhibits the D2R-mediated inhibitory post-synaptic 

current (D2R IPSC)98 that occurs in response to the local, somatodendritic release of DA within 

the VTA. 

 

3.3 Materials and Methods 

Animals: Male C57BL/6J male mice (5-12 weeks old) purchased from The Jackson 

Laboratories were used in all experiments.  All protocols and procedures were approved by the 

Institutional Animal Care and Use Committee at Georgia State University, and conformed to the 

NIH Guide for the Care and Use of Laboratory Animals.  

Slice preparation and Electrophysiology: Acute brain slices were prepared as previously 

described235.  Briefly, adult male mice were anesthetized with isofluorane and decapitated.  The 

brain was then removed and placed in carbogen (95% O2 and 5% CO2) saturated ice-cold 

artificial cerebral spinal fluid (aCSF), containing (in mM) 126 NaCl, 2.5 KCl, 2.4 CaCl2, 1.2 

NaH2PO4, 1.2 MgCl2, 11.1 glucose, and 21.4 NaHCO3.  A brain block containing the VTA was 

made, and pseudo-horizontal sections (220 M) were cut with a vibrating blade microtome.  

Slices were then incubated in aCSF (~35C) containing 10 M MK-801 [(+)-5-methyl-10, 11-

dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] for at least 30 minutes before 
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recording.  Slices were placed in a recording chamber and perfused with carbogen-saturated 

aCSF at a flow rate of ~ 1-2 ml/min.  Whole-cell recordings were made using an Axon 

multiclamp 700B microelectrode amplifier and Axograph software.  Putative DA neurons were 

identified by their location relative to the medial terminal nucleus of the accessory optic tract, 

the presence of hyperpolarization-activated cation currents (H-current), the presence of 

spontaneous pacemaker firing, and the sensitivity to DA237.  Although recent studies have raised 

questions on the utility of using these measures to identify VTA DA neurons29, the 

characteristics described above have been widely used in electrophysiological studies on DA 

neurons to identify DA neurons within the VTA98,235,254,258,260. 

Electrodes (2.0-3.0 M) were filled with a potassium gluconate (KGluconate) based 

internal solution containing (in mM) 128 KGluconate, 10 NaCl, 1 MgCl2, 10 HEPES, 10 

BAPTA, 2 ATP, 0.3 GTP, and 10 creatine phosphate.  For the experiments testing the effects of 

neurotensin under reduced calcium buffering conditions, low-calcium buffering potassium 

methyl sulfate (KMeSO4) or K-Gluconate based internal solutions were used containing:  (in 

mM) 115 KMeSO4, 20 NaCl, 1 MgCl2, 10 HEPES, 0.1 EGTA, 2 ATP, 0.3 GTP, and 10 creatine 

phosphate, or (in mM) 128 KGluconate, 10 NaCl, 1 MgCl2, 10 HEPES, 0.1 EGTA, 2 ATP, 0.3 

GTP, and 10 creatine phosphate.  No differences were observed between these two low calcium 

buffering internal solutions, so experiments using these two different internal solutions were 

pooled.  Series resistance values were approximately ~ 3-15 MΩ.  If the series resistance 

increased by more than 20% or if the IPSC or holding current were unstable in any of the 

experiments, the experiment was terminated and excluded from analysis.  Neurons were voltage 

clamped at -60 mV for all experiments, and D2R IPSCs and GABAB IPSCs were evoked using 

a bipolar stimulating electrode placed 100-300 M posterior to the recorded cell.  D2R IPSCs 
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were evoked with 5-stimuli (0.5 ms) at 40 Hz, and GABAB IPSCs were evoked with 6-stimuli 

(0.3 ms) at 50 Hz.  D2R IPSCs were also evoked using the iontophoretic application of DA.  

DA was applied iontophoretically through a ~ 70-100 M glass pipette filled with 1 M DA and 

ejected as a cation with a single pulse (10 nA, 25 ms).  Leak of DA from the pipette was 

prevented with a constant negative back current (2 nA).  To isolate D2R IPSCs, picrotoxin (100 

M), CGP 55845 (0.5 M), and DNQX (10 M) were included in the perfusion solution to 

block GABAA, GABAB, and AMPA receptors, respectively.  GABAB IPSCs were isolated by 

including sulpiride (200 nM), picrotoxin (100 M), and DNQX (10 M) to block D2R, 

GABAA, and AMPA receptors, respectively.  The peak amplitude of all IPSCs was measured 

from baseline and calculated as the mean current 30 ms before and after the peak IPSC 

amplitude.  For all experiments cells were held for 10 minutes prior to drug application to allow 

for diffusion of the internal solution into the cell.  For the experiments examining muscarinic 

acetylcholine receptor induced currents, the nicotinic receptor antagonist, mecamylamine (30 

M), was included both before and during application of acetylcholine.  To determine the 

voltage current relationship and reversal potential of the neurotensin current, voltage ramps 

were applied (-120 mV to +40 mV at 160 mV s-1 or -120 mV to +20 mV at 140 mV s-1) in the 

presence of TTX. 

Drugs: The 8-13 active fragment of neurotensin (referred to as neurotensin) was used in 

all experiments.  Neurotensin (8-13) was purchased from Bachem Americas Inc. (Torrance, CA, 

USA).  CGP 55845, SKF 96365, cyclopiazonic acid, and DHPG were purchased from Tocris 

Biosciences (Minneapolis, MN, USA).  Chelerythrine was purchased from Sigma Aldrich (St. 

Louis, MO, USA).  Mecamylamine and acetylcholine were generous gifts from Dr. Chun 

Jiang’s lab.  All other reagents were from common commercial sources. 
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Data Analysis and Statistics: Data are represented as the mean +/- SEM unless otherwise 

noted.  Data were analyzed using Axograph X (v1.3.5), LabChart (v7.3.6; ADInstruments), and 

Excel (v14.0; Microsoft Corporation) software.  Statistics were calculated using SigmaStat 

(v11.0; Systat Software, Inc.).  EC50 values were calculated using GraphPad Prism (v6.0f; 

GraphPad Software, Inc.).  Pearson’s correlation coefficient was used to calculate correlation.  

All data were initially tested for normality using the Shapiro-Wilk test and were then analyzed 

with Student’s t-tests, Mann-Whitney U tests, ANOVAs, or a Kruskal-Wallis One Way 

ANOVA on ranks as appropriate with a significance level of p<0.05 set a priori.  

 

3.4 Results 

We initially examined how neurotensin affects DA neuron activity by assessing both the 

inward current activated by neurotensin and its ability to affect the inhibitory current generated 

by somatodendritic DA release in the VTA (D2R IPSC)98.  Neurotensin dose-dependently 

activated an inward current in DA neurons and inhibited the D2R IPSC (Fig. 3.1A-C).  

Neurotensin also caused an increase in noise at all doses tested (Fig. 3.1C).  The EC50 values of 

the effects of neurotensin on VTA DA neurons were 208.7 nM for the inward current and 4.38 

nM for the inhibition of the D2R IPSC (Fig. 3.1A-B).  The inhibition of the D2R IPSC 

positively correlated with the magnitude of the inward current (r=0.672, p=0.0006, Fig. 3.1D), 

suggesting that neurotensin may activate the inward current and inhibit the D2R IPSC in VTA 

DA neurons through a common mechanism.   

The timing of the activation of the inward current and the inhibition of the D2R IPSC 

differed however.  The inward current caused by 100 nM neurotensin reached its peak quickly, 

whereas the onset and peak of the inhibition of the D2R IPSC were delayed compared to the 
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inward current (Fig. 3.2A-C).  The washout and recovery of the effects of neurotensin also 

differed as the neurotensin current and the increase in noise slowly reversed (in ~ 10-15 

minutes), while the inhibition of the D2R IPSC never recovered during the drug washout period 

(Fig. 3.2A,C).  Furthermore, the D2R IPSC remained inhibited 10 minutes after neurotensin 

application when the neurotensin current had almost completely recovered, suggesting that the 

inward current is not simply occluding the D2R IPSC (Fig. 3.2A-C).  Thus, although the 

magnitude of the inward current correlated with the amount of inhibition of the D2R IPSC, 

there were differences in the timing of the two effects of neurotensin, suggesting that they may 

actually be mediated through different mechanisms.   

We next sought to confirm whether the neurotensin caused inward current and inhibition 

of the D2R IPSC were independent by inhibiting the inward current and measuring the effect of 

neurotensin on the D2R ISPC.  Thus, we attempted to confirm previous experiments identifying 

the ion channels mediating the neurotensin-induced inward current in DA neurons.  The 

neurotensin-induced current obtained from slow voltage ramps showed a unique I-V 

relationship with outward rectification and an extended zero slope region around the reversal 

potential, which was calculated to be -36 +/- 6.6 mV (Fig. 3.3).  This unique I-V curve, 

combined with previous reports demonstrating that neurotensin activates a slow nonselective 

cation conductance permeable to Na+, K+, and Cs+199,200,261, suggests that neurotensin may be 

activating a member of the transient receptor potential C channel (TrpC) family262,263.  Thus, we 

tested whether SKF 96365, a TrpC channel blocker that was previously shown to block the 

neurotensin caused increase in firing frequency in DA neurons203, could inhibit the neurotensin-

induced inward current in VTA DA neurons.  SKF 96365 (100 M) partially inhibited the 

neurotensin-induced inward current (Fig. 3.4C-D).  Although the peak inward current caused by 
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neurotensin (100 nM) was only slightly decreased by SKF 96365, the sustained neurotensin-

induced current rapidly decreased, and the duration of the neurotensin-induced inward current 

was significantly shortened (Fig. 3.4C-D) (significant main effects of treatment (F(1, 9)=6.079, 

p<0.05), and time (F(20, 175)=13.888, p<0.001), and a significant treatment×time interaction 

(F(20,175)=2.583, p<0.001).  In addition, the increase in noise caused by neurotensin also 

partially recovered during the washout and recovery of the neurotensin-induced current.  We 

also tested whether SKF 96365 affected the ability of neurotensin to inhibit the D2R IPSC.  

SKF 96365 had no effect on the ability of neurotensin to inhibit the D2R IPSC however, as the 

peak inhibition of the D2R IPSC caused by neurotensin was unaffected (Fig. 3.4E-F).  The D2R 

IPSC also remained inhibited throughout the experiment even when the neurotensin current 

recovered (Fig. 3.4A-B), suggesting that the inward current and the inhibition of the D2R IPSC 

are likely independent and that the inward current caused by neurotensin does not simply 

occlude the D2R IPSC.  

We next sought to confirm that the effects of neurotensin on the D2R IPSC were 

mediated post-synaptically and not through alterations in DA release, by testing whether 

neurotensin also inhibited the D2R-mediated current generated by the iontophoretic application 

of DA.  As predicted, neurotensin inhibited the iontophoresis evoked D2R current (Fig. 3.5A) to 

the same magnitude as the electrically evoked D2R IPSC (Fig. 3.5B-C).  Thus, neurotensin 

appears to act at the post-synaptic membrane to inhibit the D2R IPSC and not through a pre-

synaptic change in DA release. 

We next attempted to identify the mechanism by which neurotensin inhibits the D2R 

IPSC.  Previous studies suggested that neurotensin inhibits D2R signaling through a Ca2+ and 

PKC dependent mechanism201,258,259.  Therefore, we tested the role of the release of Ca2+ from 
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intracellular stores in the neurotensin caused inhibition of the D2R IPSC through the use of the 

reversible sarcoplasmic reticulum Ca2+ ATPase inhibitor, cycopiazonic acid (CPA).  

Pretreatment of brain slices with CPA (10 M) for at least 15 minutes prior to neurotensin 

application had no effect on the neurotensin (100 nM) inhibition of the D2R IPSC (Fig. 3.6A-

B).  In addition, CPA had no effect on the peak inward current induced by neurotensin (Fig. 

3.6C-D).  We also tested whether neurotensin inhibits the D2R IPSC through a PKC-dependent 

process through the use of the non-specific PKC inhibitor, chelerythrine.  Chelerythrine (10 

M) also had no effect on the neurotensin-induced inhibition of the D2R IPSC (Fig. 3.6A-B), 

and there was no significant difference between the peak inward current induced by neurotensin 

after chelerythrine treatment compared with neurotensin alone (Fig. 3.6C-D).  Thus, in contrast 

to previous reports201,258,259, the inhibition of the D2R IPSC in VTA DA neurons by neurotensin 

does not appear to depend on PKC activation, nor does it depend on release of Ca2+ from 

intracellular stores.  

We next tested whether the inhibition of the D2R IPSC was specific to neurotensin or 

could be achieved by activation of other Gq-coupled receptors by examining whether activation 

of metabotropic glutamate receptors or muscarinic acetylcholine receptors also inhibited the 

D2R IPSC.  To activate muscarinic receptors, acetylcholine (ACh) was added in the presence of 

mecamylamine (30 M), a nicotinic acetylcholine receptor antagonist.  For this experiment, we 

chose doses of the metabotropic glutamate receptor agonist, DHPG (10 M), ACh (1 mM), and 

neurotensin (10 nM) that caused approximately the same peak inward current to allow for direct 

comparison of their effects on the D2R IPSC (Fig. 3.7A-D).  There were no significant 

differences between the peak current activated by DHPG, ACh, and neurotensin 

(F(2,16)=1.217, p=0.322) (Fig. 3.7D), but there were significant differences in the inhibition of 
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the D2R IPSC, as neurotensin inhibited the D2R IPSC to a significantly greater extent than 

DHPG or ACh (F(2,16)=5.181, p<0.05) (Fig. 3.7E).  In addition, the effects of DHPG and ACh 

on the D2R IPSC started to reverse upon removal of the agonist, whereas the effects of 

neurotensin on the D2R IPSC showed no reversal (Fig. 3.7A-C).  Thus, it appears that 

activation of Gq-coupled receptors can inhibit the D2R IPSC, but activation of NTS1 appears to 

engage an additional mechanism that causes significantly greater inhibition of the D2R IPSC. 

We next sought to test whether the ability of neurotensin to inhibit the D2R IPSC was 

specific to D2Rs or if it would also affect other inhibitory responses in VTA DA neurons.  

GABAB receptors and D2Rs both inhibit VTA DA neurons through the activation of G-protein 

coupled inward rectifying potassium channels (GIRK channels).  Thus, we next tested whether 

neurotensin also affected the IPSC generated by activation of GABAB receptors (GABAB IPSC) 

(Fig. 3.8A-B).  Interestingly, neurotensin inhibited the GABAB IPSC to a similar degree as the 

D2R IPSC (Fig. 3.8C).  This was true for both the maximal dose (100 nM) of neurotensin that 

fully inhibited the D2R IPSC, and an intermediate dose (10 nM) closer to the EC50 value for 

neurotensin inhibition of the D2R IPSC (Fig. 3.8C).  Thus, neurotensin does not appear to 

specifically inhibit the D2R IPSC in VTA DA neurons but can also inhibit the GABAB IPSC, 

possibly through a common mechanism. 

We next sought to examine the similarity of the inhibition of the D2R IPSC and the 

GABAB IPSC in more detail.  The D2R and GABAB IPSCs differ in their sensitivity to 

intracellular Ca2+ levels as the D2R IPSC shows increased desensitization and long-term 

depression when intracellular free Ca2+ levels are weakly buffered, whereas the GABAB IPSC is 

insensitive to changes in intracellular Ca2+126.  Thus, we next tested whether the effects of 

neurotensin on the D2R and GABAB IPSCs were affected by basal intracellular Ca2+ levels by 
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switching from a high Ca2+ buffering internal solution (containing 10 mM BAPTA = low levels 

of basal free intracellular Ca2+) to a low Ca2+ buffering internal solution (containing 0.1 mM 

EGTA = higher levels of basal free intracellular Ca2+).  A dose of neurotensin near the EC50 

value for inhibition of the D2R IPSC was used in these experiments to allow for the 

identification of potential increases or decreases in the effect of neurotensin on the D2R and 

GABAB IPSCs with the reduced calcium buffering internal solution.  Neurotensin (10 nM) still 

caused an inward current and slightly reduced both the D2R and GABAB IPSCs when measured 

with a 0.1 mM EGTA internal solution (Fig. 3.9).  Interestingly, the inward current induced by 

neurotensin was significantly reduced compared to the inward current with the internal solution 

containing 10 mM BAPTA (Fig. 3.9A-B) (significant main effects of treatment (F(1, 

15)=23.357, p<0.001) and time (F(19,250=33.674, p<0.001), and significant treatment×time 

interaction (F(19,250)=14.087, p<0.001).  The neurotensin-caused inhibition of both the D2R 

and GABAB IPSCs were also significantly reduced with the 0.1 mM EGTA internal solution 

compared to the 10 mM BAPTA internal solution with no differences in the magnitude of 

inhibition of the D2R IPSC versus the GABAB ISPC (Fig. 3.9C-F) (D2R IPSC: significant main 

effects of treatment (F(1, 17)=32.102, p<0.001) and time (F(19, 288=33.157, p<0.001), and a 

significant treatment×time interaction (F(19,288)=11.708, p<0.001); GABAB IPSC: significant 

main effects of treatment (F(1,12)=17.439, p=0.001) and time (F(20, 240=18.321, p<0.001), 

and a significant treatment×time interaction (F(20,240)=8.165, p<0.001).  Thus, the effects of 

neurotensin on DA neurons were greater when intracellular Ca2+ was strongly buffered and 

resting levels of free intracellular Ca2+ were low, and were attenuated when intracellular Ca2+ 

was weakly buffered and resting levels of free intracellular Ca2+ were high. 
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3.5 Discussion 

In these studies we have demonstrated that neurotensin increases DA neuron activity 

through multiple mechanisms.  In addition to directly activating an inward current to increase 

DA neuron activity, neurotensin also significantly reduced the inhibition of DA neurons caused 

by activation of both D2R and GABAB receptors.  These effects did not appear to depend on 

release of Ca2+ from intracellular stores or on PKC activation, but were sensitive to basal levels 

of free intracellular Ca2+. 

  The effects of neurotensin on the inward current and the D2R and GABAB IPSCs 

appear to be independent and mediated by different mechanisms.  The timing of neurotensin 

inhibition of the D2R IPSC was significantly delayed compared to the inward current caused by 

neurotensin, and the neurotensin-induced current recovered during the washout period after 

neurotensin application, whereas the inhibition of the D2R IPSC did not.  The EC50 values for 

the two effects of neurotensin were also different, further supporting the argument that the two 

effects of neurotensin occur through separate mechanisms.  The EC50 value for inhibition of the 

D2R IPSC by neurotensin was ~ 4 nM, much lower than the EC50 value for the neurotensin 

induced current (~ 200 nM), and lower doses of neurotensin (1-10 nM) have often been used 

previously to examine the effect of neurotensin on D2R signaling201,202,204,254-256 while higher 

doses of neurotensin (1 nM to 5 M) have been used to examine the neurotensin induced inward 

current in DA neurons199-204.  In addition, partially inhibiting the neurotensin current with SKF 

96365 did not have any effect on the neurotensin caused inhibition of the D2R IPSC.  Finally, 

ACh, DHPG, and neurotensin caused inward currents that were similar in magnitude, but 

neurotensin had a much larger effect on the D2R IPSC.  If the inward current caused the 

inhibition of the D2R IPSC, then it would be expected that neurotensin, ACh, and DHPG would 
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inhibit the D2R IPSC to the same magnitude when activating inward currents of the same size.  

In agreement with our findings, it was previously reported that neurotensin reduces quinpirole 

(D2R agonist) induced inhibition of DA activity even when the excitatory effect of neurotensin 

is blocked with heparin, an IP3 receptor antagonist201.  Therefore, it appears that the neurotensin 

inward current does not block the D2R IPSC because of occlusion or net excitation, and that 

these are independent effects downstream of NTS1 activation.   

The neurotensin-induced inward current has been characterized as a slow non-selective 

cation current that is equally permeable to both Na+ and K+, a characteristic of Trp channels199.  

The neurotensin-induced current in DA neurons was similar to that generated by activation of 

specific TrpC channels expressed in HEK-293 cells262,263 suggesting that neurotensin may be 

activating a member of the TrpC family, potentially through the activation of phospholipase C 

and release of DAG264,265.  We found that the TrpC channel blocker SKF 96365 significantly 

shortened the duration of the neurotensin-induced current, which is in agreement with a 

previous report showing that SKF 96365 blocks the neurotensin-caused increase in DA neuron 

firing frequency203.  Thus, it appears that the neurotensin activated inward current is at least 

partially mediated by activation of TrpC channels in VTA DA neurons.  

The majority of evidence suggests that the effects of neurotensin on DA neurons are 

mediated by signals that are downstream of PLC activation.  Previously it was reported that the 

neurotensin-induced inward current and increase in firing frequency are dependent on Ca2+ and 

the IP3 receptor201,203,257.  Another study found that the neurotensin-induced inward current was 

not dependent on Ca2+, however, as the neurotensin current was not affected by buffering 

intracellular Ca2+ with 20 mM BAPTA199.  In addition it has also been reported that neurotensin 

inhibits D2R signaling through a PKC and Ca2+ dependent mechanism201,258,259.  In contrast to 
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these previous reports, we found that the neurotensin inhibition of the D2R IPSC and the 

neurotensin-induced current were not dependent on PKC or Ca2+, and the effects of neurotensin 

were actually potentiated when intracellular Ca2+ was buffered with 10 mM BAPTA.  In 

addition, the neurotensin inhibition of the D2R IPSC and the inward current were not dependent 

on Ca2+ release from intracellular stores.  Interestingly, it has also been reported that 

neurotensin reduces the DA-caused inhibition of DA neuronal firing through the cAMP 

pathway and not through a PKC dependent mechanism256.  Additional experiments are needed 

to resolve these differences, however, and to determine if the effects of neurotensin occur 

through dual pathways. 

Although neurotensin likely inhibits the D2R IPSC via activation of Gq coupled 

signaling through a mechanism similar to metabotropic glutamate receptors and muscarinic 

acetylcholine receptors, here we have shown that there appears to be an additional mechanism 

activated by neurotensin to inhibit the D2R IPSC to a larger extent than other Gq coupled 

receptors.  Interestingly, we also found that the effects of neurotensin were not specific to the 

D2R IPSC as neurotensin also inhibited the GABAB IPSC to the same magnitude.  This 

suggests that the effects of neurotensin are likely not due to modulation of D2R activity by 

direct heterodimer interactions with NTS1 as has been observed in HEK-293 cells252,253.  

Previously it was reported that neurotensin does not block GABA caused inhibition of DA 

neuronal firing202.  GABA inhibits DA neurons through the activation of both GABAA and 

GABAB receptors, however, so neurotensin may only block the inhibition produced by GABAB 

receptors and not GABAA receptors, which could explain the differences in these results.  Thus 

the results presented here suggest that neurotensin inhibits both GABAB and D2R signaling in 

VTA DA neurons.  
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In these studies, we have shown a novel mechanism for modulation of VTA DA neuron 

activity by neurotensin: inhibition of GABAB IPSCs.  GABAB receptors and D2Rs both activate 

GIRK channels to inhibit DA neurons, so it is possible that neurotensin modulates GIRK 

channel activity downstream of both D2R and GABAB activation to reduce D2R and GABAB 

caused inhibition of DA neurons (Fig. 3.10).  In support of this notion, it was previously shown 

that neurotensin blocks D2R signaling downstream of the D2R266.  In addition, it was recently 

reported that inducing high frequency bursting or depolarization in VTA DA neurons causes 

potentiation of GIRK currents and this potentiation was due to modulation to the GIRK 

channels themselves rather than regulation of the GABAB or D2 receptors127.  Thus, neurotensin 

may reduce both D2R and GABAB mediated GIRK currents by causing direct modulation of 

GIRK channels, although further experiments will be required to test this hypothesis.  

D2R IPSC desensitization and long-term depression have been reported to increase 

when intracellular Ca2+ is weakly buffered and free intracellular Ca2+ levels are high, whereas 

GABAB IPSCs do not show the same sensitivity to intracellular Ca2+ levels126.  Combined with 

the ability of neurotensin to increase Ca2+ in DA neurons201,203, these results suggest that 

reducing the Ca2+ buffering capacity of the internal solution would result in a larger effect of 

neurotensin on the D2R IPSC but not the GABAB IPSC.  Surprisingly, the neurotensin-caused 

inhibition of both the GABAB and D2R IPSCs were significantly attenuated with low 

intracellular Ca2+ buffering (i.e. 0.1 mM EGTA solution).  Thus, neurotensin appears to inhibit 

GIRK current activation downstream of D2R and GABAB receptors through a Ca2+ sensitive 

mechanism, whereby low levels of free intracellular calcium are required for the full inhibition 

of GIRK channel activation (Fig. 3.10).  Alternatively, it is also possible that the NTS1 receptor 

is Ca2+ sensitive.  We found that the neurotensin-induced inward current was also significantly 
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reduced with low intracellular Ca2+ buffering.  Thus, all effects of neurotensin in DA neurons 

were reduced with low intracellular Ca2+ buffering and high intracellular levels of free Ca2+.  

Therefore, it is possible that the NTS1 receptor may be sensitive to free intracellular Ca2+ levels 

and may desensitize or internalize with high levels of free intracellular Ca2+ resulting in a 

reduced effect of neurotensin, although future studies will be required to test this hypothesis.  

In summary, we have demonstrated that neurotensin affects DA neuron activity through 

two seemingly independent effects:  direct activation of an inward current mediated in part by 

TrpC channels, and inhibition of both the D2R and GABAB IPSCs.  Overall these studies 

advance our understanding of how neurotensin regulates DA neuron activity, and further 

research characterizing how neurotensin affects DA neuron activity may lead to a better 

understanding and treatments of disorders caused by a disruption in the function of the 

mesolimbic DA system. 
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3.6 Figures 

 

Figure 3.1: Neurotensin dose-dependently activates an inward current and inhibits the D2R 

IPSC in VTA DA neurons.   

 

A. Dose-response curve of the inward current induced by neurotensin.  B. Dose-response curve 

of the inhibitory effect of neurotensin on the D2R IPSC.  C. Sample traces of the neurotensin 
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(NT) induced current (left) and inhibition of the D2R IPSC (right).  D. The size of the inward 

current is positively correlated to the amount of inhibition of the D2R IPSC.  Bars in C indicate 

time of neurotensin application.  n=5-7 cells from 4-7 mice for each dose.  Scale Bars: 50 pA/2 

min (1 nM NT current); 100 pA/2 min (10 nM NT current); 200 pA/2 min (100 nM NT 

current); 20 pA/500 ms (NT inhibition of D2R IPSC). 

 

 

Figure 3.2: The neurotensin-induced inward current preceeds the inhibition of the D2R IPSC.   

 

A. Sample cell of the effects of neurotensin (100 nM) on the inward current and the D2R IPSC.  

B. Sample traces of the D2R IPSCs in A before neurotensin (a; black trace), during the peak of 
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the neurotensin inward current (b; grey trace), and at 8-10 minutes after neurotensin washout (c; 

grey trace).  C. Mean responses of the effects of neurotensin (100 nM) on the inward current 

and the D2R IPSC.  Bars in A and C indicate time of neurotensin application.  n=6 cells from 6 

mice.  Scale Bars: 20 pA/500 ms 

 

 

 

Figure 3.3: Current -Voltage relationship of the neurotensin-induced current in VTA DA 

neurons.   

 

A. Sample current traces resulting from slow voltage ramps (-120 mV to +20 mV at 140 mV s-1) 

before (black trace) and after neurotensin (100 nM; grey trace).  B. Sample trace of the net 

neurotensin (100 nM) induced current.  C. Mean current-voltage relationship of the neurotensin 

(100 nM) induced current.  n=7 neurons from 4 mice.  Scale Bars: 1 nA/200 ms 
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Figure 3.4: The TrpC channel inhibitor, SKF 96365, partially blocks the neurotensin-induced 

inward current but does not affect the inhibition of the D2R IPSC.   

 

A. Sample cell of the effects of neurotensin (100 nM) on the inward current and the D2R IPSC 

in the presence of SKF 96365 (100 M). Inset: sample trace of the D2R IPSC before 

neurotensin (a; black trace) and 8-10 minutes after neurotensin washout (b; grey trace) in the 

presence of SKF 96365.  B. Mean responses of the effects of neurotensin (100 nM) on the 

inward current and the D2R IPSC in the presence of SKF 96365 (100 M).  C. Mean inward 



44 

current generated by neurotensin (100 nM) in the absence and presence of SKF 96365 (100 

M).  D. Mean neurotensin-induced current at the peak and 5 minutes after neurotensin washout 

in the presence and absence of SKF 96365.  E-F. Mean effect of neurotensin (100 nM) on the 

D2R IPSC in the absence and presence of SKF 96365 (100 M).  Bars in A-C and E indicate 

time of neurotensin and SKF 96365 application.  n=5-6 neurons from 4-6 mice for each group.  

Scale bar: 20 pA/500 ms.  *p<0.05 vs. neurotensin alone   

 

 

 

Figure 3.5: Neurotensin inhibits the D2R-mediated current produced by DA iontophoresis.   

 

A. Sample trace of the effect of neurotensin (100 nM) on the D2R-mediated current produced 

by DA iontophoresis.  B-C. Mean effect of neurotensin (100 nM) on the D2R-mediated current 

produced by DA iontophoresis and on the D2R IPSC evoked with electrical stimulation.  Bar in 

B indicates time of neurotensin application.  n=6 neurons from 5-6 mice for each group.  Scale 

Bar: 20 pA/500 ms.  *p<0.05 
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Figure 3.6: Neurotensin inhibition of the D2R IPSC and the neurotensin-induced current are 

not dependent on PKC activity or release of Ca2+ from intracellular stores.   

 

A-B. Mean inhibition of the D2R IPSC caused by neurotensin (100 nM) in the presence and 

absence of CPA (10 M) or chelerythrine (CHE) (10 M).  C-D. Mean neurotensin (100 nM) 

induced current in the presence and absence of CPA (10 M) or CHE (10 M).  Bars in A and 

C indicate time of neurotensin application.  n=5-6 cells, from 4-6 mice for each group. 
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Figure 3.7: Neurotensin inhibits the D2R IPSC significantly more than DHPG or acetylcholine.  

 

 A. Mean inward current and inhibition of the D2R IPSC caused by DHPG (10 M). Inset: 

Sample trace of the D2R IPSC before DHPG (a; black trace) and at 7-11 minutes after applying 

DHPG (b; grey trace).  B. Mean inward current and inhibition of the D2R IPSC caused by ACh 

(1 mM) in the presence of mecamylamine (30 M). Inset: Sample trace of the D2R IPSC before 

ACh (a; black trace) and at 7-11 minutes after applying ACh (b; grey trace).  C. Mean inward 

current and inhibition of the D2R IPSC caused by neurotensin (10 nM). Inset: Sample trace of 

the D2R IPSC before neurotensin (a; black trace) and at 7-11 minutes after applying neurotensin 

(b; grey trace).  D. The peak inward currents caused by DHPG (10 M), ACh (1 mM), and 

neurotensin (10 nM) were not significantly different.  E. Neurotensin (10 nM) inhibited the D2R 

IPSC significantly more than DHPG and ACh.  Bars in A-C indicate time of drug application.  
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DHPG: n=5 cells from 4 mice; ACh: n=8 cells from 7 mice; neurotensin: n=6 cells from 5 mice.  

Scale bars: 30 pA/500 ms.  *p<0.05 vs. neurotensin 

 

 

Figure 3.8: Neurotensin inhibits the GABAB IPSC in VTA DA neurons.   

 

A-B. Sample traces (A) and mean effect (B) of neurotensin (100 nM & 10 nM; grey trace) on 

the GABAB IPSC.  C. Neurotensin (100 nM & 10 nM) inhibited the GABAB and D2R IPSCs by 

the same magnitude. Bar in B indicates time of NT application.  n=5-8 cells from 4-6 mice for 

each group.  Scale Bars: 20 pA/300 ms. 
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Figure 3.9: Reduced buffering of intracellular calcium attenuates the effects of neurotensin.   

 

A-B. Mean neurotensin (10 nM) induced inward current with an internal solution containing 10 

mM BAPTA or 0.1 mM EGTA.  C-F. Sample traces (C,E) and mean effect (D,F) of neurotensin 

(10 nM; grey trace) on the D2R IPSC (C-D) and GABAB IPSC (E-F) using internal solutions 

containing 10 mM BAPTA or 0.1 mM EGTA.  Bars in A, D, & F indicate time of neurotensin 

application.  n=5-12 cells from 4-11 mice for each group.  Scale Bars: 20 pA/400 ms (C); 20 

pA/200 ms (D). #p<0.05, *p0.001 
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Figure 3.10: Diagram of the proposed model of neurotensin inhibition of GIRK currents 

activated by D2 and GABAB receptors.   

 

Activation of NTS1 with neurotensin in VTA DA neurons causes robust inhibition of D2R and 

GABAB GIRK currents when the relative levels of free intracellular Ca2+ are low due to strong 

Ca2+ buffering, while neurotensin induced inhibition of D2R and GABAB GIRK currents is 

significantly attenuated when relative levels of free intracellular Ca2+ are higher due to weak 

Ca2+ buffering. 

 

 

 

 

 

 

 

 

 

 



50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: 

K.S. West, A.G. Roseberry (2017) Neuropeptide-Y alters VTA dopamine neuron activity 

through both pre- and postsynaptic mechanisms. Journal of Neurophysiology, 118(1): 625-33  

© American Physiological Association 
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4 NEUROPEPTIDE-Y ALTERS VTA DOPAMINE NEURON ACTIVITY THROUGH 

BOTH PRE- AND POST-SYNAPTIC MECHANISMS 

 

4.1 Abstract 

The mesocorticolimbic dopamine system, the brain’s reward system, regulates many 

different behaviors including food intake, food reward, and feeding related behaviors, and there 

is increasing evidence that hypothalamic feeding-related neuropeptides alter dopamine neuron 

activity to affect feeding.  For example, neuropeptide-Y (NPY), a strong orexigenic 

hypothalamic neuropeptide, increases motivation for food when injected into the ventral 

tegmental area (VTA).  How NPY affects the activity of VTA dopamine neurons to regulate 

feeding behavior is unknown, however.  In these studies we have used whole cell patch-clamp 

electrophysiology in acute brain slices from mice to examine how NPY affects VTA dopamine 

neuron activity.  NPY activated an outward current that exhibited characteristics of a G protein-

coupled inwardly rectifying potassium (GIRK) channel current in approximately sixty percent 

of dopamine neurons tested.  In addition to its direct effects on VTA dopamine neurons, NPY 

also decreased the amplitude and increased paired-pulse ratios of evoked excitatory post-

synaptic currents (EPSCs) in a subset of dopamine neurons, suggesting that NPY decreases 

glutamatergic transmission through a pre-synaptic mechanism.  Interestingly, NPY also strongly 

inhibited evoked inhibitory post-synaptic currents (IPSCs) onto dopamine neurons by a pre-

synaptic mechanism.  Overall these studies demonstrate that NPY utilizes multiple mechanisms 

to affect VTA dopamine neuron activity, and they provide an important advancement in our 

understanding of how NPY acts in the VTA to control feeding behavior. 
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4.2 Introduction 

Over one third of the U.S. adult population is obese9,267, putting these individuals at 

increased risk for numerous other deleterious conditions, including diabetes, cardiovascular 

disease, stroke, high blood pressure, and some forms of cancer268.  As there are currently few 

effective treatments available to combat obesity269, it is essential to understand how the brain 

controls feeding and weight gain in order to identify new targets that can be used to develop 

effective treatments for obesity and weight gain.   

The mesocorticolimbic dopamine system is the primary neural circuit regulating reward-

related and motivational behaviors, and this system plays an important role in controlling 

feeding and body weight, including the appetitive and consummatory aspects of 

feeding12,15,163,164,270,271.  For example, dopamine deficient mice are aphagic and will starve to 

death by 4 weeks of age if they are not treated with L-DOPA, a dopamine precursor133.  Food 

intake, food reward, and stimuli associated with food also cause phasic increases in dopamine 

release136,137,272, and blocking dopamine receptors systemically or in the nucleus accumbens 

decreases operant responding for food in rats132,273,274.  Impairments in the mesocorticolimbic 

dopamine system have also been associated with obesity and dysregulated feeding in humans.  

For example, dopamine agonists cause increased compulsive eating and weight gain in 

Parkinson’s patients141, and obese individuals show increased activity in mesocorticolimbic 

areas in response to pictures of palatable food but decreased responses to food consumption 

compared to lean individuals144-147,275.  Overall we have an incomplete understanding of how the 

mesocorticolimbic dopamine system regulates feeding, however.  This includes an incomplete 

understanding of how other brain systems and circuits interact with dopamine circuits to 

regulate feeding and body weight.  
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Neuropeptide-Y (NPY) is a strong orexigenic neuropeptide and an important regulator 

of energy homeostasis276,277.  For example, central administration of NPY robustly increases 

food intake212,213, activation of NPY expressing neurons in the arcuate nucleus of the 

hypothalamus increases feeding211, and ablation of NPY neurons reduces food intake and body 

weight214,215.  There is also evidence that NPY interacts with the mesocorticolimbic dopamine 

system to regulate feeding.  NPY neurons project to the VTA278, NPY receptors are expressed 

in the VTA217,279,280, and intra-VTA and intra-nucleus accumbens injection of NPY increases 

operant responding for food in rats174.  There is conflicting data on exactly how NPY acts in the 

VTA to affect feeding, however.  Intra-cerebroventricular (icv) NPY has been shown to increase 

dopamine efflux in the nucleus accumbens suggesting that NPY may activate dopamine 

neurons281-283, but a separate study has shown that NPY decreases the firing rate of VTA 

dopamine neurons in ex vivo brain slice preparations217.  Thus, overall, it is unknown how NPY 

affects VTA dopamine neurons to regulate feeding.  Therefore, in these studies we have used 

patch-clamp electrophysiology in acute brain slice preparations to test whether NPY inhibits 

VTA dopamine neurons through direct action on dopamine neurons or through the pre-synaptic 

regulation of their synaptic inputs.  

 

4.3 Materials and Methods 

Animals: Male and female mice (5-14 weeks old) on a C57Bl/6J or a mixed C57/129 

background were used in all experiments.  All protocols and procedures were approved by the 

Institutional Animal Care and Use Committee at Georgia State University, and conformed to the 

NIH Guide for the Care and Use of Laboratory Animals.  
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Slice preparation and Electrophysiology: Acute brain slices were prepared as previously 

described234,235.  Briefly, adult mice were anesthetized with isofluorane and decapitated.  The 

brain was then removed and placed in carbogen (95% O2 and 5% CO2) saturated ice-cold 

artificial cerebral spinal fluid (aCSF), containing (in mM) 126 NaCl, 2.5 KCl, 2.4 CaCl2, 1.2 

NaH2PO4, 1.2 MgCl2, 11.1 glucose, and 21.4 NaHCO3.  A brain block containing the VTA was 

made, and pseudo-horizontal sections (220 m) were cut with a vibrating blade microtome.  

Slices were then incubated in aCSF (~35C) containing 10 M MK-801 [(+)-5-methyl-10, 11-

dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] for 30-60 min before recording.  

Slices were placed in a recording chamber and perfused with carbogen-saturated aCSF at a flow 

rate of approximately 1-2 ml/min.  Whole-cell recordings were made using an Axon multiclamp 

700B microelectrode amplifier and Axograph software.  Putative dopamine neurons were 

identified by their location relative to the medial terminal nucleus of the accessory optic tract, 

the presence of hyperpolarization-activated cation currents (H-current), and the presence of 

spontaneous pacemaker firing237.   

Electrodes (2.0-3.0 M) were filled with a potassium gluconate (KGluconate) based 

internal solution containing (in mM) 128 KGluconate, 10 NaCl, 1 MgCl2, 10 HEPES, 2 ATP, 

0.3 GTP, 10 creatine phosphate, and 10 BAPTA or 0.1 EGTA.  The internal solution contained 

EGTA for the experiments examining the direct effect of NPY on dopamine neuron activity 

under reduced calcium buffering conditions and for the experiments examining the effect of 

NPY on excitatory post-synaptic currents (EPSC).  The internal solution contained BAPTA for 

all other experiments, with the exception of the measurement of inhibitory post-synaptic 

currents (IPSC), where a potassium methylsulfate based internal solution containing a high 

concentration of Cl- was used (in mM) 57 KCl, 70 KMeSO4, 20 NaCl, 1.5 MgCl2, 5 HEPES, 0.1 



55 

EGTA, 2 ATP, 0.3 GTP, and 10 creatine phosphate.  Series resistance values were 

approximately 3-15 M.  If the series resistance increased by more than 20% the experiment 

was terminated or excluded from analysis.  In addition, if the holding current changed by more 

than 10 pA during baseline recording or during the first minute of NPY application the 

experiment was terminated or excluded from analysis.  Neurons were voltage clamped at -60 

mV for most experiments.  Corrections were not made for the liquid junction potential, which 

was calculated to be the following for each internal: KGluconate 10 mM BAPTA, 13.9 (normal 

aCSF), 13.6 (high K+ external solution); KGluconate 0.1 mM EGTA, 14.8; K 

methylsulfate/KCL, 6.  EPSCs/IPSCs were evoked using a bipolar stimulating electrode placed 

100-300 m from the recorded cell.  The electrode was placed anterior to the recorded cell to 

evoke EPSCs and posterior to the recorded cell to evoke IPSCs.  Pairs of PSCs were evoked 

with a 50 ms interpulse interval every 20 s.  EPSCs were isolated by including picrotoxin (100 

M) in the perfusion solution, and IPSCs were isolated by including DNQX (10 M) in the 

perfusion solution.  For all experiments, cells were held for at least 10 minutes prior to drug 

application to allow for diffusion of the internal solution into the cell.  To determine the current-

voltage relationship and the reversal potential of the NPY current, cells were perfused with a 

high K+ external solution containing TTX: (in mM) 118.5 NaCl, 10 KCl, 2.4 CaCl2, 1.2 

NaH2PO4, 1.2 MgCl2, 11.1 glucose, 21.4 NaHCO3, and 0.001 TTX.  The cells were then held at 

-40 mV and slow voltage ramps were applied from -100 mV to 0 mV at 100 mV s-1 every 30 s.   

Drugs: Neuropeptide-Y and BIBP3226 were purchased from Bachem (Torrance, CA).  

TTX was purchased from Tocris Biosciences (Minneapolis, MN).  All other reagents were from 

common commercial sources. 
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Data Analysis and Statistics: Data are represented as the mean +/- SEM unless otherwise 

noted.  For all PSC measurements, the effect of NPY on EPSCs/IPSCs was determined by 

comparing the average value of the PSCs measured 5 min before the onset of NPY to the 

average values 5 min after the onset of NPY treatment.  The pair-pulse ratio was calculated by 

dividing the amplitude of the second PSC by the amplitude of the first PSC.  The coefficient of 

variation was calculated by dividing the SD by the mean of the PSC amplitude.  Data were 

analyzed using Axograph X (v1.3.5), LabChart (v7.3.6; ADInstruments), and Excel (v14.0; 

Microsoft Corporation) software.  Statistics were calculated using SigmaStat (v11.0; Systat 

Software, Inc.). Data were initially tested for normality using the Shapiro-Wilk test and were 

then analyzed with Student’s t-tests, Wilcoxon signed-rank tests, or a two-way ANOVA with 

Holm-Sidek post-hoc tests as appropriate with a significance level of p<0.05 set a priori.  For 

the experiments comparing the responses to NPY and baclofen with the BAPTA and EGTA 

internal solutions (Fig. 4.4), the data was log transformed to achieve normality prior to running 

a two-way ANOVA. 

 

4.4 Results 

There is conflicting data on whether NPY increases or decreases VTA dopamine neuron 

activity217,281-283.  Thus, we used patch-clamp electrophysiology in acute brain slice preparations 

to test whether NPY directly regulates VTA dopamine neuron activity.  NPY activated an 

outward current in approximately 58% of VTA dopamine neurons tested (Fig. 4.1A-C; 37 out of 

64 neurons total; 10 nM= 6 of 12; 100 nM= 27 of 42; 300 nM 4 of 10).  The NPY activated 

current was concentration-dependent (Fig. 4.1A-C) and was accompanied by a significant 

decrease in membrane resistance (Fig. 4.1D-E), suggesting that NPY directly activates an ionic 
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conductance in VTA dopamine neurons.  Thus, it appears that NPY directly inhibits VTA 

dopamine neurons.  The 100 nM and 300 nM concentrations of NPY were used in all 

subsequent experiments, as both appeared to be saturating concentrations.    

We next sought to identify the NPY receptor mediating the NPY-induced current in 

VTA dopamine neurons.  Previous studies have reported that the post-synaptic effects of NPY 

are mediated by NPY acting on Y1 and Y2 receptors284-289.  We initially tested whether Y1 

receptors (Y1R) mediated this effect using the Y1R antagonist, BIBP3226284-289.  BIBP3226 (1 

µM) reversed the NPY-induced current when it was applied at the peak of the NPY current (Fig. 

4.2A-C, n=4, note the rate of reversal of the NPY-induced current with BIBP3226 compared to 

NPY alone in Fig. 4.1A-B).  In addition, pretreatment with BIBP3226 (1 µM) completely 

prevented the NPY induced current in all cells tested (Fig. 4.2D-E, n=8).   Thus NPY appears to 

directly inhibit VTA dopamine neurons by activating Y1Rs. 

We next sought to determine the identity of the channel mediating the NPY activated 

current in VTA dopamine neurons.  We tested the current-voltage relationship of the NPY 

current by applying slow voltage ramps (-100 mV to 0 mV 100 mV s-1) in a high K+ (10 mM) 

external solution containing TTX (1 M).  The current obtained from these slow voltage ramps 

exhibited inward rectification and had a reversal potential near that of the reversal potential for 

potassium ions under these conditions (Fig. 4.3A-C; EK= -68 mV; NPY Erev= -59.6 mV +/- 8.8 

mV).  These results indicated that NPY induced a potassium current in VTA dopamine neurons 

that is likely mediated by activation of GIRK channels.  We then tested whether extracellular 

barium (1 mM) could inhibit the NPY induced current (Fig. 4.3A, D-E).  Barium is a known 

blocker of inwardly rectifying potassium channels, including GIRK channels290,291, and it has 

been shown to block NPY-induced GIRK currents in many different CNS neurons284-289.  
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Extracellular barium reversed and blocked the NPY current along with a basal leak current in 

VTA dopamine neurons (Fig. 4.3A, D-E).  Thus, it appears that NPY activated GIRK channels 

in VTA dopamine neurons.  

We next tested whether the NPY activated current in VTA dopamine neurons was 

sensitive to intracellular calcium levels, because previous studies have shown that GIRK 

currents are smaller when intracellular calcium buffering is reduced in VTA dopamine 

neurons126,260.  As a positive control, we also tested whether GIRK currents activated by the 

GABAB receptor agonist, baclofen (1 M), were dependent on the strength of intracellular 

calcium buffering.  The NPY-induced currents were significantly smaller than the baclofen-

induced currents (Fig. 4.4), and, as expected, both NPY (100 nM) and baclofen (1 M) currents 

were significantly smaller with reduced intracellular calcium buffering (0.1 mM EGTA) 

compared to strong calcium buffering (10 mM BAPTA) (Fig. 4.4; significant main effects of 

drug (F(1, 23)=7.807, p=0.010) and calcium buffering (F(1, 23)=19.165, p<0.001)), 

demonstrating that intracellular calcium regulates GABAB- and NPY-induced currents in a 

similar manner.  Thus, these results further suggest that NPY activates a GIRK channel current 

in VTA dopamine neurons and demonstrate that this current is sensitive to intracellular calcium 

levels.  

In addition to directly inhibiting VTA dopamine neurons, it is possible that NPY could 

regulate the activity of dopamine neurons indirectly through modulation of their afferent inputs.  

Glutamatergic and GABAergic afferent inputs are important regulators of dopamine neuron 

activity58,66,69, and NPY has been shown to affect glutamatergic and GABAergic transmission in 

other areas of the CNS284,285,289,292.  Thus, we next examined whether NPY altered glutamatergic 

inputs to dopamine neurons.  NPY decreased the amplitude of evoked EPSCs in 7 of the 10 
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VTA dopamine neurons tested (Fig. 4.5A-E, range of effect = 68% - 91% of baseline).  In order 

to examine the mechanism by which NPY decreased EPSCs, we assessed whether there were 

changes to the paired-pulse ratio (PPR) and coefficient of variation (CV) of the EPSCs after 

treatment with NPY.  PPR and CV are measures used to determine whether a change in synaptic 

strength is due to a pre-synaptic or post-synaptic modification, and PPR and CV values have 

been shown to significantly increase when the probability of pre-synaptic neurotransmitter 

release is decreased but do not change when the amplitude of PSCs are affected by a post-

synaptic modification293,294.  NPY (100 nM) significantly increased both the PPR and CV of the 

EPSCs inhibited by NPY (Fig. 4.5D,F,H,J; n=7 of 10) without affecting the PPR or CV of the 

EPSCs whose amplitude was not affected by NPY (Fig. 4.5E,G,I,K; n=3 of 10).  Thus, it 

appears that NPY decreased glutamatergic transmission onto a subset of VTA dopamine 

neurons through an inhibition of presynaptic release.  We next examined whether the NPY-

induced current and the inhibition of EPSCs were related effects by assessing whether NPY 

activated GIRK currents and inhibited EPSCs in the same neurons or in distinct populations of 

VTA dopamine neurons.  NPY inhibited EPSCs in both dopamine neurons that showed an 

NPY-induced outward current (n=3 of 10) and in neurons that did not directly respond to NPY 

(n=4 of 10), and the magnitude of the inhibition of the EPSCs was similar for both sets of 

neurons (Fig. 4.5L-M).  These results suggest that NPY inhibited EPSCs independent of the 

NPY induced GIRK current, and that NPY inhibits EPSCs and activates inhibitory GIRK 

currents in both distinct and overlapping sets of VTA dopamine neurons.  

NPY has also been reported to inhibit VTA GABA neurons217, which provide important 

inhibitory input to VTA dopamine neurons21,58,66,69.  Therefore, we next tested whether NPY 

also altered GABAergic inputs to VTA dopamine neurons.  NPY strongly inhibited evoked 
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IPSCs in 4 out of 6 dopamine neurons tested (Fig. 4.6A-C; range of effect = 30% - 85% of 

baseline), and increased the PPR and CV of the affected IPSCs (Fig. 4.6C-F; n=4 of 6), 

although the CV did not reach statistical significance.  NPY did not decrease evoked IPSCs in 2 

out of 6 dopamine neurons tested but did activate GIRK currents in both of these neurons, 

suggesting that, as with NPY’s effect on EPSCs, the inhibition of the IPSCs is not related to the 

NPY-induced GIRK current.  Thus, NPY appears to also decrease GABAergic transmission 

onto a subset of VTA dopamine neurons through an inhibition of presynaptic release.  

 

4.5 Discussion 

In these studies we have used patch-clamp electrophysiology in acute brain slice 

preparations to determine how NPY alters VTA dopamine neuron activity to affect feeding.  

NPY inhibited a subset of dopamine neurons through two mechanisms: NPY directly inhibited 

dopamine neurons through Y1R mediated activation of GIRK channels, and NPY indirectly 

inhibited dopamine neurons by decreasing glutamatergic transmission onto dopamine neurons.  

Interestingly, NPY also decreased GABAergic transmission onto a subset of dopamine neurons, 

indicating that NPY could cause excitation of some VTA dopamine neurons. 

A previous study found that NPY decreases the firing rate of a subset of VTA dopamine 

neurons in ex vivo brain slices from rats217, but the mechanism of this NPY caused inhibition of 

dopamine neurons was unknown.  NPY mediates its effects through five known receptors, Y1, 

Y2, Y4, Y5, and Y6295,296.  All of the NPY receptors are G protein-coupled receptors that signal 

through Gi/o G-proteins295,296, and NPY causes a GIRK channel current in neurons located in 

different areas of the CNS284-289.  Thus, we hypothesized that NPY inhibited dopamine neurons 

through a similar mechanism.  Indeed, the results presented here support the hypothesis that 
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NPY activates GIRK channels in VTA dopamine neurons as NPY caused a concentration 

dependent outward current that was accompanied by a decrease in membrane resistance, 

reversed at the reversal potential for K+ ions, exhibited inward rectification, and was sensitive to 

extracellular barium, which is similar to what has been reported in numerous other brain 

regions284-289.  Thus, we can conclude that NPY activates Y1Rs that in turn release activated 

Gi/o-proteins to open GIRK channels.   

The NPY-induced current was also sensitive to intracellular calcium levels, which is an 

interesting characteristic of GIRK currents in VTA dopamine neurons126,260.  For example, 

GIRK currents activated by GABAB and dopamine D2 receptor agonists are reported to be 

smaller when intracellular calcium buffering is reduced and calcium levels are high in VTA 

dopamine neurons126,260.  We found that, like the baclofen-induced currents, the NPY-induced 

currents were significantly smaller under reduced calcium buffering conditions.  One potential 

caveat in these experiments is that the NPY currents could have affected the amplitude of the 

subsequent baclofen currents through heterologous desensitization, although this would not 

affect the interpretation of these results, as we would expect this to be true for both low and 

high calcium buffering.  Thus, taken together, our findings indicate that NPY directly inhibits 

VTA dopamine neurons by activating a GIRK current that is sensitive to intracellular calcium 

levels.   

In addition to the direct effects of NPY on VTA dopamine neurons, we also examined 

whether NPY indirectly affected dopamine neuron activity through modulation of their 

glutamatergic and GABAergic afferent inputs, which play an important role in controlling 

dopamine neuron activity58,66,69.  Glutamatergic afferents primarily control dopamine neuron 

burst firing, and GABAergic afferents strongly inhibit dopamine neurons, demonstrating that 



62 

these afferent inputs are important regulators of dopamine neuron activity58,66,69.  Surprisingly, 

NPY decreased both excitatory glutamatergic and inhibitory GABAergic transmission onto 

VTA dopamine neurons, although not to the same extent (Fig. 4.5-6).  NPY decreased both 

glutamatergic and GABAergic transmission through a decrease in pre-synaptic release, which is 

similar to what has been reported in other areas of the CNS284,285,289.  Thus, NPY modulates 

VTA dopamine neuron activity through two different pre-synaptic mechanisms.  

The net effect of NPY on the overall activity of VTA dopamine neurons is unclear, 

because the responses observed here would result in both activation and inhibition of dopamine 

neurons.  The inhibitory effects of NPY on VTA dopamine neurons were relatively small (a 

small (~ 50 pA) direct inhibition, and a modest ~ 18% decrease in EPSCs), whereas the 

excitatory effect of NPY was more robust (~ 44% decrease in IPSCs), suggesting that NPY 

could have a net excitatory effect on VTA dopamine neuron activity.  This possibility is 

supported by previous studies suggesting that NPY excites VTA dopamine neurons281-283.  For 

example, centrally delivered NPY increases dopamine release at VTA dopamine efferent 

sites281-283 and increases dopamine associated behaviors159,174,297-299 suggesting that NPY 

increases the activity of dopamine neurons to stimulate dopamine release.  In contrast, 

Korotkova et al. have shown that NPY inhibits firing of VTA dopamine neurons in ex vivo slice 

preparations217, indicating that NPY inhibits dopamine neurons, which is supported by our 

studies showing that NPY activates an outward GIRK current and inhibits EPSCs in dopamine 

neurons.  We attempted to examine the net effect of NPY on dopamine neuron activity by 

testing the effect of NPY on the firing rate of VTA dopamine neurons in the cell-attached 

configuration in the presence and absence of inhibitors of synaptic transmission (DNQX and 

picrotoxin).  Due to the small effects of NPY on dopamine neuron firing rate in these 
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experiments, we could not conclusively determine whether NPY had an excitatory, inhibitory, 

or no effect on the activity of all the dopamine neurons tested, however.  Thus, it is still unclear 

whether the net effect of NPY on dopamine neuron activity in vivo would be excitatory or 

inhibitory.   

One possible explanation for NPY causing both excitatory and inhibitory effects on 

dopamine neuron activity is that NPY could differentially modulate separate subpopulations of 

VTA dopamine neurons through distinct mechanisms.  NPY only affected a subset of VTA 

dopamine neurons for each of the responses measured (direct current, EPSCs, IPSCs).  Thus, 

NPY could excite one subpopulation of dopamine neurons and inhibit another distinct 

subpopulation of dopamine neurons.  Historically, dopamine neurons have been thought of as a 

uniform population of neurons, but recent research has demonstrated that there are 

subpopulations of VTA dopamine neurons that project to different efferent target regions and 

show distinct electrophysiological and molecular properties16,17,36,300.  In addition, aversive 

stimuli and rewards have also been shown to excite distinct subpopulations of dopamine 

neurons16,17,36,300.  Thus, NPY could excite a specific subpopulation of dopamine neurons while 

inhibiting a distinct subset of neurons to differentially regulate distinct aspects of behavior (e.g. 

reward vs. aversion).  For example, dopamine neurons encoding reward and reinforcement 

project to the nucleus accumbens while dopamine neurons encoding aversion project to the pre-

frontal cortex301.  Thus, it is possible that NPY could excite dopamine neurons projecting to the 

nucleus accumbens to promote food reward while inhibiting dopamine neurons projecting to the 

pre-frontal cortex to decrease aversion.  This possibility is supported by the overall effects of 

NPY on food-motivated behavior, as injection of NPY either icv or into the VTA increases 

operant responding for sucrose and food pellets in rats159,174,297, and this response is associated 
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with increased dopamine release in the nucleus accumbens132,302.  Further experiments will be 

required to identify the net effect of NPY on overall dopamine neuron activity and dopamine 

output, and to determine whether NPY is activating and inhibiting distinct subpopulations of 

VTA dopamine neurons to promote food-seeking behaviors. 

In summary, we have demonstrated that NPY modulates subsets of VTA dopamine 

neurons through three independent mechanisms, including both pre-synaptic and post-synaptic 

mechanisms.  NPY directly inhibited VTA dopamine neurons through activation of a post-

synaptic GIRK channel current, and indirectly inhibited VTA dopamine neurons through a pre-

synaptic reduction in glutamate release.  NPY also decreased GABAergic transmission onto 

dopamine neurons through a pre-synaptic reduction in GABA release.  These results advance 

our understanding of how VTA dopamine neuron activity is regulated and provide further 

understanding of how NPY interacts with the mesocorticolimbic dopamine system to regulate 

feeding behavior.  
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4.6 Figures 

 

Figure 4.1: NPY concentration-dependently activated an outward current and reduced 

membrane resistance (RM) in a subset of VTA dopamine neurons.   

 

A-C. Sample traces (A), mean effect (B), and mean peak amplitude (C) of the NPY activated 

current at different concentrations.  D-E. Mean effect of NPY on RM (D) and mean RM before 

and after NPY application (D) at different concentrations.  Bars in A-B & D indicate time of 

NPY application.  n=6-7 cells from 5-6 mice for each group.  Scale Bars: 25 pA/3 min. *p<0.05 

**p<0.01 
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Figure 4.2: The NPY-induced current was mediated by NPY Y1Rs in VTA dopamine neurons.   

 

A-C. The Y1R antagonist, BIBP3226 (1 µM), reversed the NPY (300 nM) induced current. 

Sample trace (A) and mean response (B; n=4) of the NPY current before and during BIBP3326 

application, and mean NPY current amplitude before and after BIBP3226 application (C; n=4).  

D-E. Sample trace (D) and mean response (E; n=8) of VTA dopamine neurons pretreated with 

BIBP3226 (1 µM) to NPY (100 nM).  Bars in A-B & D-E indicate time of NPY and BIBP3226 

application.  Scale bars: 30 pA/2.5 min. *p<0.05 
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Figure 4.3: The NPY-induced current in VTA dopamine neurons exhibited characteristics of a 

G protein-coupled inwardly rectifying K+ (GIRK) channel.   

 

A. Sample current traces resulting from slow voltage ramps (-100 mV to 0 mV 100 mV s-1) 

before (black trace) and after NPY (100 nM; light grey trace) application, and 2 min after the 

addition of Ba2+ (1 mM; NPY + Ba2+, dark grey trace) using a high K+ (10 mM) external 

solution containing TTX (1 M).  B. Sample trace of the net NPY (100 nM) induced current.  C. 

Mean current-voltage relationship of the NPY (100 nM) induced current.  D-E. Mean effect (D) 

and sample trace (E) of the NPY (100 nM) –induced current at a holding potential of -40 mV 

before and during Ba2+ (1 mM) application using a high K+ (10 mM) external solution 

containing TTX (1 M).  Bars in D-E indicate time of NPY and Ba2+ application.  n=5-7 cells 

from 5-7 mice for each group.  Scale bars: 25 pA/3 min. 
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Figure 4.4: NPY and baclofen currents are affected by intracellular Ca2+ levels in VTA 

dopamine neurons.   

 

A-B. Sample traces (A) and mean peak amplitudes (B) of the NPY (100 nM) and baclofen (1 

μM) induced currents using internal solutions containing 10 mM BAPTA (black trace) or 0.1 

mM EGTA (grey trace). Bars in A indicate time of NPY and baclofen application.  Scale bars: 

50 pA/5 min.  n=6-8 cells from 5-8 mice for each group.  *p≤0.05 **p≤0.01 
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Figure 4.5: NPY decreased EPSCs in a subset of VTA dopamine neurons through a pre-

synaptic decrease in glutamate release.   

 

A. Mean effect of NPY (100 nM) on EPSCs (n=10 cells from 10 mice) and sample trace 

of an EPSC before (a; black trace) and after (b; grey trace) NPY.  B-C.  Mean EPSC amplitude 

before and after NPY (100 nM) application for the EPSCs inhibited by NPY (B; n=7 of 10) and 

for the EPSCs not affected by NPY (C; n=3 of 10).  D-E. Mean effect of NPY (100 nM) on the 

EPSC amplitude, PPR, and CV for the EPSCs inhibited by NPY (D; n=7 of 10) and for the 

EPSCs not affected by NPY (E; n=3 of 10).  F-G. Time course of the effect of NPY (100 nM) 

on EPSC PPRs for the EPSCs inhibited by NPY (F; n=7 of 10) and for the EPSCs not affected 

by NPY (G; n=3 of 10).  H-I, J-K. Mean PPR (H-I) and mean CV (J-K) before and after NPY 

(100 nM) application for the EPSCs inhibited by NPY (H,J; n=7 of 10) and for the EPSCs not 

affected by NPY (I,K; n=3 of 7).  L-M. Mean EPSC response to NPY (100 nM) (L) and mean 

EPSC amplitude after NPY (100 nM) application (M) in neurons in which NPY caused an 

outward current (n=3 of 10) compared to neurons that did not show an NPY-induced current 

(n=4 of 10).  Bars in A, F-G, & L indicate time of NPY application.  Scale Bar: 200 pA/10 ms.  

*p≤0.05 **p≤0.01 



71 

 

Figure 4.6: NPY inhibited IPSCs in a subset of VTA dopamine neurons through a pre-synaptic 

decrease in GABA release.   

 

A. Mean effect of NPY (100 nM) on IPSCs (n=6 cells from 5 mice) and sample trace of an 

IPSC before (a; black trace) and after (b; grey trace) NPY.  B. Mean IPSC amplitude before and 

after NPY (100 nM) application for the IPSCs inhibited by NPY (n=4 of 6).  C. Mean effect of 

NPY (100 nM) on the IPSC amplitude, PPR, and CV for the IPSCs inhibited by NPY (n=4 of 

6).  D. Time course of the effect of NPY (100 nM) on IPSC PPRs for the IPSCs inhibited by 

NPY (n=4 of 6).  E-F. Mean PPR (E) and mean CV (F) before and after NPY (100 nM) 

application for the IPSCs inhibited by NPY (n=4 of 6).  Bars in A & D indicate time of NPY 

application.  Scale Bar: 200 pA/20 ms.  *p≤0.05 **p≤0.01 
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5 α-MSH INCREASES ACTIVITY OF MC3R-EXPRESSING NEURONS IN THE 

VENTRAL TEGMENTAL AREA  

 

5.1 Abstract 

The mesocorticolimbic dopamine system, the brain’s reward system, regulates multiple 

behaviors including food intake and food reward.  There is substantial evidence that the 

melanocortin system of the hypothalamus, an important neural circuit controlling homeostatic 

feeding and body weight, interacts with the mesocorticolimbic dopamine system to affect 

feeding, food reward, and body weight.  For example, melanocortin-3 receptors (MC3Rs) are 

expressed in the ventral tegmental area (VTA), and our lab previously showed that intra-VTA 

injection of the MC3R agonist, MTII, decreases home-cage food intake and operant responding 

for sucrose pellets.  The cellular mechanisms underlying the effects of intra-VTA -MSH on 

feeding and food reward are unknown, however.  To determine how -MSH acts in the VTA to 

affect feeding, we performed electrophysiological recordings in acute brain slices from mice 

expressing EYFP in MC3R neurons to test how -MSH affects the activity of VTA MC3R 

neurons.  -MSH significantly increased the firing rate of VTA MC3R neurons, but it did not 

increase the activity of non-MC3R expressing VTA neurons.  In addition, the -MSH-induced 

increase in MC3R neuron activity was independent of fast synaptic transmission and 

intracellular Ca2+ levels.  Furthermore, we show that the effect of -MSH on MC3R neuron 

firing rate is likely activity dependent and does not occur through a decrease in threshold 

potential.  Overall, these studies provide an important advancement in the understanding of how 

-MSH acts in the VTA to affect feeding and food reward.  
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5.2 Introduction 

The world health organization estimates that obesity rates have nearly tripled worldwide 

since 19751.  The rapid rise in obesity rates is a major health concern as obesity increases the 

risk for many diseases such as heart disease, diabetes, cancers, and stroke2.  The increase in 

obesity rates is largely attributed to an increase in food consumption4-7.  Thus, understanding the 

mechanisms of food intake and weight gain is important for the development of new effective 

treatments to prevent and reverse obesity.   

The melanocortin system has been widely shown to play an important role in the control 

of feeding and body weight.  This system encompasses two neuronal populations in the arcuate 

nucleus of the hypothalamus, pro-opiomelanocortin (POMC) expressing neurons and agouti-

related protein/neuropeptide-Y (AgRP/NPY) expressing neurons, the peptides expressed by 

these neurons, and the downstream receptors of these peptides165.  POMC is a propeptide that is 

post-translationally processed to produce the melanocyte stimulating hormones (α-, β-, and γ-

MSH).  α-, β-, and γ-MSH are agonists to the centrally expressed melanocortin receptors, 

melanocortin-3 and melanocortin-4 receptors (MC3/4Rs), while AgRP is an inverse-agonist to 

the MC3/4Rs165.  AgRP/NPY and POMC neurons respond to an animal’s energy state and 

function in an opposing manner.  For example, an energy deficit or hunger state activates 

AgRP/NPY neurons303,304 while an energy surplus or satiated state activates POMC 

neurons305,306.  In addition, activation of AgRP/NPY neurons or injection of MC3/4R 

antagonists increases feeding211,219,307,308, while activation of POMC neurons or injection of 

MC3/4R agonists decrease feeding211,219,220,309.  The melanocortin system is clearly an important 

regulator of food intake, and substantial evidence indicates that this system interacts with other 
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brain nuclei and neural systems, including the mesocorticolimbic dopamine system, to regulate 

food intake and body weight.  

The mesocorticolimbic dopamine system is the primary circuit for reward and motivated 

behavior and also regulates food reward, feeding, and body weight15,165,270,271.  The 

mesocorticolimbic dopamine system is comprised of dopamine neurons in the VTA and the 

downstream targets of dopamine neurons such as the NAc, prefrontal cortex, olfactory tubercle, 

and hippocampus.  Numerous studies show the importance of dopamine for food intake and 

food reward.  For example, ablation of dopamine neurons causes mice to become aphagic133, 

and blocking dopamine receptors systemically or in the NAc decreases operant responding for 

food in rats132,273,274.  There is also substantial evidence that intra-VTA injection of a number of 

feeding-related peptides alters food intake and food reward168.  This includes injection of 

analogs of α-MSH and AgRP into the VTA.  For example, our lab has shown that injection of 

the MC3R agonist, MTII, directly into the VTA decreases home-cage food intake, the intake of 

sucrose and saccharin intake in 2-bottle choice tests, and operant responding for sucrose pellets, 

whereas injection of the MC3R antagonist, SHU9119, into the VTA increases home-cage food 

intake and operant responding for sucrose pellets172,173,175.  Nevertheless, how α-MSH acts in 

the VTA at the cellular level to regulate feeding and other reward related behaviors is unknown.   

Intra-VTA α-MSH may affect food intake and food reward by regulating VTA 

dopamine neuron activity.  For example, it has been known since the 1980s that intra-VTA 

injection of α-MSH increases dopamine turnover in the NAc229,230, and intra-VTA α-MSH and 

MC3/4R agonists increase dopamine dependent behaviors, such as rearing, grooming, and 

locomotor activity227-230.  Furthermore, additional evidence indicates that the melanocortin and 

mesocorticolimbic dopamine systems interact.  POMC and AgRP neurons project to the 
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VTA222,278, and MC3/4Rs are expressed in dopamine and non-dopamine VTA neurons223,225,226.  

The MC3R is expressed at much higher levels in the VTA than the MC4R, however223,225,226, 

suggesting that the effects of α-MSH and AgRP in the VTA are likely due to actions on 

MC3Rs.  Thus, -MSH can clearly act in the VTA to affect food intake, food reward, and other 

reward behaviors, likely through activation of dopamine neurons expressing the MC3R.  

However, how α-MSH acts on MC3R-expressing VTA dopamine neurons to regulate food 

intake and reward behavior and to increase dopamine turnover in the NAc is unknown.  Thus, in 

these studies, we tested whether α-MSH increases the activity of VTA dopamine neurons 

expressing MC3Rs by using electrophysiology in brain slices from transgenic mice expressing 

EYFP in MC3R neurons.  

 

5.3 Materials and Methods 

Animals: Male and female transgenic mice expressing EYFP in MC3R neurons (5-14 

weeks old) on a mixed C57/129 background were used in all experiments.  Mice were generated 

by crossing transgenic mice expressing Cre recombinase under the MC3R promoter (generously 

provided by Dr. David P. Olson, University of Michigan) with a Cre inducible EYFP transgenic 

mouse line (Ai3 mice from The Jackson laboratory).  All protocols and procedures were 

approved by the Institutional Animal Care and Use Committee at Georgia State University, and 

conformed to the NIH Guide for the Care and Use of Laboratory Animals.  

Slice preparation and Electrophysiology: Acute brain slices were prepared similar to 

what has been previously described234-236.  Briefly, adult mice were anesthetized with 

isofluorane and decapitated.  The brain was then removed and placed in carbogen (95% O2 and 

5% CO2) saturated ice-cold sucrose cutting solution containing (in mM) 205 sucrose, 2.5 KCl, 
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0.5 CaCl2, 1.25 NaH2PO4, 7.5 MgCl2, 11.1 glucose, 21.4 NaHCO3, and 0.6 kynurenic acid.  A 

brain block containing the VTA was made, and pseudo-horizontal sections (220 m) were cut 

with a vibrating blade microtome.  Slices were then incubated in artificial cerebral spinal fluid 

(aCSF) containing (in mM) 126 NaCl, 2.5 KCl, 2.4 CaCl2, 1.2 NaH2PO4, 1.2 MgCl2, 11.1 

glucose, 21.4 NaHCO3, and 1 kynurenic acid (~ 35C) for ~ 30 min before recording.  Slices 

were placed in a recording chamber and perfused with carbogen-saturated aCSF at a flow rate of 

approximately 1-2 ml/min.  Whole-cell and loose cell-attached recordings were made using an 

Axon multiclamp 700B microelectrode amplifier and Axograph software.  MC3R-expressing 

neurons were identified by the presence of EYFP using a fluorescence microscope.   

Cell firing was recorded in either the loose-cell attached or whole-cell configuration.  

Loose cell-attached recordings were obtained with electrodes (7.0-10.0 M) filled with a 

NaHEPES based internal solution containing (in mM) 135 NaHEPES and 20 NaCl, adjusted to 

290 mOsm with water.  Whole-cell recordings were obtained with electrodes (2.0-3.0 M) 

filled with a potassium gluconate (KGluconate) based internal solution containing (in mM) 128 

KGluconate, 10 NaCl, 1 MgCl2, 10 HEPES, 2 ATP, 0.3 GTP, 10 creatine phosphate, and 10 

BAPTA or 1 EGTA.  The internal solution contained EGTA for the experiments examining the 

effect of α-MSH on MC3R neuron activity under reduced calcium buffering conditions.  The 

internal solution contained BAPTA for all other whole-cell recordings.  Corrections were not 

made for the liquid junction potential, which was calculated to be the following for each internal 

solution used: KGluconate 10 mM BAPTA, 13.9; KGluconate 1 mM EGTA, 14.7.  Series 

resistance values were approximately 3-15 M.  If the series resistance increased by more than 

20%, the experiment was terminated or excluded from analysis.  Cell firing was recorded in 

voltage-clamp mode for loose-cell attached recordings and current-clamp mode for whole-cell 
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recordings.  Whole-cell recordings were conducted in the presence of fast synaptic blockers (10 

μM DNQX and 100 μM picrotoxin), and if the cell was not firing positive current was injected 

(5- 55 pA).  In addition, if the cell stopped firing or did not fire for at least 1 min during 

baseline recordings or during the first 2 min of adding α-MSH, the experiment was terminated 

or excluded from analysis.  Membrane potential was recorded in current-clamp mode in the 

presence of fast synaptic blockers and tetrodotoxin (1 μM TTX).  For experiments testing the 

effect of α-MSH on current-step evoked action potentials, the neurons were held at ~ -70 mV 

and 2-sec current steps of 5 pA were applied at increasing amplitudes (5-50 pA) with a 1-sec 

inter-step interval.  The current-step protocol was repeated every minute, and if the current steps 

failed to evoke action potentials or if the number of evoked action potentials decreased over 

time during baseline recording, the experiment was terminated.  For all experiments, the change 

in firing rate or membrane potential was calculated as the difference between the average firing 

rate or membrane potential at 5 min before α-MSH treatment and the average firing rate or 

membrane potential at 4-6 min after α-MSH treatment.  For all experiments, cells were held for 

at least 10 min prior to drug application to allow for diffusion of the internal solution into the 

cell and to ensure stability of the recording prior to drug addition.  

Drugs:  α-MSH was purchased from Bachem (Torrance, CA).  TTX was purchased from 

Tocris Biosciences (Minneapolis, MN).  All other reagents were from common commercial 

sources. 

Data Analysis and Statistics: Data are represented as the mean +/- SEM unless otherwise 

noted.  Data were stored and analyzed using Axograph X (v1.3.5), LabChart (v7.3.6; 

ADInstruments), and Excel (v14.0; Microsoft Corporation) software.  Statistics were calculated 

using SigmaStat (v11.0; Systat Software, Inc.).  Data were initially tested for normality using 
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the Shapiro-Wilk test and were then analyzed with Student’s t-tests, Wilcoxon signed-rank tests, 

or ANOVAS with Tukey’s post-hoc tests as appropriate with a significance level of p<0.05 set 

a priori.   

 

5.4 Results 

To determine whether α-MSH affects the activity of MC3R expressing VTA neurons 

(‘VTA MC3R neurons’), we first tested whether α-MSH changed the spontaneous firing rate of 

VTA MC3R neurons in the loose-cell attached configuration.  α-MSH (1 μM) significantly 

increased the spontaneous firing rate of VTA MC3R neurons by 0.41 +/- 0.07 Hz (Fig. 5.1; 

before α-MSH, 2.92 +/- 0.41 Hz; after α-MSH, 3.33 +/- 0.39 Hz).  Out of the 8 MC3R neurons 

tested, all exhibited an action potential width ≥1.2 ms suggesting that the MC3R neurons tested 

were dopaminergic.  A broad action potential width is a physiological characteristic of 

dopamine neurons that has repeatedly and reliably been used to identify dopamine neurons68,238-

240.  Thus, α-MSH increases the firing of VTA dopamine neurons expressing MC3Rs. 

We next confirmed and extended these findings by testing whether α-MSH increases the 

firing rate of VTA MC3R neurons in the whole-cell current-clamp configuration.  In addition, 

we included blockers of fast synaptic currents (10 μM DNQX, 100 μM picrotoxin) in the bath 

solution to confirm that the α-MSH induced increase in MC3R neuron firing rate was due to 

direct action on MC3Rs and not changes in synaptic transmission.  α-MSH (1 μM) significantly 

increased the firing rate of MC3R neurons by 0.42 +/- 0.11 Hz in the presence of fast synaptic 

blockers (Fig. 5.2A-C; before α-MSH, 1.17 +/- 0.21 Hz; after α-MSH, 1.59 +/- 0.15 Hz).  

Intracellular Ca2+ plays a key role in VTA dopamine neuron excitability, firing rate, and burst 

firing56,57,69, so we next tested whether reduced Ca2+ buffering affected the α-MSH induced 
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increase in MC3R neuron firing rate using an internal solution containing a low Ca2+ buffer (1 

mM EGTA).  α-MSH (1 μM) also significantly increased the firing rate of MC3R neurons using 

the 1 mM EGTA internal solution by 0.51 +/- 0.17 Hz (Fig. 5.2D-E; before α-MSH, 1.28 +/- 

0.34 Hz; after α-MSH, 1.78 +/- 0.47 Hz), with no significant difference between the magnitudes 

of α-MSH induced increase in firing rate between the two groups (10 mM BAPTA, 0.42 +/- 

0.11 Hz vs. 1 mM EGTA, 0.51 +/- 0.17 Hz; p=0.673).  Thus, α-MSH increases the firing rate of 

VTA MC3R neurons through a mechanism independent of fast synaptic transmission and 

intracellular Ca2+ levels.  

MC3Rs are only expressed in a subset of VTA neurons225, so we next tested whether the 

α-MSH induced increase in VTA MC3R neuron firing rate was specific to VTA MC3R 

neurons.  α-MSH did not increase the firing rate of non-MC3R expressing VTA neurons (Fig. 

5.3; before α-MSH, 0.70 +/- 0.14 Hz, after α-MSH: 0.49 +/- 0.13 Hz; p=0.104).  There was a 

trend toward a decrease in firing rate by -0.2 +/- 0.11, but this decrease was not statistically 

significant (Fig. 5.3C).  Therefore, α-MSH induced increase in VTA neuron firing appears to be 

specific to MC3R-expressing VTA neurons. 

α-MSH could increase the activity of VTA MC3R neurons by direct depolarization or by 

modifying the firing properties of the cell (e.g. threshold) independent of a direct change in 

membrane potential.  To determine if α-MSH directly depolarizes MC3R neurons, we tested the 

effect of α-MSH on membrane potential in the presence of TTX (1 μM), DNQX (10 μM), and 

picrotoxin (100 μM).  α-MSH (1 μM) slightly increased the membrane potential of MC3R 

neurons, but this increase was not statistically significant (Fig. 5.4; before α-MSH, -53.7 +/- 3.7 

mV; after α-MSH -52.4 +/- 3.6 mV; p=0.177; Mean depolarization = 1.34 +/- 0.84 mV).   
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We then tested whether α-MSH altered VTA MC3R neuron firing independent of a 

direct depolarization by testing the effect of α-MSH on current-step evoked action potentials.  

The neurons were held at ~ -70 mV and a set of current steps of increasing amplitude (5-50 pA 

in 5 pA increments; 2-sec each; 1-sec inter-step interval) were applied every minute.  α-MSH (1 

μM) did not significantly affect rheobase (the minimal current required to reach threshold 

potential and generate an action potential) (Fig. 5.5B,E; before α-MSH, 26.9 +/- 3.5 pA; after α-

MSH, 25 +/- 3 pA; p=0.35) or membrane potential (Fig. 5.5C-D; before α-MSH, -70.6 +/- 0.87 

mV; after α-MSH, 68.1 +/- 1.7 mV; p=0.181).  However, α-MSH (1 μM) did significantly 

increase the number of current-evoked action potentials at the 35, 40, 45, and 50 pA current 

steps in MC3R neurons (Fig. 5.5A-B; significant main effect of current step (F(9, 63)=22.135, 

p<0.001) and significant current-step× α-MSH interaction (F(9,63)=3.227, p=0.003)).  The 

current-step evoked action potentials were further analyzed at the 40 pA current step, because 

this step consistently evoked 3-4 action potentials at baseline in 7 out of 8 neurons tested.  One 

cell was excluded from this analysis, because the 40 pA current step failed to consistently evoke 

action potentials.  α-MSH significantly increased the inter-spike interval at the 40 pA current 

step (Fig. 5.5F; before α-MSH, 119.7 +/- 20.8 ms; after α-MSH, 90.9 +/- 12.1 ms), and there 

was a trend towards a decrease in the latency to the first spike at the 40 pA current step (Fig. 

5.5G; before α-MSH, 1.07 +/- 0.13 sec; after α-MSH, 0.85 +/- 0.07 sec; p=0.131).  Thus, α-

MSH facilitates MC3R neuron firing through an activity dependent mechanism that does not 

appear to involve direct depolarization or a change in rheobase or threshold potential.  
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5.5 Discussion 

We have shown that α-MSH significantly increases the firing rate of VTA MC3R 

neurons through an activity dependent mechanism, as α-MSH increased the activity of MC3R 

neurons only when the neurons were firing.  α-MSH did slightly increase the membrane 

potential of MC3R neurons, and it is possible that this slight increase in membrane potential 

causes a significant increase in MC3R neuron firing, however.  In addition, α-MSH did not 

affect rheobase in MC3R neurons, suggesting that α-MSH does not increase the firing rate of 

MC3R neurons by lowering threshold potential.  Furthermore, α-MSH increased the firing rate 

through a mechanism independent of fast synaptic transmission and intracellular Ca2+ levels.  

Thus, our results suggest α-MSH increases the firing rate of VTA MC3R neurons through an 

activity dependent mechanism that is independent of intracellular Ca2+ levels or altered synaptic 

transmission onto VTA MC3R neurons.   

The effect of α-MSH on VTA MC3R neurons likely occurs through activation of 

MC3Rs, as MC3Rs are highly expressed in the VTA223,225.  It is possible that α-MSH could 

mediate its effect on MC3R neurons by acting on MC4Rs as well, but this seems unlikely.  

Although MC4Rs are also expressed in the VTA, they are expressed at much lower levels 

compared to MC3Rs223,225,226, and MC4Rs are most abundantly expressed in caudal regions of 

the VTA, while MC3Rs are expressed throughout the rostral-caudal extent of the VTA225.  

Thus, although we cannot rule out the possibility that the effects of α-MSH on VTA MC3R 

neuron activity are also mediated by MC4Rs in some of the MC3R neurons tested, this does not 

seem likely. 

MC3Rs are expressed in both VTA dopamine and non-dopamine neurons (dopamine: ~ 

57%; non-dopamine: ~43%)225.  The identity of MC3R non-dopamine neurons is currently 
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unknown, and these neurons may be GABAergic or glutamatergic neurons, as both are found in 

the VTA28,30,31.  Previous studies have shown that intra-VTA α-MSH increases dopamine 

release in the NAc and dopamine-dependent behaviors suggesting that α-MSH increases VTA 

dopamine neuron activity227-230,232,233.  In addition, γ-MSH increases the firing rate of a subset of 

VTA dopamine neurons in rats310.  In agreement, our results suggest that α-MSH increases the 

firing rate of VTA dopamine neurons expressing MC3Rs.  All of the MC3R neurons tested in 

the cell-attached recordings had broad action potential widths (≥ 1.2 ms), which has been shown 

to reliably identify mouse VTA dopamine neurons in cell-attached recordings238,239.  Thus, α-

MSH likely increases VTA dopamine-MC3R neuron firing rate.  However, it is possible that the 

MC3R neurons tested in the whole-cell recordings could have been both dopamine and non-

dopamine neurons, as the effectiveness of previous criteria used to identify dopamine neurons in 

whole-cell recordings has more recently been brought into question.  For example, action 

potential width does not reliably identify VTA dopamine neurons in whole-cell recordings in 

mice239, so it could not be used to definitively identify the MC3R neurons in the whole-cell 

recordings here.  Similarly, another electrophysiological marker for dopamine neurons, 

hyperpolarization-activated cation current (H-current), could not be used to identify MC3R 

neurons.  Only a few MC3R neurons tested exhibited H-current, and electrophysiological 

markers of VTA dopamine neurons, such as H-current, are heterogeneous and depend on 

dopamine neuron projection target16,35,311,312.  Thus, it is difficult to conclusively determine 

whether the VTA MC3R neurons studied here were all dopaminergic, or also contained GABA 

or glutamate neurons.  In conclusion, we have shown that α-MSH likely increases the firing rate 

of VTA dopamine MC3R-expressing neurons, but α-MSH may increase the firing rate of VTA 
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GABA and/or glutamate MC3R-expressing neurons as well, and further studies will be required 

to conclusively identify the specific subtypes of VTA MC3R neurons responding to α MSH. 

We also showed that α-MSH does not significantly increase the firing rate of non-MC3R 

expressing VTA neurons, but there was a trend towards a decrease in firing rate in these studies, 

as α-MSH reduced the firing rate of 4 out of 5 of the non-MC3R neurons tested.  This decrease 

in firing rate may be due to run down, because the firing rate slowly ran down in most of the 

recorded neurons.  Alternatively, α-MSH may decrease the firing rate of non-MC3R expressing 

VTA dopamine neurons through activation of dopamine D2 receptors (D2R).  VTA dopamine 

neurons release dopamine from their soma and dendrites95-99, and this somatodendritic release 

inhibits neighboring dopamine neurons through D2R mediated activation of G-coupled inward 

rectifying potassium (GIRK) channels98,100-102.  Our results suggest α-MSH likely increases the 

activity of VTA dopamine-MC3R neurons.  Increased activity of dopamine-MC3R neurons 

could cause an increase in somatodendritic dopamine release and inhibition of neighboring 

VTA dopamine neurons, but this possibility remains to be tested.  

MC3Rs are G protein-coupled receptors that signal through Gs and thus activate 

adenylyl cyclase and subsequently cAMP and PKA223.  However, additional experiments have 

demonstrated that the MC3R is coupled to other G-proteins and can activate other signaling 

pathways.  For example, activating MC3Rs in HEK293 cells activates MAP kinase through a Gi 

protein-PI3K signaling pathway313.  It is possible that α-MSH increases MC3R neuron activity 

by activating one of these kinases and subsequently increasing or decreasing the conductance of 

an ion channel through phosphorylation of that ion channel, but the signaling cascade activated 

by α-MSH acting on MC3Rs in VTA neurons is currently unknown.  Thus, further experiments 
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are needed to determine how -MSH increases VTA MC3R neuron firing rate, and the 

intracellular signaling pathway activated by MC3Rs in VTA neurons.   

Previous studies have shown that activation of MC3Rs increases intracellular Ca2+ in 

neurons314-316 and one study showed -MSH increases intracellular Ca2+ in MC3R-expressing 

HEK293 cells317.  Intracellular Ca2+ is an important regulator of dopamine neuron 

excitability56,57,69 and increasing intracellular Ca2+ increases dopamine neuron burst firing57.  

Thus, -MSH could alter VTA MC3R neuron activity through the alteration of intracellular 

calcium levels, but our results suggest that the effect of -MSH on MC3R neuron firing rate is 

independent of intracellular Ca2+ levels.  -MSH increased the firing rate of MC3R neurons 

under both increased (10 mM BAPTA) and reduced (1 mM EGTA) intracellular Ca2+ buffering 

conditions, and there was no significant difference in the magnitude of the effect of -MSH 

with the two conditions.  Thus, -MSH induced increase in VTA MC3R neuron firing is not 

Ca2+ dependent.  

In summary, we have shown that -MSH increases the firing rate of MC3R expressing 

VTA neurons through an activity dependent mechanism.  These results advance our 

understanding of how intra-VTA -MSH regulates food intake, food reward, and other 

dopamine dependent behaviors, and how intra-VTA -MSH increases dopamine turnover in the 

NAc. 
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5.6 Figures 

 

Figure 5.1: -MSH increased the spontaneous firing rate of VTA MC3R neurons in loose cell-

attached recordings.   

 

A. Sample traces of a MC3R neuron before (black trace) and after (grey trace) -MSH (1 μM).  

B. Mean effect of -MSH on the firing rate of MC3R neurons.  C. Mean firing rate of MC3R 

neurons before and after -MSH.  n= 8 neurons from 7 mice. Scale Bars: 1 sec. *p<0.001 
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Figure 5.2: -MSH increased the firing rate of VTA MC3R neurons in whole-cell current clamp 

recordings in the presence of inhibitors of fast synaptic transmission (DNQX: 10 μM; 

picrotoxin: 100 μM).   

 

A. Sample traces of the firing rate of a MC3R neuron before (black trace), during, and after 

(grey trace) -MSH (1 μM) application.  B,D. Mean effect of -MSH on the firing rate of 

MC3R neurons using an internal solution containing 10 mM BAPTA (B) or 1 mM EGTA (D).  

C,E. Mean firing rate of MC3R neurons before and after -MSH using an internal solution 
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containing 10 mM BAPTA (C) or 1mM EGTA (E).  n= 6 neurons from 6 mice for each group. 

Scale Bars: top trace, 40 mV/1 min; bottom trace, 40 mV/4 sec. *p<0.05 

 

 

Figure 5.3: -MSH did not increase the firing rate of non-MC3R expressing VTA neurons in 

whole-cell current clamp recordings in the presence of inhibitors of fast synaptic transmission 

(DNQX: 10 μM; picrotoxin: 100 μM).   

 

A. Sample traces of the firing rate of a non-MC3R neuron before (black trace), during, and after 

(grey trace) -MSH (1 μM) application.  B. Mean effect of -MSH on the firing rate of non-

MC3R neurons.  C. Mean firing rate of non-MC3R neurons before and after -MSH.  n= 5 

neurons from 5 mice.  Scale Bars: top trace, 50 mV/1 min; bottom trace, 40 mV/4 sec. 
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Figure 5.4: -MSH did not significantly affect the membrane potential of VTA MC3R neurons 

in the presence of TTX (1 μM).   

 

A. Mean effect of -MSH (1 μM) on the membrane potential of MC3R neurons.  B. Mean 

membrane potential of MC3R neurons before and after -MSH.  n= 6 neurons from 6 mice. 
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Figure 5.5: -MSH increased the number of current-step evoked action potentials but did not 

affect rheobase in VTA MC3R neurons.   

 

Current steps (2 sec) of increasing amplitude (5-50 pA) were applied every minute before, 

during, and after -MSH (1 μM) application.  A. Sample traces of a MC3R neuron before 

(black trace) and after (grey trace) -MSH.  B. Mean effect of -MSH on the number of action 

potentials evoked by incrementing 5 pA current-steps (5-50 pA).  C-D. Mean effect of -MSH 

on membrane potential (C) and mean membrane potential before and after -MSH (D) for the 

MC3R neurons in B.  E-F. Mean rheobase (the minimum current step required to initiate an 

action potential; E), mean inter-spike interval at the 40 pA step (F), and mean latency to the first 

spike at the 40 pA step (G) before and after -MSH.  n= 7-8 neurons from 6-7 mice for each 

group.  Scale Bars: left traces, 40 mV/5 sec; right traces, 40 mV/2 sec. *p<0.05 
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6 CONCLUSIONS 

In summary, I have shown here that overall neurotensin appears to increase VTA 

dopamine neuron activity by directly activating a slow non-selective cationic current and by 

decreasing D2R and GABAB IPSCs234.  In contrast, NPY appears to decrease the activity of a 

subset of VTA dopamine neurons by directly activating an inhibitory GIRK current and by 

decreasing glutamatergic transmission onto VTA dopamine neurons, although NPY likely 

increases the activity of a subset of VTA dopamine neurons through dis-inhibition as NPY also 

decreases GABAergic transmission onto a subset of VTA dopamine neurons236.  Lastly, I have 

shown that -MSH increases the activity of VTA MC3R-expressing neurons.  Neurotensin and 

-MSH are both anorexigenic peptides that decrease feeding and food reward when injected 

into the VTA169-173,175 whereas NPY is an orexigenic peptide that increases operant responding 

for food when injected into the VTA174.  If only the results presented here are considered, then 

the data suggest that anorexigenic peptides increase dopamine neuron activity to decrease 

feeding and food reward while orexigenic peptides decrease dopamine neuron activity to 

increase food reward, but a review of the literature reveals the opposite to be true168.  For 

example, insulin and leptin (anorexigenic) decrease dopamine neuron activity318-320 while 

ghrelin (orexigenic) increases dopamine neuron activity321.  Orexigenic peptides usually 

increase dopamine neuron activity and dopamine release while anorexigenic peptides have been 

shown to both increase and decrease dopamine neuron activity and dopamine release168.  

Nonetheless, the theory that increased dopamine neuron activity and dopamine release lead to 

increased food intake is too simple to adequately describe how the mesocorticolimbic dopamine 

system regulates food intake.  In light of this, it is unclear how anorexigenic and orexigenic 

peptides interact with the mesocorticolimbic dopamine system to regulate food intake, food 
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reward, and weight gain.  Three possible models are described below as to how neuropeptides 

act in the VTA to regulate food intake and food reward: 1- neuropeptides regulate tonic and 

burst firing through different mechanisms (Fig. 6.1), 2- neuropeptides affect specific 

subpopulation of dopamine neurons to control distinct behaviors (Fig. 6.2), 3- neuropeptides 

regulate VTA glutamate and GABA neuron activity (Fig. 6.3).  In addition, how the effects of 

neurotensin, NPY, and -MSH on VTA dopamine neuron activity contribute to these models is 

described below.  Finally, I describe how VTA dopamine neurons may integrate peptide signals 

of energy state to regulate feeding along with the future direction of the projects presented here.  

 

6.1 Model 1- Neuropeptides regulate tonic and burst firing through different 

mechanisms 

Neuropeptides may not increase or decrease overall dopamine neuron activity to 

modulate food intake and food reward.  Rather, it is possible that neuropeptides affect food 

intake and food reward by changing only tonic or only burst dopamine neuron firing or by 

decreasing tonic firing but increasing burst firing and vice versa (Fig. 6.1).  For example, testing 

the effect of evoking tonic or burst firing in VTA dopamine neurons on behavior has revealed 

that evoking tonic vs. burst firing affects reward consumption and reward-behavior differently.  

Previous studies suggest that tonic firing affects reward consumption whereas burst firing 

affects reward behavior.  Indeed, evoking tonic firing in VTA dopamine neurons using 

optogenetics decreases sucrose and ethanol consumption in a two bottle-choice test322,323 while 

evoking burst firing has no effect on ethanol consumption322.  In contrast, evoking burst firing 

in VTA dopamine neurons using optogenetics causes conditioned place preference whereas 

evoking tonic firing does not324.  In addition, reducing burst firing by knocking out NMDARs in 
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VTA dopamine neurons has no effect on food consumption, but does impair conditioned place 

preference for food and cue-dependent learning tasks80; thus, burst firing is important for reward 

behavior and cue-induced learning.  Numerous studies also show that evoking burst firing in 

VTA dopamine neurons enhances reward reinforcement learning.  For example, optogenetically 

evoking burst firing in dopamine neurons reinforces lever pressing325, enhances lever pressing 

for food reward, and reactivates food-seeking behavior after extinction training in mice302.  

Thus, feeding neuropeptides may affect tonic and burst firing differently to regulate food intake 

and food reward. 

The different effects of tonic and burst firing on food intake and reward behavior may 

explain why both anorexigenic and orexigenic neuropeptides have seemingly excitatory effects 

on VTA dopamine neuron activity but opposite effects on feeding behavior.  Furthermore, these 

different effects of tonic and burst firing on behavior may explain why some peptides have both 

excitatory and inhibitory effects on VTA dopamine neuron activity.  I have shown here that 

NPY has both excitatory and inhibitory effects on dopamine neuron activity236, and it was 

previously shown that intra-VTA NPY increases operant responding for sucrose pellets but has 

no effect on free feeding174.  Thus, taken from what is known about the effects of tonic and 

burst firing on behavior, NPY may increase burst firing to enhance food reinforcement 

behavior.  Indeed, central NPY increases operant responding for food to equivalent levels as 

food restriction159, and food restriction enhances dopamine neuron burst firing161 and dopamine 

responses to sucrose, food intake, and operant responding for food151-154,326.  Furthermore, 

centrally injected ghrelin, an orexigenic peptide like NPY, enhances the phasic dopamine 

response in the NAc to a reward-predicting cue and to pellet retrieval153,327.  NPY may increase 

dopamine neuron burst firing through its excitatory effect of reducing GABAergic transmission, 
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as GABAA receptor antagonism also increases dopamine neuron burst firing86,87.  Conversely, 

the inhibitory effects of NPY on VTA dopamine neuron activity may decrease tonic firing of 

dopamine neurons.  Indeed, NPY levels increase during fasting328,329 and fasted animals do have 

lower basal levels of dopamine in the striatum149,150,330, which is set by the tonic release of 

dopamine.  Thus, NPY may reduce tonic firing and basal dopamine levels through inhibitory 

actions but enhance burst firing and phasic dopamine release through excitatory actions.  These 

opposing effects on tonic and burst firing would increase the change in dopamine from baseline 

during phasic dopamine release and may explain how intra-VTA NPY increases reward 

behavior.  If the hypothesis described here holds true, then changes in the amount of dopamine 

from baseline may regulate food intake and reward behavior rather than the absolute amount of 

dopamine.  Thus, higher basal levels of dopamine may occlude phasic dopamine signals and 

reduce the change in dopamine from baseline during phasic release and decrease food intake 

and reward behavior.  In addition, increases in tonic dopamine release may further decrease 

phasic dopamine release through an auto-inhibitory feedback mechanism323.  For example, 

D2Rs are located on dopamine neuron afferent terminals and tonic dopamine release may 

inhibit phasic dopamine release through dopamine mediated D2R activation.  In conclusion, 

orexigenic peptides, such as NPY, may enhance burst firing and decrease tonic firing to increase 

food intake and food reward (Fig. 6.1).  

As described above, anorexigenic and orexigenic neuropeptides have seemingly 

excitatory effects on VTA dopamine neuron activity.  I have shown that the anorexigenic 

peptide neurotensin increases the activity of dopamine neurons234 and that the anorexigenic 

neuropeptide -MSH increases VTA MC3R neuron activity.  Previous studies have shown that 

-MSH and neurotensin both decrease food intake and reward behavior when injected into the 
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VTA169-173,175.  Therefore, in agreement with the above hypothesis, -MSH and neurotensin 

may increase dopamine neuron tonic firing and increase basal dopamine release to decrease 

food intake (Fig. 6.1).  Neurotensin has also been shown to have inhibitory effects on dopamine 

neurons as neurotensin increases evoked GABAA currents in SNc dopamine neurons331 and 

decreases evoked EPSCs in VTA dopamine neurons332,333.  These effects of neurotensin may 

decrease bursting in dopamine neurons, because antagonizing glutamate receptors abolishes 

burst firing331,332 and GABAA receptor agonist block NMDA induced burst firing92,93.  Thus 

overall, -MSH and neurotensin may increase dopamine neuron tonic firing while neurotensin 

may also decrease dopamine neuron burst firing through its inhibitory effects to decrease food 

intake and food reward (Fig. 6.1).  Similarly, insulin (anorexigenic hormone) increases the 

firing rate of a subpopulation of VTA dopamine neurons334, but also causes LTD of 

glutamatergic transmission320.  Thus intra-VTA insulin may increase dopamine neuron tonic 

firing but decrease burst firing through a reduction in glutamate transmission to decrease 

feeding.  In addition, drugs of abuse such as cocaine and amphetamine also increase dopamine 

levels in the NAc but decrease food intake.  Nevertheless, drugs of abuse do increase other 

dopamine dependent behaviors, such as locomotor behavior, and interestingly both neurotensin 

and -MSH have also been shown to increase locomotor behavior188,189,228,229.  Thus, increases 

in basal dopamine levels seem to reduce food intake and food reward but may decrease feeding 

behavior because of increased activity levels.   

Another component of dopamine neuron activity is the pauses in burst firing.  Pauses 

occur in behaving animals when an unexpected reward is omitted or is less than what is 

expected and after spontaneous bursts and in vitro stimulated bursts; thus, pauses are an 

important component of the reward prediction error.  Interestingly, high-frequency stimulation 
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that mimics burst firing potentiates GABABR and D2R mediated GIRK currents127 while low 

frequency stimulation that mimics tonic firing decreases GABABR and D2R mediated GIRK 

currents126,127.  Thus if GABABR and D2R mediated GIRK currents mediate pauses in burst 

firing as has been hypothesized69,98, then it is fitting that they would be potentiated by burst 

firing and attenuated by tonic firing.  I have shown that neurotensin inhibits GIRK currents, 

while NPY activates a GIRK current234,236.  If NPY does promote burst firing to increase food 

reward, then the NPY caused GIRK current may contribute to pauses in burst firing.  Likewise, 

if neurotensin disrupts burst firing and increases basal dopamine levels, then neurotensin-

induced inhibition of GIRK currents may disrupt the pauses in burst firing and increase tonic 

dopamine neuron firing.   

It has been argued here that neuropeptides may affect food intake and food reward by 

modulating either tonic or burst dopamine neuron firing or by modulating tonic and burst firing 

through different mechanisms, but this does not exclude the possibility that neuropeptides 

regulate feeding by changing the overall activity of dopamine neurons.  Orexigenic and 

anorexigenic neuropeptides both increase dopamine neuron activity, and it may be that increases 

in dopamine neuron activity and dopamine release both increase and decrease food intake.  For 

example, it could be that the amount of dopamine that causes a feeding response follows an 

inverted-u curve such that high and low levels of dopamine decrease feeding, whereas a median 

level of dopamine increases feeding.  Indeed, increasing dopamine release in the NAc using a 

low dose of amphetamine increases food intake while higher doses decrease food intake in 

rats140.  In addition, completely depleting dopamine inhibits feeding in mice133.  Thus, 

neurotensin and -MSH may increase dopamine release to a level that attenuates feeding 

behavior, while NPY increases dopamine release to a level that potentiates feeding behavior.  
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Overall, how feeding neuropeptides alter dopamine neuron activity to regulate food intake and 

food reward and reinforcement is fairly complex, and neuropeptides may modulate dopamine 

neuron tonic and bust firing differently or change the overall activity of dopamine neurons and 

dopamine release to affect feeding behavior. 

 

6.2 Model 2- Neuropeptides affect specific subpopulations of dopamine neurons to 

control distinct behaviors  

It is possible that feeding-related neuropeptides regulate specific subpopulations of 

dopamine neurons to regulate specific behaviors such as food reward or aversion (Fig. 6.2).  

Our data, and others, demonstrate that the same neuropeptide can have both excitatory and 

inhibitory effects on VTA dopamine neurons; therefore, it is also possible that neuropeptides 

simultaneously activate one subpopulation of dopamine neurons while inhibiting another 

subpopulation to regulate different behaviors (Fig. 6.2).  Subpopulations of dopamine neurons 

projecting to distinct target regions have been shown to regulate different behaviors.  For 

example, rewards cause an increase in dopamine neuron activity, but subpopulations of 

dopamine neurons also increase their activity in response to aversive or stressful stimuli335-338, 

and aversive or stressful stimuli cause an increase in dopamine release in the PFC, NAc, and 

amygdala338,339.  Dopamine neurons encoding aversion seem to project to the PFC, while 

dopamine neurons encoding reward project to the NAc.  Indeed, a single exposure to cocaine 

causes LTP of glutamatergic synapses on lateral shell NAc projecting dopamine neurons, but 

does not affect glutamatergic synapses on VTA dopamine neurons projecting to the medial 

PFC312.  Interestingly, exposure to an aversive stimulus does cause LTP of glutamatergic 

synapses on medial PFC projecting dopamine neurons but not on NAc projecting dopamine 
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neurons, suggesting PFC projecting neurons encode aversion and NAc projecting neurons 

encode reward312.  In agreement, excitation of laterodorsal tegmentum inputs to the VTA causes 

conditioned place preference while excitation of lateral habenula (LHb) inputs to the VTA 

causes conditioned place aversion, and laterodorsal tegmentum inputs excite lateral shell NAc 

projecting dopamine neurons, while LHb inputs excite medial PFC projecting dopamine 

neurons301.  Thus, neuropeptides may modulate the activity of these distinct neuron populations 

through different mechanisms or modulate one specific subpopulation of dopamine neurons to 

regulate a specific behavior.  For example, a neuropeptide that increases food intake and reward 

behavior may activate NAc projecting dopamine neurons while inhibiting PFC projecting 

dopamine neurons or only activate NAc projecting dopamine neurons to increase feeding and 

reward behavior (Fig. 6.2).    

The different effects of neurotensin on dopamine neuron activity reported here are all 

excitatory and occurred in all dopamine neurons tested.  Nevertheless, a recent study has also 

shown that neurotensin has inhibitory actions on SNc dopamine neurons.  Neurotensin increases 

GABAergic transmission on SNc dopamine neurons by increasing GABAA currents through an 

increase in GABA release while simultaneously decreasing GABAB currents in the same 

neuron331.  However, it is unknown whether neurotensin has similar inhibitory effects in the 

VTA.  In addition, neurotensin has also been shown to attenuate evoked EPSCs in VTA 

dopamine neurons333, but one study suggests neurotensin potentiates EPSCs340, while another 

suggests neurotensin specifically potentiates NMDAR EPSCs and attenuates AMPAR 

EPSCs332.  It is unknown if the inhibitory and excitatory effects of neurotensin occur in different 

populations of dopamine neurons, or if neurotensin modulates one distinct population of 

dopamine neurons to regulate behavior.  NTS1 is the primary receptor expressed in VTA 
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dopamine neurons, and these NTS1 neurons primarily project to the ventral striatum and 

adjacent regions187,341.  NTS1 neurons do not project to the PFC or hippocampus and only send 

minor projections to the amygdala187,341.  Therefore, it is very unlikely that neurotensin 

significantly affects the dopamine neurons projecting to these brain regions, although 

neurotensin may affect these dopamine neurons through an indirect presynaptic mechanism.  

Overall, it seems that intra-VTA neurotensin primarily affects food intake and reward behavior 

by activating dopamine neurons projecting to mesolimbic regions.  

I have reported that NPY has both excitatory and inhibitory effects on dopamine 

neurons.  All three effects of NPY occurred in only a subset of dopamine neurons tested, so it is 

possible that NPY affects distinct subpopulations of dopamine neurons through different 

mechanisms.  For example, NPY may excite NAc projecting dopamine neurons and inhibit PFC 

projecting dopamine neurons to increase food reward and suppress a stress response.  Indeed, 

rats will endure aversive stimuli in order to obtain palatable high-calorie foods129,130, and hunger 

attenuates pain through NPY signaling in the lateral parabrachial nucleus342.  Thus, 

neuropeptides that increase food intake, such as NPY, may suppress the activity of brain regions 

encoding aversion and stress while activating feeding circuits to increase food intake when the 

food is highly rewarding or during an energy deficit.  The target sites of dopamine neurons 

expressing NPY receptors are unknown, so additional experiments are needed to determine 

whether NPY affects subpopulations of dopamine neurons through distinct mechanisms to 

regulate different behaviors.  

In contrast to NPY and neurotensin, only an excitatory effect of -MSH on VTA 

dopamine neuron activity has been reported.  It is possible that -MSH also has inhibitory 

effects on VTA dopamine neurons.  For example, -MSH-induced increases in dopamine 
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neuron activity may increase the somatodendritic release of dopamine in the VTA and inhibit 

neighboring dopamine neurons through dopamine mediated D2R IPSCs.  MC3Rs are only 

expressed in a subset of VTA dopamine neurons225.  Therefore, -MSH may regulate a distinct 

subpopulation of dopamine neurons.  The projection targets of MC3R-expressing VTA 

dopamine neurons are currently unknown, but our preliminary data suggest that MC3R VTA 

neurons project to the NAc but not to the PFC.  Thus, it seems that -MSH likely decreases 

food intake and reward behavior primarily by activating MC3R neurons projecting to the NAc, 

but -MSH may also regulate VTA MC3R neurons projecting to other brain regions through an 

indirect presynaptic mechanism.  

 

6.3 Model 3- Neuropeptides regulate VTA glutamate and GABA neuron activity  

It is possible that feeding neuropeptides regulate food intake and food reward by 

changing the activity of VTA GABA and glutamate neurons in addition to dopamine neurons, 

as the VTA contains GABA and glutamate neurons, and dopamine neurons that co-release 

either GABA or glutamate (Fig. 6.3).  Activating VTA GABA or glutamate neurons has been 

shown to affect food intake, reward behavior, and aversion.  For example, activation of VTA 

glutamate neurons is reinforcing33,343, and causes a real time place preference343.  However, the 

effect of VTA glutamate activation on behavior depends on the specific population of VTA 

glutamate neurons activated.  Indeed, in contrast to the above studies, specifically activating 

LHb projecting or NAc projecting VTA glutamate neurons causes real-time place avoidance344-

346 (Fig. 6.3A).  Activating local VTA glutamate interneurons increases glutamatergic 

transmission onto VTA dopamine neurons and activates dopamine neurons (Fig. 6.3B); thus, it 

has been hypothesized that activating local VTA glutamate interneurons increases reward 
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behavior through activation of dopamine neurons, whereas activating LHb or NAc projecting 

VTA glutamate neurons causes aversion33,343,346 (Fig. 6.3).   

Activating VTA GABA neurons also affects reward and aversion behavior.  

Unsurprisingly, the effect of VTA GABA neuron activation on behavior is opposite to VTA 

glutamate neuron activation.  Indeed, activating VTA GABA neurons causes conditioned place 

aversion347 and decreases reward consumption348.  In addition, inhibiting VTA GABA neurons 

increases reward behavior349.  Activating local VTA GABA interneurons increases GABAergic 

transmission onto VTA dopamine neurons and inhibits dopamine neurons348.  Therefore, 

activating local VTA GABA interneurons may decrease reward behavior and reward 

consumption by inhibiting dopamine neurons (Fig. 6.3B).  Conversely, specifically activating 

LHb projecting VTA GABA neurons increases reward behavior (Fig. 6.3A).  For example, 

activation of LHb projecting VTA GABA neurons is reinforcing and causes real time place 

preference345,350.  Overall, activation or inhibition of different populations of VTA GABA and 

glutamate neurons affects reward consumption, reward behavior, and aversion, and one way 

neuropeptides may interact with the mesocorticolimbic dopamine system to regulate behavior 

and food intake is through modulation of VTA GABA and glutamate neuron activity (Fig. 6.3).  

It is unknown whether NPY, neurotensin, or -MSH modulates the activity of VTA 

glutamate and GABA neurons, but there is some evidence suggesting that these neuropeptides 

do regulate their activity.  For example, the neurotensin receptor NTS1 is expressed in LHb 

projecting VTA neurons341, and VTA GABA and glutamate neurons project to the LHb but 

dopamine neurons do not32-34,350.  Intra-VTA neurotensin may increase the activity of these LHb 

projecting GABA or glutamate neurons through NTS1, as I have shown that neurotensin 

induces an excitatory current in VTA dopamine neurons234 which is mediated by the NTS1 
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receptor201-204.  It is possible that neurotensin decreases food intake by activating LHb 

projecting glutamate neurons, as stimulation of LHb projecting glutamate neurons is 

aversive344,345.  However, the effect of activating LHb projecting glutamate or GABA VTA 

neurons on food intake has not been tested.  In addition, neurotensin modulates glutamatergic 

transmission in the VTA332,333,340 and GABAergic transmission in the SNc331.  Neurotensin may 

modulate glutamate and GABAergic transmission by directly affecting the activity of local 

VTA GABA and glutamate neurons.  Thus, it is possible that neurotensin regulates VTA GABA 

and glutamate neuron activity to control feeding and food reward, but further experiments are 

needed to test this hypothesis. 

NPY likely regulates the activity of GABA and glutamate neurons in the VTA.  NPY 

has been shown to decrease the firing rate of putative VTA GABA neurons217.  Thus, intra-VTA 

NPY may increase food reward through inhibition of VTA GABA neurons, as inhibiting VTA 

GABA neurons does increase reward behavior349.  In addition, I have shown here that NPY 

decreases glutamatergic and GABAergic transmission onto a subset of VTA dopamine neurons 

through a presynaptic mechanism236.  It is possible that NPY directly inhibits local VTA 

glutamate and GABA interneurons to decrease presynaptic glutamate and GABA release.  Thus, 

intra-VTA NPY may modulate food reward by modulating VTA glutamate and/or GABA 

neurons, but further experiments are needed to test this hypothesis.   

-MSH may also modulate GABA and glutamate neuron activity to regulate feeding.  I 

have shown that -MSH increases the activity of MC3R-expressing neurons, and MC3Rs are 

expressed in both dopamine and non-dopamine neurons225.  However, the identity of the non-

dopamine neurons is unknown.  If MC3Rs are expressed in VTA glutamate and/or GABA 

neurons, then intra-VTA -MSH may regulate the activity of VTA glutamate and GABA 
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neurons to decrease food intake and food reward.  For example, our preliminary results suggest 

that MC3R neurons project to the LHb; therefore, -MSH may decrease food intake and reward 

by activating LHb projecting glutamate neurons.  Further experiments are needed to determine 

the identity of non-dopamine MC3R-expressing neurons.  

 

6.4 Integration of anorexigenic and orexigenic peptide signals in VTA dopamine 

neurons 

Numerous feeding related peptides have been shown to interact with the 

mesocorticolimbic dopamine system to regulate food intake and food reward168.  It is unknown 

how VTA dopamine neurons integrate all of these anorexigenic and orexigenic peptide signals 

to regulate feeding, or whether one subpopulation of VTA dopamine neurons responds to all 

feeding peptides.  It is very unlikely that one subpopulation of dopamine neurons responds to all 

of these peptides, and different feeding peptides have been shown to affect non-overlapping 

populations of dopamine neurons311.  Nevertheless, it would be interesting to test if NPY and -

MSH have opposite effects on the activity of VTA MC3R neurons, because AgRP/NPY 

neurons and POMC neurons (-MSH containing) have opposite effects on food intake and 

metabolism.  In fact, AgRP/NPY neurons inhibit POMC neurons through NPY and 

GABA286,351,352.  It would also be interesting to test whether NPY or -MSH affect the activity 

of NTS1 expressing dopamine neurons, because NTS1 is only expressed in a distinct subset of 

mesolimbic VTA dopamine neurons and these NTS1 neurons are hypothesized to be essential 

for regulating energy balance187,341.  For example, ablation of VTA NTS1 neurons increases 

food intake but decreases body weight187.  It is likely that -MSH affects the activity of at least 
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some of the NTS1 expressing dopamine neurons, because our preliminary results suggest that 

the projection pattern of VTA MC3R neurons is similar to that of NTS1 VTA neurons.   

It is expected that the effects of anorexigenic and orexigenic neuropeptides on VTA 

dopamine neuron activity would be in opposition.  Indeed, the effects of neurotensin and NPY 

on VTA dopamine neuron activity may be in opposition.  Intra-VTA neurotensin and NPY have 

opposite effects on food reinforcement170,174, and I have shown that NPY activates a GIRK 

current while neurotensin inhibits dopamine and GABA mediated GIRK currents234,236.  Hence, 

neurotensin may inhibit the NPY-mediated GIRK current.  In contrast, the effects of -MSH 

and neurotensin on VTA dopamine neuron activity may be complementary as both peptides 

have seemingly excitatory effects on VTA dopamine neurons and both peptides decrease food 

intake and food reward when injected into the VTA169-173,175.  Thus, overall it is unclear how 

dopamine neurons integrate all of these feeding-related neuropeptide signals, and additional 

experiments are needed to determine how VTA dopamine neurons integrate feeding signals. 

 

6.5 Future directions 

6.5.1 Neurotensin 

I have shown that neurotensin inhibits GIRK currents mediated by D2Rs and GABAB 

receptors234 and this has been verified by additional studies331,353.  Future experiments are 

needed to test whether neurotensin also inhibits NPY mediated GIRK currents.  If neurotensin 

specifically inhibits GIRK currents, then it is expected that neurotensin would inhibit the NPY 

current.  The mechanism of inhibition of neurotensin-induced GIRK currents is still unknown, 

and additional experiments are also needed to determine how neurotensin inhibits GIRK 

currents.  I have discussed possible explanations of how neurotensin inhibits GIRK currents 
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above, so I will not go into great detail here.  I have shown that neurotensin does not inhibit 

GIRK currents through the PKC pathway or through Ca2+ release from intracellular stores, but 

have shown that increased intracellular Ca2+ levels do reduce neurotensin-induced inhibition of 

GIRK currents234.  In addition, Tschumi and Beckstead have shown that neurotensin does not 

inhibit GABAB mediated GIRK currents in SNc dopamine neurons through the PKA pathway 

or through general kinases and phosphatases as nonspecific kinase and phosphatase blockers do 

not affect neurotensin inhibition of GABAB GIRK currents331.  Thus, additional experiments are 

needed to determine how neurotensin inhibits GIRK currents in VTA dopamine neurons in 

order to better elucidate how neurotensin regulates VTA dopamine neuron activity. 

6.5.2 NPY 

NPY affects VTA dopamine neuron activity through both pre- and postsynaptic 

mechanisms, and through mechanisms that both inhibit and excite VTA dopamine neurons.  All 

of the effects of NPY occurred in only a subset of dopamine neurons tested.  Therefore, NPY 

may modulate distinct subpopulations of dopamine neurons through different mechanisms.  

Future experiments are needed to test this hypothesis, and future experiments should also 

determine which specific NPY receptors are expressed in VTA neurons, as well as the 

projection targets of these neurons.  In addition, the MC3R is only expressed in a subset of VTA 

dopamine neurons, and it is unknown if NPY specifically modulates that activity of this distinct 

population of dopamine neurons.  Thus, further experiments are also needed to test the effect of 

NPY on MC3R VTA neurons.  Finally, the brain regions from which VTA NPY afferent inputs 

may arise from are currently unknown.  AgRP fibers do innervate the VTA278 suggesting that 

AgRP/NPY neurons project to the VTA.  However, additional NPY neuron populations may 

also innervate the VTA, and future experiments should determine if NPY neurons from other 
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brain regions project to the VTA.  These experiments would lead to a better understanding of 

how NPY interacts with the mesocorticolimbic dopamine system to control food reward.  

6.5.3 -MSH 

I have shown that -MSH increases the firing rate of VTA MC3R-expressing neurons, 

but how -MSH increases MC3R neuron activity is unknown.  MC3Rs are G protein-coupled 

receptors that signal through Gs-proteins and thus activate the cAMP pathway223, but there is 

also evidence suggesting that MC3Rs are coupled to Gi-proteins and activate MAP kinase 

through PI3K signaling313.  Future experiments testing the effect of blocking different 

intracellular signaling pathways on -MSH-induced increases in MC3R neuron activity are 

needed to determine how -MSH increases VTA MC3R neuron activity.   

Previous studies have shown that activation of MC3Rs increases intracellular Ca2+ in 

neurons and HEK293 cells314-317.  Ca2+ is an important regulator of dopamine neuron 

excitability, burst firing, and glutamatergic and GABAergic synaptic 

plasticity56,57,69,114,118,119,124.  Ca2+ also activates sK currents in VTA dopamine neurons, which 

are also an important regulator of dopamine neuron firing and burst firing66,69,354.  sK currents 

are activated by action potential induced Ca2+ influxes and release of Ca2+ from intracellular 

stores355,356.  CRF and forskolin have been shown to potentiate sK currents and enhance Ca2+ 

release from intracellular stores through a PKA dependent mechanism in VTA dopamine 

neurons116,357,358.  As -MSH uses a similar signaling pathway, -MSH may enhance 

intracellular Ca2+ release and sK currents through a similar mechanism.  Thus, future 

experiments should be conducted to determine if -MSH increases sK currents, and 

experiments using Ca2+ imaging should be conducted to determine whether -MSH increases 

intracellular Ca2+ levels in VTA MC3R neurons. 
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 -MSH may affect VTA MC3R neuron activity through additional mechanisms not 

tested here, such as changing the strength of afferent inputs to VTA MC3R neurons.  For 

example, previous studies have shown that -MSH and MTII (-MSH analog) change 

glutamatergic and GABAergic transmission in different areas of the CNS359-363.  -MSH may 

also affect glutamatergic and GABAergic transmission on VTA MC3R neurons.  Future 

experiments testing the effect of -MSH on glutamatergic and GABAergic transmission in 

VTA MC3R neurons are needed to determine the effect of -MSH on VTA afferent inputs.   

Finally, our results suggest that -MSH likely increases the activity of VTA MC3R-

expressing dopamine neurons, but -MSH may also increase the activity of glutamate and/or 

GABA MC3R-expressing VTA neurons.  The identity of non-dopamine MC3R neurons is 

unknown; thus, future experiments should determine whether GABA and/or glutamate VTA 

neurons express MC3Rs, and whether -MSH modulates the activity of dopamine and non-

dopamine MC3R-expressing VTA neurons through different mechanisms.  The additional 

experiments described here would further elucidate how -MSH acts at the cellular level in the 

VTA to regulate food intake and food reward.  

  

6.6 Summary to Conclusion 

I have shown that neurotensin, NPY, and -MSH affect VTA dopamine neuron activity 

through multiple mechanisms and have described three possible models as to how these 

peptides may alter the activity of VTA neurons to control food intake and food reward.  Feeding 

neuropeptides acting in the VTA most likely do not regulate food intake and food reward 

through one mechanism or through only one of the methods described above.  For example, one 

feeding peptide may regulate the activity of a distinct subpopulation of dopamine neurons (Fig. 
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6.2), affect tonic and burst dopamine neuron firing differently (Fig. 6.1), and affect VTA 

glutamate and/or GABA neuron activity to control food intake and reward behavior (Fig. 6.3).  

In addition, the different effects of neuropeptides on the mesocorticolimbic dopamine system 

may affect different feeding and reward behaviors, so one neuropeptide acting in the VTA may 

not affect both food intake and food reward but only affect one or the other.  Thus, how feeding-

related neuropeptides affect VTA dopamine neuron activity to control food intake and reward is 

complex, but the experiments presented here have added to the existing body of knowledge and 

advanced the collective understanding of how hypothalamic feeding-related neuropeptides 

interact with the mesocorticolimbic dopamine system to regulate food intake and food reward.  
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6.7 Figures 

 
Figure 6.1: Model 1- Neuropeptides regulate tonic and burst firing through different 

mechanisms. 

 

Feeding-related neuropeptides may regulate food intake and food reward by specifically 

affecting either tonic or burst firing in VTA dopamine neurons or by decreasing tonic firing but 

increasing burst firing and vice versa.  Evoking tonic firing decreases reward consumption 

whereas evoking burst firing increases reward behavior in VTA dopamine neurons.  

Anorexigenic neuropeptides such as neurotensin and α-MSH may decrease food intake and 

reward behavior by increasing tonic firing and decreasing burst firing.  Orexigenic 
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neuropeptides such as NPY may increase food intake and reward behavior by decreasing tonic 

firing and increasing burst firing in VTA dopamine neurons.   

 

 
Figure 6.2: Model 2- Neuropeptides affect specific subpopulations of dopamine neurons to 

control distinct behaviors. 

 

Feeding-related neuropeptides may regulate food intake and food reward by regulating the 

activity of specific subpopulations of dopamine (DA) neurons to regulate specific behaviors.  

NAc projecting dopamine neurons encode reward behavior while PFC projecting dopamine 

neurons encode aversion and stress.  Anorexigenic neuropeptides such as neurotensin (NT) and 

α-MSH may decrease food intake and reward behavior by activating PFC projecting dopamine 

neurons and inhibiting NAc projecting dopamine neurons.  Orexigenic neuropeptides such as 

NPY may increase food intake and reward behavior by inhibiting PFC projecting dopamine 

neurons and activating NAc projecting dopamine neurons.   
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A 

 

B 

 
Figure 6.3: Model 3- Neuropeptides regulate VTA glutamate and GABA neuron activity. 

 

Feeding-related neuropeptides may regulate food intake and food reward by changing the 

activity of VTA GABA and glutamate neurons in addition to dopamine (DA) neurons.  A. 

Activation of NAc and LHb projecting VTA glutamate neurons causes aversion whereas 
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activation of LHb projecting VTA GABA neurons increases reward behavior.  Anorexigenic 

neuropeptides (such as neurotensin (NT) and α-MSH) may decrease food intake and reward 

behavior by activating LHb and NAc projecting glutamate neurons and inhibiting LHb 

projecting GABA neurons.  Orexigenic neuropeptides (such as NPY) may increase food intake 

and reward behavior by inhibiting NAc and LHb projecting glutamate neurons and activating 

LHb projecting GABA neurons.  B. Activation of locally projecting VTA glutamate neurons 

increases reward behavior through excitation of VTA dopamine neurons whereas activation of 

locally projecting VTA GABA neurons causes aversion and decreases reward consumption 

through inhibition of VTA dopamine neurons.  Anorexigenic neuropeptides (such as NT and α-

MSH) may excite VTA GABA neurons and inhibit VTA glutamate neurons to decrease food 

intake and reward behavior.  Orexigenic neuropeptides (such as NPY) may inhibit VTA GABA 

neurons and excite VTA glutamate neurons to increase food intake and reward behavior. 
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