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Abstract 

Subgoal learning, a technique used to break down problem solving into manageable pieces, has 

been used to promote retention and transfer in procedural domains, such as programming. The 

primary method of learning subgoals has been passive, and passive learning methods are 

typically less effective than constructive methods. To promote constructive methods of learning 

subgoals, learners were prompted to self-explain the subgoals of a problem-solving procedure. 

Self-explanation asks learners to make sense of new information based on prior knowledge and 

logical reasoning. Self-explanation by novices is typically more effective when they receive 

guidance, because it helps them to focus on relevant information. In the present experimental 

study, the types of guidance that students received while self-explaining determined whether the 

constructive learning method was more effective than the passive method. Participants assigned 

to the constructive learning method performed best when they either received hints about the 

subgoals or received correct explanations as feedback, but not when they received both. These 

findings suggest that constructive learning of subgoals can further improve the benefits of 

subgoal learning when students receive only guidance that complements their construction of 

knowledge. This nuance is important for educators who engage their students in constructive 

learning and self-explanation. 
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Using Subgoal Learning and Self-Explanation to Improve Programming Education 

Education has had a proliferation of resources that are intended to be used outside of a 

classroom to help students learn and practice problem-solving procedures. These resources can 

be used to augment a course, such as for a blended classroom, or used for self-directed learning, 

such as for a Massive Open Online Course (MOOC). While learners are using these resources, 

they are typically learning independently, meaning that they do not have immediate access to an 

instructor or peers. In procedural problem-solving domains, such as math and computer science, 

instructors and peers often provide key guidance that help students to resolve problem solving 

impasses (Newman, 1998; Roschelle & Teasley, 1995). To replace these common sources of 

guidance and make educational resources successful in procedural problem-solving domains, 

educators need to build-in additional support to guide students’ learning. Useful tools for guiding 

learning include sophisticated software, such as intelligent tutoring systems, that adapt to the 

learner based on probability models of the learner’s likely knowledge state (Polson & 

Richardson, 2013). These technologies, however, have long development times (Graesser, Hu, 

Nye, & Sottilare, 2016) and cannot reasonably accompany most educational resources, at least 

not until the resource has been adequately vetted or adopted to warrant the development cost. In 

the meantime, educational resources need a scalable solution to supporting students. The present 

research examined a low-tech, low-cost new strategy to support independent problem solving: 

the integration of subgoal learning and self-explanation.  

This paper starts by reviewing the subgoal learning and self-explanation literature and 

explaining the design of instructional materials based on that literature. Then it describes the 

experimental research methods used to compare different versions of instructional materials and 
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discusses the quantitative and qualitative results of the research. Last, the paper summarizes the 

main findings and makes suggestions for future work. 

Subgoal Learning 

Subgoal learning refers to a strategy used predominantly in science, technology, 

engineering, and mathematics (STEM) fields that helps students to break down problem-solving 

procedures into manageable pieces, or subgoals. Subgoals are functional pieces of procedures 

used to solve problems. They are inherent in all procedures except the most basic. For instance, 

if algebra students were asked to solve the equation in Figure 1 for x, they would likely start by 

isolating terms with xs on one side of the equation and the others on the opposite side. Then they 

would simplify the terms until x had a coefficient of one. Isolating and simplifying terms are 

subgoals of the procedure used to solve for a variable. Novices have trouble recognizing the 

underlying function that steps serve and instead tend to focus on the individual steps taken to 

solve the problem (Bransford, Brown, & Cocking, 2000; Catrambone, 1998). Therefore, it is 

necessary to help students recognize the subgoals of problem-solving procedures by identifying 

subgoals directly in instructional materials (Catrambone, 1998).  

Solve for x 

4x – 8 = 2x + 6 

     + 8         + 8 

     - 2x         - 2x 

4x – 2x = 6 + 8 

        2x = 14 

        /2     /2 

x = 7 

Subgoal: Isolate variable 

Subgoal: Simplify terms 
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Figure 1. Worked example of the procedure used to solve for a variable. Steps of the worked 

example are grouped into the subgoals, denoted by brackets, necessary for solving problems in 

this class. 

Past research has found that subgoal-oriented instructions help students to learn the 

subgoals of a procedure, causing them to better recognize the structural components of the 

problem-solving process (Atkinson, Catrambone, & Merrill, 2003; Catrambone, 1998; 

Margulieux, Catrambone, & Guzdial, 2016). By recognizing the structural components of the 

process, learners are more likely to correctly transfer their knowledge and apply the process to 

problems that used the same procedure but have different surface features or have modified or 

new individual steps (e.g., Catrambone & Holyoak, 1989). Better transfer of knowledge to 

solving new problems has been a consistent benefit of subgoal-oriented instructions across a 

variety of STEM domains, such as programming (e.g., Margulieux & Catrambone, 2016; 

Margulieux et al., 2016) and statistics (e.g., Catrambone, 1994, 1998).  

Subgoal learning with worked examples. Worked examples are the most common type 

of subgoal-oriented instruction. Worked examples give learners concrete examples of a 

procedure being used to solve a problem. Because problems necessarily include concrete details, 

like solving the equation x = 3 + 2 rather than abstractly solving for a variable, worked examples 

include problem-specific information. Concrete details help learners to grasp the procedure 

before they can conceptually understand it (Atkinson et al., 2003). Eiriksdottir and Catrambone 

(2011) argued, however, that learning from worked examples does not promote deep processing 

of concepts. Although it may result in better initial performance because examples are more 

easily mapped to similar problems, it is less likely to aid retention and transfer than learning 

from abstract procedures (Eiriksdottir & Catrambone, 2011). Retention and transfer suffer when 
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learners study examples because novices tend to focus on surface features rather than structural 

features; surface features are easier to grasp, and novices do not have the domain knowledge to 

recognize the structural features of examples (Chi, Bassok, Lewis, Reimann, & Glaser, 1989).  

To promote deeper processing of worked examples and, thus, improve retention and 

transfer, worked examples have been manipulated to promote subgoal learning. In particular, 

subgoal labeling is a technique used to promote subgoal learning and to help learners recognize 

the structure of procedures exemplified in worked examples (e.g., Catrambone, 1994, 1995, 

1996, 1998). Subgoal labels are function-based instructional explanations that describe the 

purpose of a subgoal. For instance, for the problem in Figure 1 and for the subgoal in which the 

problem solver isolates terms with xs one on side the equation, the subgoal label might read 

“Isolate variable.” This label provides information about the collective function of the individual 

steps within the subgoal.  

Studies have found that receiving subgoal labels in worked examples improves 

performance on novel problems without increasing the amount of time learners spend studying 

instructions or solving problems (e.g., Margulieux et al., 2016). Subgoal labels are believed to be 

effective because they highlight the structure of examples, helping students focus on structural 

features and more effectively organize information (Atkinson, Derry, Renkl, & Wortham, 2000; 

Atkinson et al., 2003; Catrambone, 1995, 1996, 1998). By helping learners to focus on structural 

features of worked examples, subgoal labels are believed to reduce the extraneous cognitive load 

that is inherent in worked examples due to problem-specific details and can hinder learning 

(Renkl & Atkinson, 2002). Reducing extraneous cognitive load allows more mental resources to 

be devoted to learning the procedure through building schemata, chunking information, and 

connecting prior knowledge and new knowledge (Sweller, 2010).  
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Subgoal labeled worked examples are similar to process-oriented worked examples (e.g., 

Van Gog, Paas, & van Merrienboer, 2004). Both describe the purpose of steps in a worked 

example, but they are different in the abstraction of the explanation. Process-oriented examples 

explain each step of the solution and include the problem-specific details of the example in the 

explanation, meaning that an explanation can be used only for that step. On the other hand, 

subgoal labels explain the purpose of multiple steps and are independent from a specific 

problem-solving context, meaning that they can be applied to all problems of the same sort 

(Catrambone, 1995, 1998). Viewing multiple instances of each subgoal is critical to subgoal 

learning because it allows the learner to compare subgoals that achieve the same function but 

comprise different steps (Margulieux et al., 2016). For example, for the procedure in Figure 1, 

students should view multiple instances of isolating a variable so that they can compare different 

instances achieving the same function. 

A main limitation of the implementations of the subgoal learning framework so far is that 

they have promoted passive learning by providing meaningful subgoal labels to learners rather 

than encouraging students to recognize the function of subgoals for themselves. This passive 

approach contradicts a growing body of evidence that learning is more effective when students 

actively or constructively engage with content rather than when they passively receive it. This 

body of evidence is summarized by Chi (2009) and used to support her Interactive-Constructive-

Active-Passive (ICAP) framework. In this framework, Chi (2009) characterized four types of 

learning based on students’ engagement with content: interactive, constructive, active, and 

passive (see Figure 2 for definitions and examples). Using this framework to compare the 

learning outcomes from various learning activities, Chi (2009) found that interactive was most 

effective, constructive was second-most effective, active learning was the third-most effective, 
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and passive learning was the least effective. The present study explored whether non-passive 

methods of learning subgoals would improve novel problem solving beyond the existing 

methods of learning subgoals. Because subgoal labels are, in essence, an instructional 

explanation of a problem-solving procedure, the present study explored the types of guidance 

that students would need to create explanations for themselves about the subgoals of a procedure. 

 Passive Active Constructive Interactive 

Definition Receiving 

information 

without activity 

Receiving 

information with 

(usually physical) 

activity 

Individually 

producing 

information 

beyond that which 

is provided 

Collaboratively 

producing 

information 

beyond that which 

is provided 

Examples Listen to a lecture 

Read a textbook 

Taking notes on a 

lecture 

Highlighting 

sections of a 

reading  

Connecting 

concepts to prior 

knowledge 

Explaining the 

steps of a 

worked example 

Discussing a 

concept 

Providing and 

responding to 

peer feedback 

Figure 2. Definitions and characteristics of passive, active, constructive, and interactive learning 

based on the ICAP framework proposed by Chi (2009). Interactive learning was not represented 

in the present work. 

Self-Explanation 

Self-explanation is a common and effective learning strategy that could help students to 

learn subgoals. In self-explanation, students use prior knowledge and logical reasoning to make 

sense of new information and gain new knowledge. Most often, learners are constructing 

knowledge through this process and, thus, are engaging in a type of constructive learning 

(Bielaczyc et al., 1995; Chi et al., 1989; Schworm & Renkl, 2006). Sometimes, activities that 

encourage self-explanation provide so much guidance that self-explanation becomes a type of 

active learning (i.e., requires activity from the learner but not construction, per Chi’s, 2009, 

definition). Active self-explanation typically involves learners selecting, rather than generating, 
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explanations from a list of possible explanations (e.g., Aleven & Koedinger, 2000; Conati & 

VanLehn, 2000). A review of self-explanation studies found that it is effective across a range of 

domains, if the domain has logical rules with few exceptions (Wylie & Chi, 2014). Self-

explanation is commonly used with worked examples in procedural domains to improve learning 

outcomes (Wylie & Chi, 2014).  

Similar to subgoal learning, self-explanation of worked examples identifies the features 

that are structural and reasons about the function of steps (Bielaczyc, Pirolli, & Brown, 1995; 

Chi, de Leeuw, Chiu, & LaVancher, 1994). Moreover, self-explanation is believed to be 

effective for many of the same reasons as subgoal learning. By self-explaining worked examples, 

learners recognize which features are structural and which are superficial. By recognizing the 

features that are most important, learners can reduce extraneous cognitive load devoted to 

processing surface features, allowing for more cognitive processes directed towards learning 

(Renkl & Atkinson, 2002). Self-explanation further improves learning processes because 

students tend to activate relevant prior knowledge as they think of possible explanations and 

integrate prior knowledge with new information to explore the plausibility of explanations (Chi 

et al., 1994; Sweller, 2010). These processes help learners build a better mental representation of 

the procedure that allows them to more easily apply their knowledge to novel problems (Renkl & 

Atkinson, 2003).  

 Constructive explanation is considered to have additional benefits over active 

explanation because it requires learners to generate an explanation. The generation effect states 

that learners remember information better when they produce it rather when they receive it 

(Jacoby, 1978). As deWinstanley, Bjork, and Bjork (1996) argued, the generation effect works 

because the cognitive processes involved in encoding information are similar to those involved 
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in retrieving information; therefore, the learner has the same cues while retrieving information as 

they had while encoding it. In their review of self-explanation literature, Wylie and Chi (2014) 

found that constructive self-explanation was more effective than active self-explanation, but few 

learners engage in constructive explanation without prompting.  

Prompting self-explanation. Learners do not commonly engage in constructive self-

explanation on their own (Chi et al., 1989; Renkl, 2005). Chi et al. (1989) found that about 10% 

of learners self-explained examples without external prompting. Many studies have replicated 

this low rate of self-explanation or found that even fewer learners generate their own 

explanations and instead paraphrase others’ explanations (e.g., Hausmann & Chi, 2002). Renkl 

and colleagues (1998, 2005) argued that many learners do not self-explain, especially when they 

have little prior knowledge, because it requires a large amount of effort and mental resources. 

When prompted to self-explain, though, most learners can successfully generate explanations if 

they devote additional time to the task (Wylie & Chi, 2014). 

Prompted self-explanation leads to the same learning outcomes as intrinsically motivated 

self-explanation, suggesting that self-explanation itself leads to learning benefits rather than 

characteristics of students who self-explain (e.g., Bielaczyc et al., 1995; Chi et al., 1994; 

Hausmann & Chi, 2002). To encourage consistent self-explanation, Renkl, Stark, Gruber, and 

Mandl (1998) found that instructions needed to include prompts throughout. Prompts range in 

the amount of guidance that they provide. Completely open-ended questions, like “Can you 

explain that?” (Hausmann & Chi, 2002), provide no guidance. Focused questions, like “Explain 

how examples 1 and 2 are similar,” (de Koning, Tabbers, Rikers, & Paas, 2011), direct learners’ 

attention and, thus, provide some guidance. Prompts that provide a lot of guidance and can result 

in active rather than constructive self-explanation range from filling in blanks of partial 
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explanations (Berthold, Eysink, & Renkl, 2009), to selecting explanations from a menu (Conati 

& VanLehn, 2000).  

Which self-explanation prompt is most effective depends on the learner’s prior 

knowledge; the amount of information in the prompt needs to be balanced with the learners’ 

knowledge (Renkl, 2002). In their review of the self-explanation literature, Wylie and Chi (2014) 

found that self-explanation is not effective if learners do not have gaps in their understanding 

after instruction. In other words, if learners are given all the knowledge that they need, nothing is 

left to construct. Therefore, prompts should not include so much information such that self-

explanation is not necessary. For example, if a prompt stated, “Problems 1 and 2 are similar 

because they both use Newton’s second law. Explain how problems 1 and 2 are similar.”, then 

the learner would not have the opportunity to recognize the underlying law that gives both 

problems a common structure. If learners are given too little information, however, they spend 

too much of their cognitive capacity trying to figure out what they should be learning to actually 

learn (Kirschner, Sweller, & Clark, 2006). For example, Wylie and Chi (2014) found that 

focused self-explanation prompts, such as “Could you explain how problems 1 and 2 are 

similar?” were typically more effective than completely open-ended prompts, such as “Could 

you explain the problems?” They argued that novices know so little about domains that they 

need clues about what to explain to be most effective. In the present study, the amount of 

information provided in prompts was varied to explore the effect of this type of guidance on self-

explanations of subgoals. 

Feedback on self-explanation. In a recent meta-analysis of types of feedback in 

computer-based learning environments, Van der Kleij, Feskens, and Eggen (2015) discussed the 

merits of three types of feedback: 1) knowledge of response, which tells the learner only whether 
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their answer is correct or not, 2) knowledge of correct response, which tells the learner the 

correct answer, and 3) elaborated feedback, which tells which answer is correct and elaborates on 

why it is correct, often providing additional instruction in the feedback (Van der Kleij et al., 

2015). In their review, they found that knowledge of correct response leads to better learning 

than only knowledge of response, and in most cases, elaborated feedback leads to better learning 

than knowledge of correct response (Van der Kleij et al., 2015).  

Elaborated feedback is by far the most common type of feedback in constructive learning 

environments (Molloy & Boud, 2014; Thurlings, Vermeulen, Bastiaens, & Stijnen, 2013). 

Though it requires more time and labor than other types of feedback (Jaehnig & Miller, 2007), it 

contributes to an effective feedback loop between learner and teacher in face-to-face constructive 

learning environments (Thurlings et al., 2013). The educational technology field is working to 

replicate this feedback loop between learners and technology, such as with intelligent tutoring 

systems (e.g., Kulik & Fletcher, 2016; Ma, Adescope, Nesbit, & Liu, 2014), but the time-

intensive development process makes personalized, elaborated feedback inaccessible for many 

educational resources. Because the present study aimed to inform the development of scalable, 

online educational resources, part of its purpose was to examine the impact of knowledge of 

correct response feedback on constructive learning. 

The literature suggests that whether learners should or should not receive correct 

response feedback depends on characteristics of the task and learners. In some situations, 

learners who compare their self-explanations to a correct explanation (i.e., correct response 

feedback) perform better than those who do not. For instance, Renkl (2002) found that learning 

outcomes improved when participants who self-explained the worked examples could also 

access short instructional explanations to check their self-explanations compared to participants 
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who could not access explanations. Renkl (2002) argued that the instructional explanations were 

necessary to reduce illusions of understanding and keep learners from perpetuating incorrect 

explanations.  

In other situations, however, access to correct explanations can hinder performance. For 

instance, Schworm and Renkl (2006) found that when learners were prompted to self-explain, 

learning outcomes were better without access to correct explanations than with access to them. 

Schworm and Renkl (2006) argued that learners overly relied upon the correct explanations and 

would not devote much effort to constructing self-explanations before seeking the correct 

explanations provided by the feedback. For these reasons, Schworm and Renkl (2006) suggested 

that withholding correct explanations from learners might be more beneficial in some cases than 

ensuring that learners’ self-explanations are correct. 

  

In summary, self-explanation and subgoal learning both support effective organization of 

information and direct cognitive resources to structural features of worked examples of 

procedural problem solving. The present study explored whether self-explanation could provide 

an effective active or constructive method of learning subgoals. In addition, the present study 

explored whether subgoals created by an instructional designer could provide effective correct 

response feedback to learners who are actively or constructively learning subgoals.  

Present Study Instruction 

The main research question for the present study was, “What is the most effective method 

for students who are studying worked examples to learn subgoals for well-defined problem-

solving procedures?” An additional constraint on this question was that the only feedback 

students had access to was correct response feedback. To address this research question within 
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this context, participants were prompted to learn the subgoals of a procedure through a worked 

example that either encouraged passive, active, or constructive learning. The study also 

manipulated whether participants received correct response feedback on the subgoals that they 

selected (active method) or created (constructive method). A secondary research question for 

participants who learned constructively was, “What kind of subgoal labels do students construct 

when given different types of guidance?”  

Learning environment. The problem-solving domain for the present study was 

programming. Programming is a procedurally-focused STEM field that typically includes 

worked examples and practice problems in instruction. The acquisition of programming skill has 

been facilitated by self-explanation of goals and procedural structure (Soloway, 1986; Pirolli & 

Recker, 1994) and subgoal learning (Margulieux et al., 2016; Margulieux & Catrambone, 2016), 

so it was an appropriate domain to test the interventions.  

To control for prior knowledge, participants were required to have little programming 

experience. Because participants were novices, the present study used a drag-and-drop 

programming language to teach programming concepts. Drag-and-drop programming languages 

are more easily understood by novice learners because they can select and drag pieces of code 

from a menu, which does not require learning the syntax and semantics of a programming 

language (Hundhausen, Farley, & Brown, 2009; see Figure 3). The programming language used 

in the present study was Android App Inventor, which is used to create applications (apps) for 

Android devices. Participants used App Inventor to create an app that has buttons that play 

sounds when pressed.  
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Figure 3. App Inventor interface with interlocking pieces of code selected from menus used to 

program features. 

Participants came into a computer lab reserved exclusively for data collection to ensure 

that they did not have outside help or distractions. Each participant sat at a desk with a computer 

and completed the study independently, meaning that they did not receive help from fellow 

participants or the experimenter. Up to four participants could complete the study at once. 

Participants used the computer to access the computer-based working memory test, to watch a 

video that gave an overview of App Inventor, and to use the App Inventor interface. The other 

instructional materials were given to participants in paper form for a few reasons. First, paper 

instructions allowed participants to use the computer for interacting with App Inventor without 

having to rotate through various programs. Second, participants were encouraged to take notes 

on the paper instructions, especially related to creating subgoal labels. Lastly, participants gave 

the paper instructions back to the experimenter before starting the assessment tasks, ensuring that 

they did not have access to the instructional materials during the assessment.  

Instructional material manipulations. All instructional manipulations were in the 

worked example that participants received. The worked example listed the steps taken to create a 
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Music Maker app that plays musical sounds when images of instruments are pressed or the 

device is tilted. For instance, a drum sound would play when a drum image is pressed, or a 

tambourine sound would play when the phone is tilted. An excerpt of the example, in all passive, 

active, and constructive formats, can be seen in Figure 4. The excerpt shows only two of the five 

subgoals, create component and set properties, that were demonstrated in the worked example 

(all five can been found in Table 1). The subgoals of the procedure were identified using the 

Task Analysis by Problem Solving (TAPS) procedure (Catrambone, 2011) that has been used in 

prior research (e.g., Margulieux & Catrambone, 2016). The format of the worked example 

depended on participants’ assigned method of subgoal learning.  

In the passive learning condition, participants were given subgoal labels created by the 

experimenters, as is conventional in prior subgoal research (e.g., Catrambone, 1998; see Figure 

4a). These subgoal labels were also created through the TAPS procedure (Catrambone, 2011).  

a. Passive Condition Excerpt 
 

Create Component 

1. Click on the “Drawing and Animation” palette on the left. 

2. Drag out a canvas to Screen1.  

Set Properties 

3. Look at the properties menu on the right.  

4. Set the width to fill the parent's width.  

5. Set the height to 450 pixels. 

b. Active Condition Excerpt 

Function 1: ____________________________ 

1. Click on the “Drawing and Animation” palette on the left. 

2. Drag out a canvas to Screen1.  

Function 2: ____________________________ 

3. Look at the properties menu on the right.  

4. Set the width to fill the parent's width.  

5. Set the height to 450 pixels. 

This procedure has five subgoals, which are listed below. As you create the app, please match these subgoal 

labels with the “function” blanks provided. All of the functions that are the same number, are the same 

subgoal. For example, all sections labeled with “function 1” achieve the same subgoal. 

Create components, Set properties, Handle input, Set output, Set conditions 
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c. Guided Constructive with Hints Excerpt  

Function 1: ____________________________ 

1. Click on the “Drawing and Animation” palette on the left. 

2. Drag out a canvas to Screen1.  

Function 2: ____________________________ 

3. Look at the properties menu on the right.  

4. Set the width to fill the parent's width.  

5. Set the height to 450 pixels. 

d. Guided Constructive without Hints was the same but without hints 

  
e. Unguided Constructive Excerpt 

1. Click on the “Drawing and Animation” palette on the left. 

2. Drag out a canvas to Screen1.  

3. Look at the properties menu on the right.  

4. Set the width to fill the parent's width.  

5. Set the height to 450 pixels. 

Figure 4. Worked example formatted for passive (a), active (b), and constructive (c, d, and e) 

conditions. 

Table 1 

Experimenter-Created Labels (with how often each occurred in the worked example) and 

Examples of Subgoal Labels Constructed by Participants for Each of the Coding Classifications. 

Subgoals as 

Identified by 

Experimenter 

Participant-Created Labels 

 
Problem-

Specific 

Higher-Level 

Problem-

Specific 

Problem-

Independent 

Hint-Term 

Problem-

Independent 

Incorrect 

Create 

component 

(occurred 8 

times in 

example) 

Create image 

sprite 

Create a 

canvas that 

fills the 

screen 

Add 

component to 

app 

Begin new 

object 

Define 

variable 

Hint 2: Subgoals marked with “Function 

2” all have to do with properties of parts 

of the app.  

To help you create labels for these subgoals, there are hints throughout the instructions. We suggest that you 

work through multiple instances of the same subgoal before you create a label that describes the function of that 

subgoal. 

Hint 1: Subgoals marked with “Function 

1” all have to do with parts of the app.  

 

This procedure has five subgoals. As you create the app, please group the steps of the procedure into 

subgoals. Then create subgoal labels that describes the purpose of the subgoals that you’ve created.  
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Set 

properties 

(occurred 7 

times in 

example) 

Name and add 

picture to 

image sprite 

Edit 

component 

Add properties 

to app 
Select/drag 

Handle input 

(occurred 4 

times in 

example) 

Add condition 

for when clap 

is touched Make a sound 

when clap 

icon is 

touched 

Add interface 

command 
Set user inputs 

Program 

functions 

Set output 

(occurred 6 

times in 

example) 

Make 

clapsound 

play when 

clap is 

touched 

Set command 

result 

Set outcomes 

of inputs 

Specify 

function 

Set 

conditions 

(occurred 3 

times in 

example) 

Make 

something 

happen if the 

user moves 

the phone 

When the 

phone is tilted 

down, the 

clap sound 

will play 

Add command 

conditions 

Establish input 

conditions 

New 

function 

 

In the active learning condition, participants were given the worked example grouped by 

subgoals and asked to select a subgoal label from a list of labels that matched the purpose of the 

group (see Figure 4b). The list contained only labels that were viable options, meaning the list 

did not include distractor items that were not applicable to the procedure being learned (see left 

column of Table 1 for list of subgoal labels). Requiring novice learners to distinguish between 

explanations that might or might not apply to the procedure would likely have unnecessarily 

added to the cognitive load required to complete the task. Participants could have completed this 

activity incorrectly, though, by selecting the wrong label for a group of steps. This active method 

of self-explaining was similar to the active self-explanation methods used by Aleven and 

Koedinger (2002) and Conati and VanLehn (2000).  

In the constructive learning conditions, participants were asked to create their own 

subgoal labels to explain the subgoals of the procedure. To train participants to construct their 
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own labels, they were given subgoal label training. Only the constructive groups received this 

training. Groups who do not receive constructive learning conditions should not receive 

constructive training because it might prompt them to use constructive learning methods during 

the study, which could confound the results. Instead, the passive and active groups received a 

comparable task: analogy training. Training for analogies (e.g., water : thirst :: food : hunger) 

was considered similar because both analogies and subgoal labeling require people to consider 

the underlying relationship between words and come up with a new word that describes that 

relationship. In the present study, self-explanations were written onto the paper-based worked 

example that participants studied. Schworm and Renkl (2006) found that written self-

explanations are better than spoken explanations because they require articulating thoughts and 

creating a record, which allows students to reflect on their explanations more easily.  

Three constructive learning conditions prompted participants to construct their own 

subgoal labels with different types of guidance. There were two types of guided constructive 

conditions in which participants were given the worked example with the solution steps already 

grouped by subgoal, and the example indicated which subgoals achieved the same functions. For 

instance, all the subgoals denoted as “Function 1” achieve the same function though the exact 

steps taken were different (see Figure 4c and 4d). Note that the term function is used instead of 

subgoal on the worked example for participants because the non-technical meaning of function 

was more descriptive of the desired output than the non-technical meaning of subgoal. Subgoals 

appeared between three and eight times in the worked example. See left column of Table 1 for 

the full list of subgoals and the number of times that they appeared. 

In the guided constructive with hints condition, participants were given hints about the 

similarities among different instances of the same subgoal (see Figure 4c). In the guided 
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constructive without hints condition, participants did not receive hints (see Figure 4d). In the 

unguided constructive condition, participants received a worked example that did not indicate 

which steps belonged to which subgoals (see Figure 4e). Participants in this condition had to 

identify the subgoals for themselves and create labels for them. 

The type of guidance that participants received during instruction also differed based on 

whether they received correct response feedback. Instructions for participants who received this 

type of feedback had another copy of the worked example that included subgoal labels created 

by the experimenters. For the passive condition, this copy was the same as the initial worked 

example. For the active and constructive conditions, the copied example with experimenter-

created subgoal labels provided correct response feedback to the participants. Participants who 

received feedback were asked to compare their labels to those created by the experimenter. 

Instructions for participants who did not receive feedback included only the worked example 

with the passive, active, or constructive interventions. These participants were asked to re-read 

the example to make time on task more similar to that of participants who received feedback, as 

is common in the self-explanation literature (e.g., Chi et al., 1994). The exception was that 

participants in the passive and no feedback condition were not asked to re-read the example to 

make their experience different from those in the passive with feedback condition. Due to this 

difference, the time on task was different, providing some insight into how time on task affects 

performance. 

Because the worked example was long, participants received only one worked example. 

Giving one worked example provided a rare opportunity to ensure that participants in the 

feedback condition did not overly rely on feedback. Participants were not told that they would 
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receive feedback until they completed the task, meaning that they did not know to expect 

feedback. 

Hypotheses. The guidance provided by correct response feedback was expected to 

interact with subgoal learning methods: passive, active, guided constructive with hints, guided 

constructive without hints, and unguided constructive. The subgoal learning methods are listed in 

order from providing the most information about the subgoals (i.e., passive gives participants all 

the information about the subgoals of the procedure) to the least information (i.e., unguided 

constructive provides no information about the subgoals of the problem, only training for making 

subgoal labels). The more information that is provided for the learners, the less information that 

learners can construct for themselves (Wylie & Chi, 2014). Conversely, the less information that 

self-explanation prompts provide, the more likely learners are to flounder because they must 

recognize connections between pieces of information that are not necessarily apparent to novices 

(Wylie & Chi, 2014). In the case that the prompt did not provide sufficient information, correct 

response feedback was expected to help learners who had struggled to create self-explanations. 

Therefore, learners who received less information from prompts were expected to create worse 

self-explanations and benefit from the extra information provided by feedback. Feedback, 

however, was expected to be unnecessary for learners who received more information while 

constructing self-explanations. The guided constructive with hints condition, which explicitly 

draws connections between analogous subgoals (see hints in Figure 4c), was expected to promote 

a mental organization of information that fostered insight, making correct response feedback in 

this condition unnecessary.  

Method 

Design  
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The experiment manipulated two variables. Subgoal learning method (passive, active, 

guided constructive with hints, guided constructive without hints, or unguided constructive) was 

crossed with correct response feedback (no feedback or feedback) to create a total of 10 groups. 

An experimental design conducted in a controlled laboratory setting was chosen for this stage of 

research so that the effects of the manipulations could be isolated from other factors of the 

learning environment and causal relationships could be drawn between variables and outcomes. 

The design was between-subjects, meaning that each participant was randomly assigned to only 

one of the 10 groups. Learning outcomes were measured by performance on problem-solving 

tasks, performance on explanation tasks, and time on task for the assessments and for the 

instructional period. Demographic characteristics, working memory capacity, pre-test and post-

test score, subjective cognitive load, and perception of understanding were also collected as 

possible predictors of performance. The subgoal labels that participants construct were collected 

and analyzed for content. Quality of subgoal label was also considered as a possible predictor of 

performance. 

Participants 

Each of the 10 conditions had 25 participants (N = 250). Participants were students at a 

mid-sized, technical college in the Southeastern United States and recruited through course credit 

in psychology classes. Participants did not have prior experience with Android App Inventor and 

did not take more than one high school or college-level course in computer science or computer 

programming. These limitations were necessary because instructional materials were designed 

for novices.  

Pre-instruction procedure and materials  
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Sessions took between 80 and 110 minutes, depending on how quickly participants 

completed each of the tasks. An overview of the procedure can be found in Figure 5. First, 

participants completed the demographic questionnaire, working memory measure, and pre-test. 

Demographic information was collected for participants’ age, gender, academic field of study, 

high school GPA, college GPA, year in school, computer science experience, comfort with 

computers, and expected difficulty of learning App Inventor because they are possible predictors 

of performance (Rountree, Rountree, Robins, & Hannah, 2004). These demographic 

characteristics were not found to correlate with problem solving performance (see Table 2). 

Procedure 

Pre-Instruction 

10-15 minutes 

Demographic questionnaire 

Working memory measure 

Pre-test 

Instructions 

40-55 minutes 

Participants had access to all instructions 

throughout this entire period. 

Overview video 

Subgoal label 

training for all 

constructive groups 

Analogy training for 

passive and active 

groups 

Worked example – same content for all 

groups but different format based on 

subgoal learning manipulation as shown in 

Figure 3. 

Feedback for 

feedback groups 

Re-read example for 

no feedback group 

Practice problems – same for all groups 

Post-Instruction 

30-40 minutes 

During this period, participants had access to 

App Inventor interface but not written 

instructions. 

Cognitive load measure 

Post-test (learning check) 

Assessment 1: Problem solving tasks (max. 

25 minutes) 

Assessment 2: Explanation tasks 
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Figure 5. Overview of procedure. All materials are the same among conditions unless otherwise 

noted. 

Table 2 

Demographic Averages for Participants and Their Correlation with Problem Solving 

Performance. 

 Averages Correlation 

 M SD r p 

Gender 62% male - .06* .39 

Age 19.6 2.6 -.06 .34 

High School GPA 3.88 .24 -.002 .98 

Year in College 2.13 1.3 .03 .60 

College GPA 3.40 .48 -.006 .95 

Comfort with Computers 

(out of 7) 
4.08 1.6 .12 .06 

Expected Difficulty 

(out of 7) 
4.11 1.3 .11 .09 

Previous CS Courses 58% taken 1 

course 
- -.001* .98 

Note: Correlations marked with * are point biserial correlations due to one variable being 

dichotomous. 

Participants’ working memory capacity was measured because previous research has 

found that working memory capacity predicted success at self-explanation (Wylie & Chi, 2014). 

The Shapebuilder task was used to measure working memory capacity (Atkins et al., 2014). The 

Shapebuilder task is a four-dimensional task that includes a four-by-four grid and four sets of 

shapes (i.e., square, circle, diamond, and triangle) in different colors. The computer-based task 

presents to the participant a sequence of colored shapes on the grid, and the participant is asked 
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to match the order, location, shape, and color of the items presented (Atkins et al., 2014). This 

task is similar to the problem-solving procedure of creating an app because both involve 

dragging items of various shapes and colors in a particular order to correctly achieve the task; 

therefore, it was considered an appropriate tool for measuring working memory capacity for this 

procedure.  

Please answer the following questions about Android App Inventor. 

If you don’t know the answer, please mark “I don’t know.” There is no penalty for this. 

 

1. To create an ImageSprite component for your app, drag out the ImageSprite from __________. 
a. I don’t know 
b. User Interface 
c. Sensors 
d. Drawing and Animation 

2. You add animations, such as ImageSprites, to your app, you need a canvas. 
a. I don’t know 
b. True 
c. False 

3. To play a sound, you need a block called… 
a. I don’t know 
b. “set sound source to” 
c. “call sound play” 
d. “sound” 

4. To interact with an ImageSprite, you need a block called “when ImageSprite __________.” 
a. I don’t know 
b. Touched 
c. Clicked 
d. Pressed 

5. To use a change in a phone’s accelerometer in the app, you use a block called “when 
AccelerometerSensor AccelerationDifferent.” 

a. I don’t know 
b. True 
c. False 

 

Figure 6. Instruction and items on pre-test and post-test. 

Participants completed a multiple-choice pre-test to ensure that they were truly novices of 

App Inventor. The five pre-test questions asked about the most basic App Inventor features to 

capture any rudimentary knowledge that participants had (see Figure 6). For each question in the 
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pre-test, one of the answer choices was “I don’t know” to avoid forcing participants to guess and 

introducing unnecessary error. The majority of participants (89%) scored a zero on the pre-test, 

and no participants scored higher than one point.  

Instructional procedure and materials 

After the pre-instruction period, participants started the instructional period (see Figure 

5). All manipulations occurred within the instructional period. The instructional period started 

with an overview video of the App Inventor interface that was the same for all participants. The 

purpose of this video was to introduce participants to the App Inventor interface and the types of 

tasks that can be completed with App Inventor. The video did not include information about the 

procedure being taught, but it was intended to help participants familiarize themselves with the 

problem-solving space in which they would be working.  

After the introductory video, participants received the paper instructions, starting with 

either subgoal label or analogy training. The subgoal label training was given only to participants 

in the three constructive conditions to avoid inadvertently prompting participants in the passive 

and active conditions to construct subgoal labels and confounding results. To control for time on 

task, participants in the passive and active conditions were given analogy training instead, which 

had the same structure as the subgoal label training. The subgoal label training defined subgoals 

and explained their benefits, gave an example of subgoals (similar to Figure 1), asked 

participants to make subgoals for an order of operations problem, and asked them to compare 

their labels to those made by an expert (for full training see supplemental online material).  

Next, participants received the Music Maker worked example. They were randomly 

assigned to one of the five subgoal learning conditions (see Figure 4). When participants finished 

the first pass through the worked example, they were either prompted to re-read the example for 
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the no feedback condition, or they were given the worked example with the experimenter-created 

subgoal labels for the correct-response-feedback condition (see left column of Table 1). 

Participants in the feedback condition were told that the subgoal labels in the second copy of the 

worked example were created by a subgoal label expert. Then they were asked to compare the 

labels that they made or selected to those given in the second example. In the passive condition, 

the initial worked example that they received already included the experimenter-created subgoal 

labels. Therefore, the worked example was the same during the instruction and feedback stages. 

To make the passive no feedback and passive feedback conditions different, participants in the 

no feedback condition were not asked to re-read the example. This difference provided some 

insight into the effect of re-reading the example and time on task. 

To ensure that participants paid attention to the worked example and could complete 

tasks in the App Inventor interface, they were asked to successfully complete practice problems 

before starting the assessment period (see Figure 7). Of the four tasks that participants 

completed, two required isomorphic transfer from the worked example, meaning that they used 

the same procedural steps as the worked example and differed only in surface features. For 

instance, the worked example showed the steps to create a drum image that plays a drum sound 

when pressed, and an isomorphic transfer practice problem asked participants to create a cymbal 

image that plays a cymbal sound when pressed. The other two practice problems required 

contextual transfer, meaning that they used the same procedural steps as the worked example and 

differed in surface and contextual features. For instance, if the example showed steps to create a 

drum that plays a sound when pressed, a contextual transfer practice problem asked participants 

to create an accelerometer sensor that plays a sound when the phone is tilted down.  
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Complete the following tasks in the App Inventor website. Try to complete them without looking at 
previous instructions, but if you need to refer to the instruction, you can. 
 

1. Add a cymbal image and cymbal sound to the app and set the source files to cymbal.gif and 
cymbal.wav 

2. Program the cymbal sound to play when the cymbal image is touched. 
3. Program the cymbal sound to play when the phone bottom is tilted down (negative YAccel 

value) 
4. Challenge question: Program the “clap” ImageSprite to move 5 pixels to the right of its current 

location when it is touched (hint: components called “ImageSprite.X” deal with the x 
coordinates of an ImageSprite). 

 

Figure 7. Practice problem solving tasks given at the end of the instructional period. The page 

given to participants had spaces between the problems so that participants could write notes. 

Assessment procedure and materials 

When participants finished the practice problems, they were asked to return all the paper 

instructions that they had received. They still had access to the App Inventor interface and the 

work that they had done during the instructional period. To measure cognitive load experienced 

during the instructional period, participants completed a questionnaire for measuring cognitive 

load induced during programming instruction that was developed by Morrison, Dorn, and 

Guzdial (2014). This questionnaire was given directly after the instructional period to measure 

cognitive load experienced during instruction and not the cognitive load experienced during 

assessment. The questionnaire included three questions about intrinsic cognitive load (i.e., the 

load associated with processing information that is necessary to learn the procedure; e.g., “The 

topics covered in the activity were very complex,”), three questions about extraneous cognitive 

load (i.e., the load associated with processing information that is not necessary to learn the 

procedure; e.g., “The instructions and/or explanations during the activity were very unclear,”), 

and four questions about germane cognitive load (i.e., the load associated with cognitive 
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processes of learning; e.g., “The activity really enhanced my understanding of the programming 

concepts covered,”).  

Following the cognitive load questionnaire, participants took a post-test that contained 

the same items as the pre-test about the most basic features of App Inventor. The post-test served 

as a learning check to ensure that participants had learned to use App Inventor.  The majority of 

participants (81%) scored the full five points on this post-test, and no participants scored lower 

than four points. Therefore, no participants were excluded from the analyses based on post-test 

score. Participants were also asked to rate how well they understood the instructions and how 

comfortable they would be solving novel problems using the procedure. 

After these checks, participants completed assessment tasks that measured problem 

solving knowledge. The first set of assessment tasks was problem-solving tasks that asked 

participants to modify or add components to their Music Maker app. Of the five problem-solving 

tasks, two required contextual transfer (i.e., nearer transfer) from the worked example. For 

contextual transfer problems, the surface features of the app components were different, but the 

procedural steps used to create them were the same (e.g., the steps used to create a cymbal 

component and create a drum component are the same except for the file used). One of these 

assessment questions was, “When playing long sound clips instead of short sounds clips, it’s 

better to use the player component than the sound component. Write the steps you would take to 

add a melody to your Music Maker app and make it play when touched. Create a new 

ImageSprite for the melody.” This task followed the same steps as the worked example to add 

instruments to the app, but using a player component instead of a sound component. The 

remaining three tasks required procedural transfer (i.e., farther transfer) from the worked 

example, meaning that the individual steps used to create the app components were different, but 
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the procedure used to create them was structurally the same. One of these assessment questions 

was, “Write the steps you would take to create a new app using cowbell.jpg and cowbell.wav so 

that the sound played when the picture was touched or when the phone is shaken.” The 

procedure used to create the new cowbell app was the same as the procedure to create the Music 

Maker app from the worked example, but the steps taken to do so were different. Because the 

cowbell app required a sound to play when the phone was shaken in addition to an ImageSprite 

being touched, participants had to use new series of steps to solve the problem, but they were 

achieving the same subgoals as they had for the Music Maker app. 

Participants were asked to attempt the tasks in the App Inventor interface and then to 

write down the steps that they took so that their problem-solving process could be scored. In the 

interface, completing later steps of a task can rely on correctly completing earlier steps of a task. 

For instance, a participant could not program a sound to play when an image is clicked if they 

could not create the image. For this reason, participants were asked to write down steps that they 

would take to complete the task, even if they could not complete them in the interface. Asking 

participants to write their solution also shows the steps that they took to reach the solution rather 

than only the result. Participants wrote their solutions in an open-ended format, but multiple 

scorers were not necessarily because the procedural problem-solving steps were easy to identify 

as correct or incorrect. Participants had up to 25 minutes to complete the problem-solving tasks. 

In addition to measuring problem solving performance, a second set of assessment tasks 

was used to measure whether participants could recognize the function that a step of a solution 

serves. This set of tasks was intended to measure participants’ knowledge of the procedure, 

regardless of whether they could correctly apply it to solving a novel problem. Thus, participants 

received solutions to problem-solving tasks and were asked to match each step of the solution to 
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the subgoal label that correctly explained the function of that step by drawing a line between the 

steps and subgoal labels. A matching task was used rather than a more open-ended task to 

compare participants’ knowledge to the subgoal structure identified through task analysis. The 

task instructions stated that each step could only be matched to one subgoal label, but each 

subgoal label might be the correct explanation for multiple steps. Participants were given the 

solutions to the problem-solving tasks that they had just attempted to solve to make the problem 

solving and explanation tasks more congruous and reduce the amount of new, surface 

information that participants needed to process.  

Results and Discussion 

Guided constructive learning improved problem-solving performance 

For the problem-solving assessment, participants received a score for number of correct 

steps taken towards problem solutions. Because the tasks involved numerous steps, scoring based 

on steps provided more sensitivity than scoring based on whole answers. The maximum possible 

score was 25. The total average mean was 18.26, and the total average standard deviation was 

5.08. Performance on the problem-solving tasks depended on the interaction of subgoal learning 

method and correct response feedback, F(4, 240) = 4.91, MSE = 21.9, p = .001, partial η2 = .076 

(see Figure 8). Due to the disordinal nature of this interaction, the main effects will not be 

reported to avoid confusion in interpreting the results (Maxwell & Delaney, 2004). To explore 

this interaction and determine the effect of correct response feedback on each method of learning 

subgoals, simple main effects comparisons were used. This analysis found that feedback affected 

performance only for the guided constructive groups, but it affected them in different ways (see 

Table 3). Participants in the guided constructive with hints conditions performed statistically 

better when they did not receive correct response feedback than when they did, whereas 
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participants in the guided constructive without hints conditions performed statistically better 

when they received feedback than when they did not. Thus, people who received one type of 

support, either hints or correct response feedback, performed better than those who received both 

or neither types of support. 

 

Figure 8. Performance on problem solving tasks among conditions. Maximum possible score 

was 25. Error bars are standard error. Statistically significant differences are indicated with 

asterisks. 

Table 3 

Simple Main Effects Analysis of Feedback on Problem Solving Performance. 
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Passive 15.4 17.2 -1.80 1.32 .175 

Active 18.1 16.0 2.08 1.32 .117 

Guided Constructive 

with Hints 
21.2 17.4 3.72 1.32 .005 

Guided Constructive 

without Hints 
17.9 21.4 -3.48 1.32 .009 

Unguided 

Constructive 
17.8 18.8 -.96 1.32 .469 

To explore the relative efficacy of different methods of learning subgoals, a simple main 

effects comparison was used. The method of learning subgoals affected performance for groups 

that received feedback, F(4, 240) = 4.77, MSE = 21.9, p = .001, partial η2 = .073, and groups that 

did not receive feedback, F(4, 240) = 4.72, MSE = 21.9, p = .001, partial η2 = .074. Based on 

pairwise comparisons, for participants who did not receive correct response feedback, those in 

the guided constructive with hints condition performed statistically better than those in the 

passive condition, Mean Difference = 5.72, p < .001. Furthermore, for participants who received 

feedback, participants in the guided constructive without hints condition performed statistically 

better than those in the passive and active conditions, Mean Difference = 4.16, p = .019; Mean 

Difference = 5.36, p = .001 (see Figure 8). These results suggest that, within both the correct 

response feedback and no feedback groups, the best performing conditions scored statistically 

better than those in the worst performing conditions. The other conditions that scored in the 

middle, such as both unguided constructive groups, were not statistically better or worse than the 

best or worst performing conditions. 

 This pattern of results matched the expected pattern of results well, providing support for 

the hypothesis that there is an optimal combination of support for learning subgoals. In 
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particular, the disordinal effect of correct response feedback on the guided constructive groups 

suggests that learners perform best with appropriate support and providing additional types of 

support hindered learning. The correct response feedback (i.e., the subgoal labels created by 

experimenters) might have been inappropriate for learners who had already received another type 

of support (i.e., hints) because the exercise of comparing the feedback to their own responses 

might not have provided them with useful information. When learners had not received hints 

while constructing explanations, however, the correct response feedback provided helpful 

support that improved their performance. Based on these results, it was concluded that providing 

hints for learners constructing subgoal labels and providing feedback on constructed labels are 

both techniques that can help learners to perform better on later problem solving, but providing 

both types of support could hurt performance. 

The results for the other groups align with Chi’s (2009) framework that passive and 

active methods of learning produce worse results than constructive learning. The constructive 

conditions performed numerically better than the passive and active groups though only those 

that received one type of support performed statistically better. Chi’s self-explanation work 

suggests that working memory is a predictor of success for self-explanations tasks (Wylie & Chi, 

2014). One possibility is that for some students a low level of support would be ideal, whereas it 

would be too little support for others and vice versa. To address this question, individual 

differences in working memory and quality of subgoal labels were explored. 

 An ANCOVA was used to explore whether working memory capacity was a covariate of 

the interventions’ effect on problem solving performance. No evidence was found to suggest that 

working memory capacity affected problem-solving performance, F(1, 240) = .56, MSE = 22.3, p 

= .456, partial η2 = .003. Therefore, it is unlikely that the interaction of method of learning 
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subgoals and feedback on problem solving performance depended on individual differences in 

working memory.  

Qualitative analysis of subgoal label quality  

To determine the quality of participant-created labels, the labels that participants wrote 

on the worked example during the instructional period were qualitatively analyzed. Each label 

was analyzed as one unit (i.e., each word within a label was not analyzed individually), and each 

participant was categorized based on all the labels that they constructed collectively. In nearly all 

cases, all the labels that a participant created fell into one of the following categories. The coding 

scheme that was determined a priori included categories for whether labels were problem-

specific, problem-independent, or incorrect. In all cases except two, participant labels were either 

completely problem-specific or completely problem-independent. 

Problem-specific labels included information about the specific instantiation of the 

subgoal and, therefore, could be applied only to that one instantiation. For example, the 

participant-created label “name and add picture to image sprite” could be applied only to the 

steps that named and added a picture to an Image Sprite. For a participant to be classified as 

problem-specific, at least 80% of labels had to include information about the details of the 

problem. The cutoff of 80% was chosen a priori to represent four out of five subgoals so that if 

participants created a problem-independent subgoal label for one of the subgoals, their labels 

would still be classified as predominately problem-specific.  

Problem-independent labels, on the other hand, did not contain any information about the 

specific instantiation of that subgoal. The subgoal label training specified that labels should be 

problem-independent. For example, the participant-created label “add properties to app” is 

problem-independent because it can be applied to any property, such as the name and picture of 



Running head: SELF-EXPLANATION AND SUBGOAL LEARNING 36 

an Image Sprite, that is being added to the app. For a participant to be classified as problem-

independent, at least 80% of labels had to not include information about the details of the 

problem. For the same a priori reason, if a participant included problem-specific details in labels 

for one of the subgoals, their labels should still be classified as predominately problem-

independent. Problem-independent labels were considered to be higher quality than problem-

specific labels because they indicated a more conceptual understanding of the procedure that is 

more easily applied to solving new problems. Because problem-specific labels include 

information about the details of the current problem, they cannot be applied directly to novel 

problems. 

Incorrect subgoal labels were those that were execution-based instead of function-based, 

such as “click on menu,” or those that did not describe the correct function (see Table 1).  For a 

participant to be classified as incorrect, more than one label had to meet either of these criteria. 

In all cases except one, for participants who made incorrect labels, at least 80% of their labels 

were incorrect. 

While implementing this coding scheme, two more categories were defined post hoc. For 

the guided constructive with hints conditions, many of the constructed labels included terms 

from the hints. For example, the hint for the subgoal that defines the output of an interaction 

included the term “output,” and many participants who received hints included the term “output” 

in the labels that they created. In all cases, participant-created labels that used terms from the 

hints were problem-independent. To distinguish these labels from the other problem-independent 

labels, these labels were classified as hint-term problem-independent labels. For a participant to 

be classified as hint-term problem-independent, at least three out of the five labels had to include 

terms from the hints. The cutoff of 60% was chosen post hoc in this case to best represent the 
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data. In all but a few cases, participants either did not use hint terms to construct their labels, or 

they used hint terms in most of their labels. Therefore, if they used the hint terms in the majority 

of subgoal labels their use of hint terms was captured by classifying the labels as hint-term 

problem-independent. If fewer than three labels included terms from the hints, then the 

participants were classified as problem-independent. 

For the unguided constructive conditions, many of the subgoals that participants 

identified for themselves included many more steps than the subgoals created by experimenters. 

For example, some subgoals that participants grouped were more than 20 steps long, whereas the 

longest experimenter-grouped subgoal was seven steps. In all cases, the participant-created labels 

for these higher level subgoals were problem-specific. For example, one participant identified a 

subgoal that was 24 steps long and labeled it “make the correct sounds play according to 

whatever input is received.” To distinguish these labels from the other problem-specific labels, 

these labels were classified as higher-level problem-specific labels. For a participant to be 

classified as higher-level problem-specific, the participant-identified subgoals had to include at 

least twice as many steps the subgoals identified by experimenters because in these cases, 

participants were lumping two or more experimenter-identified subgoals together. The higher-

level problem-specific labels were considered lower quality subgoal labels than the problem-

independent or problem-specific labels. One of the benefits of learning the subgoals of a 

procedure is that subgoals break up long procedures into functional pieces that are easier to adapt 

to novel problems. The higher-level subgoals did not identify these functional pieces but instead 

described the procedure that was being executed. Describing the procedure in this way instead of 

in a functional way is theoretically less conducive to transfer to novel problems. 
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Two raters scored 20% of participants and compared their scores. Interrater reliability 

was measured with intra-class correlation coefficient of agreement because the scale of 

measurement for categories was nominal and absolute agreement was necessary. Reliability was 

high, ICC(A) = .98, and the remaining 80% of participants were scored by a single rater.  

Hints improved participant-created subgoal label quality 

For representative examples of participant-created labels for all five classifications, see 

Table 1. The majority of problem-independent subgoal labels (91%) were two to five words 

long. This length was similar to the experimenter-created labels. The problem-specific labels, on 

the other hand, tended to be longer – 54% were longer than five words – because they included 

problem-specific words, such as specifically mentioning the drum sound.  

Participants in the guided constructive with hints conditions created mostly hint-term 

problem-independent labels or problem-independent labels (62%, see Table 4). About a third of 

participants in these groups constructed problem-specific labels, and few had incorrect labels. 

Participants in the guided constructive without hints conditions created worse labels than those 

who received hints. Again about a third created problem-specific labels, but less than half 

constructed problem-independent labels. Instead, 19% of participants created incorrect labels, 

which were not function-based and largely included problem-specific details (e.g., explaining 

how to complete a step rather than the function of a step).The majority of participants in the 

unguided constructive conditions created higher-level problem-specific labels. Only a small 

number of these participants created problem-independent labels, problem-specific labels, or 

incorrect labels (see Table 4). 

Table 4 

Percentage of Participants Who Created Problem-Independent, Problem-Specific, or Incorrect 

Subgoal Labels in the Constructive Learning Conditions. 
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 Constructive Learning Condition 

 Guided constructive 

with hints 

Guided constructive 

without hints 

Unguided 

constructive 

Problem-independent (% that 

were hint-term for those with 

hints) 

62% (26%) 45% 7% 

Problem-specific (% higher-level 

for unguided condition) 

32% 36% 89% (80%) 

Incorrect 6% 19% 4% 

 

To determine whether the type of subgoal labels that participants made affected problem-

solving performance, a Kruskal-Wallis H test was used. The H test was deemed more appropriate 

than the F test for this analysis because the number of participants in each group (i.e., type of 

subgoal labels) was not equal, violating one of the assumptions of the F test. The type of subgoal 

labels that participants created was also a quasi-experimental variable, making a non-parametric 

test more valid. The limitation of the H test, however, is that it is more conservative than the F 

test. The H test was not statistically significant, p = .12, though the median scores (reported here 

instead of means because the H test uses median scores) were numerically higher for problem-

independent hint-term labels (median for problem-independent hint-term = 23 out of 25) than for 

all other groups (median for problem-independent = 19, median for higher-level problem-

specific = 19, median for problem-specific = 19.5). The average standard deviation for these 

groups was 4.95, making the error too large to find statistically significant differences between 

groups. Based on these data, there was not sufficient evidence to suggest that participants who 

created problem-independent hint term labels performed better than those who created other 

types of labels, but this area warrants more exploration. 

Though the types of labels that participants created were not found to directly affect 

problem solving performance, most of the participants in the guided constructive with hints 

conditions created subgoal labels that described similar function as the experimenter-created 
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labels, meaning that they created labels that aligned with those created through an intensive task 

analysis with a subject-matter expert. For this reason, these participant-created labels were 

considered high quality subgoal labels. Participants creating high quality labels might explain 

why participants performed better on the problem-solving tasks when they did not receive 

correct response feedback (i.e., experimenter-created labels) compared to when they did receive 

feedback. For participants who created high quality labels, comparing their labels to the 

experimenter-created labels might not have been as beneficial as reviewing the labels that they 

constructed, as participants in the no feedback condition did. Comparing labels might have 

caused participants to unjustifiably question or doubt their understanding of the procedure, 

whereas reviewing their own labels would reinforce the mental representations that participants 

developed. This effect is similar to the expertise-reversal effect in which giving instructional 

support to students helps their learning if they have a low level of prior knowledge but hinders 

their learning if they have a high level of prior knowledge (Sweller, 2010). 

Participants in the guided constructive without hints conditions made more problem-

specific or incorrect labels (55%) than those who received hints (38%). Therefore, on average 

these participants had lower quality labels than those who received hints. This difference might 

explain why participants who did not receive hints performed better when they received correct 

response feedback than when they did not. The feedback likely provided necessary support for 

these participants to decontextualize their knowledge of the procedure, improving their problem-

solving performance.  

Most participants in the unguided constructive conditions grouped subgoals that were 

different than the subgoals identified by the experimenter and labeled these subgoals with 

problem-specific labels. Because these labels were different from the experimenter-created labels 
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in multiple aspects, it is not surprising that pre-canned, correct response feedback did not affect 

performance for the unguided constructive conditions. The feedback likely provided guidance 

that was so different from the participants’ mental representations of the procedure that they 

could not reconcile the two different representations.  

Participants in the unguided constructive condition also spent much more time looking at 

the feedback than those in other conditions. A main effect of subgoal learning method was found 

for time spent looking at feedback, F(4, 240) = 9.84, MSE = 2.21, p < .001, partial η2 = .15 (see 

Figure 9). Using Tukey’s HSD post-hoc analysis, the unguided constructive group was the only 

group found to have a statistically significant mean difference from the passive group (Mean 

Difference = 1.40, p = .017), active group (Mean Difference = 1.64, p < .001), guided 

constructive with hints (Mean Difference = 1.45, p < .001), and guided constructive without 

hints (Mean Difference = 1.43, p < .001). There was no main effect of feedback condition on 

feedback time, F(1, 240) = .46, MSE = 2.21, p = .50, partial η2 < .01, or interaction of subgoal 

learning method and feedback, F(4, 240) = .79, MSE = 2.21, p = .50, partial η2 = .01. These time 

on task results further suggest that participants in the unguided constructive conditions had 

difficulty reconciling the labels that they created with those presented in the correct response 

feedback, making the experimenter-created labels a poor source of feedback for this group. 
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Figure 9. Time spent on reviewing feedback among conditions. Error bars are standard error. 

Statistically significant differences are indicated with asterisks. 

Guided constructive methods of learning took longest 

Time that participants spent on each part of the experimental session was collected. There 

were differences among groups for time spent on the worked example and time spent working on 

practice problems. For time spent on the worked example, which included using the worked 

example to re-create the app and learning the subgoals of the procedure through passive, active, 

or constructive methods, there was a main effect of subgoal learning method, F(4, 240) = 25.00, 

MSE = 32.80, p < . 001, partial η2 = .29 (see Figure 10). The passive (M = 25.5 minutes, SD = 

5.9) and unguided constructive (M = 27.1 minutes, SD = 6.5) groups completed this part of the 

instructional period quickest and were not statistically different from each other (Mean 

Difference = 1.58, p = .64). The active group (M = 31.1 minutes, SD = 5.4) took statistically 

significantly longer than the passive group (Mean Difference = 5.63, p < .001) and the unguided 
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constructive group (Mean Difference = 4.04, p = .004). The guided constructive groups took 

statistically longer than the active group (with hints, M = 34.7, SD = 6.05, Mean Difference = 

3.54, p = .019; without hints, M = 33.85, SD = 5.39, Mean Difference = 3.69, p = .041) and were 

not statistically different from each other (Mean Difference = 0.82, p = .95).  

 

Figure 10. Time spent using the worked example, including re-creating the app and engaging in 

subgoal learning methods, among conditions. Error bars are standard error. Statistically 

significant differences are indicated with asterisks. 

Except for the unguided constructive group, the constructive methods of learning 

subgoals took longer to complete than the non-constructive methods. These results were 

expected because constructing knowledge takes more thought and, therefore, time to complete. 

The unguided constructive group might have taken less time because participants tended to 

construct high-level subgoal labels that described the process of creating the Music Maker app 

instead of the conceptual procedure for creating apps. This level of description is much easier to 
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identify than a deeper, conceptual description. There was no main effect of feedback on time 

spent using the worked example, F(1, 240) = 1.41, MSE = 32.8, p = .21, partial η2 = .03, or 

interaction of subgoal learning method and feedback, F(4, 240) = .58, MSE = 32.8, p = .67, 

partial η2 = .01. Whether participants received feedback did not affect the time they spent using 

the worked examples. This result was expected because this measurement was taken before 

participants knew that they would receive feedback. 

Correct response feedback increased time spent on practice problems but not on 

assessments 

For time spent on practice problems, a main effect of feedback was found, F(1, 240) = 

6.14, MSE = 9.4, p = .014, partial η2 = .025 (see Figure 11). Participants who received correct 

response feedback (M = 9.92 minutes, SD = 3.16) spent an extra 11% of time on solving practice 

problems than those who did not (M = 8.96 minutes, SD = 3.0). This effect might be due to 

participants referencing both the worked example and correct response feedback while solving 

practice problems instead of referencing only the worked example. The effect accounts for only 

2.5% of the variance in time, however, so the effect of feedback on practice problem time is 

small.  
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Figure 11. Time spent working on practice problems among conditions. Error bars are standard 

error.  

There was no main effect of subgoal learning method on time spent working on practice 

problems, F(4, 240) = 1.35, MSE = 9.4, p = .25, partial η2 = .02, or interaction of subgoal 

learning method and feedback, F(4, 240) = 1.25, MSE = 9.4, p = .29, partial η2 = .02. Method of 

subgoal learning, therefore, did not affect the time participants spent working on practice 

problems.  

The last time measurement was time spent on problem-solving tasks. Participants spent 

an average of 23.52 minutes on the problem-solving tasks (SD = 2.83). No differences among 

conditions were found for this measurement. There was no main effect of subgoal learning 

method, F(4, 240) = 1.51, MSE = 7.8, p = .15, partial η2 = .027, no main effect of feedback, F(1, 

240) = 3.55, MSE = 7.8, p = .06, partial η2 = .015, and no interaction of method and feedback, 

F(4, 240) = 1.15, MSE = 7.8, p = .33, partial η2 = .02. Based on these results, the interventions 
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did not affect the time it took participants to complete the problem-solving tasks. Groups that 

performed better or worse on problem solving performance did not differ on the amount of time 

that it took to solve problems. 

No differences found in other metrics 

The purpose of the explanation assessment was to test participants’ knowledge of the 

problem-solving procedure independent from their problem-solving performance. For the 

explanation assessment, participants received a point for each step that was correctly paired with 

its functional label. The maximum possible score was 20. The mean score on this assessment for 

all groups was 15.8 with a standard deviation of 4.20. No statistical differences were found for 

performance on the explanation task among the conditions. There was no main effect of subgoal 

learning method, F(4, 240) = 1.27, MSE = 17.52, p = .28, partial η2 = .02, no main effect of 

feedback, F(1, 240) = .17, MSE = 17.52, p = .68, partial η2 = .001, and no interaction, F(4, 240) = 

1.66, MSE = 17.52, p = .16, partial η2 = .02. These results suggest that participants in all 

conditions were equally prepared to complete the explanation task, regardless of whether they 

had seen the experimenter-created labels in the instructions or not. Because participants could 

match the functions of subgoals to the experimenter-created labels even if they had not seen the 

labels before, this finding suggests that participants could equally recognize the correct 

experimenter-created label that matched subgoals’ functions. All participants, therefore, could 

recognize the subgoals of the function, but only two of the guided constructive conditions 

performed better on problem solving, suggesting that participants in those conditions could better 

apply their knowledge.  

At the end of the instructional period, including worked example, feedback or review, 

and practice problems, participants were asked to rate their cognitive load while learning the 
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procedure. This measure was intended to assess whether there were significant cognitive load 

differences between the conditions that might affect participants’ experience of learning. Overall 

self-report of cognitive load was not affected by the method of subgoal learning, F(4, 240) = 

1.44, MSE = 156.8, p = .21, presence of feedback, F(1, 240) = .70, MSE = 156.8, p = .40, or their 

interaction, F(4, 240) = 1.34, MSE = 156.8, p = .26. On average, participants rated all types of 

cognitive load in the middle (i.e., 35%-45% on average, see Figure 12). In addition, no 

differences were found within each of the three types of cognitive load: intrinsic, extraneous, and 

germane (see Table 5).  

 

Figure 12. Self-reported rating of cognitive load while working through the instructional period. 

Error bars are standard error. 

Table 5 

ANOVA Results for Intrinsic, Extraneous, and Germane Cognitive Load Measures. 
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 Main Effect of Subgoal 

Learning Method 

Main Effect of 

Feedback 
Interaction 

 F p F p F p 

Intrinsic Load 1.03 .39 .18 .67 .52 .72 

Extraneous Load .18 .95 .05 .83 .77 .55 

Germane Load 1.99 .10 .72 .40 1.42 .23 

These results suggest that participants did not perceive differences in cognitive load 

among the conditions; therefore, the participants constructing labels did not perceive a higher 

cognitive load than participants performing more guided tasks. It is important to note along with 

this finding that the less guidance that constructive participants had, the worse their constructed 

subgoal labels were. The guided constructive without hints condition had fewer problem-

independent labels than the with hints condition (though they still solved problems well given 

correct response feedback), and the unguided constructive condition created mostly higher-level, 

problem-specific labels. It is possible, therefore, that participants could have created better labels 

if the task had demanded it. For example, if students who received unguided worked examples 

were told that their subgoals must include no more than five steps and that they had to repeat 

their labels multiple times in the example, then they would likely have created better labels but 

also experience higher cognitive load. The balance between cognitive load and performance is 

important to consider because if constructing high-quality labels is too cognitively taxing, 

learners might be less inclined to do it, even if it improves learning.  

Participants were asked to rate how well they understood the instructions from “1 – Not 

well at all” to “7 – Very well.” In general, participants rated that they understood the instructions 

well (M = 5.96, SD = 1.06). These ratings were not affected by the method of subgoal learning, 

F(4, 240) = .87, MSE = 1.13, p = .48, presence of feedback, F(1, 240) = .36, MSE = 1.13, p = 
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.55, or their interaction, F(4, 240) = .81, MSE = 1.13, p = .52. Participants were also asked to rate 

how comfortable they were solving novel problems from “1 – Not comfortable at all” to “7 – 

Very comfortable.” Participants rated that they were comfortable solving new problems (M = 

5.60, SD = 1.19). These ratings were not predicted by the method of subgoal learning, F(4, 240) 

= 1.99, MSE = 1.41, p = .10, presence of feedback, F(1, 240) = .32, MSE = 1.41, p = .57, or their 

interaction, F(4, 240) = 1.13, MSE = 1.41, p = .34. These results indicate that participants in 

different conditions felt equally prepared to solve novel problems, even though some of them 

performed better than others. Because perceived understanding and comfort solving novel 

problems were equivalent across groups in this study, these factors were not expected to have 

affected participants’ problem-solving performance. 

In summary, the experiment explored the tradeoffs between instructional guidance and 

constructing knowledge for learning a procedure. The results suggested that constructive 

methods of learning subgoals were the most effective, but they required some instructional 

support. Either receiving correct response feedback on constructed labels or receiving hints while 

constructing labels, but not both, led to the best problem-solving performance. Participants who 

received hints while constructing labels were more likely to construct problem-independent 

labels that are readily applicable to a range of problems than participants who did not receive 

hints. These participants performed better when they did not receive correct response feedback 

than when they did, suggesting that, for those who received hints, the feedback was not an 

appropriate instructional support to promote constructive learning. In contrast, participants who 

did not receive hints performed better when they received correct response feedback than when 

they did not, suggesting that the feedback was necessary for the best performance when 

participants did not receive hints, perhaps because it helped them to recognize the problem-
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independent functions of the procedure. Correct response feedback did not improve performance 

for participants in the unguided constructive condition. Because participants tended to divide the 

worked example into subgoals that were different than those identified in the correct response 

feedback, they likely could not easily use the feedback to compare to the labels that they had 

created, making them ineffective.  

Conclusions 

Subgoal learning has been primarily supported through passive methods: subgoal labeled 

instructions. These methods have been successful at improving problem solving performance in 

procedural domains because they give learners beneficial instructional guidance (e.g., 

Catrambone, 1998). Passive methods, however, are typically less effective for learning than 

active and constructive learning methods (Chi, 2009). The primary goal of the present study was 

to further improve problem solving performance by exploring active and constructive methods of 

learning subgoals. The results suggest that guided constructive methods of learning subgoals by 

self-explaining the subgoals of a well-structured problem can lead to better problem-solving 

performance compared to passive, active, and unguided constructive methods. This finding 

means that learners can benefit from instruction that guides them to self-explain what 

instructions would typically directly explain. Guided constructive methods of learning subgoals 

were most effective when the instructions either provided hints while learners were self-

explaining the worked example by creating labels or correct response feedback after they created 

labels, but not when the instructions provided both. This finding supports the idea that combining 

different types of guidance inappropriately can hinder learning. 

The present experiment taught college-level, novices to program using Android App 

Inventor. The results, therefore, suggest that constructive learning can be better than passive 
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learning, even for a complex problem-solving procedure, such as programming (Morrison, 

2013), and even for novices. For a task that has a different level of complexity or for learners at a 

different level of knowledge, the results might have turned out differently. More complex tasks 

generally require more instructional support to adequately guide novices. For example, if the task 

was more complex, learners might have needed more support to self-explain and learn subgoals 

constructively. In contrast, if the task was less complex, learners might not have needed as much 

support to understand the procedure well and might benefit from having less instructional 

support and more opportunities to construct knowledge. Similarly, for learners with more 

knowledge, providing less instructional support is typically associated with better learning 

because students have more opportunities to self-explain and construct knowledge for 

themselves.  

The pattern of results suggests that the role of feedback in constructive learning should be 

carefully considered. In this experiment, correct response feedback was found to hinder problem 

solving performance when learners had also received guidance while creating subgoal labels. 

This finding is particularly important for many educational technologies that are being developed 

to provide correct response feedback to students. Although it is not unprecedented to find that 

correct response feedback hinders constructive learning, usually the cause is attributed to 

learners’ overreliance on feedback as a form of instructional support (e.g., Schworm & Renkl, 

2006). In the present study, however, learners were not aware that they would receive feedback 

until after they finished studying the instructions, meaning that they could not rely on the 

information provided through feedback. Still the results show that when learners received hints 

during the constructive learning activity, receiving correct response feedback hindered their later 

problem-solving performance. This finding provides evidence that feedback that is not 
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responsive to learners’ construction of knowledge could diminish learning outcomes rather than 

improve them. 

In this experiment as well, feedback improved problem-solving performance when 

learners constructed subgoal labels with guidance (i.e., the worked example was already divided 

into subgoals) but without hints. The study found no differences in problem solving performance 

between learners who received hints during the constructive learning activity or those who 

received correct response feedback after the constructive learning activity. Therefore, there is no 

evidence that one type of instructional support is better than the other for learning. The quality of 

subgoal labels created by participants, however, was better when learners received hints than 

when they did not. This difference in subgoal label quality was not related to performance on any 

of the metrics in the present study, but it does suggest that participants had a better mental 

organization of information related to the procedure at this point in time. It is tenable that future 

work could find that higher quality labels are related to better retention or performance on related 

problem-solving procedures. It is also tenable that the correct response feedback improved 

learners’ mental organizations and no meaningful differences among the learners persisted after 

the feedback was given. 

Limitations and Future Work 

Feedback might have hindered learning in this case because it required learners who had 

created good, problem-independent self-explanations to compare their explanations with that of 

the experimenter. The reasons that this comparison could be detrimental were not explored in 

this research, which greatly narrows the generalizability of this finding. Despite this limitation of 

the current work, possible explanations will be discussed here. Even if the explanations created 

by the participants and those created by the experimenter were similar, participants might not 
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have had enough domain knowledge to recognize how similar the explanations were. For a 

participant who created good, problem-independent subgoal labels, comparing the two 

explanations could have had two negative effects: cause confusion and unnecessarily high 

cognitive load in the learner who is unable to reconcile the explanations that they created and 

those that the experimenter created and/or cause the learner to abandon their explanations and 

use what they might have perceived to be the only correct explanations. Both effects would 

negate the benefits of constructive learning – building knowledge upon prior knowledge in an 

organization that makes sense to the learner.  

To explore whether the comparison between good participant-created and experimenter-

created explanations is the cause of feedback’s negative effect when learners received the guided 

constructive example with hints, a yoked experimental design could be employed. The goal of 

this design would be to use students’ terms (either their own or that of their yoked partner) in the 

correct response feedback, which in this case would be responsive to participants’ work, to 

determine whether differences in terms between the student explanations and the feedback 

explain the decrease in performance for the guided constructive with hints group. In this design, 

participants could be given the guided constructive with hints condition and asked to create their 

own subgoal labels. Then participants would be grouped into yoked pairs and receive either 

feedback based on the labels that they had created (i.e., personalized correct response feedback) 

or feedback based on the labels that their yoked partner had received (i.e., not personalized 

feedback but also not canned knowledge of correct response feedback). For example, if the non-

yoked participant created a correct label, such as “Add component to app,” then the feedback 

would use the same language that the participant had used, such as “Add component.” The yoked 

participant would see this feedback too, regardless of the label that they had created. Similar to 
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canned feedback, if the yoked participant had also used the term component, then the feedback 

would align well. If the yoked participant has used a different term, however, then the feedback 

would not align well, making the yoked condition a good control group. If the non-yoked 

participant created an incorrect label, such as “Add ImageSprite,” then the feedback would use 

similar, but corrected, language, such as “Add component.” Again, the yoked participant would 

see the same feedback. The feedback based on participant-created labels would be advertised to 

both groups as correct labels developed by an expert.  

It is hypothesized that participants who received personalized feedback based on their 

labels would not have difficulty integrating their created labels with the feedback labels; 

therefore, it is hypothesized that this group would perform similarly to those who did not receive 

feedback. If some participants in this group created problem-specific labels, the feedback would 

provide a problem-independent version of their label. If they created incorrect labels, then the 

feedback would default to the experimenter-created labels. In both cases, these participants might 

perform better on novel problem-solving tasks because their problem-specific or incorrect labels 

are corrected to problem-independent labels. It seems unlikely that providing feedback for 

learners who created good subgoal labels would further improve problem solving performance 

unless the learners were uncertain of their labels and would benefit from validation of their 

labels.  

For participants who receive yoked feedback, it is hypothesized that they would perform 

as poorly as or worse than participants in the present experiment who received experimenter-

created labels as feedback. These participants would receive feedback labels that would be 

different enough from their own, unless they used the same words as their partner, that it is 

expected that the participants would have trouble reconciling the two sets of labels. These 
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participants might even perform worse because the feedback labels would be created by another 

participant who is a novice in the subject matter and in making subgoal labels; therefore, it is 

possible that the yoked feedback would make even less sense than experimenter-created labels to 

the participants in the yoked condition.  

Future work could also focus on exploring whether constructive methods of subgoal 

learning could be developed into a general learning strategy. Perhaps teaching learners to create 

their own subgoal labels would help them to improve performance on a range of tasks. After 

constructing, with adequate support, subgoal labels for several procedures, learners might 

become skilled at developing labels and would be able to construct labels for new procedures in 

different domains without hints or feedback. Eventually, they might even be able to breakdown 

problem solving procedures into subgoals by themselves and benefit from subgoal learning 

without help from instructors or instructional designers. This strategy would likely have benefits 

that are similar to training students to self-explain in procedural domains. Transferring learning 

strategies, however, from one domain to another, especially without any guidance, is typically 

difficult to achieve (Brown, 1992); therefore, more work would be necessary to explore this 

possibility. If it is possible, training learners on this type of learning strategy could help learners 

perform better--both at initial learning and later transfer--across a range of procedural fields. 

The present study suggests that learners are better able to solve novel problems when 

they learn the subgoals of a well-structured procedure through constructive methods that provide 

an appropriate combination of types of guidance than when they learn subgoals through passive 

or active methods. It is critical to note that this research was conducted in an independent 

learning environment in which learners did not have access to an instructor or peers and, 

therefore, could not discuss their self-explanations with others. Much of the recent research on 
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constructive learning is conducted in classrooms or otherwise social environments in which 

learners can exchange ideas and solicit instructor feedback. The personalized feedback provided 

in these cases is dynamically responsive to the learners’ questions, statements, and non-verbal 

cues, meaning that learners do not have to take on the burden of comparing their explanations 

with an expert’s explanation and self-monitoring whether they have fully reconciled both 

explanations. Learners in the present study did not have those resources, but some of the 

participants assigned to the constructive learning method still performed better than those 

assigned to the passive learning method. This suggests that even without access to personalized 

feedback, which is almost always preferable but almost always more expensive to deliver, 

constructive learning can be more effective than passive learning. 

Because the interventions in the present study are not reliant on a social learning 

environment, they would be relatively easy to implement in a range of instructional 

environments, including technology-supported environments. Chunking problems into subgoals 

and providing hints that help learners to realize the similarities between different instances of 

subgoals would be an easy intervention to include in instructional material because it does not 

need to be customized for each individual learner. If providing hints helps students learn 

constructively as much as providing correct response feedback, as this study suggests, then 

constructive learning can be supported in a larger range of learning environments. By receiving 

hints, learners can constructively learn subgoals in learning environments that do not provide 

feedback, or at least not immediate feedback, like many online learning environments. If future 

work suggests that constructing subgoal labels can be a general learning strategy applied to 

procedures in various domains, then the learning methods in the present research will become 

even more compelling. Based on the findings of the present study, the best subgoal learning 
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outcomes should be achieved through constructive methods with appropriate guidance, which 

does not mean a combination of all available types of guidance.  
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