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ABSTRACT

STATISTICAL INFERENCE FOR THE HAEZENDONCK-GOOVAERTS RISK MEASURE
BY
Xing Wang
May 15", 2018

Committee Chair: Liang Peng

Major Academic Unit:  Department of Risk Management and Insurance

Recently the Haezendonck-Goovaerts (H-G) risk measure is receiving much attention in actuarial
science with applications to optimal portfolios and optimal reinsurance because of its advantage in
well quantifying the tail behavior of losses. This thesis systematically studies statistical inferences
of the H-G risk measure under various settings including heavy-tailed losses, fixed and intermediate
risk levels.

The thesis starts by proposing an empirical likelihood inference for the H-G risk measure for
two different risk levels—fixed risk level and intermediate risk level. More specifically, Chapter 2
considers the case of fixed risk level, and the derived asymptotic limit of a nonparametric inference
is employed to construct an interval for the H-G risk measure. Chapter 3 considers the case of
intermediate risk level, i.e., the level is treated as a function of the sample size and goes to one as
the sample size tends to infinity. The proposed maximum empirical likelihood estimator for the H-G
risk measure has a different limit from that for the case of a fixed level. But the proposed empirical
likelihood method indeed gives a unified interval estimation for both cases.

Chapter 4 proposes a two-part estimation for the H-G risk measure and the proposed estimators
always have an asymptotic normal distribution regardless of the moment conditions. To achieve this,
we separately estimate the tail part by extreme value theory and the middle part non-parametrically.

The above chapters focus on independent data. In Chapter 5, we extend our methodology from



independent data to dependent data and conduct the sensitivity analysis of a portfolio under the H-G
risk measure. We first derive an expression for computing the sensitivity of the H-G risk measure,
which enables us to estimate the sensitivity non-parametrically via the H-G risk measure. Second,
we derive the asymptotic distributions of the nonparametric estimators for the H-G risk measure
and its sensitivity by assuming that loss variables in the portfolio follow from a strictly stationary
a-mixing sequence. Finally, this estimation combining with a bootstrap method is applied to a real
dataset.

Besides the study of the H-G risk measure, we investigate the estimation of the finite endpoint
of a distribution function when normally distributed measurement errors contaminate the obser-
vations. Under the framework of extreme value theory, we propose a class of estimators for the
standard deviation of the measurement errors as well as for the endpoint. Asymptotic properties
of the proposed estimators are established and simulations demonstrate their good finite sample

performance.
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CHAPTER 1
INTRODUCTION

This dissertation systematically addresses some statistical inference problems for a class of risk
measures called Haezendonck-Goovaerts (H-G) risk measures. These risk measures are used to
quantify the tail property of loss distributions and are receiving much attention in actuarial science
with applications to reinsurance policy and optimal portfolios. However, there are few efficient
inference methods for estimating the H-G risk measure when the loss is heavy-tailed distribution.
This thesis is dedicated to developing efficient methods to estimate the H-G risk measure under
various scenarios including heavy-tailed distributions.

This thesis starts by proposing an empirical likelihood inference for the H-G risk measure at two
different risk levels separately. Chapter 2 considers the case that the H-G risk measure is defined
at a fixed level, where a nonparametric estimation method is proposed and the derived asymptotic
limit is employed to construct an interval for the H-G risk measure. Compared to the nonparametric
estimation proposed by Ahn and Shyamalkumar (2014), this method shows a better performance
empirically.

Chapter 3 is dedicated to extending the statistical inference from a fixed level to an intermediate
level where the level is treated as a function of the sample size. Since the intermediate level tends to
one as the sample size goes to infinity, the proposed maximum empirical likelihood estimator for
the H-G risk measure has a different limit from that for a fixed level. Interestingly, the proposed
empirical likelihood method indeed gives a unified interval estimation for both cases. A simulation
study is conducted to examine the finite sample performance of the proposed method.

In Chapter 4, motivated by the fact that many loss variables in insurance and finance could have
a heavy tail including infinite variance, we propose a two-part estimation for the H-G risk measure.
The proposed estimators always have an asymptotic normal distribution regardless of the moment

conditions. To achieve this, we separately estimate the tail part by extreme value theory and the



middle part non-parametrically. A simulation study and real data analysis confirm the effectiveness
of the proposed new inference procedure for estimating the H-G risk measure.

Chapters 2—4 focus on statistical inferences for the H-G risk measure when the losses are
independent. When this risk measure is applied to insurance or a financial portfolio with several
loss variables, sensitivity analysis becomes useful in managing the portfolio, and the assumption
of independent observations may not be reasonable. Thus, in Chapter 5, we extend our estimation
methodology from independent data to dependent data. First, we derive the theoretical expression
for computing the sensitivity of the H-G risk measure, which enables us to estimate the sensitivity
non-parametrically via the H-G risk measure. Further, we derive the asymptotic distributions of
the nonparametric estimators for the H-G risk measure and its sensitivity by assuming that loss
variables in the portfolio follow a strictly stationary c-mixing sequence. A simulation study is
provided to examine the finite sample performance of the proposed nonparametric estimators. Also,
the method combining with a bootstrap method is applied to a real dataset.

Chapter 6 investigates the estimation of the finite endpoint of a distribution function when
normally distributed measurement errors contaminate the observations. Under the framework of
extreme value theory, we propose a class of estimators for the standard deviation of the measurement
errors as well as for the endpoint. Asymptotic properties of the proposed estimators are established
and simulations demonstrate their good finite sample performance. Also, we apply the proposed
methods to the outdoor long jump data to estimate the ultimate limit for human beings in the long
jump.

To give an overview of the proposed study and employed techniques, Section 1.1 defines the
risk measure, including the H-G risk measure and some related problems; the maximum empirical
likelihood method which is employed in the statistical inference is presented in Section 1.2; extreme

value theory is reviewed in Section 1.3.



1.1 Risk Measure

1.1.1 Definition of the Risk Measure

Risk management generally involves risk identification, risk quantification, and risk prediction.
As one of the important parts of risk management, risk quantification is a process of using the
observed data to evaluate the risks quantitatively and arrange the risks in the order of importance.
Quantifying the risk is associated with capital allocation, decision-making and actuarial premium
calculation which are important in risk management and actuarial science. Quantitative techniques
help enhance the credibility and the quality of decision-making significantly. During the process
of qualitative analysis, risk measures are necessary tools that help with the risk quantification and
forecast.

Generally speaking, a risk measure is a function that maps a random variable to a real number.
It allows us to link the uncertainty of the loss to some real numbers so as to express the riskiness.

The formal definition of risk measure is as follows:

Definition 1.1.1. A risk measure p is a mapping from a set of random variables to the real numbers:

p:L— R,
X — p(X),

where L is the LP space, i.e. L ={X : E||X|]P < oo} .

Since a risk measure can be an arbitrary function that maps a space of probability distributions
to real numbers, infinite choices of functions could serve as risk measures. Examples are the
mean and the variance, which are commonly used to measure the centrality and dispersion of the
risk separately. In order to find a proper function to evaluate the risk and fulfill the needs of risk
management, different criteria are used for choosing the optimal risk measure in practice. When risk
measures are used as capital requirements to regulate the risk, some desired properties are raised by

market participants or the insurance underwriters.



If we treat the random variable X as the position of the risk, it is apparent that the riskier
a position is, the higher its risk measure should be. When X is positive, p(X) is interpreted as
the amount of cash needed to add to the risky position X to make it an acceptable position. On
the contrary, if p(X) < 0, the capital amount —p(X') could be taken out from the already being
acceptable position to be invested in a more profitable way. Thus, the concept of risk measure is
strictly related to that of acceptability. The coherent risk measure introduced by Artzner et al. (1999)
is a fundamental concept related to the acceptability of a risk measure. It represents a subset of risk

measures achieving the highest status in theoretical studies as well as industry regulation.

Definition 1.1.2. A risk measure p : L — R is called a coherent risk measure if the following

four properties hold:
e translation invariance: X € L, € R = p(X + a) = p(X) +
e positive homogeneity: X € L,a > 0 = p(aX) = ap(X).
e monotonicity: X1, Xs € L, X7 < Xy = p(X1) < p(Xy).
o sub-additivity: X1, X € L = p(X1 + X2) < p(X1) + p(X2).

In the literature, properties of different kinds of risk measures are studied, and the behavior of
risk measures for the heavy-tailed distributions receives a lot of attention.

There are two risk measures emphasizing the tail behavior of the loss: Value at Risk (VaR) and
Condition Value at Risk (CVaR). VaR is known as the quantile risk measure or quantile premium
principle, which quantifies the value of an asset’s tail risk and is always specified with a given

confidence level a.

Definition 1.1.3. The Value-at-Risk (VaR) of random variable X at level « is defined as the lower
a-quantile of X
VaRy(X) :=inf{z >0:1— Fx(z) < a},

where F'x is the cumulative distribution function of X.



VaR (in general) is not a coherent risk measure because the sub-additivity does not always hold.
Using this risk measure, portfolio diversifications may not lead to risk reduction. From this point of
view, VaR is not acceptable for determining regulator capital for financial institutions.

As one of the typically used coherent risk measures, Conditional Value at Risk (CVaR) measures
the expectation of the loss under the condition that the loss is above the VaR at a given confidence

level a.

Definition 1.1.4. Let X be a continuous loss random variable. Given a parameter o, 0 < o < 1,

the a-CVaR of X ( Conditional Value-at-Risk (CVaR) in the continuous case) is

CVaR(X) = E[X|X > VaR.(X)].

1.1.2 The Haezondonck-Goovaerts Risk Measure

The so-called Haezendonck-Goovaerts (H-G) risk measure originates from Haezendonck and
Goovaerts (1982) by considering the premium calculation principle—Orlicz premium. It is re-
lated to the normalized Young function 9 (.) (see Krasnoselskii and Rutitskii (1961) and Skii and

Ruttcki (1961)) which generates the H-G risk measure and is defined as follows:

Definition 1.1.5. Let ¢ : [0, 00] — [0, 00| be a convex function. If

(0) =0, ¥(1)=1 and (o0)= o0,

then v is called a normalized / generalized Young function.

Definition 1.1.6. Let ¢ : [0, 00] — [0, 00| be a normalized Young function. Suppose X is a real
number loss variable. For a fixed number q € (0,1) and each > 0, let & = «() be a solution to

(X —0)+

(07

E{( p=1-gq (LL1)

where x, = max(x,0). We call the unique solution () the Orlicz premium corresponding to



X, B and q. Then, the so-called Haezendonck-Goovaerts risk measure with level q is defined as

6, = inf {5 +a(5)}. (1.1.2)

Bellini and Gianin (2012) showed that the minimizer exists for all ¢ € (0, 1), and it is unique
when () is strictly convex. This minimizer 5* is called the Orlicz quantile of the loss.

From Zhu, Zhang, and Zhang (2013), two groups of generalized Young functions appear
frequently in the actuarial literature:

(i) The power Young function: ¢(z) = 2P, p > 1;

(ii) The exponential Young function: ¥(z) = (%% /(e — 1)), 3 > 0.

If ¢(z) = z, then o(f3) = 1%qE{(X —f)+}and 6 = ﬁE{(X — F~(q))+}, where F(x) =
P(X < x)and F~(x) denotes the inverse function of F'(z). In this case, the H-G risk measure is
reduced to the Conditional Value at Risk (CVaR).

The actuarial intuition of the H-G risk measure is provided by Bellini and Gianin (2008b). If we
treat (X — [3) as the payment for the loss X when applying franchise deductible 3, a(x) represents
the corresponding Orlicz premium of this insurance contract. The minimization construction in
the definition minimizes the consumption of the insurer. The minimizer 5* represents the optimal
choice of the franchise deductible from the point of view of the insurer.

In the study of the inference issue, we formulate the H-G risk measure as a solution to the
following estimating equations. Suppose X1, ..., X,, are independent and identically distributed
(i.i.d.) random variables with distribution function F'(z). The H-G risk measure is equivalent to

solving the following estimating equations

E{(3=I(X > B)} = 1—q,

E{W()éi__gﬁ)(Xi —-0)I(X;>pB)}=0

(1.1.3)

for some 5 and 6 > [ under some conditions (see Tang and Yang (2014)). This transformation

enables us to employ the empirical likelihood method in Qin and Lawless (1994) to estimate the



H-G risk measure. The statistical inference of the H-G risk measure can be done by combining

techniques of the empirical process and the empirical likelihood method.

1.2 Empirical Likelihood (EL) Methods

When we employ risk measures to the sample with unknown underlying distributions, the empirical
likelihood method could provide an efficient way to estimate the H-G risk measure. This section
gives an introduction to the empirical likelihood method that will be employed in the statistical

inference about risk measures.

1.2.1 Classical Likelihood Ratio Methods

In parametric likelihood methods, we suppose that the joint distribution of all available data has
a known parametric form. Let X7, Xy, X3,..., X, be i.i.d. observations with underlying density
distribution function fx (x; @), where 6 € © is ¢g-dimensional parameter and the parameter ¢ takes its
values in the set © C R? . The likelihood function for these n observations is the joint distribution

of (X1, Xo, X3,...,X,) given by
L(X1, Xs,...,X,,;0) =115 _ fx(X;:0). (1.2.1)
The corresponding log-likelihood function is

(X1, Xo, .., Xp30) =Y log(fx(X;3:0)). (1.2.2)
=1

Since the principle of maximum likelihood is choosing the estimator 0 as the value for the parameter
that makes the observed data most probable, the maximum likelihood estimator is the value én such
that

(X1, X, Xp:60,) = sup l(X1, Xo, ..., X2 6). (1.2.3)
[4<C)



In order to test the hypothesis Hy : 6 = 6, the likelihood ratio statistic is defined as

. L(eo;Xl,Xg, e 7Xn)
L0; X1, Xo, ..., X))

R(6)

Wilks’ theorem is often proved and used to construct a confidence interval.

Theorem 1.2.1. ( Wilks’ theorem ) Under mild regularity conditions, if 0 = 6y, then
—2log(R(6y)) —5 \2,
and the likelihood ratio confidence region for 0 is
{6: —21log(R(9)) < Xga -
where Xg;a is the upper a-quantile.

1.2.2 Empirical Maximum Likelihood Methods

The empirical likelihood method was introduced by Owen (1990). It is a nonparametric maximum
likelihood estimation. Without assuming the form of the underlying distribution, this method
provides data-determined shapes for the confidence region, and it can easily incorporate known
constraints on parameters, and adjust for biased sampling schemes.
Let X3, X5, X3, ... bei.i.d. observations with unknown underlying distribution function Fy(z).
As the point estimator of F(x), the empirical cumulative distribution function (ECDF) F,,(z) is
defined as
T
Fu) =~ 2 I(X; < z), (1.2.4)

where I(.) is the indicator function. Then the nonparametric likelihood function for these n
observations is

L(F) == 1I"_, (F(X;) — F(X;)). (1.2.5)

7=1



Here the value L(F) is the probability of getting exactly the observed sample values X7, ..., X,
from the CDF F(.). If F' is a continuous distribution function, L(F) = 0. If F' is a discrete
distribution function on {Xj,..., X, } with p; = F(X;) fori = 1,2,...,n, where p; > 0 and
> i, pi = 1, then the empirical likelihood is L(F') = I/, p; .

We also use ratios of the nonparametric likelihood as a basis for hypothesis testing and con-

structing confidence intervals. We define the ratio as follows:

L)
) = S L))

Lemma 1.2.2. Let X1, X, ..., X, € R be independent random variables with a common CDF Fy,.

Let F,, be their ECDF and F' be any CDF. If F' # F,, then L(F) < L(F},).

From Lemma 1.2.2, we know F,, = arg maxz{L(F)}, and the EL ratio is

R(F) = = I npi,

where p; is the probability mass function of X, and satisfies p; > 0, >~ | p; < 1. To maximize
R(F ), we need consider the support of F on the data, i.e., > ., p; = 1.

Consider no tied data Xy, Xs,..., X, i.e., X; # X; when ¢ # j. Suppose the distribution

function F puts probability p; > 0 on the value X; € R?, then
L(F)=M",p; and R(F)=1" np; = n"IIp,.

If we are interested in a parameter § = T'(F’), F' € F for the functional 7', we choose F containing

all distributions that have support on X;,7 = 1,2, ..., n. The likelihood ratio function is defined as

R(O)=  swp  {n"T,pi | pi = F(X:); T(F) = 0}, (1.2.6)

{(pl sP2y-0s pn)}

We accept T'(F') = 6, when R(6y) > ro for some threshold 7, and the corresponding EL confidence



region is {0 : R(0) < ro} with ry chosen via an EL analogue of Wilks’ theorem.
Owen (1990) studied the EL for a univariate mean as an example of function at 7', i.e., T'(F') =

E[X]. After adding the restriction E[X] = 1y, the equation (1.2.6) can be rewritten to the following

R(o) = sup {2 np;|p; >0, Zpi =1, ZpiXi = Lo} (1.2.7)
{(p17p2 ))))) pn)} i=1 i=1
Theorem 1.2.3. Let X1, ..., X, be independent random variables with common distribution Fy,.

Let jigp = E(X;), and suppose that 0 < Var(X;) < co. Then

d
—2log(R(mo)) — X?l) as n — oo.

If X1,..., X, are independent random vectors with finite covariance matrix of rank ¢ > 0, and

o € R, then the Theorem 1.2.3 could be extended to multivariate data and
d
—2log(R(mo)) — X%q) as  n — 00.

Besides the univariate mean example, Qin and Lawless (1994) extended empirical likelihood
methods to estimating equations. If we have a smooth function of means, § = h(u) which is
implicitly defined by E(g(X,0)) = 0, where g(X,0) = (9:1(X,0), g2(X, 0), ..., 9.(X,0))7 is the

estimating function, the empirical likelihood function ratio with estimating equations is defined as

R(#)=  sup Al npi|p; >0, Zpi =1, ZP@Q(Xu 0) = 0}. (1.2.8)
i=1 i=1

{(p1,p2,--,pn)}
The estimator of 6 is obtained by optimizing L(6), i.e., 0FML := arg maxgco R(0).

Theorem 1.2.4. Let X1, ..., X,, be i.i.d. random variables, and suppose g(X, 0) has finite covari-

ance matrix of rank g > 0. If E[g(X,0)] = 0, then

—2log(R(6y)) N X%1) as n — oo,

10



where 6 is the true value of 6.

This extension enables us to infer the H-G risk measure after it is transformed to the equation

set (1.1.3). Also, the theorem could help with constructing confidence intervals.

1.3 Extreme Value Theory

In this section, a brief introduction to extreme value theory is given. Let Xy, X5, X3, ... be i.i.d.
random variables. In contrast to the central limit theorem where the limit behavior of the partial
sum X; + Xy + -+ + X, as n — oo is studied, the theory of extremes is concerned with the
limit behavior of the sample extremes max (X1, Xs, ..., X,) or min(Xy, X5, ..., X,,) asn — oo.
Extreme value theory (EVT) is focused on the possible limit distributions for sample maxima of
independent and identically distributed random variables.

In this section, we are interested in (right-) tail properties of distributions. Let F' be the

underlying cumulative distribution function. Suppose x* is the right endpoint of X, i.e.,

" =sup{z: F(z) <1}, (1.3.1)

where z* could be finite or infinite. From De Haan and Ferreira (2007), there exists a sequence of

constants a,, > 0,and b, € R (n =1,2,...) such that

maxij<i<n Xz — bn

Y asn — oo, (1.3.2)
Qp,

where Y is a non-degenerate random variable. That is, there exists a nondegenerate distribution
function G such that

lim F"(a,x + b,) = G(x) (1.3.3)

n—00

for every continuity point x of (G. Distribution functions G that can occur as a limit in (1.3.3)
are called extreme value distributions. The related distribution F satisfying (1.3.3) is called in the

maximum domain of attraction or simply domain of attraction of G.
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From Fisher and Tippett (1928) and Gnedenko (1943), it turns out that GG is determined by a

single parameter vy which we call the extreme value index.

Theorem 1.3.1. The class of extreme value distributions is G.,(ax + b) with a > 0, b € R, where

G (z) = exp(—(1 +~x)"7), 14~z >0, (1.3.4)

Von Mises (1936) and Jenkinson (1955) explored the parametrization in Theorem 1.3.1. They
classified the distribution F' into three different groups according to the index of the extreme value

distribution.

Definition 1.3.2. (1) Fory > 0, use G,((x — 1)/7), leta =1/ > 0,

0, x <0,
O, (x) =

exp(—z~ %), x> 0.

This class is often called the Fréchet class of distributions

(2) For v <0, use G, (—(x +1)/v), leta = —1/v > 0,

This class is often called the Reverse-Weibull class of distributions.
(3) For v =0,
Go(z) = exp(—e ),z € R. (1.3.5)

This class is often called the Gumbel class of distributions.

When we are using a heavy-tailed distribution to model the risk, we always care about the right
part of the loss. When v > 0, it is trivial that G, (z) > 0 for all z > 0, i.e., the right endpoint of
the distribution is infinity and the distribution has a rather heavy right tail. This indicates that the

moments of order greater than or equal to 1/ do not exist. For v = 0, the right endpoint of the

12



distribution equals infinity. However, the distributions are rather light-tailed and all moments exist.
When « < 0, the right endpoint of the distribution is —1/7, so it has a short right tail. Thus, the
bigger the v, the heavier the right tail.

A simple estimator for estimating the tail index v € R is the Pickands estimator from Pickands

III (1975), defined as

ank;n - Xn72k;n )
’

Ap = (log2) ! log( (1.3.6)

Xn—2k:;n - Xn—4k;n
where X,,.,, > X,,_1,, > --- > X}, is the ordered sample of X, X5, ..., X,,.
A more widely used way to estimate the tail index for a distribution having a right tail is the Hill

estimator in Hill (1975). From the first order variation, we know F' € D(G,) for v > 0 if and only

if
L R
The Hill estimator 7 is defined as
=
Vi = T log X,,—i:n — log Xy, (1.3.7)
i=0
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CHAPTER 2
EMPIRICAL LIKELIHOOD INFERENCE FOR THE HAEZENDONCK-GOOVAERTS
RISK MEASURE

Recently Haezendonck-Goovaerts risk measure is receiving much attention in actuarial science
with applications in the study of optimal portfolio and optimal reinsurance policy. Nonparametric
estimation is proposed by Ahn and Shyamalkumar (2014), where the derived asymptotic limit can
be employed to construct an interval for the Haezendonck-Goovaerts risk measure. In this chapter,
we propose an alternative empirical likelihood inference for this risk measure. A simulation study
shows the good performance of the proposed method. The content of this chapter is based on the
following joint work:

L. Peng, X. Wang and Y. Zheng (2015). Empirical likelihood inference for Haezendonck-

Goovaerts risk measure. European Actuarial Journal 5, 427-445.

2.1 Motivation and Introduction

Let ¢ : [0, 00] — [0, 00| be a convex function satisfying ¢(0) = 0, (1) = 1 and ¢)(c0) = o0, i.e.,
a normalized Young function. Suppose X is a loss variable. For a fixed number ¢ € (0, 1) and each
B >0, let o = () be a solution to

(X —F)+

(07

E{y( )p=1-gq (2.1.1)

where z; = max(x,0). Then, the so-called Haezendonck-Goovaerts risk measure with level ¢ is

defined as

6, = inf {5 +a(8)}. (2.1.2)

This risk measure originates from Haezendonck and Goovaerts (1982) by considering the premium

calculation principle induced by an Orlicz norm.
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Recently there has been an increasing interest in studying Haezendonck-Goovaerts risk measure
with applications in actuarial science. For example, Goovaerts et al. (2004) showed that this
risk measure preserves the convex order property; Bellini and Gianin (2008a) and Bellini and
Gianin (2008b) provided a dual representation for this risk measure; Goovaerts et al. (2012)
investigated a relationship between this risk measure and others; Cheung and Lo (2013) obtained a
lower bound for this risk measure when a sum of random variables is concerned; studies of optimal
portfolio and optimal reinsurance under this risk measure are given by Bellini and Gianin (2008b)
and Zhu, Zhang, and Zhang (2013), respectively; Tang and Yang (2012) and Tang and Yang (2014)
derived a first order approximation for this risk measure when the underlying distribution is in
the domain of attraction of an extreme value distribution, which is of importance in predicting
extreme risks; a second order approximation for this risk measure is obtained by Mao and Hu (2012),
which is necessary for the study of estimating this risk measure nonparametrically when the level
q depends on the sample size and goes to one as the sample size tends to infinity; nonparametric
estimation for this risk measure is proposed by Ahn and Shyamalkumar (2014) and its asymptotic
limit is derived too.

Although some nice theoretical properties and applications of this Haezendonck-Goovaerts risk
measure have been found in the literature, statistical inference is quite underdeveloped. For example,
how does one effectively construct a confidence interval for the Haezendonck-Goovaerts risk
measure ¢, at a given level ¢ € (0, 1)? Quantifying variability of a risk measure is of importance in
risk management such as backtesting. A simple way to obtain an interval for §, is to either estimate
the asymptotic variance of the nonparametric estimator of 6, in Ahn and Shyamalkumar (2014)
or use a bootstrap method. In general this simple method does not lead to an accurate interval.
Alternatively one can investigate the possibility of developing an empirical likelihood method
for this risk measure since empirical likelihood methods are powerful in interval estimation and
hypothesis tests. We refer to Owen (2001) for an overview on empirical likelihood methods and
their advantages. Recently empirical likelihood methods have been proposed for constructing

intervals for some risk measures in the literature; see Peng and Qi (2006) for high quantiles; Chan
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et al. (2007) for conditional Value-at-Risk; Baysal and Staum (2008) for Value-at-Risk and expected
shortfall. A standard way to formulate an empirical likelihood function is via estimating equations;
see Qin and Lawless (1994). By noting that the Haezendonck-Goovaerts risk measure can be
written as a solution to two estimating equations, we are able to employ the empirical likelihood
method in Qin and Lawless (1994) to estimate this risk measure and to construct a confidence
interval for it. However the results in Qin and Lawless (1994) can not be applied due to the involved
non-smoothing functionals when the Haezendonck-Goovaerts risk measure is written as a solution
to estimation equations. Instead, we develop our theoretical results by combining techniques in the
empirical process and the empirical likelihood method.

This chapter is organized as follows. Section 2.2 presents the methodology and main results,
where the imposed regularity conditions are different from those in Ahn and Shyamalkumar (2014)
since we focus on the case of having a normal limit. These conditions can be verified straightfor-
wardly. A simulation study is given in Section 2.3, which shows that the new method has good
finite sample performance and provides a more accurate interval than the normal approximation
method based on the nonparametric estimator in Ahn and Shyamalkumar (2014). All proofs are put

in Section 2.4. Some conclusions are made in Section 2.5.

2.2 Nonparametric Maximum Empirical Likelihood Estimation for Fixed Quantile Level

Throughout suppose X1, --- , X,, are independent random variables with common distribution
function F(z), and we use notations %, 4, 0p(1), Op(1) and I(-) to denote convergence in
probability, convergence in distribution, convergence almost surely, small order in probability,
bounded in probability and indicate function, respectively. The nonparametric estimator for the

Haezendonck-Goovaerts risk measure proposed by Ahn and Shyamalkumar (2014) first solve the

following equation with respect to « for each fixed f3:

1 (Xi=B)y,
E;M—a J—1-q. 22.1)
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This equation is the sample version of equation (2.1.1). Denote this solution by &(/3). Next, using

(2.1.2), Ahn and Shyamalkumar (2014) defined their nonparametric estimator for 6, as

025 = g$ﬂ3+a()} (2.2.2)

and derived its asymptotic limit. As shown by Ahn and Shyamalkumar (2014), the limit could
be non-normal. Under some conditions, the limit is normal, and Ahn and Shyamalkumar (2014)
proposed an estimator for the asymptotic variance and stated that it is important to study methods
for interval estimation such as bootstrap method, but they did not conduct any empirical/theoretical
investigation.

Although equations (2.1.1) and (2.1.2) have a unique solution for a given ¢ € (0, 1) when ¢ is
strictly convex (see Bellini and Gianin (2012)), é;;‘s may not exist for a large ¢ and finite n due to

the first step estimation &(/3); see the simulation results in Table 2.1 below.

By taking derivative with respect to 5 in (2.1.1), we obtain

—B,-
a(f)

a(f) — (X = B (P)
a?(f)

EW(

) I(X > B)} =0. (2.2.3)

Equation (2.2.2) implies that we have to solve the equation 1 + o/(3) = 0, which, combining with

(2.2.3), results in the following estimating equation

-8

By 2(9)

)X =B —a@)I(X>p)} =0 224

Hence, it follows from (2.2.3) and (2.2.4) that 6,(> /) and [ satisfy the following estimating

equations:

E{(E=D)I(X, > )} =1 -4,
E{Y/(X28)(X, — 0)1(X, > )} =

(2.2.5)

A rigorous derivation can be found in Tang and Yang (2014) under some conditions. The above

view of Haezendonck-Goovaerts risk measure motivates us to consider the following maximum
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empirical likelihood estimator for 6, and empirical likelihood based confidence intervals. Note that
moment estimator based on (2.2.5) can be employed too, but its asymptotic behavior will be the
same as that of the proposed maximum empirical likelihood estimator.

Forv=1,---  n,put

(X, > 8)—1+q o(2=r

)X =01 > B)

Then it follows from Qin and Lawless (1994) that the empirical likelihood function for (6,, /3) is

defined as

L(6q7ﬁ) = SUP{H(npz) ‘P Z 07 D Z O;sz - 172le(GQ7ﬁ) = 0}
=1 =1

=1

By the Lagrange multiplier technique, we have
[0, 8) == —2log L(6,, 8) = 2 ) _log(1 + \"Yi(6,, 8)), (2.2.6)
i=1

where A = \(6,, () satisfies

n Y;(eq, 5) B
; L+ ATYi(6,,5) 0 (2.2.7)

As in Qin and Lawless (1994), the maximum empirical likelihood estimator for (6, /) is defined as

= arg min (0, [).

éMEL AMEL
(6,77 87) B

When an interval for 0, is concerned, one needs to consider the profile empirical likelihood ratio
function (¥ (6,) = mingg, 1(6,, 3).

In order to derive the asymptotic limit of (ééw EL BMEL) and to show that Wilks theorem holds
for the above empirical likelihood method, conditions and theorems in Qin and Lawless (1994)
can not be applied since our functionals are non-smooth due to the factor /(X; > ). One way

to overcome this issue is to smooth the indicator function as Chen and Hall (1993) for quantile
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estimation and Chen, Peng, and Zhao (2009) for copulas. Unfortunately this smoothing technique
can not be employed here due to the fact that ¢)(¢) is defined only for ¢ > 0. Recently Molanes
Lopez, Keilegom, and Veraverbeke (2009) gave some general regularity conditions to show that
Wilks theorem holds for non-smooth functionals, but did not provide the asymptotic limit of the
maximum empirical likelihood estimator. Here we prove our results by combining expansions
in empirical processes and empirical likelihood method, which results in the following regularity

conditions:

e C2.1) 9 is a strictly convex function on [0, oo] with ¢/(0) = 0,¢(1) = 1,¢(c0) = oo, and

() has a continuous second derivative on (0, co) with |¢)'(0+)| < coand 0 < ¢"(0+) < oc;

e (C2.2) F'is continuous;

o C2.3) E{sup(y, syrea [ (5=5) " 1(X > 5)} < oo and E{supg, gyrea [¢/(5=5) | X
0,/ 1(X > 8)} < oo for some §; > 1,
sup, pyren J5° F2@){1 = F@{ [0/ (G5 + " (G + 0(Z2)I (55

(2 (2
FO(EL ) (2«

D=0, + (' (575)) [ — b
— Bz — 9|} dz < 0o

for some 0 € (0,1/2),

sup pyrea {57 0" (55 (@ — 0,2 dF(2)
+ugw"”fxw—exx—mdFun

5V L () (0 - 0,)° dF ()

H TG () @ — 0, (@ — B) dF ()|
+ J57 v @_>w% )0~ 0,2 @)
VL () (@ — 0) (@ — B) dF (v)]| |
< o0,

where () is an open set including (6o 4, 50)". Here (g4, 50)" is the solution to equations
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(2.1.1) and (2.1.2).

Theorem 2.2.1. Under conditions C2.1)-C2.3), we have

i)
BMEL _ 5
BNVl I "1 4 N, 2Tsrs))

QMEL -0
q 0,9

aq bl O'% 012

asn — oo, where X1 = and Yg = with
as by 012 03

Bo—
(9041 - 60)2

) dF(z),

> / 1‘_60 x_e()q o / .ZU—BO
= 2 dF b =
“ /50 v (Qo,q - 50) (6o.q — Bo)? @) b Bo v <90,q — o

g _ - Z x — Bo (x_QO,Q)Q
Az = 1/} (0+)(/30 00,(1) + 4 ¢ (007(1 N B{)) (007(] N 60)2 dF(ZE),
* =00 (Bo—z)(xr— 90,q) o
. {v (Ho,q _50) Gos — )2 (0 (90q 50)}dF( ),
and
2 B I(X > - (- )
90q /80
-~ X =050\ ., X=05
o123 = E{?ﬂ(equ — Bo)w (907(1 — ﬁo)(X —00,)1(X > Bo)},
X — Po

05 = B{(v (GOq ))*(X = 00,)"I(X > f)}-

Bo
ii) 1" (60,,) converges in distribution to a chi-squared limit with one degree of freedom as n — oo,
which ensures that the proposed empirical likelihood confidence interval below has an asymptoti-

cally correct level.

Remark 2.2.2. When ., has rank 2, then i) in Theorem 2.2.1 becomes

B —Bo e e
N 4 N0, 27 S0 (S7HT).
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In Figure 2.1 below, we plot the determinant of Y1 for the uniform distribution and Pareto distribu-

tions used in the simulation study, which are positive, i.e., Y1 has rank 2.

Uniform Pareto: sigma=1, gamma=5 Pareto: sigma=1, gamma=10

06

000 005 010 015 020 025 030 035

Figure 2.1: Determinant of >J; in Theorem 2.2.1

Remark 2.2.3. Note that we do not assume )'(0+) = 0. Instead we assume F is continuous to
ensure (2.2.5) holds. So conditions C2.1) and C2.2) appear in Tang and Yang (2014). The first
two inequalities with respect to 61 in C2.3) ensure Lemmas 2.4.2 and 2.4.3, which are standard for
an empirical likelihood method. The other two inequalities in C2.3) are similar to the bounded
conditions for partial derivatives with respect to parameters in Qin and Lawless (1994), which
are employed in the proof of Lemma 2.4.1. We employ these different conditions due to non-

differentiability. All conditions C2.1)—-C2.3) can be checked straightforward.

Based on the above theorem, a confidence interval for 6, , with level £ is obtained as

]éEL ={0,: lp<9q> < X%,£}7

where X%,é denotes the £ —th quantile of a chi-squared distribution with one degree of freedom.
We remark that the above regularity conditions are different from those in Ahn and Shyamalku-

mar (2014). A theoretical comparison for these two estimators is hard due to their complicated

asymptotic variances. Instead a simulation comparison is given in Section 2.3, which shows that

the new method has some advantages. Moreover, if one is interested in a confidence region for
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risk measures 6 -, 0, at several different levels g1, go, - - - , g, the above empirical likelihood

g

method can easily be extended by considering corresponding 2m equations. We skip details.

2.3 Simulation Study

In this section, we examine the finite sample behavior of the proposed maximum empirical likelihood
estimator and the empirical likelihood based confidence interval, and compare them with the
nonparametric estimator in Ahn and Shyamalkumar (2014) in terms of mean squared errors and
coverage accuracy. First we compare the finite sample behavior of these two estimators éé” EL
s

and in terms of mean squared errors and biases. For computing these quantities, we employ

Y(x) = ””22”1(1’ > 0) and draw 10, 000 random samples with sample size n = 500 and 2, 000 from

one of the following two distributions

0 ifx<0
0 ifz <0
Fi(z) = r if0<axz<1 and Fy(z;v,0) =
1—(1+o0z) ifz>0,
1 ifz>1

where o > 0 and v > 4. For these two distributions, an explicit formula for 6, is available in Ahn
and Shyamalkumar (2014). It is easy to check that conditions C2.1-C2.3) in Theorem 2.2.1 are
satisfied. For example, one can choose any d; > 1 and &, € (0, 3) in C2.3) for distribution F (x),
and choose any 1 < §; < 2+ and % < 0 < % in C2.3) for distribution F5(z;~,0) when € is
chosen small enough. In Table 2.1 we report the bias, standard deviation and square root of mean
squared error for these two estimators at different levels ¢ = 0.9,0.95,0.99. We also report the
number of times when the minimization fails to give a solution. From Table 2.1, we observe that 1)
éé‘/[ EL has a smaller mean squared error than égxs for distribution ) (x) except the case n = 500 and
q = 0.99, where éqAS can not be calculated for 517 out of 10, 000 times; ii) HA;I“S has a smaller mean
squared error than éé” EL for distribution Fy(z;1,15), but sometimes has a larger mean squared
error for distribution Fy(z; 1,5); iii) GA;;‘S has a computational issue especially when ¢ = 0.99, i.e.,

minimization fails sometimes.

22



Next we compare the proposed empirical likelihood based confidence interval with the normal
approximation method based on ég‘s in terms of coverage probability by drawing 1,000 random
samples with sample size n = 500 and 2,000. We employ the same Young function () and
distribution functions Fj(z) and Fy(z;~,0) as above. For computing the empirical coverage
probability of the proposed empirical likelihood method, we first use the R package ‘emplik’
to compute [( 4, 3) for each (3, and then use the R package ‘nlm’ to minimize /(6 ,, 5) over
B < B4 s0 as to get I (). For comparison with the interval, denoted by I 5‘45 , obtained from the
nonparametric estimator é{;S , we employ the naive bootstrap method by drawing 1, 000 resamples
from the original sample to construct the bootstrap confidence interval. We also compute the
bootstrap calibrated empirical likelihood based confidence interval, denoted by [ fEL, by drawing
1, 000 resamples from the original sample and using these 1, 000 bootstrapped versions of /¥’ (éé‘” EL)
to obtain the critical value; see Owen (2001) for details on calibration for empirical likelihood
methods. We report the empirical coverage probabilities for these three intervals with levels
¢ = 0.9 and 0.95 for different ¢ = 0.9,0.95,0.99 in Table 2.2, which show that i) the proposed
empirical likelihood method performs better than the normal approximation method based on éqAS
in most cases; ii) the proposed bootstrap calibrated empirical likelihood method gives most accurate
coverage probability; ii1) coverage accuracy for these three intervals improves when either the
sample size increases or 7 in the distribution Fy(x; 0, ) increases, i.e., tail becomes lighter.

In summary, the proposed maximum empirical likelihood estimator 6351‘4 EL and empirical likeli-
hood based confidence interval 7, fL perform well in comparison with the corresponding methods
43

based on the nonparametric estimator in Ahn and Shyamalkumar (2014) in terms of mean

squared error, coverage probability and computational difficulty.

2.4 Proofs

Throughout we define the empirical distribution as F,,(z) = 1> I(X; < z) and empirical

T on

process as «,(z) = v/n{F,(xz) — F(z)}. Then by the classical theory in empirical processes and
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Skorohod construction, we have

a.s. ‘Oén(.flﬁ)‘ _
_Oosilygoomn(x) — B(z)] = 0 and _o:ll;;)@o @)1 —F)) 0,(1) (2.4.1)

for any v € (0, %), where B(x) is a Gaussian process with zero mean and covariance
E{B(z1)B(x2)} = F(x1 N x3) — F(x1)F(22);

see Shorack and Wellner (1986).

Lemma 2.4.1. Under conditions of Theorem 2.2.1, when |3 — Bo| + [0, — 604l = An 2 0 as

n — 0o, we have

i W(GENI(X > B) — 1+
= [{F() — Fu(@) (720 gty da
+(8 = Bo) S ' () e AP ()
6y~ 000) [y V' (G5 g AF (2) + 0y + Au),

LY GED) (X - 0)1(X; > B)
= §/(0+)(Bo — bog) {F(Bo) — Falfo)}
+ [ {F(2) = Fo(o) o (722 ) =t + @b’(@j;fgo)} dx
+(5 = B {0 (04)(Bo — bog) + [ 0" (GE250) s dF ()
— o) [ {0 (20 Cpalliace) (2B} AF () + 0= + A,),

LY RSN > B) — [0 dF (@)
= 2 [ {F (@) - Fula) (2w () s da
(8 — o) [ 20 ) () i, dF (a)

0, — o) [ 20 (B! (2t B (2) + 0,( e + A,
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LY W GED PG = 021X > B) — [o v (7225 Y2z — 0o,)? dF (2)

= {F(B) - n(ﬁo)}{w (04+)}*(Bo — bo,q)°
+2 [P (2) = Fu(w) Ho (G20 (220 ) S+ () (225))(w — o)} do
+(8 = Bo){— (W (04))2(Bo — 0.0)® + 2 [ v/ (200 0" (2 ) (o=l } ()

+(9q — 907(1) fﬂ?{Qw’(eiq—_ﬁgo)w//<0§q—_ﬁ%o)(50(9090)(1(36506’0 )2 + 2(¢’(0§q_5%0)) ((90711 — x)} dF(.’E)

+Op(\/%7 + An)

and

IV GEDY (GED (X = 0)1(Xs > ) — [ (52500 (525 ) (@ — bo,) dF (@)
= Jo {F(2) = Fa(@) {0 (GE250) 2t + (20 )0 (50 ) s
b (2280 (28} d
+(8 = Bo) [ (0 (220> ok 4 p(Bo y () L=ty 4 ()
(0, = o) [ {00 G280 PEG i + G2 G2 P

~ (B (G 250) Y AF () + 0p(J + Au).

00,q—Po 60,4—Po

Proof. Tt follows from the Taylor expansion that

i V(5 )(X >p)—1+q
- fﬁ —ﬁ fﬁo efqﬂoﬁo dF (z)
= _fg 9 ( ) — }+f5 9 ﬁ fg 9:[15,%0 dF ()

= Jy {F(2) - <>}w< 8 ) o dx + (B — o) fﬁl x_ﬁl)(ef_gi)QdF(x)
(9 90!1 fg ((;El %11) Gflﬁf dF( )

= [p{F(2) = Fy(2) )’ <9:q ) g A+ (B — Bo){ Fu(B2) — F(B2) 14 (04) 525
+<6—6o S AF (@) = Fu(o) M (G222 o= + V' (22 g } do
+(0y — b0,) [, {F (@) = Fu(2) He" (52 %Q(,,f?—;g)w(;g o) Lot de
+(B = Bo) [ V' (G5 piy AF (2) + (0 — bo) [5 V' (525 G se dF (@)
= L+ + I,
(2.4.2)
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where (01, 81)" = M (6, 8)" + (1= A1) (B4, Bo)" and (62, B2)T = Ao (6, B)T + (1= X2) (604, Bo)T
for some Ay, Ay € [0, 1]. It follows from (2.4.1) that

1 1
By (2.4.1) and condition C2.3), we have
L= Oy~ A = 0)(—— + Ay) and I = Op(—=A) = 0)(—— + A,).  (2.4.4)
3—p\/ﬁn—0p\/ﬁ n an 4_p\/ﬁn_0p\/ﬁ n)- 4.

Note that the condition E{sup,, s recq |¢’(§i:g)|251 | X — 0,/ I(X > B)} < oo for some 6; > 1

in condition C2.3) implies that

Sup o, pyren [ [V (222)] dF (x) < oo

Supg,,8 eﬂfﬁ [ (5=5)|wdF(z)} < o0

TI»Q

(2.4.5)

by noting that [¢)(0+)| < oo. Similarly, the condition sup(g, grcq fﬂ w” )(x 6,)? dF(z) <

oo in C2.3) implies that

SUP(g,,8)Teq fg w” —2)a? dF (z) < o0
sup(, srea f5 V(5w dF(z) < oo (2.4.6)
SUP(g,,8)Teq fﬁ w” )dF( ) < oo.

Hence it follows from (2.4.5), (2.4.6) and the Taylor expansion that

= (8 —bo) fﬁo W' 9:(1 6%0) ejqf?égp dF(z) +OP(A721)

Is = (04— bo,) fﬂo Hf,q*ﬁ%o) (00’55:50)2 dF (z) + OP(A?L)

(2.4.7)

Therefore, the first equation in Lemma 2.4.1 follows from (2.4.2), (2.4.3), (2.4.4) and (2.4.7). The

rest can be shown similarly. 1
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Lemma 2.4.2. Under conditions of Theorem 2.2.1, we have

% S Vilfos o) 5 N (0, %)
1=1

and

1 n
- Z i(6o.g 50) Y (80,4, Bo) = o,
i=1
where X, given in Theorem 2.2.1, is positive definite.

Proof. We only need to show that Xy is positive definite since the rest directly follows from the
central limit theorem and the weak law of large numbers, or by using Lemma 2.4.1 and (2.4.1).
Hence, we need to show that Var <(a, b)Y (604, ﬁo)> > 0 for any a? + b? # 0.

If (a,b)Y;(6o,4, Bo) is degenerate, then

— o
90 ,q 60

— b

77/}( 00 ,q /80

)+ by’ ( )@ —0oy) =c (2.4.8)

for some constant ¢ and all x > ;. Obviously, when b = 0, (2.4.8) can not be true since 1 is a

strictly convex function. By assuming b # 0, it follows from (2.4.8) that

/ m_BO 1 " m_BO x_QOq 60
b ’ b =
Vot et G ) =
for all x > [, i.e.,
Bo v a 1
tos¥' Gy =3 = oy, Vi, T
1.e.,
— Bo a
log ¢ (90 60) (m 1)log |z — 6o 4| + c1

for some constant ¢; and all x > (3, which is impossible since the left hand side is an increasing

function of z, but the right hand side is not. Hence (2.4.8) can not be true, i.e., Y. is positive definite.
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Lemma 2.4.3. Under conditions of Theorem 2.2.1, we have

1
sup sup |[|Y;(0, B)[| = op(n?7)
1<i<n (9,8)T€Q

for some vy € (1,0,), where || - || denotes Ly norm.

Proof. Note that

(X, > B) > ™)

P(Sup1<z<n Sup Teq ¢(

< ZzlP(sumeeQw( ' ) (X>5)>n2”)
< SELEsupg g req (Xl ”B) (X1 >8)
— 0.
Similarly
Plaw s 10 P OIX, > ) 2 n%) 0

Hence, the lemma follows. I

Proof of Theorem 2.2.1. 1) Like the proof of Owen (1990), it follows from Lemmas 2.4.1-2.4.3 and

C2.3) that
A= 5 S Vil Y0 8} D Vil (1 + (1),
and further
[(0,,8) =2 2@21 )‘TY;(eqa B) — Z?:1 >‘TYi<‘9q7 B)Y;T(Qq, B)A + 0,(1)
= {% Zz 1 1<0q75)}T{7—11 Z?:l Yi(eqvﬁ)y; ( B)}~ 1{\f Zz 1 Y3 (0 qvﬁ)} +Op(1)
S Vi BT T Yi0 )} + 0p(1).

(2.4.9)
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Putv/\/n = (8 — B, 0, — 90’q>T. Then it follows from (2.4.9) and Lemmas 2.4.1-2.4.2 that
1 — o1&
1(8,,8) = {% ; Yi(0o,q. Bo) + v} g 1{% ; Y (60,4, Bo) + Z1v} + 0,(1),
which is minimized at
1 n
STyl = —Efzalﬁ Z Yi(0o.4, Bo) + 0p(1),
i=1

i.e., 1) holds.

ii) Put v, /y/n = 8 — By and a = (ay,az)’. As above, we can show that
1 < 1 <
1(0.4: o) = {% ; Yi(0o.q, 50)}T261{% ; Yi(0o.g, B0)} + 0p(1)
and
00 9) = {7 D2 Vil i)+ 0} 5 3 Vit )+ v + a1

Hence
[(0o.q, B) — U(0,q: o)
= va" Sy = 20 Yillog, Bo)} + {gs 2oy Yil0o.g, Bo)} Eg H{va}
+vaTs; {va) + oy(1),

which is minimized at

L —G,Tzal\/Lﬁ 2 i1 Yi(fo g, fo) +0,(1)

29



1.e.,

aTSg L S0 Yi(00,4,60)}aT S5 { = S0, Yi(00,q,8
17(80) = U o) — "o Tl R [ B M) g )

n —1/2«—1/2 n
n —1 2271/2(1(171271/2 —1/2 n
~{ s i Yilbo, B0)Y S0 P P e — 20 s L, Yo, o)} + 0p(1)
(LS Vil o) TS P f — B Py 12 L S g )
= Uyn 2ui=1 Yillog, Po 0 2x2 aTSoa 0 Vn £ui=1 11\Y0,q5 K0

+o,(1),

where 5,2 denotes the 2 by 2 identity matrix. Since /5.9 — 0 — is symmetric, idempotent

and its trace equals to one, ii) follows from Lemma 2.4.2. 1

2.5 Conclusions

By writing the Haezendonck-Goovaerts risk measure as a solution to two estimating equations, we
study the maximum empirical likelihood estimator and the empirical likelihood based confidence
interval for this risk measure. Due to non-differentiability, conditions and theorems in Qin and
Lawless (1994) can not be applied. Instead results are derived by combining techniques in empirical
processes and empirical likelihood method, which results in some different regularity conditions
from those in Ahn and Shyamalkumar (2014). The imposed regularity conditions are straightforward
to check such as uniform distribution, Pareto distribution and exponential distribution. Comparison
with the nonparametric estimator in Ahn and Shyamalkumar (2014) shows that the proposed
empirical likelihood inference has good finite sample performance. Moreover, the new method
is easy to implement by using existing R packages ‘emplik’ and ‘nlm’, and to extend to a joint

inference for several levels (qq, - - - , ¢,) by using 2m estimating equations.
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Table 2.2: Coverage accuracy. We report coverage probabilities for intervals I, IP#" and I2®
with levels £ = 0.9 and 0.95 for different ¢ = 0.9, 0.95, 0.99 and sample size n = 500 and 2, 000.

CDF (n,q) Iy Ige"  Ig5 I Iggs  Iglss
I210) (500,0.9) 0.901 0.890 0.883 0.951 0.949 0.930
Fi()  (500,0.95) 0.904 0.897 0.852 0.950 0.948 0.902
Fi()  (500,0.99) 0.846 0933 0.809 0.883 0.959 0.825
Fi()  (2000,0.9) 0.892 0.890 0.887 0951 0.944 0.929
Fi()  (2000,0.95) 0.907 00901 0.888 0.946 0.943 0.933
Fi()  (2000,0.99) 0.916 0.890 0.861 0.954 0.940 0.904
F(51,5)  (500,0.9) 0.780 0.842 0.793 0.861 0.903 0.840
Fy(51,5)  (500,0.95) 0.753 0.816 0.751 0.838 0.890 0.812
Fy(-1,5)  (500,0.99) 0.557 0.781 0.634 0.606 0.825 0.704
F»(51,5)  (2000,0.9) 0.831 0.871 0.837 0905 0.923 0.896
Fy(-1,5)  (2000,0.95) 0.825 0.868 0.818 0.895 0914 0.875
Fy(-1,5)  (2000,0.99) 0.765 0.833 0.771 0.838 0.908 0.861
F(51,15)  (500,0.9) 0.868 0.879 0.845 0929 0.940 0912
Fy(-1,15)  (500,0.95) 0.864 0.883 0.813 0912 0.929 0.883
Fy(-1,15)  (500,0.99) 0.642 0.818 0.703 0.691 0.898 0.757
F(51,15)  (2000,0.9) 0.873 0.887 0.865 0929 0937 0.929
Fy(-;1,15)  (2000,0.95) 0.872 0.886 0.864 0.936 0.942 0917
Fy(-;1,15)  (2000,0.99) 0.866 0.894 0.824 0917 0.940 0.878
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CHAPTER 3
INFERENCE FOR THE INTERMEDIATE HAEZENDONCK-GOOVAERTS RISK
MEASURE

Nonparametric inference of the Haezendonck-Goovaerts (H-G) risk measure has been studied by
Ahn and Shyamalkumar (2014) and Peng, Wang, and Zheng (2015) when the risk measure is defined
at a fixed level. In risk management, the level is usually set to be quite near one by regulators.
Therefore, especially when the sample size is not large enough, it is useful to treat the level as a
function of the sample size, which diverges to one as the sample size goes to infinity. In this chapter,
we extend the results in Peng, Wang, and Zheng (2015) from a fixed level to an intermediate level.
Although the proposed maximum empirical likelihood estimator for the H-G risk measure has a
different limit for a fixed level and an intermediate level, the proposed empirical likelihood method
indeed gives a unified interval estimation for both cases. A simulation study is conducted to examine
the finite sample performance of the proposed method. The content of this chapter is based on the
joint work:

X. Wang and L. Peng (2016). Inference for intermediate Haezendonck-Goovaerts risk measure.

Insurance: Mathematics and Economics 68, 231-240.

3.1 Motivation and Introduction

Let X denote a loss variable with distribution F'. Then the g-th quantile of F' is defined as
F*<(q) = inf{z|F(z) > q}, which is also called Value-at-Risk (VaR) in risk management. A
simple nonparametric estimator for a quantile is the so-called empirical quantile. However, in risk
management, the level q is usually set to be quite near one by regulators. Therefore, when ¢ is close
to one and n is not large enough, it may be useful to model 1 — ¢ as a function of n, which goes
to zero as n turns to infinity, so as to improve the quantile estimation. Here we have to consider

two situations separately: intermediate quantile (i.e., ¢ = ¢, — 1 and n(1 — ¢,,) — 00 as n — )
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and extreme quantile (i.e., ¢ = ¢, — 1 and n(1 — ¢,) — ¢ > 0 as n — oo). For an extreme
quantile, it usually involves extrapolation of data, say assuming the underlying distribution is in the
domain of attraction of an extreme value distribution; see De Haan and Ferreira (2007) . We refer to
Matthys et al. (2004) and Vandewalle and Beirlant (2006) for applications to actuarial science. For
an intermediate quantile, the empirical quantile is still consistent, but has a different asymptotic
limit from the case of a fixed quantile. This complicates interval estimation since distinguishing a
fixed level and an intermediate level is practically impossible. Therefore finding a unified inference
is of importance. It is also known that a bootstrap method and the delete-1 jackknife method do not
lead to a consistent interval estimation for empirical quantiles; see Shao and Tu (2012).

Recently Li, Gong, and Peng (2010) showed that the empirical likelihood method gives a unified
interval estimation for quantiles at a fixed level and an intermediate level. As quantile is one of many
commonly employed risk measures in insurance and finance, one may wonder whether empirical
likelihood inference can unify other risk measures at a fixed level and an intermediate level. In
this chapter, we investigate this possibility for the so-called Haezendonck-Goovaerts (H-G) risk
measure, which has been studied a lot in the literature of actuarial science recently.

Let ¢ : [0, 00| — [0, 00] be a convex function satisfying 1(0) = 0,1 (1) = 1 and ¥(o0) = oo,
i.e., ¢ is a normalized Young function. For a number ¢ € (0,1) and each 5 > 0, let « = «(5) be a

solution to

(X —hB)+

«

E{y( )p=1-g¢ (3.1.1)

where x; = max(z,0). Then, the H-G risk measure with level ¢ is defined as

6=t {5+a(8)}, (3.1.2)

see Haezendonck and Goovaerts (1982) for details.
Recently properties and applications to reinsurance and risk management of the H-G risk
measure have been studied in the literature of actuarial science; see Bellini and Gianin (2008a);

Bellini and Gianin (2008b); Bellini and Gianin (2012) , Cheung and Lo (2013) , Goovaerts et
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al. (2004), Goovaerts et al. (2012) and Zhu, Zhang, and Zhang (2013). For nonparametric inference,
we refer to Ahn and Shyamalkumar (2014) and Peng, Wang, and Zheng (2015). All these papers
consider a fixed level ¢. When ¢ = ¢, — 1 as n — oo, Tang and Yang (2012); Tang and
Yang (2014) derived asymptotic approximations for the H-G risk measure by assuming that the
underlying distribution belongs to the domain of attraction of an extreme value distribution, and a
second order approximation is derived in Mao and Hu (2012). However, nonparametric estimation
for the H-G risk measure with either an intermediate level or an extreme level remains unknown in
the literature. For the extreme quantile, it seems that approximations in Tang and Yang (2012); Tang
and Yang (2014) can be employed to derive an estimator for the H-G risk measure by combining
them with extreme value statistics, and results in Mao and Hu (2012) are useful in deriving the
asymptotic limit of the proposed estimator. In this chapter we mainly concern with an intermediate
level, that is, one expects nonparametric estimators for a fixed level are still valid, but the asymptotic
limit for a fixed level and an intermediate level will be quite different. For the purpose of giving a
unified inference, we will investigate the possibility of extending the empirical likelihood inference
for the H-G risk measure at a fixed level in Peng, Wang, and Zheng (2015) to an intermediate level.

We organize this chapter as follows. Section 3.2 presents the empirical likelihood method and
asymptotic results. A simulation study and data analysis are given in Section 3.3. All proofs are put

in Section 3.4. Some conclusions are summarized in Section 3.5.

3.2 Nonparametric Maximum Empirical Likelihood Estimation for Intermediate Quantile

Level

Throughout suppose X, X1, ..., X, are independent and identically distributed random variables
with distribution function F(z). Notations %, -%, 0p(1), Op(1) and I(-) denote convergence in
probability, convergence in distribution, small order in probability, bounded in probability and

indicator function, respectively.
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Since the H-G risk measure is equivalent to solving the following estimating equations

E{p(X=)I(X, > )} = 1— g,

E{y/ (52 (X — 0)I(X; > B)} =0

(3.2.1)

for some $ and # > (3 under some conditions (see Tang and Yang (2014)), Peng, Wang, and
Zheng (2015) proposed to employ the empirical likelihood inference in Qin and Lawless (1994) to
the above estimating equations, derived the asymptotic limit of the maximum empirical likelihood
estimator and proved that Wilk’s theorem holds for the empirical likelihood method. Note that
results in Qin and Lawless (1994) are not applicable due to the non-differentiable issue caused by
the involved indicator function. We refer to Owen (2001) for an overview on empirical likelihood
methods.

In this chapter, we extend the results in Peng, Wang, and Zheng (2015) to the case of intermediate
quantile, i.e., the case of ¢, — 1 and n(1 — ¢,) — oo as n — oo. As in Peng, Wang, and

Zheng (2015), we put

XG> 8) =1+ a0, (50

)(Xs =) (X, > 5)>T

fori =1,--- ,n, and define the empirical likelihood function for (6, ) as

=1 =1 i=1
By the Lagrange multiplier technique, we have
(0, 8) := —2log L,(6,8) = 2> log(1 + ATY;,:(6, 3)), (3.2.2)

i=1

where A\, = A, (0, 3) satisfies

S V0.8
2T (3.23)
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Therefore the maximum empirical likelihood estimator for (6, 3) is defined as

(01", 1) = arg in (0, 9).

It is known that the asymptotic limit of empirical quantile for an intermediate quantile requires
some restrictions on the tail behavior of the underlying distribution (see Drees and Haan (1999)).
Hence the study of intermediate H-G risk measure needs some conditions on the tail behavior of
F' too. Here we focus on the case of heavy-tailed distribution and normalized Young function for
. Throughout let (3,0, 0,0) denote the true values of (3, §) determined by (3.1.1) and (3.1.2) with

4 = Gn, and assume the following conditions hold.

e C3.1)(t) = t* for some k > 1. Hence 1 is a normalized Young function.

e (C3.2) limy o % = v for some v > 2k, where k£ is given in C3.1), which implies that

limy oo 11:F—F((tf)) = a7 forx > 0.

e C3.3) Asn — o0, ¢, — land \/n(1 — ¢,)/F* (¢,) — oo, which imply n(1 — ¢,) — oc.

Theorem 3.2.1. Under conditions C3.1)-C3.3), we have

=g [ A5
% B g N0, 571 So(EH)T),
Gn Q%EL — 0,0
a; by 07 12
asn — oo, where 31 = and ¥ = with
as by 012 U%




C1 — Co (61 — 62)2 C1 — Co

e —1/y _ — =Y (1Y —1/y _
bfi/ i — (=l D@ T ) @ T Gy gy,
0
C1 — Co

-
Cy -1/y _
X Co
ﬁ=/ﬁ<————w%m,
0

Cy -1/ _
o3 = / 14:2(—:17 02)2’“_2@_1/7 —c1)?dz,
0 C1 — Co

N VA —1/y _
012 :/ (x SR CQ)kil(iflM —a)dz,
0

C1 — Cy C1 — Co
Yy — k)0
v =il k) = A (Bl — k)

(v = k)"
ca = (7, k) = W(B(V — k, k)7,

and B(a,b) = fol 22711 — 2)" L du.

By comparing the above limit with the asymptotic limit in Peng, Wang, and Zheng (2015) for
a fixed level ¢, the maximum empirical likelihood estimator for the H-G risk measure is always
consistent, but has a different limit for a fixed level and an intermediate level. However, for interval
estimation, the following theorem shows that the proposed empirical likelihood method provides a
unified interval estimation for a fixed level and an intermediate level by combining it with the result

in Peng, Wang, and Zheng (2015) for a fixed level.

Theorem 3.2.2. Under conditions C3.1)-C3.3), I¥(0,0) = mingq,, 1,(3, Ono) converges in distri-
bution to a chi-squared limit with one degree of freedom as n — oo, which ensures that the empirical
likelihood confidence interval ™" (o) = {6 : IV (0) < X3 .} has an asymptotically correct level o,

where X%,a denotes the ath quantile of a chi-squared limit with one degree of freedom.

3.3 Simulation Study and Data Analysis

3.3.1 Simulation Study

In this subsection we examine the finite sample performance of the proposed empirical likelihood

inference in terms of mean and standard deviation for the point estimation and coverage probability
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for the interval estimation.

We draw 10, 000 random samples with sample size n = 200 and n = 2000 from the Pareto
distribution function F'(x) = 1 — 277 for z > 1 with v = 3 and v = 5, the t-distribution with
degrees of freedom v = 3 and v = 5, and the standard exponential distribution. We take ¢ (z) = z'!

and choose ¢, to satisfy

e~ =
oo | —

In Tables 3.1-3.3 below we report the true values (6,0, 5,0), the means and standard deviations of
é’fLWEL BzLWEL

( 971,0 ! BnO

), and the coverage probabilities for 77%(0.9) and 1¥%(0.95). The case of d = 2 gives
a level ¢ a bit away from one, which may be treated as a fixed level given the considered sample size
n. As shown in Tables 3.1 and 3.2, the maximum empirical likelihood estimator is consistent, and
the empirical likelihood inference gives a unified interval estimation. For the small d = %, coverage
accuracy improves as the sample size becomes larger. Although we focus on developing our method
for the case of heavy-tailed distributions, Table 3.3 does indicate the method may work for light
tailed distributions too. A future project is to prove the conjecture that the proposed empirical
likelihood method is indeed valid for any distribution in the domain of attraction of an extreme
value distribution.

In conclusion, the simulation results do show that the proposed empirical likelihood method

provides a unified inference for the H-G risk measure at both a fixed level and an intermediate level.

3.3.2 Data Analysis

Typically utilization of nursing home care is measured in patient days, called TPY. The nursing
home data analyzed in Frees (2009) reports TPY for 362 facilities in year 2000 and 355 facilities in
year 2001, which gives a total n = 717 observations, say X1, --- , X,,; see Figure 3.1 below. This
data set is available at:

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/
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To estimate ~y in Condition C3.2), we compute the Hill’s estimator

X 1 & _
V(m) = {E Z 1Og Xn,n—i-l—l - 1Og Xn,n—m} !

=1

for m = 10,11, ---,200 in Figure 3.1, where X,,; < --- < X, ,, denote the order statistics of
Xy, ,X,. From Figure 3.1 we conclude that v in Condition C3.2) is larger than 3 and the method
is applicable with £ = 1.1 in Condition C3.1).

Since solving the equation \/n(1 — ¢,)/F (g,) = n? for ¢, = 0.7,0.9,0.95,0.99 gives
negative values of d, where F;, is the empirical distribution of /' defined in the beginning of Section
3.4 below, Condition C3.3) can not be satisfied for these levels ¢,,. Here we study the H-G risk at
the above levels for the transformed data Y; = X;/100. It is easy to see that the H-G risk for X;’s
is 100 times the H-G risk for Y;’s. Table 3.4 below reports the values of d, fMEL GMEL and the
empirical VaR at level g,,, which shows that H-G risk é}f EL at level g, is significantly larger than its
corresponding VaR F< (gq,).

For constructing the empirical likelihood confidence regions for the H-G risk measure at g,
we plot the profile empirical likelihood ratio function 12 (662EL) for different &; See Figure 3.2.
Confidence regions at level 90% and 95% can be obtained from those values below the two straight
lines in Figure 3.2, respectively. Figure 3.2 also shows that the plot becomes bumpier for some

values of > 1 as g, is larger, which may be explained by the fact that the estimator for the H-G

risk at a large ¢, has a big variance.

3.4 Proofs

Throughout we define F,(z) = £ >>" | I(X; < z), and put

anlt) = V(- S IF(X) < 1) = 1} = VA F(F(0) — )
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and wy,(t) = (1 — ¢,) %, (1 — t(1 — g,)). Although Theorem 2.1 of Einmahl (1992) studied
the intermediate left tail process (1 — ¢,)~"/2a,(t(1 — ¢,)), it holds for the intermediate right tail
process wy (t) too. That is, there exists a sequence of standard Wiener processes {IW,,(¢)} such that
forany n € [0,1/2) and M > 0

[wa(t) = Wa(t)| »

sup — 0 as n — oo. (3.4.1)
0<t<M 14

We also have

wp BFE@) 1

20 when a, — 0 and na, — oo. (3.4.2)
an<t<l—an t(l - t)

Moreover, under conditions C3.1)—C3.3), it follows from Theorem 4.1 of Tang and Yang (2012)
that

lim Ono__ _ 1 and lim Bro

- —— =1
n—00 ch“(qn) n—+00 CQFH(qn)

, (3.4.3)

where ¢; and ¢, are given in Theorem 3.2.1.

Before proving our theorems, we need some lemmas.

Lemma 3.4.1. Under conditions of Theorem 3.2.1, when |3 /B0 — 1| 4+ 10/0,0 — 1| = A, 2 0as

n — 00, we have

IZZ 1¢(9 )(X>B)_]—+Qn

N —1/% — o \
= —(1+4o0,(1))n V2(1 — g,)1/2 f 011_02 2 )k 161102 wil/v du e
n = Yv_¢ 1V _¢ ST
+(1 * Op(An)) = q (/B ﬁn()) ( c1—cz 2)k ' (01—02)21 dx
"—(1 + OP(An)) 1- Qn (8 9710) 2! k( 011/10—262>k—1 c(gczf;:)/; dz,
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Pl V(G (X -
1 —

= (14 o ()

X{kQ(afl/‘Y—cg )k—l _

c1—C2

H(1+ Op(A0))(1 =

+(1+ 0p(An)) (1 —
— k(e )k 1) dy,

c1—ca

ﬁZWj‘_‘ OVr(x > B) 5 /O ¥

i=1

0)I1(X; > f3)
6) 2F(g) [ Wi(a)

k@—lch;wkﬂwwmdx

- —1/ c _ xil/’y—c 2
,6 ﬁnO j‘ 5 ]{7 )( 01162 z)k 2 ( (01_62)3 dx
2= _eo\k—2 (ca—x™ /M) (&= —¢
)(@ — Qno) 0 {/{;( — 1)( cleQ 2>k 2 (c2 (613(62)2 1)

t_l/’y — Co

; ) dt

C1 — Co

(]- QTL

7 L (G )P (X = 0 1(X; > B)

f62 {wl( 011/70262)}2( —r - 01)2 dtv

1

ST Fa i YW (G (X = 0)I(X; > )
1/}( 611/162cz>¢l( 611/162122)(75 1/’Y_Cl>dt

B fe
0

E{y(5=7
E{jy' (52

and

forany d € [1,7v/k).

Xi—

(X > B)} =01~ q,)
DN = 011X > B)} = O((1 = ¢a) (F (ga))")
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(3.4.6)

(3.4.7)

(3.4.8)
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Proof. By the mean value theorem, we can write

121 1¢(9 ,8) (X >B)_1+Qn

= J5 v(E5) fﬁno Tois) dF (2)
=[5 v(5 d{F( ) = F(a)} + [0 (575) dF fﬁno o) dF (x)
= — [5H{Fu(x) = F(2)} (522) 525 da + (8 — fno) fﬁl (222) 28 dF (x)
+(0 = 0n0) [ V(575 Grpye dF (x) (3.4.10)

= = [ {E@) - F@) W () gt de — [3 {1 - F(o) 3/ (525) 525 do
+(8 = Buo) Jir V(525 sty AF ()
+(0 = Ono) [y V' (525 e AF (@)

= L+ Iy + Is+ Iy,

where X, , = max(Xy,---,X,), 5 lies between [ and (3,0, and 6, lies between 6 and 6,,o. Define
f(z) = F'(z). It follows from (3.4.1), (3.4.3), Condition C3.2) and Potter’s bound for regular

variations (see Bingham, Goldie, and Teugels (1987) ) that

O (P (1 — ) — 1 g (EUS) L L g,

1-F(Xn,n)
p—— F(1—t(1—gn))—
B f—IIFl("? (L =1 = g))d'( e FE= gy (L~ dn) dt
1= FXn.m)
= [y AL = ) A(Wa(t) + op(tm))y! (FO-MZad)=8) 1
1—gn

F(1-t(1=gn)) B
e (1(t(1 )qn)) (F<—(1—t(1—qn)))<1 qn) dt

—Lﬁ# nY2(1 = gu)VA(Wa(t) + 0, (7))o (FU el =Ry 21 o

F<(1—t(1—gqn))
7{1—F(F<—(1—t(({_qn)))} (14 0(1))(1 — gn) dt
1— F(Xn n)

= Jirl’ nTY2(1 = qa) V(W (£) + 0, (7)) (g8 oL

F(qn)t— 1/
%(1%(1))(1—%) dt

=(1+ Op(l))nil/z(l - Qn)1/2 fcgw Wn(t)k?(t_l/W762)k R dt

c1—co (C1 62) 'ytl""l/'V

= —(1+ op(l))n_l/2(1 — g1/ focz_7 Wn(t)k(t’l/“y—cz)k 11 dt

c1—C2 c1—C2 7t1+1/’Y

(3.4.11)
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by noting that 1 — F'(X,,,) = O,(1/n) which implies that

1 - F(X,n) 1
—————= =0,(———) = 0,(1). 3.4.12
1 — In p(n(l o qn)) Op( ) ( )
By Potter’s bound, (3.4.12) and Condition C3.3), we have for any 0 < € < % — %

_ L-F(F~(gn)t) n)t B)\ F~(qn)
I = = [Fun ptreioy (1= @)V (25 g dt

== [ a1 = qu)R(Z72) M L (L 0(1)) dt

Kotk

L= F(Xn.n)
T )Y
Fe(1-(1-gn))

ox(

O
JOp((5) )
O

1

F(1-(1=gn)

(3.4.13)

1—gn

(1=F(B1))/(1—gqn) F<(1—y(1—qn Fe(1—y(1—qn))—0
Iy = (B = fo) fy T g (EUmploend) =By FEUulaD=0 () — g, ) dy

= (14 Op(A0)(B = Buo) s fi2 k(o)1 g

and
1-F(B8 1—qgn —(1_ —an)) =By (1 o
Lo = (0= o) J{ U0 gy (EUpis o (i (1 — g, dy
— (14 0y (A)(0 — o) pmtes [2 (e Leyiay Vg,

n) J0 (c1—c2)?

(3.4.15)

Hence (3.4.4) follows from (3.4.11) and (3.4.13)—(3.4.15).
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Using the same arguments as above, we can show that (3.4.5) holds by writing

Y (GED (X = 01X > B)
=[5 (G5 (@ = 0)d{Fu(x) — F(a)} + [7 ¢/ (575) (x — 0) dF (x)
= — [5{F(@) = F@)Hy" (55 > S+ U(525)) de
H(B = Buo) [ " (£22) S0 dF (x)
+(0 = Oo) [ {0 ( ;ifaﬂ%f S — () AP (x)

since

0= oow/(x_ﬁno

G = ﬁno)<x — Op0) dF (z).

By the mean value theorem again, we can write

LS DX > B) — [0 4 () dF (x)
= — [{H{Fu(x) = F(2)}20 (520 (55) 525 d
(B = Bno) [, 290G (25 =iy dF (@)
(0 — O0) [ 20 (200 (222 ) 2 ﬁ’fp dF(x)
= = [y {Fale) - (w)}zw(m> (“;—5>+ﬁ du
— [ {Fu(w) — F(2)}20 (52)0 (325) 75 da
— Jo 1= F@)}20(35)0/ (55) 545 da
+(B = Bo) [5 200G (575 ) gi=be dF ()
H(0 = Ono) [57 20 (52000 (35 ) (fse AF ()
= TN+ 11, + 115+ 11, + II;,

(3.4.16)

where §,, is chosen to satisfy n{1 — F'(6,,)} = (n(1 — ¢,))*/?>7*/7, which implies that §,, — oo and

1— F(Xp,) 1 D

o D,
1—F@,) O,( ie., = 0. (3.4.17)

b m) = 0y(1),

It follows from (3.4.2), (3.4.3), (3.4.17), Condition C3.2) with a,, = 1 — F(d,,) and Potter’s bound
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for regular variations that

1-F(n)

= flllF{é? {Fa(FT(1 = (1 =gu)t)) = (1 = (1 = gu)t)} %

qn

(- r(FC(A-(1-gn)t)=By_1 1—gn

21/11(%s | 2 )y'( 9 3 ) a=5 FE=a=tizgmm U
m v _e -1/7_¢

= fllﬁvéza) 0p(1)(1 — g )t2¢0(* 611022)@0’0 611622)61162 ,Yt1+1/v dt
= 0,(1)(1 — qn>op<f;2’” (¢717)2 dt)
= Op(l - qﬂ)?

D] <[5 {1 = Fu(@) + 1 = F(@)}20 (=5 (55) 725 da
<f;<"”{1— <5>+1— F (5, >}2< D (55) 725 de

-8
111(16”) —1/v_¢ “1/v_¢
= Op(l - F((Sn)) f#)?nn) Qw(t = 2>¢/(t = 2)Cli02 %erlm dt
1-r&h)
= O0y(1 = F(6,)) [ o, O((t7)*=1) dt
= Op(1 = F(8,))0p(*=15m0)~24/77)

= Op((1 = F(6n))(n(1 = gn))**/7%)
— Op(n_l(n(l _ qn>)1/2—k/«/+2k:/v+e)
= 0p<n_1n(1 - Qn))

= 017(1 - qn)

forany0<e<%—§,and

(3.4.18)

(3.4.19)

0 F(1—(1—qn F—(1-(1— —
= Jirot (1 — go)#20 (FU— 8 g (EUfnll B oL L

1—qn

1
= (1= @) Oy (fy ™ (= 1/7) 21117 )

= 0p(1 — qn).
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dt
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Like the proofs of (3.4.14) and (3.4.15), we have

11y =0,(1—¢q,), II; :op(l—qn)
z—Bn /7Y —e
1 dn fﬂno 1/}2 B . ) dF($) — ¢2( Cll Cc2 2) dt

nO ﬂnO

(3.4.21)

Hence (3.4.6) follows from (3.4.16)—(3.4.21). Similarly we can show (3.4.7) and (3.4.8). The proof

of (3.4.9) follows from the same arguments in proving (3.4.6) and (3.4.7). 1

Lemma 3.4.2. Put

g1(x) = k(o) g o

c1—C2 c1—C2 'yx1+1/W ?

ga(w) = (P22 )t — k(k — 1) ()2

c1—C2 'yx1+1/’7

Then we have

BT Walt)gn(t) dey* = [ (S5 di,
E{f (t t dt}2 fCQ 2 &)%72@71/7 _01)2 dt.
Wa(t)g

E{f Bg1(t) At} f;? g2(t) dt}

@_@m;ﬁfW—<””%%%ﬁ

c1—c2

Proof. Note that

Cy i Co\p
cmm:/ gi(tydt = (2

C1 — C2

and

Cy x—l/“f — ¢y —1/y _ o .
Gmw:/ golt) dt = k(1 — ex){( e Py,

C1 — Co C1 — Co
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Hence,

B{f5* g1 (t) dt)?
= & E{Wn@)Wn(s)}gl(t)gl(s)dtds
= J chv(t/\s)gl(t)gﬂs) dt ds
— 22 ([ gi(s) ds)tar(t) dt

= ;2 tdG3(t)

- f% G3(t) dt,

0

it

B / C Wat)ga(t) d)? = / G,

By (0 A} Jg? Wa()ga(t) di}
= — [ Gi(D)tdGa(t fO*CQ Go(t)tdG1(t)

0 ) —
— L h(ey — o) (22

—2Jo c1—cC2

+f02 tk‘ Cl )Qkk 1 d( _1/7—02)%—1

1 c1—cC2

1 e th(c; — ) d( 1/77c2)2k

—2Jo c1—c2

+f02 thcr — c9) g d(2=c2 )2k

c1—C2

= f k(e — e {(FRlme )% — (e,

c1—C2 c1—C2

i.e., the lemma holds. I

Lemma 3.4.3. Under conditions of Theorem 3.2.1, we have

1 <~ 4
n 2; Y0i(Ono, Bno) = N(0,20), (3.4.22)

_{Z Ynz n0» 6n0) ( n0» ﬁn())} & 20 (3423)

and

max HYm( 0, Bno) || = 0p(v/n), (3.4.24)

1<i<n
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where ?ni(en[)a BnO) = AnYni(enOa 6n0)7
(1—gq,)"1/? 0
A, = and ¥ is given in Theorem 3.2.1.
0 (1— Qn)il/Q/Fe(qﬂ)

Proof. Equations (3.4.22) and (3.4.23) follow from Lemmas 3.4.1 and 3.4.2 directly. For proving

(3.4.24), write ffm( 0, Bno) = (Ym LYo 2)T. Choose d = 2+ # and ) = d/sd_l. Then it follows
from (3.4.9) that

P(maxi<icn |Yaia| > n'2(n(1 = g.)) ™)

Sy P([Yasa| > n'2(n(1 = g,)) ™)

Sy 2 (n(1 = gy)) | Y]

= 72 (n(1 - ¢a))"(1 = ¢a)"*0(1 — qu)

O((n(1 — gn))'=4/2+0%)

= o))

IN

IA

i.e., max<j<p [YVnia| = 0,(v/n). Similarly we have max;<;<, |Yyia| = 0,(v/n). Hence (3.4.24)
holds. 1

Proof of Theorem 3.2.1. Note that (3.2.2) and (3.2.3) still hold, but with a different \,, when Y, s
are replaced by ffn’is. For the simplicity of notation, we still use \,,. Hence, like the proof of

Owen (1990), it follows from Lemmas 3.4.1 and 3.4.3 that

1 - 1l
= 5 V0 ATE6.9) 7 2 Val6.5)(1+ (1),
and further

(0, 8) =231 NIY,i(0, 8) — 3oy ALY,i(0, B)Y,E(6, B)An + 0p(1)
= {r 2 Y0, B {5 00 Va0, )Y (0, 8) ) { = Yoy Y6, 8)}
+Op(1)

= {5 Tt Yas(0, B)YE0 {5 X1y Yaui 6. B)} + 0p(1).
(3.4.25)

Put v/{\/n(1 — q,)/F(gn)} = (8 — Buo,0 — Ono)?. Then it follows from (3.4.26) and
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Lemmas 3.4.1 and 3.4.3 that

1 =~ 1 =
ln(gaﬂ) = {% ;Yni(QnOaﬁnO) + Ely}Tzal{% ;Yni(enmﬁnO) + Zjly} + Op(1)7

which is minimized at
1 =~
STY-Iy = _2{20—1% > Yai(0n0. Bro) + 0p(1). (3.4.26)
i=1

Hence Theorem 3.2.1 follows from (3.4.26) and Lemma 3.4.3. 1

Proof of Theorem 3.2.2. Put vy /{\/n(1 — q,)/F(gn)} = B — Bno and a = (a1, a2)T. As above,

we can show that

(B0 o) = {% > Fuiltwo %)}Tzal{% > FailOuos o)} + 04 (1)

and

ln( n07 TZ z nO;ﬂnO +V1a} b 1{\/—Zy’m n0> Bn0)+yla}+0p( )
Hence

ln(0n07 6) - ln<0n07 BnO)
= VlaTzal{\/Lﬁ Z?:l ?ni(en& Bro)} + {\/Lﬁ Z?:l ?ni(enov 5n0)}T261{V1a}

+vat Yy Hma} + o,(1),
which is minimized at

_GTE(;I\/LE Z?:l }7712'(97107 ﬂn())

aTsyta

V=

+ 0p(1),
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1.e.,

17};(9”0)
T35 e T Vi (0n0,8n0) a3 { = 1) Vi (0n0,8n0)}
— ln(0n07 /BRO) - Lo - aTZO_IaO o : + Op(]-)
n < —1/2-—1/2 noo\
= {\/Lﬁ Zi:l Yni(en()a 6710)}T20 / EO / {\/Lﬁ Zi:l Yni(9n07 BHO)}
n _1/25 V20T Y2 (1) n
_{\/Lﬁ Zi:l Ym(enOa ﬂn(])}TEO /2Z a0 ¥ aTEalaO EO / {\/Lﬁ Zi:l Ym’(enO? 5710)}
n o \r - 20T/ — n  ys
= {\/Lﬁ Zi:l Yni(QnOa BnO)}TZO 1/2{12><2 - W}ZO 1/2{% Zi:l Ym(gno’ 5710)}

+0,(1),

—1/2

1/2
2o

aaTEa . ..
1s symmetric, idempotent

where /5.5 denotes the 2 by 2 identity matrix. Since /5.5 — T¥oa

and its trace equals to one, the theorem follows from Lemma 3.4.3. 1

3.5 Conclusions

Although the H-G risk measure has been studied extensively in actuarial science, statistical inference
remains unknown when the level ¢ = ¢,, depends on the sample size n and is an intermediate one,
i.e., g, — landn(1—g,) — oo asn — oo. This chapter extends the empirical likelihood inference
for a fixed level in Peng, Wang, and Zheng (2015) to an intermediate level. The proposed maximum
empirical likelihood estimator is always consistent, but has a different asymptotic distribution for a
fixed level and an intermediate level. The proposed empirical likelihood method provides a unified
interval without knowing whether the level for computing the H-G risk measure is a fixed one or an

intermediate one.
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Table 3.1: Estimation and coverage probability for Pareto distribution. We report the mean and
standard deviation in brackets for both §MEL /g, and 3MEL /3, at different level ¢, satisfying
vVl —q,)/F(q,) =ntwithd =2/5,1/4,1/8 and F(x) = 1 — 27 for x > 1. We also report
the coverage probabilities for 777(0.9) and 177(0.95).

(n,d,)  gn B Buo L By 17L(0.9)  TEL(0.95)
(200,2,3) 04705 1.8968 1.2013 09995(0.0645) 1.0020(0.0206) 08511  0.9110
(200,1.3) 07960 2.6067 16509 1.0008(0.1004) 1.0111(0.0770) 0.8604 09139
(200,1,3) 09078 33974 21517 10018(0.1596) 10233(0.1212) 08469  0.8948
(2000, 2,3) 05983 20798 13172 1.0006(0.0304) 1.0018(0.0186) 08762  0.9356
(2000,1.3) 0.8977 32817 2.0784 1.0027(0.0680) 1.0089(0.0680) 08723  0.9274
(2000,1,3) 09673 47990 30393 1.00450.1101) 10203(0.1176) 0.8754 09288
(200,2,5) 05309 14700 1.1466 1.000000.0326) 1.0012(0.0151) 08734  0.9287
(200,1.5) 08493 1.8448 14389 1.0017(0.0640) 1.0081(0.0530) 0.8752 09274
(200,1,5) 09415 22290 17387 1.0028(0.1000) 10179(0.0768) 08527  0.8976
(2000, 2,5) 06624 15700 12246 1.00020.0143) 1.0006(0.0093) 0.8896  0.9437
(2000,1,5) 09338 2.1746 16962 1.0014(0.0359) 1.0056(0.0405) 0.8974  0.9461
(2000,1,5) 09830 2.8528 22251 1.00300.0660) 10100(0.0691) 0.8893  0.9373

Table 3.2: Estimation and coverage probability for t distribution. We report the mean and stan-
dard deviation in brackets for both §MEL /g, and BMEL /B, at different level ¢, satisfying
vVn(l —q,)/F~(q,) = n® with d = 2/5,1/4,1/8 and distribution ¢(y). We also report the

coverage probabilities for 1%1(0.9) and 17%(0.95).

QJVIEL MEL EL EL
(n,d,v) an Ono Bno n— - IFL(0.9) IFL(0.95)
(200,%,3) 0.7648 1.9724 0.7557 0.9969(0.1446) 1.0057(0.1731) 0.8768  0.9301
(200,%3) 0.8678 2.6375 12963 0.9981(0.1707) 1.0134(0.1652) 0.8685  0.9229
(200,5,3) 09277 34275 1.8805 1.0012(0.2106) 1.0388(0.2040) 0.8455  0.8972
(2000, 2,3) 0.7969 2.1361 0.8953 1.0008(0.0524) 1.0031(0.0613) 0.8840  0.9416
(2000,;3) 0.9213 33105 1.7964 1.0030(0.0795) 1.0110(0.0903) 0.8879  0.9382
(2000, +,3) 09705 4.8560 2.8694 1.0077(0.1208) 1.0264(0.1572) 0.8787  0.9310
(200,2,5) 0.7726 1.6655 0.7585 0.9989(0.1051) 1.0056(0.1669) 0.8969  0.9472
(200,;5) 0.8774 2.1724 12667 0.9997(0.1159) 1.0151(0.1466) 0.8885  0.9368
(200,5,5) 09368 27292 1.7815 0.9996(0.1348) 1.0246(0.1366) 0.8592  0.9110
(2000, 2,5) 0.8055 1.7940 0.8924 1.0009(0.0382) 1.0027(0.0562) 0.8999  0.9504
(2000,;5) 0.9307 2.6495 1.7097 1.0016(0.0480) 1.0051(0.0577) 0.9007  0.9491
(2000, +,5) 09768 3.6421 2.5763 1.0027(0.0689) 1.0113(0.0776) 0.9014  0.9489
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Table 3.3: Estimation and coverage probability for exponential distribution. We report the mean
and standard deviation in brackets for both 0L /9, . and BMEL /3, at different level ¢, satisfying
vn(l —q,)/F(q,) = n?withd = 2/5,1/4,1/8 and the standard exponential distribution. We
also report the coverage probabilities for 757(0.9) and 157(0.95).

(n,d) & O B i by I50(0.9)  IP£(0.95)
(200,2)  0.6394 20606 09606 0.9977(0.0748) 1.0024(0.0969) 0.8898  0.9408
(200,1) 08077 2.6895 15805 09978(0.0822) 1.0027(0.0993) 0.8964  0.9457
(200,1) 09002 33448 22448 0.9987(0.0932) 1.0098(0.1126) 0.8910  0.9361
(2000,2) 0.6937 22240 1.1240 0.9998(0.0256) 1.0005(0.0339) 0.9008  0.9507
(2000,1) 0.8906 32529 2.1520 0.9999(0.0305) 1.0008(0.0334) 0.8963  0.9505
(2000,1) 09634 43486 32486 1.0007(0.0413) 1.0033(0.0486) 09052  0.9551
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Figure 3.1: Left panel: Measures of the utilization of nursing home care in patients days for
362 facilities in year 2000 and 355 facilities in year 2001. Right panel: Hill’s estimate 4(m) for

m = 10,11,---,200

Table 3.4: Wisconsin nursing home data. We report 9MEL ZMEL \aR [ (g,) and d satisfying
vl —q,)/F(q,) = n? for ¢, = 0.7,0.9,0.95,0.99, where F}, is the empirical distribution

function of F'.

In 0.7 0.9 0.95  0.99
d 0.4034 0.2639 0.1823 0.0177
OMEL 14668 1.9603 22821 3.1679
BMEL 10020 1.4704 1.7829 2.3859
F(g,) 10338 14932 1.8059 2.3842
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Figure 3.2: Profile empirical likelihood ratios I£ (562 EL) are plotted against different values of &
for ¢, = 0.7,0.9,0.95,0.99. Two straight lines are the 90% and 95% quantiles of x*(1) distribution,
respectively.
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CHAPTER 4
HAEZENDONCK-GOOVAERTS RISK MEASURE WITH A HEAVY-TAILED LOSS

Haezendonck-Goovaerts (H-G) Risk Measure depends on the involved Young function.When
employing Haezendonck-Goovaerts Risk Measure to the loss variable does who not have enough
moments, the nonparametric estimator in Ahn and Shyamalkumar (2014) has a non-normal limit,
which challenges interval estimation. Motivated by the fact that many loss variables in insurance and
finance could have a heavier tail such as an infinite variance, this chapter proposes a new estimator
which estimates the tail by extreme value theory and the middle part non-parametrically. It turns
out that the proposed new estimator always has a normal limit regardless of the tail heaviness of the
loss variable. Hence an interval with asymptotically correct confidence level can be obtained easily
either by the normal approximation method via estimating the asymptotic variance or by a bootstrap
method. A simulation study and real data analysis confirm the effectiveness of the proposed new
inference procedure for estimating the H-G risk measure. The content of this chapter is based on
joint work:

Q. Liu, L. Peng and X. Wang (2017). Haezendonck-Goovaerts risk measure with a heavy tailed

loss. Insurance: Mathematics and Economics 76, 28-47.

4.1 Motivation and Introduction

Risk management generally involves risk identification, risk quantification, and risk prediction.
Measuring a risk and quantifying its uncertainty is an important task. Recently Haezendonck-
Goovaerts (H-G) risk measure has received much attention in actuarial science with applications
to optimal portfolio management and optimal reinsurance policy; see Bellini and Gianin (2008a);
Bellini and Gianin (2008b), Cheung and Lo (2013). Zhu, Zhang, and Zhang (2013), and references
therein.

Let ¢ : [0, 00] — [0, 00| be a convex function satisfying ¢(0) = 0,7(1) = 1 and ¢(c0) = o0,
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i.e., 1 is a so-called normalized Young function. For a number ¢ € (0,1) and each § > 0, let

a = a(f) be a solution to

(X —08)+

«

E{y( )p=1-q, (4.1.1)

where . = max(z,0). Then, Haezendonck and Goovaerts (1982) proposed the so-called H-G risk

measure at level q as

6 = inf {8+ a(B)}. (4.1.2)

B>0

Some important properties and connections with other risk measures are given in Goovaerts et
al. (2012). For example, if ¢(z) = =, then a(f) = L E{(X — f)+} and § = = E{(X —
F~(q))+}, where F(z) = P(X < z)and F~(z) denotes the inverse function of F'(z). Hence, in
this case, the H-G risk measure equals the expected shortfall.

In order to employ this risk measure in practice, an efficient statistical inference is needed. Ahn
and Shyamalkumar (2014) first proposed a nonparametric estimation and derived its asymptotic
limit, which may be nonnormal when the loss variable has no enough moments, which depends on
the involved Young function v. When the limit is normal, Peng, Wang, and Zheng (2015) developed
an empirical likelihood method to effectively construct an interval when the H-G risk measure is
defined at a fixed level. Further,Wang and Peng (2016) showed that this empirical likelihood method
is still valid for an intermediate level, which leads to a unified interval estimator of the H-G risk
measure at either a fixed level or an intermediate level. We refer to Owen (2001) for an overview of
empirical likelihood methods, which has been shown to be quite effective in interval estimation and
hypothesis test. Properties of the H-G risk measure at an extreme level are available in Tang and
Yang (2012); Tang and Yang (2014) and Mao and Hu (2012).

One can estimate /3 and 6 by solving

IV (X > B) =1—q,
Iy WD (X = 0)I(X; > B) =0,

(4.1.3)
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which will result in a nonnormal limit when either

Xi —fo

i X; —
B(5 o

0o — fo

(X, > B) =00 or E{(G—)(X;—00)1(X; > By)}? =00, (4.1.4)

where 6, and 3, denote the true values of # and [, respectively. This makes interval estimation
nontrivial since one has to employ different methods to separately deal with the cases of having a
normal limit and a nonnormal limit.

Practically it is often observed that loss data in insurance have a heavy-tailed distribution and
even have an infinite variance, which implies that (4.1.4) holds quite frequently. Particularly this
chapter is motivated by analyzing the Danish fire loss data (see left panel in Figure 4.1), which
consists of losses to building and losses to contents. The data were collected at the Copenhagen
Reinsurance Company and comprise 2167 fire losses over the period 1980 to 1990. By assuming
that

1— F(tx

; ) — 1
tli>123 1——F(t) =T for x> 0, (415)

i.e., 1 — I has a heavy tail with tail index 1/,  can be estimated by the well-known Hill’s estimator

Z log Xrnn- Znnoil (4.1.6)
nn k
where X, ; < --- < X, ,, denote the order statistics of Xy,--- , X,,, k = k(n) - coand k/n — 0

as n — oo; see Hill (1975) for details. Note that (4.1.5) implies that EXﬁ < ooford < 1/ and
EXi = oo for d > 1/7. Moreover (4.1.5) holds for many commonly used loss distributions in
insurance such as Pareto distribution, inverse gamma distribution, student t distribution, Cauchy
distribution, Burr distribution, Log-gamma distribution, etc.. The middle and right panels in Figure
4.1 show that « is between 0.5 and 1, which implies that £ X, < oo but EX?F = 00. Therefore,
when ¢ (z) = ¢,.(z) = 2" with some r > 1, the nonparametric estimator of the H-G risk measure
based on (4.1.3) has a nonnormal limit, which makes interval estimation nontrivial and it generally

requires a subsample bootstrap method.
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Figure 4.1: Left panel: Danish fire losses to building and contents; Middle panel: Hill’s estimator
for losses to building; Right panel: Hill’s estimator for losses to contents.

Motivated by the idea of estimating the mean of a heavy-tailed distribution in Peng (2001);
Peng (2004) and the expected shortfall of a heavy-tailed loss variable in Necir and Meraghni (2009),
this chapter proposes to separately estimate the expectations in (4.1.1) by two parts: semi-parametric
estimation for the tail and nonparametric estimation for the middle part. It turns out the proposed
new estimator will always have a normal limit regardless of the tail heaviness of X. Hence
interval estimation can be done by using either the normal approximation method via estimating
the asymptotic variance or a bootstrap method. In the simulation study and data analysis below,
we simply employ the naive bootstrap method, i.e., resample directly from original data, and a
comparison study shows that a blind application of methods without considering a nonnormal limit
would forecast risk inaccurately.

We organize this chapter as follows. Section 4.2 presents the new methodologies and main
results for estimating the H-G risk measure at both a fixed level and an intermediate level. A
simulation study is given in Section 4.3. Analysis of the Danish fire loss data is presented in Section

4.4. All proofs are put in Section 4.5.
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4.2 Nonparametric Estimation for Heazondonck-Gooverts Risk Measure with A Heavy-

Tailed Loss

Throughout we assume X, X1, --- , X, are independent and identically distributed random variables

with distribution function £’ satisfying (4.1.5), and

¥ (x) is a normalized Young function with ¢)'(0) < oo and continuous second 421

derivatives on (0, 00), and satisfies lim, ., Wﬁ% = dy > 0 for some r > 1,

Since we want to estimate the tail semiparametrically, it is necessary to specify an approximation
rate in (4.1.5) as usual in the context of extreme value theory for controlling the bias of an employed
tail probability estimator. Put F'(x) = 1 — F(x) and let F~(¢) denote the inverse function of F'(t).

Then it is known that (4.1.5) is equivalent to

I F~(tz)

— 7
lim =0 =z for z>0.

Hence we assume there exists a function A(t) — 0 with a constant sign near zero such that

i FF’i%) -z Lyt =1 42.2)
m-————=2X WL
=0 A(Y) p

for some p > 0. We refer to Haan and Stadtmiiller (1996) for details on the second order regular
variation condition (4.2.2). A well-known subclass of (4.2.2) is the so-called Hall’s model (
Hall (1982)):

1— F(z) = ca {14+ da™" + o(x="/)}

for some ¢ > 0,d # 0 and p > 0 as x — oo, which implies that

F~(t) =t {1 +~dc™Pt* +o(t")} as t — 0,
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and (4.2.2) holds with A(t) = pydc?Pt”. This subclass includes many commonly employed
heavy-tailed loss distributions in insurance. Under condition (4.2.2), it is known that we could
estimate 7(x) for a larger x by F(z) = ka/;E’ﬂ ~1/3() where (k) is defined in (4.1.6) and
Xy < - < X, , denote the order statistics of X7, - -- , X,,; see De Haan and Ferreira (2007) for
details on consistency and asymptotic normality when = = x(n) diverges. Throughout for ease of
notation, we do not emphasize the dependence on n and k for estimators and some other quantities
if there is no confusion.

Due to the different asymptotic behavior of estimating the H-G risk measure at a fixed level and

an intermediate level, we study these two cases separately.

4.2.1 Fixed Confidence Level

In this subsection we assume the level ¢ € (0, 1) is a fixed constant. Write

E{p(3=)1(X > B)}
= [ L) AP (x) + [ Y (5ED) dF ()

and

E{y'(3=0)(X - 0)I(X > B)}
S () (@ — ) dF(2) + [72 oy ¥ (520 (@ — 0) dF (),

which motivate us to estimate 6 and (3 by solving

L—gq = [ p(55) dFu(@) + [v | $(55)d{1 - F(2))
= A1 (0,8) + A8, B)

0 =[S (@ - 0)dF(2) + [
= Ng1(0, 8) + Ag2(0, B),

(4.2.3)

n,n— k

where F,(z) = £ 3" I(X; < x). That is, we estimate the integral with respect to the tail
semiparametrically and the integral with respect to the middle nonparametrically. Denote the

resulted estimators for 6 and 3 by 0 and B , respectively.
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Theorem 4.2.1. Assume (4.2.2) holds with o := % > rand p > 0, and (4.2.1) holds. Let k = k(n)

satisfy

k=k(n)—oco, k/n—0, VEAk/n) = \e(—o00,00) as n— . (4.2.4)

Then, for a fixed q € (0, 1), we have

AU AU N(C™IA, Cis(cHT),
olk/m) \ 55

where o*(k/n) = ;(_ﬁ%” ; k/"{mm(s t) — st} dyp (= 90 50 )dw(Feo(t 7 )
a; O — QZ;QI(Q < 27’)% o1 012
C = : A = r (r—a)?(1+p) . Y= :
as by — 22—;‘”[(& < QT)% oy O3
with
/ X — 60 X — BO
= F I(X
aq {w (90 _ 60)(90 _ BO)Z ( > 60)}7
e X = Bo\ (X — Bo) (X — b) y X = Bo, 1(X > Bo)
=F I(X > + )
L (N A R R Ny

b=~ BV (o= = I (X > )

o = 1+(2r—a){2(ria)4 + (aCiTT)S —I—air}l(a< 2r),

r ar 1
012:021:r+r(2r—a){2(r_a>4 + @ —r) —|—a_r}f(a<2r),

rs ar 1
Ug:r2+r2(2r_a){2(r—a)4+(oz—r)3+ H(a < 2r).

a—r
Remark 4.2.2. A theoretical optimal choice of k is to minimize the asymptotic mean squared error
in the above limit. Since the assumption (4.2.4) is the standard one for tail index estimation, one

could simply employ an existing data-driven method in choosing k for Hill’s estimator such as
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the bootstrap method in Danielsson et al. (2001) or the method in Drees and Kaufmann (1998) .
Another commonly used technique is to plot the estimator against different k's and pick up a k in a

relatively stable region.

Remark 4.2.3. For constructing a confidence interval or region, one needs to choose a smaller
k such that X in (4.2.4) is zero, and then estimates ay, as, by, by by replacing the expectations by
their corresponding averages and replacing 0y, 5y by 6 and B and estimates Y. by replacing o by
a. Alternatively one may simply use a bootstrap method to estimate the asymptotic variance as
we do in the simulation study and data analysis. Like any inference for extreme value statistics,
it is extremely challenging to develop a data-driven method for choosing k in terms of coverage
probability. Although bootstrap method is not applicable to maximum/minimum, it is generally valid
for an extreme value statistic which involves an upper k order statistics with k = k(n) — oo as
n — oo when the asymptotic bias in the statistic is negligible; see Li and Peng (2012) and Qi (2008)

for the validation of applying a bootstrap method to extreme value statistics.

4.2.2 Intermediate Quantile

In this subsection we consider the case of intermediate quantile, i.e.,
¢q=¢,—1 and n(l—g,) s o0 as n— oo. 4.2.5)

Note that the above conditions imply that the number of observations above 3, becomes smaller by
the first condition, but it tends to infinity by the second equation. Therefore, one could expect the
estimation procedure for a fixed level should still be valid for such an intermediate level.

To emphasize the dependence on the sample size n, write (0,0, 3n0)” as the true value of (6, 8)7,
which is determined by the following equations with ¢ = ¢,, as derived before:

E{w(%)]()(l > Bn(])} =1- n, (4 2 6)

B (G2 (X = 0,0)1(X; > o)} = 0.
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Using (4.2.1), like the proof of Corollary 6.1 of Tang and Yang (2014), we have

lim Ono —land lim Fro

_ Py 4.2.7)
n—=o0 ClFi(Qn) n—0o0 CQFi(Qn)

where
00 v v v
cy = (/ (1+ X‘,)5)—1/7 dzb(x)) , =1+ X)cQ, and A(> 0) satisfies
0

/0 U () (1 +yy)" 7y = /0 W (M) Ay(1+y) 1 dy.

Following the same arguments in Section 4.2.1, our new estimator (é, B)T is defined to solve

;

L=gu = [ (=) AR (o) + [ v(525) d{1 - F(x)}
= Am(0, 8) + Ana(0, B),

0 =[G @ = 0) () + [y (D) (@ - 0)d{1 - F(a)}
= Ag1(0, 8) + Apa(0, B).

(4.2.8)

Theorem 4.2.4. Assume (4.2.2) holds with o := % > rand p > 0, and (4.2.1) holds. Consider the
intermediate quantile

gn — 1 and n(l—gq,) — . (4.2.9)

Further assume for n large enough
n 7 {n(l = g,) D= IS S 08 o some 5> 0, (4.2.10)
and let k = k(n) satisfy

k=k(n) = o0, k/n—0, VEkA(k/n)— )€ (—oc,00), = 0. (4.2.11)
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Then

NG 1—gqn 00 | . 1 -1 —1\T
] _ & N(CT AL OIS (O,
O_(k_/n)F_(l_qn> /@_ﬁo (I I I I( I ))

~ 1—/{,‘/’)1 1— k‘/’l’b n F- —Mn
where 6%(k/n) = FBno) JF (5, ){mm(s t) — st} dv (5 Tno— 5500)dw( &gzﬁfoo)’

2
arn 0 0711 0112

C1I: ) ZI: )

2
ary bro 0121 079

2r—a ra2\
A[ _ B 2r I(& < QT) (a—7)2(1+p)

2r—a r2a2)
2r I(Oé < 2T) (r—a)?(14p)

with
ap = 0402_‘“_1/ (1+ a- sz)_o‘_l@b'(x) dx,
0 C2
—a—1 > €1 —C o1 7 /
ary = ac, (1 + =)™ H{a(z = 1)y"(z) +¢'(2)} d,
0 2
—a-1 OO 2 1 C1—C (_41
bro = —aucy / (x — 1)""(z)(1 + . x) dx;
0 2
= 1 (2 — ) oL <)
= r—a - - a < 2r
on 2r—a)t (r—a)® r—a ’
o2, = r*(a < 2r) +r2(2r — a){2(rr_3a)4 — o M (o< 2r) + S1(a > 2r),
ong =01 =rl(a <2r)+r2r ){2 = a)4 — (ng)S — ﬁ}](a < 2r)+ g—?](a > 2r),

where dy, dy and d3 are defined in the proof.

Remark 4.2.5. It follows from Lemma 4.5.4 in Section 4.5 that (4.2.10) ensures that the normalizing

constant (\k//ﬁn) % — o0 for k small enough, i.e., the proposed estimators are consistent.

Remark 4.2.6. [fn(1 — q,) = din® for some 6, € (0,1) and d; > 0, then we could choose k =

dsn® for some d > 0 and 65 € (0,6,). To ensure VEkA(k/n) — A, we need 65 < 1+2 . To ensure

—y+14+y=ry)d1

VTR NN it follows from Lemma 4.5.4 in Section 4.5 that we need 5 < oy

o(k/n) F~(1—=gn)
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for a < 2r. In summary, we require

—y+ (I+v—17)0
1/2 —ry

2
)+ 1I(a>2r)6; and 0y < P

dy < I(av < 2r) min(6y, SR
p

As in extreme value statistics, it is always challenging to choose an optimal k in terms of either mean
squared error or coverage probability, which we will not address here. Instead we plot our estimator

or coverage probability against different k in the simulation study and data analysis below.

4.3 Simulation Study

We conduct a small scale simulation study to evaluate the finite-sample performance of the proposed
method with a comparison with the nonparametric estimator proposed by Ahn and Shyamalku-
mar (2014), which indeed solves equations (4.2.3) with X, ,,_; replaced by co. We denote this
estimator by 4%

We draw 1,000 random samples from t-distribution with degrees of freedom 1.5, 2.3 and 5 with
sample size n = 2000 and 4000. Take ¢(x) = 1, () = 2" with r = 1.1 and consider ¢ = 0.9. We
compute the coverage probability of the constructed confidence interval with level 0.9 by using the
bootstrap method with 1000 repetitions. We plot the means and standard deviations of ratios of
estimators to true values and coverage probabilities of intervals for 0 and 04" in Figures 4.2-4.4
respectively, where £ = 0 represents results for 9AH . From these figures, we observe that the
proposed estimator performs better than the estimator in Ahn and Shyamalkumar (2014) when
X; ~ t(1.5) and X; ~ £(2.3). Note that 04" has a nonnormal limit in case of X; ~ #(1.5) and has
a normal limit in case of X; ~ ¢(2.3). When X; ~ ¢(5), the new estimator has a similar standard
deviation as 647, but a slightly larger bias and the new estimator prefers a smaller £ since the tail
part does not play a role theoretically in this case and larger & introduces a big bias.

In summary, the proposed new estimator performs well regardless of the tail heaviness of the

loss variable.
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4.4 Data Analysis

We apply the proposed estimation procedure to the Danish fire losses discussed in the introduction,
which has an infinite variance for both losses to contents and losses to building. For comparison, we
also compute the estimator in Ahn and Shyamalkumar (2014) denoted by 6AH as above. Like the
above simulation study, we simply employ the bootstrap method with 1, 000 repetitions to construct
confidence intervals for ¢ and 3 respectively. Note that these intervals based on 64" are theoretically
incorrect due to nonnormal limits.

For computing the proposed estimators at levels ¢ = 0.9 and ¢ = 0.95 and constructing
confidence intervals with level 90%, we follow the standard practice in extreme value statistics by
using different £ from 100 to 200 with step 5. How to choose an optimal % in terms of either mean
squared error or coverage probability is quite challenging and beyond the scope of this chapter. By
taking ¥ (z) = v¥,.(z) = 2" with r = 1.1, the estimators and corresponding intervals are plotted
in Figure 4.5, where we use k£ = 0 to denote results with respect to 0AH  Panels with q = 0.95
show that the intervals based on the new estimators are quite different from those based on gAH
especially for the losses to contents, which has a heavier tail. Therefore a blind application of a

method without considering the fact of having a nonnormal limit may lead to an under-predicted

risk, i.e., smaller 6.

4.5 Proofs

Since the main idea in this chapter is to estimate the tail semi-parametrically and the middle
nonparametrically, a key technique employed to link both parts is the following approximations for

the empirical distribution process and empirical quantile process:

néOé u) — u
o "l0n() = B (u)

Uy 1 <u<Up n W/270(1 — u)1/2-0 = 0,(1) 4.5.1)
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and

sup n5|ﬁn(3) + Bn(s)|
A/n<s<1-\/n 81/2_6(1 - 8)1/2_5

— 0,(1) (4.5.2)

for any & € [0,1/4), where {B,(s)} is a sequence of Brownian bridges, G,,(u) = £ Y- | I(U; <
w), an(u) = V{Gu(u) —ub, Qu(s) = Unpif 55 <5 < 1, Qn(0) = Uni, Bals) = v/n{Qnl(s) -
sh,Uy=F(X;)fori=1,--- ;nand U, ; < --- < U,, denote the order statistics of Uy, - - - , Up;
see Csorgo et al. (1986) for details.

Before we prove Theorem 4.2.1, we need some lemmas.

Lemma 4.5.1. Under conditions of Theorem 4.2.1, we have

oy VR (k/m)} (00— Bo)” [2r —a
n—00 o(k/n) dy 2r

I{a < 2r).

Proof. Note that (4.2.1) implies that

tim Y _ gy Y0

z—oo T z—o00 =1

- do.

Write i
o2 (kfn) =2 [ " [ F@)F(s) dip (522 ) dup (52
— 2 [ Py (2 ) du ()
—2 [ R () F(s) du( ) du ()
=1 — L.

When o < 2r, write

_ ok (F7(k/n) _ F{s} 5—f 5—p
I = 25 fBO F{F—(k/n)}w(eo—lgo) dd}(%—ﬁoo)
_ ok [F(k/n) s —a,),( 5= s—p
- 25 fﬂo {F’*(k/n)} w(%—,@?o)dw(%—ﬁoo)
k F~(k/n) F{s} s e -8 =B
+27 [5, (F{F*(k/n)} —{+=5m ) D(5=5) W (5=5)

= [1’1 + [172.
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It is easy to see that

F~(k/n) _ s— B s—f
L o Sy U s () ds

lim,, 0 ODNECDE lim,, 00 90—7Bo {F—(k/n)}2r—e

o 2rd2
= (6 — Bo) QT;T—,(;-

For 1 5, it follows from Theorem B.1.10 of De Haan and Ferreira (2007) and a similar argument as

the last equation above that

lim =0.

Since o > r, we have
<2 Bl v =2
Ao 0o — Bo

which implies that

L
lim | 2| =0

n=oo (k/m){F~(k/n)}>r

1.e., the lemma holds for o < 2r.
When a = 2r, the lemma follows from the facts that lim,, o, /k/n{F~(k/n)}" is a constant
and lim,,_,, 02(k/n) = co. When o > 2r, the lemma follows from lim,, _,, \/k/n{EF~(k/n)}" =

0 and lim,,_,, 0%(k/n) is a positive constant. Hence the lemma follows. I

Lemma 4.5.2. Under conditions of Theorem 4.2.1, we have

k/n){All(QOaﬁO) F (/) Qﬁ(%) dF(z)}

4.5.3)
fl o/ n By, S)CW(M)
F(8p) D) DR +Op(1)7
o {Brabo, o) fp iy V) AF (@)}
= =2 f(a < 27’ \/_ 1 Bn 1778) — B,(1— %)}ds (4.5.4)
+ 27" a \/_B
QTQ—;QI(CY < 27’)% + Op(1)7
Aq1(0 X — X —
a 11( 0760) :E{—Qﬂ,( 60 BO [(X > ﬁo)}‘i_op(l)? (455)

00 0o — Bo” (o — Bo)?
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X — X -0
= B0 =Gy,

(0o — fo)?

9A11 (0o, Bo)
ap

) I(X > Bo)} + 0,(1) = 0,(1), (4.5.6)

dA12(00, Bo) OA15(0o, bo)

= o). 05— o) (4.5.7)

Proof. Write

S G AR @)
= VG Xa) + [ Fale) dU(5)
= RN L ) - F@)av(GER) + [ F@) do(GER)
= () - e (R - e ()

Ly E ) = Py oGy + o, 4 F@) do)

M (4.5.8)
+ [pln Fx) dy(725)
= Jo 0GR AP @) — Hu () - o(RE)
— [y {Gn() — o} dw (5582 — [T G (x) — ) dy (552
+ [pr Fa) dy (=)
= i+ -+ I
It follows from (4.5.2) that
k
\/E{%(l — Unyn,k) — 1} = \/%Bn(l — H) + op(l). 4.5.9)
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Hence, by (4.5.9) and Lemma 4.5.1,

TLI n k 6 n,n— 7F—(k/n)
Yl by (B oy Xt PN £ 4, (1))

= —rdo(B — o) ey £ P (k)Y (7 = D1 0,1}
= —rd(B — o) e EAF )y (FUleac) 1)1 40, (1))
= —rdo(o — o) 3 L (/)Y {2 (1~ U}/ = 111 + 0,(1))

= 200 — Bo) " by o AF (/)Y (3 (1 = Unns) = LH{L + 0p(1)}
=%wwwmfﬁmzﬁ”xfBl——u+%U}
o0 T (o < 2r)y/EBu(1 — £) 4 0,(1).
(4.5.10)
By Lemma 4.5.1 and (4.5.1), we have
1—k/n
a\(/kﬁ/]?j) - if/)j:g( 90 ﬂo = Fopll) @1

Note that for any £ between U, ,,_ and 1 —k/n, we have ‘/TﬁBn(é) P 0and U, 1/(1—k/n) 51
Hence, by Lemma 4.5.1 and (4.5.10),

i = ki hi (G )R
= — i [l Ba(@)dyp (K (1 + 0,(1))
= — B8 fy( zg:;oﬂ°>~—'¢«-—é%ﬁ%;f@>}{1,+—op<1>} (45.12)
= S LB ({1 + 0,(1)}
= 0,(1).

Using (4.5.10), we have

iy = kg J& (o F (@) (5=3)

= S F(F (k) [ime dip( 220 {1 + 0,(1)}
= Lk (Kupmioy g (Eomtoyy iy 4o (1))

— {1 4, (1)),

(4.5.13)
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Therefore, (4.5.3) follows from (4.5.8), (4.5.10)—(4.5.13).

For proving (4.5.4), we write

Jo bRy d{1 - Fa)
= J3 G a1 = ()T 1 4 B ()T
+ o Gy d{L = Et) T = F(a)
+ [y I (=) aF ()
+fp,(k/n)¢(ﬁ)dp(x)
= IL+--+ 11,

Note that (4.2.2) implies that

log 7= ( +7logm P —1
lim = :
t=50 A(t) p

Hence, using (4.5.2) and standard arguments in proving the asymptotic limit of Hill’s estimator (see

De Haan and Ferreira (2007)), we can show that

VE{(K) =7}
= VE{—} X vlog Tt — )

n,n—k

1- Un n—i+1 )p—l

FVEA(L = Up i) {1+ 0p (1)} 2o, —ot—
= —VEE XL, vlog St + VE(E S ylog £ — 1}

1- Unn 7,+1)p 1

FVEAL = Upoi) {1+ 0p(1)} 3 S, ——nt—

RS A~ Upr) ~ 1 R~ U = 1} £ s

+0,(1)

1 Bn k
— \/— =% B, (1 - %)}ds— 1+p—|—0p(1)
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It follows from Lemma 4.5.1, (4.5.9) and (4.5.15) that

VIl - vn ok oo X n—kT—p “1/3(k _
Sy = —attmn o (Tt )d{am 0 — 2
n o Xn,n— z—p3 —
= sty — 3 T (Pt d e log {1 + 0,(1)}
n 00 Xpn—kZ—B0\r _
= J(\lc/;n)g('?(lk) - %)do fl ( ’eo_kgo‘o) d{z 1/ logz}H{1 + 0p(1)}

— ol — Bo) " L L () (s — %)f“ 2" dfe=log a}{1 + 0,(1)}
= Bl < 20) (o [E0AL - 01— B)ds + 52)

(4.5.16)

il = s [ (R A{F(r) — () )
= Lk [0 yp(Xeporty g ECann) oy
= ()T — 13 [T () da o {4 0,(1))
= dotr A7)~ — BT (20 dla  Hl + 0, (1)}
= do(Bh — Bo) " P (/)Y {(F2ak) 7 — 1} [ " do {1+ 0,(1)}

— o (g, — o) T AT E{F-Uf/n)} {20 = Vo) — 11+ 0,(1)}

= 2T2Taraa Q< 27’ \/_B + Op(l)
(4.5.17)
and
nlls n F k/n ,30 n,n—
o\'/(;/n) = a(\lgn)w E)O/ /30 fF k dF(z){1+ 0,(1)}
=do(6p — Bo)™" U(k/n {F (k:/n)} (1-— % — Upm—i){1 +0,(1)} 45.18)

Zdo(eo—ﬂo) \/k/_n{};/ik/n} \/—{ (1_ n,n— k)_l}{1+op( )}
2o [ (o < 27)\/FBa(1 = £) + 0,(1).

Hence (4.5.4) follows from (4.5.14), (4.5.16)—(4.5.18).

Note that

OA1 (0o, Bo) Kk w— By x— By
90 “/F Y G = 3 — oy 1@
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and

3A12(90750)_ * =0, = —Po
et = [

Similar to the proofs above, one can show that

or B0 — B’ (B — Bo)?

Knnok o x—fo @ =P B e &= Po
/0 G =3 @ — oy / Y =5

Then (4.5.5) and the first part of (4.5.7) follow from

X —fo

X — fo

F=(%) _ _
/ W(E= Py =B pay s By

0o — Bo” (6o — Bo)? )

o — Bo

and

f‘;i,nfk w,(;i)_—%oo)(ei gg d{l ( )}

_ foo 1//(:6—60) z—fo %Xl/'Y L-=1/4=1 qg

Xnn—k 6o—Bo/ (6o—PB0)?

— Op( X1/7 XT 1/’7)

n,n—k**nn—=k

= 05 ") = 0y(1)

n,n kA/

(6o — 50)2I(X > o)}

0.

by using the Potter’s bound in Bingham, Goldie, and Teugels (1987) and choosing € > 0 small

enough. The rest assertions follow from the same arguments as above, and thus we skip the details.

Lemma 4.5.3. Under conditions of Theorem 4.2.1, we have

AL An (00, o) — [y M () (2 — 00) dF ()}

roy Buls) d{y! (F5 2220 (P~ (s)-0 )}
_ Jreay) e + 0,(1),

W%{Am(goa@o — S5 ey W(gf}*ﬁé)o)(x — ) dF(z)}
= —(90 — ﬁo) 2T a[ Oé < 2T \/_ 1 Bn 1778 Bn(l -

+(€0 — ﬂo) 2r == \/_B
—(90 — ﬁo) 2r2;a[<04 < 27’)(7“3)—12”(;\“ -+ Op(l)
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OA (X X —0,
Daffol) - — Bl (GE) XGOSR I(X > By) wsa

(I I(X > Bo)} + 0,(1),

989100, 60) _ g X = Foy (X =00)*
A T s G RRLAO) 4.5.22)
A (0o, Bo) Ay (0o, Bo)
a5 oW T ol (4.5.23)

Proof. The proof is similar to that of Lemma 4.5.2, and so we skip the details. 1

Proof of Theorem 4.2.1. By Taylor expansions and Lemmas 4.5.1 — 4.5.3, we have

LA (60, 8) = A (0o, o)} + 5 { A (00, Bo) — [ T w(2) dF(x))
+%{A12(9 B) = Ara(00, Bo)} + 5067 {A12(60, Bo) = J2 (1 pmy V(52 ) dF ()}
=~ 50w (0 = 00 B G5 e [ (X > Bo))
W(ﬁ — o) E{' (3=30) o L(X > 50)}

1—k/n F~(s)—8
fF(g) B, s)d¢(7go_ﬁoo)+ 2T a[()é<27” (r - \/_B

o(k/n)
2o (o < 2r); \/_ IS Bn( 18_75
Zoa] (o < 27")% +0,(1).
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Similarly

LB (0, 8) — Ao (8o, fo)} + 75 { A1 (00, o)

— S () = ) AP (@)} + A (6,8) — Aaa(6, o)}

+W{A22(90’50 - flg'(i(k/n) ( (91; %00)(33 — bo) dF'(z)}

= b7 (0 — 00) {0 (523 S (X > Bo) + /(=3 1(X > fo)}

X6
k/n)(ﬁ 50)E{"¢”(gg gg)(go 5?)))2 (X > B())}
e Be(s) Ay (g 250 (F (5)~60))
(/)

+(90 — 50) 2T a[ a < 27” \/_B
1 Bn(l

—(00 — Bo)y/ 221 (o < 2r) o a)2\/_ .
_(90 _ ﬁo) 21”2;04[(04 < 27‘)“‘2)—2(;‘“ + op(l)

Hence
V() — fy)ay = En +0,(1
"“‘;/")(A o) pA( ) (4.5.24)
o(\k//ﬁn) (0 — bo)as + g(k—%(ﬂ — Bo)b2 = nn + 0p(1),
where
Tr Bals) du (P 2
L= + /52 (o < 27“ By (
g alk/n) f ) >2 Vi (4.5.25)
2r « 1 n( 5 2r—o raZ\
I Oé<27’ \/_ 3 dS— TI(O{<2T>W,
S Bal9) d{e (T 25 ) (P (5)-60)) 2o
= ) G050 (+ ) T Ior < 2r)q >2 VB (4.5.26)
/2r o ar? 1 Bn(1 S 2r—o rZ\
I(Oé<2T \/_ 3 dS— TI(O{<2T)W
Note that
(&numn)T 5 N(A n — 0o, (4.5.27)
2r aI a < 27,, ra 2\ 2 o
where A = ( S Hp andy = [ 7 77 with 02,02 and 01, calcu-

/2
=2 (o < 2r) (Ta 1+p oy 02

lated as follows.
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First we have

0'% — hmn—)oo Va?“(ﬁn)
,,.4
=1+ 2 ey (< 2r)
o r2a? 1 B{Bn(1-£5)Bn(1-£1)}
+22_T(T—Q)I(a < 27’) limy, 00 7 * fo st dsdt
1 k/n dw(F (s)— ﬁO)
2r—a _ 2r2 1 (Bo) %0—Fo
—/ 5 el (@ < 2r) limy o - oS
2r—a  2ra . 1(Bk/n5dw w)
/5t e (@ < 2r) im0 Oo(k/n) -
_27’2;0 (37"03 I(a < 2r)
ré r—a 2r2a?
=142 T (r—a)? [(O‘<2r)+22r (2T a)t ol (o < 2r)
r—o T—Q T T—Q ar3
_227" (TZ_Q)2I(a < 27") + QT(TQ_Q)QI(Q < 2T) o 227’ (3—04)4[(& < QT)
=1+ (2’[" — a){2(r7fa)4 - (T(_X;)g — rla (Qf < 27")7
where the third equality holds since
o LY st T2
, Byl kimboy Vo FRG) s—p
= hmnﬁoo O'(k‘/(’f)l) 0 - hmnﬁoo o'(k/n) fﬁo " F (90_’6?0)
r—a 1 ~ k/n —
22T [(Oz < 27“) — limy, 00 o(k/n) fﬁo dlzj(é)so—ﬂﬁoo)
2o (o < 2r).
Similarly we have
O'g - hmn—>oo Var(nn)
=24 Boe (< 2r) + o e ;“) I{or < 2r)
1 k/n sa{y/( M)(F (s)—6o)}
27" a 2r3 F(Sg) —
o (r—a)? I(a < 2T) limy, o ° (k/”)(e(i) 600)

" s ' (F2720) (P~ (s)=60)})
2r—a_2r? a : (ﬂ ) -
R VATl o < 2r) limy, o0 0 U(k/n)(e‘)o [30)

T2’I“a (’I?TOCO){ [<a < QT)

= (0 o) s — o Mo < 2)

(r—a)?
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and

12 = 091 = limy, 00 Cov(&, M)
S
—QZ—ZO‘(TIZ)QI(Q < 2r) + 27"2—:0‘(T11)4](a <2r)-— 2”2—;‘)‘(:42‘)4]((1 < 2r)
+2T2;a (TTQS)QI(Q < 2r) — 27'2;& (rfg)4f(oz < 2r)+ 2T2T°‘ (ff’ g) I(a < 2r)
=r+r2r >{2(r o Tty — (@ < 2r).

Hence, the theorem follows from the above equations.

1
Next for proving Theorem 4.2.4, we first show some lemmas.

Lemma 4.5.4. Under conditions of Theorem 4.2.4, we have, as n — o0

VE/{E~(k/n)/F~(1 - g,)}" . (c1 — )" [2r —a
a(k/n) do 2r

I(a < 2r),

{(1 = gn) log(F~ (k/n)/F~ (1 = gu))}'/? L la—a)
a(k/n) dov/2r

Vl_Qn 02%
\/2f0 (1+ 2525) o4 (s)1/(s) ds

when o = 2r,

when «o > 2r.

Proof. Write

G2(k/n) =2 [1 M [0 F(t)F(s) dip(5o L) (2l )

n0 BnO n0 /BnO
(k/n) s—Bn S—fn
- 2f5n0 . F(S>¢< 0n0 BBZo)d¢( nofﬁio)
k/n) t—PBn 5—PBn
fﬁno fﬁ dw(e n0— 5(7)10) w<9n0_/620)
= [1 - IQ.
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By noting that

L <2 [ E 2 F(Bu)F(s) (52 dop (20

0no—PBno n0 BnO

= F(Bno)l1 = O(1 — q,) I = o(Ly),

we have

52(k/n) = L{1+o(1)}. (4.5.28)

To derive the asymptotic behavior of 1, we write

F~ (k/n)

L = niﬁn,gno fl oo F(5”OS)¢(9noj[;;0—1)w/(enoj/gj@—l)ds
F~(k/n)
208n B —a S—
- noﬁ ﬁono BnO fl ’ ¢(0n0/5n0 1)w/<9n0/5n10*1)d8
2Bn n Bn (Bnos) —a s—1 s—1
+0n0_gn0F(/8n0) fl 0 (F(ﬁng)s -5 ) w<9n0/ﬁn0_1)w,<9n0/ﬁn0_l) ds
= D1+ 1.

When o < 2r, it is easy to see that

lim S R
"0 (k/n){F~ (k/n)/F~ (1—qn)}2"

F~(k/n)

— 1; 28n (BnO) ~(1—gn) 2 Bn — / s—1

- 11mn_>oo Qnofgno k‘/n k/n) " f ’ a/l'D(GnO/BnO 1)w (enO/BnO*I) ds
F- (k/n)

°r f " _a’t/)( ’VLOjE‘IiO_l)’l’ZJ/( nojﬁiO 1)d

enO_ﬁno {F (k/n)/ﬁno)}?r @

For 1 5, it follows from Theorem B.1.10 of De Haan and Ferreira (2007) and a similar argument as

the last equation above that

I
lim L2 =0,

n—00 (k‘/n){F (k/n)/F~(1 = gn)}*

1.e., the lemma holds for v < 2r. When o = 2r, by noting that

T —« a—1 —o a—1
s s —1 ds -1
TN N Gty g DT
T—00 logaj Z—00 1/1‘
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we have
111
(1—gn) log{F~(k/n)/F~(1—gn)}
lim,, oo i ZER
qn)log{F~(k/n)/Bno}
2rd(2)
(61762)27” .

lim,, 00

(4.5.29)

Applying the inequality for a second order regular variation in Draisma et al. (1999) to (4.2.2), we

can show that

Lis=o0 ((1 — g log F(k/n) ) .

F (1 - Qn)
Hence, it follows from (4.5.29) and (4.5.30) that
Il 2Td%

R = ) log(F (/) F (L =) (e — e oM @ =2r

When o > 2r, it follows from Potter’s bound that

F~ (k/n)
_ Brno__ F(Bno) Bro  E(Bnos) ’ s—1
1_Qn o 2 nO /BnO 1—- dn fl (6110) w( nO/BnO 1)w ( nO/IBnO_l) ds

F~(k/n)
= 2 n()ﬁn%nﬂ 16;2) ‘/‘1 Bno 7a,¢}( nO/BnO 1)¢/( nojg’nlo_l) ds{l _I_ 0(1)}
= e CQ) R TV (Grme) ds {1+ o(1)}

2c;" [ (14 9225)7%(s)y'(s) ds {1 + o(1)},

then (4.5.28) and (4.5.32) imply that

lim 7 (k/n) =2, /000(1 + Az 628)_a¢(s)¢'(s) ds

n—oo | — Gn Co

Hence the lemma follows from (4.5.28)—(4.5.32) and the fact that

(k‘/n)
\/:(F (1 qn) O

r/a)

V1—¢q,) if a>2r

(VI—gq,) if a=2r
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Lemma 4.5.5. Under conditions of Theorem 4.2.4, we have

n (k/n z— By,
&(\]gn){Alll( nO;ﬁnO fﬁno / )w Slae ) F(;C)}

. 0n0—PBno
-5 o) d ~(®)=Bno
_ Jr(gng) B zk/“i() n0—Pn0 )+Op(1)’

&(\k//ﬁn){A112<9n07ﬂnO «fF k/n)w Z=Bno_ ) F(SL’)}

nO ﬁnO

— _ 2T—Oé[(a < QT 7, a)2\/_ 1 Bn(l;*s)d

)=V iBa (1

20 (< 2@% + op(l)

+ 2T O‘Ioz<2r

v 0{Ar11(0n0,6n0)+A112(010,6n0) }
5k/m) 50

— e (L A5a) T (@) da {1+ o(1)),

&(\Ig/ﬁn) 3{A111(9n075n0ggA112(9n0ﬁn0)} _ Op(l).
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Proof. Write

n,n—=k Tr— ﬁn % T— Bn
anO w Ono— ﬁzo fﬁno Ono— ﬂzo)dF( )
Xn n— T—LPn o B
B"O’ k w( Ono IBBSO) d{F ( } an n—k no—ﬂﬁzo) dF(x)
Xn n— n
w(#ﬁnﬁo){ﬁ‘”( n’”—k) - F(Xn n—k)}

— [ () — Fx)} dip(250)
= o () dp(x)

PG (P (X i) — &

10— Bno
—f;f:;*"*’f{F( ) — F(z)} dy (7l 5;;;) (4.5.37)
~Jx

T—Pn —Bn n n,n— Bn
Xnn— k ¢(9 n0 55:0) k¢( 9n0 5n0 0) - F(X"’n_k>¢( 0no kﬁno O)

_E{w( n,n—k_/BnO) . w(Fe(n)*ﬁnO)}

0rn0—Bno 20— Bno
i D {F(2) — F(a)} du g

— R Fa () — Ple)} d (L)
fjfnj () (5 25)

L+ 1+ I3+ 1.

It follows from Lemma 4.5.4 that
iy = by (TG (Kot TG (4 g (1))

_ —rdoa("{/ﬁn)ﬁ( 1:0 <ﬂ:0)r(;g@@) — {1+ 0,(1)}

= —rdosfi (e ) — ) (et —1){1 -+ 0,(1))

= —rdo s E (e (e — ) {21~ U a)] 7V — 111+ 0,(1)}
= —rdos s E () (e c2>-f<—§>{%<1 - Un,n_m — 11 +0,(1)}
= o k(PG (e — ) T L EBL(1— B) 4 o, ()H1 + 0,(1)})
— o PEZ G O0nl) (o) g)r /BB, (1= £) {1+ 0,(1)}

= L\/352 T (o < 2r)\/EBa(1 — EY+0,(1).
(4.5.38)
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By Lemma 4.5.4 and (4.5.1), we have

7 F(k s
rifls = sl Jra P ) - P ao(ES)
f Bu(x) dyp( 52 =Fn0) (4.5.39)
Fw v a(k/n) Fa0=En0 +Op(1)

Note that for any € between U, ,,_; and 1 — %, we have ‘/TﬁBn(e) 2 0, which implies that

sy = — &Z) Jo2i (@) = Fa)} oG 2
= (k/n f VG )—$}d¢(Fn(0x 5550)

= s Ble Hw(%&fﬁ‘)) — (1 4 0,(1))

(4.5.40)
— s Ba(e)2h(1+ 0,(1)
— [535 B)¥2 B()(1 4 0,(1))
= op(1),
and
bl = =5t fxnn (@) d(5725%)
B _5(6") fX"" ] W) O+ (1) (4.5.41)
= &&7“)%{@@(%@?0) — (Gl (14 0,(1))
- &(\lg/ﬁn)ll + 0p(1)
Hence (4.5.33) follows from (4.5.38)—(4.5.41).
For proving (4.5.34), write
o GEEE AL = F@)) = [ w5525 dF (@)
= [ Y {1~ E( )V < 14 ()
I R Al - B - F (@) 4542)
+ f, (L) dF ()

= 1L +1+ 11
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Since

we have

v
(k/n)

Qx

v
(k/n)

15

11,

VE{3(k) =}

. (4.5.43)
= —/E P - B (1= B ds — 2+ 0,(1),
L
@f (st = 1) S 9 (Ratelon) g Tog 11 + 0,(1))
@\/‘v(k — 1)dy [ %)Td{x*alogm}{l+op(l)}
= Yyt (sl — 1) [ de o} {1+ 0,(1) w54
—\/ 5wty (a < 2r)
x{ay/E ) B (1 E))ds 4+ 2211+ 0,(1)}
= /B L (e < 2) /[ B“;*s — Bu(1-5)}ds
— A B T (a < 2r) + 0,(1),
= Sl [ (R AU (X, o gr) — LoV}
= s [ (S f Ft) — ey
= s G ™ = 1 [T (Pt d{z H1 + 0(1)}
= s E (3 FEE) T~ Lo [ (Tt by {z=a}{1 4+ 0,(1)}  (4.545)

VE/M{F~ (k/n)/F~(1-¢)}" g,
5(k/n) (c1—e2)"

X\/_{ (1= Unnr) 1}flooﬂfrd{$_‘”‘}{1+0p(1)}

= I(a < 2r) \/_B —I—op(l)
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~(k/n) x—PBno_

5(k/n) n,n—k 00— Bno
= k/w( ,’fo/”gnf"O){F( “(k/n)) = F(Xpn-r) H1 + 0p(1)}
= 54w (" ;ff’g) fu)r {F = qn)} (1= kU ) {1+ 0,(1)}  (4546)
= VPOl o JE{R(1 ~ Uns) — 11+ 0,(1))

22—;‘”[(& < QT)\/EBn — E) + 0,(1).

Hence (4.5.34) follows from (4.5.44)—(4.5.46).

Note that

OA1(Ono, Bro) Kk x =B . &= o
00 T /ﬂno w (9n0 - Bno) <0n0 - ﬁnO)2 an($)

and

OA112(0n0, Bro) _ > 1, T — Bno & — Po 2
a0 B \/)'(n,nk: w (enO - /BnO ) (GnO - 6710)2 dF(x)

Similar to the proof of Lemma 4.5.3, we can show that

K=k I S ﬁnO T — ﬁnO . Fﬁ(%) I BnO T — ﬁnO b
/Bno v <0n0 - ﬁno)(eno — Bno)? AP () /6710 v (9"0 - 6”0) (00 = Bro)? e

and

/OO W' x_ﬁno) z P s d{1 - F(z)} 5 o.

Xnn—k 0710 - BnO (enO - nO)
In the same way as above, we can prove the results for the derivatives with respect to 5. Furthermore,

we have

0r.0—Bno / (0no—PBno
_ BTLO —1 F(ﬁoz
- 0n0—Bno fl n075n0 1) d{ F(Bo) }

_ . F(Bno) [ ety 61/02 =) dz {1+ 0(1)}

nO /BnO

= pf(;q_"qn)acg"“lfo (1+aZ2a)=e "W/ () dz {1+ o(1)}

fﬂO:U / w—ﬂno )( $—5n0)2 dF(.CL’)

(4.5.47)
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and

S 0/ () =tee dF ()

0n0—Bn0’ (0n0—Pno)?
= (0o = Buo) 2 [5 U (5250) (2 — B) dF ()
= (en(] - ﬁnO)_ EW (%)(X - Hn(])I(X > ﬁn())]
= 0,

which imply (4.5.35) and (4.5.36). 1

Lemma 4.5.6. Under conditions of Theorem 4.2.4, we have

s {8 O o) = [, " VG @ = o) dF ()}

nO ,BnO

c1—c d F~(®)=Bno\F_(#)—6no
L AL )a{(ﬁ/(n) s ) Tt ) o, (1),

W-l—q){Amz( 105 Bno) — fpi“—) (k/n) W( LBn0 ) (1 — ) dF ()}

nO BnO

1 Bn 1775
(r— oz)2 \/_ s
+(c1 — ) 2’"2;‘“[(04 < 2r)= \/EBH — )

r—o o?r?
—(61—62) 22r [(Oé<27")m2(i\+p)+0p(1),

% {Af2l(en07 ﬁno) + A122(9n07 6n0)}
= —(1= o (o = e){ i 2z = Do (2)(1+ 2520) 7 da
v 1+“@>“*@@ﬂ+%um

% {A121(0no, Bro) + A122(0n0, Bro) }

= (1= q)ac (a1 — ) [ (@ = D)*" (@) (1 + 2222) e {1+ 0p(1) }.

(4.5.48)

(4.5.49)

(4.5.50)

(4.5.51)

(4.5.52)

Proof. The proofs of the first two equations are similar to the proofs of Lemma 4.5.5, thus are
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omitted. Note that

and

% {A1(0n0; Bro) + Ar22(6no, Bro) }

E{—y/' (g5t St (X > Buo) — wii;—%:o)f(x > Buo)} {1+ 0,(1)}
Fla) ([0 ) S e} + [ W ) e~} ) {1+ 0,(0)

—(1 = gn)ac; e — )

< Jo L+ 9z2a) e Ha(e — 1) (2) +9'(2)} do {1+ 0p(1)}

(4.5.53)
% {A121(0no, Bro) + A122(0n0, Bro) }
" o \ (X —0n0)?
PV G st (X > Pro) {1+ 0p(1)) wssh
—F(Buo) [ W'(Cj;l_l)(cl/cgilf d{z=} {1+ 0,(1)}
(1= gn)acy* e — ) f (x = 1)%"(2) (1 + 2z22) = da {1 4 0,(1)},

which lead to the last two equations in the lemma. 1

Proof of Theorem 4.2.4. When |5/fn0 — 1| + 10/60,0 — 1| = €, — 0, by Taylor expansions and

Lemmas 4.5.5 and 4.5.6, we have

5_(\14/7@{A111(975) = Ar11(0nos Bro) t + 50670 ‘k//ﬁn {An1(0no, Buo) — ;;(k/n) P(EL0 ) dF ()}

nO_ﬂnnO

+¢?(k—%{A112(0’ﬁ) A112( nOaﬁO)} + = k/n){Anz( nOuﬁnO f;i(k/n)w(gx_,ﬁno )dF(x>}

n0 6n0
F~(2)—Bno

s (0 — Ono)an — AL ok

 a(k/n) F~(1- U(k/n)
2’”aj'(c»z<27"7no[\/_IB”S
Zoa (< 2r) -5 a\/_B
Zoa (o < 27")% + op(l).
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Similarly

#{AM( ,B) — A121(0no, Bro) }

F=(k/n) ,;/ o— 0
+WF\C—{AI21( n0> 6n0) - ﬁ};o( / )w (ﬁ)(l’ - 9n0) dF(I)}
st {8 (0, 8) = Ara(0no, Buo)}

Jn

+ G(k/n)F~(1—qn)

\/ﬁ 1—gn

C€1—=C2

T &(k/n) fF (Bro)

—(c1 — c9)y/ 2 O‘I(a<27’ o \/_ —

+(c1 —¢2)
—(c1 =) 22;“
Hence
\/ﬁ _ 1—gn (é _

where
61 n
and
Nin =
Note that

{A122( n0» 6710)

ATt/ T 1 (6 = On0)(c1 — C2)ars — 53fs 72722 (8 = Buo) (e — €2)br

27“04

n0 BnO

(l’) d{,[l)/(F’(x)—,Bno ) F~(z)—6

nO ﬂnO nO ,BnO

an 1—k ~s)

ds

\/_B (1-5)

Ia < QT)L)‘) +0,(1).

(r—a)?(1+p

ho)ar = Em + 0,(1)

0
enO)aIZ + &(\]{/ﬁn) __11—ann<5 6n0>612 = Tin + Op(l)

9n0—Bno

a(k/n)
ro w (1l Bn(l_gs)
(r—oa)? \/%fo s ds

/20 (o < 2r) 2 /TB, (1 - by

n

1-k —(z)—
Jpa ) Bnl@) (552 n0)

27"2;"‘1(04 < 2r)

2r—a ra?\

1-k F~ (@)= Bpo\ F~ (2)—0n0
— fF(ﬁZO) Bn(:l:) d{’(l) ( n0— Bng ) Bnofﬁn‘g
5(k/n)
2r o 1 By ( 1-k s
Ia < 27“ \/_ -

+ 27" O‘IOz<2r

\/_B

2r—a a2r2)
T[(O{ < 27’)m.

)™ % N(ALS), 1 — o0,
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(4.5.55)

(4.5.56)

(4.5.57)
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where

2r—a ro?\
2r ](Oé < ZT) (a—r)2(1+p)

A =
! 2T—a](a < 27,) r2a?)\
2r (r—a)?(1+p)
and
2
0 0On2
Xr=

2

021 07y

with 07, 07, and 012 calculated as follows. Note that

li v k/an(B o 2l Fn(ox)ﬂfgo)
n—00 (k/")
. \k/n ~(k/n)—PBn
= lim,, oo 5(k/n) %b( 0120 —Bro 0)
) VE/m  F=(k/n)—Bno\r
= do llmn—)oo ‘”(k-/n)< 0r.0—Bno 0)

20 (g < 2r),

Similarly, we can obtain

1-k/n —Bn ~(s)—Bn
\/> F lBTLO d{w Ono— BnO ° ) 0r0—0n0 : } 271 —

I < 2r).

Then we have

o2 =1lim, o Var(&rm)

=1+ 2@ (T11)4](04 < 2r) 4 2« (ff' g) I(a < 2r)

1 k/ns ,[/}(F (s) anO)

_ J2r=a_2r? : Jp(5a0) 920=Pno
5 (T_a)zf(oz < 2r) limy, 00 S/

1—-k/n F~ (s)—Bno
\/_ F(Bn O) d’l/)( 9100—Bno )
&(k/n)

+ 2T = (Tz’"g) Ia < 2r) limy, 00

2r2TO‘ (Tzrao)‘ Ia < 2r)
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Define

o (3)

— 1_7 S Bn F S ﬂn —(t _9n
o fF ,BnO J‘F BnO){S/\t St} d{wl( nO)IBnUO) nEJ Bn() } {w( nO BnOO) en((Jz,BnUO

53(3)

1_,

_ —Bn (t)=PBrno\ F~(t)—bn
o fF (Bno) fF Bno){S/\t St} d¢( 9 n0— ﬁ Oo)d{w( no)ﬁnoo) 9ngzﬁn00

Similar to the proof of Lemma 4.5.4, we can show that

. 53(k/n) _ 2t
n—oo (k/n){F~(k/n)/F~(1—q,)}* 2r—a

(c1—c2)

and
lim 6%(]{/7}) = 2rd; (c1 — co)
wsse (o/m{E—(k/m)/F-(1 =g} 2r—a
for o < 2r,
lim o2(k/n) _ _ 2r3d2
no0 (1= o) log{F~(k/n)/F~(1 —q,)} (a1 =)™
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i a5(k/n) B QTQd%

weo (1= g) log{F—(k/m)/F-(1—q.)} (a1 — o)

for o = 2r. For o > 2r, recall that in the proof of Lemma 4.5.4

=26, [y (L4 “522) =9 ()¢ (2) do,
and similar arguments lead to
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and

3 (k/n)
17qn

ds =:lim,

=6 fy (L+9522) Y ()" () + (z — DY ()9 (z) + (z — 1) (¢ (2))*} do.

Combining the equations above with Lemma 4.5.4, we have

L b/n)
woe 52(k )

and
~9
. 03(k/n)
= <
nh_}rgo 52(k/n) rl(a < 2r)
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+r2(2r — a){Q(fa)4 —

A similar calculation leads to

or - — LM (o < 2r).
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ong = 091 = lim, oo Cov(&rn, Nin)

:r](oz§27“)+j—i’l(oz>2r)

T‘3
+r(2r — al5r0%m — ¢

Hence, the theorem follows. 1

oar L\ [(a < 2r).
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Figure 4.2: Averages of g /6 and gAH /6 are plotted against k = 50, 55, - - - , 200 for n = 2000 and
against k = 50,55, - - - , 300 for n = 4000, where k = 0 represents the average of 4 /6.
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method with 1000 repetitions are plotted against £ = 50, 55, - - - , 200 for n = 2000 and against
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CHAPTER §
NONPARAMETRIC INFERENCE FOR SENSITIVITY OF THE
HAEZENDONCK-GOOVAERTS RISK MEASURE

When H-G risk measure is applied to an insurance or a financial portfolio with several loss variables,
sensitivity analysis becomes useful in managing the portfolio, and the assumption of independent
observations may not be reasonable. This chapter (Chapter 5) first derives an expression for
computing the sensitivity of the H-G risk measure, which enables us to estimate the sensitivity
non-parametrically via the H-G risk measure. Further, we derive the asymptotic distributions of
the nonparametric estimators for the H-G risk measure and the sensitivity by assuming that loss
variables in the portfolio follow from a strictly stationary a-mixing sequence. A simulation study
is provided to examine the finite sample performance of the proposed nonparametric estimators.
Finally, the method is applied to a real data set. The content of this chapter is based on the joint
work:

X. Wang, Q. Liu, Y. Hou and L. Peng (2018). Nonparametric inference for sensitivity of

Haezendonck-Goovaerts risk measure. Scandinavian Actuarial Journal. To appear.

5.1 Introduction to Sensitivity Analysis of H-G Risk Measure

Haezendonck-Goovaerts (H-G) risk measure originates from the premium calculation principle
induced by an Orlicz norm in Haezendonck and Goovaerts (1982). More specifically, let 9 :
[0, 00] — [0, 00] be a convex function satisfying 1/(0) = 0, (1) = 1 and ¢)(c0) = o0, i.e., ¢ isa

so-called normalized Young function. For a number ¢ € (0, 1) and each § € R, let &« = «(f) be a

E{w(M)} —1—gq, (5.1.1)

«

solution to
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where 2, = max(z,0) and Y is a loss variable. Then, the H-G risk measure at level ¢ with respect

to the loss variable Y is defined as

6 = inf {8+ a(B)}. (5.1.2)

BER

When ¢(z) = x, we have a(f) = quE{(Y — )y} and 0 = ﬁE {(Y = Fy(q))+}. where
Fy(y) = P(Y <y) and Fy (y) denotes the inverse function of Fy (y). Hence, in this case, the H-G
risk measure equals the expected shortfall.

Recently this risk measure has received much attention in the literature of actuarial science
with applications in (re)insurance and portfolio management. For example, Goovaerts et al. (2004)
showed that the H-G risk measure preserves the convex order property; a dual representation of
this risk measure is given in Bellini and Gianin (2008a); Bellini and Gianin (2012); Goovaerts et
al. (2012) investigated the relationship between this risk measure and others; Cheung and Lo (2013)
obtained a lower bound for this risk measure when the loss variable Y is a sum of random variables;
Optimal portfolio and optimal reinsurance under this risk measure are investigated by Bellini and
Gianin (2008b) and Zhu, Zhang, and Zhang (2013) respectively. For statistical inference of this
risk measure, Ahn and Shyamalkumar (2014) proposed a nonparametric estimation and derived
its asymptotic distribution, which may be a non-normal distribution when the loss variable has no
enough finite moments. When the limit is a normal distribution, Peng, Wang, and Zheng (2015)
andWang and Peng (2016) developed an empirical likelihood method to construct an interval when
the H-G risk measure is defined at a fixed level and an intermediate level, respectively. All these
statistical inference procedures are built upon the assumption of independent observations.

Consider the total loss of an insurance or a financial portfolio Y = Zle a; X; with X; being
the loss of the 7th asset or ith business line in an insurance company. In this case, it is more realistic
to assume that (X1, -+, X4)7 comes from a strictly stationary sequence or a time series model.
Throughout we use A’ to denote the transpose of the vector or matrix A. On the other hand,

since Y is the loss of a portfolio, an interesting question is about the sensitivity analysis of the
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portfolio under the H-G risk measure, which is defined as the partial derivatives of the portfolio with
respect to a;’s; see Section 5.2 for explicit formula. The sensitivity analysis for the two commonly
employed risk measures, Value-at-Risk and expected shortfall, has been studied in the literature (see
Gourieroux, Laurent, and Scaillet (2000); Scaillet (2004); Hong (2009); Jiang and Fu (2015); Hong
and Liu (2009); Liu and Hong (2009); Fu, Hong, and Hu (2009). Tsanakas and Millossovich (2016)
provided a general study of sensitivity analysis using risk measure. References on sensitivity
analysis for utility optimization can be found in the recent paper Cao and Wan (2017). As argued in
Scaillet (2004), knowledge of the sensitivity of a risk measure is helpful in reducing the amount
of computational time needed to process a large portfolio and in characterizing and evaluating
capital allocations under this risk measure. Moreover, the expression of sensitivity analysis for
Value-at-Risk and expected shortfall is quite related to the Euler capital allocation rule and risk
capital allocation; see Kalkbrener (2005) and Fischer (2003). For a credit portfolio, some simulation
methods have been proposed to compute the capital allocation based on either Value-at-Risk or
expected shortfall; see Glasserman (2005).

This chapter studies the nonparametric inference for the sensitivity of the H-G risk measure in
portfolios. More specifically, first we derive an expression for the sensitivity of a portfolio return
under the H-G risk measure, which is a function of the H-G risk measure itself. In order to estimate
the sensitivity nonparametrically, second we derive the asymptotic distribution of the nonparametric
estimator for the H-G risk measure under the assumption of «—mixing sequence, which generalizes
the result in Ahn and Shyamalkumar (2014) for independent observations. Third, using the derived
results in the above two steps, we propose a nonparametric estimator for the sensitivity and derive
its asymptotic distribution. Since the obtained asymptotic variance is quite complicated, it remains
challenging to construct a confidence interval/region for the proposed nonparametric estimators for
the sensitivity and the H-G risk measure itself. Fourth, we propose to fit an AR-GARCH model to
each asset or loss variable and then employ a bootstrap method based on residuals to construct a
confidence interval/region for the nonparametric estimator of the sensitivity and/or the H-G risk

measure. Note that a blockwise bootstrap method for dependent data is not feasible here since a risk

97



measure is usually set at a high level such as 99% and the effective sample size in each block may
not be large enough to nonparametrically estimate the risk measure reasonably well.

We organize this chapter as follows. Methodologies and main results are presented in Section
5.2. A simulation study and a data analysis are given in Sections 5.3 and 5.4, respectively. All

proofs are put in Section 5.5. Some conclusions are summarized in Section 5.6.

5.2 Methodologies and Main Results

Suppose the returns/losses of an insurance or a financial portfolio are Y; = Zle a; X, fort =
1,---,n, where X;; is the return/loss of the ith asset or the loss of the ith business line in an
insurance company at time ¢ and @ = (ay, as, . .., aq)’ is the allocation of the portfolio. Then the
H-G risk measure 6 at level ¢ with respect to Y; is equivalent to solving the following equations

under some regularity conditions given in Tang and Yang (2014):

)

E{oCEDIY, > A} =1-q,

(5.2.1)
E{y/ () - 0)1(Y > B)} =0

h<

for some § and # > [, where I(-) is the indicator function. Obviously 6 and 5 depend on
a = (ay, - ,aq)T, and so we will write § = 0(a) and 3 = 3(a).

When a risk measure is applied to a portfolio, a quantity called sensitivity of the risk measure,
which is defined as the partial derivative of the risk measure with respect to the allocation a, becomes
useful in managing the portfolio. Therefore the first question is how to compute the sensitivity of a
portfolio under the H-G risk measure. Note that such a sensitivity essentially is equivalent to the
so-called risk capital allocation.

Let 0) (a) denote the sensitivity of the H-G risk measure for the portfolio return Y; with respect
to the allocation a;. That is V) (a) = a%j(‘)(a). Then we have the following expression for the

sensitivity.

Theorem 5.2.1. Assume the normalized Young function v(x) satisfies 1'(0) = 0. Then for j =
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09)(a) = B {0 a5 B< o) ("f”(“))}, (522)

E{w (e 1(vi > Bla)) }

where 0(a) and ((a) are the unique solution to (5.2.1).

Based on the above theorem, a simple nonparametric estimator for the sensitivity 1) (a) is

Zt 1 Jt@b(Yt fa ) (E>B(a))

19)(a) = K A
SV (e h 5/3(«1)) (Y > Bla))

where 0(a) and ((a) solve the following estimating equations for 6 > /3:

T i V(S
T iV (=

DY, > ) =1-q,
(Y = 0)I(Y, > ) = 0.

(5.2.3)

Although the joint asymptotic distribution of é(a) and B(a) has been derived in Ahn and Shya-
malkumar (2014) for independent observations, we need the asymptotic distribution based on
dependent data before deriving the asymptotic distribution of the nonparametric estimator for the
sensitivity. Here we focus on a—mixing data defined as follows.

For —oo < a < b < oo, let .7-"3 denote the o-field generated by
{Xi=(X1g -, Xay) :a <t <b}
and define for k > 1
ax (k) =sup {|P(ANB) — P(A)P(B)|: A€ F',B € F},—00 <i<0o}.

Then the sequence { X, } is called a-mixing if ax (k) — 0 as k — oco. Some simple examples are a
sequence of independent and identically distributed random variables and an autoregressive and

moving average model. We refer to the book by Doukhan (1995) for more examples.
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Throughout we let (3, 0o, Géj ))T denote the true value of (3,0,0%))7 in (5.2.1) and assume the

following regularity conditions:
o Al)Ask — oo, ax (k) = O(r*) for some r € (0,1);

e A2) 1 is a strictly convex function on [0, co] with ¢(0) = 0,¢(1) = 1,1(0c0) = oo, and ¥ (t)

has a continuous second derivative on (0, co) with ¢/(0) = 0;

e A3) Suppose the density of Y; is positive at 3y, and there exist dy € (0,1/2) and §; > 0 such

that
)50w (G (y)— ﬁo)‘dG—(y) < o0,

1
fG(ﬁo) 60— PBo

- G (y)—
SUP| 85— 8] +100—0|<61,0> fo(g) |G~ (y)|¥"( 9(3)5 6) dy < o0,

Joaey (1= 900" (SGH2) |G () G (y) < oo,

_ G (y)—
SUD 5, 1416001 <6055 Sz (G~ (W) P10/ (S552)  dy < o0,

fG (Bo) fF min((1 — x)%, (1 — y)%)p" (%, 90 ,g ©)dF; (x)dG™(y) < oo,
S F@mmm%< Wm%90%>w7@MGm»<w

SUP| gl a0—01<51.05 s Jo 1Ty (£)G~ (W) (S5572) dC (w, y; §) <

where Fj(x) and G(x) denote the distribution functions of X;, and Y}, respectively.

A key technique in deriving the joint asymptotic distribution of the proposed estimators 6(a), 5(a)
and #) (a) is the approximation of the empirical copula process for an o—mixing sequence given in
Berghaus, Biicher, and Volgushev (2017), which allows us to express the limit in terms of a common
Gaussian process. The technical condition A3) can be ensured by imposing some conditions on
the asymptotic behavior of ¢(z) at infinity and moments of X, and plays an important role in
making this approximation of the empirical copula applicable. For example, if 1)(z) = x¢ for some
d > 1, P(|X;:| > x) and P(|Y;| > ) are regularly varying with index —a; < 0 and —ay < 0,

respectively, then the above condition A3) holds when dy > d /s, 09 > d/as — 1/a; + 1/ and
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there is an open set € including (3, 6y)T such that

E{Supﬁe eQ¢(9 )Y](Yt>5)} o0,
B {supsgyrea [V CERIYVAI(Y: > 8)} < o
E{supgsgprea v (51X tm21<yt>ﬂ>}<oo

Again let F;(z) and G(z) denote the distribution functions of X, and Y}, respectively. Put
Ujr = Fj(X;¢) and V; = G(Yy) fort = 1,--- ,n. Define C(u,v;j) = P(Ujy < u,V; < v),
Co(u,vy7) = 2570 I(Ujy <,V <) and ay,(u, v;5) = v/n{Cy(u,v;j) — C(u,v;j)}. Then,

under condition A1), it follows from Theorem 2.2 of Berghaus, Biicher, and Volgushev (2017) that

sup  |am(wvid) = Wolu,v ‘7)5‘ = 0,(1) (5.2.4)
¢/n<u,w<l—c/n {mln(u v, 1-— ,1 — U)}

for any ¢ > 0 and § € (0,1/2), where W¢(u,v;j) is a tight, centered Gaussian process with

covariance matrix

FE {Wc(ul,vl;j)Wc(U2>Uz;j)}

= COU( (Ujr < up, Vi < 01), I(Ujags < ug, Vigg < 02))-

i=—00

Using (5.2.4), the following theorem derives the asymptotic distribution of the nonparametric

estimators for the H-G risk measure and the sensitivity in terms of the same Gaussian process

Theorem 5.2.2. (i) Under conditions Al )-A3), as n — oo, we have
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where

Z = fGﬁ)WC(lyﬂ)@o 60¢,( 90 50 )dG (y)
S We L y; ) {W'(Ggéy)ﬁfo) Wb g (St )} dG~(y)

and > = (Uij>2x2 with

on = B G g i > W} =0

//Yl_ﬁ() ( )2
Uﬂ:E{w e >B°)}

_ 1 /}q—ﬁo
012 = —ME{?/J(QO_%)](}G >5o)},

= { (VG TR ) 0w

(ii) Under conditions Al)-A3), as n — oo, we have

o - beZy — b1 Z 1
\/E{Q(J)(a) _ 9(()])(a)} — % + ﬁ{bZAl _ b1A2}TE_1Z + Op(l),
2 2

where

fggo)fp {WC Ty Y ]) WC(xal;j)_WC(l y])} dF ( )d"vbl( 90 5_0 )

+fG(ﬁo) fO {Wc(.%’,y;j) - Wc(x, 1;j)} dF ( )dw (Gééyﬁo )7

L {ijlw,/(ggigg) o I(Y, > 50)}
E {Xj,lw,,(};;:gg) SNy, > 50)}
1
2y == We(l,y:5) di'( &)~ 50),
G(5o) B — Bo
A, — B {0 (i) it [ (Vs > o)}

?

B {0 ) e 1 > Ao |
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Y1 —Bo
o — Bo

Y1 — 5o
to — Bo

= E{ XG> | ad =BG > ).

It is known that uncertainty quantification is important in risk management. Although the limit
in the above theorem is a normal distribution, estimating the asymptotic variance/covariance is
highly nontrivial due to dependent data. One may employ the blockwise bootstrap method to
construct a confidence interval for #)(a). However, the effective sample size in each block may
not be large enough to nonparametrically estimate 5(a) and 6(a) accurately since the level ¢ is
always close to one in practice. Alternatively an efficient way to quantify the uncertainty is to model
the dependence of each asset returns by a time series model and then to employ a bootstrap method
based on residuals to construct intervals/regions. More specifically, we propose to assume each

asset return follows the following AR-GARCH model in Chen and Fan (2006):

=t Dl an X Lt (5.2.5)

_pl/2 _ qQ 2 DI
et =Ny e, e =wr+ D0 el + Y0l Burhie

forl = 1,---,d, where {n, := (14, -+ ,n4¢)" } is a sequence of independent and identically
distributed random vectors with means zero and variances one.

A standard inference procedure for the model (5.2.5) is the so-called quasi maximum likelihood
estimator, but its asymptotic normality requires finite fourth moments of both ¢;; and 7;,; see
Francq and Zakoian (2004) . In practice it is quite often that > /" | a;; + > 1, Sk is close to one,
which implies that assuming Eeﬁt < oo may be problematic. Instead we propose to employ the

self-weighted quasi maximum likelihood estimator in Ling (2007) with the weights

—4
1 ZH X i [(| Xei] > C)
51715 = {maX (1, a 19

k=1

to estimate

T
Y= (:ulaal,la"' yAlLp, 1, 7Oél,qlaﬁl,17”' 7ﬁlypl) ’

say 7,, where the asymptotic normality only requires Ee; ;| < 1 and E7712,t < 00. Here C; is chosen
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as the 90% sample quantile of { X}, as suggested by Zhu and Ling (2011).

After obtaining ¥4, - - - ,7,, wWe get our estimators for n,, t = 1, - - , n, say 7),. Therefore, we
resample from {7, }_, with sample size n and then refit model (5.2.5) to obtain bootstrap sample
X[ for l=1,---,dand t = 1,--- ,n. Based on this bootstrap sample, one can calculate the
bootstrapped estimators of 3(a),d(a) and §%)(a). By repeating this procedure many times, a
bootstrap confidence interval for #)(a) based on %) (a) and its bootstrapped estimators can be
constructed. Similarly, a bootstrap region can be obtained for the nonparametric estimators of the

H-G risk measure and the sensitivity.

5.3 Simulation Study

In this section, we carry out a simulation study based on AR-GARCH models. Specifically we

simulate data from the following AR(1)-GARCH(1,1) models for { X} ;} and {X5}:

X1y =0.0830 — 0.0390X 141 + ey, €1 =hinus,

hi, = 0.0548 + 0.0852¢2, , + 0.9043hy ,_1;
’ (5.3.1)

Xy = 0.0591 — 0.0676 X0, 1 + €ap, €24 = hyly 12y,

hay = 0.0259 + 0.1128¢2,_, + 0.8637ha, 1,

where {1, = (n1+,72.¢)" } is a sequence of independent and identically distributed random vectors
with marginal t-distributions with degrees of freedom 6.2345 and 5.6237, respectively, and a
t-copula with parameters p = 0.7206 and v = 6.1702. We consider the return of a portfolio
Y, = a1 X1+ as Xy, with a; = ay = 0.5. Note that the chosen parameters in (5.3.1) and the setting
for 17, come from the fitted values for the returns of Goldman Sachs and S&P 500 index in the real
data analysis given in Section 5.4 below.

First we evaluate the true values 6, Qéj ), j = 1,2 of the H-G risk measure and its sensitivity
by drawing 100, 000 random samples with sample size n = 100, 000 from (5.3.1) and considering
¢ =0.95,0.99, ¢(z) = 2! and ¥ (x) = 2'3. For each sample, we compute § and §). Therefore

the true values 6, and Héj ) are approximated by the corresponding averages of these computed
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100, 000 estimators and are reported in Tables 5.1 and 5.2.

Next, we draw 1, 000 random samples from model (5.3.1) with sample size n = 2, 000 or 3, 000
or 5,000 and compute é, 9, j = 1,2 for each sample. The corresponding averages and standard
errors are reported in Tables 5.1 and 5.2. To examine the efficiency of the proposed bootstrap
method in Section 5.2, we also compute the bootstrapped standard deviations for 6 and by
drawing 1, 000 resamples from the estimated residuals in model (5.3.1) with the same sample size
n. Since the sum of the two slope parameters in GARCH models of equation (5.3.1) is close to 1 on
both margins, we apply the self-weighted quasi maximum likelihood estimator to the resampling
procedure of the bootstrap method as stated in Section 5.2.

Our observations from Tables 5.1 and 5.2 are: i) the proposed nonparametric estimators for the
H-G risk measure and the sensitivity are close to the true values and the proposed bootstrap method
gives a close value to the simulated standard deviation; ii) the nonparametric estimators perform
better as n becomes larger; iii) estimators at level ¢ = 0.99 have a larger standard deviation than
those at level ¢ = 0.95; iv) estimators for ¢)(z) = x'% are larger than those for ¢)(z) = z'!. In

conclusion, the proposed nonparametric estimators have a good finite sample behavior.

5.4 Real Data Analysis

In this section, we apply our estimators to a real data set consisting of the daily log stock returns
of Goldman Sachs (X, ;) and S&P 500 index (X3 ;) from January 3, 2005 to December 31, 2016,
which are plotted in Figure 5.1. The mean and standard deviation are 0.0321% and 2.3753% for
Goldman Sachs, and 0.0203% and 1.2327% for S&P 500. The autocorrelation function plots show
that an AR(1)-GARCH(1,1) model fits well to these two returns. The analyzed portfolio contains
equal unit of these two securities, that is, the log return of the portfolio is ¥; = 0.5X;; + 0.5X5;.
We scale the data by taking multiplication with 100.

We compute the nonparametric estimates of ,6\), j = 1, 2 by solving the two equations (5.2.3)
and equation (5.2.2) for ¢ = 0.95, 0.99. The obtained estimates are reported in Table 5.3. In order

to estimate the standard deviations of the proposed estimators, we apply the proposed bootstrap
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method in Section 5.2. More specifically, first we use the self-weighted quasi maximum likelihood
estimator in Ling (2007) to fit an AR(1)-GARCH(1,1) model to each asset, where the obtained
estimates are summarized in model (5.3.1) in Section 5.3. Second we draw 1, 000 bootstrap samples
from the residuals in the AR(1)-GARCH(1,1) models and then compute the corresponding estimates
for each bootstrap sample. Therefore the bootstrapped standard deviations are obtained based on
these 1, 000 bootstrapped estimates and reported in Table 5.3.

After plotting the autocorrelation functions based on the residuals in Figure 5.2, we confirm that
the employed AR(1)-GARCH(1,1) models are reasonable. That is, the proposed bootstrap method
for uncertainty quantification is applicable to the investigated data set. From Table 5.3, we observe
that the proposed nonparametric estimate and its standard deviation for the sensitivity with respect
to Goldman Sachs are much larger than those for the sensitivity with respect to S&P 500 index,
and estimates at level 0.99 are larger than those at level 0.95. One possible explanation is that the
return of Goldman Sachs has a heavier tail and higher volatility than those of S&P 500 Index which
is observed in Figure 5.1. This makes the H-G risk measure of the portfolio more sensitive to the
change from Goldman Sachs than S&P 500 Index.

In order to examine the finite sample performance of the proposed estimators and the bootstrap
method for quantifying uncertainty under a similar setting with this investigated real data set, we also
fit a bivariate parametric distribution with t-copula and marginal t-distributions to the innovations
in the AR(1)-GARCH(1,1) models. Results are given in Section 5.3. Note that it has no need to
fit a parametric family to the innovations in the employed AR-GARCH models for applying the

proposed nonparametric estimators for the H-G risk measure and its sensitivity to a real data set.

5.5 Proofs

Proof of Theorem 5.2.1. We only prove the case of j = 1 and a; > 0 since other cases can be

shown in the same way. Put Z; = Z?:z a; Xt x1(2) = ’8(2—)1%, and let G(z, z) denote the joint
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distribution function of X ; and Z,. It follows from (5.2.1) that

[ f 9(:_[55)) dG(z,z) =1 —gq, (5.5.1)
S () (1 4 2 — 0(a)) dG(x, 2) = 0.

By taking derivative with respect to a; in the first equation of (5.5.1) and noting that ¢)(0) = 0, we

have

= 73 50 oo () dGi(w, 2)

too (hoo 1y arate—pla) (28D (@) (6(@)-B(@)) — (arz+2—B(a)) (60 (@)— D) (a))
f f:m / 1 6(a)— /3(0‘; ) (9(@)75(@)2 dG(.I', Z)
40 (00 arrtela)) ¢ 2(0(a)-B(a)) 60 (@) (a12+2-5(a)) ~8V (@) (6(a)—ara—=) p

f f dj ba)=5la) ) (O(a) 5(a))2 G(«T,Z>
)(

1Y X1,:(0(a) —0M (a)(Yi—B(a)) —BD(a)(6(a)-Y:
{Weé) Bﬁ(a)) loey-ste) ((a)( @) ) >1(Yt > ﬂ(a))}

—E{W sarsia)) s ! (Y > B( ))}

_p) Yi— B(a) Yi—B(a) ; g
( )E {1/} ( (a)) (9(0)—5(0)) ](Y g 5(“))}

(@)-5(a)
Yi—B(a) X1
= B {0/ (25 s iz (Ve > Bla) |

_p) —B(a) Y:—fB(a) a
0 ( )E {1/}< (a))(e(a)_ﬂ(a))Ql(Y;‘/>ﬁ( ))}

~pV(a)E {zw’(@é;fg‘;;)) 0 Aol )21(1@ > B(a))}

by using the second equation of (5.5.1). That is,

1y Yi— 5 X1

E{wuﬁﬂﬂ» (0 ) |

(6(a)-8(a)
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It follows from the second equation of (5.5.1) that

e vy gt o)

(a)-B(a))
+—b(a)  (¥i—0(@)) +(9(a) () 553
= v (9(3)_2@)2 >1<Yt>ﬂ<a>>} 033

= b {qb/(@i)_—ﬂzgl(lr)z)) 9(a)i6(a)I(Y;5 > 6(a))} .

Hence (5.2.1) with j = 1 and a; > 0 follows from (5.5.2) and (5.5.3). Other cases can be shown in
the same way.

Before proving Theorem 5.2.2, we first list some facts and then show some lemmas.
Under condition A1), it follows from Proposition 4.4 of Berghaus, Biicher, and Volgushev (2017)

that for any 6 € (0, 1/2) and positive 9,, — 0

v, (g, 015 §) — o (ug, v2; 7))

sup =0,(1 (5.5.4)
w1 —us|+or —va| <6, MAX (U1 — ua|® 4 |01 — va|?, n~7) p(1)
and
| (u, 15 9)| + | (1, u; j))|
= 0,(1). 5.5.5
SR - o
Lemma 5.5.1. Under conditions of Theorem 5.2.2, as n — oo, we have
n{l T (A=Y, > 4 —1—|—q}
\/_ n thl (90 50) ( t O) (5.5.6)

= - fé(ﬁo) WC(L y;j)goiﬁo,@bl(G;O(Z)ﬁ_oﬁo) dGi(y) + Op(1>a

I~ Y — Y, — 6
- Z@b’(eo — §§> 6o 55)21(3@ > By) = 0,p(1), (5.5.7)

t=1
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. (Fizboy B 1 Y1 = By
ﬁ;w (6’0 —ﬁo)(eo _50)2]()/7? > o) = 0o _BOE{@/) (90 _BO)](Yl > ﬁo)} + 0p(1).
(5.5.8)

Proof. Write

DL <§;‘§3)I(Yt > Bo) — (1 —q)
- fGl(Bo) i) d{Cu(1,y;5) — C(1,y: )}
= — Jou{Cn(1Ly:0) = C(Ly; )} g ig 0 (S ﬁﬁ))dG (v)
= e G (Lysg) = C(Lys )} st (G525 dG (y)
~Jin ACa(Ly5 ) = C(Lys )} 5t (Geéy)ﬁf‘))dG*( )
= Jogm {01 = L) = CU = L)} gy (55 dG(y)
— Ja 1/"{0 Ly;j) — C(Ly;5) — Co(l— 5,y30) + C(1 = 2,459) }
X 90;301# (Geéyi)goﬁw dG~(y)
— [ ACa(1y3g) — C(Lys )} gt (G522 dG (y)
= L+ L+ 1.

Since [ 5 (1= 4)™ 1 (S5252)| dG~(y) < oo, it follows from (5.2.4) and condition A3) that

Vil =— [ 1/an( 1=y ) gon /301//( 00 BO ) G~ (y) + 0,(1)
fG’ WC 1 ' Y5 ])90 gow,( 90 50 )dG ( )+0p(1).

(5.5.9)

Using fG (6o ) (1 —y)%y'( eoy)ﬁoﬁoﬂ dG~(y) < oo, it follows from (5.5.4), (5.5.5) and A3) that

VilL| = oy (Jag no ol (G0 >|dG v))

(5.5.10)
= 0y (Jagay (L= )|/ (S22)] dG(y)) = 0,(1)

and

Vinlls| = 0, (/1_1/ (1= ) (O(f)ﬂoﬂdG (y )) = 0,(1). (5.5.11)
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Hence (5.5.6) follows from (5.5.9)—(5.5.11). Similarly we can show that

50 /}/1_60 — 0
Y G Gt 0> )~ B { G G 0> A0 f =

and

ln (Yi=Boy Fo= i _ ,Y1— 0oy fo—Y1 B
n;¢(90_50)(90_50)2[(3@>50) E{¢(90_ﬁ0)<90_50)21(3/1>5o)}—op(1).

Then the lemma follows by noting that

/ E_BO
E{‘”eo—ﬁo (90—50)

I(Yr > 50)}

and

B{W/(G=00) i 10V > o) | = —m B {0/ GBI > o) }

Lemma 5.5.2. Under conditions of Theorem 5.2.2, as n — oo, we have

\% S V(G (Ye = 00)I(Y: > fo)

) (5.5.12)
= S WeL:) {0 (F5252) Sl (SGE) | dG(y) + 0,(D).

LS () B W 1Yy > o) = {w”(;“; gg>(§;—go>m >50)}+op(1), (5.5.13)

and
Ly, {r (st o0 to) (i) L 1(Y, > )
= B{ (v (i) gl ) — g/ () 1(V: > Bo) | + 0,(1).

Proof. Tt can be shown in the same way as the proof of Lemma 5.5.1. 1

(5.5.14)
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Lemma 5.5.3. Under conditions of Theorem 5.2.2, as n — oo, we have

V{3 S X GERIY: > o) — B(Xuv! (R > ) }

= Joan Jr ) Wel@,y: §) = We(l,y; §) = Welx, 1;5)) de(;c)dwm) (5.5.15)
S Jo ! IWel@, v ) = Wolw, 1:5)} dFy (x)dy' (S852) + 0,(1),
w2 X" G e L (Y > o) (5.5.16)
= B {X G LY > o)} +o,(1)
and
< Zt 1 Jt¢//(;g gg) gio_ﬂ?)Ql(n > ﬁo) (5517)
= B{X0GER) R 1Y > ) |+ o,(1).
Proof. Put

Api(z,y) = Cn(x,y;5) — Cla,y;7) — Culz, 1;5) + C(z, 1, j) — Cu(1,y39) + C (1,93 7),

Apa(x,y) = Cn(w,y;5) — Clw,y;5) — Cp(x,1;5) + C(x, 15 j),

Aps(z,y) = Cn(x,y;7) — Clz,y;5) — Co(L,y35) + C(L, 95 ).
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Use the integration by parts, we have

lZl‘ﬂXnW(éii‘ésﬂm > By) = E(Xjad! GEE)I(Y1 > b))
= fGﬁo)fF 9 goﬁo)d{c (z,y;7) — Clz,y35)}
+fG(Bo)f0 F (2) (W)d{c (z,y;5) — Clx,y;5)}
= Jaa Jr o Fr @0/ (S5252) dA (2, y)
S Jo O F (@) (G dA s (2, y)
= Jaon) S0 D (2, y) dF; (x)dy (S51220)
+ S0 ff O A, y) dF (w)dy' (S50
= L+ I,

Write
L= fa) Jeo " Al y) dF; (@ >dw<%§y>ﬁf°>
Ll i A () dE () dy! (St ﬂo o)
+ [ o] B (e, y) dFy () dy! (S50
L S B () dE; (2)dyy (00

=IL+1L+113+11,

and

1-1/n pl- l/n B
1h G(Bo) Jr F;(0) Api (2, y) dFy (z )dw’( 90 Bo )
1-1/n pl1-1/n
+fGﬁo/ Jr;0 M { A, 1= 1)+ Aps(1 = Ly)} dF; (a)dyy' (G572

It follows from (5.2.4) and A3) that

Vol
1-1/n pl— 1/n

IR {WC z,:5) = Welw, 1= 553) = Wo(l = 3, 4:4) }
Fy (x W( SR+ 0,(1),
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and it follows from (5.5.4) and condition A3 that

Va1,
= oy (S Sy n oo (S22 Ay (2)dG(y)
= 0y (S S0y min (1= @)%, (1= )% )6 (S5 052) dF; (2)dG () ) = 0p(1),

which imply that
Vnlly
fG,gO) fF {WC z,Y, ]) Wc(l‘,l;j)—Wc(l,y;j)} dF] ( )dw (Gg(gygﬁo)"i_op(l)
(5.5.18)
By (5.5.4), (5.5.5) and condition Aj3), we have
Villy = [ool [ {an(y: ) — aAlyﬁhM’<mwﬁgzﬁ>
+ Jaay iy 0@, 1) dF; () du' (500 )
1-1/n —
= 0y (o iyl = 2V (S5 ARy (2)dG (y) )
= 0,(1).
Similarly we can show that
\/ﬁ]lg = Op(l) and \/5114 = Op(l).
Hence we have
Vnly
= Jaa Jr,0 (Wol@,y:9) = Wol,y;5) = Welz, 1;5)} dFy (2)dd! (G255 + 0,(1).
(5.5.19)
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For I,, write
L= Jou)" " Aua(z,y) dFy (2 >dw<%§y>ﬁf°>
+ feay o nz(ﬂf,y)dF (z)dy! (%5 5_0 %)
S o D, y) dFy (2)dy (G20
=Vi+Va+ Vi

Like the proof of (5.5.19), we can show that
1 F;(0 . . _ () —
Vi = Joam Jo O AWem,y:5) — Wel,159)} dFf (2)d! (S22 +0,(1). (5.5.20)
By (5.5.4), (5.5.5) and condition A3), we have

VAVs = far b (e v 9) = an(0,4:.)} de<x>d¢’<—G;§?)$°>

L o i, 1) dE ()dy! (Sg 0 (5.521)
— Op< éﬁl/)n fl/n 5dF dw( 00y)ﬁoﬂo)> _ 0p(1)
and
VnVs (ﬁ o do =y dFy (2 )d@b(G@(fy)ﬁf")) = 0,(1). (5.5.22)

Therefore we have

Vil = [ o AWe(@,y;5) = Wol, 1;5)} dFy (2)dy(S5252) + 0,(1). (5.5.23)

Hence, (5.5.15) follows from (5.5.19) and (5.5.23). Proofs of (5.5.16) and (5.5.17) can be done in

the same way. I

Lemma 5.5.4. Under conditions of Theorem 5.2.2, as n — oo, we have

i {E S I > ) — B( ()10 > ) )
= f WC(l y])dw( Go— ﬁﬁ0>+0p<1)

(5.5.24)
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i V() e L (Y > Bo)

(5.5.25)
- {W% =) g (V1> 50)} on(l)
and
iV G g L (Y > o) (5.5.26)

= {¢//(00 60) 0[10 ﬁ’gl) I(Y; > ﬁo)} + 0,(1).

Proof. It can be shown in a similar way to the proof of Lemma 5.5.1. 1

Proof of Theorem 5.2.2. Recall that 3(a) and §(a) are the solution of estimating equations (5.2.3).

An application of Taylor expansions yields that

LY () (Y, > Bla) — (1-g)
= X LY(g - ﬁ;‘;))) (Y > B(a)) — 3 Sy (G5 I(Ye > fo)
+r zt:m(gy;,ég) (Y, > fo) — (1 —q)
= (Ba) = Bo): i, ¥/ (22) s I(Y; > o)
+(8(a) — 00) 2 o0, ¥ (=) s L (Y > Bo)
LY P GER)I(Ye > Bo) — (1—q)
+0,(|B6(a) = Bo| + 10(a) — o).

Then it follows from Lemma 5.5.1 that

ﬁ{lzzll Yt (Yt>6( ) - (-q)}
— S We L,y ) gt (S5252) dG(y)
+ﬁ( (@) = Bo) B {0/ (=) st 1(Y: > fio) } (5.5.27)
—Vin(0la) = 00) g5 B {w (B 11 > o)}
+o,(vnlB(a) — Bo| + v/nlf(a) — 6o)).
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Similarly we can show that

f > et wl( ;) A a))(Y} — é(a))](Yt > B(a))
i fG% Well.J) {w”<G5§%f°>G;§%G° HY(SGEER) } dG(y)
vi(Bla) — fo) B {W’( b G 503 (Y1 > ﬁo)} (5.5.28)
Vi(B(a) = 00) B { (v (3= ?8 UGN (=R 1(Y; > By) }
+0p(\/ﬁ\6(a) — Bol + +/nld(a) — 6|).

Therefore (5.5.27) and (5.5.28) imply

Jn Ala) ~fo = 21Z +0,(1),

A~

49(01) — 60

where Y and Z are given in Theorem 5.2.2. This completes the proof of the first part of the theorem.

For the second part, note that

09 (a) - 05 (a)
. DI jt¢(9?t)5[§?)))1(n>5(a)) E{Xj 1 (5= BO)I(Y1>50)}
L (R (Vi fla) B{y (3= BO) 1(¥1>60)} (5.5.29)
RE >IN )B;g")> 1(vi>B(a)) - bl}fbl{lzt 1 (v ) b2 |

L, v (e 1 (Vi)

)

where

Y, — Y, —
by = E {Xj,ﬂp’( ! 50)[(1@ > 50)} and by =F {z//(l—ﬁo)l(Yl > 50)} .
o — Bo 0o — Bo
From Lemma 5.5.3, Lemma 5.5.4 and Taylor expansions, we have
Vit {89(a) - 0§ (@)}
_ bg{zl+A{E—1Z}b;b1{ZQ+A2TE‘1Z} +0,(1) (5.5.30)

= RZShD 4 L {h Ay — b A} TN Z 4 0,(1),
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where 7, Z5, A1, A, are given in Theorem 5.2.2. Hence the theorem follows. 1

5.6 Conclusions

Haezendonck-Goovaerts (H-G) risk measure has been studied well in actuarial science. When it is
applied to an insurance or a financial portfolio, the sensitivity analysis becomes useful. First we
derive an expression for the sensitivity of the H-G risk measure. Second we derive the asymptotic
distribution of the nonparametric estimator of the H-G risk measure under the assumption that the
returns/losses in the portfolio follow from a strictly stationary c-mixing sequence. This generalizes
the result in Ahn and Shyamalkumar (2014) from independent data to dependent data. Third,
this chapter proposes a nonparametric estimator for the sensitivity and derives the asymptotic
distribution, which use the derived asymptotic distribution of the nonparametric estimator of the H-
G risk measure. Since uncertainty quantification is important in risk management and the obtained
asymptotic variance of the nonparametric estimator for the sensitivity is quite complicated, we
further propose to model each asset/loss by an AR-GARCH model and then employ a bootstrap
method, resampling from the residuals in the AR-GARCH models, to construct a confidence interval
for the sensitivity. We remark that a blockwise bootstrap confidence interval is not feasible in
practice due to the fact that the level ¢ in the H-G risk measure is generally set to be close to
one, say 95% or 99%, and so the effective sample size in each block will not be large enough to
nonparametrically estimate the H-G risk measure accurately. A simulation study shows that both the
proposed nonparametric estimators and the proposed bootstrap method perform quite well. Finally

we remark that the obtained results are directly applicable to risk capital allocation in portfolios.
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Table 5.1: Simulation study: true value and nonparametric estimators of the H-G risk measure at
levels 0.95 and 0.99 with ¢(x) = 2! and its sensitivity are reported with corresponding standard
deviation given in the brackets.

(q,n) 6o 0 Bootstrap SD
(0.95,2000) | 3.6451 3.5421 (0.8326) 0.7660
(0.95, 3000) | 3.6451 3.5544 (0.6666) 0.6665
(0.95, 5000) | 3.6451 3.5836 (0.5906) 0.5439
(0.99, 2000) | 6.1415 5.6748 (1.8855) 1.7242
(0.99, 3000) | 6.1415 5.7735 (1.6126) 1.5900
(0.99, 5000) | 6.1415 5.9026 (1.5193) 1.4008

(q,n) S o) Bootstrap SD
(0.95, 2000) | 5.2225 5.0264 (1.4622) 1.2615
(0.95, 3000) | 5.2225 5.0662 (1.1903) 1.1262
(0.95, 5000) | 5.2225 5.1314 (1.0857) 0.9533
(0.99, 2000) | 8.9861 8.0798 (3.1378) 2.8348
(0.99, 3000) | 8.9861 8.2974 (2.8772) 2.6925
(0.99, 5000) | 8.9861 8.5769 (2.8467) 2.4850

(q,n) IS 02 Bootstrap SD
(0.95, 2000) | 2.0677 2.0581 (0.5223) 0.5317
(0.95, 3000) | 2.0677 2.0427 (0.3835) 0.4339
(0.95, 5000) | 2.0677 2.0359 (0.3111) 0.3175
(0.99, 2000) | 3.2969 3.2714 (1.4598) 1.3760
(0.99, 3000) | 3.2969 3.2504 (1.0744) 1.1950
(0.99, 5000) | 3.2969 3.2924 (0.9272) 0.9399
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Table 5.2: Simulation study: true value and nonparametric estimators of the H-G risk measure at
levels 0.95 and 0.99 with ¢(x) = 2! and its sensitivity are reported with corresponding standard

deviation given in the brackets.

Table 5.3: Real data analysis: nonparametric estimation of H-G risk measure and its sensitivity

(g,n) 6o 0 Bootstrap SD
(0.95, 2000) | 3.7830 3.6496 (0.8810) 0.9342
(0.95, 3000) | 3.7830 3.6700 (0.7228) 0.8478
(0.95, 5000) | 3.7830 3.7087 (0.6596) 0.6317
(0.99, 2000) | 6.3497 5.7926 (1.9537) 2.1686
(0.99, 3000) | 6.3497 5.8971 (1.6777) 1.9927
(0.99, 5000) | 6.3497 6.0484 (1.5983) 1.6266

(q,n) IS o) Bootstrap SD
(0.95, 2000) | 5.4352 5.1774 (1.5238) 1.5337
(0.95, 3000) | 5.4352 5.2360 (1.2926) 1.3784
(0.95, 5000) | 5.4352 5.3175 (1.2932) 1.1095
(0.99, 2000) | 9.3184 8.2433 (3.2420) 3.5391
(0.99, 3000) | 9.3184 8.4766 (2.9879) 3.3885
(0.99, 5000) | 9.3184 8.7888 (2.9856) 2.9001

(g,n) o1” 0 Bootstrap SD
(0.95,2000) | 2.1308 2.1221 (0.5762) 0.6356
(0.95, 3000) | 2.1308 2.1041 (0.4222) 0.5130
(0.95, 5000) | 2.1308 2.1000 (0.3626) 0.3703
(0.99, 2000) | 3.3845 3.3419 (1.5286) 1.6232
(0.99, 3000) | 3.3845 3.3176 (1.1179) 1.3641
(0.99, 5000) | 3.3845 3.3079 (0.9939) 1.0253

measures of portifolio (Goldman Sachs, S&P 500 index).

0 Bootstrap SD o™ Bootstrap SD | #?  Bootstrap SD
g =0.95 | 3.9390 0.5540 54174 0.8271 2.4636 0.6751
q=0.99 | 7.3377 1.3005 10.2146 1.9908 4.4608 1.6542
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Figure 5.1: Time series and histograms of Goldman Sachs (left) and S&P 500 Index (right).
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Figure 5.2: Time series of estimated residuals (top) and their autocorrelation functions (bottom) for
Goldman Sachs (left) and S&P 500 Index (right).
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CHAPTER 6
ENDPOINT ESTIMATION FOR OBSERVATIONS WITH NORMAL MEASUREMENT
ERRORS

This chapter investigates the estimation of the finite endpoint of a distribution function when the
observations are contaminated by normally distributed measurement errors. Under the framework
of Extreme Value Theory, we propose a class of estimators for the standard deviation of the
measurement errors as well as for the endpoint. Asymptotic theories for the proposed estimators are
established while their finite sample performance are demonstrated by simulations. In addition, we
apply the proposed methods to the outdoor long jump data to estimate the ultimate limit for human
beings in the long jump. The content of this chapter is based on the joint work:

X. Leng, L. Peng, X. Wang and C. Zhou (2018). Endpoint estimation for observations with

normal measurement errors. Extremes. To appear.

6.1 Introduction to Endpoint Estimation

For a continuous distribution function F, its right endpoint is defined as § = sup{z : F'(z) < 1}.
Estimating the endpoint ¢ has been applied in various contexts when § < +oo. For example,
Aarssen and De Haan (1994) estimated the endpoint of the distribution of the life span of human
beings, namely, the maximum life span. In productivity analysis, estimating the production frontier
can be viewed as estimating the endpoint of the distribution of outputs conditional on the inputs; see
e.g. Cazals, Florens, and Simar (2002). Another notable application in Einmahl and Magnus (2008)
considers estimating the ultimate world record, in other words, the limit of human being, in a
specific sport. For general statistical methods designed for estimating the endpoint, Hall (1982)
studied the maximum likelihood estimation, Hall and Wang (1999) proposed a minimum-distance
estimation, Hall and Wang (1999) investigated the Bayesian likelihood approach, Girard, Guillou,

and Stupfler (2012) used a sequence of high-order moments for endpoint estimation, and Alves and
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Neves (2014) studied the finite endpoint estimate with distributions from the Gumbel domain of
attraction.

Since the endpoint is only related to the right tail region of the distribution, it is natural to
consider Extreme Value Theory (EVT) in endpoint estimation. EVT models the tail region of a
distribution function. The endpoint is finite if the distribution function belongs to the domain of
attraction of the Weibull distribution. By regarding the endpoint as a high quantile with a probability
level tending to one, the limit of the high quantile estimator can be considered as an endpoint
estimator. Therefore, one may estimate the endpoint using the estimators on the extreme value
index, scale and shift; see e.g. Chapter 4.5 of De Haan and Ferreira (2007).

In reality, data are often contaminated by measurement errors. In other words, instead of observ-
ing independent and identically distributed (i.i.d.) sample drawn from the underlying distribution
with a finite endpoint, we observe data as the convolution of the initial random variable and an
independent measurement error term. Mathematically, suppose X1, ..., X, are random variables
with a continuous distribution function F'x and a finite endpoint 6. Instead of observing { X, }7,
we observe Y; = X; +¢;,i = 1,2,...,n, where {¢;} are i.i.d. random errors with mean zero, and
{e;} are independent of { X;}. The goal in this chapter is to estimate the endpoint ¢ based on the
observations {Y;}? , when ¢; follows a normal distribution. Notice that in this case, the distribution
function of Y; has an infinite endpoint. That is, existing endpoint estimators designed for the case of
no measurement errors are inconsistent under the above setup.

In a broader context, extracting the distribution of X; based on the observations {Y;}! ; is
related to the so-called “deconvolution” problem. In the literature of nonparametric deconvolution,
kernel estimators for the density function of { X;} were proposed; see, e.g., Carroll and Hall (1988);
Stefanski and Carroll (1990); Meister (2006); Meister and Neumann (2010). Based on estimating
the density function, Hall and Simar (2002) proposed an estimator of # assuming that the density
fx is approximated by a flat function in the neighborhood of # and the variance of the measurement
error, 02 = var(g;), depending on the sample size n, shrinks to zero as n — oc. By contrast,

Kneip, Simar, and Van Keilegom (2015) did not require that o tends to zero as the sample size
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increases while dealing with a constant o. They proposed a joint estimation of 6 and o when the
measurement errors {¢; } follow a normal distribution N (0, c%). Nevertheless, both of these two
approaches require that fx(6—) > 0. Compared to these studies, we aim at estimating the endpoint
for a broader class of fx allowing fx(f—) to be positive, zero and infinite.

Our approach is close to that in Goldenshluger and Tsybakov (2004), which proposed an
endpoint estimator for data with measurement error. They modeled fx near 6 by a power function
with index «, i.e., fx(6—) = 0, and derived that as n — oo,

viogn (max Y, —o+/2logn — 9) = 0,(1),

loglogn \i<i<n

Correspondingly, Goldenshluger and Tsybakov (2004) proposed to estimate 6 by max Y; —
o+/21og n, where o is assumed to be known and this estimator has a degenerate limit. o

In practice, the estimator proposed in Goldenshluger and Tsybakov (2004) is not applicable
because of the unknown o. This chapter aims at filling this gap by providing an estimator of the
endpoint when o is unknown. More specifically, under an EVT model for F'x, we first estimate o by
using the top k order statistics of {Y;}, where k is an intermediate sequence such that & — oo and
k/n — 0asn — oo. With some proper conditions on the intermediate sequence k, the estimator for
o possesses asymptotic normality with a speed of convergence v/k. Next we estimate the endpoint
by 6 = max Y; — 6+/21og n. This estimator inherits the asymptotic normality of &, however, with
a slightly_ c_ompromised speed of convergence.

Compared to the existing literature, our approach has two main advantages. Firstly, we do
not require that F'x has a density, but only assume a second—order expansion of the survival
function Fx(z) = 1 — Fx(z) in the neighborhood of . Compared to Kneip, Simar, and Van
Keilegom (2015), our model assumption allows for a broader class of F'x, which includes the model
in Goldenshluger and Tsybakov (2004) as a special case. Secondly, we do not require any additional

information such as the variance of the measurement errors. Therefore, our approach is more close

to the real situation encountered in applications.
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Our estimation procedure and its asymptotic properties are discussed in Section 6.2. We conduct
a simulation study in Section 6.3 and then apply our method to sports data in Section 6.4. The

proofs are postponed to Section 6.5. Section 6.6 concludes.

6.2 Estimate Endpoints with Observation Errors

Recall that X4, ..., X, are 7.7.d. random variables with a continuous distribution function F'yx that
has a finite right endpoint 6 := sup{x : Fx(z) < 1}. Further, in a neighborhood of 6, we assume

the following second—order expansion of the survival function Fx(z) = 1 — Fx () : as u — 0%,
Fx(0 —u) = Lu® + du®"’ + o(u**?), (6.2.1)

where L, « and (3 are positive constants, and d # 0. Under the condition (6.2.1), F'x belongs to the
maximum domain of attraction of the Weibull distribution with an extreme value index v = —1/a.
Suppose we do not observe {X;} directly. Instead, we observe V; = X; +¢;,1 = 1,2,...,n,
where {¢;} are i.i.d. normally distributed random measurement errors with mean zero and unknown
variance o2, and {¢;} are independent of {X;}. The question is how to estimate § based on the
observed {Y;}.

Recall that with assuming that o is known, Goldenshluger and Tsybakov (2004) proposed
to estimate # by max Y; — ov/2logn. We will first construct an estimator for o, and then an
estimator for #. The estimator of the parameter o is constructed in three steps. Firstly, we investigate
the tail expansion of the distribution of Y;. Secondly, we obtain the approximation of the tail
quantile process based on {Y;}; . It will turn out that the parameter o is a scaling factor in the
approximation. Therefore, in the last step we use a weighted moment method to construct an
estimator of o based on inter-quantile ranges.

We first investigate the tail expansion of the distribution function. Without loss of generality,
we consider the tail expansion of the distribution of Z; with Z; = Y; — 6. Denote the distribution

function and survival function of Z; as Fy and F, = 1 — F, respectively. We first show F, has a
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second—order expansion as in the following proposition.

Proposition 6.2.1. Suppose a random variable X has a distribution function F'x with a finite right

endpoint § = sup{zx : Fx(z) < 1} < oo. Assume that Fx satisfies the condition (6.2.1). ¢ is

2

a normally distributed random error with mean zero and an unknown variance o* > 0 and is

independent of X. Denote Z = X + ¢ — 0. Then, ast — o0,

2

_ t ’
~10g Fy(t) = 5 + (a+1)logt — log e; — Z—jt—ﬂ (1+o0(1)),

where
, ['(a+ 1)Lo?*!
= min(g, 2 ,
and

1
V2T

1
Cy = —F(Oz + 6 + 1)d0’2(a+6)+11/3/:5 —

e
@ 1>r ) Lo20+31
o <2+ (o +2)Lo 3=2

Next, the tail property of [, provides an approximation for the tail quantile process based on
{Z:};_, or {Y;}!_, asfollows. Denote Y} , < Y3, < --- <Y, , as the order statistics of Y7, - - - , ¥},.
Then the order statistics of the unobserved random variables {Z;}! | are Z,,_;,, = Y,,_;,, — 0.
Consider an intermediate sequence k = k(n) such that & — oo and k/n — 0 as n — oco. Since
Fz(Z,_in) = i/n, we have approximately from Proposition 6.2.1 that

Yo in—20
—log(i/n) ~ —2—r|
slifm) ~ =2
fort =1,2,... k.
Finally, we can estimate the parameter o using a weighted moment method as follows. By

considering the inter-quantile range between Y,,_; ,, and Y,,_ ,,, we get that

Yn—i,n - Yn—k,n ~ “loo(i/n) — o n 10g(l€/l) ~ 10g(k’/l)
V20 ~ v/~ logli/n) = /= log(k/n) = log(n/i) + \/log(n/k)  2:/log(n/k)
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Take any positive continuous function g on (0, 1] such that fol g(s)(—log s) ds = 2. We construct a

weighted sum of the differences {Y,_;,, — Y,,_x} using the weights {+¢(i/k)} as

1
s)(—logs)ds ~

1 & Yoiin—Y,
+ ilk n—i,n n—k,n s / .
k ;g( /k) V20 2\/log (n/k) Jijk log(n/k)

Hence, we get an estimator of o as

g =

Vlog "/k Z (i/) (Vin — Yoson)- (6.2.2)

Replacing o with 6, in Y,, , — 0+/2logn , an estimator of 6 is then given as

Oy = Ynn — 641/2logn. (6.2.3)

Note that ég is always smaller than the maximum Y,, ,, from the positiveness of ¢,. This is different
from the endpoint estimator proposed in Alves and Neves (2014), which is based on observations
without measurement errors and the assumption that the underlying distribution is in the Gumbel
domain of attraction and has a finite endpoint.

To obtain the asymptotic property of the above estimator, we further assume that 5 > 1 and the
intermediate sequence £ satisfies the following condition: as n — oo,

5’
2

k= k(n) — co,k/n — 0, and vk (log(n/k))” = (loglog(n/k))*'#=2 = O(1). (6.2.4)

We first prove the asymptotic property for o,. That of ég will then follow as a direct corollary.
The asymptotic normality of &, requires the following conditions on g(s), s € (0, 1]. There

exists eg > 0, such that

1
lil% g(s)sY*7° = 0,and / g(s)(—logs)ds = 2. (6.2.5)
5— 0

In addition, we assume a joint condition on the intermediate sequence k£ and the function g as
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follows,

t
lim Vk sup 9(s) ﬂ‘ = (6.2.6)
n—o0 |s—t|<1/k,1/k<s,t<1 logs logt
Examples such as g(s) = —log s, and g(s) = 2(v + 1)?s”, v > 3, satisfy all conditions.
The following theorem gives the asymptotic normality of 7.
Theorem 6.2.2. Suppose X1, ..., X, are i.i.d. random variables with a continuous distribution

function Fx. Assume that Fx has a finite right endpoint = sup{z : Fx(z) < 1} and satisfies
the condition (6.2.1) with B > 1. Suppose Y; = X; + €;,i = 1,2,...,n, where {¢;} are i.i.d.
normally distributed random errors with mean zero and an unknown variance o > 0, and {&;}
are independent of {X;}. Assume that g : (0,1] — (0, 00) satisfies (6.2.5) and k = k(n) is an
intermediate sequence satisfying (6.2.4) and (6.2.6). Then, as n — oo, the estimator ¢, defined in

(6.2.2) has the following asymptotic property:

At n(o L fromn (0 ) )

Consequently, the estimator ég defined in (6.2.3) possesses asymptotic normality as follows.

Corollary 6.2.3. Under the same conditions as in Theorem 6.2.2, as n — 00,

ko » t
L(eg ) -4 N (0, Z / / min(s D) 1Y gsar)
Vdiogn st
Remark 6.2.4. We substitue o with 6, when calculating the confidence interval for ég based on

Corollary 6.2.3 in Section 6.4.

Remark 6.2.5. With g(s) = —logs and g(s) = 2(v + 1)%s” for v > 1/2, Corollary 6.2.3

correspondingly implies

and




6.3 Simulations

In this section, we investigate, through simulations, the finite sample behavior of the suggested
endpoint estimator. We generate observations Y; = X; + ¢;,¢ = 1,2,...,n, where {X;}",
and {g;} , are two sets of i.i.d. random variables independently drawn from the following data

generating processes. In all three cases, we set the true value of the endpoint for X; to # = 0, while

setting the distribution of ; to a normal distribution N (0, o) with two potential levels of .

(a) X follows a uniform distribution on [—1, 0] and o = 0.1 or 0.2. Notice that condition (6.2.1)

holds for the uniform distribution with &« = 1 and § = oc.

(b) X, follows a reversed Burr distribution with the following distribution function

and ¢ = 2 or 3. Notice that condition (6.2.1) holds for the reversed Burr distribution with

a =20and g = 22.

(c) X, follows a shifted Beta distribution with the following probability density function
fx(r) = —422(1 +2)°, —1 <2 <0,

and o0 = 0.1 or 0.2. Notice that condition (6.2.1) holds for the shifted Beta distribution with

« = 2 and 8 = 1, which violates our required condition 5 > 1 in Theorem 6.2.2.

From each data generating process, we draw r» = 1000 random samples with a sample size
n = 5000. Then we estimate the endpoint for each sample using an estimator égo with a specific
choice, go(s) = —log s on (0, 1]. It is straightforward to check that g, satisfies the condition (6.2.5).
During the estimation procedure, we need to determine the value of k, i.e. the number of

upper order statistics used. For that purpose, we perform a pre-study as follows. By varying

*The quantiles of the reversed Burr distribution are g 190 = —9.72, ¢ 25 = —5.85,¢.75 = —2.59 and ¢ 99 = 1.97.
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k from 5 to 50, we plot the average estimate! ,, = 771 Yoy égoﬂ-, the standard deviation:

\/ r=L S (B0 — O4)? and the root mean squared error (RMSE): /71 37| égm for each data

generating process. In Figure 6.1, we demonstrate the results for the two data generating processes

in (b). We observe that the optimal & that minimizes the RMSE is achieved at about £ = 10. We do
choose k£ = 10 throughout the simulation study, also for the other data generating processes in (a)
and (c).}

Figure 6.1: Endpoint estimation for various k: Reversed Burr Distribution

Estimation error

reversed Burr 6=2

reversed Burr 6=3

—— Bias

Estimation error

—— Bias

***** Standard Deviation ------ Standard Deviation
o -—-=  RMSE O ----  RMSE

10 20 30 40 50 10 20 30 40 50

Note: The figure shows the bias, standard deviation and RMSE for the estimates égo across 1000 samples with sample
size n = 5000. The observations are generated by combining the reversed Burr distribution in (b) with measurement
errors following N(0,02), o = 2 (left) or o = 3 (right).

We compare the performance of our suggested endpoint estimator with that of the probability
weighted moment (PWM) estimator for the endpoint, the general endpoint estimator proposed in

Alves and Neves (2014) and the high-order moments estimator for the endpoint in Girard, Guillou,

and Stupfler (2012), respectively. More precisely, the PWM estimator is defined as

YPW M

Opwar = Yooin — : (6.3.1)

TSince the true endpoint equals 0, the average estimate can be read as the estimation bias.
!The figures for the other data generating processes are available upon request.
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where
I, — 41,

. 2415
———, and k) =
T 2L, and apwar(n/k)

TPwM = T —2L

with the probability weighted moments given by

17\t
I; = I Z (E) Yooisvin — Yokn), J=12
i=1

Note that & pw s 1S an estimator of @ only if there is no measurement error in the observations, i.e.

g, =0,1=1,2,...,n. The general endpoint estimator is given by
k-1
0" = Yon+ Y dik(Vikn — Yockin), (63.2)
i=0

where d;, = —(log2)~" (log(k + i) — log(k +i + 1)) > 0, satisfying S5 d;, = 1. Since the
weighted spacings in (6.3.2) are non-negative, we observe that oF is greater than the sample
maximum Y/, ,, whereas our suggested endpoint estimator in (6.2.3) is less than Y, ,,. Note that oF
estimates the endpoint of a distribution from the Gumbel domain of attraction with finite endpoint.
The high-order moments estimator for the finite endpoint is defined as

i e ]

Pt _ (P 4+ 1)= + ¢o, (6.3.3)

Orr = bpn ((b+ Dpn + 1) .
M(b+1)pn+l /J[’pn‘f'l

where b > 0, {p,} is a nonrandom sequence such that p,, — oo and

n

. 1
Mpn = E Z(Y; - Co)pn

=1

with ¢y = Y7 ,. To ensure that the data used in the endpoint estimation are positive, which is
required in Girard, Guillou, and Stupfler (2012), we artificially subtract the sample minimum from
the sample, and then add it back in getting 6. Since the endpoint of each data generating process
is infinite, which violates the finite endpoint assumption in both 0% and 6,;, we do not expect or

and 6, perform better than our suggested endpoint estimator in estimating the endpoint for each
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simulated case.

To determine the optimal choice of k used in the estimators O pw s and 6F, respectively, we also
conduct a pre-study similar to the aforementioned procedure. We decide to choose k£ = 200 and
k = 70 for all data generating processes when applying Opw s and OF, respectively. Notice that
for the PWM estimator, we stop estimating the endpoint if Ypy 3, > 0 because the PWM estimator
is valid only for v < 0. In other words, from 1000 samples, we may end up with less than 1000
endpoint estimates when using the PWM estimator. For applying the estimator O, we choose
pn = n'/%/loglogn and b from a set B = {0.2,0.6, 1.0, ..., 21} as suggested in Girard, Guillou,
and Stupfler (2012). Also following from a pre-study as before, the optimal choice of b from B is
20.6.

For each data generating process, we plot the estimated endpoints using the four estimators
across all samples with measurement errors in boxplots; see Figure 6.2. We observe that both the
PWM estimator 6pyy 5, and the general endpoint estimator 6% overestimate the true endpoint across
all data generating processes, and the high-order moments estimator 6, underestimates the true
endpoint for the cases (a) and (b) and overestimates it in the case (c). In contrast, our estimator égo
performs well across all cases, and consistently outperforms all the other estimators. The medians
across 1000 simulated samples are close to the true endpoint and the variations are lower.

As our theorems require the existence of measurement errors, we investigate the performance
of the proposed endpoint estimator when there is no measurement error in each data generating
process, i.e., data are simulated only from the distribution F'x corresponding to the cases (a), (b)
and (c). We observe from Figure 6.3 that our estimator égo underestimates the true endpoint across
all cases without measurement errors, and is the worst-performing corresponding to the cases (a)
and (c). This poses some interesting and challenging questions such that how to test the existence of
measurement error and whether there is a consistent endpoint estimator regardless of the presentence

of measurement errors.
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Figure 6.2: Boxplots of estimated endpoints with measurement errors
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Note: The three plots show the estimated endpoints using our suggested endpoint estimator égo , the PWM estimator
Apw M, the general endpoint estimator 6F and the high-order moments estimator G for six data generating processes.
Each plot is based on 1000 samples with sample size n=5000. In the panel (i), the observations are generated by
combining the uniform distribution on [—1, 0] with measurement errors following N (0, 02), o = 0.1 (left) or 0 = 0.2
(right). In the panel (ii), the observations are generated by combining the reversed Burr distribution in (b) with
measurement errors following N (0, 02), o = 2 (left) or o = 3 (right). In the panel (iii), the observations are generated
by combining the shifted beta distribution in (c) with measurement errors following N (0, 02), o = 0.1 (left) or 0 = 0.2
(right). The endpoints are estimated by 6, with k& = 10, @pyw s in (6.3.1) with k = 200, 67 in (6.3.2) with k = 70
and 0,/ in (6.3.3) with p,, = n!/® /loglog n and b = 20.6. Horizontal lines indicate the true endpoints.
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Figure 6.3: Boxplots of estimated endpoints without measurement errors
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Note: The three plots show the estimated endpoints using our suggested endpoint estimator égo , the PWM estimator
Apw M, the general endpoint estimator 6F and the high-order moments estimator G for six data generating processes.
Each plot is based on 1000 samples with sample size n=5000. In the panel (i), the observations are generated by the
uniform distribution on [—1, 0] in (a). In the panel (ii), the observations are generated by the reversed Burr distribution
in (b). In the panel (iii), the observations are generated by the shifted beta distribution in (c). The endpoints are
estimated by 9g0 with k£ = 10, GPWM in (6.3.1) with k& = 200, 0F in (6.3.2) with £ = 70 and 9M in (6.3.3) with
pp = nt/® /loglog n and b = 20.6. Horizontal lines indicate the true endpoints.
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6.4 Application

In order to investigate the limit of human being in sports, Einmahl and Magnus (2008) applies the
endpoint estimation to the training data of top athletes. Initially, they gathered data for 28 types of
sports. However, they stopped estimating the endpoint for five out of the 28 sports due to the fact
that the estimated extreme value indices, ~, for these five sports are close to 0.8

Continuing from their study, we shall apply our estimator on the endpoint to the outdoor long
jump data (both men and women) for two reasons. Firstly, from a theoretical perspective, if we
assume that the observed training data are contaminated by normally distributed measurement
errors, the extreme value index ~y for the observations should be equal to 0. This is in line with the
empirical observations in Einmahl and Magnus (2008). We will justify this argument by repeating
the estimation of the extreme value index + for the training data and testing whether it is significantly
below zero. Different from Einmahl and Magnus (2008), we employ the PWM estimator for this
analysis. Secondly, for the outdoor long jump, the presence of wind can be a potential factor
generating such a measurement error. To justify this argument, we shall apply our suggested
estimator to the training data for the outdoor long jump, while comparing it with applying the PWM
endpoint estimator to the training data for the indoor long jump. Assuming that the indoor long
jump is much less affected by wind, we expect that the two endpoints estimated from these two
different datasets mutually agree with each other.

We collect the data from the official website of the International Association of Athletics
Federations (IAAF)Y for the indoor and outdoor long jump, both for men and women. In total,
we construct four datasets for these four sports. For each sport, the website presents the all time
personal bests of the top athletes. In addition, for indoor long jump (both men and women), the
website provides the personal bests of the top athletes in each year from 1999 to 2016. Consequently,
for each of these two sports, we combine the data across the aforementioned 19 lists. Similarly

for men’s outdoor long jump, we combine the data across 17 lists because the records of the years

$The five sports are 10, 000m running and outdoor long jump for both men and women, together with men’s 400m
running.
YSee https://www.iaaf.org/records/toplists
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2000 and 2001 are not available. For women’s outdoor long jump, 18 lists are combined due to the
missing records in 2001. When combining the data for each sport, we keep only the best record
for each athlete across the lists. Table 6.1 gives a summary of the number of athletes and the best
and worst achievements for each of the four sports. Since there are clusters in the present data, we
smooth each dataset using the method suggested in Einmahl and Magnus (2008) as follows. For

example, if c athletes share the same personal best, [ = 8.47 m, we smooth them by

2% —1
= 8465+ 01—~ i=1.. ¢
2c

Table 6.1: Data description

men women

Long jump Number Best Worst Number Best Worst
Outdoor 776 895 7.80 1176 752 6.30
Indoor 623 879 7.70 604 7.37 6.30

Note: The table presents the descriptive information regarding the four datasets used in the application. The four
datasets correspond to the indoor and outdoor long jump data for both men and women. Each dataset consists of top
athletes’ personal best in the corresponding sport.

We start with estimating the extreme value index -y by the PWM estimator. Figure 6.4 shows
the estimates 7y py )y, against various values of k. To balance the estimation bias and variance, we
choose £ from the first stable region in each plot. Table 6.2 reports the chosen values of k£ and the
corresponding estimated v and its 95% confidence intervals.

From the confidence intervals, we observe that for indoor long jump, v = 0 is rejected for
both men and women. Hence, the endpoints of these two distributions exist. By contrast, for
outdoor long jump, we cannot reject v = 0 for either men or women. These results agree with the
finding in Einmahl and Magnus (2008) and support considering the outdoor data as contaminated
by measurement errors.

Next, we continue using the PWM method to estimate the endpoints for the indoor long jump

A~

data, while using our new estimator, ¢,,, to estimate the endpoint for the outdoor long jump data.

136



We plot the endpoint estimates against various values of k in Figure 6.5. A technical difference
between these two estimators is regarding the sample size n. For the PWM estimator, the sample
size n is not used whereas for our new method, it is necessary to know the sample size n in advance.
Obviously, a lower bound for n is the current sample size, i.e. the number of top athletes included in
the IAAF website. We are aware of the caveat that this number may underestimate the true number
of top athletes who may potentially produce a similar performance. To address this caveat and test
the sensitivity of n, we take an arbitrary value n = 3000 which is much higher than the current
sample sizes.

Tables 6.2 and 6.3 present the endpoint estimates with their 95% confidence intervals based
on the selected values of k. Firstly, we observe that the values of égo based on the outdoor long
jump data are not sensitive to the sample size n, particularly after considering the estimation error
reflected by the confidence intervals. Secondly, although the point estimates from applying our
new estimator to the outdoor long jump data are consistently lower than that from applying the
PWM method to the indoor long jump data, the two results agree with each other to certain extent.
The point estimates from applying our new estimator to the outdoor long jump data falls into the
confidence interval based on applying the PWM method to the indoor long jump data.

Finally, we compare the results to the actual observations in the dataset. Although the PWM
estimator based on the indoor long jump data suggested that the endpoints for men’s and women’s
long jump are at 8.790 and 7.394 respectively, there are multiple observations in the outdoor long
jump data that exceed those estimated endpoints: for men’s long jump there are four observations
higher than 8.790, while for women’s long jump there are six observations higher than 7.394.
Following our assumption, having an observation Y above the endpoint of the distribution of X
must be due to a positive value in the measurement error €. In the context of long jump, it implies
that the wind should have helped in delivering these personal bests. The website of IAAF provides
the wind speed at the time when the long jump data was recorded: for eight out of the nine cases,
the recorded wind speeds were positive. The only exception is the 8.87m set by Carl Lewis in the

1991 Tokyo World Championships, where the wind speed was recorded as -0.2m/s. Aside from
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this exceptional case, the other eight cases support the view that the wind can be a potential factor

causing measurement errors in the long jump performance.

Figure 6.4: Estimation of the extreme value indices
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Note: The plots show the estimated extreme value indices with the corresponding 95% confidence intervals for various

values of k using the PWM estimator.

6.5 Proofs

Proof of Proposition 6.2.1. Write

(z—t)2 __

0
— 1
Fy(x) :/ %6_ 202 Fx (0 +t)dt =

1 2 [0
—6_ 202 /
V2ro 0
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Figure 6.5: Estimation of the endpoints
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Note: The plots show the estimated endpoints with the corresponding 95% confidence intervals for various values of k.
For the indoor long jump data, the endpoints are estimated by the PWM estimator 6 pyy 5. For the outdoor long jump
data, the endpoints are estimated by the estimator 0.

Table 6.2: Estimation results: long jump data for men

n k  Point Estimate 95% C.I.
Outdoor
YPw M - 180 -0.047 [-0.218,0.123 ]
Oy 776 8 8.308 [7.811, 8.805 ]
0o 3000 8 8.149 [7.528,8.769 |
Indoor
YPwM - 150 -0.286 [ -0.075, -0.497 ]
Opw s — 150 8.790 [ 8.226,9.354 ]

Note: The table shows the estimation results based on the long jump data for men. For both indoor and outdoor long
jump, the estimated extreme value indices using the PWM estimator are presented. For the outdoor long jump data, the
endpoints are estimated using the estimator égo with setting the number of athletes n to either the current sample size
or 3000. For the indoor long jump data, the endpoints are estimated using the PWM estimator. For all estimates, the
corresponding 95% confidence intervals are provided.
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Table 6.3: Estimation results: long jump data for women

n k  Point Estimate 95% C.I.
Outdoor
YPWM - 160 -0.094 [-0.277, 0.090 ]
égo 1176 6 7.202 [6.917,7.486 ]
égo 3000 6 7.152 [ 6.824,7.481 ]
Indoor
YPW M - 140 -0.335 [ -0.560, -0.110 ]
Opw s — 140 7.394 [ 6.850,7.937 ]

Note: The table shows the estimation results based on the long jump data for women. For both indoor and outdoor long
jump, the estimated extreme value indices using the PWM estimator are presented. For the outdoor long jump data, the
endpoints are estimated using the estimator égg with setting the number of athletes n to either the current sample size
or 3000. For the indoor long jump data, the endpoints are estimated using the PWM estimator. For all estimates, the
corresponding 95% confidence intervals are provided.

The proof is splitted into two parts. First, we show that as z — oo, the integral above will be

dominated by only integrating in the neighborhood of zero, i.e., for some ¢ > 0,

— 1 2 [0 t 2\ = >
Fylz) = 6_202/ exp ( v —2) Fx(0+ t)dt [1 +0 (:paﬂe—ex/a )} . (65.1)

2ro e o2 20

Then, we will calculate the integral in the right hand side of (6.5.1).

We first handle the equation (6.5.1). Since

¢ tx 2\ — —€ex ¢ 12 —€x
/_OO exp <; — ﬁ) Fx(0+t)dt < exp (?) /_Oo exp (_F) dt < V2moexp <?) ,
and

0 " 20\ 2 [0 tr\ —
/exp v _ FX(9+t)dtzeaa2/ exp (2) Fy (0 + t)dt,
202 _ o?

2
—€ o €

(6.5.1) is proved by showing that, as z — oo,

0
/ exp (Z—‘Z) Fx(0+t)dt =0 (27t (6.5.2)

—€

Denote G(t) := Fx(0 —t™'). Thenas t — oo, G(t) = Lt~ + dt =™ + o(t=(**%)). The left
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hand side in (6.5.2) is then calculated as

0 2 00
/ exp (t_xz) Fx(0+t)dt = 7z /2 e VG (t—i) t2dt
—e g xr Jeo= g

o’ /x * G (tx/o?) >
_ - -1/t ;-2 — N\ ) 4« -1/t 1—(a+2)
xG<02> [/026 ; (G(x/(ﬂ) / )dt+/026 (o2 gy

€T

=7 G (%) IENAR

To deal with [y, since the function G is regularly varying, i.e. lim; ., %%) = u~%, it follows

from Proposition B.1.10 in De Haan and Ferreira (2007) that for any n > 0 there exists xo = zo(n)

such that if & > zg and & > ,

— t_a

‘ G (t$/02> < pmax (t—oz-i-n’ t—a—’]) .

G (z/0?)

By choosing € < 1/z, we have that for all ¢ > ‘E’—; and sufficiently large z such that x > oz the

two required conditions hold. Therefore, we can apply the inequality above to obtain that

o0
o1/t 42
o2
r

Thus we can apply the dominated convergence theorem to get that /; — 0 as z — oo.

G (tz/o?)

G (z/o?) e

dt < 7]/ e Mty (t” + t_”) dt < 0.
0

By verifying that I, — (a4 1) as @ — oo and Z.G (&) = O(z~*""), we proved (6.5.2) and
consequently (6.5.1), for any € < 1/x.

Next we calculate the integral in the right hand of (6.5.1). We first perform a variable transforma-

tion such that the term in the exponential part ff—“; — % is replaced by a new term —s, i.e. we define
s = % — ;—ﬁ This transformation is one—to—one for ¢ € [—¢, 0] with the inverse transformation

2507 2
t:x<1— 1+ $Z>::—Sigb(s;x),
T T
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where

80'2

o(s;2) =1 — —(1+0(1)), (6.5.3)

212

as * — 00, and the o(1) term is uniform for all 0 < s < E(zj# Write

e(z+£/2)

0 tx 2 202 \ /2 T 1
/_eeXp<ﬁ_20)FX<9+t :—/ < —|——s) G(E—sqﬁ(s;x)) ds.

To calculate this integral, we again need a comparison between G (% > and G (%) However,

_r
s¢(siz)

here we need a second—order expansion. Notice that the function G satisfies the second—order

regular variation condition as

By Theorem B.2.18 in De Haan and Ferreira (2007), for all * > 0, there exists x§ = x§(n*), such

that for w, wu > g,

Y

1 G('UJU) _ ) _ U_B — 1‘ —(a+B)+n* _ %
—u ) —u < np*max (u\* n (@A)
b ( G(w) =p | < e )

where A (w) := L —484y)=F. We intend to apply this inequality with w = S and wu = 5. ¢(ls - For

sufficiently large z, w = 25 > x3. For wu, notice that = —1/t > 1/e. We get the required

<Z>()

condition by choosing € such that ¢ < 1/xj. Hence we obtain from the above inequality that

T 1
1 G (0_2 s¢(s;x) o (S¢(S, x))ﬁ —1

> — (s¢(s5;2))" | = (s¢(s; 7))

S ETE S T ey -7
<" max ((s¢(s; 2)) D7 (sg(syx)) DT (6.5.4)

This inequality allows us to write the integral in the right hand of (6.5.1) as
2 76(30:26/2) 2 2 —1/2 1
7 / e’ |1+ %s G %— ds
z Jy x o2 so(s;x)
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E(I+2E/2> 2

9 ~1/2
:%G <%> /0 e’ (1 + x;‘zs) (sp(s;2))" ds

9 e(z+e/2)

%A<%)G<ﬁ2>/o o e—s<1+2x;‘223)_1/2Z(5;x),d3

+

o

ZZJ1 + JQ + J3.

In all three terms, we need to deal with integrals in the form

e(z+26/2) 9

~1/2
I(z;v) = /0 T (1 + %S) (sop(s;x))” ds,

for v > 0. Notice that 2;:’—225 — 0 and ¢(s;z) — 1 as x — oo hold uniformly for s < ‘S(””j# By

using dominance convergence theorem, we get that as x — oo,

I(z;v) — /Oo e ’s"ds =T(v+1). (6.5.5)
0

~1/2
Further write (1 + %S) =1- ”x—zs(l +0(1)), as x — oo, where the term o(1) is again uniform

for all s < E(Ij# Then,

e(z+26/2) 0-2 5(z+2e/2)
I(z;v) = / e *(sp(s; )" ds — — e s(sp(s; ) ds(l+o(l)) =: I — 1.
0 = Jo
By applying the dominance convergence theorem again, we obtain that as * — oo, 211, —
o°T'(v + 2). For 1, we use the expansion of ¢(s; ) in (6.5.3) to get that
e(xz+e/2) 9 e(z+e/2)
o? -5V vo o? —s v+1
IIlz/ e ’s ds——/ e *s"ds(1+o(1))
0

2
22° Jo

=T(v+1)+o(z?) - %r(u +2)(1+0(1) =T(v+1) — %F(V +2)(1+o(1)).
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By combining the two terms we get a second—order expansion of /(z; ut): as © — oo,

2

I(z0) =T+ 1) — % (g + 1) D(v +2)(1 + o(1)).

By applying (6.5.6) with v = «, we have that as © — oo,

J =G (%) (F(a +1)-Z (— + 1) D(a+2)(1 + 0(1))> .

By applying (6.5.5) with v = v and v = o + 3, we get that as z — oo,

o <x>G<x)F(a+ﬁ+1)—F(a+1)'

02) " \g? -3

Lastly, based on the inequalities (6.5.4) and (6.5.5), we get that J3 = o(.J2) as © — 0.

By combining all three terms, we obtain that as = — oo,

0 te 2\ =
/ exp (; - 27‘2) Fx(0+t)dt

2

T (1) (F(a 1) - % (% + 1) D(a + 2)(1 + o(1))

ﬁ) INa+p+1)—T(a+1)
—0
:%G ( ’ ) <F(a +1)+ \/0_2_7;02 2% (1+0(1)) — %F(a + 1)0—2%5>

o2

+4(

o2

=Ly~ lg?t? (1 + %a%xﬁ(l + 0(1))) X

V2mey g d _
(F(a+1) - L020¢+21I F(1+0(1)) — zP(a+ o2 z=F

:\/%o'm_a_l(cl + 02517_6,(1 + 0(1>))7

where ¢, ' and ¢, are defined in the proposition.

Finally the proposition is proved by substituting this relation to (6.5.1). 1
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Next we prove Theorem 6.2.2. Write the estimator 7, in (6.2.2) as

= log(n 1 s “lksln — Zn—kin s
— log( /’“)/w (sl )22 g

We firstly establish the asymptotic properties of tail quantile process {Z,,_s),n, k~' < s < 1} as

follows.

Proposition 6.5.1. Assume the same conditions as in Proposition 6.2.1. Then there exists a sequence

of standard Brownian motions {W,(s) : s > 0} such that as n — oo,

ksl . E—1/2 (S_1Wn(s) + 8_1/2_50;7(1)) g(n/k) )
o+/2log(n/k) = Yrn + Yan(s) + 2log(n/k) lOg(n/k)<1+ (1))
where
_,_ (a+1)loglog(n/k) c3
Y= 4log(n/k) log(n/k)’

ey = 2" (loger — (o + 1) log(0v2)).

22 (log(n/k)) > B <2
a(n/k) = ,
— D (log(n/k)) ™! (log log(n/k))* 5> 2
— logs (o + 1) loglog(n/k) )
ot (L Togtagay o)),

Yan(s) =

and all terms o0,(1) are uniform for s € [k~',1].

Proof. Denote U = (—log F ), where ‘<’ denotes the left continuous inverse function. Write
Z; = U(E;) where {E;}7_, is a sample of 7.i.d. standard exponential distributed random variables.
Let By, < Ey, < --- < L, , be the corresponding order statistics. To obtain the asymptotic
properties of {Z,_xsn, k' < s < 1}, we derive the expansion of U(t) and the asymptotic

properties of { E,,_(xsn, k7' < s < 1}.
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From the tail expansion of — log F; in Proposition 6.2.1, we get that as ¢t — oo,

t=— (U(£)* + (a+ 1) logU(t) —loger — 2 (U(1)) ™ (1 + o(1)), (6.5.7)

202 C1

Since U(t) — oo as t — oo, it implies that U(t) ~ o+/2t. Write U(t) = o+/2t + r(t), where
7(t) = o(\/t). We intend to obtain further explicit expression for the 7() term. Substituting U (¢) in

(6.5.7) by o\/2t + r(t) yields that, as t — oo,

0 = 72(t) + 20V2t r(t) + o (a + 1) log t + 202 ((04 + 1) log(cv/2) — log cl>

+202(a + 1) log (1 v ;%) - Q‘ZCQ (0\/E>ﬁ/ (1+ o(1)).

r(t)

Since i

— 0 ast — oo, we can solve this equation to obtain that

1
r(t) = ~ 2O gy 12 <log 1 — (a+1) 10g(0x/§)> 712 4 471258,

22 V2

where G(t) = o (1) as t — oo. By reiterating this procedure, we eventually obtain that as t — oo,

ola+1)

U(t) = ovV2t — ——=t"12logt + ov2cst ™2 + t72G4(t)(1 + o(1)), (6.5.8)
2v2
where
0'1’*302 _8
t2 £ <2
~ (\/i)1+ﬁc
q(t) = )
o(a+1)*,_1 2
Note that q is related to the ¢ function defined in this proposition by ¢(t) = %.

Next we derive the asymptotic properties of {E,, s, k~* < s < 1} from Theorem 2.4.2
in De Haan and Ferreira (2007) as follows. For any 6 > 0, there exists a sequence of standard

Brownian motions {{IV,,(s)}s>0} such that as n — oo,

sup sV IVE(E, g0 — log(n/k) +logs) — s71W,(s)| 2= 0.

k—1<s<1
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When plugging the asymptotic expansion of F,_ (x5, INt0 Zy,_(rs,n = U (En_[ks} n), We observe

E,_ [ks],n
Tog(n/k)

an[ks],n
o+/2log(n/k)
Enf[ks],

smooth substitution, we first derive the asymptotic behavior of ( Toa(n /k;‘) for any given vy € R.

1/2
that the asymptotic property of is mainly driven by ( > . In order to make a
2l

Write

En kg logs™ s, (s) + 0,(1)s~ /2077
(log(n/ k)) B [l log(n/k) Vklog(n/k) }
_ o JogsT BT (sTW(s) 4 0,(1)sH20)
- log(n/K)
0 log s~ + k=12 (s7 Wy (s) + 0,(1)s71/279) ’
log(n/k)

log s~ 14k—1/2 (s_an(s)+op(1)s_1/2_5)
Tog(n/%)

5 0 uniformly for all 1/k < s < 1 and 8‘9—;2(1 + )"

where 6 = %88—;(1 + )7 |,—¢ for some £ between 0 and

. Since as
log s*1+k*1/2(s’IWn(s)Jrop(l)s’lm"s)
Tog(n/B)

is bounded in the neighborhood of zero, we get that with probability tending to 1, |f| is bounded

k — oo,

uniformly for all 1/k < s < 1. By verifying that the quadratic term

log s + k712 (s W, (s) + 0,(1)s™/7) :
log(n/k)

1 —1/2—6

can be uniformly written as w/SPeEyTS 0p(1), we get that as n — oo

Enkgn )’ . log s~1 + k—1/2 (3*1Wn(s) + op(1)3*1/2*5)
log(n/k) log(n/k) ;

where the o0, (1) term is uniformly for all 1/k < s < 1. For v = 0, the relation should be read as

log s™1 4+ k72 (s7 W, (s) + 0,(1)s71/279)
log(n/k) '

IOg Enf[ks],n - 10g IOg(n/k) =

Finally, by plugging E,, g » into Z,_jxs)n = U(Ep—jks,n), While using the expansion of U

in (6.5.8) and the asymptotic expansion of (%g’(f/}g;y fory=1/2,—-1/2,0 and —(1 + )/2, we

obtain the result of Proposition 6.5.1. 1
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Remark 6.5.2. In the expansion of the tail quantile process, 11, is a deterministic term not

depending on s, 12 ,, is a deterministic term depending on s, the third component gives a random

a(n/k)
log(n/k)

term, and finally L (14 0,(1)) has a uniform approximation independent of s. It will turn out
to be clear in the proof of Theorem 6.2.2 that such a detailed expansion is necessary for achieving

the intended asymptotic results.
We use Proposition 6.5.1 to prove the asymptotic normality of 7.

Proof of Theorem 6.2.2. Write

6, log(n/k Zntm — Zon—om ! Zn—lksln = Zn—km
K = e O I

o+/2log(n/k) 2/k o+/2log(n/k)

=. Il + IQ.

From Proposition 6.5.1, we get that, as n — oo,

an[ks],n - Zn—k,n - IOgS + k71/2 (Sian(S> - Wn<1) + Op(1)871/276)

or/2log(n/k) 2log(n/k)

_ (ot Dloglog(n/k) logs(l+o(V)) , aln/k) ) ¢sg)

4log(n/k) 2log(n/k) log(n/k) "

holds uniformly for 1/k < s < 1.

First, for Iy, replacing s by k! in (6.5.9), yields that as n — oo,

vk

~ log(n/k) log k+k'/2W,,(1/k)+k%0,(1) | logkloglog(n/k) (n/k)
= a0 (1 k) (RERHRR 000 ) . loskloslos(u/l) (1) 1 10/, (1))

Using the modulus of continuity for W,,(1/k) and note that from the condition (6.2.5), g (1/k) =

o(1)k'/2=< for any & < €, as n — oo, we then get from the above equation that

VEL = E7Y2(1/k)K°0,(1) = k*0,(1) = 0,(1).

148



Next, we deal with 1. By multiplying both sides of (6.5.9) with log(n/k)g(s) and taking an

integral on the interval [2/k, 1], we get that as n — oo,
! an[ks],n - Zn—k’,n

i =tosn/k) [ o)~ e
1

:5/ g(s)(—log s)ds

2/k

ez (L o) (W) = w0 a0 [ gt a)

(a +if:;(g7j>)]§§n/k) % /2/kg<8)(_ log s) ds(1 4 o(1)) + q(n/k)o,(1 /2 (s

/k
=1+ F (/1 (s) (s Wa(s) — Wy(1)) ds+o,,(1))

(o + 1) loglog(n/k)
4log(n/k)

(1+0(1)) + q(n/k)op(1).

To obtain the last equality, we used the condition (6.2.5) to derive the following facts. First, both

g(s)s™1/%7% and g(s) are integrable on [0,1] for any § < €y. Second, as n — oo,

2/k 2/k
/0 9(s) (sT'Wi(s) — Wi(1)) ds| < /0 § 1/ |sT Wa(s) = Wi (1)| ds = 0,(1).

Lastly, as & — oo,

2/k 2/k log k—log 2
/ g(s)(—logs)ds < / s~H2reo(_logs)ds = / e/2=<0lty gt
0

“+o0o
\/7/ e 't dt = io(1).
log k—log 2 \/E

Finally, the condition (6.2.4) implies that v/kloglog(n/k)/log(n/k) — 0 and Vkq(n/k) is

bounded as n — oo, which leads to the asymptotic property of I5: as n — oo,

1

VE(IE —1) — 5/0 9(s) (s7' Wi, (s) — Wi, (1)) ds — 0.
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We remark that the difference between I, and I is of an order k~/20,(1). This is shown by using

the condition (6.2.6) as follows. Write

VEk|L — I}]
1
Zn— ksl,n — Zn—kmn
S\/Elognk:/ gkjskj_gs [ks], s
(n/k) 2/kl ([ks]/k) = g(s)] o2 loa0i]E)
<Vk | ([ks]/k) — g(s)| (log s™ + k~/20,(1)s7/*7%) ds
([ks]/k) q(s) B o
< 1 1 /2 1)g—1/2-0
\/—//k log ([ks]/k)  log S| llogs| (log s + k~20,(1)s ) ds
ks /k -1 —-1/2 —1/2-6
+Vk llog([ks]|/k) —log s | (logs +k7720,(1)s ) ds
2/k
g(s) g(t) 1 L
<Vk Su — —logs) (log s~ + k= 20,(1)s™V/ ds
B |s— t|<1/k Bk<st<1 log s logt 2/k( & )( g (1) )

+ \/' |log([ks] /ks)]

g([ks]/k) ‘(—logs) s

log([ks]/k)
+ 0,(1) /2/]c llog([ks]/ks)| ‘%‘ §1/2-8 g

=: Iy + Igg + Iz3.

The condition (6.2.6) implies that as n — 0o, Io; = 0,(1).

log (1

the condition (6.2.5) implies that there exists ¢! such that g(s) < c¢is~/2*< for all s € (0, 1]. By

Next, for /59, notice that |log([ks]/ks)| =

}>‘ < < < 1fors > 2/k. In addition,

applying the condition (6.2.6) again, we get that as n — oc.

Iy < Vk ” |log([ks]/ks)[ g(s) ds + o(1) /M [log([ks]/ks)| (—log s)ds

1 c* 1 c*
<c / pRVER 81/2+60d8+0<1)/ —(—log s)ds

2/k ks

*

1
cic* 1 “lteo)2 c
< 0/4d 1)— — 0.
= 91/2—c0/2 feo/2 /Q/ks s+ o(1) 5

Lastly, for I3, notice that for all 2/k < s < 1, |log([ks]/k)| > max(—log s,log(k/(k —1)))
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and £ < [ks]/k < s. We have g([ks]/k) < c;([ks]/k)~"/?T% < ¢5s71/%T<_ Hence, as n — oo

Lo 1
Ioa < 1 & xo—1l4e—0
2 < Op )/Q/k ksCQS max(— log s, log(k/(k — 1)))

< 0,(1) /l_l/k 0—*0’2‘3_1+50_5 ! ds + ! /1 i0’2‘5_1‘“0_‘S ds | .
N o ks —log s log(k/(k —1)) Ji_yx ks

Since as n — oo, klog(k/(k — 1)) — 1, fll—l/k 57209 ds — (0 and

ds

1-1/k 4—2+eg—6
hm f2/k —IOgOS dS — hm (1 — 1/k)_2+60_6i ME —
—log(1—1/k) k*  —log(2/k) k? ’

k—oo k k—o0

we obtain that /53 — 0 as n — oo. Combining the three terms, we have shown that as n — oo,

VE(I, — I3) = 0,(1), which leads to
1! 1 v
VE(I, — 1) — 5/0 g(s) (;Wn(s) - Wn(1)> ds — 0.

The theorem is thus proved by combining the two parts /; and /> and further calculating the

asymptotic variance. 1

Proof of Corollary 6.2.3. Write

A

e (=) =/ (1) o ()

=: ]1 — ]2.

Theorem 6.2.2 gives the asymptotic property of I,. Hence we only need to show that I; — 0, as

n — oo. Since as n — oo, £, , — logn SN exp{—e "}, we get that for v # 0,

_Bun T (legn+ 01\ _ logk
<log(n/]<;)) _( log(n/k) > 1_’_710%(”/@(1"‘ p(1))-
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Plugging this expansion to the U function given in (6.5.8) yields that

Znn _ U(En,n) - log k )
o+/2log(n/k) B o+/2log(n/k) = Vit QIOg(n/k:)(l +op(1)),

as n — oo. The corollary is proved by verifying that
VE(rn—1) =0 and  Vklogk/log(n/k) — 0,
as n — 0o, which are implied by the condition (6.2.6). 1

6.6 Conclusions

In this chapter, we consider the estimation of the finite endpoint € of a distribution function Fy.
Instead of having observations drawn from F'x, we only observe a contaminated sample Y; = X;+¢;,
1 =1,2,--- ,n, where X, follows the distribution F’x and ¢; is a measurement error following
N(0,0?) with o > 0.

We start with proposing a class of estimators o, for o, depending on an appropriate weighing
function g on (0, 1]. Then we suggest an estimator 6, = Iax Y; — 644/2log n for estimating the
endpoint. Both the estimators 7, and ég possess asymptotic normality.

We demonstrate, by extensive simulation studies, the superior performance of our suggested
estimator to that of other three endpoint estimators designed for the case of no measurement errors.
In addition, we apply our suggested estimator to resolve the difficulties encountered by Einmahl
and Magnus (2008): the estimated extreme value index is close to, and not significantly different
from, zero. By assuming the presence of measurement errors stemming from the wind, we apply
our suggested endpoint estimator to the outdoor long jump data. The results are comparable with

applying the PWM endpoint estimator to the indoor long jump data, for which the impact of wind is

negligible and the tail index is estimated to be negative.
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