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ABSTRACT

STATISTICAL INFERENCE FOR THE HAEZENDONCK-GOOVAERTS RISK MEASURE

BY

Xing Wang

May 15th, 2018

Committee Chair: Liang Peng

Major Academic Unit: Department of Risk Management and Insurance

Recently the Haezendonck-Goovaerts (H-G) risk measure is receiving much attention in actuarial

science with applications to optimal portfolios and optimal reinsurance because of its advantage in

well quantifying the tail behavior of losses. This thesis systematically studies statistical inferences

of the H-G risk measure under various settings including heavy-tailed losses, fixed and intermediate

risk levels.

The thesis starts by proposing an empirical likelihood inference for the H-G risk measure for

two different risk levels—fixed risk level and intermediate risk level. More specifically, Chapter 2

considers the case of fixed risk level, and the derived asymptotic limit of a nonparametric inference

is employed to construct an interval for the H-G risk measure. Chapter 3 considers the case of

intermediate risk level, i.e., the level is treated as a function of the sample size and goes to one as

the sample size tends to infinity. The proposed maximum empirical likelihood estimator for the H-G

risk measure has a different limit from that for the case of a fixed level. But the proposed empirical

likelihood method indeed gives a unified interval estimation for both cases.

Chapter 4 proposes a two-part estimation for the H-G risk measure and the proposed estimators

always have an asymptotic normal distribution regardless of the moment conditions. To achieve this,

we separately estimate the tail part by extreme value theory and the middle part non-parametrically.

The above chapters focus on independent data. In Chapter 5, we extend our methodology from
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independent data to dependent data and conduct the sensitivity analysis of a portfolio under the H-G

risk measure. We first derive an expression for computing the sensitivity of the H-G risk measure,

which enables us to estimate the sensitivity non-parametrically via the H-G risk measure. Second,

we derive the asymptotic distributions of the nonparametric estimators for the H-G risk measure

and its sensitivity by assuming that loss variables in the portfolio follow from a strictly stationary

↵-mixing sequence. Finally, this estimation combining with a bootstrap method is applied to a real

dataset.

Besides the study of the H-G risk measure, we investigate the estimation of the finite endpoint

of a distribution function when normally distributed measurement errors contaminate the obser-

vations. Under the framework of extreme value theory, we propose a class of estimators for the

standard deviation of the measurement errors as well as for the endpoint. Asymptotic properties

of the proposed estimators are established and simulations demonstrate their good finite sample

performance.
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CHAPTER 1

INTRODUCTION

This dissertation systematically addresses some statistical inference problems for a class of risk

measures called Haezendonck-Goovaerts (H-G) risk measures. These risk measures are used to

quantify the tail property of loss distributions and are receiving much attention in actuarial science

with applications to reinsurance policy and optimal portfolios. However, there are few efficient

inference methods for estimating the H-G risk measure when the loss is heavy-tailed distribution.

This thesis is dedicated to developing efficient methods to estimate the H-G risk measure under

various scenarios including heavy-tailed distributions.

This thesis starts by proposing an empirical likelihood inference for the H-G risk measure at two

different risk levels separately. Chapter 2 considers the case that the H-G risk measure is defined

at a fixed level, where a nonparametric estimation method is proposed and the derived asymptotic

limit is employed to construct an interval for the H-G risk measure. Compared to the nonparametric

estimation proposed by Ahn and Shyamalkumar (2014), this method shows a better performance

empirically.

Chapter 3 is dedicated to extending the statistical inference from a fixed level to an intermediate

level where the level is treated as a function of the sample size. Since the intermediate level tends to

one as the sample size goes to infinity, the proposed maximum empirical likelihood estimator for

the H-G risk measure has a different limit from that for a fixed level. Interestingly, the proposed

empirical likelihood method indeed gives a unified interval estimation for both cases. A simulation

study is conducted to examine the finite sample performance of the proposed method.

In Chapter 4, motivated by the fact that many loss variables in insurance and finance could have

a heavy tail including infinite variance, we propose a two-part estimation for the H-G risk measure.

The proposed estimators always have an asymptotic normal distribution regardless of the moment

conditions. To achieve this, we separately estimate the tail part by extreme value theory and the
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middle part non-parametrically. A simulation study and real data analysis confirm the effectiveness

of the proposed new inference procedure for estimating the H-G risk measure.

Chapters 2 – 4 focus on statistical inferences for the H-G risk measure when the losses are

independent. When this risk measure is applied to insurance or a financial portfolio with several

loss variables, sensitivity analysis becomes useful in managing the portfolio, and the assumption

of independent observations may not be reasonable. Thus, in Chapter 5, we extend our estimation

methodology from independent data to dependent data. First, we derive the theoretical expression

for computing the sensitivity of the H-G risk measure, which enables us to estimate the sensitivity

non-parametrically via the H-G risk measure. Further, we derive the asymptotic distributions of

the nonparametric estimators for the H-G risk measure and its sensitivity by assuming that loss

variables in the portfolio follow a strictly stationary ↵-mixing sequence. A simulation study is

provided to examine the finite sample performance of the proposed nonparametric estimators. Also,

the method combining with a bootstrap method is applied to a real dataset.

Chapter 6 investigates the estimation of the finite endpoint of a distribution function when

normally distributed measurement errors contaminate the observations. Under the framework of

extreme value theory, we propose a class of estimators for the standard deviation of the measurement

errors as well as for the endpoint. Asymptotic properties of the proposed estimators are established

and simulations demonstrate their good finite sample performance. Also, we apply the proposed

methods to the outdoor long jump data to estimate the ultimate limit for human beings in the long

jump.

To give an overview of the proposed study and employed techniques, Section 1.1 defines the

risk measure, including the H-G risk measure and some related problems; the maximum empirical

likelihood method which is employed in the statistical inference is presented in Section 1.2; extreme

value theory is reviewed in Section 1.3.
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1.1 Risk Measure

1.1.1 Definition of the Risk Measure

Risk management generally involves risk identification, risk quantification, and risk prediction.

As one of the important parts of risk management, risk quantification is a process of using the

observed data to evaluate the risks quantitatively and arrange the risks in the order of importance.

Quantifying the risk is associated with capital allocation, decision-making and actuarial premium

calculation which are important in risk management and actuarial science. Quantitative techniques

help enhance the credibility and the quality of decision-making significantly. During the process

of qualitative analysis, risk measures are necessary tools that help with the risk quantification and

forecast.

Generally speaking, a risk measure is a function that maps a random variable to a real number.

It allows us to link the uncertainty of the loss to some real numbers so as to express the riskiness.

The formal definition of risk measure is as follows:

Definition 1.1.1. A risk measure ⇢ is a mapping from a set of random variables to the real numbers:

⇢ : L �! R,

X 7�! ⇢(X),

where L is the Lp space, i.e. L = {X : E||X||p <1} .

Since a risk measure can be an arbitrary function that maps a space of probability distributions

to real numbers, infinite choices of functions could serve as risk measures. Examples are the

mean and the variance, which are commonly used to measure the centrality and dispersion of the

risk separately. In order to find a proper function to evaluate the risk and fulfill the needs of risk

management, different criteria are used for choosing the optimal risk measure in practice. When risk

measures are used as capital requirements to regulate the risk, some desired properties are raised by

market participants or the insurance underwriters.
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If we treat the random variable X as the position of the risk, it is apparent that the riskier

a position is, the higher its risk measure should be. When X is positive, ⇢(X) is interpreted as

the amount of cash needed to add to the risky position X to make it an acceptable position. On

the contrary, if ⇢(X) < 0, the capital amount �⇢(X) could be taken out from the already being

acceptable position to be invested in a more profitable way. Thus, the concept of risk measure is

strictly related to that of acceptability. The coherent risk measure introduced by Artzner et al. (1999)

is a fundamental concept related to the acceptability of a risk measure. It represents a subset of risk

measures achieving the highest status in theoretical studies as well as industry regulation.

Definition 1.1.2. A risk measure ⇢ : L �! R is called a coherent risk measure if the following

four properties hold:

• translation invariance: X 2 L,↵ 2 R) ⇢(X + ↵) = ⇢(X) + ↵.

• positive homogeneity: X 2 L,↵ > 0) ⇢(↵X) = ↵⇢(X).

• monotonicity: X1, X2 2 L, X1 < X2 ) ⇢(X1)  ⇢(X2).

• sub-additivity: X1, X2 2 L) ⇢(X1 +X2)  ⇢(X1) + ⇢(X2).

In the literature, properties of different kinds of risk measures are studied, and the behavior of

risk measures for the heavy-tailed distributions receives a lot of attention.

There are two risk measures emphasizing the tail behavior of the loss: Value at Risk (VaR) and

Condition Value at Risk (CVaR). VaR is known as the quantile risk measure or quantile premium

principle, which quantifies the value of an asset’s tail risk and is always specified with a given

confidence level ↵.

Definition 1.1.3. The Value-at-Risk (VaR) of random variable X at level ↵ is defined as the lower

↵-quantile of X

V aR↵(X) := inf{x � 0 : 1� FX(x)  ↵},

where FX is the cumulative distribution function of X .
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VaR (in general) is not a coherent risk measure because the sub-additivity does not always hold.

Using this risk measure, portfolio diversifications may not lead to risk reduction. From this point of

view, VaR is not acceptable for determining regulator capital for financial institutions.

As one of the typically used coherent risk measures, Conditional Value at Risk (CVaR) measures

the expectation of the loss under the condition that the loss is above the VaR at a given confidence

level ↵.

Definition 1.1.4. Let X be a continuous loss random variable. Given a parameter ↵, 0 < ↵ < 1,

the ↵-CVaR of X ( Conditional Value-at-Risk (CVaR) in the continuous case) is

CV aR↵(X) = E[X|X � V aR↵(X)].

1.1.2 The Haezondonck-Goovaerts Risk Measure

The so-called Haezendonck-Goovaerts (H-G) risk measure originates from Haezendonck and

Goovaerts (1982) by considering the premium calculation principle—Orlicz premium. It is re-

lated to the normalized Young function  (.) (see Krasnoselskiı̆ and Rutitskiı̆ (1961) and Skii and

Ruttcki (1961)) which generates the H-G risk measure and is defined as follows:

Definition 1.1.5. Let  : [0,1]! [0,1] be a convex function. If

 (0) = 0,  (1) = 1 and  (1) =1,

then  is called a normalized / generalized Young function.

Definition 1.1.6. Let  : [0,1] ! [0,1] be a normalized Young function. Suppose X is a real

number loss variable. For a fixed number q 2 (0, 1) and each � > 0, let ↵ = ↵(�) be a solution to

E{ ((X � �)+
↵

)} = 1� q, (1.1.1)

where x+ = max(x, 0). We call the unique solution ↵(�) the Orlicz premium corresponding to
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X, � and q. Then, the so-called Haezendonck-Goovaerts risk measure with level q is defined as

✓q = inf
�>0

{� + ↵(�)}. (1.1.2)

Bellini and Gianin (2012) showed that the minimizer exists for all q 2 (0, 1), and it is unique

when  (.) is strictly convex. This minimizer �⇤ is called the Orlicz quantile of the loss.

From Zhu, Zhang, and Zhang (2013), two groups of generalized Young functions appear

frequently in the actuarial literature:

(i) The power Young function:  (x) = xp, p � 1;

(ii) The exponential Young function:  (x) = (e�x/(e� � 1)) , � > 0.

If  (x) = x, then ↵(�) = 1
1�qE{(X � �)+} and ✓ = 1

1�qE{(X � F�(q))+}, where F (x) =

P (X  x) and F�(x) denotes the inverse function of F (x). In this case, the H-G risk measure is

reduced to the Conditional Value at Risk (CVaR).

The actuarial intuition of the H-G risk measure is provided by Bellini and Gianin (2008b). If we

treat (X ��)+ as the payment for the loss X when applying franchise deductible �, ↵(x) represents

the corresponding Orlicz premium of this insurance contract. The minimization construction in

the definition minimizes the consumption of the insurer. The minimizer �⇤ represents the optimal

choice of the franchise deductible from the point of view of the insurer.

In the study of the inference issue, we formulate the H-G risk measure as a solution to the

following estimating equations. Suppose X1, ..., Xn are independent and identically distributed

(i.i.d.) random variables with distribution function F (x). The H-G risk measure is equivalent to

solving the following estimating equations

8
><

>:

E{ (Xi��
✓�� )I(Xi > �)} = 1� q,

E{ 0(Xi��
✓�� )(Xi � ✓)I(Xi > �)} = 0

(1.1.3)

for some � and ✓ > � under some conditions (see Tang and Yang (2014)). This transformation

enables us to employ the empirical likelihood method in Qin and Lawless (1994) to estimate the
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H-G risk measure. The statistical inference of the H-G risk measure can be done by combining

techniques of the empirical process and the empirical likelihood method.

1.2 Empirical Likelihood (EL) Methods

When we employ risk measures to the sample with unknown underlying distributions, the empirical

likelihood method could provide an efficient way to estimate the H-G risk measure. This section

gives an introduction to the empirical likelihood method that will be employed in the statistical

inference about risk measures.

1.2.1 Classical Likelihood Ratio Methods

In parametric likelihood methods, we suppose that the joint distribution of all available data has

a known parametric form. Let X1, X2, X3, . . . , Xn be i.i.d. observations with underlying density

distribution function fX(x; ✓), where ✓ 2 ⇥ is q-dimensional parameter and the parameter ✓ takes its

values in the set ⇥ ✓ Rq . The likelihood function for these n observations is the joint distribution

of (X1, X2, X3, . . . , Xn) given by

L(X1, X2, . . . , Xn; ✓) := ⇧
n

j=1fX(Xj; ✓). (1.2.1)

The corresponding log-likelihood function is

l(X1, X2, . . . , Xn; ✓) :=
nX

j=1

log(fX(Xj; ✓)). (1.2.2)

Since the principle of maximum likelihood is choosing the estimator ✓̂ as the value for the parameter

that makes the observed data most probable, the maximum likelihood estimator is the value ✓̂n such

that

l(X1, X2, . . . , Xn; ✓̂n) = sup
✓2⇥

l(X1, X2, . . . , Xn; ✓). (1.2.3)
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In order to test the hypothesis H0 : ✓ = ✓0, the likelihood ratio statistic is defined as

R(✓0) =
L(✓0;X1, X2, . . . , Xn)

L(✓̂;X1, X2, . . . , Xn)
.

Wilks’ theorem is often proved and used to construct a confidence interval.

Theorem 1.2.1. ( Wilks’ theorem ) Under mild regularity conditions, if ✓ = ✓0, then

�2 log(R(✓0))
d�! �2

q
,

and the likelihood ratio confidence region for ✓ is

{✓ : �2 log(R(✓))  �2
q;↵},

where �2
q;↵ is the upper ↵-quantile.

1.2.2 Empirical Maximum Likelihood Methods

The empirical likelihood method was introduced by Owen (1990). It is a nonparametric maximum

likelihood estimation. Without assuming the form of the underlying distribution, this method

provides data-determined shapes for the confidence region, and it can easily incorporate known

constraints on parameters, and adjust for biased sampling schemes.

Let X1, X2, X3, . . . be i.i.d. observations with unknown underlying distribution function F0(x).

As the point estimator of F0(x), the empirical cumulative distribution function (ECDF) Fn(x) is

defined as

Fn(x) =
1

n

nX

i=1

I(Xi  x), (1.2.4)

where I(.) is the indicator function. Then the nonparametric likelihood function for these n

observations is

L(F ) := ⇧n

j=1(F (Xi)� F (X�
i
)). (1.2.5)
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Here the value L(F ) is the probability of getting exactly the observed sample values X1, . . . , Xn

from the CDF F (.). If F is a continuous distribution function, L(F ) = 0. If F is a discrete

distribution function on {X1, . . . , Xn} with pi = F (Xi) for i = 1, 2, . . . , n, where pi � 0 and
P

n

i=1 pi = 1, then the empirical likelihood is L(F ) = ⇧n

i=1pi .

We also use ratios of the nonparametric likelihood as a basis for hypothesis testing and con-

structing confidence intervals. We define the ratio as follows:

R̃(F ) =
L(F )

sup
F
{L(F )} .

Lemma 1.2.2. Let X1, X2, . . . , Xn 2 R be independent random variables with a common CDF F0.

Let Fn be their ECDF and F be any CDF. If F 6= Fn, then L(F ) < L(Fn).

From Lemma 1.2.2, we know Fn = argmaxF{L(F )}, and the EL ratio is

R̃(F ) =
L(F )

L(Fn)
= ⇧n

i=1npi,

where pi is the probability mass function of Xi, and satisfies pi � 0 ,
P

n

i=1 pi  1. To maximize

R̃(F ), we need consider the support of F on the data, i.e.,
P

n

i=1 pi = 1.

Consider no tied data X1, X2, . . . , Xn, i.e., Xi 6= Xj when i 6= j. Suppose the distribution

function F puts probability pi � 0 on the value Xi 2 Rd, then

L(F ) = ⇧n

i=1pi and R̃(F ) = ⇧n

i=1npi = nn⇧n

i=1pi.

If we are interested in a parameter ✓ = T (F ), F 2 F for the functional T , we choose F containing

all distributions that have support on Xi, i = 1, 2, . . . , n. The likelihood ratio function is defined as

R(✓) = sup
{(p1,p2,...,pn)}

{nn⇧n

i=1pi | pi = f(Xi);T (F ) = ✓}. (1.2.6)

We accept T (F ) = ✓0 when R(✓0) � r0 for some threshold r0, and the corresponding EL confidence
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region is {✓ : R(✓)  r0} with r0 chosen via an EL analogue of Wilks’ theorem.

Owen (1990) studied the EL for a univariate mean as an example of function at T , i.e., T (F ) =

E[X]. After adding the restriction E[X] = µ0, the equation (1.2.6) can be rewritten to the following

R(µ0) = sup
{(p1,p2,...,pn)}

{⇧n

i=1npi | pi � 0,
nX

i=1

pi = 1,
nX

i=1

piXi = µ0}. (1.2.7)

Theorem 1.2.3. Let X1, . . . , Xn be independent random variables with common distribution F0.

Let µ0 = E(Xi), and suppose that 0 < V ar(Xi) <1 . Then

�2 log(R(µ0))
d�! �2

(1) as n!1.

If X1, . . . , Xn are independent random vectors with finite covariance matrix of rank q > 0, and

µ0 2 Rd, then the Theorem 1.2.3 could be extended to multivariate data and

�2 log(R(µ0))
d�! �2

(q) as n!1.

Besides the univariate mean example, Qin and Lawless (1994) extended empirical likelihood

methods to estimating equations. If we have a smooth function of means, ✓ = h(µ) which is

implicitly defined by E(g(X, ✓)) = 0, where g(X, ✓) = (g1(X, ✓), g2(X, ✓), . . . , gr(X, ✓))T is the

estimating function, the empirical likelihood function ratio with estimating equations is defined as

R(✓) = sup
{(p1,p2,...,pn)}

{⇧n

i=1npi | pi � 0,
nX

i=1

pi = 1,
nX

i=1

pig(Xi, ✓) = 0}. (1.2.8)

The estimator of ✓ is obtained by optimizing L(✓), i.e., ✓̂EML := argmax✓2⇥ R(✓).

Theorem 1.2.4. Let X1, ..., Xn be i.i.d. random variables, and suppose g(X, ✓) has finite covari-

ance matrix of rank q > 0. If E[g(X, ✓)] = 0, then

�2 log(R(✓0))
d�! �2

(1) as n!1,
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where ✓0 is the true value of ✓.

This extension enables us to infer the H-G risk measure after it is transformed to the equation

set (1.1.3). Also, the theorem could help with constructing confidence intervals.

1.3 Extreme Value Theory

In this section, a brief introduction to extreme value theory is given. Let X1, X2, X3, . . . be i.i.d.

random variables. In contrast to the central limit theorem where the limit behavior of the partial

sum X1 + X2 + · · · + Xn as n ! 1 is studied, the theory of extremes is concerned with the

limit behavior of the sample extremes max(X1, X2, . . . , Xn) or min(X1, X2, . . . , Xn) as n!1.

Extreme value theory (EVT) is focused on the possible limit distributions for sample maxima of

independent and identically distributed random variables.

In this section, we are interested in (right-) tail properties of distributions. Let F be the

underlying cumulative distribution function. Suppose x⇤ is the right endpoint of X , i.e.,

x⇤ = sup{x : F (x) < 1}, (1.3.1)

where x⇤ could be finite or infinite. From De Haan and Ferreira (2007), there exists a sequence of

constants an > 0, and bn 2 R (n = 1, 2, . . . ) such that

max1in Xi � bn
an

d�! Y as n!1, (1.3.2)

where Y is a non-degenerate random variable. That is, there exists a nondegenerate distribution

function G such that

lim
n!1

F n(anx+ bn) = G(x) (1.3.3)

for every continuity point x of G. Distribution functions G that can occur as a limit in (1.3.3)

are called extreme value distributions. The related distribution F satisfying (1.3.3) is called in the

maximum domain of attraction or simply domain of attraction of G.
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From Fisher and Tippett (1928) and Gnedenko (1943), it turns out that G is determined by a

single parameter � which we call the extreme value index.

Theorem 1.3.1. The class of extreme value distributions is G�(ax+ b) with a > 0, b 2 R, where

G�(x) = exp(�(1 + �x)�1/�), 1 + �x > 0. (1.3.4)

Von Mises (1936) and Jenkinson (1955) explored the parametrization in Theorem 1.3.1. They

classified the distribution F into three different groups according to the index of the extreme value

distribution.

Definition 1.3.2. (1) For � > 0, use G�((x� 1)/�), let ↵ = 1/� > 0,

�↵(x) :=

8
><

>:

0, x  0,

exp(�x�↵), x > 0.

This class is often called the Fréchet class of distributions

(2) For � < 0, use G�(�(x+ 1)/�), let ↵ = �1/� > 0,

 ↵(x) :=

8
><

>:

exp(�(�x)↵), x < 0,

1, x � 0.

This class is often called the Reverse-Weibull class of distributions.

(3) For � = 0,

G0(x) = exp(�e�x), x 2 R. (1.3.5)

This class is often called the Gumbel class of distributions.

When we are using a heavy-tailed distribution to model the risk, we always care about the right

part of the loss. When � > 0, it is trivial that G�(x) > 0 for all x > 0, i.e., the right endpoint of

the distribution is infinity and the distribution has a rather heavy right tail. This indicates that the

moments of order greater than or equal to 1/� do not exist. For � = 0, the right endpoint of the
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distribution equals infinity. However, the distributions are rather light-tailed and all moments exist.

When � < 0, the right endpoint of the distribution is �1/�, so it has a short right tail. Thus, the

bigger the �, the heavier the right tail.

A simple estimator for estimating the tail index � 2 R is the Pickands estimator from Pickands

III (1975), defined as

�̂P := (log 2)�1 log(
Xn�k;n �Xn�2k;n

Xn�2k;n �Xn�4k;n
), (1.3.6)

where Xn;n � Xn�1;n � · · · � X1;n is the ordered sample of X1, X2, . . . , Xn.

A more widely used way to estimate the tail index for a distribution having a right tail is the Hill

estimator in Hill (1975). From the first order variation, we know F 2 D(G�) for � > 0 if and only

if

lim
t!1

1� F (tx)

1� F (t)
= x�1/�, � > 0.

The Hill estimator �̂H is defined as

�̂H :=
1

k

k�1X

i=0

logXn�i;n � logXn�k;n. (1.3.7)
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CHAPTER 2

EMPIRICAL LIKELIHOOD INFERENCE FOR THE HAEZENDONCK-GOOVAERTS

RISK MEASURE

Recently Haezendonck-Goovaerts risk measure is receiving much attention in actuarial science

with applications in the study of optimal portfolio and optimal reinsurance policy. Nonparametric

estimation is proposed by Ahn and Shyamalkumar (2014), where the derived asymptotic limit can

be employed to construct an interval for the Haezendonck-Goovaerts risk measure. In this chapter,

we propose an alternative empirical likelihood inference for this risk measure. A simulation study

shows the good performance of the proposed method. The content of this chapter is based on the

following joint work:

L. Peng, X. Wang and Y. Zheng (2015). Empirical likelihood inference for Haezendonck-

Goovaerts risk measure. European Actuarial Journal 5, 427-445.

2.1 Motivation and Introduction

Let  : [0,1]! [0,1] be a convex function satisfying  (0) = 0, (1) = 1 and  (1) =1, i.e.,

a normalized Young function. Suppose X is a loss variable. For a fixed number q 2 (0, 1) and each

� > 0, let ↵ = ↵(�) be a solution to

E{ ((X � �)+
↵

)} = 1� q, (2.1.1)

where x+ = max(x, 0). Then, the so-called Haezendonck-Goovaerts risk measure with level q is

defined as

✓q = inf
�>0

{� + ↵(�)}. (2.1.2)

This risk measure originates from Haezendonck and Goovaerts (1982) by considering the premium

calculation principle induced by an Orlicz norm.
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Recently there has been an increasing interest in studying Haezendonck-Goovaerts risk measure

with applications in actuarial science. For example, Goovaerts et al. (2004) showed that this

risk measure preserves the convex order property; Bellini and Gianin (2008a) and Bellini and

Gianin (2008b) provided a dual representation for this risk measure; Goovaerts et al. (2012)

investigated a relationship between this risk measure and others; Cheung and Lo (2013) obtained a

lower bound for this risk measure when a sum of random variables is concerned; studies of optimal

portfolio and optimal reinsurance under this risk measure are given by Bellini and Gianin (2008b)

and Zhu, Zhang, and Zhang (2013), respectively; Tang and Yang (2012) and Tang and Yang (2014)

derived a first order approximation for this risk measure when the underlying distribution is in

the domain of attraction of an extreme value distribution, which is of importance in predicting

extreme risks; a second order approximation for this risk measure is obtained by Mao and Hu (2012),

which is necessary for the study of estimating this risk measure nonparametrically when the level

q depends on the sample size and goes to one as the sample size tends to infinity; nonparametric

estimation for this risk measure is proposed by Ahn and Shyamalkumar (2014) and its asymptotic

limit is derived too.

Although some nice theoretical properties and applications of this Haezendonck-Goovaerts risk

measure have been found in the literature, statistical inference is quite underdeveloped. For example,

how does one effectively construct a confidence interval for the Haezendonck-Goovaerts risk

measure ✓q at a given level q 2 (0, 1)? Quantifying variability of a risk measure is of importance in

risk management such as backtesting. A simple way to obtain an interval for ✓q is to either estimate

the asymptotic variance of the nonparametric estimator of ✓q in Ahn and Shyamalkumar (2014)

or use a bootstrap method. In general this simple method does not lead to an accurate interval.

Alternatively one can investigate the possibility of developing an empirical likelihood method

for this risk measure since empirical likelihood methods are powerful in interval estimation and

hypothesis tests. We refer to Owen (2001) for an overview on empirical likelihood methods and

their advantages. Recently empirical likelihood methods have been proposed for constructing

intervals for some risk measures in the literature; see Peng and Qi (2006) for high quantiles; Chan
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et al. (2007) for conditional Value-at-Risk; Baysal and Staum (2008) for Value-at-Risk and expected

shortfall. A standard way to formulate an empirical likelihood function is via estimating equations;

see Qin and Lawless (1994). By noting that the Haezendonck-Goovaerts risk measure can be

written as a solution to two estimating equations, we are able to employ the empirical likelihood

method in Qin and Lawless (1994) to estimate this risk measure and to construct a confidence

interval for it. However the results in Qin and Lawless (1994) can not be applied due to the involved

non-smoothing functionals when the Haezendonck-Goovaerts risk measure is written as a solution

to estimation equations. Instead, we develop our theoretical results by combining techniques in the

empirical process and the empirical likelihood method.

This chapter is organized as follows. Section 2.2 presents the methodology and main results,

where the imposed regularity conditions are different from those in Ahn and Shyamalkumar (2014)

since we focus on the case of having a normal limit. These conditions can be verified straightfor-

wardly. A simulation study is given in Section 2.3, which shows that the new method has good

finite sample performance and provides a more accurate interval than the normal approximation

method based on the nonparametric estimator in Ahn and Shyamalkumar (2014). All proofs are put

in Section 2.4. Some conclusions are made in Section 2.5.

2.2 Nonparametric Maximum Empirical Likelihood Estimation for Fixed Quantile Level

Throughout suppose X1, · · · , Xn are independent random variables with common distribution

function F (x), and we use notations p!, d!, a.s.!, op(1), Op(1) and I(·) to denote convergence in

probability, convergence in distribution, convergence almost surely, small order in probability,

bounded in probability and indicate function, respectively. The nonparametric estimator for the

Haezendonck-Goovaerts risk measure proposed by Ahn and Shyamalkumar (2014) first solve the

following equation with respect to ↵ for each fixed �:

1

n

nX

i=1

 (
(Xi � �)+

↵
) = 1� q. (2.2.1)
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This equation is the sample version of equation (2.1.1). Denote this solution by ↵̂(�). Next, using

(2.1.2), Ahn and Shyamalkumar (2014) defined their nonparametric estimator for ✓q as

✓̂AS

q
= inf

�>0
{� + ↵̂(�)}, (2.2.2)

and derived its asymptotic limit. As shown by Ahn and Shyamalkumar (2014), the limit could

be non-normal. Under some conditions, the limit is normal, and Ahn and Shyamalkumar (2014)

proposed an estimator for the asymptotic variance and stated that it is important to study methods

for interval estimation such as bootstrap method, but they did not conduct any empirical/theoretical

investigation.

Although equations (2.1.1) and (2.1.2) have a unique solution for a given q 2 (0, 1) when  is

strictly convex (see Bellini and Gianin (2012)), ✓̂AS

q
may not exist for a large q and finite n due to

the first step estimation ↵̂(�); see the simulation results in Table 2.1 below.

By taking derivative with respect to � in (2.1.1), we obtain

E{ 0(X � �
↵(�)

)
�↵(�)� (X � �)↵0(�)

↵2(�)
I(X > �)} = 0. (2.2.3)

Equation (2.2.2) implies that we have to solve the equation 1 + ↵0(�) = 0, which, combining with

(2.2.3), results in the following estimating equation

E{ 0(X � �
↵(�)

)(X � � � ↵(�))I(X > �)} = 0. (2.2.4)

Hence, it follows from (2.2.3) and (2.2.4) that ✓q(> �) and � satisfy the following estimating

equations: 8
><

>:

E{ (Xi��
✓q�� )I(Xi > �)} = 1� q,

E{ 0(Xi��
✓q�� )(Xi � ✓q)I(Xi > �)} = 0.

(2.2.5)

A rigorous derivation can be found in Tang and Yang (2014) under some conditions. The above

view of Haezendonck-Goovaerts risk measure motivates us to consider the following maximum
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empirical likelihood estimator for ✓q and empirical likelihood based confidence intervals. Note that

moment estimator based on (2.2.5) can be employed too, but its asymptotic behavior will be the

same as that of the proposed maximum empirical likelihood estimator.

For i = 1, · · · , n, put

Yi(✓q, �) =
⇣
 (

Xi � �
✓q � �

)I(Xi > �)� 1 + q,  0(
Xi � �
✓q � �

)(Xi � ✓q)I(Xi > �)
⌘T

.

Then it follows from Qin and Lawless (1994) that the empirical likelihood function for (✓q, �) is

defined as

L(✓q, �) = sup{
nY

i=1

(npi) : p1 � 0, · · · , pn � 0,
nX

i=1

pi = 1,
nX

i=1

piYi(✓q, �) = 0}.

By the Lagrange multiplier technique, we have

l(✓q, �) := �2 logL(✓q, �) = 2
nX

i=1

log(1 + �TYi(✓q, �)), (2.2.6)

where � = �(✓q, �) satisfies
nX

i=1

Yi(✓q, �)

1 + �TYi(✓q, �)
= 0. (2.2.7)

As in Qin and Lawless (1994), the maximum empirical likelihood estimator for (✓q, �) is defined as

(✓̂MEL

q
, �̂MEL) = arg min

✓q>�>0
l(✓q, �).

When an interval for ✓q is concerned, one needs to consider the profile empirical likelihood ratio

function lP (✓q) = min�<✓q l(✓q, �).

In order to derive the asymptotic limit of (✓̂MEL

q
, �̂MEL) and to show that Wilks theorem holds

for the above empirical likelihood method, conditions and theorems in Qin and Lawless (1994)

can not be applied since our functionals are non-smooth due to the factor I(Xi > �). One way

to overcome this issue is to smooth the indicator function as Chen and Hall (1993) for quantile
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estimation and Chen, Peng, and Zhao (2009) for copulas. Unfortunately this smoothing technique

can not be employed here due to the fact that  (t) is defined only for t � 0. Recently Molanes

Lopez, Keilegom, and Veraverbeke (2009) gave some general regularity conditions to show that

Wilks theorem holds for non-smooth functionals, but did not provide the asymptotic limit of the

maximum empirical likelihood estimator. Here we prove our results by combining expansions

in empirical processes and empirical likelihood method, which results in the following regularity

conditions:

• C2.1)  is a strictly convex function on [0,1] with  (0) = 0, (1) = 1, (1) = 1, and

 (t) has a continuous second derivative on (0,1) with | 0(0+)| <1 and 0   00(0+) <1;

• C2.2) F is continuous;

• C2.3) E{sup(✓q ,�)T2⌦ | (X��
✓q�� )|

2�1I(X > �)} < 1 and E{sup(✓q ,�)T2⌦ | 0(X��
✓q�� )|

2�1 |X �

✓q|2�1I(X > �)} <1 for some �1 > 1,

sup(✓q ,�)T2⌦
R1
�

F �2(x){1� F (x)}�2
n
| 0( x��

✓q�� )|+  00( x��
✓q�� )x+  ( x��

✓q�� )| 
0( x��
✓q�� )|

+| 0( x��
✓q�� )| 

00( x��
✓q�� )(x� ✓q)

2 + ( 0( x��
✓q�� ))

2|x� ✓q|

+ ( x��
✓q�� ) 

00( x��
✓q�� )(x� �)|x� ✓|

o
dx <1

for some �2 2 (0, 1/2),

sup(✓q ,�)T2⌦

n
|
R1
�
 00( x��

✓q�� )(x� ✓q)
2 dF (x)|

+|
R1
�
 00( x��

✓q�� )(x� ✓q)(x� �) dF (x)|

+|
R1
�
 0( x��

✓q�� ) 
00( x��
✓q�� )(x� ✓q)

3 dF (x)|

+|
R1
�
 0( x��

✓q�� ) 
00( x��
✓q�� )(x� ✓q)

2(x� �) dF (x)|

+|
R1
�
 ( x��

✓q�� ) 
00( x��
✓q�� )(x� ✓q)

2 dF (x)|

+|
R1
�
 ( x��

✓q�� ) 
00( x��
✓q�� )(x� ✓q)(x� �) dF (x)|

o

<1,

where ⌦ is an open set including (✓0,q, �0)T . Here (✓0,q, �0)T is the solution to equations
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(2.1.1) and (2.1.2).

Theorem 2.2.1. Under conditions C2.1)–C2.3), we have

i)

⌃T

1⌃
�1
0 ⌃1

p
n

0

B@
�̂MEL � �0

✓̂MEL

q
� ✓0,q

1

CA d! N(0,⌃T

1⌃
�1
0 ⌃1)

as n!1, where ⌃1 =

0

B@
a1 b1

a2 b2

1

CA and ⌃0 =

0

B@
�2
1 �12

�12 �2
2

1

CA with

a1 =

Z 1

�0

 0(
x� �0
✓0,q � �0

)
x� ✓0,q

(✓0,q � �0)2
dF (x), b1 =

Z 1

�0

 0(
x� �0
✓0,q � �0

)
�0 � x

(✓0,q � �0)2
dF (x),

a2 = � 0(0+)(�0 � ✓0,q) +
Z 1

�0

 00(
x� �0
✓0,q � �0

)
(x� ✓0,q)2

(✓0,q � �0)2
dF (x),

b2 =

Z 1

�0

{ 00( x� �0
✓0,q � �0

)
(�0 � x)(x� ✓0,q)

(✓0,q � �0)2
�  0( x� �0

✓0,q � �0
)} dF (x),

and

�2
1 = E{ 2(

X � �0
✓0,q � �0

)I(X > �0)}� (1� q)2,

�12 = E{ ( X � �0
✓0,q � �0

) 0(
X � �0
✓0,q � �0

)(X � ✓0,q)I(X > �0)},

�2
2 = E{( 0( X � �0

✓0,q � �0
))2(X � ✓0,q)2I(X > �0)}.

ii) lP (✓0,q) converges in distribution to a chi-squared limit with one degree of freedom as n!1,

which ensures that the proposed empirical likelihood confidence interval below has an asymptoti-

cally correct level.

Remark 2.2.2. When ⌃1 has rank 2, then i) in Theorem 2.2.1 becomes

p
n

0

B@
�̂ � �0

✓̂MEL

q
� ✓0,q

1

CA d! N(0,⌃�11 ⌃0(⌃
�1
1 )T ).
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In Figure 2.1 below, we plot the determinant of ⌃1 for the uniform distribution and Pareto distribu-

tions used in the simulation study, which are positive, i.e., ⌃1 has rank 2.

Figure 2.1: Determinant of ⌃1 in Theorem 2.2.1

Remark 2.2.3. Note that we do not assume  0(0+) = 0. Instead we assume F is continuous to

ensure (2.2.5) holds. So conditions C2.1) and C2.2) appear in Tang and Yang (2014). The first

two inequalities with respect to �1 in C2.3) ensure Lemmas 2.4.2 and 2.4.3, which are standard for

an empirical likelihood method. The other two inequalities in C2.3) are similar to the bounded

conditions for partial derivatives with respect to parameters in Qin and Lawless (1994), which

are employed in the proof of Lemma 2.4.1. We employ these different conditions due to non-

differentiability. All conditions C2.1)–C2.3) can be checked straightforward.

Based on the above theorem, a confidence interval for ✓0,q with level ⇠ is obtained as

IEL

⇠
= {✓q : lP (✓q)  �2

1,⇠},

where �2
1,⇠ denotes the ⇠�th quantile of a chi-squared distribution with one degree of freedom.

We remark that the above regularity conditions are different from those in Ahn and Shyamalku-

mar (2014). A theoretical comparison for these two estimators is hard due to their complicated

asymptotic variances. Instead a simulation comparison is given in Section 2.3, which shows that

the new method has some advantages. Moreover, if one is interested in a confidence region for
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risk measures ✓q1 , · · · , ✓qm at several different levels q1, q2, · · · , qm, the above empirical likelihood

method can easily be extended by considering corresponding 2m equations. We skip details.

2.3 Simulation Study

In this section, we examine the finite sample behavior of the proposed maximum empirical likelihood

estimator and the empirical likelihood based confidence interval, and compare them with the

nonparametric estimator in Ahn and Shyamalkumar (2014) in terms of mean squared errors and

coverage accuracy. First we compare the finite sample behavior of these two estimators ✓̂MEL

q

and ✓̂AS

q
in terms of mean squared errors and biases. For computing these quantities, we employ

 (x) = x
2+x

2 I(x > 0) and draw 10, 000 random samples with sample size n = 500 and 2, 000 from

one of the following two distributions

F1(x) =

8
>>>><

>>>>:

0 if x  0

x if 0 < x < 1

1 if x � 1

and F2(x; �, �) =

8
><

>:

0 if x  0

1� (1 + �x)�� if x > 0,

where � > 0 and � > 4. For these two distributions, an explicit formula for ✓q is available in Ahn

and Shyamalkumar (2014). It is easy to check that conditions C2.1–C2.3) in Theorem 2.2.1 are

satisfied. For example, one can choose any �1 > 1 and �2 2 (0, 12) in C2.3) for distribution F1(x),

and choose any 1 < �1 < �+1
4 and 2

�
< �2 < 1

2 in C2.3) for distribution F2(x; �, �) when ⌦ is

chosen small enough. In Table 2.1 we report the bias, standard deviation and square root of mean

squared error for these two estimators at different levels q = 0.9, 0.95, 0.99. We also report the

number of times when the minimization fails to give a solution. From Table 2.1, we observe that i)

✓̂MEL

q
has a smaller mean squared error than ✓̂AS

q
for distribution F1(x) except the case n = 500 and

q = 0.99, where ✓̂AS

q
can not be calculated for 517 out of 10, 000 times; ii) ✓̂AS

q
has a smaller mean

squared error than ✓̂MEL

q
for distribution F2(x; 1, 15), but sometimes has a larger mean squared

error for distribution F2(x; 1, 5); iii) ✓̂AS

q
has a computational issue especially when q = 0.99, i.e.,

minimization fails sometimes.
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Next we compare the proposed empirical likelihood based confidence interval with the normal

approximation method based on ✓̂AS

q
in terms of coverage probability by drawing 1, 000 random

samples with sample size n = 500 and 2, 000. We employ the same Young function  (x) and

distribution functions F1(x) and F2(x; �, �) as above. For computing the empirical coverage

probability of the proposed empirical likelihood method, we first use the R package ‘emplik’

to compute l(✓0,q, �) for each �, and then use the R package ‘nlm’ to minimize l(✓0,q, �) over

� < ✓0,q so as to get lP (✓0,q). For comparison with the interval, denoted by IAS

⇠
, obtained from the

nonparametric estimator ✓̂AS

q
, we employ the naive bootstrap method by drawing 1, 000 resamples

from the original sample to construct the bootstrap confidence interval. We also compute the

bootstrap calibrated empirical likelihood based confidence interval, denoted by IBEL

⇠
, by drawing

1, 000 resamples from the original sample and using these 1, 000 bootstrapped versions of lP (✓̂MEL

q
)

to obtain the critical value; see Owen (2001) for details on calibration for empirical likelihood

methods. We report the empirical coverage probabilities for these three intervals with levels

⇠ = 0.9 and 0.95 for different q = 0.9, 0.95, 0.99 in Table 2.2, which show that i) the proposed

empirical likelihood method performs better than the normal approximation method based on ✓̂AS

q

in most cases; ii) the proposed bootstrap calibrated empirical likelihood method gives most accurate

coverage probability; iii) coverage accuracy for these three intervals improves when either the

sample size increases or � in the distribution F2(x; �, �) increases, i.e., tail becomes lighter.

In summary, the proposed maximum empirical likelihood estimator ✓̂MEL

q
and empirical likeli-

hood based confidence interval IEL

⇠
perform well in comparison with the corresponding methods

based on the nonparametric estimator ✓̂AS

q
in Ahn and Shyamalkumar (2014) in terms of mean

squared error, coverage probability and computational difficulty.

2.4 Proofs

Throughout we define the empirical distribution as Fn(x) = 1
n

P
n

i=1 I(Xi  x) and empirical

process as ↵n(x) =
p
n{Fn(x)� F (x)}. Then by the classical theory in empirical processes and
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Skorohod construction, we have

sup
�1<x<1

|↵n(x)� B(x)| a.s.! 0 and sup
�1<x<1

|↵n(x)|
F ⌫(x)(1� F (x))⌫

= Op(1) (2.4.1)

for any ⌫ 2 (0, 12), where B(x) is a Gaussian process with zero mean and covariance

E{B(x1)B(x2)} = F (x1 ^ x2)� F (x1)F (x2);

see Shorack and Wellner (1986).

Lemma 2.4.1. Under conditions of Theorem 2.2.1, when |� � �0| + |✓q � ✓0,q| = �n

p! 0 as

n!1, we have

1
n

P
n

i=1  (
Xi��
✓q�� )I(Xi > �)� 1 + q

=
R1
�0
{F (x)� Fn(x)} 0( x��0

✓0,q��0 )
1

✓0,q��0 dx

+(� � �0)
R1
�0
 0( x��0

✓0,q��0 )
x�✓0,q

(✓0,q��0)2 dF (x)

+(✓q � ✓0,q)
R1
�0
 0( x��0

✓0,q��0 )
�0�x

(✓0,q��0)2 dF (x) + op(
1p
n
+�n),

1
n

P
n

i=1  
0(Xi��
✓q�� )(Xi � ✓q)I(Xi > �)

=  0(0+)(�0 � ✓0,q){F (�0)� Fn(�0)}

+
R1
�0
{F (x)� Fn(x)}{ 00( x��0

✓0,q��0 )
x�✓0,q
✓0,q��0 +  0( x��0

✓0,q��0 )} dx

+(� � �0){� 0(0+)(�0 � ✓0,q) +
R1
�0
 00( x��0

✓0,q��0 )
(x�✓0,q)2
(✓0,q��0)2 dF (x)}

+(✓q � ✓0,q)
R1
�0
{ 00( x��0

✓0,q�✓0 )
(x�✓0,q)(�0�x)

(✓0,q��0)2 �  0( x��0
✓0,q��0 )} dF (x) + op(

1p
n
+�n),

1
n

P
n

i=1  
2(Xi��

✓q�� )I(Xi > �)�
R1
�0
 2( x��0

✓0,q��0 ) dF (x)

= 2
R1
�0
{F (x)� Fn(x)} ( x��0

✓0,q��0 ) 
0( x��0
✓0,q��0 )

1
✓0,q��0 dx

+(� � �0)
R1
�0

2 ( x��0
✓0,q��0 ) 

0( x��0
✓0,q��0 )

x�✓0,q
(✓0,q��0)2 dF (x)

+(✓q � ✓0,q)
R1
�0

2 ( x��0
✓0,q��0 ) 

0( x��0
✓0,q��0 )

�0�x
(✓0,q��0)2 dF (x) + op(

1p
n
+�n),
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1
n

P
n

i=1{ 0(
Xi��
✓q�� )}

2(Xi � ✓q)2I(Xi > �)�
R1
�0
{ 0( x��0

✓0,q��0 )}
2(x� ✓0,q)2 dF (x)

= {F (�0)� Fn(�0)}{ 0(0+)}2(�0 � ✓0,q)2

+2
R1
�0
{F (x)� Fn(x)}{ 0( x��0

✓0,q��0 ) 
00( x��0
✓0,q��0 )

(x�✓0,q)2
✓0,q��0 + ( 0( x��0

✓0,q��0 ))
2(x� ✓0,q)} dx

+(� � �0){�( 0(0+))2(�0 � ✓0,q)2 + 2
R1
�0
 0( x��0

✓0,q��0 ) 
00( x��0
✓0,q��0 )

(x�✓0,q)3
(✓0,q��0)2} dF (x)

+(✓q � ✓0,q)
R1
�0
{2 0( x��0

✓0,q��0 ) 
00( x��0
✓0,q��0 )

(�0�x)(x�✓0,q)2
(✓0,q��0)2 + 2( 0( x��0

✓0,q��0 ))
2(✓0,q � x)} dF (x)

+op(
1p
n
+�n)

and

1
n

P
n

i=1  (
Xi��
✓q�� ) 

0(Xi��
✓q�� )(Xi � ✓q)I(Xi > �)�

R1
�0
 ( x��0

✓0,q��0 ) 
0( x��0
✓0,q��0 )(x� ✓0,q) dF (x)

=
R1
�0
{F (x)� Fn(x)}{( 0( x��0

✓0,q��0 ))
2 x�✓0,q
✓0,q��0 +  ( x��0

✓0,q��0 ) 
00( x��0
✓0,q��0 )

x�✓0,q
✓0,q��0

+ ( x��0
✓0,q��0 ) 

0( x��0
✓0,q��0 )} dx

+(� � �0)
R1
�0
{( 0( x��0

✓0,q��0 ))
2 (x�✓0,q)2
(✓0,q��0)2 +  ( x��0

✓0,q��0 ) 
00( x��0
✓0,q��0 )

(x�✓0,q)2
(✓0,q��0)2} dF (x)

+(✓q � ✓0,q)
R1
�0
{( 0( x��0

✓0,q��0 ))
2 (�0�x)(x�✓0,q)

(✓0,q��0)2 +  ( x��0
✓0,q��0 ) 

00( x��0
✓0,q��0 )

(�0�x)(x�✓0,q)
(✓0,q��0)2

� ( x��0
✓0,q��0 ) 

0( x��0
✓0,q��0 )} dF (x) + op(

1p
n
+�n).

Proof. It follows from the Taylor expansion that

1
n

P
n

i=1  (
Xi��
✓q�� )I(Xi > �)� 1 + q

=
R1
�
 ( x��

✓q�� ) dFn(x)�
R1
�0
 ( x��0

✓0,q��0 ) dF (x)

= �
R1
�
 ( x��

✓q�� ) d{F (x)� Fn(x)}+
R1
�
 ( x��

✓q�� ) dF (x)�
R1
�0
 ( x��0

✓0,q��0 ) dF (x)

=
R1
�
{F (x)� Fn(x)} 0( x��

✓q�� )
1

✓q�� dx+ (� � �0)
R1
�1
 0( x��1

✓1��1 )
x�✓1

(✓1��1)2 dF (x)

+(✓ � ✓0,q)
R1
�1
 0( x��1

✓1��1 )
�1�x

(✓1��1)2 dF (x)

=
R1
�0
{F (x)� Fn(x)} 0( x��0

✓0,q��0 )
1

✓0,q��0 dx+ (� � �0){Fn(�2)� F (�2)} 0(0+) 1
✓2��2

+(� � �0)
R1
�2
{F (x)� Fn(x)}{ 00( x��2

✓2��2 )
x�✓2

(✓2��2)3 +  0( x��2
✓2��2 )

1
(✓2��2)2} dx

+(✓q � ✓0,q)
R1
�2
{F (x)� Fn(x)}{ 00( x��2

✓2��2 )
�2�x

(✓2��2)2 +  0( x��2
✓2��2 )

1
(✓2��2)2} dx

+(� � �0)
R1
�1
 0( x��1

✓1��1 )
x�✓1

(✓1��1)2 dF (x) + (✓ � ✓0,q)
R1
�1
 0( x��1

✓1��1 )
�1�x

(✓1��1)2 dF (x)

:= I1 + · · ·+ I6,

(2.4.2)
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where (✓1, �1)T = �1(✓q, �)T +(1��1)(✓0,q, �0)T and (✓2, �2)T = �2(✓q, �)T +(1��2)(✓0,q, �0)T

for some �1,�2 2 [0, 1]. It follows from (2.4.1) that

I2 = Op(
1p
n
�n) = op(

1p
n
+�n). (2.4.3)

By (2.4.1) and condition C2.3), we have

I3 = Op(
1p
n
�n) = op(

1p
n
+�n) and I4 = Op(

1p
n
�n) = op(

1p
n
+�n). (2.4.4)

Note that the condition E{sup(✓q ,�)T2⌦ | 0(X��
✓q�� )|

2�1 |X � ✓q|2�1I(X > �)} <1 for some �1 > 1

in condition C2.3) implies that

8
><

>:

sup(✓q ,�)T2⌦
R1
�

| 0( x��
✓q�� )| dF (x) <1

sup(✓q ,�)T2⌦
R1
�

| 0( x��
✓q�� )|x dF (x)} <1

(2.4.5)

by noting that | 0(0+)| <1. Similarly, the condition sup(✓q ,�)T2⌦
R1
�
 00( x��

✓q�� )(x� ✓q)
2 dF (x) <

1 in C2.3) implies that

8
>>>><

>>>>:

sup(✓q ,�)T2⌦
R1
�
 00( x��

✓q�� )x
2 dF (x) <1

sup(✓q ,�)T2⌦
R1
�
 00( x��

✓q�� )x dF (x) <1

sup(✓q ,�)T2⌦
R1
�
 00( x��

✓q�� ) dF (x) <1.

(2.4.6)

Hence it follows from (2.4.5), (2.4.6) and the Taylor expansion that

8
><

>:

I5 = (� � �0)
R1
�0
 0( x��0

✓0,q��0 )
x�✓0,q

(✓0,q��0)2 dF (x) +Op(�2
n
)

I6 = (✓q � ✓0,q)
R1
�0
 0( x��0

✓0,q��0 )
�0�x

(✓0,q��0)2 dF (x) +Op(�2
n
).

(2.4.7)

Therefore, the first equation in Lemma 2.4.1 follows from (2.4.2), (2.4.3), (2.4.4) and (2.4.7). The

rest can be shown similarly.
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Lemma 2.4.2. Under conditions of Theorem 2.2.1, we have

1p
n

nX

i=1

Yi(✓0,q, �0)
d! N(0,⌃0)

and
1

n

nX

i=1

Yi(✓0,q, �0)Y
T

i
(✓0,q, �0)

p! ⌃0,

where ⌃0, given in Theorem 2.2.1, is positive definite.

Proof. We only need to show that ⌃0 is positive definite since the rest directly follows from the

central limit theorem and the weak law of large numbers, or by using Lemma 2.4.1 and (2.4.1).

Hence, we need to show that V ar
⇣
(a, b)Yi(✓0,q, �0)

⌘
> 0 for any a2 + b2 6= 0.

If (a, b)Yi(✓0,q, �0) is degenerate, then

a (
x� �0
✓0,q � �0

) + b 0(
x� �0
✓0,q � �0

)(x� ✓0,q) = c (2.4.8)

for some constant c and all x > �0. Obviously, when b = 0, (2.4.8) can not be true since  is a

strictly convex function. By assuming b 6= 0, it follows from (2.4.8) that

a 0(
x� �0
✓0,q � �0

)
1

✓0,q � �0
+ b 00(

x� �0
✓0,q � �0

)
x� ✓0,q
✓0,q � �0

+ b 0(
x� �0
✓0,q � �0

) = 0

for all x > �0, i.e.,

(log 0(
x� �0
✓0,q � �0

))0 = �( a

b(✓0,q � �0)
+ 1)

1

x� ✓0,q
for x > �0,

i.e.,

log 0(
x� �0
✓0,q � �0

) = �( a

b(✓0,q � �0)
+ 1) log |x� ✓0,q|+ c1

for some constant c1 and all x > �0, which is impossible since the left hand side is an increasing

function of x, but the right hand side is not. Hence (2.4.8) can not be true, i.e., ⌃0 is positive definite.
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Lemma 2.4.3. Under conditions of Theorem 2.2.1, we have

sup
1in

sup
(✓,�)T2⌦

||Yi(✓, �)|| = op(n
1
2� )

for some � 2 (1, �1), where || · || denotes L2 norm.

Proof. Note that

P (sup1in sup(✓,�)T2⌦  (
Xi��
✓�� )I(Xi > �) � n

1
2� )


P

n

i=1 P (sup(✓,�)T2⌦  (
Xi��
✓�� )I(Xi > �) � n

1
2� )

 n

n�1/�
E sup(✓,�)T2⌦  

2�1(X1��
✓�� )I(X1 > �)

! 0.

.

Similarly

P ( sup
1in

sup
(✓,�)T2⌦

| 0(Xi � �
✓ � � )(Xi � ✓)I(Xi > �)| � n

1
2� )! 0.

Hence, the lemma follows.

Proof of Theorem 2.2.1. i) Like the proof of Owen (1990), it follows from Lemmas 2.4.1–2.4.3 and

C2.3) that

� = { 1
n

nX

i=1

Yi(✓q, �)Y
T

i
(✓q, �)}�1

1

n

nX

i=1

Yi(✓q, �)(1 + op(1)),

and further

l(✓q, �) = 2
P

n

i=1 �
TYi(✓q, �)�

P
n

i=1 �
TYi(✓q, �)Y T

i
(✓q, �)�+ op(1)

= { 1p
n

P
n

i=1 Yi(✓q, �)}T{ 1
n

P
n

i=1 Yi(✓q, �)Y T

i
(✓q, �)}�1{ 1p

n

P
n

i=1 Yi(✓q, �)}+ op(1)

= { 1p
n

P
n

i=1 Yi(✓q, �)}T⌃�10 { 1p
n

P
n

i=1 Yi(✓q, �)}+ op(1).

(2.4.9)
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Put ⌫/
p
n = (� � �0, ✓q � ✓0,q)T . Then it follows from (2.4.9) and Lemmas 2.4.1–2.4.2 that

l(✓q, �) = { 1p
n

nX

i=1

Yi(✓0,q, �0) + ⌃1⌫}T⌃�10 { 1p
n

nX

i=1

Yi(✓0,q, �0) + ⌃1⌫}+ op(1),

which is minimized at

⌃T

1⌃
�1
0 ⌃1⌫ = �⌃T

1⌃
�1
0

1p
n

nX

i=1

Yi(✓0,q, �0) + op(1),

i.e., i) holds.

ii) Put ⌫1/
p
n = � � �0 and a = (a1, a2)T . As above, we can show that

l(✓0,q, �0) = { 1p
n

nX

i=1

Yi(✓0,q, �0)}T⌃�10 { 1p
n

nX

i=1

Yi(✓0,q, �0)}+ op(1)

and

l(✓0,q, �) = { 1p
n

nX

i=1

Yi(✓0,q, �0) + ⌫a}T⌃�10 { 1p
n

nX

i=1

Yi(✓0,q, �0) + ⌫a}+ op(1).

Hence
l(✓0,q, �)� l(✓0,q, �0)

= ⌫aT⌃�10 { 1p
n

P
n

i=1 Yi(✓0,q, �0)}+ { 1p
n

P
n

i=1 Yi(✓0,q, �0)}T⌃�10 {⌫a}

+⌫aT⌃�10 {⌫a}+ op(1),

which is minimized at

⌫ =
�aT⌃�10

1p
n

P
n

i=1 Yi(✓0,q, �0)

aT⌃�10 a
+ op(1),
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i.e.,

lP (✓0,q) = l(✓0,q, �0)�
a
T⌃�1

0 { 1p
n

Pn
i=1 Yi(✓0,q ,�0)}aT⌃�1

0 { 1p
n

Pn
i=1 Yi(✓0,q ,�0)}

aT⌃�1
0 a

+ op(1)

= { 1p
n

P
n

i=1 Yi(✓0,q, �0)}T⌃�1/20 ⌃�1/20 { 1p
n

P
n

i=1 Yi(✓0,q, �0)}

�{ 1p
n

P
n

i=1 Yi(✓0,q, �0)}T⌃�1/20
⌃
�1/2
0 aa

T⌃
�1/2
0

aT⌃�1
0 a

⌃�1/20 { 1p
n

P
n

i=1 Yi(✓0,q, �0)}+ op(1)

= { 1p
n

P
n

i=1 Yi(✓0,q, �0)}T⌃�1/20 {I2⇥2 � ⌃
�1/2
0 aa

T⌃
�1/2
0

aT⌃0a
}⌃�1/20 { 1p

n

P
n

i=1 Yi(✓0,q, �0)}

+op(1),

where I2⇥2 denotes the 2 by 2 identity matrix. Since I2⇥2 � ⌃
�1/2
0 aa

T⌃
�1/2
0

aT⌃0a
is symmetric, idempotent

and its trace equals to one, ii) follows from Lemma 2.4.2.

2.5 Conclusions

By writing the Haezendonck-Goovaerts risk measure as a solution to two estimating equations, we

study the maximum empirical likelihood estimator and the empirical likelihood based confidence

interval for this risk measure. Due to non-differentiability, conditions and theorems in Qin and

Lawless (1994) can not be applied. Instead results are derived by combining techniques in empirical

processes and empirical likelihood method, which results in some different regularity conditions

from those in Ahn and Shyamalkumar (2014). The imposed regularity conditions are straightforward

to check such as uniform distribution, Pareto distribution and exponential distribution. Comparison

with the nonparametric estimator in Ahn and Shyamalkumar (2014) shows that the proposed

empirical likelihood inference has good finite sample performance. Moreover, the new method

is easy to implement by using existing R packages ‘emplik’ and ‘nlm’, and to extend to a joint

inference for several levels (q1, · · · , qm) by using 2m estimating equations.
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Table 2.2: Coverage accuracy. We report coverage probabilities for intervals IEL

⇠
, IBEL

⇠
and IAS

⇠

with levels ⇠ = 0.9 and 0.95 for different q = 0.9, 0.95, 0.99 and sample size n = 500 and 2, 000.

CDF (n, q) IEL

0.9 IBEL

0.9 IAS

0.9 IEL

0.95 IBEL

0.95 IAS

0.95

F1(·) (500, 0.9) 0.901 0.890 0.883 0.951 0.949 0.930
F1(·) (500, 0.95) 0.904 0.897 0.852 0.950 0.948 0.902
F1(·) (500, 0.99) 0.846 0.933 0.809 0.883 0.959 0.825
F1(·) (2000, 0.9) 0.892 0.890 0.887 0.951 0.944 0.929
F1(·) (2000, 0.95) 0.907 0.901 0.888 0.946 0.943 0.933
F1(·) (2000, 0.99) 0.916 0.890 0.861 0.954 0.940 0.904

F2(·; 1, 5) (500, 0.9) 0.780 0.842 0.793 0.861 0.903 0.840
F2(·; 1, 5) (500, 0.95) 0.753 0.816 0.751 0.838 0.890 0.812
F2(·; 1, 5) (500, 0.99) 0.557 0.781 0.634 0.606 0.825 0.704
F2(·; 1, 5) (2000, 0.9) 0.831 0.871 0.837 0.905 0.923 0.896
F2(·; 1, 5) (2000, 0.95) 0.825 0.868 0.818 0.895 0.914 0.875
F2(·; 1, 5) (2000, 0.99) 0.765 0.833 0.771 0.838 0.908 0.861
F2(·; 1, 15) (500, 0.9) 0.868 0.879 0.845 0.929 0.940 0.912
F2(·; 1, 15) (500, 0.95) 0.864 0.883 0.813 0.912 0.929 0.883
F2(·; 1, 15) (500, 0.99) 0.642 0.818 0.703 0.691 0.898 0.757
F2(·; 1, 15) (2000, 0.9) 0.873 0.887 0.865 0.929 0.937 0.929
F2(·; 1, 15) (2000, 0.95) 0.872 0.886 0.864 0.936 0.942 0.917
F2(·; 1, 15) (2000, 0.99) 0.866 0.894 0.824 0.917 0.940 0.878
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CHAPTER 3

INFERENCE FOR THE INTERMEDIATE HAEZENDONCK-GOOVAERTS RISK

MEASURE

Nonparametric inference of the Haezendonck-Goovaerts (H-G) risk measure has been studied by

Ahn and Shyamalkumar (2014) and Peng, Wang, and Zheng (2015) when the risk measure is defined

at a fixed level. In risk management, the level is usually set to be quite near one by regulators.

Therefore, especially when the sample size is not large enough, it is useful to treat the level as a

function of the sample size, which diverges to one as the sample size goes to infinity. In this chapter,

we extend the results in Peng, Wang, and Zheng (2015) from a fixed level to an intermediate level.

Although the proposed maximum empirical likelihood estimator for the H-G risk measure has a

different limit for a fixed level and an intermediate level, the proposed empirical likelihood method

indeed gives a unified interval estimation for both cases. A simulation study is conducted to examine

the finite sample performance of the proposed method. The content of this chapter is based on the

joint work:

X. Wang and L. Peng (2016). Inference for intermediate Haezendonck-Goovaerts risk measure.

Insurance: Mathematics and Economics 68, 231-240.

3.1 Motivation and Introduction

Let X denote a loss variable with distribution F . Then the q-th quantile of F is defined as

F (q) = inf{x|F (x) � q}, which is also called Value-at-Risk (VaR) in risk management. A

simple nonparametric estimator for a quantile is the so-called empirical quantile. However, in risk

management, the level q is usually set to be quite near one by regulators. Therefore, when q is close

to one and n is not large enough, it may be useful to model 1� q as a function of n, which goes

to zero as n turns to infinity, so as to improve the quantile estimation. Here we have to consider

two situations separately: intermediate quantile (i.e., q = qn ! 1 and n(1� qn)!1 as n!1)

33



and extreme quantile (i.e., q = qn ! 1 and n(1 � qn) ! c � 0 as n ! 1). For an extreme

quantile, it usually involves extrapolation of data, say assuming the underlying distribution is in the

domain of attraction of an extreme value distribution; see De Haan and Ferreira (2007) . We refer to

Matthys et al. (2004) and Vandewalle and Beirlant (2006) for applications to actuarial science. For

an intermediate quantile, the empirical quantile is still consistent, but has a different asymptotic

limit from the case of a fixed quantile. This complicates interval estimation since distinguishing a

fixed level and an intermediate level is practically impossible. Therefore finding a unified inference

is of importance. It is also known that a bootstrap method and the delete-1 jackknife method do not

lead to a consistent interval estimation for empirical quantiles; see Shao and Tu (2012).

Recently Li, Gong, and Peng (2010) showed that the empirical likelihood method gives a unified

interval estimation for quantiles at a fixed level and an intermediate level. As quantile is one of many

commonly employed risk measures in insurance and finance, one may wonder whether empirical

likelihood inference can unify other risk measures at a fixed level and an intermediate level. In

this chapter, we investigate this possibility for the so-called Haezendonck-Goovaerts (H-G) risk

measure, which has been studied a lot in the literature of actuarial science recently.

Let  : [0,1]! [0,1] be a convex function satisfying  (0) = 0, (1) = 1 and  (1) =1,

i.e.,  is a normalized Young function. For a number q 2 (0, 1) and each � > 0, let ↵ = ↵(�) be a

solution to

E{ ((X � �)+
↵

)} = 1� q, (3.1.1)

where x+ = max(x, 0). Then, the H-G risk measure with level q is defined as

✓ = inf
�>0

{� + ↵(�)}, (3.1.2)

see Haezendonck and Goovaerts (1982) for details.

Recently properties and applications to reinsurance and risk management of the H-G risk

measure have been studied in the literature of actuarial science; see Bellini and Gianin (2008a);

Bellini and Gianin (2008b); Bellini and Gianin (2012) , Cheung and Lo (2013) , Goovaerts et
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al. (2004), Goovaerts et al. (2012) and Zhu, Zhang, and Zhang (2013). For nonparametric inference,

we refer to Ahn and Shyamalkumar (2014) and Peng, Wang, and Zheng (2015). All these papers

consider a fixed level q. When q = qn ! 1 as n ! 1, Tang and Yang (2012); Tang and

Yang (2014) derived asymptotic approximations for the H-G risk measure by assuming that the

underlying distribution belongs to the domain of attraction of an extreme value distribution, and a

second order approximation is derived in Mao and Hu (2012). However, nonparametric estimation

for the H-G risk measure with either an intermediate level or an extreme level remains unknown in

the literature. For the extreme quantile, it seems that approximations in Tang and Yang (2012); Tang

and Yang (2014) can be employed to derive an estimator for the H-G risk measure by combining

them with extreme value statistics, and results in Mao and Hu (2012) are useful in deriving the

asymptotic limit of the proposed estimator. In this chapter we mainly concern with an intermediate

level, that is, one expects nonparametric estimators for a fixed level are still valid, but the asymptotic

limit for a fixed level and an intermediate level will be quite different. For the purpose of giving a

unified inference, we will investigate the possibility of extending the empirical likelihood inference

for the H-G risk measure at a fixed level in Peng, Wang, and Zheng (2015) to an intermediate level.

We organize this chapter as follows. Section 3.2 presents the empirical likelihood method and

asymptotic results. A simulation study and data analysis are given in Section 3.3. All proofs are put

in Section 3.4. Some conclusions are summarized in Section 3.5.

3.2 Nonparametric Maximum Empirical Likelihood Estimation for Intermediate Quantile

Level

Throughout suppose X,X1, ..., Xn are independent and identically distributed random variables

with distribution function F (x). Notations p!, d!, op(1), Op(1) and I(·) denote convergence in

probability, convergence in distribution, small order in probability, bounded in probability and

indicator function, respectively.
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Since the H-G risk measure is equivalent to solving the following estimating equations

8
><

>:

E{ (Xi��
✓�� )I(Xi > �)} = 1� q,

E{ 0(Xi��
✓�� )(Xi � ✓)I(Xi > �)} = 0

(3.2.1)

for some � and ✓ > � under some conditions (see Tang and Yang (2014)), Peng, Wang, and

Zheng (2015) proposed to employ the empirical likelihood inference in Qin and Lawless (1994) to

the above estimating equations, derived the asymptotic limit of the maximum empirical likelihood

estimator and proved that Wilk’s theorem holds for the empirical likelihood method. Note that

results in Qin and Lawless (1994) are not applicable due to the non-differentiable issue caused by

the involved indicator function. We refer to Owen (2001) for an overview on empirical likelihood

methods.

In this chapter, we extend the results in Peng, Wang, and Zheng (2015) to the case of intermediate

quantile, i.e., the case of qn ! 1 and n(1 � qn) ! 1 as n ! 1. As in Peng, Wang, and

Zheng (2015), we put

Yni(✓, �) =
⇣
 (

Xi � �
✓ � � )I(Xi > �)� 1 + qn,  0(

Xi � �
✓ � � )(Xi � ✓)I(Xi > �)

⌘T

for i = 1, · · · , n, and define the empirical likelihood function for (✓, �) as

Ln(✓, �) = sup{
nY

i=1

(npi) : p1 � 0, · · · , pn � 0,
nX

i=1

pi = 1,
nX

i=1

piYni(✓, �) = 0}.

By the Lagrange multiplier technique, we have

ln(✓, �) := �2 logLn(✓, �) = 2
nX

i=1

log(1 + �T
n
Yni(✓, �)), (3.2.2)

where �n = �n(✓, �) satisfies
nX

i=1

Yni(✓, �)

1 + �T
n
Yni(✓, �)

= 0. (3.2.3)
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Therefore the maximum empirical likelihood estimator for (✓, �) is defined as

(✓̂MEL

n
, �̂MEL

n
) = argmin

✓>�

ln(✓, �).

It is known that the asymptotic limit of empirical quantile for an intermediate quantile requires

some restrictions on the tail behavior of the underlying distribution (see Drees and Haan (1999)).

Hence the study of intermediate H-G risk measure needs some conditions on the tail behavior of

F too. Here we focus on the case of heavy-tailed distribution and normalized Young function for

 . Throughout let (�n0, ✓n0) denote the true values of (�, ✓) determined by (3.1.1) and (3.1.2) with

q = qn, and assume the following conditions hold.

• C3.1)  (t) = tk for some k > 1. Hence  is a normalized Young function.

• C3.2) limt!1
tF
0(t)

1�F (t) = � for some � > 2k, where k is given in C3.1), which implies that

limt!1
1�F (tx)
1�F (t) = x�� for x > 0.

• C3.3) As n!1, qn ! 1 and
p

n(1� qn)/F (qn)!1, which imply n(1� qn)!1.

Theorem 3.2.1. Under conditions C3.1)–C3.3), we have

p
n(1� qn)

F (qn)

0

B@
�̂MEL

n
� �n0

✓̂MEL

n
� ✓n0

1

CA d! N(0,⌃�11 ⌃0(⌃
�1
1 )T ),

as n!1, where ⌃1 =

0

B@
a1 b1

a2 b2

1

CA and ⌃0 =

0

B@
�2
1 �12

�12 �2
2

1

CA with

a1 =

Z
c
��
2

0

k(
x�1/� � c2
c1 � c2

)k�1
x�1/� � c1
(c1 � c2)2

dx,

b1 =

Z
c
��
2

0

k(
x�1/� � c2
c1 � c2

)k�1
c2 � x�1/�

(c1 � c2)2
dx,

a2 =

Z
c
��
2

0

k(k � 1)(
x�1/� � c2
c1 � c2

)k�2
(x�1/� � c1)2

(c1 � c2)2
dx,
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b2 =

Z
c
��
2

0

{k(k � 1)(
x�1/� � c2
c1 � c2

)k�2
(c2 � x�1/�)(x�1/� � c1)

(c1 � c2)2
� k(

x�1/� � c2
c1 � c2

)k�1} dx,

�2
1 =

Z
c
��
2

0

(
x�1/� � c2
c1 � c2

)2k dx,

�2
2 =

Z
c
��
2

0

k2(
x�1/� � c2
c1 � c2

)2k�2(x�1/� � c1)
2 dx,

�12 =

Z
c
��
2

0

(
x�1/� � c2
c1 � c2

)kk(
x�1/� � c2
c1 � c2

)k�1(x�1/� � c1) dx,

c1 = c1(�, k) =
�(� � k)k/��1

k(k�1)/� (B(� � k, k))1/�,

c2 = c2(�, k) =
(� � k)k/�

k(k�1)/� (B(� � k, k))1/�,

and B(a, b) =
R 1

0 xa�1(1� x)b�1 dx.

By comparing the above limit with the asymptotic limit in Peng, Wang, and Zheng (2015) for

a fixed level q, the maximum empirical likelihood estimator for the H-G risk measure is always

consistent, but has a different limit for a fixed level and an intermediate level. However, for interval

estimation, the following theorem shows that the proposed empirical likelihood method provides a

unified interval estimation for a fixed level and an intermediate level by combining it with the result

in Peng, Wang, and Zheng (2015) for a fixed level.

Theorem 3.2.2. Under conditions C3.1)–C3.3), lP
n
(✓n0) = min�<✓n0 ln(�, ✓n0) converges in distri-

bution to a chi-squared limit with one degree of freedom as n!1, which ensures that the empirical

likelihood confidence interval IEL(↵) = {✓ : lP
n
(✓)  �2

1,↵} has an asymptotically correct level ↵,

where �2
1,↵ denotes the ↵th quantile of a chi-squared limit with one degree of freedom.

3.3 Simulation Study and Data Analysis

3.3.1 Simulation Study

In this subsection we examine the finite sample performance of the proposed empirical likelihood

inference in terms of mean and standard deviation for the point estimation and coverage probability
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for the interval estimation.

We draw 10, 000 random samples with sample size n = 200 and n = 2000 from the Pareto

distribution function F (x) = 1 � x�� for x � 1 with � = 3 and � = 5, the t-distribution with

degrees of freedom � = 3 and � = 5, and the standard exponential distribution. We take  (x) = x1.1

and choose qn to satisfy

p
n(1� qn)

F (qn)
= nd with d =

2

5
,
1

4
,
1

8
.

In Tables 3.1–3.3 below we report the true values (✓n0, �n0), the means and standard deviations of

( ✓̂
MEL
n
✓n0

, �̂
MEL
n
�n0

), and the coverage probabilities for IEL(0.9) and IEL(0.95). The case of d = 2
5 gives

a level q a bit away from one, which may be treated as a fixed level given the considered sample size

n. As shown in Tables 3.1 and 3.2, the maximum empirical likelihood estimator is consistent, and

the empirical likelihood inference gives a unified interval estimation. For the small d = 1
8 , coverage

accuracy improves as the sample size becomes larger. Although we focus on developing our method

for the case of heavy-tailed distributions, Table 3.3 does indicate the method may work for light

tailed distributions too. A future project is to prove the conjecture that the proposed empirical

likelihood method is indeed valid for any distribution in the domain of attraction of an extreme

value distribution.

In conclusion, the simulation results do show that the proposed empirical likelihood method

provides a unified inference for the H-G risk measure at both a fixed level and an intermediate level.

3.3.2 Data Analysis

Typically utilization of nursing home care is measured in patient days, called TPY. The nursing

home data analyzed in Frees (2009) reports TPY for 362 facilities in year 2000 and 355 facilities in

year 2001, which gives a total n = 717 observations, say X1, · · · , Xn; see Figure 3.1 below. This

data set is available at:

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/
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To estimate � in Condition C3.2), we compute the Hill’s estimator

�̂(m) = { 1

m

mX

i=1

logXn,n�i+1 � logXn,n�m}�1

for m = 10, 11, · · · , 200 in Figure 3.1, where Xn,1  · · ·  Xn,n denote the order statistics of

X1, · · · , Xn. From Figure 3.1 we conclude that � in Condition C3.2) is larger than 3 and the method

is applicable with k = 1.1 in Condition C3.1).

Since solving the equation
p
n(1� qn)/F n (qn) = nd for qn = 0.7, 0.9, 0.95, 0.99 gives

negative values of d, where Fn is the empirical distribution of F defined in the beginning of Section

3.4 below, Condition C3.3) can not be satisfied for these levels qn. Here we study the H-G risk at

the above levels for the transformed data Yi = Xi/100. It is easy to see that the H-G risk for Xi’s

is 100 times the H-G risk for Yi’s. Table 3.4 below reports the values of d, �̂MEL

n
, ✓̂MEL

n
, and the

empirical VaR at level qn, which shows that H-G risk ✓̂MEL

n
at level qn is significantly larger than its

corresponding VaR F 
n
(qn).

For constructing the empirical likelihood confidence regions for the H-G risk measure at qn,

we plot the profile empirical likelihood ratio function lP
n
(�✓̂MEL

n
) for different �; See Figure 3.2.

Confidence regions at level 90% and 95% can be obtained from those values below the two straight

lines in Figure 3.2, respectively. Figure 3.2 also shows that the plot becomes bumpier for some

values of � > 1 as qn is larger, which may be explained by the fact that the estimator for the H-G

risk at a large qn has a big variance.

3.4 Proofs

Throughout we define Fn(x) =
1
n

P
n

i=1 I(Xi  x), and put

↵n(t) =
p
n{ 1

n

nX

i=1

I(F (Xi)  t)� t} =
p
n{Fn(F

 (t))� t}
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and wn(t) = (1 � qn)�1/2↵n(1 � t(1 � qn)). Although Theorem 2.1 of Einmahl (1992) studied

the intermediate left tail process (1� qn)�1/2↵n(t(1� qn)), it holds for the intermediate right tail

process wn(t) too. That is, there exists a sequence of standard Wiener processes {Wn(t)} such that

for any ⌘ 2 [0, 1/2) and M > 0

sup
0<tM

|wn(t)�Wn(t)|
t⌘

p�! 0 as n!1. (3.4.1)

We also have

sup
ant1�an

|Fn(F (t))� t|
t(1� t)

p! 0 when an ! 0 and nan !1. (3.4.2)

Moreover, under conditions C3.1)–C3.3), it follows from Theorem 4.1 of Tang and Yang (2012)

that

lim
n!1

✓n0
c1F (qn)

= 1 and lim
n!1

�n0
c2F (qn)

= 1, (3.4.3)

where c1 and c2 are given in Theorem 3.2.1.

Before proving our theorems, we need some lemmas.

Lemma 3.4.1. Under conditions of Theorem 3.2.1, when |�/�n0 � 1|+ |✓/✓n0 � 1| = �n

p! 0 as

n!1, we have

1
n

P
n

i=1  (
Xi��
✓�� )I(Xi > �)� 1 + qn

= �(1 + op(1))n�1/2(1� qn)1/2
R

c
��
2

0 Wn(x)k(
x
�1/��c2
c1�c2 )k�1 1

c1�c2
1

�x1+1/� dx

+(1 +Op(�n))
1�qn

F (qn)
(� � �n0)

R
c
��
2

0 k(x
�1/��c2
c1�c2 )k�1 x

�1/��c1
(c1�c2)2 dx

+(1 +Op(�n))
1�qn

F (qn)
(✓ � ✓n0)

R
c
��
2

0 k(x
�1/��c2
c1�c2 )k�1 c2�x

�1/�

(c1�c2)2 dx,

(3.4.4)
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1
n

P
n

i=1  
0(Xi��

✓�� )(Xi � ✓)I(Xi > �)

= �(1 + op(1))n�1/2(1� qn)1/2F (qn)
R

c
��
2

0 Wn(x)

⇥{k2(x
�1/��c2
c1�c2 )k�1 � k(k � 1)(x

�1/��c2
c1�c2 )k�2} 1

�x1+1/� dx

+(1 +Op(�n))(1� qn)(� � �n0)
R

c
��
2

0 k(k � 1)(x
�1/��c2
c1�c2 )k�2 (x

�1/��c1)2
(c1�c2)2 dx

+(1 +Op(�n))(1� qn)(✓ � ✓n0)
R

c
��
2

0 {k(k � 1)(x
�1/��c2
c1�c2 )k�2 (c2�x

�1/�)(x�1/��c1)
(c1�c2)2

�k(x�1/��c2
c1�c2 )k�1} dx,

(3.4.5)

1

n(1� qn)

nX

i=1

 2(
Xi � �
✓ � � )I(Xi > �)

p!
Z

c
��
2

0

 2(
t�1/� � c2
c1 � c2

) dt (3.4.6)

1
n(1�qn)(F (qn))2

P
n

i=1{ 0(
Xi��
✓�� )}2(Xi � ✓)2I(Xi > �)

p!
R

c
��
2

0 { 0( t�1/��c2
c1�c2 )}2(t�1/� � c1)2 dt,

(3.4.7)

1
n(1�qn)F (qn)

P
n

i=1  (
Xi��
✓�� ) 0(Xi��

✓�� )(Xi � ✓)I(Xi > �)

p!
R

c
��
2

0  ( t
�1/��c2
c1�c2 ) 0( t

�1/��c2
c1�c2 )(t�1/� � c1) dt

(3.4.8)

and 8
><

>:

E{ d(Xi��
✓�� )I(Xi > �)} = O(1� qn)

E{| 0(Xi��
✓�� )|d|Xi � ✓|dI(Xi > �)} = O((1� qn)(F (qn))d)

(3.4.9)

for any d 2 [1, �/k).
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Proof. By the mean value theorem, we can write

1
n

P
n

i=1  (
Xi��
✓�� )I(Xi > �)� 1 + qn

=
R1
�
 (x��

✓�� ) dFn(x)�
R1
�n0

 ( x��n0

✓n0��n0
) dF (x)

=
R1
�
 (x��

✓�� ) d{Fn(x)� F (x)}+
R1
�
 (x��

✓�� ) dF (x)�
R1
�n0

 ( x��n0

✓n0��n0
) dF (x)

= �
R1
�
{Fn(x)� F (x)} 0(x��

✓�� )
1

✓�� dx+ (� � �n0)
R1
�1
 0( x��1

✓1��1 )
x�✓1

(✓1��1)2 dF (x)

+(✓ � ✓n0)
R1
�1
 0( x��1

✓1��1 )
�1�x

(✓1��1)2 dF (x)

= �
R

Xn,n

�
{Fn(x)� F (x)} 0(x��

✓�� )
1

✓�� dx�
R1
Xn,n

{1� F (x)} 0(x��
✓�� )

1
✓�� dx

+(� � �n0)
R1
�1
 0( x��1

✓1��1 )
x�✓1

(✓1��1)2 dF (x)

+(✓ � ✓n0)
R1
�1
 0( x��1

✓1��1 )
�1�x

(✓1��1)2 dF (x)

:= I1 + I2 + I3 + I4,

(3.4.10)

where Xn,n = max(X1, · · · , Xn), �1 lies between � and �n0, and ✓1 lies between ✓ and ✓n0. Define

f(x) = F 0(x). It follows from (3.4.1), (3.4.3), Condition C3.2) and Potter’s bound for regular

variations (see Bingham, Goldie, and Teugels (1987) ) that

I1 = �
R 1�F (Xn,n)

1�F (�) {Fn(F (1� y))� 1 + y} 0(F
 (1�y)��
✓�� ) 1

✓�� (�
1

f(F (1�y))) dy

=
R 1�F (Xn,n)

1�qn
1�F (�)
1�qn

1p
n
↵n(1� t(1� qn)) 0(

F
 (1�t(1�qn))��

✓�� ) 1
✓��

1
f(F (1�t(1�qn)))(1� qn) dt

=
R 1�F (Xn,n)

1�qn
1�F (�)
1�qn

n�1/2(1� qn)1/2(Wn(t) + op(t⌘)) 0(
F
 (1�t(1�qn))��

✓�� ) 1
✓��⇥

F
 (1�t(1�qn))

F (1�t(1�qn))f(F (1�t(1�qn)))(1� qn) dt

=
R 1�F (Xn,n)

1�qn
1�F (�)
1�qn

n�1/2(1� qn)1/2(Wn(t) + op(t⌘)) 0(
F
 (1�t(1�qn))��

✓�� ) 1
✓��⇥

F
 (1�t(1�qn))

�{1�F (F (1�t(1�qn)))}(1 + o(1))(1� qn) dt

=
R 1�F (Xn,n)

1�qn
1�F (�)
1�qn

n�1/2(1� qn)1/2(Wn(t) + op(t⌘)) 0(
F
 (1�t(1�qn))��

✓�� ) 1
✓��⇥

F
 (qn)t�1/�

�t(1�qn) (1 + o(1))(1� qn) dt

= (1 + op(1))n�1/2(1� qn)1/2
R 0

c
��
2

Wn(t)k(
t
�1/��c2
c1�c2 )k�1 1

(c1�c2)
1

�t1+1/� dt

= �(1 + op(1))n�1/2(1� qn)1/2
R

c
��
2

0 Wn(t)k(
t
�1/��c2
c1�c2 )k�1 1

c1�c2
1

�t1+1/� dt

(3.4.11)
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by noting that 1� F (Xn,n) = Op(1/n) which implies that

1� F (Xn,n)

1� qn
= Op(

1

n(1� qn)
) = op(1). (3.4.12)

By Potter’s bound, (3.4.12) and Condition C3.3), we have for any 0 < ✏ < 1
2 �

k

�

I2 = �
R1

Xn,n
F (qn)

1�F (F (qn)t)
1�F (F (qn))

(1� qn) 0(
F
 (qn)t��)
✓�� )F

 (qn)
✓�� dt

= �
R1

Xn,n
F (qn)

t��(1� qn)k(
t�c2
c1�c2 )

k�1 1
c1�c2 (1 + o(1)) dt

= (1� qn)(1 + o(1))Op((
Xn,n

F (qn)
)��+k)

= (1� qn)(1 + o(1))Op((
F
 (1�(1�qn)

1�F (Xn,n)
1�qn

)

F (1�(1�qn)) )��+k)

= (1� qn)(1 + o(1))Op((
1�F (Xn,n)

1�qn )1�k/��✏)

= (1� qn)(1 + o(1))Op((n(1� qn))�1+k/�+✏)

= n�1/2(1� qn)1/2(1 + o(1))Op((n(1� qn))�1/2+k/�+✏)

= op(n�1/2(1� qn)1/2),

(3.4.13)

I3 = (� � �n0)
R (1�F (�1))/(1�qn)
0  0(F

 (1�y(1�qn))��1
✓1��1 )F

 (1�y(1�qn))�✓1
(✓1��1)2 (1� qn) dy

= (1 +Op(�n))(� � �n0) 1�qn
F (qn)

R
c
��
2

0 k(y
�1/��c2
c1�c2 )k�1 y

�1/��c1
(c1�c2)2 dy

(3.4.14)

and

I4 = (✓ � ✓n0)
R (1�F (�1))/(1�qn)
0  0(F

 (1�y(1�qn))��1
✓1��1 )�1�F

 (1�y(1�qn))
(✓1��1)2 (1� qn) dy

= (1 +Op(�n))(✓ � ✓n0) 1�qn
F (qn)

R
c
��
2

0 k(y
�1/��c2
c1�c2 )k�1 c2�y

�1/�

(c1�c2)2 dy.
(3.4.15)

Hence (3.4.4) follows from (3.4.11) and (3.4.13)–(3.4.15).
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Using the same arguments as above, we can show that (3.4.5) holds by writing

1
n

P
n

i=1  
0(Xi��

✓�� )(Xi � ✓)I(Xi > �)

=
R1
�
 0(x��

✓�� )(x� ✓) d{Fn(x)� F (x)}+
R1
�
 0(x��

✓�� )(x� ✓) dF (x)

= �
R1
�
{Fn(x)� F (x)}{ 00(x��

✓�� )
x�✓
✓�� +  0(x��

✓�� )} dx

+(� � �n0)
R1
�1
 00( x��1

✓1��1 )
(x�✓1)2
(✓1��1)2 dF (x)

+(✓ � ✓n0)
R1
�1
{ 00( x��1

✓1��1 )
(�1�x)(x�✓1)

(✓1��1)2 �  0( x��1
✓1��1 )} dF (x)

since

0 =

Z 1

�n0

 0(
x� �n0
✓n0 � �n0

)(x� ✓n0) dF (x).

By the mean value theorem again, we can write

1
n

P
n

i=1  
2(Xi��

✓�� )I(Xi > �)�
R1
�n0

 2( x��n0

✓n0��n0
) dF (x)

= �
R1
�
{Fn(x)� F (x)}2 (x��

✓�� ) 
0(x��
✓�� )

1
✓�� dx

+(� � �n0)
R1
�1

2 ( x��1
✓1��1 ) 

0( x��1
✓1��1 )

x�✓1
(✓1��1)2 dF (x)

+(✓ � ✓n0)
R1
�1

2 ( x��1
✓1��1 ) 

0( x��1
✓1��1 )

�1�x
(✓1��1)2 dF (x)

= �
R
�n

�
{Fn(x)� F (x)}2 (x��

✓�� ) 
0(x��
✓�� )

1
✓�� dx

�
R

Xn,n

�n
{Fn(x)� F (x)}2 (x��

✓�� ) 
0(x��
✓�� )

1
✓�� dx

�
R1
Xn,n

{1� F (x)}2 (x��
✓�� ) 

0(x��
✓�� )

1
✓�� dx

+(� � �n0)
R1
�1

2 ( x��1
✓1��1 ) 

0( x��1
✓1��1 )

x�✓1
(✓1��1)2 dF (x)

+(✓ � ✓n0)
R1
�1

2 ( x��1
✓1��1 ) 

0( x��1
✓1��1 )

�1�x
(✓1��1)2 dF (x)

:= II1 + II2 + II3 + II4 + II5,

(3.4.16)

where �n is chosen to satisfy n{1�F (�n)} = (n(1� qn))1/2�k/� , which implies that �n !1 and

1� F (Xn,n)

1� F (�n)
= Op(

1

n(1� F (�n))
) = op(1), i.e.,

Xn,n

�n

p!1. (3.4.17)

It follows from (3.4.2), (3.4.3), (3.4.17), Condition C3.2) with an = 1� F (�n) and Potter’s bound
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for regular variations that

II1 =
R 1�F (�n)

1�qn
1�F (�)
1�qn

{Fn(F (1� (1� qn)t))� (1� (1� qn)t)}⇥

2 (F
 (1�(1�qn)t)��

✓�� ) 0(F
 (1�(1�qn)t)��

✓�� ) 1
✓��

1�qn
f(F (1�(1�qn)t)) dt

=
R 1�F (�n)

1�qn
1�F (�)
1�qn

op(1)(1� qn)t2 (
t
�1/��c2
c1�c2 ) 0( t

�1/��c2
c1�c2 ) 1

c1�c2
1

�t1+1/� dt

= op(1)(1� qn)Op(
R

c
��
2

0 (t�1/�)2k dt)

= op(1� qn),

(3.4.18)

|II2| 
R

Xn,n

�n
{1� Fn(x) + 1� F (x)}2 (x��

✓�� ) 
0(x��
✓�� )

1
✓�� dx


R

Xn,n

�n
{1� Fn(�n) + 1� F (�n)}2 (x��✓�� ) 

0(x��
✓�� )

1
✓�� dx

=
R

Xn,n

�n
Op(1� F (�n))2 (

x��
✓�� ) 

0(x��
✓�� )

1
✓�� dx

= Op(1� F (�n))
R 1�F (�n)

1�qn
1�F (Xn,n)

1�qn

2 ( t
�1/��c2
c1�c2 ) 0( t

�1/��c2
c1�c2 ) 1

c1�c2
1

�t1+1/� dt

= Op(1� F (�n))
R 1�F (�n)

1�qn
1�F (Xn,n)

1�qn

O((t�1/�)2kt�1) dt

= Op(1� F (�n))Op((
1�F (Xn,n)

1�qn )�2k/��✏)

= Op((1� F (�n))(n(1� qn))2k/�+✏)

= Op(n�1(n(1� qn))1/2�k/�+2k/�+✏)

= op(n�1n(1� qn))

= op(1� qn)

(3.4.19)

for any 0 < ✏ < 1
2 �

k

�
, and

II3 =
R 0

1�F (Xn,n)
1�qn

(1� qn)t2 (
F
 (1�(1�qn)t)��

✓�� ) 0(F
 (1�(1�qn)t)��

✓�� ) 1
✓��

1�qn
f(F (1�(1�qn)t)) dt

= (1� qn)Op(
R 1

n(1�qn)

0 t(t�1/�)2k�1t�1�1/� dt)

= op(1� qn).

(3.4.20)
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Like the proofs of (3.4.14) and (3.4.15), we have

8
><

>:

II4 = op(1� qn), II5 = op(1� qn)

1
1�qn

R1
�n0

 2( x��n0

✓n0��n0
) dF (x)!

R
c
��
2

0  2( t
�1/��c2
c1�c2 ) dt.

(3.4.21)

Hence (3.4.6) follows from (3.4.16)–(3.4.21). Similarly we can show (3.4.7) and (3.4.8). The proof

of (3.4.9) follows from the same arguments in proving (3.4.6) and (3.4.7).

Lemma 3.4.2. Put

8
><

>:

g1(x) = k(x
�1/��c2
c1�c2 )k�1 1

c1�c2
1

�x1+1/� ,

g2(x) = {k2(x
�1/��c2
c1�c2 )k�1 � k(k � 1)(x

�1/��c2
c1�c2 )k�2} 1

�x1+1/� .

Then we have

E{
R

c
��
2

0 Wn(t)g1(t) dt}2 =
R

c
��
2

0 ( t
�1/��c2
c1�c2 )2k dt,

E{
R

c
��
2

0 Wn(t)g2(t) dt}2 =
R

c
��
2

0 k2( t
�1/��c2
c1�c2 )2k�2(t�1/� � c1)2 dt,

E{
R

c
��
2

0 Wn(t)g1(t) dt}{
R

c
��
2

0 Wn(t)g2(t) dt}

=
R

c
��
2

0 k(c1 � c2){( t
�1/��c2
c1�c2 )2k � ( t

�1/��c2
c1�c2 )2k�1} dt.

Proof. Note that

G1(x) =

Z
c
��
2

x

g1(t) dt = (
x�1/� � c2
c1 � c2

)k

and

G2(x) =

Z
c
��
2

x

g2(t) dt = k(c1 � c2){(
x�1/� � c2
c1 � c2

)k � (
x�1/� � c2
c1 � c2

)k�1}.
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Hence,

E{
R

c
��
2

0 Wn(t)g1(t) dt}2

=
R

c
��
2

0

R
c
��
2

0 E{Wn(t)Wn(s)}g1(t)g1(s) dt ds

=
R

c
��
2

0

R
c
��
2

0 (t ^ s)g1(t)g1(s) dt ds

= 2
R

c
��
2

0 (
R

c
��
2

t
g1(s) ds)tg1(t) dt

= �
R

c
��
2

0 t dG2
1(t)

=
R

c
��
2

0 G2
1(t) dt,

E{
Z

c
��
2

0

Wn(t)g2(t) dt}2 =
Z

c
��
2

0

G2
2(t) dt,

E{
R
c
��
2

0 Wn(t)g1(t) dt}{
R

c
��
2

0 Wn(t)g2(t) dt}

= �
R

c
��
2

0 G1(t)t dG2(t)�
R �c��

2

0 G2(t)t dG1(t)

= �1
2

R
c
��
2

0 tk(c1 � c2) d(
t
�1/��c2
c1�c2 )2k

+
R

c
��
2

0 tk(c1 � c2)
k�1
2k�1 d(

x
�1/��c2
c1�c2 )2k�1

�1
2

R
c
��
2

0 tk(c1 � c2) d(
t
�1/��c2
c1�c2 )2k

+
R

c
��
2

0 tk(c1 � c2)
k

2k�1 d(
t
�1/��c2
c1�c2 )2k�1

=
R

c
��
2

0 k(c1 � c2){( t
�1/��c2
c1�c2 )2k � ( t

�1/��c2
c1�c2 )2k�1} dt,

i.e., the lemma holds.

Lemma 3.4.3. Under conditions of Theorem 3.2.1, we have

1p
n

nX

i=1

eYni(✓n0, �n0)
d! N(0,⌃0), (3.4.22)

1

n
{

nX

i=1

eYni(✓n0, �n0)eY T

ni
(✓n0, �n0)}

p! ⌃0 (3.4.23)

and

max
1in

||Ỹni(✓n0, �n0)|| = op(
p
n), (3.4.24)
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where eYni(✓n0, �n0) = AnYni(✓n0, �n0),

An =

0

B@
(1� qn)�1/2 0

0 (1� qn)�1/2/F (qn)

1

CA and ⌃0 is given in Theorem 3.2.1.

Proof. Equations (3.4.22) and (3.4.23) follow from Lemmas 3.4.1 and 3.4.2 directly. For proving

(3.4.24), write Ỹni(✓n0, �n0) = (Ỹni,1, Ỹni,2)T . Choose d = 2+ �/k�2
2 and � = d/2�1

2d . Then it follows

from (3.4.9) that

P (max1in |Ỹni,1| > n1/2(n(1� qn))��)


P

n

i=1 P (|Ỹni,1| > n1/2(n(1� qn))��)


P

n

i=1 n
�d/2(n(1� qn))�dE|Ỹni,1|d

= n1�d/2(n(1� qn))�d(1� qn)�d/2O(1� qn)

= O((n(1� qn))1�d/2+�d)

= o(1),

i.e., max1in |Ỹni,1| = op(
p
n). Similarly we have max1in |Ỹni,2| = op(

p
n). Hence (3.4.24)

holds.

Proof of Theorem 3.2.1. Note that (3.2.2) and (3.2.3) still hold, but with a different �n when Y 0
ni
s

are replaced by Ỹ 0
ni
s. For the simplicity of notation, we still use �n. Hence, like the proof of

Owen (1990), it follows from Lemmas 3.4.1 and 3.4.3 that

�n = { 1
n

nX

i=1

Ỹni(✓, �)Ỹ
T

ni
(✓, �)}�1 1

n

nX

i=1

Ỹni(✓, �)(1 + op(1)),

and further

ln(✓, �) = 2
P

n

i=1 �
T

n
Ỹni(✓, �)�

P
n

i=1 �
T

n
Ỹni(✓, �)Ỹ T

ni
(✓, �)�n + op(1)

= { 1p
n

P
n

i=1 Ỹni(✓, �)}T{ 1
n

P
n

i=1 Ỹni(✓, �)Ỹ T

ni
(✓, �)}�1{ 1p

n

P
n

i=1 Ỹni(✓, �)}

+op(1)

= { 1p
n

P
n

i=1
eYni(✓, �)}T⌃�10 { 1p

n

P
n

i=1
eYni(✓, �)}+ op(1).

(3.4.25)

Put ⌫/{
p

n(1� qn)/F (qn)} = (� � �n0, ✓ � ✓n0)T . Then it follows from (3.4.26) and
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Lemmas 3.4.1 and 3.4.3 that

ln(✓, �) = { 1p
n

nX

i=1

eYni(✓n0, �n0) + ⌃1⌫}T⌃�10 { 1p
n

nX

i=1

eYni(✓n0, �n0) + ⌃1⌫}+ op(1),

which is minimized at

⌃T

1⌃
�1
0 ⌃1⌫ = �⌃T

1⌃
�1
0

1p
n

nX

i=1

eYni(✓n0, �n0) + op(1). (3.4.26)

Hence Theorem 3.2.1 follows from (3.4.26) and Lemma 3.4.3.

Proof of Theorem 3.2.2. Put ⌫1/{
p

n(1� qn)/F (qn)} = � � �n0 and a = (a1, a2)T . As above,

we can show that

ln(✓n0, �n0) = { 1p
n

nX

i=1

eYni(✓n0, �n0)}T⌃�10 { 1p
n

nX

i=1

eYni(✓n0, �n0)}+ op(1)

and

ln(✓n0, �) = { 1p
n

nX

i=1

eYni(✓n0, �n0) + ⌫1a}T⌃�10 { 1p
n

nX

i=1

eYni(✓n0, �n0) + ⌫1a}+ op(1).

Hence

ln(✓n0, �)� ln(✓n0, �n0)

= ⌫1aT⌃
�1
0 { 1p

n

P
n

i=1
eYni(✓n0, �n0)}+ { 1p

n

P
n

i=1
eYni(✓n0, �n0)}T⌃�10 {⌫1a}

+⌫1aT⌃
�1
0 {⌫1a}+ op(1),

which is minimized at

⌫1 =
�aT⌃�10

1p
n

P
n

i=1
eYni(✓n0, �n0)

aT⌃�10 a
+ op(1),
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i.e.,

lP
n
(✓n0)

= ln(✓n0, �n0)�
a
T⌃�1

0 { 1p
n

Pn
i=1

eYni(✓n0,�n0)}aT⌃�1
0 { 1p

n

Pn
i=1

eYni(✓n0,�n0)}
aT⌃�1

0 a
+ op(1)

= { 1p
n

P
n

i=1
eYni(✓n0, �n0)}T⌃�1/20 ⌃�1/20 { 1p

n

P
n

i=1
eYni(✓n0, �n0)}

�{ 1p
n

P
n

i=1
eYni(✓n0, �n0)}T⌃�1/20

⌃
�1/2
0 aa

T⌃
�1/2
0

aT⌃�1
0 a

⌃�1/20 { 1p
n

P
n

i=1
eYni(✓n0, �n0)}

= { 1p
n

P
n

i=1
eYni(✓n0, �n0)}T⌃�1/20 {I2⇥2 � ⌃

�1/2
0 aa

T⌃
�1/2
0

aT⌃0a
}⌃�1/20 { 1p

n

P
n

i=1
eYni(✓n0, �n0)}

+op(1),

where I2⇥2 denotes the 2 by 2 identity matrix. Since I2⇥2 � ⌃
�1/2
0 aa

T⌃
�1/2
0

aT⌃0a
is symmetric, idempotent

and its trace equals to one, the theorem follows from Lemma 3.4.3.

3.5 Conclusions

Although the H-G risk measure has been studied extensively in actuarial science, statistical inference

remains unknown when the level q = qn depends on the sample size n and is an intermediate one,

i.e., qn ! 1 and n(1�qn)!1 as n!1. This chapter extends the empirical likelihood inference

for a fixed level in Peng, Wang, and Zheng (2015) to an intermediate level. The proposed maximum

empirical likelihood estimator is always consistent, but has a different asymptotic distribution for a

fixed level and an intermediate level. The proposed empirical likelihood method provides a unified

interval without knowing whether the level for computing the H-G risk measure is a fixed one or an

intermediate one.
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Table 3.1: Estimation and coverage probability for Pareto distribution. We report the mean and
standard deviation in brackets for both ✓̂MEL

n
/✓n0 and �̂MEL

n
/�n0 at different level qn satisfyingp

n(1� qn)/F (qn) = nd with d = 2/5, 1/4, 1/8 and F (x) = 1� x�� for x � 1. We also report
the coverage probabilities for IEL(0.9) and IEL(0.95).

(n, d, �) qn ✓n0 �n0
✓̂
MEL
n
✓n0

�̂
MEL
n
�n0

IEL(0.9) IEL(0.95)

(200, 25 , 3) 0.4705 1.8968 1.2013 0.9995(0.0645) 1.0020(0.0206) 0.8511 0.9110
(200, 14 , 3) 0.7960 2.6067 1.6509 1.0008(0.1094) 1.0111(0.0770) 0.8604 0.9139
(200, 18 , 3) 0.9078 3.3974 2.1517 1.0018(0.1596) 1.0233(0.1212) 0.8469 0.8948
(2000, 25 , 3) 0.5983 2.0798 1.3172 1.0006(0.0304) 1.0018(0.0186) 0.8762 0.9356
(2000, 14 , 3) 0.8977 3.2817 2.0784 1.0027(0.0680) 1.0089(0.0680) 0.8723 0.9274
(2000, 18 , 3) 0.9673 4.7990 3.0393 1.0045(0.1101) 1.0203(0.1176) 0.8754 0.9288
(200, 25 , 5) 0.5309 1.4700 1.1466 1.0000(0.0326) 1.0012(0.0151) 0.8734 0.9287
(200, 14 , 5) 0.8493 1.8448 1.4389 1.0017(0.0640) 1.0081(0.0530) 0.8752 0.9274
(200, 18 , 5) 0.9415 2.2290 1.7387 1.0028(0.1000) 1.0179(0.0768) 0.8527 0.8976
(2000, 25 , 5) 0.6624 1.5700 1.2246 1.0002(0.0143) 1.0006(0.0093) 0.8896 0.9437
(2000, 14 , 5) 0.9338 2.1746 1.6962 1.0014(0.0359) 1.0056(0.0405) 0.8974 0.9461
(2000, 18 , 5) 0.9830 2.8528 2.2251 1.0030(0.0660) 1.0100(0.0691) 0.8893 0.9373

Table 3.2: Estimation and coverage probability for t distribution. We report the mean and stan-
dard deviation in brackets for both ✓̂MEL

n
/✓n0 and �̂MEL

n
/�n0 at different level qn satisfyingp

n(1� qn)/F (qn) = nd with d = 2/5, 1/4, 1/8 and distribution t(�). We also report the
coverage probabilities for IEL(0.9) and IEL(0.95).

(n, d, �) qn ✓n0 �n0
✓̂
MEL
n
✓n0

�̂
MEL
n
�n0

IEL(0.9) IEL(0.95)

(200, 25 , 3) 0.7648 1.9724 0.7557 0.9969(0.1446) 1.0057(0.1731) 0.8768 0.9301
(200, 14 , 3) 0.8678 2.6375 1.2963 0.9981(0.1707) 1.0134(0.1652) 0.8685 0.9229
(200, 18 , 3) 0.9277 3.4275 1.8805 1.0012(0.2106) 1.0388(0.2040) 0.8455 0.8972
(2000, 25 , 3) 0.7969 2.1361 0.8953 1.0008(0.0524) 1.0031(0.0613) 0.8840 0.9416
(2000, 14 , 3) 0.9213 3.3105 1.7964 1.0030(0.0795) 1.0110(0.0903) 0.8879 0.9382
(2000, 18 , 3) 0.9705 4.8560 2.8694 1.0077(0.1208) 1.0264(0.1572) 0.8787 0.9310
(200, 25 , 5) 0.7726 1.6655 0.7585 0.9989(0.1051) 1.0056(0.1669) 0.8969 0.9472
(200, 14 , 5) 0.8774 2.1724 1.2667 0.9997(0.1159) 1.0151(0.1466) 0.8885 0.9368
(200, 18 , 5) 0.9368 2.7292 1.7815 0.9996(0.1348) 1.0246(0.1366) 0.8592 0.9110
(2000, 25 , 5) 0.8055 1.7940 0.8924 1.0009(0.0382) 1.0027(0.0562) 0.8999 0.9504
(2000, 14 , 5) 0.9307 2.6495 1.7097 1.0016(0.0480) 1.0051(0.0577) 0.9007 0.9491
(2000, 18 , 5) 0.9768 3.6421 2.5763 1.0027(0.0689) 1.0113(0.0776) 0.9014 0.9489
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Table 3.3: Estimation and coverage probability for exponential distribution. We report the mean
and standard deviation in brackets for both ✓̂MEL

n
/✓n0 and �̂MEL

n
/�n0 at different level qn satisfyingp

n(1� qn)/F (qn) = nd with d = 2/5, 1/4, 1/8 and the standard exponential distribution. We
also report the coverage probabilities for IEL(0.9) and IEL(0.95).

(n, d) qn ✓n0 �n0
✓̂
MEL
n
✓n0

�̂
MEL
n
�n0

IEL(0.9) IEL(0.95)

(200, 25) 0.6394 2.0606 0.9606 0.9977(0.0748) 1.0024(0.0969) 0.8898 0.9408
(200, 14) 0.8077 2.6895 1.5895 0.9978(0.0822) 1.0027(0.0993) 0.8964 0.9457
(200, 18) 0.9002 3.3448 2.2448 0.9987(0.0932) 1.0098(0.1126) 0.8910 0.9361
(2000, 25) 0.6937 2.2240 1.1240 0.9998(0.0256) 1.0005(0.0339) 0.9008 0.9507
(2000, 14) 0.8906 3.2529 2.1529 0.9999(0.0305) 1.0008(0.0334) 0.8963 0.9505
(2000, 18) 0.9634 4.3486 3.2486 1.0007(0.0413) 1.0033(0.0486) 0.9052 0.9551
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Figure 3.1: Left panel: Measures of the utilization of nursing home care in patients days for
362 facilities in year 2000 and 355 facilities in year 2001. Right panel: Hill’s estimate �̂(m) for
m = 10, 11, · · · , 200

Table 3.4: Wisconsin nursing home data. We report ✓̂MEL

n
, �̂MEL

n
, VaR F 

n
(qn) and d satisfyingp

n(1� qn)/F n (qn) = nd for qn = 0.7, 0.9, 0.95, 0.99, where Fn is the empirical distribution
function of F .

qn 0.7 0.9 0.95 0.99
d 0.4034 0.2639 0.1823 0.0177

✓̂MEL
n 1.4668 1.9603 2.2821 3.1679

�̂MEL
n 1.0029 1.4704 1.7829 2.3859

F n (qn) 1.0338 1.4932 1.8059 2.3842
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Figure 3.2: Profile empirical likelihood ratios lP
n
(�✓̂MEL

n
) are plotted against different values of �

for qn = 0.7, 0.9, 0.95, 0.99. Two straight lines are the 90% and 95% quantiles of �2(1) distribution,
respectively.
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CHAPTER 4

HAEZENDONCK-GOOVAERTS RISK MEASURE WITH A HEAVY-TAILED LOSS

Haezendonck-Goovaerts (H-G) Risk Measure depends on the involved Young function.When

employing Haezendonck-Goovaerts Risk Measure to the loss variable does who not have enough

moments, the nonparametric estimator in Ahn and Shyamalkumar (2014) has a non-normal limit,

which challenges interval estimation. Motivated by the fact that many loss variables in insurance and

finance could have a heavier tail such as an infinite variance, this chapter proposes a new estimator

which estimates the tail by extreme value theory and the middle part non-parametrically. It turns

out that the proposed new estimator always has a normal limit regardless of the tail heaviness of the

loss variable. Hence an interval with asymptotically correct confidence level can be obtained easily

either by the normal approximation method via estimating the asymptotic variance or by a bootstrap

method. A simulation study and real data analysis confirm the effectiveness of the proposed new

inference procedure for estimating the H-G risk measure. The content of this chapter is based on

joint work:

Q. Liu, L. Peng and X. Wang (2017). Haezendonck-Goovaerts risk measure with a heavy tailed

loss. Insurance: Mathematics and Economics 76, 28-47.

4.1 Motivation and Introduction

Risk management generally involves risk identification, risk quantification, and risk prediction.

Measuring a risk and quantifying its uncertainty is an important task. Recently Haezendonck-

Goovaerts (H-G) risk measure has received much attention in actuarial science with applications

to optimal portfolio management and optimal reinsurance policy; see Bellini and Gianin (2008a);

Bellini and Gianin (2008b), Cheung and Lo (2013). Zhu, Zhang, and Zhang (2013), and references

therein.

Let  : [0,1]! [0,1] be a convex function satisfying  (0) = 0, (1) = 1 and  (1) =1,
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i.e.,  is a so-called normalized Young function. For a number q 2 (0, 1) and each � > 0, let

↵ = ↵(�) be a solution to

E{ ((X � �)+
↵

)} = 1� q, (4.1.1)

where x+ = max(x, 0). Then, Haezendonck and Goovaerts (1982) proposed the so-called H-G risk

measure at level q as

✓ = inf
�>0

{� + ↵(�)}. (4.1.2)

Some important properties and connections with other risk measures are given in Goovaerts et

al. (2012). For example, if  (x) = x, then ↵(�) = 1
1�qE{(X � �)+} and ✓ = 1

1�qE{(X �

F�(q))+}, where F (x) = P (X  x) and F�(x) denotes the inverse function of F (x). Hence, in

this case, the H-G risk measure equals the expected shortfall.

In order to employ this risk measure in practice, an efficient statistical inference is needed. Ahn

and Shyamalkumar (2014) first proposed a nonparametric estimation and derived its asymptotic

limit, which may be nonnormal when the loss variable has no enough moments, which depends on

the involved Young function  . When the limit is normal, Peng, Wang, and Zheng (2015) developed

an empirical likelihood method to effectively construct an interval when the H-G risk measure is

defined at a fixed level. Further,Wang and Peng (2016) showed that this empirical likelihood method

is still valid for an intermediate level, which leads to a unified interval estimator of the H-G risk

measure at either a fixed level or an intermediate level. We refer to Owen (2001) for an overview of

empirical likelihood methods, which has been shown to be quite effective in interval estimation and

hypothesis test. Properties of the H-G risk measure at an extreme level are available in Tang and

Yang (2012); Tang and Yang (2014) and Mao and Hu (2012).

One can estimate � and ✓ by solving

8
><

>:

1
n

P
n

i=1  (
Xi��
✓�� )I(Xi > �) = 1� q,

1
n

P
n

i=1  
0(Xi��

✓�� )(Xi � ✓)I(Xi > �) = 0,
(4.1.3)

56



which will result in a nonnormal limit when either

E{ (Xi � �0
✓0 � �0

)I(Xi > �0)}2 =1 or E{ 0(Xi � �0
✓0 � �0

)(Xi�✓0)I(Xi > �0)}2 =1, (4.1.4)

where ✓0 and �0 denote the true values of ✓ and �, respectively. This makes interval estimation

nontrivial since one has to employ different methods to separately deal with the cases of having a

normal limit and a nonnormal limit.

Practically it is often observed that loss data in insurance have a heavy-tailed distribution and

even have an infinite variance, which implies that (4.1.4) holds quite frequently. Particularly this

chapter is motivated by analyzing the Danish fire loss data (see left panel in Figure 4.1), which

consists of losses to building and losses to contents. The data were collected at the Copenhagen

Reinsurance Company and comprise 2167 fire losses over the period 1980 to 1990. By assuming

that

lim
t!1

1� F (tx)

1� F (t)
= x�1/� for x > 0, (4.1.5)

i.e., 1�F has a heavy tail with tail index 1/�, � can be estimated by the well-known Hill’s estimator

�̂(k) =
1

k

kX

i=1

log
Xn,n�i+1

Xn,n�k
, (4.1.6)

where Xn,1  · · ·  Xn,n denote the order statistics of X1, · · · , Xn, k = k(n)!1 and k/n! 0

as n!1; see Hill (1975) for details. Note that (4.1.5) implies that EXd

+ <1 for d < 1/� and

EXd

+ = 1 for d > 1/�. Moreover (4.1.5) holds for many commonly used loss distributions in

insurance such as Pareto distribution, inverse gamma distribution, student t distribution, Cauchy

distribution, Burr distribution, Log-gamma distribution, etc.. The middle and right panels in Figure

4.1 show that � is between 0.5 and 1, which implies that EX+ < 1 but EX2
+ = 1. Therefore,

when  (x) =  r(x) = xr with some r > 1, the nonparametric estimator of the H-G risk measure

based on (4.1.3) has a nonnormal limit, which makes interval estimation nontrivial and it generally

requires a subsample bootstrap method.

57



●●

●
●

●

●● ●

●

●

●

● ●●

●
●

●

●●

●

●
●

●

●
●●●●●● ●●

●
●

●

●

●

●
●●● ●
●

●

●●

●

●
● ●

●●
●

●●
●

●

●

●

●

●

●
●
●●●

●
●●●

●●

●

●
●●

●●

●

●●●

●
●
●●●

●
●

●

●

●●●●●●
●

●

●

●
●

●

●

●

● ●

●
●

●●●
● ●●●●

●

●

●

●●

●

●

●

●● ●●

●
●●

●●

●●●●●
●

●

●

●●●●●● ●

●
● ●●●

●
●●●

●
●●●●●●●
●
●
●

●

●
●●●●
●● ●●
●

●

●
●

●

●

●
●●●●
●
● ●●●●
●
●

● ●●● ●
●●

●
●

●

●●●

●
●●●●●●●

●

●●●

●

●●●●
●● ●

●

●●
●
●

●●

●

●●●
● ●●●●● ●●

●

● ●●

●

●●

●●

●● ●
●●

●

●

●●

●

●
●

●● ●
●

●

●
● ●●●●●●● ●

●●●●●
●
●

●● ●●
●

●

●

●

●

●

●●●●
●
●●

●●
●

●●

●

●

●

● ●●
●●●●
●●

●●●
●

●

●●●●
●

●● ●●●●●

●

●●●
●●●

● ●

●

●
●●●●
● ●
●●●● ●●● ●

●
●●●●●● ●●●●●●●●●

●

● ●● ●

●
●

●●

●

●

●●●●

●

●

●

●●●

●
●●

● ●●
●

●●

●
●

●●●●●● ●●

●

●●●
●
●●● ●● ●●●● ●●●●

●

●● ●● ●

●

●

●

●

●●
●

●●●●●●
●●●● ●●●

●
●

●●

●●●●●●●●●●●

●

●●●● ●● ●●●●●●● ●●
●●●●

●● ●●●
●
●●●

●

●●●●

●

● ●●●
● ●

●

●

●
●
●● ●●

●

●● ●
●

●
●

●

●●●●●●●●● ● ●●●●●●
●
●● ●
●
●

●
●
●
●●●

●

●●

●

●●

●

●

●

● ●●●●●
●● ●

●

●

●

●

●

●● ●●●●
●●●

●
●●●

●
●●●

●
●

●
●

●

●

●

●●
●
●

●
●●

●
●●●

●
● ●

●

●●
●

●●●●

●

●

●

●●●●
●

●

●●

●

●● ●

●

●●●● ●
●

●●●● ●
●

●

●

●●
●

●

●●
●●●

●

●
●●

●
●●●●●●

●

●

●
●●●

●

●●
●●●
●
●●

●

●●● ●●●
●
●●●●●●●● ●

●

●●● ●●●● ●

●

●●

●

●
●

●●●

●

●●

●
●

●

● ●●

●

●
●●●●●●

●
●
●

●

●

●●●●●

●

●

●

●●●●●●
●

●
●

●

●

●●
●●●
●

●

●
●●●●●●●

●
●
●●●

●
●●●●●●

●
●●●●

●

●●●●
●

●●
●

● ●●●
●●●

●

●●●●●●●●
●

●●

●
●

●●●●●●
●
●● ● ●●●
●
●●

●

●

●
●●●●●●

●●

●

●

●●●●

●

●
●
● ●●●●●
●●● ●●●● ●●●●
●

●

●●●●

●

● ●●●

●
●●●●●

●

●●● ●●●●●
●

●● ●●●
●

●

●

●●●● ●●●●●
●●●

●

●

●

●●

●
●

●

●

●●●●●●

●

●●● ●●●
●
●●

●

●

●●●
●●●●●

●●
●●●●

●●
●●●●

●

●

●
● ●

●
●
●
●
●●

●●●
●

●

● ●
●● ●

●●

●

●

●
●
●
●
●●●●

●

●●
●
●

●
●

●
●●●

●●●●●●●

●

●●●

●

●●●●●

●

●
● ●●

●

●

●

●

●●
●

●●
●●●
●
●●●

●

●●●●
●●

●

●●●
●

●

●

●●●●

●

●●

●

●●● ●●

●

●
●

●●

●

●●

●

● ●

●

●
●●●● ●●●●●

● ●●

●

●

●

●

●●●●●●
●

●●
●

●

●●
●
●●● ●

●

●
●●●

●

●●● ●●●● ● ●
●●

●

●● ●
●
●

●

●
● ●●

●

●

●

●●●● ●●
●● ●●●

●

●

●

●● ●

●

●●
●
●●●

●

● ●
●

●

●

● ●
●

●

●

●● ●
●●

●
●

●● ●

●

●●

●

●●●

●

●●
●●

●● ●●● ●● ●●●

●

● ●●
●
●

●

●

●

●
●

●●● ●●●●●●●● ●

●

●

●

●
●

●

●●
●●●●●●●

●
●●●●● ●●

●
●●

●

●

●●●●
●

●●●

●

●●●

●

●

●
●●

●

●●●
●

●
●

●●●

●

●●●●●●●●●●● ●●●●●●●●●●● ●● ●●● ●●
● ●● ●●

●
●

●●●●●●

●

●●●●
●●●●
●● ●●●

●

●
●
●

●

●●●●●●●●●●
●

●
●●●●●●●●

●

●

●

●●

●

●●●●●●●● ●● ●●●

●

●●●●●●●●●●

●
●●

●●●
●●
●

●

●

●

●●●● ● ●●●●●●●● ●● ●●●●

●

●●

●

●

●

●
●

●●●● ●●●
●
● ●

●

●●●●●●

●

●

●● ●●● ●●●●●

●

●

0 20 40 60 80

0
20

40
60

80
10

0
12

0

Loss of Building

Lo
ss

 o
f C

on
te

nt
s

Danish Fire Insurance Claims

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

Hill estimator: Building Losses

k

ga
m
m
a

gamma(200)=0.5626

0 200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Hill estimator: Contents Losses

k

ga
m
m
a

gamma(200)=0.8431

Figure 4.1: Left panel: Danish fire losses to building and contents; Middle panel: Hill’s estimator
for losses to building; Right panel: Hill’s estimator for losses to contents.

Motivated by the idea of estimating the mean of a heavy-tailed distribution in Peng (2001);

Peng (2004) and the expected shortfall of a heavy-tailed loss variable in Necir and Meraghni (2009),

this chapter proposes to separately estimate the expectations in (4.1.1) by two parts: semi-parametric

estimation for the tail and nonparametric estimation for the middle part. It turns out the proposed

new estimator will always have a normal limit regardless of the tail heaviness of X . Hence

interval estimation can be done by using either the normal approximation method via estimating

the asymptotic variance or a bootstrap method. In the simulation study and data analysis below,

we simply employ the naive bootstrap method, i.e., resample directly from original data, and a

comparison study shows that a blind application of methods without considering a nonnormal limit

would forecast risk inaccurately.

We organize this chapter as follows. Section 4.2 presents the new methodologies and main

results for estimating the H-G risk measure at both a fixed level and an intermediate level. A

simulation study is given in Section 4.3. Analysis of the Danish fire loss data is presented in Section

4.4. All proofs are put in Section 4.5.
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4.2 Nonparametric Estimation for Heazondonck-Gooverts Risk Measure with A Heavy-

Tailed Loss

Throughout we assume X,X1, · · · , Xn are independent and identically distributed random variables

with distribution function F satisfying (4.1.5), and

8
><

>:

 (x) is a normalized Young function with  0(0) <1 and continuous second

derivatives on (0,1), and satisfies limx!1
 
00(x)

r(r�1)xr�2 = d0 > 0 for some r > 1,
(4.2.1)

Since we want to estimate the tail semiparametrically, it is necessary to specify an approximation

rate in (4.1.5) as usual in the context of extreme value theory for controlling the bias of an employed

tail probability estimator. Put F̄ (x) = 1� F (x) and let F̄�(t) denote the inverse function of F̄ (t).

Then it is known that (4.1.5) is equivalent to

lim
t!0

F̄�(tx)

F̄�(t)
= x�� for x > 0.

Hence we assume there exists a function A(t)! 0 with a constant sign near zero such that

lim
t!0

F̄
�(tx)

F̄�(t)
� x��

A(t)
= x��

x⇢ � 1

⇢
(4.2.2)

for some ⇢ � 0. We refer to Haan and Stadtmüller (1996) for details on the second order regular

variation condition (4.2.2). A well-known subclass of (4.2.2) is the so-called Hall’s model (

Hall (1982)):

1� F (x) = cx�1/�{1 + dx�⇢/� + o(x�⇢/�)}

for some c > 0, d 6= 0 and ⇢ > 0 as x!1, which implies that

F̄�(t) = c�t��{1 + �dc�⇢t⇢ + o(t⇢)} as t! 0,
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and (4.2.2) holds with A(t) = ⇢�dc��⇢t⇢. This subclass includes many commonly employed

heavy-tailed loss distributions in insurance. Under condition (4.2.2), it is known that we could

estimate F̄ (x) for a larger x by ˆ̄F (x) = k

n
X1/�̂(k)

n,n�k x
�1/�̂(k), where �̂(k) is defined in (4.1.6) and

Xn,1  · · ·  Xn,n denote the order statistics of X1, · · · , Xn; see De Haan and Ferreira (2007) for

details on consistency and asymptotic normality when x = x(n) diverges. Throughout for ease of

notation, we do not emphasize the dependence on n and k for estimators and some other quantities

if there is no confusion.

Due to the different asymptotic behavior of estimating the H-G risk measure at a fixed level and

an intermediate level, we study these two cases separately.

4.2.1 Fixed Confidence Level

In this subsection we assume the level q 2 (0, 1) is a fixed constant. Write

E{ (X��
✓�� )I(X > �)}

=
R

F̄
�(k/n)

�
 (x��

✓�� ) dF (x) +
R1
F̄�(k/n)  (

x��
✓�� ) dF (x)

and
E{ 0(X��

✓�� )(X � ✓)I(X > �)}

=
R
F̄
�(k/n)

�
 0(x��

✓�� )(x� ✓) dF (x) +
R1
F̄�(k/n)  

0(x��
✓�� )(x� ✓) dF (x),

which motivate us to estimate ✓ and � by solving

8
>>>>>>><

>>>>>>>:

1� q =
R

Xn,n�k

�
 (x��

✓�� ) dFn(x) +
R1
Xn,n�k

 (x��
✓�� ) d{1�

ˆ̄F (x)}

:= �11(✓, �) +�12(✓, �)

0 =
R

Xn,n�k

�
 0(x��

✓�� )(x� ✓) dFn(x) +
R1
Xn,n�k

 0(x��
✓�� )(x� ✓) d{1�

ˆ̄F (x)}

:= �21(✓, �) +�22(✓, �),

(4.2.3)

where Fn(x) = 1
n

P
n

i=1 I(Xi  x). That is, we estimate the integral with respect to the tail

semiparametrically and the integral with respect to the middle nonparametrically. Denote the

resulted estimators for ✓ and � by ✓̂ and �̂, respectively.
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Theorem 4.2.1. Assume (4.2.2) holds with ↵ := 1
�
> r and ⇢ > 0, and (4.2.1) holds. Let k = k(n)

satisfy

k = k(n)!1, k/n! 0,
p
kA(k/n)! � 2 (�1,1) as n!1. (4.2.4)

Then, for a fixed q 2 (0, 1), we have

p
n

�(k/n)

0

B@
✓̂ � ✓0

�̂ � �0

1

CA d! N(C�1�, C�1⌃(C�1)T ),

where �2(k/n) =
R 1�k/n
F (�0)

R 1�k/n
F (�0)

{min(s, t)� st} d (F
�(s)��0
✓0��0 )d (F

�(t)��0
✓0��0 ),

C =

0

B@
a1 0

a2 b2

1

CA , � =

0

B@
�
q

2r�↵
2r I(↵ < 2r) r↵

2
�

(r�↵)2(1+⇢)

�
q

2r�↵
2r I(↵ < 2r) ↵

2
r
2
�

(r�↵)2(1+⇢)

1

CA , ⌃ =

0

B@
�2
1 �12

�21 �2
2

1

CA ,

with

a1 = E{ 0(X � �0
✓0 � �0

)
X � �0

(✓0 � �0)2
I(X > �0)},

a2 = E{ 00(X � �0
✓0 � �0

)
(X � �0)(X � ✓0)

(✓0 � �0)3
I(X > �0) +  0(

X � �0
✓0 � �0

)
I(X > �0)

✓0 � �0
},

b2 = �E{ 00(X � �0
✓0 � �0

)
(X � ✓0)2

(✓0 � �0)3
I(X > �0)},

�2
1 = 1 + (2r � ↵){ r3

2(r � ↵)4 +
↵r

(↵� r)3
+

1

↵� r
}I(↵ < 2r),

�12 = �21 = r + r(2r � ↵){ r3

2(r � ↵)4 +
↵r

(↵� r)3
+

1

↵� r
}I(↵ < 2r),

�2
2 = r2 + r2(2r � ↵){ r3

2(r � ↵)4 +
↵r

(↵� r)3
+

1

↵� r
}I(↵ < 2r).

Remark 4.2.2. A theoretical optimal choice of k is to minimize the asymptotic mean squared error

in the above limit. Since the assumption (4.2.4) is the standard one for tail index estimation, one

could simply employ an existing data-driven method in choosing k for Hill’s estimator such as
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the bootstrap method in Danielsson et al. (2001) or the method in Drees and Kaufmann (1998) .

Another commonly used technique is to plot the estimator against different k0s and pick up a k in a

relatively stable region.

Remark 4.2.3. For constructing a confidence interval or region, one needs to choose a smaller

k such that � in (4.2.4) is zero, and then estimates a1, a2, b1, b2 by replacing the expectations by

their corresponding averages and replacing ✓0, �0 by ✓̂ and �̂, and estimates ⌃ by replacing ↵ by

↵̂. Alternatively one may simply use a bootstrap method to estimate the asymptotic variance as

we do in the simulation study and data analysis. Like any inference for extreme value statistics,

it is extremely challenging to develop a data-driven method for choosing k in terms of coverage

probability. Although bootstrap method is not applicable to maximum/minimum, it is generally valid

for an extreme value statistic which involves an upper k order statistics with k = k(n) ! 1 as

n!1 when the asymptotic bias in the statistic is negligible; see Li and Peng (2012) and Qi (2008)

for the validation of applying a bootstrap method to extreme value statistics.

4.2.2 Intermediate Quantile

In this subsection we consider the case of intermediate quantile, i.e.,

q = qn ! 1 and n(1� qn)!1 as n!1. (4.2.5)

Note that the above conditions imply that the number of observations above �0 becomes smaller by

the first condition, but it tends to infinity by the second equation. Therefore, one could expect the

estimation procedure for a fixed level should still be valid for such an intermediate level.

To emphasize the dependence on the sample size n, write (✓n0, �n0)T as the true value of (✓, �)T ,

which is determined by the following equations with q = qn as derived before:

8
><

>:

E{ ( Xi��n0

✓n0��n0
)I(Xi > �n0)} = 1� qn,

E{ 0( Xi��n0

✓n0��n0
)(Xi � ✓n0)I(Xi > �n0)} = 0.

(4.2.6)
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Using (4.2.1), like the proof of Corollary 6.1 of Tang and Yang (2014), we have

lim
n!1

✓n0
c1F�(qn)

= 1 and lim
n!1

�n0
c2F�(qn)

= 1, (4.2.7)

where

c2 =

✓Z 1

0

(1 +
�

�
x)�1/� d (x)

◆�
, c1 = (1 +

�

�
)c2, and �(> 0) satisfies

Z 1

0

 0(�y)(1 + �y)�1/��1 dy =

Z 1

0

 0(�y)�y(1 + �y)�1/��1 dy.

Following the same arguments in Section 4.2.1, our new estimator (✓̂, �̂)T is defined to solve

8
>>>>>>><

>>>>>>>:

1� qn =
R

Xn,n�k

�
 (x��

✓�� ) dFn(x) +
R1
Xn,n�k

 (x��
✓�� ) d{1�

ˆ̄F (x)}

:= �I11(✓, �) +�I12(✓, �),

0 =
R

Xn,n�k

�
 0(x��

✓�� )(x� ✓) dFn(x) +
R1
Xn,n�k

 0(x��
✓�� )(x� ✓) d{1�

ˆ̄F (x)}

:= �I21(✓, �) +�I22(✓, �).

(4.2.8)

Theorem 4.2.4. Assume (4.2.2) holds with ↵ := 1
�
> r and ⇢ > 0, and (4.2.1) holds. Consider the

intermediate quantile

qn ! 1 and n(1� qn)!1. (4.2.9)

Further assume for n large enough

n��{n(1� qn)}1+��r�I(2r�>1)� 1
2 I(2r�1) � n� for some � > 0, (4.2.10)

and let k = k(n) satisfy

k = k(n)!1, k/n! 0,
p
kA(k/n)! � 2 (�1,1),

k

n(1� qn)
! 0. (4.2.11)
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Then
p
n

�̃(k/n)

1� qn
F̄�(1� qn)

0

B@
✓̂ � ✓0

�̂ � �0

1

CA d! N(C�1
I
�I , C

�1
I
⌃I(C

�1
I

)T ),

where �̃2(k/n) =
R 1�k/n
F (�n0)

R 1�k/n
F (�n0)

{min(s, t)� st} d (F
�(s)��n0

✓n0��n0
)d (F

�(t)��n0

✓n0��n0
),

CI =

0

B@
aI1 0

aI2 bI2

1

CA , ⌃I =

0

B@
�2
I1 �I12

�I21 �2
I2

1

CA ,

�I =

0

B@
�
q

2r�↵
2r I(↵ < 2r) r↵

2
�

(↵�r)2(1+⇢)

�
q

2r�↵
2r I(↵ < 2r) r

2
↵
2
�

(r�↵)2(1+⇢)

1

CA ,

with

aI1 = ↵c�↵�12

Z 1

0

(1 +
c1 � c2

c2
x)�↵�1 0(x) dx,

aI2 = ↵c�↵�12

Z 1

0

(1 +
c1 � c2

c2
x)�↵�1{x(x� 1) 00(x) +  0(x)} dx,

bI2 = �↵c�↵�12

Z 1

0

(x� 1)2 00(x)(1 +
c1 � c2

c2
x)�↵�1 dx;

�2
I1 = 1 + (2r � ↵){ r3

2(r � ↵)4 �
↵r

(r � ↵)3 �
1

r � ↵}I(↵ < 2r),

�2
I2 = r2I(↵  2r) + r2(2r � ↵){ r

3

2(r�↵)4 �
↵r

(r�↵)3 �
1

r�↵}I(↵ < 2r) + d2
d1
I(↵ > 2r),

�I12 = �I21 = rI(↵  2r) + r(2r � ↵){ r
3

2(r�↵)4 �
↵r

(r�↵)3 �
1

r�↵}I(↵ < 2r) + d3
d1
I(↵ > 2r),

where d1, d2 and d3 are defined in the proof.

Remark 4.2.5. It follows from Lemma 4.5.4 in Section 4.5 that (4.2.10) ensures that the normalizing

constant
p
n

�̃(k/n)
1�qn

F̄�(1�qn) !1 for k small enough, i.e., the proposed estimators are consistent.

Remark 4.2.6. If n(1� qn) = d⇤1n
�1 for some �1 2 (0, 1) and d⇤1 > 0, then we could choose k =

d⇤2n
�2 for some d⇤2 > 0 and �2 2 (0, �1). To ensure

p
kA(k/n)! �, we need �2  2⇢

1+2⇢ . To ensure
p
n

�̃(k/n)
1�qn

F̄�(1�qn) !1, it follows from Lemma 4.5.4 in Section 4.5 that we need �2 < ��+(1+��r�)�1
1/2�r�
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for ↵ < 2r. In summary, we require

�2 < I(↵ < 2r)min(�1,
�� + (1 + � � r�)�1

1/2� r�
) + I(↵ � 2r)�1 and �2 

2⇢

1 + 2⇢
.

As in extreme value statistics, it is always challenging to choose an optimal k in terms of either mean

squared error or coverage probability, which we will not address here. Instead we plot our estimator

or coverage probability against different k in the simulation study and data analysis below.

4.3 Simulation Study

We conduct a small scale simulation study to evaluate the finite-sample performance of the proposed

method with a comparison with the nonparametric estimator proposed by Ahn and Shyamalku-

mar (2014), which indeed solves equations (4.2.3) with Xn,n�k replaced by1. We denote this

estimator by ✓̂AH .

We draw 1,000 random samples from t-distribution with degrees of freedom 1.5, 2.3 and 5 with

sample size n = 2000 and 4000. Take  (x) =  r(x) = xr with r = 1.1 and consider q = 0.9. We

compute the coverage probability of the constructed confidence interval with level 0.9 by using the

bootstrap method with 1000 repetitions. We plot the means and standard deviations of ratios of

estimators to true values and coverage probabilities of intervals for ✓̂ and ✓̂AH in Figures 4.2–4.4

respectively, where k = 0 represents results for ✓̂AH . From these figures, we observe that the

proposed estimator performs better than the estimator in Ahn and Shyamalkumar (2014) when

Xi ⇠ t(1.5) and Xi ⇠ t(2.3). Note that ✓̂AH has a nonnormal limit in case of Xi ⇠ t(1.5) and has

a normal limit in case of Xi ⇠ t(2.3). When Xi ⇠ t(5), the new estimator has a similar standard

deviation as ✓̂AH , but a slightly larger bias and the new estimator prefers a smaller k since the tail

part does not play a role theoretically in this case and larger k introduces a big bias.

In summary, the proposed new estimator performs well regardless of the tail heaviness of the

loss variable.
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4.4 Data Analysis

We apply the proposed estimation procedure to the Danish fire losses discussed in the introduction,

which has an infinite variance for both losses to contents and losses to building. For comparison, we

also compute the estimator in Ahn and Shyamalkumar (2014) denoted by ✓̂AH as above. Like the

above simulation study, we simply employ the bootstrap method with 1, 000 repetitions to construct

confidence intervals for ✓ and � respectively. Note that these intervals based on ✓̂Ah are theoretically

incorrect due to nonnormal limits.

For computing the proposed estimators at levels q = 0.9 and q = 0.95 and constructing

confidence intervals with level 90%, we follow the standard practice in extreme value statistics by

using different k from 100 to 200 with step 5. How to choose an optimal k in terms of either mean

squared error or coverage probability is quite challenging and beyond the scope of this chapter. By

taking  (x) =  r(x) = xr with r = 1.1, the estimators and corresponding intervals are plotted

in Figure 4.5, where we use k = 0 to denote results with respect to ✓̂AH . Panels with q = 0.95

show that the intervals based on the new estimators are quite different from those based on ✓̂AH

especially for the losses to contents, which has a heavier tail. Therefore a blind application of a

method without considering the fact of having a nonnormal limit may lead to an under-predicted

risk, i.e., smaller ✓.

4.5 Proofs

Since the main idea in this chapter is to estimate the tail semi-parametrically and the middle

nonparametrically, a key technique employed to link both parts is the following approximations for

the empirical distribution process and empirical quantile process:

sup
Un,1uUn,n

n�|↵n(u)� Bn(u)|
u1/2��(1� u)1/2��

= Op(1) (4.5.1)
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and

sup
�/ns1��/n

n�|�n(s) + Bn(s)|
s1/2��(1� s)1/2��

= Op(1) (4.5.2)

for any � 2 [0, 1/4), where {Bn(s)} is a sequence of Brownian bridges, Gn(u) =
1
n

P
n

i=1 I(Ui 

u), ↵n(u) =
p
n{Gn(u)�u}, Qn(s) = Un,k if k�1

n
< s  k

n
, Qn(0) = Un,1, �n(s) =

p
n{Qn(s)�

s}, Ui = F (Xi) for i = 1, · · · , n and Un,1  · · ·  Un,n denote the order statistics of U1, · · · , Un;

see Csorgo et al. (1986) for details.

Before we prove Theorem 4.2.1, we need some lemmas.

Lemma 4.5.1. Under conditions of Theorem 4.2.1, we have

lim
n!1

p
k/n{F̄�(k/n)}r

�(k/n)
=

(✓0 � �0)r

d0

r
2r � ↵
2r

I(↵ < 2r).

Proof. Note that (4.2.1) implies that

lim
x!1

 (x)

xr
= lim

x!1

 0(x)

rxr�1 = d0.

Write
�2(k/n) = 2

R
F̄
�(k/n)

�0

R
s

�0
F (t)F̄ (s) d ( t��0

✓0��0 )d (
s��0
✓0��0 )

= 2
R

F̄
�(k/n)

�0
F̄ (s) ( s��0

✓0��0 ) d (
s��0
✓0��0 )

�2
R

F̄
�(k/n)

�0

R
s

�0
F̄ (t)F̄ (s) d ( t��0

✓0��0 )d (
s��0
✓0��0 )

=: I1 � I2.

When ↵ < 2r, write

I1 = 2 k

n

R
F̄
�(k/n)

�0

F̄{s}
F̄{F̄�(k/n)} (

s��0
✓0��0 ) d (

s��0
✓0��0 )

= 2 k

n

R
F̄
�(k/n)

�0
{ s

F̄�(k/n)
}�↵ ( s��0

✓0��0 ) d (
s��0
✓0��0 )

+2 k

n

R
F̄
�(k/n)

�0

⇣
F̄{s}

F̄{F̄�(k/n)} � { s

F̄�(k/n)
}�↵
⌘
 ( s��0

✓0��0 ) d (
s��0
✓0��0 )

=: I1,1 + I1,2.
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It is easy to see that

limn!1
I1,1

(k/n){F̄�(k/n)}2r = limn!1
2

✓0��0

R F̄�(k/n)
�0

s
�↵

 (
s��0
✓0��0

) 0(
s��0
✓0��0

) ds

{F̄�(k/n)}2r�↵

= (✓0 � �0)�2r 2rd20
2r�↵ .

For I1,2, it follows from Theorem B.1.10 of De Haan and Ferreira (2007) and a similar argument as

the last equation above that

lim
n!1

I1,2
(k/n){F̄�(k/n)}2r

= 0.

Since ↵ > r, we have

|I2|  2{
Z 1

�0

F̄ (s) d (
s� �0
✓0 � �0

)}2 <1,

which implies that

lim
n!1

|I2|
(k/n){F̄�(k/n)}2r

= 0,

i.e., the lemma holds for ↵ < 2r.

When ↵ = 2r, the lemma follows from the facts that limn!1
p

k/n{F̄�(k/n)}r is a constant

and limn!1 �2(k/n) =1. When ↵ > 2r, the lemma follows from limn!1
p
k/n{F̄�(k/n)}r =

0 and limn!1 �2(k/n) is a positive constant. Hence the lemma follows.

Lemma 4.5.2. Under conditions of Theorem 4.2.1, we have

p
n

�(k/n){�11(✓0, �0)�
R

F̄
�(k/n)

�0
 ( x��0

✓0��0 ) dF (x)}

= �
R 1�k/n
F (�0)

Bn(s) d (
F�(s)��0

✓0��0
)

�(k/n) + op(1),
(4.5.3)

p
n

�(k/n){�12(✓0, �0)�
R1
F̄�(k/n)  (

x��0
✓0��0 ) dF (x)}

= �
q

2r�↵
2r I(↵ < 2r) r↵

(r�↵)2
p

n

k

R 1

0 {
Bn(1� k

n s)

s
� Bn(1� k

n
)}ds

+
q

2r�↵
2r I(↵ < 2r) r

r�↵
p

n

k
Bn(1� k

n
)

�
q

2r�↵
2r I(↵ < 2r) r↵

2
�

(↵�r)2(1+⇢) + op(1),

(4.5.4)

@�11(✓0, �0)

@✓
= E{� 0(X � �0

✓0 � �0
)

X � �0
(✓0 � �0)2

I(X > �0)}+ op(1), (4.5.5)
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@�11(✓0, �0)

@�
= E{ 0(X � �0

✓0 � �0
)

X � ✓0
(✓0 � �0)2

I(X > �0)}+ op(1) = op(1), (4.5.6)

@�12(✓0, �0)

@✓
= op(1),

@�12(✓0, �0)

@�
= op(1). (4.5.7)

Proof. Write

R
Xn,n�k

�0
 ( x��0

✓0��0 ) dFn(x)

= � (Xn,n�k��0
✓0��0 )F̄n(Xn,n�k) +

R
Xn,n�k

�0
F̄n(x) d (

x��0
✓0��0 )

= � (Xn,n�k��0
✓0��0 ) k

n
+
R

Xn,n�k

�0
{F̄n(x)� F̄ (x)} d ( x��0

✓0��0 ) +
R

Xn,n�k

�0
F̄ (x) d ( x��0

✓0��0 )

= � k

n
{ (Xn,n�k��0

✓0��0 )�  ( F̄
�(k/n)��0
✓0��0 )}� k

n
 ( F̄

�(k/n)��0
✓0��0 )

+
R

Xn,n�k

�0
{F̄n(x)� F̄ (x)} d ( x��0

✓0��0 ) +
R

F̄
�(k/n)

�0
F̄ (x) d ( x��0

✓0��0 )

+
R

Xn,n�k

F̄�(k/n)
F̄ (x) d ( x��0

✓0��0 )

=
R

F̄
�(k/n)

�0
 ( x��0

✓0��0 ) dF (x)� k

n
{ (Xn,n�k��0

✓0��0 )�  ( F̄
�(k/n)��0
✓0��0 )}

�
R 1�k/n
F (�0)

{Gn(x)� x} d (F
�(x)��0
✓0��0 )�

R
Un,n�k

1�k/n {Gn(x)� x} d (F
�(x)��0
✓0��0 )

+
R

Xn,n�k

F̄�(k/n)
F̄ (x) d ( x��0

✓0��0 )

= I1 + · · ·+ I5.

(4.5.8)

It follows from (4.5.2) that

p
k{n

k
(1� Un,n�k)� 1} =

r
n

k
Bn(1�

k

n
) + op(1). (4.5.9)
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Hence, by (4.5.9) and Lemma 4.5.1,

p
nI2

�(k/n) = �
p
n

�(k/n)
k

n
 0( F̄

�(k/n)��0
✓0��0 )Xn,n�k�F̄�(k/n)

✓0��0 {1 + op(1)}

= �rd0(✓0 � �0)�r
p
n

�(k/n)
k

n
{F̄�(k/n)}r( Xn,n�k

F̄�(k/n)
� 1){1 + op(1)}

= �rd0(✓0 � �0)�r
p
n

�(k/n)
k

n
{F̄�(k/n)}r( F̄

�(1�Un,n�k)

F̄�(k/n)
� 1){1 + op(1)}

= �rd0(✓0 � �0)�r
p
n

�(k/n)
k

n
{F̄�(k/n)}r{{n

k
(1� Un,n�k)}�1/↵ � 1}{1 + op(1)}

= rd0
↵
(✓0 � �0)�r

p
n

�(k/n)
k

n
{F̄�(k/n)}r{n

k
(1� Un,n�k)� 1}{1 + op(1)}

= rd0
↵
(✓0 � �0)�r

p
k/n{F̄�(k/n)}r

�(k/n)

p
n

k
Bn(1� k

n
){1 + op(1)}

= r

↵

q
2r�↵
2r I(↵ < 2r)

p
n

k
Bn(1� k

n
) + op(1).

(4.5.10)

By Lemma 4.5.1 and (4.5.1), we have

p
nI3

�(k/n)
= �

R 1�k/n
F (�0)

Bn(s) d (
F
�(s)��0
✓0��0 )

�(k/n)
+ op(1). (4.5.11)

Note that for any ⇠ between Un,n�k and 1�k/n, we have
p
n

k
Bn(⇠)

p! 0 and Un,n�k/(1�k/n)
p! 1.

Hence, by Lemma 4.5.1 and (4.5.10),

p
nI4

�(k/n) = �
p
n

�(k/n)

R
Un,n�k

1�k/n {Gn(x)� x)}d (F
�(x)��0
✓0��0 )

= � 1
�(k/n)

R
Un,n�k

1�k/n Bn(x)d (
F
�(x)��0
✓0��0 ){1 + op(1)}

= � Bn(⇠)
�(k/n){ (

Xn,n�k��0
✓0��0 )�  ( F̄

�(k/n)��0
✓0��0 )}{1 + op(1)}

=
p
n

�(k/n)I2
p
n

k
Bn(⇠){1 + op(1)}

= op(1).

(4.5.12)

Using (4.5.10), we have

p
nI5

�(k/n) =
p
n

�(k/n)

R
Xn,n�k

F̄�(k/n)
F̄ (x)d ( x��0

✓0��0 )

=
p
n

�(k/n) F̄ (F̄�(k/n))
R

Xn,n�k

F̄�(k/n)
d ( x��0

✓0��0 ){1 + op(1)}

=
p
n

�(k/n)
k

n
{ (Xn,n�k��0

✓0��0 )�  ( F̄
�(k/n)��0
✓0��0 )}{1 + op(1)}

= �
p
nI2

�(k/n){1 + op(1)}.

(4.5.13)
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Therefore, (4.5.3) follows from (4.5.8), (4.5.10)–(4.5.13).

For proving (4.5.4), we write

R1
Xn,n�k

 ( x��0
✓0��0 ) d{1�

ˆ̄F (x)}

=
R1
Xn,n�k

 ( x��0
✓0��0 ) d{1�

k

n
( x

Xn,n�k
)�1/�̂(k) � 1 + k

n
( x

Xn,n�k
)�1/�}

+
R1
Xn,n�k

 ( x��0
✓0��0 ) d{1�

k
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It follows from Lemma 4.5.1, (4.5.9) and (4.5.15) that
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Hence (4.5.4) follows from (4.5.14), (4.5.16)–(4.5.18).
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Lemma 4.5.3. Under conditions of Theorem 4.2.1, we have
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Proof. The proof is similar to that of Lemma 4.5.2, and so we skip the details.

Proof of Theorem 4.2.1. By Taylor expansions and Lemmas 4.5.1 – 4.5.3, we have
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Hence, the theorem follows from the above equations.

Next for proving Theorem 4.2.4, we first show some lemmas.
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By noting that
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we have
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Applying the inequality for a second order regular variation in Draisma et al. (1999) to (4.2.2), we
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When ↵ > 2r, it follows from Potter’s bound that
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then (4.5.28) and (4.5.32) imply that
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Lemma 4.5.5. Under conditions of Theorem 4.2.4, we have
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Proof. Write

R
Xn,n�k

�n0
 ( x��n0

✓n0��n0
) dFn(x)�

R
F̄
�( k

n )

�n0
 ( x��n0

✓n0��n0
) dF (x)

=
R

Xn,n�k

�n0
 ( x��n0

✓n0��n0
) d{Fn(x)� F (x)}�

R
F̄
�( k

n )

Xn,n�k
 ( x��n0

✓n0��n0
) dF (x)

=  (Xn,n�k��n0

✓n0��n0
){Fn(Xn,n�k)� F (Xn,n�k)}

�
R

Xn,n�k

�n0
{Fn(x)� F (x)} d ( x��n0

✓n0��n0
)

�
R

F̄
�( k

n )

Xn,n�k
 ( x��n0

✓n0��n0
) dF (x)

=  (Xn,n�k��n0

✓n0��n0
){F̄ (Xn,n�k)� k

n
}

�
R

Xn,n�k

�n0
{Fn(x)� F (x)} d ( x��n0

✓n0��n0
)

�
R

F̄
�( k

n )

Xn,n�k
F̄ (x) d ( x��n0

✓n0��n0
) + k

n
 (

F̄
�( k

n )��n0

✓n0��n0
)� F̄ (Xn,n�k) (

Xn,n�k��n0

✓n0��n0
)

= � k

n
{ (Xn,n�k��n0

✓n0��n0
)�  ( F̄

�( k
n )��n0

✓n0��n0
)}

�
R

F̄
�( k

n )

�n0
{Fn(x)� F (x)} d ( x��n0

✓n0��n0
)

�
R

Xn,n�k

F̄�( k
n )

{Fn(x)� F (x)} d ( x��n0

✓n0��n0
)

�
R

F̄
�( k

n )

Xn,n�k
F̄ (x) d ( x��n0

✓n0��n0
)

= I1 + I2 + I3 + I4.

(4.5.37)

It follows from Lemma 4.5.4 that
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By Lemma 4.5.4 and (4.5.1), we have
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Hence (4.5.33) follows from (4.5.38)–(4.5.41).

For proving (4.5.34), write
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Hence (4.5.34) follows from (4.5.44)–(4.5.46).
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which imply (4.5.35) and (4.5.36).

Lemma 4.5.6. Under conditions of Theorem 4.2.4, we have
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(4.5.51)
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0 (x� 1)2 00(x)(1 + c1�c2

c2
x)�↵�1 dx {1 + op(1)}.

(4.5.52)

Proof. The proofs of the first two equations are similar to the proofs of Lemma 4.5.5, thus are
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omitted. Note that
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(4.5.54)

which lead to the last two equations in the lemma.

Proof of Theorem 4.2.4. When |�/�n0 � 1| + |✓/✓n0 � 1| = ✏n ! 0, by Taylor expansions and

Lemmas 4.5.5 and 4.5.6, we have
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Similarly
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Hence
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(4.5.57)

Note that

(⇠In, ⌘In)
T d! N(�I ,⌃I), n!1, (4.5.58)
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Similar to the proof of Lemma 4.5.4, we can show that

lim
n!1

�̃2
1(k/n)

(k/n){F̄�(k/n)/F̄�(1� qn)}2r
=

2r3d20
2r � ↵(c1 � c2)

�2r

and

lim
n!1

�̃2
2(k/n)

(k/n){F̄�(k/n)/F̄�(1� qn)}2r
=

2r2d20
2r � ↵(c1 � c2)

�2r

for ↵ < 2r,

lim
n!1

�̃2
1(k/n)

(1� qn) log{F̄�(k/n)/F̄�(1� qn)}
=

2r3d20
(c1 � c2)2r

and

lim
n!1

�̃2
2(k/n)

(1� qn) log{F̄�(k/n)/F̄�(1� qn)}
=

2r2d20
(c1 � c2)2r

for ↵ = 2r. For ↵ > 2r, recall that in the proof of Lemma 4.5.4

d1 =: limn!1
�̃
2(k/n)
1�qn

= 2c�↵2

R1
0 (1 + c1�c2

c2
x)�↵ (x) 0(x) dx,

and similar arguments lead to

d2 =: limn!1
�̃
2
1(k/n)
1�qn

= 2c�↵2

R1
0 (x� 1) 0(x)(1 + c1�c2

c2
x)�↵{(x� 1) 00(x) +  0(x)} dx

89



and

d3 =: limn!1
�̃
2
2(k/n)
1�qn

= c�↵2

R1
0 (1 + c1�c2

c2
x)�↵{ (x) 0(x) + (x� 1) (x) 00(x) + (x� 1)( 0(x))2} dx.
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A similar calculation leads to
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Hence, the theorem follows.
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Figure 4.2: Averages of ✓̂/✓0 and ✓̂AH/✓0 are plotted against k = 50, 55, · · · , 200 for n = 2000 and
against k = 50, 55, · · · , 300 for n = 4000, where k = 0 represents the average of ✓̂AH/✓0.
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Figure 4.3: Standard deviations of ✓̂/✓0 and ✓̂AH/✓0 are plotted against k = 50, 55, · · · , 200 for
n = 2000 and against k = 50, 55, · · · , 300 for n = 4000, where k = 0 represents the standard
deviation of ✓̂AH/✓0.
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Figure 4.4: Coverage probabilities for intervals with level 90% based on ✓̂, ✓̂AH and bootstrap
method with 1000 repetitions are plotted against k = 50, 55, · · · , 200 for n = 2000 and against
k = 50, 55, · · · , 300 for n = 4000, where k = 0 represents the coverage probability based on ✓̂AH .
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Figure 4.5: Estimators (solid line) and confidence intervals (dotted line) with level 0.9 for q =
0.9, 0.95 based on bootstrap method with 1000 repetitions are plotted against k = 100, 105, · · · , 200
for losses to building, where k = 0 represents the estimator ✓̂AH .
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CHAPTER 5

NONPARAMETRIC INFERENCE FOR SENSITIVITY OF THE

HAEZENDONCK-GOOVAERTS RISK MEASURE

When H-G risk measure is applied to an insurance or a financial portfolio with several loss variables,

sensitivity analysis becomes useful in managing the portfolio, and the assumption of independent

observations may not be reasonable. This chapter (Chapter 5) first derives an expression for

computing the sensitivity of the H-G risk measure, which enables us to estimate the sensitivity

non-parametrically via the H-G risk measure. Further, we derive the asymptotic distributions of

the nonparametric estimators for the H-G risk measure and the sensitivity by assuming that loss

variables in the portfolio follow from a strictly stationary ↵-mixing sequence. A simulation study

is provided to examine the finite sample performance of the proposed nonparametric estimators.

Finally, the method is applied to a real data set. The content of this chapter is based on the joint

work:

X. Wang, Q. Liu, Y. Hou and L. Peng (2018). Nonparametric inference for sensitivity of

Haezendonck-Goovaerts risk measure. Scandinavian Actuarial Journal. To appear.

5.1 Introduction to Sensitivity Analysis of H-G Risk Measure

Haezendonck-Goovaerts (H-G) risk measure originates from the premium calculation principle

induced by an Orlicz norm in Haezendonck and Goovaerts (1982). More specifically, let  :

[0,1]! [0,1] be a convex function satisfying  (0) = 0, (1) = 1 and  (1) =1, i.e.,  is a

so-called normalized Young function. For a number q 2 (0, 1) and each � 2 R, let ↵ = ↵(�) be a

solution to

E

⇢
 (

(Y � �)+
↵

)

�
= 1� q, (5.1.1)
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where x+ = max(x, 0) and Y is a loss variable. Then, the H-G risk measure at level q with respect

to the loss variable Y is defined as

✓ = inf
�2R

{� + ↵(�)} . (5.1.2)

When  (x) = x, we have ↵(�) = 1
1�qE {(Y � �)+} and ✓ = 1

1�qE
�
(Y � F�

Y
(q))+

 
, where

FY (y) = P (Y  y) and F�
Y
(y) denotes the inverse function of FY (y). Hence, in this case, the H-G

risk measure equals the expected shortfall.

Recently this risk measure has received much attention in the literature of actuarial science

with applications in (re)insurance and portfolio management. For example, Goovaerts et al. (2004)

showed that the H-G risk measure preserves the convex order property; a dual representation of

this risk measure is given in Bellini and Gianin (2008a); Bellini and Gianin (2012); Goovaerts et

al. (2012) investigated the relationship between this risk measure and others; Cheung and Lo (2013)

obtained a lower bound for this risk measure when the loss variable Y is a sum of random variables;

Optimal portfolio and optimal reinsurance under this risk measure are investigated by Bellini and

Gianin (2008b) and Zhu, Zhang, and Zhang (2013) respectively. For statistical inference of this

risk measure, Ahn and Shyamalkumar (2014) proposed a nonparametric estimation and derived

its asymptotic distribution, which may be a non-normal distribution when the loss variable has no

enough finite moments. When the limit is a normal distribution, Peng, Wang, and Zheng (2015)

andWang and Peng (2016) developed an empirical likelihood method to construct an interval when

the H-G risk measure is defined at a fixed level and an intermediate level, respectively. All these

statistical inference procedures are built upon the assumption of independent observations.

Consider the total loss of an insurance or a financial portfolio Y =
P

d

i=1 aiXi with Xi being

the loss of the ith asset or ith business line in an insurance company. In this case, it is more realistic

to assume that (X1, · · · , Xd)T comes from a strictly stationary sequence or a time series model.

Throughout we use AT to denote the transpose of the vector or matrix A. On the other hand,

since Y is the loss of a portfolio, an interesting question is about the sensitivity analysis of the
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portfolio under the H-G risk measure, which is defined as the partial derivatives of the portfolio with

respect to ai’s; see Section 5.2 for explicit formula. The sensitivity analysis for the two commonly

employed risk measures, Value-at-Risk and expected shortfall, has been studied in the literature (see

Gourieroux, Laurent, and Scaillet (2000); Scaillet (2004); Hong (2009); Jiang and Fu (2015); Hong

and Liu (2009); Liu and Hong (2009); Fu, Hong, and Hu (2009). Tsanakas and Millossovich (2016)

provided a general study of sensitivity analysis using risk measure. References on sensitivity

analysis for utility optimization can be found in the recent paper Cao and Wan (2017). As argued in

Scaillet (2004), knowledge of the sensitivity of a risk measure is helpful in reducing the amount

of computational time needed to process a large portfolio and in characterizing and evaluating

capital allocations under this risk measure. Moreover, the expression of sensitivity analysis for

Value-at-Risk and expected shortfall is quite related to the Euler capital allocation rule and risk

capital allocation; see Kalkbrener (2005) and Fischer (2003). For a credit portfolio, some simulation

methods have been proposed to compute the capital allocation based on either Value-at-Risk or

expected shortfall; see Glasserman (2005).

This chapter studies the nonparametric inference for the sensitivity of the H-G risk measure in

portfolios. More specifically, first we derive an expression for the sensitivity of a portfolio return

under the H-G risk measure, which is a function of the H-G risk measure itself. In order to estimate

the sensitivity nonparametrically, second we derive the asymptotic distribution of the nonparametric

estimator for the H-G risk measure under the assumption of ↵�mixing sequence, which generalizes

the result in Ahn and Shyamalkumar (2014) for independent observations. Third, using the derived

results in the above two steps, we propose a nonparametric estimator for the sensitivity and derive

its asymptotic distribution. Since the obtained asymptotic variance is quite complicated, it remains

challenging to construct a confidence interval/region for the proposed nonparametric estimators for

the sensitivity and the H-G risk measure itself. Fourth, we propose to fit an AR-GARCH model to

each asset or loss variable and then employ a bootstrap method based on residuals to construct a

confidence interval/region for the nonparametric estimator of the sensitivity and/or the H-G risk

measure. Note that a blockwise bootstrap method for dependent data is not feasible here since a risk

97



measure is usually set at a high level such as 99% and the effective sample size in each block may

not be large enough to nonparametrically estimate the risk measure reasonably well.

We organize this chapter as follows. Methodologies and main results are presented in Section

5.2. A simulation study and a data analysis are given in Sections 5.3 and 5.4, respectively. All

proofs are put in Section 5.5. Some conclusions are summarized in Section 5.6.

5.2 Methodologies and Main Results

Suppose the returns/losses of an insurance or a financial portfolio are Yt =
P

d

i=1 aiXi,t for t =

1, · · · , n, where Xi,t is the return/loss of the ith asset or the loss of the ith business line in an

insurance company at time t and a = (a1, a2, . . . , ad)T is the allocation of the portfolio. Then the

H-G risk measure ✓ at level q with respect to Yt is equivalent to solving the following equations

under some regularity conditions given in Tang and Yang (2014):

8
><

>:

E
n
 (Yt��

✓�� )I(Yt > �)
o
= 1� q,

E
n
 0(Yt��

✓�� )(Yt � ✓)I(Yt > �)
o
= 0

(5.2.1)

for some � and ✓ > �, where I(·) is the indicator function. Obviously ✓ and � depend on

a = (a1, · · · , ad)T , and so we will write ✓ = ✓(a) and � = �(a).

When a risk measure is applied to a portfolio, a quantity called sensitivity of the risk measure,

which is defined as the partial derivative of the risk measure with respect to the allocation a, becomes

useful in managing the portfolio. Therefore the first question is how to compute the sensitivity of a

portfolio under the H-G risk measure. Note that such a sensitivity essentially is equivalent to the

so-called risk capital allocation.

Let ✓(j)(a) denote the sensitivity of the H-G risk measure for the portfolio return Yt with respect

to the allocation aj . That is ✓(j)(a) = @

@aj
✓(a). Then we have the following expression for the

sensitivity.

Theorem 5.2.1. Assume the normalized Young function  (x) satisfies  0(0) = 0. Then for j =
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1, · · · , d

✓(j)(a) =
E
n
Xj,t 0(

Yt��(a)
✓(a)��(a))I

�
Yt > �(a)

�o

E
n
 0( Yt��(a)

✓(a)��(a))I
�
Yt > �(a)

�o , (5.2.2)

where ✓(a) and �(a) are the unique solution to (5.2.1).

Based on the above theorem, a simple nonparametric estimator for the sensitivity ✓(j)(a) is

✓̂(j)(a) =

P
n

t=1 Xj,t 0(
Yt��̂(a)
✓̂(a)��̂(a))I

�
Yt > �̂(a)

�

P
n

t=1  
0( Yt��̂(a)
✓̂(a)��̂(a))I

�
Yt > �̂(a)

� ,

where ✓̂(a) and �̂(a) solve the following estimating equations for ✓ > �:

8
><

>:

1
n

P
n

t=1  (
Yt��
✓�� )I(Yt > �) = 1� q,

1
n

P
n

t=1  
0(Yt��
✓�� )(Yt � ✓)I(Yt > �) = 0.

(5.2.3)

Although the joint asymptotic distribution of ✓̂(a) and �̂(a) has been derived in Ahn and Shya-

malkumar (2014) for independent observations, we need the asymptotic distribution based on

dependent data before deriving the asymptotic distribution of the nonparametric estimator for the

sensitivity. Here we focus on ↵�mixing data defined as follows.

For �1  a < b  1, let F b

a
denote the �-field generated by

�
X t = (X1,t, · · · , Xd,t)

T : a  t  b
 

and define for k � 1

↵X(k) = sup
�
|P (A \ B)� P (A)P (B)| : A 2 F i

�1, B 2 F1
i+k

,�1 < i <1
 
.

Then the sequence {X t} is called ↵-mixing if ↵X(k)! 0 as k !1. Some simple examples are a

sequence of independent and identically distributed random variables and an autoregressive and

moving average model. We refer to the book by Doukhan (1995) for more examples.
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Throughout we let (�0, ✓0, ✓
(j)
0 )T denote the true value of (�, ✓, ✓(j))T in (5.2.1) and assume the

following regularity conditions:

• A1) As k !1, ↵X(k) = O(rk) for some r 2 (0, 1);

• A2)  is a strictly convex function on [0,1] with  (0) = 0, (1) = 1, (1) =1, and  (t)

has a continuous second derivative on (0,1) with  0(0) = 0;

• A3) Suppose the density of Yt is positive at �0, and there exist �0 2 (0, 1/2) and �1 > 0 such

that 8
><

>:

R 1

G(�0)
(1� y)�0 | 0(G

�(y)��0
✓0��0 )| dG�(y) <1,

sup|�0��|+|✓0�✓|�1,✓>�
R 1

G(�) |G
�(y)| 00(G

�(y)��
✓�� ) dy <1,

8
><

>:

R 1

G(�0)
(1� y)�0 00(G

�(y)��0
✓0��0 )|G�(y)| dG�(y) <1,

sup|�0��|+|✓0�✓|�1,✓>�
R 1

G(�){G
�(y)}2| 0(G

�(y)��
✓�� )| dy <1,

8
>>>><

>>>>:

R 1

G(�0)

R 1

Fj(0)
min((1� x)�0 , (1� y)�0) 00(G

�(y)��0
✓0��0 ) dF�

j
(x)dG�(y) <1,

R 1

G(�0)

R
Fj(0)

0 min(x�0 , (1� y)�0) 00(G
�(y)��0
✓0��0 ) dF�

j
(x)dG�(y) <1,

sup|�0��|+|✓0�✓|�1,✓>�
R 1

G(�)

R 1

0 |F�
j
(x)G�(y)| 00(G

�(y)��
✓�� ) dC(x, y; j) <1,

where Fj(x) and G(x) denote the distribution functions of Xj,t and Yt, respectively.

A key technique in deriving the joint asymptotic distribution of the proposed estimators ✓(a), �(a)

and ✓(j)(a) is the approximation of the empirical copula process for an ↵�mixing sequence given in

Berghaus, Bücher, and Volgushev (2017), which allows us to express the limit in terms of a common

Gaussian process. The technical condition A3) can be ensured by imposing some conditions on

the asymptotic behavior of  (x) at infinity and moments of X t, and plays an important role in

making this approximation of the empirical copula applicable. For example, if  (x) = xd for some

d > 1, P (|Xj,t| > x) and P (|Yt| > x) are regularly varying with index �↵1 < 0 and �↵2 < 0,

respectively, then the above condition A3) holds when �0 > d/↵2, �0 > d/↵2 � 1/↵1 + 1/↵2 and
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there is an open set ⌦ including (�0, ✓0)T such that

8
>>>><

>>>>:

E
n
sup(�,✓)T2⌦  

00(Yt��
✓�� )Y

2
t
I(Yt > �)

o
<1,

E
n
sup(�,✓)T2⌦ | 0(Yt��

✓�� )|Y
2
t
I(Yt > �)

o
<1,

E
n
sup(�,✓)T2⌦  

00(Yt��
✓�� )|Xj,t|Y 2

t
I(Yt > �)

o
<1.

Again let Fj(x) and G(x) denote the distribution functions of Xj,t and Yt, respectively. Put

Uj,t = Fj(Xj,t) and Vt = G(Yt) for t = 1, · · · , n. Define C(u, v; j) = P (Uj,t  u, Vt  v),

Cn(u, v; j) =
1
n

P
n

t=1 I(Uj,t  u, Vt  v) and ↵n(u, v; j) =
p
n {Cn(u, v; j)� C(u, v; j)}. Then,

under condition A1), it follows from Theorem 2.2 of Berghaus, Bücher, and Volgushev (2017) that

sup
c/nu,v1�c/n

|↵n(u, v; j)�WC(u, v; j)|
{min(u, v, 1� u, 1� v)}�

= op(1) (5.2.4)

for any c > 0 and � 2 (0, 1/2), where WC(u, v; j) is a tight, centered Gaussian process with

covariance matrix

E {WC(u1, v1; j)WC(u2, v2; j)}

=
P+1

i=�1Cov
�
I(Uj,1  u1, V1  v1), I(Uj,1+i  u2, V1+i  v2)

�
.

Using (5.2.4), the following theorem derives the asymptotic distribution of the nonparametric

estimators for the H-G risk measure and the sensitivity in terms of the same Gaussian process

WC(x, y; j).

Theorem 5.2.2. (i) Under conditions A1)–A3), as n!1, we have

p
n

0

B@
�̂(a)� �0

✓̂(a)� ✓0

1

CA = ⌃�1Z + op(1),
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where

Z =

0

B@

R 1

G(�0)
WC(1, y; j)

1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y)

R 1

G(�0)
WC(1, y; j)

n
 00(G

�(y)��0
✓0��0 )G

�(y)�✓0
✓0��0 +  0(G

�(y)��0
✓0��0 )

o
dG�(y)

1

CA

and ⌃ = (�ij)2⇥2 with

�11 = E

⇢
 0(

Y1 � �0
✓0 � �0

)
Y1 � ✓0

(✓0 � �0)2
I(Y1 > �0)

�
= 0,

�21 = E

⇢
 00(

Y1 � �0
✓0 � �0

)
(Y1 � ✓0)2

(✓0 � �0)2
I(Y1 > �0)

�
,

�12 = �
1

✓0 � �0
E

⇢
 0(

Y1 � �0
✓0 � �0

)I(Y1 > �0)

�
,

�22 = E

⇢✓
 00(

Y1 � �0
✓0 � �0

)
(Y1 � ✓0)(�0 � Y1)

(✓0 � �0)2
�  0(Y1 � �0

✓0 � �0
)

◆
I(Y1 > �0)

�
.

(ii) Under conditions A1)–A3), as n!1, we have

p
n
n
✓̂(j)(a)� ✓(j)0 (a)

o
=

b2Z1 � b1Z2

b22
+

1

b22
{b2A1 � b1A2}T⌃�1Z + op(1),

where

Z1 =
R 1

G(�0)

R 1

Fj(0)
{WC(x, y; j)�WC(x, 1; j)�WC(1, y; j)} dF�

j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1

G(�0)

R
Fj(0)

0 {WC(x, y; j)�WC(x, 1; j)} dF�
j
(x)d 0(G

�(y)��0
✓0��0 ),

A1 =

0

B@
E
n
Xj,1 00(

Y1��0
✓0��0 )

Y1�✓0
(✓0��0)2 I(Y1 > �0)

o

E
n
Xj,1 00(

Y1��0
✓0��0 )

�0�Y1

(✓0��0)2 I(Y1 > �0)
o

1

CA ,

Z2 = �
Z 1

G(�0)

WC(1, y; j) d 
0�G�(y)� �0

✓0 � �0
�
,

A2 =

0

B@
E
n
 00(Y1��0

✓0��0 )
Y1�✓0

(✓0��0)2 I(Y1 > �0)
o

E
n
 00(Y1��0

✓0��0 )
�0�Y1

(✓0��0)2 I(Y1 > �0)
o

1

CA ,
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b1 = E

⇢
Xj,1 

0(
Y1 � �0
✓0 � �0

)I(Y1 > �0)

�
and b2 = E

⇢
 0(

Y1 � �0
✓0 � �0

)I(Y1 > �0)

�
.

It is known that uncertainty quantification is important in risk management. Although the limit

in the above theorem is a normal distribution, estimating the asymptotic variance/covariance is

highly nontrivial due to dependent data. One may employ the blockwise bootstrap method to

construct a confidence interval for ✓(j)(a). However, the effective sample size in each block may

not be large enough to nonparametrically estimate �(a) and ✓(a) accurately since the level q is

always close to one in practice. Alternatively an efficient way to quantify the uncertainty is to model

the dependence of each asset returns by a time series model and then to employ a bootstrap method

based on residuals to construct intervals/regions. More specifically, we propose to assume each

asset return follows the following AR-GARCH model in Chen and Fan (2006):

8
><

>:

Xl,t = µl +
P

Pl
i=1 al,iXl,t�i + el,t,

el,t = h1/2
l,t
⌘l,t, hl,t = wl +

P
ql
i=1 ↵l,ie2l,t�i +

P
pl
k=1 �l,khl,t�k

(5.2.5)

for l = 1, · · · , d, where {⌘
t
:= (⌘1,t, · · · , ⌘d,t)T} is a sequence of independent and identically

distributed random vectors with means zero and variances one.

A standard inference procedure for the model (5.2.5) is the so-called quasi maximum likelihood

estimator, but its asymptotic normality requires finite fourth moments of both el,t and ⌘l,t; see

Francq and Zakoian (2004) . In practice it is quite often that
P

ql
i=1 ↵l,i +

P
pl
k=1 �l,k is close to one,

which implies that assuming Ee4
l,t

< 1 may be problematic. Instead we propose to employ the

self-weighted quasi maximum likelihood estimator in Ling (2007) with the weights

�l,t =

(
max

 
1,

1

Cl

t�1X

k=1

|Xt�k|I(|Xt�k| > Cl)

k9

!)�4

to estimate

�
l
= (µl, al,1, · · · , al,Pl

,↵l,1, · · · ,↵l,ql
, �l,1, · · · , �l,pl)T ,

say �̂
l
, where the asymptotic normality only requires E|el,t| < 1 and E⌘2

l,t
<1. Here Cl is chosen
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as the 90% sample quantile of {Xl,t}nt=1 as suggested by Zhu and Ling (2011).

After obtaining �̂1, · · · , �̂d
, we get our estimators for ⌘

t
, t = 1, · · · , n, say ⌘̂

t
. Therefore, we

resample from {⌘̂
t
}n
t=1 with sample size n and then refit model (5.2.5) to obtain bootstrap sample

X⇤
l,t

for l = 1, · · · , d and t = 1, · · · , n. Based on this bootstrap sample, one can calculate the

bootstrapped estimators of �̂(a), ✓̂(a) and ✓̂(j)(a). By repeating this procedure many times, a

bootstrap confidence interval for ✓(j)(a) based on ✓̂(j)(a) and its bootstrapped estimators can be

constructed. Similarly, a bootstrap region can be obtained for the nonparametric estimators of the

H-G risk measure and the sensitivity.

5.3 Simulation Study

In this section, we carry out a simulation study based on AR-GARCH models. Specifically we

simulate data from the following AR(1)-GARCH(1,1) models for {X1,t} and {X2,t}:

8
>>>>>>><

>>>>>>>:

X1,t = 0.0830� 0.0390X1,t�1 + e1,t, e1,t = h1/2
1,t ⌘1,t,

h1,t = 0.0548 + 0.0852e21,t�1 + 0.9043h1,t�1;

X2,t = 0.0591� 0.0676X2,t�1 + e2,t, e2,t = h1/2
2,t ⌘2,t,

h2,t = 0.0259 + 0.1128e22,t�1 + 0.8637h2,t�1,

(5.3.1)

where {⌘
t
= (⌘1,t, ⌘2,t)T} is a sequence of independent and identically distributed random vectors

with marginal t-distributions with degrees of freedom 6.2345 and 5.6237, respectively, and a

t-copula with parameters ⇢ = 0.7206 and ⌫ = 6.1702. We consider the return of a portfolio

Yt = a1X1,t+ a2X2,t with a1 = a2 = 0.5. Note that the chosen parameters in (5.3.1) and the setting

for ⌘
t

come from the fitted values for the returns of Goldman Sachs and S&P 500 index in the real

data analysis given in Section 5.4 below.

First we evaluate the true values ✓0, ✓
(j)
0 , j = 1, 2 of the H-G risk measure and its sensitivity

by drawing 100, 000 random samples with sample size n = 100, 000 from (5.3.1) and considering

q = 0.95, 0.99,  (x) = x1.1 and  (x) = x1.3. For each sample, we compute ✓̂ and ✓̂(j). Therefore

the true values ✓0 and ✓(j)0 are approximated by the corresponding averages of these computed
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100, 000 estimators and are reported in Tables 5.1 and 5.2.

Next, we draw 1, 000 random samples from model (5.3.1) with sample size n = 2, 000 or 3, 000

or 5, 000 and compute ✓̂, ✓̂(j), j = 1, 2 for each sample. The corresponding averages and standard

errors are reported in Tables 5.1 and 5.2. To examine the efficiency of the proposed bootstrap

method in Section 5.2, we also compute the bootstrapped standard deviations for ✓̂ and ✓̂(j) by

drawing 1, 000 resamples from the estimated residuals in model (5.3.1) with the same sample size

n. Since the sum of the two slope parameters in GARCH models of equation (5.3.1) is close to 1 on

both margins, we apply the self-weighted quasi maximum likelihood estimator to the resampling

procedure of the bootstrap method as stated in Section 5.2.

Our observations from Tables 5.1 and 5.2 are: i) the proposed nonparametric estimators for the

H-G risk measure and the sensitivity are close to the true values and the proposed bootstrap method

gives a close value to the simulated standard deviation; ii) the nonparametric estimators perform

better as n becomes larger; iii) estimators at level q = 0.99 have a larger standard deviation than

those at level q = 0.95; iv) estimators for  (x) = x1.3 are larger than those for  (x) = x1.1. In

conclusion, the proposed nonparametric estimators have a good finite sample behavior.

5.4 Real Data Analysis

In this section, we apply our estimators to a real data set consisting of the daily log stock returns

of Goldman Sachs (X1,t) and S&P 500 index (X2,t) from January 3, 2005 to December 31, 2016,

which are plotted in Figure 5.1. The mean and standard deviation are 0.0321% and 2.3753% for

Goldman Sachs, and 0.0203% and 1.2327% for S&P 500. The autocorrelation function plots show

that an AR(1)-GARCH(1,1) model fits well to these two returns. The analyzed portfolio contains

equal unit of these two securities, that is, the log return of the portfolio is Yt = 0.5X1,t + 0.5X2,t.

We scale the data by taking multiplication with 100.

We compute the nonparametric estimates of ✓, ✓(j), j = 1, 2 by solving the two equations (5.2.3)

and equation (5.2.2) for q = 0.95, 0.99. The obtained estimates are reported in Table 5.3. In order

to estimate the standard deviations of the proposed estimators, we apply the proposed bootstrap
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method in Section 5.2. More specifically, first we use the self-weighted quasi maximum likelihood

estimator in Ling (2007) to fit an AR(1)-GARCH(1,1) model to each asset, where the obtained

estimates are summarized in model (5.3.1) in Section 5.3. Second we draw 1, 000 bootstrap samples

from the residuals in the AR(1)-GARCH(1,1) models and then compute the corresponding estimates

for each bootstrap sample. Therefore the bootstrapped standard deviations are obtained based on

these 1, 000 bootstrapped estimates and reported in Table 5.3.

After plotting the autocorrelation functions based on the residuals in Figure 5.2, we confirm that

the employed AR(1)-GARCH(1,1) models are reasonable. That is, the proposed bootstrap method

for uncertainty quantification is applicable to the investigated data set. From Table 5.3, we observe

that the proposed nonparametric estimate and its standard deviation for the sensitivity with respect

to Goldman Sachs are much larger than those for the sensitivity with respect to S&P 500 index,

and estimates at level 0.99 are larger than those at level 0.95. One possible explanation is that the

return of Goldman Sachs has a heavier tail and higher volatility than those of S&P 500 Index which

is observed in Figure 5.1. This makes the H-G risk measure of the portfolio more sensitive to the

change from Goldman Sachs than S&P 500 Index.

In order to examine the finite sample performance of the proposed estimators and the bootstrap

method for quantifying uncertainty under a similar setting with this investigated real data set, we also

fit a bivariate parametric distribution with t-copula and marginal t-distributions to the innovations

in the AR(1)-GARCH(1,1) models. Results are given in Section 5.3. Note that it has no need to

fit a parametric family to the innovations in the employed AR-GARCH models for applying the

proposed nonparametric estimators for the H-G risk measure and its sensitivity to a real data set.

5.5 Proofs

Proof of Theorem 5.2.1. We only prove the case of j = 1 and a1 > 0 since other cases can be

shown in the same way. Put Zt =
P

d

i=2 aiXi,t, x1(z) =
�(a)�z

a1
, and let G(x, z) denote the joint
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distribution function of X1,t and Zt. It follows from (5.2.1) that

8
><

>:

R +1
�1

R +1
x1(z)

 (a1x+z��(a)
✓(a)��(a) ) dG(x, z) = 1� q,

R +1
�1

R +1
x1(z)

 0(a1x+z��(a)
✓(a)��(a) )

�
a1x+ z � ✓(a)

�
dG(x, z) = 0.

(5.5.1)

By taking derivative with respect to a1 in the first equation of (5.5.1) and noting that  (0) = 0, we

have

0 =
R +1
�1

R +1
x1(z)

@

@a1

�
 (a1x+z��(a)

✓(a)��(a) )
�
dG(x, z)

=
R +1
�1

R +1
x1(z)

 0(a1x+z��(a)
✓(a)��(a) )

�
x��(1)(a)

��
✓(a)��(a)

�
�
�
a1x+z��(a)

��
✓
(1)(a)��(1)(a)

�
�
✓(a)��(a)

�2 dG(x, z)

=
R +1
�1

R +1
x1(z)

 0(a1x+z��(a)
✓(a)��(a) )

x

�
✓(a)��(a)

�
�✓(1)(a)

�
a1x+z��(a)

�
��(1)(a)

�
✓(a)�a1x�z

�
�
✓(a)��(a)

�2 dG(x, z)

= E

(
 0( Yt��(a)

✓(a)��(a))
X1,t

�
✓(a)��(a)

�
�✓(1)(a)

�
Yt��(a)

�
��(1)(a)

�
✓(a)�Yt

�
�
✓(a)��(a)

�2 I
�
Yt > �(a)

�
)

= E
n
 0( Yt��(a)

✓(a)��(a))
X1,t

✓(a)��(a)I
�
Yt > �(a)

�o

�✓(1)(a)E
(
 0( Yt��(a)

✓(a)��(a))
Yt��(a)�

✓(a)��(a)
�2 I
�
Yt > �(a)

�
)

��(1)(a)E

(
 0( Yt��(a)

✓(a)��(a))
✓(a)�Yt�

✓(a)��(a)
�2 I
�
Yt > �(a)

�
)

= E
n
 0( Yt��(a)

✓(a)��(a))
X1,t

✓(a)��(a)I
�
Yt > �(a)

�o

�✓(1)(a)E
(
 0( Yt��(a)

✓(a)��(a))
Yt��(a)�

✓(a)��(a)
�2 I
�
Yt > �(a)

�
)

by using the second equation of (5.5.1). That is,

✓(1)(a) =
E
n
 0( Yt��(a)

✓(a)��(a))
X1,t

✓(a)��(a)I
�
Yt > �(a)

�o

E

(
 0( Yt��(a)

✓(a)��(a))
Yt��(a)�

✓(a)��(a)
�2 I
�
Yt > �(a)

�
) . (5.5.2)
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It follows from the second equation of (5.5.1) that

E

(
 0( Yt��(a)

✓(a)��(a))
Yt��(a)�

✓(a)��(a)
�2 I
�
Yt > �(a)

�
)

= E

(
 0( Yt��(a)

✓(a)��(a))

�
Yt�✓(a)

�
+
�
✓(a)��(a)

�
�
✓(a)��(a)

�2 I
�
Yt > �(a)

�
)

= E
n
 0
�

Yt��(a)
✓(a)��(a)

�
1

✓(a)��(a)I
�
Yt > �(a)

�o
.

(5.5.3)

Hence (5.2.1) with j = 1 and a1 > 0 follows from (5.5.2) and (5.5.3). Other cases can be shown in

the same way.

Before proving Theorem 5.2.2, we first list some facts and then show some lemmas.

Under condition A1), it follows from Proposition 4.4 of Berghaus, Bücher, and Volgushev (2017)

that for any � 2 (0, 1/2) and positive �n ! 0

sup
|u1�u2|+|v1�v2|�n

|↵n(u1, v1; j)� ↵n(u2, v2; j)|
max

�
|u1 � u2|� + |v1 � v2|�, n��

� = op(1) (5.5.4)

and

sup
0<u<1

|↵n(u, 1; j)|+ |↵n(1, u; j)|
u�(1� u)�

= Op(1). (5.5.5)

Lemma 5.5.1. Under conditions of Theorem 5.2.2, as n!1, we have

p
n
n

1
n

P
n

t=1  (
Yt��0
✓0��0 )I(Yt > �0)� 1 + q

o

= �
R 1

G(�0)
WC(1, y; j)

1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y) + op(1),

(5.5.6)

1

n

nX

t=1

 0(
Yt � �0
✓0 � �0

)
Yt � ✓0

(✓0 � �0)2
I(Yt > �0) = op(1), (5.5.7)
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1

n

nX

t=1

 0(
Yt � �0
✓0 � �0

)
�0 � Yt

(✓0 � �0)2
I(Yt > �0) = �

1

✓0 � �0
E

⇢
 0(

Y1 � �0
✓0 � �0

)I(Y1 > �0)

�
+ op(1).

(5.5.8)

Proof. Write

1
n

P
n

t=1  (
Yt��0
✓0��0 )I(Yt > �0)� (1� q)

=
R 1

G(�0)
 (G

�(y)��0
✓0��0 ) d {Cn(1, y; j)� C(1, y; j)}

= �
R 1

G(�0)
{Cn(1, y; j)� C(1, y; j)} 1

✓0��0 
0(G

�(y)��0
✓0��0 ) dG�(y)

= �
R 1�1/n
G(�0)

{Cn(1, y; j)� C(1, y; j)} 1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y)

�
R 1

1�1/n {Cn(1, y; j)� C(1, y; j)} 1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y)

= �
R 1�1/n
G(�0)

�
Cn(1� 1

n
, y; j)� C(1� 1

n
, y; j)

 
1

✓0��0 
0(G

�(y)��0
✓0��0 ) dG�(y)

�
R 1�1/n
G(�0)

�
Cn(1, y; j)� C(1, y; j)� Cn(1� 1

n
, y; j) + C(1� 1

n
, y; j)

 

⇥ 1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y)

�
R 1

1�1/n {Cn(1, y; j)� C(1, y; j)} 1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y)

= I1 + I2 + I3.

Since
R 1

G(�0)
(1� y)�0 | 0(G

�(y)��0
✓0��0 )| dG�(y) <1, it follows from (5.2.4) and condition A3) that

p
nI1 = �

R 1�1/n
G(�0)

WC(1� 1
n
, y; j) 1

✓0��0 
0(G

�(y)��0
✓0��0 ) dG�(y) + op(1)

= �
R 1

G(�0)
WC(1, y; j)

1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y) + op(1).

(5.5.9)

Using
R 1

G(�0)
(1� y)�0 | 0(G

�(y)��0
✓0��0 )| dG�(y) <1, it follows from (5.5.4), (5.5.5) and A3) that

p
n|I2| = op

⇣R 1�1/n
G(�0)

n��0 | 0(G
�(y)��0
✓0��0 )| dG�(y)

⌘

= op
⇣R 1�1/n

G(�0)
(1� y)�0 | 0(G

�(y)��0
✓0��0 )| dG�(y)

⌘
= op(1)

(5.5.10)

and
p
n|I3| = Op

✓Z 1

1�1/n
(1� y)�0 | 0(G

�(y)� �0
✓0 � �0

)| dG�(y)
◆

= op(1). (5.5.11)
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Hence (5.5.6) follows from (5.5.9)–(5.5.11). Similarly we can show that

1

n

nX

t=1

 0(
Yt � �0
✓0 � �0

)
Yt � ✓0

(✓0 � �0)2
I(Yt > �0)� E

⇢
 0(

Y1 � �0
✓0 � �0

)
Y1 � ✓0

(✓0 � �0)2
I(Y1 > �0)

�
= op(1)

and

1

n

nX

t=1

 0(
Yt � �0
✓0 � �0

)
�0 � Yt

(✓0 � �0)2
I(Yt > �0)� E

⇢
 0(

Y1 � �0
✓0 � �0

)
�0 � Y1

(✓0 � �0)2
I(Y1 > �0)

�
= op(1).

Then the lemma follows by noting that

E

⇢
 0(

Y1 � �0
✓0 � �0

)
Y1 � ✓0

(✓0 � �0)2
I(Y1 > �0)

�
= 0

and

E
n
 0(Y1��0

✓0��0 )
�0�Y1

(✓0��0)2 I(Y1 > �0)
o
= � 1

✓0��0E
n
 0(Y1��0

✓0��0 )I(Y1 > �0)
o
.

Lemma 5.5.2. Under conditions of Theorem 5.2.2, as n!1, we have

1p
n

P
n

t=1  
0(Yt��0
✓0��0 )(Yt � ✓0)I(Yt > �0)

= �
R 1

G(�0)
WC(1, y; j)

n
 00(G

�(y)��0
✓0��0 )G

�(y)�✓0
✓0��0 +  0(G

�(y)��0
✓0��0 )

o
dG�(y) + op(1),

(5.5.12)

1
n

P
n

t=1  
00(Yt��0
✓0��0 )

(Yt�✓0)2
(✓0��0)2 I(Yt > �0) = E

n
 00(Y1��0

✓0��0 )
(Y1�✓0)2
(✓0��0)2 I(Y1 > �0)

o
+ op(1), (5.5.13)

and
1
n

P
n

t=1

n
 00(Yt��0

✓0��0 )
(�0�Yt)(Yt�✓0)

(✓0��0)2 �  0(Yt��0
✓0��0 )

o
I(Yt > �0)

= E
n�
 00(Y1��0

✓0��0 )
(Y1�✓0)(�0�Y1)

(✓0��0)2 �  0(Y1��0
✓0��0 )

�
I(Y1 > �0)

o
+ op(1).

(5.5.14)

Proof. It can be shown in the same way as the proof of Lemma 5.5.1.
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Lemma 5.5.3. Under conditions of Theorem 5.2.2, as n!1, we have

p
n
n

1
n

P
n

t=1 Xj,t 0(
Yt��0
✓0��0 )I(Yt > �0)� E

�
Xj,1 0(

Y1��0
✓0��0 )I(Y1 > �0)

�o

=
R 1

G(�0)

R 1

Fj(0)
{WC(x, y; j)�WC(1, y; j)�WC(x, 1; j)} dF�

j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1

G(�0)

R
Fj(0)

0 {WC(x, y; j)�WC(x, 1; j)} dF�
j
(x)d 0(G

�(y)��0
✓0��0 ) + op(1),

(5.5.15)

1
n

P
n

t=1 Xj,t 00(
Yt��0
✓0��0 )

Yt�✓0
(✓0��0)2 I(Yt > �0)

= E
n
Xj,1 00(

Y1��0
✓0��0 )

Y1�✓0
(✓0��0)2 I(Y1 > �0)

o
+ op(1)

(5.5.16)

and
1
n

P
n

t=1 Xj,t 00(
Yt��0
✓0��0 )

�0�Yt

(✓0��0)2 I(Yt > �0)

= E
n
Xj,1 00(

Y1��0
✓0��0 )

�0�Y1

(✓0��0)2 I(Y1 > �0)
o
+ op(1).

(5.5.17)

Proof. Put

�n1(x, y) = Cn(x, y; j)� C(x, y; j)� Cn(x, 1; j) + C(x, 1; j)� Cn(1, y; j) + C(1, y; j),

�̃n1(x, y) = Cn(x, y; j)� C(x, y; j)� Cn(x, 1� 1
n
; j) + C(x, 1� 1

n
; j)

�Cn(1� 1
n
, y; j) + C(1� 1

n
, y; j),

�n2(x, y) = Cn(x, y; j)� C(x, y; j)� Cn(x, 1; j) + C(x, 1; j),

�n3(x, y) = Cn(x, y; j)� C(x, y; j)� Cn(1, y; j) + C(1, y; j).
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Use the integration by parts, we have

1
n

P
n

t=1 Xj,t 0(
Yt��0
✓0��0 )I(Yt > �0)� E

�
Xj,1 0(

Y1��0
✓0��0 )I(Y1 > �0)

�

=
R 1

G(�0)

R 1

Fj(0)
F�
j
(x) 0(G

�(y)��0
✓0��0 ) d {Cn(x, y; j)� C(x, y; j)}

+
R 1

G(�0)

R
Fj(0)

0 F�
j
(x) 0(G

�(y)��0
✓0��0 ) d {Cn(x, y; j)� C(x, y; j)}

=
R 1

G(�0)

R 1

Fj(0)
F�
j
(x) 0(G

�(y)��0
✓0��0 ) d�n1(x, y)

+
R 1

G(�0)

R
Fj(0)

0 F�
j
(x) 0(G

�(y)��0
✓0��0 ) d�n2(x, y)

=
R 1

G(�0)

R 1

Fj(0)
�n1(x, y) dF

�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1

G(�0)

R
Fj(0)

0 �n2(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

= I1 + I2.

Write
I1 =

R 1�1/n
G(�0)

R 1�1/n
Fj(0)

�n1(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1�1/n
G(�0)

R 1

1�1/n�n1(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1

1�1/n
R 1�1/n
Fj(0)

�n1(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1

1�1/n
R 1

1�1/n�n1(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

= II1 + II2 + II3 + II4

and

II1 =
R 1�1/n
G(�0)

R 1�1/n
Fj(0)

�̃n1(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1�1/n
G(�0)

R 1�1/n
Fj(0)

�
�n2(x, 1� 1

n
) +�n3(1� 1

n
, y)
 
dF�

j
(x)d 0(G

�(y)��0
✓0��0 )

= III1 + III2.

It follows from (5.2.4) and A3) that

p
nIII1

=
R 1�1/n
G(�0)

R 1�1/n
Fj(0)

�
WC(x, y; j)�WC(x, 1� 1

n
; j)�WC(1� 1

n
, y; j)

 

dF�
j
(x)d 0(G

�(y)��0
✓0��0 ) + op(1),
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and it follows from (5.5.4) and condition A3 that

p
n|III2|

= op
⇣R 1�1/n

G(�0)

R 1�1/n
Fj(0)

n��0 00(G
�(y)��0
✓0��0 ) dF�

j
(x)dG�(y)

⌘

= op
⇣R 1�1/n

G(�0)

R 1�1/n
Fj(0)

min
�
(1� x)�0 , (1� y)�0

�
 00(G

�(y)��0
✓0��0 ) dF�

j
(x)dG�(y)

⌘
= op(1),

which imply that

p
nII1

=
R 1

G(�0)

R 1

Fj(0)
{WC(x, y; j)�WC(x, 1; j)�WC(1, y; j)} dF�

j
(x)d 0(G

�(y)��0
✓0��0 ) + op(1).

(5.5.18)

By (5.5.4), (5.5.5) and condition A3), we have

p
nII2 =

R 1�1/n
G(�0)

R 1

1�1/n{↵n(x, y; j)� ↵n(1, y; j)} dF�j (x)d 0(G
�(y)��0
✓0��0 )

+
R 1�1/n
G(�0)

R 1

1�1/n ↵n(x, 1; j) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

= op
⇣R 1�1/n

G(�0)

R 1

1�1/n(1� x)� 00(G
�(y)��0
✓0��0 ) dF�

j
(x)dG�(y)

⌘

= op(1).

Similarly we can show that

p
nII3 = op(1) and

p
nII4 = op(1).

Hence we have

p
nI1

=
R 1

G(�0)

R 1

Fj(0)
{WC(x, y; j)�WC(1, y; j)�WC(x, 1; j)} dF�

j
(x)d 0(G

�(y)��0
✓0��0 ) + op(1).

(5.5.19)
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For I2, write

I2 =
R 1�1/n
G(�0)

R
Fj(0)

1/n �n2(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1�1/n
G(�0)

R 1/n

0 �n2(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1

1�1/n
R

Fj(0)

0 �n2(x, y) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

= V1 + V2 + V3.

Like the proof of (5.5.19), we can show that

p
nV1 =

R 1

G(�0)

R
Fj(0)

0 {WC(x, y; j)�WC(x, 1; j)} dF�
j
(x)d 0(G

�(y)��0
✓0��0 ) + op(1). (5.5.20)

By (5.5.4), (5.5.5) and condition A3), we have

p
nV2 =

R 1�1/n
G(�0)

R 1/n

0 {↵n(x, y; j)� ↵n(0, y; j)} dF�
j
(x)d 0(G

�(y)��0
✓0��0 )

+
R 1�1/n
G(�0)

R 1/n

0 ↵n(x, 1; j) dF
�
j
(x)d 0(G

�(y)��0
✓0��0 )

= Op

⇣R 1�1/n
G(�0)

R 1/n

0 x� dF�
j
(x)d 0(G

�(y)��0
✓0��0 )

⌘
= op(1)

(5.5.21)

and

p
nV3 = Op

⇣R 1

1�1/n
R

Fj(0)

0 (1� y)� dF�
j
(x)d 0(G

�(y)��0
✓0��0 )

⌘
= op(1). (5.5.22)

Therefore we have

p
nI2 =

R 1

G(�0)

R
Fj(0)

0 {WC(x, y; j)�WC(x, 1; j)} dF�
j
(x)d 0(G

�(y)��0
✓0��0 ) + op(1). (5.5.23)

Hence, (5.5.15) follows from (5.5.19) and (5.5.23). Proofs of (5.5.16) and (5.5.17) can be done in

the same way.

Lemma 5.5.4. Under conditions of Theorem 5.2.2, as n!1, we have

p
n
n

1
n

P
n

t=1  
0(Yt��0
✓0��0 )I(Yt > �0)� E

�
 0(Y1��0

✓0��0 )I(Y1 > �0)
�o

= �
R 1

G(�0)
WC(1, y; j) d 0(

G
�(y)��0
✓0��0 ) + op(1),

(5.5.24)
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1
n

P
n

t=1  
00(Yt��0
✓0��0 )

Yt�✓0
(✓0��0)2 I(Yt > �0)

= E
n
 00(Y1��0

✓0��0 )
Y1�✓0

(✓0��0)2 I(Y1 > �0)
o
+ op(1)

(5.5.25)

and
1
n

P
n

t=1  
00(Yt��0
✓0��0 )

�0�Yt

(✓0��0)2 I(Yt > �0)

= E
n
 00(Y1��0

✓0��0 )
�0�Y1

(✓0��0)2 I(Y1 > �0)
o
+ op(1).

(5.5.26)

Proof. It can be shown in a similar way to the proof of Lemma 5.5.1.

Proof of Theorem 5.2.2. Recall that �̂(a) and ✓̂(a) are the solution of estimating equations (5.2.3).

An application of Taylor expansions yields that

1
n

P
n

t=1  (
Yt��̂(a)
✓̂(a)��̂(a)

�
I
�
Yt > �̂(a))� (1� q)

= 1
n

P
n

t=1  (
Yt��̂(a)
✓̂(a)��̂(a))I

�
Yt > �̂(a)

�
� 1

n

P
n

t=1  (
Yt��0
✓0��0 )I(Yt > �0)

+ 1
n

P
n

t=1  (
Yt��0
✓0��0 )I(Yt > �0)� (1� q)

=
�
�̂(a)� �0

�
1
n

P
n

t=1  
0(Yt��0
✓0��0 )

Yt�✓0
(✓0��0)2 I(Yt > �0)

+
�
✓̂(a)� ✓0

�
1
n

P
n

t=1  
0(Yt��0
✓0��0 )

�0�Yt

(✓0��0)2 I(Yt > �0)

+ 1
n

P
n

t=1  (
Yt��0
✓0��0 )I(Yt > �0)� (1� q)

+op
�
|�̂(a)� �0|+ |✓̂(a)� ✓0|

�
.

Then it follows from Lemma 5.5.1 that

p
n
n

1
n

P
n

t=1  (
Yt��̂(a)
✓̂(a)��̂(a))I

�
Yt > �̂(a)

�
� (1� q)

o

= �
R 1

G(�0)
WC(1, y; j)

1
✓0��0 

0(G
�(y)��0
✓0��0 ) dG�(y)

+
p
n
�
�̂(a)� �0

�
E
n
 0(Y1��0

✓0��0 )
Y1�✓0

(✓0��0)2 I(Y1 > �0)
o

�
p
n
�
✓̂(a)� ✓0

�
1

✓0��0E
n
 0(Y1��0

✓0��0 )I(Y1 > �0)
o

+op
�p

n|�̂(a)� �0|+
p
n|✓̂(a)� ✓0|

�
.

(5.5.27)
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Similarly we can show that

1p
n

P
n

t=1  
0( Yt��̂(a)
✓̂(a)��̂(a))

�
Yt � ✓̂(a)

�
I
�
Yt > �̂(a)

�

= �
R 1

G(�0)
WC(1, y; j)

n
 00(G

�(y)��0
✓0��0 )G

�(y)�✓0
✓0��0 +  0(G

�(y)��0
✓0��0 )

o
dG�(y)

+
p
n
�
�̂(a)� �0

�
E
n
 00(Y1��0

✓0��0 )
(Y1�✓0)2
(✓0��0)2 I(Y1 > �0)

o

+
p
n
�
✓̂(a)� ✓0

�
E
n�
 00(Y1��0

✓0��0 )
(Y1�✓0)(�0�Y1)

(✓0��0)2 �  0(Y1��0
✓0��0 )

�
I(Y1 > �0)

o

+op
�p

n|�̂(a)� �0|+
p
n|✓̂(a)� ✓0|

�
.

(5.5.28)

Therefore (5.5.27) and (5.5.28) imply

p
n

0

B@
�̂(a)� �0

✓̂(a)� ✓0

1

CA = ⌃�1Z + op(1),

where ⌃ and Z are given in Theorem 5.2.2. This completes the proof of the first part of the theorem.

For the second part, note that

✓̂(j)(a)� ✓(j)0 (a)

=
1
n

Pn
t=1 Xj,t 

0( Yt��̂(a)

✓̂(a)��̂(a)
)I
�
Yt>�̂(a)

�

1
n

Pn
t=1  

0( Yt��̂(a)

✓̂(a)��̂(a)
)I
�
Yt>�̂(a)

� �
E

n
Xj,1 

0(
Y1��0
✓0��0

)I(Y1>�0)
o

E

n
 0(

Y1��0
✓0��0

)I(Y1>�0)
o

=
b2

⇢
1
n

Pn
t=1 Xj,t 

0( Yt��̂(a)

✓̂(a)��̂(a)
)I
�
Yt>�̂(a)

�
�b1

�
�b1

⇢
1
n

Pn
t=1  

0( Yt��̂(a)

✓̂(a)��̂(a)
)I
�
Yt>�̂(a)

�
�b2

�

b2
1
n

Pn
t=1  

0( Yt��̂(a)

✓̂(a)��̂(a)
)I
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(5.5.29)

where

b1 = E

⇢
Xj,1 

0(
Y1 � �0
✓0 � �0

)I(Y1 > �0)

�
and b2 = E

⇢
 0(

Y1 � �0
✓0 � �0

)I(Y1 > �0)

�
.

From Lemma 5.5.3, Lemma 5.5.4 and Taylor expansions, we have

p
n
n
✓̂(j)(a)� ✓(j)0 (a)

o

= b2{Z1+AT
1 ⌃�1Z}�b1{Z2+AT

2 ⌃�1Z}
b
2
2

+ op(1)

= b2Z1�b1Z2

b
2
2

+ 1
b
2
2
{b2A1 � b1A2}T⌃�1Z + op(1),

(5.5.30)
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where Z1, Z2,A1,A2 are given in Theorem 5.2.2. Hence the theorem follows.

5.6 Conclusions

Haezendonck-Goovaerts (H-G) risk measure has been studied well in actuarial science. When it is

applied to an insurance or a financial portfolio, the sensitivity analysis becomes useful. First we

derive an expression for the sensitivity of the H-G risk measure. Second we derive the asymptotic

distribution of the nonparametric estimator of the H-G risk measure under the assumption that the

returns/losses in the portfolio follow from a strictly stationary ↵-mixing sequence. This generalizes

the result in Ahn and Shyamalkumar (2014) from independent data to dependent data. Third,

this chapter proposes a nonparametric estimator for the sensitivity and derives the asymptotic

distribution, which use the derived asymptotic distribution of the nonparametric estimator of the H-

G risk measure. Since uncertainty quantification is important in risk management and the obtained

asymptotic variance of the nonparametric estimator for the sensitivity is quite complicated, we

further propose to model each asset/loss by an AR-GARCH model and then employ a bootstrap

method, resampling from the residuals in the AR-GARCH models, to construct a confidence interval

for the sensitivity. We remark that a blockwise bootstrap confidence interval is not feasible in

practice due to the fact that the level q in the H-G risk measure is generally set to be close to

one, say 95% or 99%, and so the effective sample size in each block will not be large enough to

nonparametrically estimate the H-G risk measure accurately. A simulation study shows that both the

proposed nonparametric estimators and the proposed bootstrap method perform quite well. Finally

we remark that the obtained results are directly applicable to risk capital allocation in portfolios.
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Table 5.1: Simulation study: true value and nonparametric estimators of the H-G risk measure at
levels 0.95 and 0.99 with  (x) = x1.1 and its sensitivity are reported with corresponding standard
deviation given in the brackets.

(q, n) ✓0 ✓̂ Bootstrap SD
(0.95, 2000) 3.6451 3.5421 (0.8326) 0.7660
(0.95, 3000) 3.6451 3.5544 (0.6666) 0.6665
(0.95, 5000) 3.6451 3.5836 (0.5906) 0.5439
(0.99, 2000) 6.1415 5.6748 (1.8855) 1.7242
(0.99, 3000) 6.1415 5.7735 (1.6126) 1.5900
(0.99, 5000) 6.1415 5.9026 (1.5193) 1.4008

(q, n) ✓(1)0 ✓̂(1) Bootstrap SD
(0.95, 2000) 5.2225 5.0264 (1.4622) 1.2615
(0.95, 3000) 5.2225 5.0662 (1.1903) 1.1262
(0.95, 5000) 5.2225 5.1314 (1.0857) 0.9533
(0.99, 2000) 8.9861 8.0798 (3.1378) 2.8348
(0.99, 3000) 8.9861 8.2974 (2.8772) 2.6925
(0.99, 5000) 8.9861 8.5769 (2.8467) 2.4850

(q, n) ✓(2)0 ✓̂(2) Bootstrap SD
(0.95, 2000) 2.0677 2.0581 (0.5223) 0.5317
(0.95, 3000) 2.0677 2.0427 (0.3835) 0.4339
(0.95, 5000) 2.0677 2.0359 (0.3111) 0.3175
(0.99, 2000) 3.2969 3.2714 (1.4598) 1.3760
(0.99, 3000) 3.2969 3.2504 (1.0744) 1.1950
(0.99, 5000) 3.2969 3.2924 (0.9272) 0.9399

118



Table 5.2: Simulation study: true value and nonparametric estimators of the H-G risk measure at
levels 0.95 and 0.99 with  (x) = x1.3 and its sensitivity are reported with corresponding standard
deviation given in the brackets.

(q, n) ✓0 ✓̂ Bootstrap SD
(0.95, 2000) 3.7830 3.6496 (0.8810) 0.9342
(0.95, 3000) 3.7830 3.6700 (0.7228) 0.8478
(0.95, 5000) 3.7830 3.7087 (0.6596) 0.6317
(0.99, 2000) 6.3497 5.7926 (1.9537) 2.1686
(0.99, 3000) 6.3497 5.8971 (1.6777) 1.9927
(0.99, 5000) 6.3497 6.0484 (1.5983) 1.6266

(q, n) ✓(1)0 ✓̂(1) Bootstrap SD
(0.95, 2000) 5.4352 5.1774 (1.5238) 1.5337
(0.95, 3000) 5.4352 5.2360 (1.2926) 1.3784
(0.95, 5000) 5.4352 5.3175 (1.2932) 1.1095
(0.99, 2000) 9.3184 8.2433 (3.2420) 3.5391
(0.99, 3000) 9.3184 8.4766 (2.9879) 3.3885
(0.99, 5000) 9.3184 8.7888 (2.9856) 2.9001

(q, n) ✓(2)0 ✓̂(2) Bootstrap SD
(0.95, 2000) 2.1308 2.1221 (0.5762) 0.6356
(0.95, 3000) 2.1308 2.1041 (0.4222) 0.5130
(0.95, 5000) 2.1308 2.1000 (0.3626) 0.3703
(0.99, 2000) 3.3845 3.3419 (1.5286) 1.6232
(0.99, 3000) 3.3845 3.3176 (1.1179) 1.3641
(0.99, 5000) 3.3845 3.3079 (0.9939) 1.0253

Table 5.3: Real data analysis: nonparametric estimation of H-G risk measure and its sensitivity
measures of portifolio (Goldman Sachs, S&P 500 index).

✓̂ Bootstrap SD ✓̂(1) Bootstrap SD ✓̂(2) Bootstrap SD
q = 0.95 3.9390 0.5540 5.4174 0.8271 2.4636 0.6751
q = 0.99 7.3377 1.3005 10.2146 1.9908 4.4608 1.6542
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Figure 5.1: Time series and histograms of Goldman Sachs (left) and S&P 500 Index (right).
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Figure 5.2: Time series of estimated residuals (top) and their autocorrelation functions (bottom) for
Goldman Sachs (left) and S&P 500 Index (right).
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CHAPTER 6

ENDPOINT ESTIMATION FOR OBSERVATIONS WITH NORMAL MEASUREMENT

ERRORS

This chapter investigates the estimation of the finite endpoint of a distribution function when the

observations are contaminated by normally distributed measurement errors. Under the framework

of Extreme Value Theory, we propose a class of estimators for the standard deviation of the

measurement errors as well as for the endpoint. Asymptotic theories for the proposed estimators are

established while their finite sample performance are demonstrated by simulations. In addition, we

apply the proposed methods to the outdoor long jump data to estimate the ultimate limit for human

beings in the long jump. The content of this chapter is based on the joint work:

X. Leng, L. Peng, X. Wang and C. Zhou (2018). Endpoint estimation for observations with

normal measurement errors. Extremes. To appear.

6.1 Introduction to Endpoint Estimation

For a continuous distribution function F , its right endpoint is defined as ✓ = sup{x : F (x) < 1}.

Estimating the endpoint ✓ has been applied in various contexts when ✓ < +1. For example,

Aarssen and De Haan (1994) estimated the endpoint of the distribution of the life span of human

beings, namely, the maximum life span. In productivity analysis, estimating the production frontier

can be viewed as estimating the endpoint of the distribution of outputs conditional on the inputs; see

e.g. Cazals, Florens, and Simar (2002). Another notable application in Einmahl and Magnus (2008)

considers estimating the ultimate world record, in other words, the limit of human being, in a

specific sport. For general statistical methods designed for estimating the endpoint, Hall (1982)

studied the maximum likelihood estimation, Hall and Wang (1999) proposed a minimum-distance

estimation, Hall and Wang (1999) investigated the Bayesian likelihood approach, Girard, Guillou,

and Stupfler (2012) used a sequence of high-order moments for endpoint estimation, and Alves and

122



Neves (2014) studied the finite endpoint estimate with distributions from the Gumbel domain of

attraction.

Since the endpoint is only related to the right tail region of the distribution, it is natural to

consider Extreme Value Theory (EVT) in endpoint estimation. EVT models the tail region of a

distribution function. The endpoint is finite if the distribution function belongs to the domain of

attraction of the Weibull distribution. By regarding the endpoint as a high quantile with a probability

level tending to one, the limit of the high quantile estimator can be considered as an endpoint

estimator. Therefore, one may estimate the endpoint using the estimators on the extreme value

index, scale and shift; see e.g. Chapter 4.5 of De Haan and Ferreira (2007).

In reality, data are often contaminated by measurement errors. In other words, instead of observ-

ing independent and identically distributed (i.i.d.) sample drawn from the underlying distribution

with a finite endpoint, we observe data as the convolution of the initial random variable and an

independent measurement error term. Mathematically, suppose X1, . . . , Xn are random variables

with a continuous distribution function FX and a finite endpoint ✓. Instead of observing {Xi}ni=1,

we observe Yi = Xi + "i, i = 1, 2, . . . , n, where {"i} are i.i.d. random errors with mean zero, and

{"i} are independent of {Xi}. The goal in this chapter is to estimate the endpoint ✓ based on the

observations {Yi}ni=1 when "i follows a normal distribution. Notice that in this case, the distribution

function of Yi has an infinite endpoint. That is, existing endpoint estimators designed for the case of

no measurement errors are inconsistent under the above setup.

In a broader context, extracting the distribution of Xi based on the observations {Yi}ni=1 is

related to the so-called “deconvolution” problem. In the literature of nonparametric deconvolution,

kernel estimators for the density function of {Xi} were proposed; see, e.g., Carroll and Hall (1988);

Stefanski and Carroll (1990); Meister (2006); Meister and Neumann (2010). Based on estimating

the density function, Hall and Simar (2002) proposed an estimator of ✓ assuming that the density

fX is approximated by a flat function in the neighborhood of ✓ and the variance of the measurement

error, �2
n
= var("i), depending on the sample size n, shrinks to zero as n ! 1. By contrast,

Kneip, Simar, and Van Keilegom (2015) did not require that � tends to zero as the sample size
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increases while dealing with a constant �. They proposed a joint estimation of ✓ and � when the

measurement errors {"i} follow a normal distribution N(0, �2). Nevertheless, both of these two

approaches require that fX(✓�) > 0. Compared to these studies, we aim at estimating the endpoint

for a broader class of fX allowing fX(✓�) to be positive, zero and infinite.

Our approach is close to that in Goldenshluger and Tsybakov (2004), which proposed an

endpoint estimator for data with measurement error. They modeled fX near ✓ by a power function

with index ↵, i.e., fX(✓�) = 0, and derived that as n!1,

p
log n

log log n

✓
max
1in

Yi � �
p

2 log n� ✓
◆

= Op(1),

Correspondingly, Goldenshluger and Tsybakov (2004) proposed to estimate ✓ by max
1in

Yi �

�
p
2 log n, where � is assumed to be known and this estimator has a degenerate limit.

In practice, the estimator proposed in Goldenshluger and Tsybakov (2004) is not applicable

because of the unknown �. This chapter aims at filling this gap by providing an estimator of the

endpoint when � is unknown. More specifically, under an EVT model for FX , we first estimate � by

using the top k order statistics of {Yi}, where k is an intermediate sequence such that k !1 and

k/n! 0 as n!1. With some proper conditions on the intermediate sequence k, the estimator for

� possesses asymptotic normality with a speed of convergence
p
k. Next we estimate the endpoint

by ✓̂ = max
1in

Yi � �̂
p
2 log n. This estimator inherits the asymptotic normality of �̂, however, with

a slightly compromised speed of convergence.

Compared to the existing literature, our approach has two main advantages. Firstly, we do

not require that FX has a density, but only assume a second–order expansion of the survival

function FX(x) = 1 � FX(x) in the neighborhood of ✓. Compared to Kneip, Simar, and Van

Keilegom (2015), our model assumption allows for a broader class of FX , which includes the model

in Goldenshluger and Tsybakov (2004) as a special case. Secondly, we do not require any additional

information such as the variance of the measurement errors. Therefore, our approach is more close

to the real situation encountered in applications.
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Our estimation procedure and its asymptotic properties are discussed in Section 6.2. We conduct

a simulation study in Section 6.3 and then apply our method to sports data in Section 6.4. The

proofs are postponed to Section 6.5. Section 6.6 concludes.

6.2 Estimate Endpoints with Observation Errors

Recall that X1, . . . , Xn are i.i.d. random variables with a continuous distribution function FX that

has a finite right endpoint ✓ := sup{x : FX(x) < 1}. Further, in a neighborhood of ✓, we assume

the following second–order expansion of the survival function FX(x) = 1� FX(x) : as u! 0+,

FX(✓ � u) = Lu↵ + du↵+� + o
�
u↵+�

�
, (6.2.1)

where L, ↵ and � are positive constants, and d 6= 0. Under the condition (6.2.1), FX belongs to the

maximum domain of attraction of the Weibull distribution with an extreme value index � = �1/↵.

Suppose we do not observe {Xi} directly. Instead, we observe Yi = Xi + "i, i = 1, 2, . . . , n,

where {"i} are i.i.d. normally distributed random measurement errors with mean zero and unknown

variance �2, and {"i} are independent of {Xi}. The question is how to estimate ✓ based on the

observed {Yi}.

Recall that with assuming that � is known, Goldenshluger and Tsybakov (2004) proposed

to estimate ✓ by max
1in

Yi � �
p
2 log n. We will first construct an estimator for �, and then an

estimator for ✓. The estimator of the parameter � is constructed in three steps. Firstly, we investigate

the tail expansion of the distribution of Yi. Secondly, we obtain the approximation of the tail

quantile process based on {Yi}ni=1. It will turn out that the parameter � is a scaling factor in the

approximation. Therefore, in the last step we use a weighted moment method to construct an

estimator of � based on inter-quantile ranges.

We first investigate the tail expansion of the distribution function. Without loss of generality,

we consider the tail expansion of the distribution of Zi with Zi = Yi � ✓. Denote the distribution

function and survival function of Zi as FZ and FZ = 1� FZ , respectively. We first show FZ has a
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second–order expansion as in the following proposition.

Proposition 6.2.1. Suppose a random variable X has a distribution function FX with a finite right

endpoint ✓ = sup{x : FX(x) < 1} < 1. Assume that FX satisfies the condition (6.2.1). " is

a normally distributed random error with mean zero and an unknown variance �2 > 0 and is

independent of X . Denote Z = X + "� ✓. Then, as t!1,

� logFZ(t) =
t2

2�2
+ (↵ + 1) log t� log c1 �

c2
c1
t��

0
(1 + o(1)),

where

�0 = min(�, 2), c1 =
�(↵ + 1)L�2↵+1

p
2⇡

,

and

c2 =
1p
2⇡
�(↵ + � + 1)d�2(↵+�)+11�0=� �

1p
2⇡

⇣↵
2
+ 1
⌘
�(↵ + 2)L�2↵+31�0=2.

Next, the tail property of FZ provides an approximation for the tail quantile process based on

{Zi}ni=1 or {Yi}ni=1 as follows. Denote Y1,n  Y2,n  · · ·  Yn,n as the order statistics of Y1, · · · , Yn.

Then the order statistics of the unobserved random variables {Zi}ni=1 are Zn�i,n = Yn�i,n � ✓.

Consider an intermediate sequence k = k(n) such that k ! 1 and k/n ! 0 as n ! 1. Since

FZ(Zn�i,n) ⇡ i/n, we have approximately from Proposition 6.2.1 that

p
� log(i/n) ⇡ Yn�i,n � ✓p

2�
,

for i = 1, 2, . . . , k.

Finally, we can estimate the parameter � using a weighted moment method as follows. By

considering the inter-quantile range between Yn�i,n and Yn�k,n, we get that

Yn�i,n � Yn�k,np
2�

⇡
p
� log(i/n)�

p
� log(k/n) =

log(k/i)p
log(n/i) +

p
log(n/k)

⇡ log(k/i)

2
p
log(n/k)

.
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Take any positive continuous function g on (0, 1] such that
R 1

0 g(s)(� log s) ds = 2. We construct a

weighted sum of the differences {Yn�i,n � Yn�k,n} using the weights { 1
k
g(i/k)} as

1

k

k�1X

i=1

g(i/k)
Yn�i,n � Yn�k,np

2�
⇡ 1

2
p
log(n/k)

Z 1

1/k

g(s)(� log s) ds ⇡ 1p
log(n/k)

.

Hence, we get an estimator of � as

�̂g =

p
log(n/k)p

2k

k�1X

i=1

g(i/k)(Yn�i,n � Yn�k,n). (6.2.2)

Replacing � with �̂g in Yn,n � �
p
2 log n , an estimator of ✓ is then given as

✓̂g = Yn,n � �̂g
p

2 log n. (6.2.3)

Note that ✓̂g is always smaller than the maximum Yn,n from the positiveness of �̂g. This is different

from the endpoint estimator proposed in Alves and Neves (2014), which is based on observations

without measurement errors and the assumption that the underlying distribution is in the Gumbel

domain of attraction and has a finite endpoint.

To obtain the asymptotic property of the above estimator, we further assume that � > 1 and the

intermediate sequence k satisfies the following condition: as n!1,

k = k(n)!1, k/n! 0, and
p
k (log(n/k))�

�0
2 (log log(n/k))2·1�0=2 = O(1). (6.2.4)

We first prove the asymptotic property for �̂g. That of ✓̂g will then follow as a direct corollary.

The asymptotic normality of �̂g requires the following conditions on g(s), s 2 (0, 1]. There

exists ✏0 > 0, such that

lim
s!0

g(s) s1/2�✏0 = 0, and
Z 1

0

g(s)(� log s) ds = 2. (6.2.5)

In addition, we assume a joint condition on the intermediate sequence k and the function g as
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follows,

lim
n!1

p
k sup

|s�t|1/k,1/ks,t1

����
g(s)

log s
� g(t)

log t

���� = 0. (6.2.6)

Examples such as g(s) = � log s, and g(s) = 2(⌫ + 1)2s⌫ , ⌫ > 1
2 , satisfy all conditions.

The following theorem gives the asymptotic normality of �̂g.

Theorem 6.2.2. Suppose X1, . . . , Xn are i.i.d. random variables with a continuous distribution

function FX . Assume that FX has a finite right endpoint ✓ = sup{x : FX(x) < 1} and satisfies

the condition (6.2.1) with � > 1. Suppose Yi = Xi + "i, i = 1, 2, . . . , n, where {"i} are i.i.d.

normally distributed random errors with mean zero and an unknown variance �2 > 0, and {"i}

are independent of {Xi}. Assume that g : (0, 1] ! (0,1) satisfies (6.2.5) and k := k(n) is an

intermediate sequence satisfying (6.2.4) and (6.2.6). Then, as n!1, the estimator �̂g defined in

(6.2.2) has the following asymptotic property:

p
k

✓
�̂g
�
� 1

◆
d�! N

✓
0,

1

4

Z 1

0

Z 1

0

g(s)g(t)

✓
min(s, t)

st
� 1

◆
dsdt

◆
.

Consequently, the estimator ✓̂g defined in (6.2.3) possesses asymptotic normality as follows.

Corollary 6.2.3. Under the same conditions as in Theorem 6.2.2, as n!1,

p
kp

log n
(✓̂g � ✓)

d�! N

✓
0,

�2

2

Z 1

0

Z 1

0

g(s)g(t)

✓
min(s, t)

st
� 1

◆
dsdt

◆
.

Remark 6.2.4. We substitue � with �̂g when calculating the confidence interval for ✓̂g based on

Corollary 6.2.3 in Section 6.4.

Remark 6.2.5. With g(s) = � log s and g(s) = 2(⌫ + 1)2s⌫ for ⌫ > 1/2, Corollary 6.2.3

correspondingly implies p
kp

log n
(✓̂g � ✓)

d�! N

✓
0,

5

2
�2

◆
,

and p
kp

log n
(✓̂g � ✓)

d�! N

✓
0,

2(⌫ + 1)2

2⌫ + 1
�2

◆
.
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6.3 Simulations

In this section, we investigate, through simulations, the finite sample behavior of the suggested

endpoint estimator. We generate observations Yi = Xi + "i, i = 1, 2, . . . , n, where {Xi}ni=1

and {"i}ni=1 are two sets of i.i.d. random variables independently drawn from the following data

generating processes. In all three cases, we set the true value of the endpoint for Xi to ✓ = 0, while

setting the distribution of "i to a normal distribution N(0, �2) with two potential levels of �.

(a) Xi follows a uniform distribution on [�1, 0] and � = 0.1 or 0.2. Notice that condition (6.2.1)

holds for the uniform distribution with ↵ = 1 and � =1.

(b) Xi follows a reversed Burr distribution with the following distribution function

FX(x) = 1�
�
1 + (�x)�2

��10
, x < 0, ⇤

and � = 2 or 3. Notice that condition (6.2.1) holds for the reversed Burr distribution with

↵ = 20 and � = 22.

(c) Xi follows a shifted Beta distribution with the following probability density function

fX(x) = �42x(1 + x)5, �1 < x < 0,

and � = 0.1 or 0.2. Notice that condition (6.2.1) holds for the shifted Beta distribution with

↵ = 2 and � = 1, which violates our required condition � > 1 in Theorem 6.2.2.

From each data generating process, we draw r = 1000 random samples with a sample size

n = 5000. Then we estimate the endpoint for each sample using an estimator ✓̂g0 with a specific

choice, g0(s) = � log s on (0, 1]. It is straightforward to check that g0 satisfies the condition (6.2.5).

During the estimation procedure, we need to determine the value of k, i.e. the number of

upper order statistics used. For that purpose, we perform a pre-study as follows. By varying
⇤The quantiles of the reversed Burr distribution are q.10 = �9.72, q.25 = �5.85, q.75 = �2.59 and q.90 = 1.97.
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k from 5 to 50, we plot the average estimate† ✓̄g0 := r�1
P

r

i=1 ✓̂g0,i, the standard deviation:
q

r�1
P

r

i=1(✓̂g0,i � ✓̄g0)2 and the root mean squared error (RMSE):
q
r�1
P

r

i=1 ✓̂
2
g0,i

for each data

generating process. In Figure 6.1, we demonstrate the results for the two data generating processes

in (b). We observe that the optimal k that minimizes the RMSE is achieved at about k = 10. We do

choose k = 10 throughout the simulation study, also for the other data generating processes in (a)

and (c).‡

Figure 6.1: Endpoint estimation for various k: Reversed Burr Distribution
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Note: The figure shows the bias, standard deviation and RMSE for the estimates ✓̂g0 across 1000 samples with sample
size n = 5000. The observations are generated by combining the reversed Burr distribution in (b) with measurement
errors following N(0,�2), � = 2 (left) or � = 3 (right).

We compare the performance of our suggested endpoint estimator with that of the probability

weighted moment (PWM) estimator for the endpoint, the general endpoint estimator proposed in

Alves and Neves (2014) and the high-order moments estimator for the endpoint in Girard, Guillou,

and Stupfler (2012), respectively. More precisely, the PWM estimator is defined as

✓̂PWM = Yn�k,n �
âPWM(n/k)

�̂PWM

, (6.3.1)

†Since the true endpoint equals 0, the average estimate can be read as the estimation bias.
‡The figures for the other data generating processes are available upon request.
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where

�̂PWM :=
I1 � 4I2
I1 � 2I2

, and âPWM(n/k) :=
2I1I2

I1 � 2I2
,

with the probability weighted moments given by

Ij =
1

k

kX

i=1

✓
i

k

◆j�1

(Yn�i+1,n � Yn�k,n), j = 1, 2.

Note that ✓̂PWM is an estimator of ✓ only if there is no measurement error in the observations, i.e.

"i = 0, i = 1, 2, . . . , n. The general endpoint estimator is given by

✓̂F := Yn,n +
k�1X

i=0

di,k(Yn�k,n � Yn�k�i,n), (6.3.2)

where di,k = �(log 2)�1 (log(k + i)� log(k + i+ 1)) > 0, satisfying
P

k�1
i=0 di,k = 1. Since the

weighted spacings in (6.3.2) are non-negative, we observe that ✓̂F is greater than the sample

maximum Yn,n whereas our suggested endpoint estimator in (6.2.3) is less than Yn,n. Note that ✓̂F

estimates the endpoint of a distribution from the Gumbel domain of attraction with finite endpoint.

The high-order moments estimator for the finite endpoint is defined as

✓̂M := b pn

�
(b+ 1)pn + 1

� µ̂(b+1)pn

µ̂(b+1)pn+1
� (pn + 1)

µ̂pn

µ̂pn+1

��1
+ c0, (6.3.3)

where b > 0, {pn} is a nonrandom sequence such that pn !1 and

µ̂pn =
1

n

nX

i=1

(Yi � c0)
pn

with c0 = Y1,n. To ensure that the data used in the endpoint estimation are positive, which is

required in Girard, Guillou, and Stupfler (2012), we artificially subtract the sample minimum from

the sample, and then add it back in getting ✓̂M . Since the endpoint of each data generating process

is infinite, which violates the finite endpoint assumption in both ✓̂F and ✓̂M , we do not expect ✓̂F

and ✓̂M perform better than our suggested endpoint estimator in estimating the endpoint for each
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simulated case.

To determine the optimal choice of k used in the estimators ✓̂PWM and ✓̂F , respectively, we also

conduct a pre-study similar to the aforementioned procedure. We decide to choose k = 200 and

k = 70 for all data generating processes when applying ✓̂PWM and ✓̂F , respectively. Notice that

for the PWM estimator, we stop estimating the endpoint if �̂PWM > 0 because the PWM estimator

is valid only for � < 0. In other words, from 1000 samples, we may end up with less than 1000

endpoint estimates when using the PWM estimator. For applying the estimator ✓̂M , we choose

pn = n1/↵/ log log n and b from a set B = {0.2, 0.6, 1.0, . . . , 21} as suggested in Girard, Guillou,

and Stupfler (2012). Also following from a pre-study as before, the optimal choice of b from B is

20.6.

For each data generating process, we plot the estimated endpoints using the four estimators

across all samples with measurement errors in boxplots; see Figure 6.2. We observe that both the

PWM estimator ✓̂PWM and the general endpoint estimator ✓̂F overestimate the true endpoint across

all data generating processes, and the high-order moments estimator ✓̂M underestimates the true

endpoint for the cases (a) and (b) and overestimates it in the case (c). In contrast, our estimator ✓̂g0

performs well across all cases, and consistently outperforms all the other estimators. The medians

across 1000 simulated samples are close to the true endpoint and the variations are lower.

As our theorems require the existence of measurement errors, we investigate the performance

of the proposed endpoint estimator when there is no measurement error in each data generating

process, i.e., data are simulated only from the distribution FX corresponding to the cases (a), (b)

and (c). We observe from Figure 6.3 that our estimator ✓̂g0 underestimates the true endpoint across

all cases without measurement errors, and is the worst-performing corresponding to the cases (a)

and (c). This poses some interesting and challenging questions such that how to test the existence of

measurement error and whether there is a consistent endpoint estimator regardless of the presentence

of measurement errors.
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Figure 6.2: Boxplots of estimated endpoints with measurement errors
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Note: The three plots show the estimated endpoints using our suggested endpoint estimator ✓̂g0 , the PWM estimator
�̂PWM , the general endpoint estimator ✓̂F and the high-order moments estimator ✓̂M for six data generating processes.
Each plot is based on 1000 samples with sample size n=5000. In the panel (i), the observations are generated by
combining the uniform distribution on [�1, 0] with measurement errors following N(0,�2), � = 0.1 (left) or � = 0.2
(right). In the panel (ii), the observations are generated by combining the reversed Burr distribution in (b) with
measurement errors following N(0,�2), � = 2 (left) or � = 3 (right). In the panel (iii), the observations are generated
by combining the shifted beta distribution in (c) with measurement errors following N(0,�2), � = 0.1 (left) or � = 0.2
(right). The endpoints are estimated by ✓̂g0 with k = 10, ✓̂PWM in (6.3.1) with k = 200, ✓̂F in (6.3.2) with k = 70

and ✓̂M in (6.3.3) with pn = n1/↵/ log log n and b = 20.6. Horizontal lines indicate the true endpoints.

133



Figure 6.3: Boxplots of estimated endpoints without measurement errors
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Note: The three plots show the estimated endpoints using our suggested endpoint estimator ✓̂g0 , the PWM estimator
�̂PWM , the general endpoint estimator ✓̂F and the high-order moments estimator ✓̂M for six data generating processes.
Each plot is based on 1000 samples with sample size n=5000. In the panel (i), the observations are generated by the
uniform distribution on [�1, 0] in (a). In the panel (ii), the observations are generated by the reversed Burr distribution
in (b). In the panel (iii), the observations are generated by the shifted beta distribution in (c). The endpoints are
estimated by ✓̂g0 with k = 10, ✓̂PWM in (6.3.1) with k = 200, ✓̂F in (6.3.2) with k = 70 and ✓̂M in (6.3.3) with
pn = n1/↵/ log log n and b = 20.6. Horizontal lines indicate the true endpoints.
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6.4 Application

In order to investigate the limit of human being in sports, Einmahl and Magnus (2008) applies the

endpoint estimation to the training data of top athletes. Initially, they gathered data for 28 types of

sports. However, they stopped estimating the endpoint for five out of the 28 sports due to the fact

that the estimated extreme value indices, �, for these five sports are close to 0.§

Continuing from their study, we shall apply our estimator on the endpoint to the outdoor long

jump data (both men and women) for two reasons. Firstly, from a theoretical perspective, if we

assume that the observed training data are contaminated by normally distributed measurement

errors, the extreme value index � for the observations should be equal to 0. This is in line with the

empirical observations in Einmahl and Magnus (2008). We will justify this argument by repeating

the estimation of the extreme value index � for the training data and testing whether it is significantly

below zero. Different from Einmahl and Magnus (2008), we employ the PWM estimator for this

analysis. Secondly, for the outdoor long jump, the presence of wind can be a potential factor

generating such a measurement error. To justify this argument, we shall apply our suggested

estimator to the training data for the outdoor long jump, while comparing it with applying the PWM

endpoint estimator to the training data for the indoor long jump. Assuming that the indoor long

jump is much less affected by wind, we expect that the two endpoints estimated from these two

different datasets mutually agree with each other.

We collect the data from the official website of the International Association of Athletics

Federations (IAAF)¶ for the indoor and outdoor long jump, both for men and women. In total,

we construct four datasets for these four sports. For each sport, the website presents the all time

personal bests of the top athletes. In addition, for indoor long jump (both men and women), the

website provides the personal bests of the top athletes in each year from 1999 to 2016. Consequently,

for each of these two sports, we combine the data across the aforementioned 19 lists. Similarly

for men’s outdoor long jump, we combine the data across 17 lists because the records of the years
§The five sports are 10, 000m running and outdoor long jump for both men and women, together with men’s 400m

running.
¶See https://www.iaaf.org/records/toplists
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2000 and 2001 are not available. For women’s outdoor long jump, 18 lists are combined due to the

missing records in 2001. When combining the data for each sport, we keep only the best record

for each athlete across the lists. Table 6.1 gives a summary of the number of athletes and the best

and worst achievements for each of the four sports. Since there are clusters in the present data, we

smooth each dataset using the method suggested in Einmahl and Magnus (2008) as follows. For

example, if c athletes share the same personal best, l = 8.47 m, we smooth them by

li = 8.465 + .01
2i� 1

2c
, i = 1, . . . , c.

Table 6.1: Data description

men women
Long jump Number Best Worst Number Best Worst

Outdoor 776 8.95 7.80 1176 7.52 6.30
Indoor 623 8.79 7.70 604 7.37 6.30

Note: The table presents the descriptive information regarding the four datasets used in the application. The four
datasets correspond to the indoor and outdoor long jump data for both men and women. Each dataset consists of top
athletes’ personal best in the corresponding sport.

We start with estimating the extreme value index � by the PWM estimator. Figure 6.4 shows

the estimates �̂PWM against various values of k. To balance the estimation bias and variance, we

choose k from the first stable region in each plot. Table 6.2 reports the chosen values of k and the

corresponding estimated � and its 95% confidence intervals.

From the confidence intervals, we observe that for indoor long jump, � = 0 is rejected for

both men and women. Hence, the endpoints of these two distributions exist. By contrast, for

outdoor long jump, we cannot reject � = 0 for either men or women. These results agree with the

finding in Einmahl and Magnus (2008) and support considering the outdoor data as contaminated

by measurement errors.

Next, we continue using the PWM method to estimate the endpoints for the indoor long jump

data, while using our new estimator, ✓̂g0 , to estimate the endpoint for the outdoor long jump data.
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We plot the endpoint estimates against various values of k in Figure 6.5. A technical difference

between these two estimators is regarding the sample size n. For the PWM estimator, the sample

size n is not used whereas for our new method, it is necessary to know the sample size n in advance.

Obviously, a lower bound for n is the current sample size, i.e. the number of top athletes included in

the IAAF website. We are aware of the caveat that this number may underestimate the true number

of top athletes who may potentially produce a similar performance. To address this caveat and test

the sensitivity of n, we take an arbitrary value n = 3000 which is much higher than the current

sample sizes.

Tables 6.2 and 6.3 present the endpoint estimates with their 95% confidence intervals based

on the selected values of k. Firstly, we observe that the values of ✓̂g0 based on the outdoor long

jump data are not sensitive to the sample size n, particularly after considering the estimation error

reflected by the confidence intervals. Secondly, although the point estimates from applying our

new estimator to the outdoor long jump data are consistently lower than that from applying the

PWM method to the indoor long jump data, the two results agree with each other to certain extent.

The point estimates from applying our new estimator to the outdoor long jump data falls into the

confidence interval based on applying the PWM method to the indoor long jump data.

Finally, we compare the results to the actual observations in the dataset. Although the PWM

estimator based on the indoor long jump data suggested that the endpoints for men’s and women’s

long jump are at 8.790 and 7.394 respectively, there are multiple observations in the outdoor long

jump data that exceed those estimated endpoints: for men’s long jump there are four observations

higher than 8.790, while for women’s long jump there are six observations higher than 7.394.

Following our assumption, having an observation Y above the endpoint of the distribution of X

must be due to a positive value in the measurement error ". In the context of long jump, it implies

that the wind should have helped in delivering these personal bests. The website of IAAF provides

the wind speed at the time when the long jump data was recorded: for eight out of the nine cases,

the recorded wind speeds were positive. The only exception is the 8.87m set by Carl Lewis in the

1991 Tokyo World Championships, where the wind speed was recorded as -0.2m/s. Aside from
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this exceptional case, the other eight cases support the view that the wind can be a potential factor

causing measurement errors in the long jump performance.

Figure 6.4: Estimation of the extreme value indices
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Note: The plots show the estimated extreme value indices with the corresponding 95% confidence intervals for various
values of k using the PWM estimator.

6.5 Proofs

Proof of Proposition 6.2.1. Write

FZ(x) =

Z 0

�1

1p
2⇡�

e�
(x�t)2

2�2 FX(✓ + t)dt =
1p
2⇡�

e�
x2

2�2

Z 0

�1
exp

✓
tx

�2
� t2

2�2

◆
FX(✓ + t)dt.
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Figure 6.5: Estimation of the endpoints
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Note: The plots show the estimated endpoints with the corresponding 95% confidence intervals for various values of k.
For the indoor long jump data, the endpoints are estimated by the PWM estimator ✓̂PWM . For the outdoor long jump
data, the endpoints are estimated by the estimator ✓̂g0 .

Table 6.2: Estimation results: long jump data for men

n k Point Estimate 95% C.I.
Outdoor
�̂PWM – 180 -0.047 [ -0.218, 0.123 ]
✓̂g0 776 8 8.308 [ 7.811, 8.805 ]
✓̂g0 3000 8 8.149 [ 7.528, 8.769 ]

Indoor
�̂PWM – 150 -0.286 [ -0.075, -0.497 ]
✓̂PWM – 150 8.790 [ 8.226, 9.354 ]

Note: The table shows the estimation results based on the long jump data for men. For both indoor and outdoor long
jump, the estimated extreme value indices using the PWM estimator are presented. For the outdoor long jump data, the
endpoints are estimated using the estimator ✓̂g0 with setting the number of athletes n to either the current sample size
or 3000. For the indoor long jump data, the endpoints are estimated using the PWM estimator. For all estimates, the
corresponding 95% confidence intervals are provided.
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Table 6.3: Estimation results: long jump data for women

n k Point Estimate 95% C.I.
Outdoor
�̂PWM – 160 -0.094 [ -0.277, 0.090 ]
✓̂g0 1176 6 7.202 [ 6.917, 7.486 ]
✓̂g0 3000 6 7.152 [ 6.824, 7.481 ]

Indoor
�̂PWM – 140 -0.335 [ -0.560, -0.110 ]
✓̂PWM – 140 7.394 [ 6.850, 7.937 ]

Note: The table shows the estimation results based on the long jump data for women. For both indoor and outdoor long
jump, the estimated extreme value indices using the PWM estimator are presented. For the outdoor long jump data, the
endpoints are estimated using the estimator ✓̂g0 with setting the number of athletes n to either the current sample size
or 3000. For the indoor long jump data, the endpoints are estimated using the PWM estimator. For all estimates, the
corresponding 95% confidence intervals are provided.

The proof is splitted into two parts. First, we show that as x ! 1, the integral above will be

dominated by only integrating in the neighborhood of zero, i.e., for some ✏ > 0,

FZ(x) =
1p
2⇡�

e�
x2

2�2

Z 0

�✏
exp

✓
tx

�2
� t2

2�2

◆
FX(✓ + t)dt

h
1 +O

⇣
x↵+1e�✏x/�

2
⌘i

. (6.5.1)

Then, we will calculate the integral in the right hand side of (6.5.1).

We first handle the equation (6.5.1). Since

Z �✏

�1
exp

✓
tx

�2
� t2

2�2

◆
FX(✓+ t)dt  exp

✓
�✏x
�2

◆Z �✏

�1
exp

✓
� t2

2�2

◆
dt 

p
2⇡� exp

✓
�✏x
�2

◆
,

and Z 0

�✏
exp

✓
tx

�2
� t2

2�2

◆
FX(✓ + t)dt � e�

✏2

2�2

Z 0

�✏
exp

✓
tx

�2

◆
FX(✓ + t)dt,

(6.5.1) is proved by showing that, as x!1,

Z 0

�✏
exp

✓
tx

�2

◆
FX(✓ + t) dt = O

�
x�(↵+1)

�
. (6.5.2)

Denote G(t) := FX(✓ � t�1). Then as t ! 1, G(t) = Lt�↵ + dt�(↵+�) + o
�
t�(↵+�)

�
. The left
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hand side in (6.5.2) is then calculated as

Z 0

�✏
exp

✓
tx

�2

◆
FX(✓ + t) dt =

�2

x

Z 1

�2

✏x

e�1/tG

✓
tx

�2

◆
t�2 dt

=
�2

x
G
⇣ x

�2

⌘"Z 1

�2

✏x

e�1/t t�2
✓
G (tx/�2)

G (x/�2)
� t�↵

◆
dt+

Z 1

�2

✏x

e�1/t t�(↵+2) dt

#

=:
�2

x
G
⇣ x

�2

⌘
[I1 + I2] .

To deal with I1, since the function G is regularly varying, i.e. limt!1
G(tu)
G(t) = u�↵, it follows

from Proposition B.1.10 in De Haan and Ferreira (2007) that for any ⌘ > 0 there exists x0 = x0(⌘)

such that if x

�2 � x0 and tx

�2 � x0,

����
G (tx/�2)

G (x/�2)
� t�↵

����  ⌘max
�
t�↵+⌘, t�↵�⌘

�
.

By choosing ✏  1/x0, we have that for all t > �
2

✏x
and sufficiently large x such that x > �2x0 the

two required conditions hold. Therefore, we can apply the inequality above to obtain that

Z 1

�2

✏x

e�1/t t�2
����
G (tx/�2)

G (x/�2)
� t�↵

���� dt  ⌘

Z 1

0

e�1/t t�2�↵
�
t⌘ + t�⌘

�
dt <1.

Thus we can apply the dominated convergence theorem to get that I1 ! 0 as x!1.

By verifying that I2 ! �(↵+ 1) as x!1 and �
2

x
G
�

x

�2

�
= O(x�↵�1), we proved (6.5.2) and

consequently (6.5.1), for any ✏  1/x0.

Next we calculate the integral in the right hand of (6.5.1). We first perform a variable transforma-

tion such that the term in the exponential part tx

�2 � t
2

2�2 is replaced by a new term �s, i.e. we define

s = t
2

2�2 � tx

�2 . This transformation is one–to–one for t 2 [�✏, 0] with the inverse transformation

t = x

 
1�

r
1 +

2s�2

x2

!
=: �s�2

x
�(s; x),
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where

�(s; x) = 1� s�2

2x2
(1 + o(1)), (6.5.3)

as x!1, and the o(1) term is uniform for all 0  s  ✏(x+✏/2)
�2 . Write

Z 0

�✏
exp

✓
tx

�2
� t2

2�2

◆
FX(✓ + t)dt =

�2

x

Z ✏(x+✏/2)

�2

0

e�s
✓
1 +

2�2

x2
s

◆�1/2
G

✓
x

�2

1

s�(s; x)

◆
ds.

To calculate this integral, we again need a comparison between G
⇣

x

�2
1

s�(s;x)

⌘
and G

�
x

�2

�
. However,

here we need a second–order expansion. Notice that the function G satisfies the second–order

regular variation condition as

lim
w!1

G(wu)
G(w) � u�↵

�d�

L
w��

= u�↵
u�� � 1

�� .

By Theorem B.2.18 in De Haan and Ferreira (2007), for all ⌘⇤ > 0, there exists x⇤0 = x⇤0(⌘
⇤), such

that for w,wu � x⇤0,

����
1

A(w)

✓
G(wu)

G(w)
� u�↵

◆
� u�↵

u�� � 1

��

����  ⌘⇤max
�
u�(↵+�)+⌘

⇤
, u�(↵+�)�⌘

⇤�
,

where A (w) := �d�
L

w�� . We intend to apply this inequality with w = x

�2 and wu = x

�2
1

s�(s;x) . For

sufficiently large x, w = x

�2 > x⇤0. For wu, notice that x

�2
1

s�(s;x) = �1/t � 1/✏. We get the required

condition by choosing ✏ such that ✏ < 1/x⇤0. Hence we obtain from the above inequality that

|Z(s; x)| :=

������
1

A
�

x

�2

�

0

@
G
⇣

x

�2
1

s�(s;x)

⌘

G
�

x

�2

� � (s�(s; x))↵

1

A� (s�(s; x))↵
(s�(s; x))� � 1

��

������

⌘⇤max
�
(s�(s; x))(↵+�)�⌘

⇤
, (s�(s; x))(↵+�)+⌘

⇤�
. (6.5.4)

This inequality allows us to write the integral in the right hand of (6.5.1) as

�2

x

Z ✏(x+✏/2)

�2

0

e�s
✓
1 +

2�2

x2
s

◆�1/2
G

✓
x

�2

1

s�(s; x)

◆
ds
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=
�2

x
G
⇣ x

�2

⌘Z ✏(x+✏/2)

�2

0

e�s
✓
1 +

2�2

x2
s

◆�1/2
(s�(s; x))↵ ds

+
�2

x
A
⇣ x

�2

⌘
G
⇣ x

�2

⌘Z ✏(x+✏/2)

�2

0

e�s
✓
1 +

2�2

x2
s

◆�1/2
(s�(s; x))↵

(s�(s; x))� � 1

�� ds

+
�2

x
A
⇣ x

�2

⌘
G
⇣ x

�2

⌘Z ✏(x+✏/2)

�2

0

e�s
✓
1 +

2�2

x2
s

◆�1/2
Z(s; x), ds

=:J1 + J2 + J3.

In all three terms, we need to deal with integrals in the form

I(x; ⌫) :=

Z ✏(x+✏/2)

�2

0

e�s
✓
1 +

2�2

x2
s

◆�1/2
(s�(s; x))⌫ ds,

for ⌫ > 0. Notice that 2�2

x2 s! 0 and �(s; x)! 1 as x!1 hold uniformly for s  ✏(x+✏/2)
�2 . By

using dominance convergence theorem, we get that as x!1,

I(x; ⌫)!
Z 1

0

e�ss⌫ ds = �(⌫ + 1). (6.5.5)

Further write
⇣
1 + 2�2

x2 s
⌘�1/2

= 1� �
2
s

x2 (1+o(1)), as x!1, where the term o(1) is again uniform

for all s  ✏(x+✏/2)
�2 . Then,

I(x; ⌫) =

Z ✏(x+✏/2)

�2

0

e�s(s�(s; x))⌫ ds� �2

x2

Z ✏(x+✏/2)

�2

0

e�ss(s�(s; x))⌫ ds(1 + o(1)) =: II1 � II2.

By applying the dominance convergence theorem again, we obtain that as x ! 1, x2II2 !

�2�(⌫ + 2). For II1, we use the expansion of �(s; x) in (6.5.3) to get that

II1 =

Z ✏(x+✏/2)

�2

0

e�ss⌫ ds� ⌫�2

2x2

Z ✏(x+✏/2)

�2

0

e�ss⌫+1 ds(1 + o(1))

= �(⌫ + 1) + o(x�2)� ⌫�2

2x2
�(⌫ + 2)(1 + o(1)) = �(⌫ + 1)� ⌫�2

2x2
�(⌫ + 2)(1 + o(1)).
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By combining the two terms we get a second–order expansion of I(x;µ): as x!1,

I(x; ⌫) = �(⌫ + 1)� �2

x2

⇣⌫
2
+ 1
⌘
�(⌫ + 2)(1 + o(1)). (6.5.6)

By applying (6.5.6) with ⌫ = ↵, we have that as x!1,

J1 =
�2

x
G
⇣ x

�2

⌘✓
�(↵ + 1)� �2

x2

⇣↵
2
+ 1
⌘
�(↵ + 2)(1 + o(1))

◆
.

By applying (6.5.5) with ⌫ = ↵ and ⌫ = ↵ + �, we get that as x!1,

J2 =
�2

x
A
⇣ x

�2

⌘
G
⇣ x

�2

⌘ �(↵ + � + 1)� �(↵ + 1)

�� .

Lastly, based on the inequalities (6.5.4) and (6.5.5), we get that J3 = o(J2) as x!1.

By combining all three terms, we obtain that as x!1,

Z 0

�✏
exp

✓
tx

�2
� t2

2�2

◆
FX(✓ + t)dt

=
�2

x
G
⇣ x

�2

⌘✓
�(↵ + 1)� �2

x2

⇣↵
2
+ 1
⌘
�(↵ + 2)(1 + o(1))

+A
⇣ x

�2

⌘ �(↵ + � + 1)� �(↵ + 1)

�� (1 + o(1))

◆

=
�2

x
G
⇣ x

�2

⌘ 
�(↵ + 1) +

p
2⇡c2

L�2↵+1
x��

0
(1 + o(1))� d

L
�(↵ + 1)�2�x��

!

=Lx�↵�1�2↵+2

✓
1 +

d

L
�2�x��(1 + o(1))

◆
⇥

 
�(↵ + 1) +

p
2⇡c2

L�2↵+1
x��

0
(1 + o(1))� d

L
�(↵ + 1)�2�x��

!

=
p
2⇡�x�↵�1(c1 + c2x

��0(1 + o(1))),

where c1, �0 and c2 are defined in the proposition.

Finally the proposition is proved by substituting this relation to (6.5.1).
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Next we prove Theorem 6.2.2. Write the estimator �̂g in (6.2.2) as

�̂g
�

= log(n/k)

Z 1

1/k

g([ks]/k)
Zn�[ks],n � Zn�k,n

�
p

2 log(n/k)
ds.

We firstly establish the asymptotic properties of tail quantile process {Zn�[ks],n, k�1  s  1} as

follows.

Proposition 6.5.1. Assume the same conditions as in Proposition 6.2.1. Then there exists a sequence

of standard Brownian motions {Wn(s) : s � 0} such that as n!1,

Zn�[ks],n

�
p

2 log(n/k)
=  1,n +  2,n(s) +

k�1/2
�
s�1Wn(s) + s�1/2��op(1)

�

2 log(n/k)
+

q(n/k)

log(n/k)
(1 + op(1))

where

 1,n = 1� (↵ + 1) log log(n/k)

4 log(n/k)
+

c3
log(n/k)

,

c3 = 2�1
⇣
log c1 � (↵ + 1) log(�

p
2)
⌘
,

q(n/k) =

8
><

>:

�
��

c2

21+�/2c1
(log(n/k))�

�
2 � < 2

� (↵+1)2

32 (log(n/k))�1 (log log(n/k))2 � � 2

,

 2,n(s) =
� log s

2 log(n/k)

✓
1 +

(↵ + 1) log log(n/k)

4 log(n/k)
(1 + o(1))

◆
,

and all terms op(1) are uniform for s 2 [k�1, 1].

Proof. Denote U = (� logFZ) , where ‘ ’ denotes the left continuous inverse function. Write

Zi = U(Ei) where {Ei}ni=1 is a sample of i.i.d. standard exponential distributed random variables.

Let E1,n  E2,n  · · ·  En,n be the corresponding order statistics. To obtain the asymptotic

properties of {Zn�[ks],n, k�1  s  1}, we derive the expansion of U(t) and the asymptotic

properties of {En�[ks],n, k�1  s  1}.
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From the tail expansion of � log F̄Z in Proposition 6.2.1, we get that as t!1,

t =
1

2�2
(U(t))2 + (↵ + 1) logU(t)� log c1 �

c2
c1

(U(t))��
0
(1 + o(1)). (6.5.7)

Since U(t) ! 1 as t ! 1, it implies that U(t) ⇠ �
p
2t. Write U(t) = �

p
2t + r(t), where

r(t) = o(
p
t). We intend to obtain further explicit expression for the r(t) term. Substituting U(t) in

(6.5.7) by �
p
2t+ r(t) yields that, as t!1,

0 = r2(t) + 2�
p
2t r(t) + �2(↵ + 1) log t+ 2�2

⇣
(↵ + 1) log(�

p
2)� log c1

⌘

+ 2�2(↵ + 1) log

✓
1 +

r(t)

�
p
2t

◆
� 2�2c2

c1

⇣
�
p
2t
⌘��0

(1 + o(1)).

Since r(t)p
t
! 0 as t!1, we can solve this equation to obtain that

r(t) = ��(↵ + 1)

2
p
2

t�1/2 log t+
�p
2

⇣
log c1 � (↵ + 1) log(�

p
2)
⌘
t�1/2 + t�1/2q̃(t),

where q̃(t) = o (1) as t!1. By reiterating this procedure, we eventually obtain that as t!1,

U(t) = �
p
2t� �(↵ + 1)

2
p
2

t�1/2 log t+ �
p
2c3t

�1/2 + t�1/2q̃(t)(1 + o(1)), (6.5.8)

where

q̃(t) =

8
><

>:

�
1��

c2

(
p
2)1+�c1

t�
�
2 � < 2

��(↵+1)2

16
p
2
t�1 log2 t � � 2.

Note that q̃ is related to the q function defined in this proposition by q(t) = q̃(log t)p
2�

.

Next we derive the asymptotic properties of {En�[ks],n, k�1  s  1} from Theorem 2.4.2

in De Haan and Ferreira (2007) as follows. For any � > 0, there exists a sequence of standard

Brownian motions {{Wn(s)}s�0} such that as n!1,

sup
k�1s1

s1/2+�
���
p
k(En�[ks],n � log(n/k) + log s)� s�1Wn(s)

��� p�! 0.
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When plugging the asymptotic expansion of En�[ks],n into Zn�[ks],n = U(En�[ks],n), we observe

that the asymptotic property of Zn�[ks],n

�

p
2 log(n/k)

is mainly driven by
⇣

En�[ks],n

log(n/k)

⌘1/2
. In order to make a

smooth substitution, we first derive the asymptotic behavior of
⇣

En�[ks],n

log(n/k)

⌘�
for any given � 2 <.

Write

✓
En�[ks],n

log(n/k)

◆�
=


1 +

log s�1

log(n/k)
+

s�1Wn(s) + op(1)s�1/2��p
k log(n/k)

��

= 1 + �
log s�1 + k�1/2

�
s�1Wn(s) + op(1)s�1/2��

�

log(n/k)

+ ✓

 
log s�1 + k�1/2

�
s�1Wn(s) + op(1)s�1/2��

�

log(n/k)

!2

where ✓ = 1
2
@
2

@x2 (1+x)� |x=⇠ for some ⇠ between 0 and
log s�1+k

�1/2(s�1
Wn(s)+op(1)s�1/2��)

log(n/k) . Since as

k !1,
log s�1+k

�1/2(s�1
Wn(s)+op(1)s�1/2��)

log(n/k)

p�! 0 uniformly for all 1/k  s  1 and @
2

@x2 (1 + x)�

is bounded in the neighborhood of zero, we get that with probability tending to 1, |✓| is bounded

uniformly for all 1/k  s  1. By verifying that the quadratic term

 
log s�1 + k�1/2

�
s�1Wn(s) + op(1)s�1/2��

�

log(n/k)

!2

can be uniformly written as 1p
k log(n/k)

s�1/2��op(1), we get that as n!1

✓
En�[ks],n

log(n/k)

◆�
= 1 + �

log s�1 + k�1/2
�
s�1Wn(s) + op(1)s�1/2��

�

log(n/k)
,

where the op(1) term is uniformly for all 1/k  s  1. For � = 0, the relation should be read as

logEn�[ks],n � log log(n/k) =
log s�1 + k�1/2

�
s�1Wn(s) + op(1)s�1/2��

�

log(n/k)
.

Finally, by plugging En�[ks],n into Zn�[ks],n = U(En�[ks],n), while using the expansion of U

in (6.5.8) and the asymptotic expansion of
⇣

En�[ks],n

log(n/k)

⌘�
for � = 1/2,�1/2, 0 and �(1 + �)/2, we

obtain the result of Proposition 6.5.1.
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Remark 6.5.2. In the expansion of the tail quantile process,  1,n is a deterministic term not

depending on s,  2,n is a deterministic term depending on s, the third component gives a random

term, and finally q(n/k)
log(n/k)(1 + op(1)) has a uniform approximation independent of s. It will turn out

to be clear in the proof of Theorem 6.2.2 that such a detailed expansion is necessary for achieving

the intended asymptotic results.

We use Proposition 6.5.1 to prove the asymptotic normality of �̂g.

Proof of Theorem 6.2.2. Write

�̂g
�

=
log(n/k)

k
g (1/k)

Zn�1,n � Zn�k,n

�
p

2 log(n/k)
+ log(n/k)

Z 1

2/k

g([ks]/k)
Zn�[ks],n � Zn�k,n

�
p
2 log(n/k)

ds

=: I1 + I2.

From Proposition 6.5.1, we get that, as n!1,

Zn�[ks],n � Zn�k,n

�
p

2 log(n/k)
=
� log s+ k�1/2

�
s�1Wn(s)�Wn(1) + op(1)s�1/2��

�

2 log(n/k)

� (↵ + 1) log log(n/k)

4 log(n/k)
· log s(1 + o(1))

2 log(n/k)
+

q(n/k)

log(n/k)
op(1), (6.5.9)

holds uniformly for 1/k  s  1.

First, for I1, replacing s by k�1 in (6.5.9), yields that as n!1,

p
kI1

= log(n/k)
k1/2

g (1/k)
⇣

log k+k
1/2

Wn(1/k)+k
�
op(1)

2 log(n/k) + log k log log(n/k)

(log(n/k))2
O(1) + q(n/k)

log(n/k)op(1)
⌘
.

Using the modulus of continuity for Wn(1/k) and note that from the condition (6.2.5), g (1/k) =

o(1)k1/2�✏0 for any � < ✏0, as n!1, we then get from the above equation that

p
kI1 = k�1/2g(1/k)k�Op(1) = k��✏0op(1) = op(1).
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Next, we deal with I2. By multiplying both sides of (6.5.9) with log(n/k)g(s) and taking an

integral on the interval [2/k, 1], we get that as n!1,

I⇤2 = log(n/k)

Z 1

2/k

g(s)
Zn�[ks],n � Zn�k,n

�
p

2 log(n/k)
ds

=
1

2

Z 1

2/k

g(s)(� log s) ds

+
1

2
p
k

✓Z 1

2/k

g(s)
�
s�1Wn(s)�Wn(1)

�
ds+ op(1)

Z 1

2/k

g(s)s�1/2�� ds

◆

+
(↵ + 1) log log(n/k)

4 log(n/k)

1

2

Z 1

2/k

g(s)(� log s) ds(1 + o(1)) + q(n/k)op(1)

Z 1

2/k

g(s) ds.

= 1 +
1

2
p
k

✓Z 1

0

g(s)
�
s�1Wn(s)�Wn(1)

�
ds+ op(1)

◆

+
(↵ + 1) log log(n/k)

4 log(n/k)
(1 + o(1)) + q(n/k)op(1).

To obtain the last equality, we used the condition (6.2.5) to derive the following facts. First, both

g(s)s�1/2�� and g(s) are integrable on [0,1] for any � < ✏0. Second, as n!1,

�����

Z 2/k

0

g(s)
�
s�1Wn(s)�Wn(1)

�
ds

����� 
Z 2/k

0

s�1/2+✏0
��s�1Wn(s)�Wn(1)

�� ds = op(1).

Lastly, as k !1,

Z 2/k

0

g(s)(� log s) ds 
Z 2/k

0

s�1/2+✏0(� log s) ds =

Z log k�log 2

+1
e(1/2�✏0)tt de�t


r

2

k

Z +1

log k�log 2
e�✏0tt dt =

1p
k
o(1).

Finally, the condition (6.2.4) implies that
p
k log log(n/k)/ log(n/k) ! 0 and

p
kq(n/k) is

bounded as n!1, which leads to the asymptotic property of I⇤2 : as n!1,

p
k(I⇤2 � 1)� 1

2

Z 1

0

g(s)
�
s�1Wn(s)�Wn(1)

�
ds

p�! 0.
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We remark that the difference between I2 and I⇤2 is of an order k�1/2op(1). This is shown by using

the condition (6.2.6) as follows. Write

p
k |I2 � I⇤2 |


p
k log(n/k)

Z 1

2/k

|g([ks]/k)� g(s)|
Zn�[ks],n � Zn�k,n

�
p

2 log(n/k)
ds


p
k

Z 1

2/k

|g([ks]/k)� g(s)|
�
log s�1 + k�1/2Op(1)s

�1/2��� ds


p
k

Z 1

2/k

����
g([ks]/k)

log([ks]/k)
� g(s)

log s

���� |log s|
�
log s�1 + k�1/2Op(1)s

�1/2��� ds

+
p
k

Z 1

2/k

|log([ks]/k)� log s|
����
g([ks]/k)

log([ks]/k)

����
�
log s�1 + k�1/2Op(1)s

�1/2��� ds


p
k sup

|s�t|1/k,1/ks,t1

����
g(s)

log s
� g(t)

log t

����
Z 1

2/k

(� log s)
�
log s�1 + k�1/2Op(1)s

�1/2��� ds

+
p
k

Z 1

2/k

|log([ks]/ks)|
����
g([ks]/k)

log([ks]/k)

���� (� log s) ds

+Op(1)

Z 1

2/k

|log([ks]/ks)|
����
g([ks]/k)

log([ks]/k)

���� s
�1/2�� ds

=: I21 + I22 + I23.

The condition (6.2.6) implies that as n!1, I21 = op(1).

Next, for I22, notice that | log([ks]/ks)| =
���log

⇣
1� {ks}

ks

⌘���  c
⇤

ks
< 1 for s � 2/k. In addition,

the condition (6.2.5) implies that there exists c⇤1 such that g(s) < c⇤1s
�1/2+✏0 for all s 2 (0, 1]. By

applying the condition (6.2.6) again, we get that as n!1.

I22 
p
k

Z 1

2/k

|log([ks]/ks)| g(s) ds+ o(1)

Z 1

2/k

|log([ks]/ks)| (� log s)ds

 c⇤1

Z 1

2/k

c⇤

k1/2s
s�1/2+✏0 ds+ o(1)

Z 1

2/k

c⇤

ks
(� log s)ds

 c⇤1c
⇤

21/2�✏0/2
1

k✏0/2

Z 1

2/k

s�1+✏0/2ds+ o(1)
c⇤

2
! 0.

Lastly, for I23, notice that for all 2/k  s < 1, |log([ks]/k)| � max(� log s, log(k/(k � 1)))
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and s

2 < [ks]/k < s. We have g([ks]/k) < c⇤1([ks]/k)
�1/2+✏0 < c⇤2s

�1/2+✏0 . Hence, as n!1

I23  Op(1)

Z 1

2/k

c⇤

ks
c⇤2s
�1+✏0�� 1

max(� log s, log(k/(k � 1)))
ds

 Op(1)

 Z 1�1/k

2/k

c⇤

ks
c⇤2s
�1+✏0�� 1

� log s
ds+

1

log(k/(k � 1))

Z 1

1�1/k

c⇤

ks
c⇤2s
�1+✏0�� ds

!
.

Since as n!1, k log(k/(k � 1))! 1,
R 1

1�1/k s
�2+✏0�� ds! 0 and

lim
k!1

R 1�1/k
2/k

s
�2+✏0��

� log s ds

k
= lim

k!1


(1� 1/k)�2+✏0��

� log(1� 1/k)

1

k2
+

(2/k)�2+✏0��

� log(2/k)

2

k2

�
= 0,

we obtain that I23 ! 0 as n ! 1. Combining the three terms, we have shown that as n ! 1,
p
k(I2 � I⇤2 ) = op(1), which leads to

p
k(I2 � 1)� 1

2

Z 1

0

g(s)

✓
1

s
Wn(s)�Wn(1)

◆
ds

p�! 0.

The theorem is thus proved by combining the two parts I1 and I2 and further calculating the

asymptotic variance.

Proof of Corollary 6.2.3. Write

p
kp

log n

⇣
✓̂g � ✓

⌘
= �
p
2k

✓
Zn,n

�
p
2 log n

� 1

◆
� �
p
2k

✓
�̂g
�
� 1

◆

=: I1 � I2.

Theorem 6.2.2 gives the asymptotic property of I2. Hence we only need to show that I1
p�! 0, as

n!1. Since as n!1, En,n � log n
d�! exp{�e�x}, we get that for � 6= 0,

✓
En,n

log(n/k)

◆�
=

✓
log n+Op(1)

log(n/k)

◆�
= 1 + �

log k

log(n/k)
(1 + op(1)).
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Plugging this expansion to the U function given in (6.5.8) yields that

Zn,n

�
p
2 log(n/k)

=
U(En,n)

�
p

2 log(n/k)
=  1,n +

log k

2 log(n/k)
(1 + op(1)),

as n!1. The corollary is proved by verifying that

p
k( 1,n � 1)! 0 and

p
k log k/ log(n/k)! 0,

as n!1, which are implied by the condition (6.2.6).

6.6 Conclusions

In this chapter, we consider the estimation of the finite endpoint ✓ of a distribution function FX .

Instead of having observations drawn from FX , we only observe a contaminated sample Yi = Xi+"i,

i = 1, 2, · · · , n, where Xi follows the distribution FX and "i is a measurement error following

N(0, �2) with � > 0.

We start with proposing a class of estimators �̂g for �, depending on an appropriate weighing

function g on (0, 1]. Then we suggest an estimator ✓̂g = max
1in

Yi � �̂g
p
2 log n for estimating the

endpoint. Both the estimators �̂g and ✓̂g possess asymptotic normality.

We demonstrate, by extensive simulation studies, the superior performance of our suggested

estimator to that of other three endpoint estimators designed for the case of no measurement errors.

In addition, we apply our suggested estimator to resolve the difficulties encountered by Einmahl

and Magnus (2008): the estimated extreme value index is close to, and not significantly different

from, zero. By assuming the presence of measurement errors stemming from the wind, we apply

our suggested endpoint estimator to the outdoor long jump data. The results are comparable with

applying the PWM endpoint estimator to the indoor long jump data, for which the impact of wind is

negligible and the tail index is estimated to be negative.
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Alves, Isabel Fraga and Cláudia Neves (2014). “Estimation of the finite right endpoint in the Gumbel
domain”. In: Statistica Sinica, pp. 1811–1835.

Artzner, Philippe et al. (1999). “Coherent measures of risk”. In: Mathematical finance 9(3), pp. 203–
228.

Baysal, Rafet Evren and Jeremy Staum (2008). “Empirical likelihood for value-at-risk and expected
shortfall”. In: The journal of risk 11(1), p. 3.

Bellini, Fabio and Emanuela Rosazza Gianin (2008a). “On Haezendonck risk measures”. In: Journal
of Banking & Finance 32(6), pp. 986–994.

Bellini, Fabio and Emanuela Rosazza Gianin (2008b). “Optimal portfolios with Haezendonck risk
measures”. In: Statistics & Decisions International mathematical journal for stochastic methods
and models 26(2), pp. 89–108.

Bellini, Fabio and Emanuela Rosazza Gianin (2012). “Haezendonck–Goovaerts risk measures and
Orlicz quantiles”. In: Insurance: Mathematics and Economics 51(1), pp. 107–114.
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