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ABSTRACT 

 

AN INVESTIGATION OF CHANGES IN DIABETES TRENDS AFTER THE AFFORDABLE 

CARE ACT 

 

By 

BLAIR CHRISTENSEN 

 

4/15/18 

 

 

INTRODUCTION:  Diabetes Mellitus (DM) is one of the fastest growing and most costly 

chronic diseases in the United States. DM is severely underdiagnosed, resulting in increased 

complications, costs, and mortality. Primary goals of the Affordable Care Act (ACA) were to 

increase health insurance coverage and access to care, and to improve chronic disease outcomes. 

However, the effects of the legislation have not been widely studied, particularly the relationship 

between proper diabetes diagnosis and a variety of health related factors. 

AIM: Determine the relationship between DM prevalence and under-diagnosis, to healthcare 

utilization, usual source of care, insurance, type of insurance, and population characteristics have 

changed since the implementation of the ACA.  

METHODS: Data collected between 2005 and 2016 in the National Health and Nutrition 

Examination Survey were used for this work. The Andersen behavioral health model was used as 

a theoretical framework and selection of study variables. Descriptive statistics and advanced 

statistical modeling techniques were applied. Distinct multilevel models were used to model the 

logit of the probability of DM and the logit of the probability of a proper DM diagnosis each as a 

function of study variables with an indicator of pre- or post-ACA included as a fixed effect. 

Marginal models are multilevel models that apply population averaged estimates for parameters. 

Marginal models were specified to account for clustering by time, and generalized estimating 

equations used to estimate model parameters. The quasi-likelihood under the null (QIC) statistic 

was estimated for model comparisons. The SAS Software System was used for data analysis and 

the level of significance set at .05.   

RESULTS:  The sample consisted of 31,225 participants, with half pre-ACA (n=15,612) and 

half post-ACA. Females comprised 51.64% of the study sample with 43.50% White, 25.82% 

Hispanic, and 20.65% Black and a mean (standard deviation) age of 49.3 (17.9) years. About 

11.45% of those in the Pre ACA period had a diagnosis of DM, while 13.5% of those in the Post 

ACA period had a diagnosis of DM. The percentage of uninsured was 23.95% in the Pre ACA 
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period and 20.69% in the Post ACA time period. The prevalence of undiagnosed DM patients 

was 26.7% before the ACA, and 21.3% after. A multilevel model with DM status as the 

dependent outcome showed that sex (females vs males: OR=0.83, 95%CI=0.78,0.89,p =.02), 

USC (yes vs no: OR=1.28, 95%CI=1.03,1.59, p=.03), health insurance (yes vs no: OR=1.21, 

95%CI=1.17,1.26, p =.02), and education level(college graduate vs less than high school: 

OR=0.79, 95%CI=0.64,0.97, p=.05, high school graduate vs less than high school: OR=0.97, 

95%CI=0.93,1.03, p=.05) were significantly associated with presence of DM. Participants were 

more likely to have their DM properly diagnosed after the ACA: in the final multivariable 

multilevel model, only ACA time period had a significant effect on correct DM diagnosis 

(OR=1.51, 95%CI=1.24,1.85, p=.04).  

CONCLUSIONS: Although prevalence of DM has increased in recent years, under-diagnosis is 

less of an issue after the ACA. In the multivariable model comparing DM status (having the 

disease) to selected covariates, sex, health insurance, education, and USC were related to DM 

status. The ACA time period had no significant relationship with DM status in the multivariable 

model. However, in the multivariable model for correctly diagnosed DM, ACA time period was 

the only independent variable that had a significant association with correct DM diagnosis.  
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Introduction 

Diabetes Mellitus (DM) is one of the fastest growing and most impactful chronic diseases 

in the United States and encompasses several different diseases, all characterized by issues in 

proper insulin manufacture and utilization and resulting high blood glucose levels[1] [2]. 

Chronic diseases have fast been replacing infectious diseases as the primary public health issues 

of interest in developed countries. Those afflicted suffer from not only diminished life 

expectancies but also a decrease in quality of life, and a high burden of expenses and time that 

must be devoted to managing the disease. When a healthcare system is ill-equipped to handle the 

regular maintenance and upkeep of the disease, it is reflected in poor self-care, complications, 

and worsened outcomes, not to mention an increased financial burden at both the individual and 

the system-level. 

DM is also severely underdiagnosed. Nearly a quarter of those with DM have not been 

diagnosed by a doctor[1]. An unknown or late-stage DM diagnosis results in a lack of self-care 

and awareness, manifesting in increased complications, costs, and mortality[3]. Someone who 

has DM but has not been formally diagnosed by a doctor is known as a “missed patient”.  

One of the primary goals of the Affordable Care Act (ACA) was to increase the 

prevalence of health insurance and access to care, and to improve chronic disease outcomes. The 

rationale behind this is that broadened insurance coverage in the population and improved ease 

of access should lead to an increase in utilization, which prior research dictates should improve 

healthcare outcomes. Since the legislation is still relatively new and untested, there is no 

definitive answer as to whether DM-related outcomes have improved.  
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The National Health and Nutrition Examination Survey (NHANES) contains information 

on socio-demographic, behavioral, and laboratory values, and is designed to be representative of 

the entire US population[4]. NHANES provides an ideal data source for an adapted Andersen 

model examining health behaviors and DM outcomes as they relate to the ACA. This adapted 

model can be used as a starting point for multivariate analysis and the eventual construction of a 

multilevel model taking the clustering by survey cycle into account. 

This study will address not only how DM outcomes might have changed following the 

implementation of the ACA but also how the relationship between insurance status (type and 

presence or absence of), utilization, and Usual Source of Care(USC) with DM outcomes may 

have changed along with the shift in the regulatory and policy environment. It will also 

determine if there has been a shift in patterns of diagnosis since the passage of the ACA. 

Previous studies (detailed below) have usually examined only one of these factors’ relationship 

to a health outcome, rather than how they might interact to result in an outcome. For DM, disease 

status is also usually only assessed by clinical diagnosis, which becomes problematic in 

underserved populations that do not utilize healthcare services- a diagnosis is not the best 

reflection of actual disease status in these instances. In this study, a HbA1c blood test is used to 

determine if an individual has DM. By employing a multi-level modeling approach to study time 

periods before and after the passage of the ACA, the disregard for the clustering of the data 

found in many prior studies will be remedied. 

Disentangling the relationship between policy, healthcare behaviors, and DM outcomes is 

important for several reasons. Better understanding the impact of healthcare reform on chronic 

disease outcomes could help to improve and shape future legislation.  An idea of the true 

relationship between complicated sets of healthcare behaviors and causes can also guide 
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healthcare recommendations and improve outcomes for diabetics. Understanding these 

relationships for DM could also help to inform decisions about other chronic diseases. 

The questions this study seeks to answer are: 

I. Controlling for demographic characteristics, has the association between 

insurance status and DM changed since the passage of the ACA? 

II. Controlling for demographic characteristics, has the association between 

healthcare utilization and DM changed since the passage of the ACA? 

III. Controlling for demographic characteristics, has the association between having a 

USC and DM changed since the passage of the ACA? 

IV. What demographic characteristics are associated with being a “missed patient” 

and have the associations changed since the passage of the ACA? 

V.   Has the prevalence of “missed patients” changed since the passage of the ACA?  

Literature Review 

Epidemiology of DM  

DM encompasses several different diseases, all characterized by issues in proper insulin 

manufacture and utilization and resulting high blood glucose levels[1]. Type 2 DM is the most 

common form and can be defined as an acquired intolerance to insulin due to dietary and 

lifestyle factors. The prevalence of DM has been increasing and is projected to continue 

increasing[2]. DM has become a public health crisis, with 30.3 million diabetics in the US, 

nearly a quarter of which (23.8%) are estimated to be undiagnosed[5]. The low diagnosis rates 

are thought to be consequence of the fact that many diabetics do not enter the healthcare system 

until they begin suffering from complications from their disease[1]. Type 2 DM is diagnosed 
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using the HbA1c test, with results greater than or equal to 6.5% indicating controlled DM and 

values above 8% indicating uncontrolled DM[6]. The HbA1c is considered the gold standard in 

diagnosing DM[1]. DM patients spent more than twice as much on medical expenditures and 

non-diabetics[7]. Diabetics have a high burden of maintenance costs, which include regular 

doctor visits, medication, education programs, specialized diets, and other assorted items[8]. In 

addition to the maintenance costs associated with DM, the potential of comorbidities and 

complications from mismanagement and the natural progression of the disease also impose a 

massive burden on the public health system[8-10]. Uncontrolled DM can lead to foot ulcers and 

amputations, eye deterioration, kidney disease, cardiovascular disease, mobility issues, high 

cholesterol, and an overall reduction in both quality of life and overall life span[1]. The 

estimated cost from DM in 2012 was $245B, not including the undiagnosed burden and unpaid 

care[7].  

Health Behaviors and Outcomes 

Andersen’s Behavioral Model of Health Utilization was first proposed in the early 1970’s 

as a way to study and predict individual usage of health services. [11] The next update to the 

model included external and environmental factors, along with incorporating user satisfaction 

with services [12]. The current iteration of the model includes four primary spheres of influence, 

all of which connect and create a kind of feedback loop: Environment, Population 

Characteristics, Health Behavior, and Outcomes.[13, 14] This construction allows for the 

examination of the relationship between complicated sets of healthcare behaviors, demographic 

characteristics, policy and healthcare system changes, and outcomes, both quantitative and 

qualitative. The Andersen model is generally accepted as the best framework when analyzing 

complex and nuanced healthcare concepts, like utilization and access to care [15-17]. 
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Environmental factors can include regulatory environment and policy changes in the health care 

system and time could be incorporated as a variable.  Population characteristics are divided into 

three distinct sections: Predisposing (including Demographic and Social attributes), Enabling 

(including Financial and Accessibility factors) and Need. Need-based characteristics are rooted 

more in perception of need than in actual physical need, including perceived health status and 

previous diagnosis of a disease[13]. Using Andersen’s model allows for a better understanding of 

health behavior and utilization and the inclusion of the necessary characteristics and external 

factors to fully describe the relationship. 

Factors Associated with DM-outcomes 

It has been long established that health outcomes and behavior exhibit distinct racial and 

cultural disparities. Minorities, smokers, those of lower Socioeconomic Status(SES) and those 

with less education are more likely to have DM[18]. DM development and outcomes, along with 

management of care, are also associated with socioeconomic factors and behaviors[19]. 

Perception of health status and denial about health problems is a common reason why health 

services might not be fully utilized or chronic disease care left unmanaged[20]. There are racial 

and socioeconomic class differences in DM screening diagnosis accuracy[21]. Increased 

utilization of health services, medication adherence and disease management were shown to be 

associated with the perception of personal health status [22]. An official diagnosis of DM did not 

seem to influence health behaviors or perception of health status[22].  A 2009 study found that a 

significant proportion of Diabetics (around 10%) had no health insurance coverage, usually due 

to high premium costs[23].   

Health Services Utilization is a multifaceted and difficult to quantify concept. It can be 

defined as “the measure of the population’s use of the health care services available to them,” 
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and can be an indicator of “how efficiently a health care system produces health in a 

population”[24]. Utilization is a behavior pattern determined by demographic characteristics, like 

ethnicity, and external environmental factors, like policy, the effect of which can be measured in 

discrete outcomes. Utilization has been associated with increased mortality in high risk 

groups[25], but this association is not causal and, in general, utilization is associated with 

improved preventative care and health behaviors[26]. Insurance coverage increases the 

likelihood of utilizing care[27]. 

Usual Source of Care(USC) is defined as “a particular doctor’s office, clinic, health 

center, or other place one goes to if one is sick or needs advice about health.”[28] The effects of 

having a USC have been a source of debate in the literature for some time now. One theory is 

that a USC is determined by utilization and only indirectly affects doctor visit frequency, while 

the other is that the lack of a USC serves as a barrier to access, directly minimizing the amount 

of doctor visits and utilization[29]. It has been established that not having a USC can limit 

continuous utilization of services. This is particularly important for DM care, which requires 

consistent monitoring and attention[30, 31]. Having a USC also serves as a proxy for access to 

the overall healthcare system and is associated with improved outcomes and preventative 

care[30, 32]. A USC was found to be a better predictor of access to care than whether or not a 

patient was insured[33].  

Insurance coverage alone does not ensure utilization of care[34-38]. A 2012 study found 

that a USC was more important than health insurance coverage in determining utilization and 

outcomes; children with both a USC and insurance had better outcomes than those with only 

insurance. Having only a USC was more beneficial than only having insurance[34]. While 
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insurance does not ensure access, being insured has been found to be associated with a higher 

quality of care and improved access[39].  

Type of insurance has also been shown to effect health outcomes and perceptions. Less 

physicians accept new patients with public insurance than private, and certain physicians do not 

accept any public insurance coverage[40, 41]. Medicaid users report feeling more stigmatized 

and have worse access and health outcomes than those with private insurance [42]. Private health 

insurance coverage has also been found to be correlated with higher incomes and previous health 

status, and public insurance programs tend to decline in per capita resources and quality of care 

over time[43]. 

Having DM is associated with physician quality and type of insurance plan, and DM 

patients with self-stigma issues had worsened outcomes. [44-46] Poor glycemic control and 

outcomes in DM patients were associated with cost and lack of insurance, isolation, and 

difficulty accessing care[47].   A lack of access and lack of insurance were found to be 

associated with a delay or complete failure to have DM diagnosed, known as being a “missed 

patient”. [48] 

Impact of the ACA 

The passage of the Patient Protection and Affordable Care Act (ACA) was supposed to 

provide renewed focus on lowering barriers to access and expanded, affordable insurance 

coverage. While research has been done on the effects of the legislation, many studies are 

contradictory, small, or focused more in the realm of health economics[49-52]. The ACA 

certainly increased insurance coverage, with the lowest ever amounts of uninsured Americans. It 

is estimated that the number of those without coverage was reduced by around 20 million due to 
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the passage of the ACA, and the effects were present in the entire population, regardless of age, 

race, gender, or level of education[53].  Studies conducted after the implementation of the ACA 

have found improved access to care and higher percentages of insured, compared to before the 

legislation was passed[26]. In Medicaid expansion states, DM outcomes were greatly improved 

and hospitalizations were minimized. [54] Diabetic adults without insurance utilize care less and 

have less access to care. The increased access and coverage provided by the ACA has increased 

the utilization of healthcare services among diabetics, possibly leading to better overall health 

conditions and lower incidence of DM complications.[55]  

In those newly insured due to the ACA, having a USC was more common, preventative 

visits, glucose testing and utilization of services increased, and there was a marked improvement 

in self-reported health status[56]. Socioeconomic status is linked to utilization, and health status 

must be considered when analyzing utilization across different socioeconomic classes[57, 58]. In 

the past, major policy initiatives and shifts in the regulatory environment have been shown to 

influence utilization[59]. 

Gaps in the Literature 

There has been no research comparing the relationship between utilization, access, 

insurance and blood glucose level outcomes before and after the implementation of the 

Affordable Care Act.  This study will address not only how DM outcomes might have changed 

following the implementation of the ACA but also how the relationship between insurance status 

(type and presence or absence of), utilization, and access with DM outcomes may have changed 

along with the shift in the regulatory and policy environment. Among studies that have examined 

one of these factors relationship to DM outcomes, none have used a multilevel modeling 

approach or examined a wide array of NHANES data. Failing to take the clustering of the data 
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into account in this way results in biased parameter estimates and ultimately leads to incorrect 

conclusions.  

There has also been little research on missed patients, and nothing assessing their 

prevalence comparing regulatory environment. Studying underdiagnosis is fundamentally 

difficult, because the true disease status must be determined for those without a diagnosis, 

usually through a blood test. This is much more invasive and resource-intensive than simply 

filling out a questionnaire with disease status. Most previous studies have not analyzed DM 

status as a function of a HbA1c test. The problem of under-diagnosis is remedied, as the results 

of this test are not dependent on having been previously diagnosed with the disease. Previous 

studies examining more than one cycle of NHANES have also often neglected to take the 

clustering of data by year into account. 

Methods 

Data source 

The National Health and Nutrition Examination Survey (NHANES) is completed in 

continuous 2-year cycles by the Centers for Disease Control and was created to examine the 

nutritional and health status of all non-institutionalized adults and children in the United States. 

The survey sample contains around 5000 people each year from 15 United States counties and is 

designed to be nationally representative. NHANES oversamples Blacks, Hispanics, and those 

older than 60 years of age, and the examination portion is more extensive in older participants. 

The interview portion gathers information on socioeconomic, dietary, demographic, and health 

questions. This interview is conducted in the participants home, in a variety of different 

languages. There is also an examination portion, where medical, dental, and physical aspects are 
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measured; laboratory tests are also included. This portion of the survey takes place through 

participant visits to mobile clinics that travel with NHANES [1]. One unique aspect of the survey 

is that it collects biological samples along with questionnaire and demographic data. An HbA1c 

is included in the laboratory data, and has been shown as a useful and accurate indicator of DM 

status and previously undiagnosed DM, particularly in a single-visit setting[60]. This provides a 

unique opportunity when studying DM outcomes- the usual under-diagnosis is a negligible factor 

and does not need to be considered. NHANES also includes information on demographics, use of 

health services, insurance coverage and type, and USC (USC). Socio-demographic 

characteristics and general healthcare questions were utilized from the NHANES questionnaires. 

Three two-year cycles (2005-2006, 2007-2008, and 2009-2010) represented the time period 

before the ACA, and three cycles (2011-2012, 2013-2014, and 2015-2016) for after the ACA. 

Study population 

The study population captured by NHANES are United States residents of all ages who 

are not institutionalized, living in nursing homes, living abroad, or in the armed forces.  

Study sample 

To create the sample, the entire United States (including Alaska and Hawaii) is divided 

into 15 groups, and a single county is selected from each group. Then around 20 smaller 

subdivisions are selected from each county. Roughly 30 households are selected from each 

subdivision, and all household members are interviewed. A random algorithm then selects a 

random number of the participants in each household[4]. Only individuals who had participated 

in the relevant questionnaires and had a measurement for the response variable were included in 

the analysis. Individual observations for some questions could still be missing. Only respondents 
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age 20 or above were included in the final dataset. Table 4.1 includes the measurements for the 

study sample by pre- and post-ACA. 

Dependent Variables 

The traditional HbA1c test findings were used to create the dependent variable. The 

continuous measured value represented the percentage of glycated hemoglobin present in the 

blood. For the analysis, the outcome was created by dichotomizing HbA1c test with a cutoff of 

6.5% or above indicating DM[1]. Only those with non-missing values for the outcome variable 

were selected for the sample(n=31225). “Missed Patient” status was determined by creating a 

new variable from only those above the 6.5% cutoff and whether they had previously received a 

DM diagnosis from a doctor. 

Independent Variables 

Utilization and access were operationalized in this study as the amount of doctor visits in 

the last 12 months and whether an individual had a USC, defined as “a routine place to go for 

healthcare or when you are sick”. Frequency of doctor visits was an ordinal variable with the 

categories: 0 visits, 1 visit, 2-3 visits, 4-9 visits, 10-12 visits, and 13 or more visits. General 

health condition was recoded into a three-category variable: Poor/Fair, Average, and 

Good/Excellent. Insurance status and DM diagnosis were binary variables. Insurance type was 

recoded into Private, Medicare, Medicaid/Medigap, Other, and None. Education was recoded 

into a three-category variable, less-than High school, High school graduate, and College graduate 

or above. Income was assessed using the income to poverty level ratio. Race/Ethnicity was 

broken into 4 categories: Hispanic, White, Black, and other.  

Statistical Analysis 
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The SAS Software System was used for all the statistical analyses. The level of 

significance was set at .05. Although NHANES is a complex multistage weighted survey, 

previous studies have shown that the difference in error that comes from discounting them may 

be potentially insignificant and possibly may not greatly alter inferences made [61]. The methods 

for including survey weights in a multilevel modeling scheme are also complex. The SAS 

Software System multilevel modeling procedures to not allow for simultaneously fitting 

multilevel models and accounting for complex sampling weights. Since a primary interest was in 

accounting for the clustering within survey year to apply multilevel models, these were used and 

survey weights not accounted for in analyses presented here. The caveats and possible 

repercussions of this choice are included in the discussion. 

In repeated measures or clustered longitudinal data, the assumption of independence of 

observations necessary for many modeling techniques (Logistic Regression, ANOVA) is 

violated[62]. In this dataset, there are two levels of variables. The first level is individual 

measurements and the second level is the survey year. Ignoring the clustering of observations 

leads to biased estimation and incorrect standard errors. Multilevel modeling techniques account 

for clustering or grouping of data. Marginal models are a semi-parametric method that averages 

the random effects of the second-level variable to provide a population-averaged coefficient, 

rather than individual-level estimates. This approach allows meaningful conclusions to be drawn. 

Marginal models use Generalized Estimating Equations(GEE) to estimate parameters [63]. A 

Marginal Mixed model was constructed for each Bivariate comparison and for the selected 

multivariable model.  

Variables were selected for inclusion in the final model using a combination of a data-

driven and a theory driven approach. A theoretical relationship between the outcome, health 
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behavior, population characteristics and environment was assessed by creating a modified 

Andersen Behavioral model of Healthcare Utilization. This model was used to select variables to 

be tested for inclusion in the model from the NHANES dataset. Eight possible models were 

identified from the constructed behavior model and tested. Quasi likelihood under the 

Independence Model Criterion(QIC) was then used to select the correlation structure and the 

variables for inclusion in the final model[64]. Although GEE is robust to misclassification of the 

correlation structure, testing for correct structure is efficient and desirable. The structures 

compared in this work were Independence, Compound Symmetry, and First-order 

Autoregressive (a steady and equivalent heterogeneity of variance). Type of insurance was 

assessed only with a bivariate model since health insurance status was already considered in the 

model and to avoid multicollinearity issues. Bivariate comparison models are also included for 

all variables, which allows full examination of how associations are affected by the adjustments 

in the final model. 

For the analysis of missed patients, a subset of the data with only DM patients was 

created(n=3394). Descriptive frequencies were tabulated, stratified by missed patient status and 

before or after ACA time-period. Adjusted and crude by-characteristic Odds Ratio point 

estimates and 95% Confidence Intervals were calculated and p-values reported for a final 

multivariable model.  

Results 

Descriptive Statistics for DM 

Table 4.1 includes the descriptive statistics of socio-demographic, health behavior, and 

DM in persons 20 years and older in NHANES 2005-2010 (before time period or Pre ACA) and 

NHANES 2011-2016(after time period or Post ACA). The overall study sample consisted of 
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31,225 participants, with half pre-ACA (n=15,612) and half post-ACA. Females comprised 

51.64% of the study sample with 43.50% White, 25.82% Hispanic, and 20.65% Black and a 

mean (standard deviation) age of 49.3 (17.9) years. About 11.45% of those in the Pre ACA 

period had a diagnosis of DM, while 13.5% of those in the post ACA period had a diagnosis of 

DM. In the Pre and Post ACA periods respectively, 1.91% and 2.56% had missing values for 

DM diagnosis. The percentage of uninsured decreased from 23.95% in the Pre ACA period to 

20.69% in the Post ACA time period. Overall, less than a tenth of a percent had a missing value 

for insurance. In the overall sample, 25.91% had less than a high school education, 51.52% had a 

high school diploma, and 22.48% were college graduates or higher. Only a tenth of a percent 

were missing education level. Levels of Utilization were constant across both time periods. 

Overall, 16.52% had no doctors visits in the last year, 17.59% had 1 doctors visit in the last year, 

27.07% had 2-3 visits, 25.02% had 4-9 visits, 6.44% had 10-12 visits, and 7.27% had 13 or more 

visits. Less than a tenth of a percent of respondents had a missing value for utilization. Pre ACA 

10.53% had DM, while Post ACA 12.16% had DM. Pre ACA, 7.83% had Medicaid or Medigap, 

18.01% had Medicare, 23.96% had no insurance, 38.8% had private insurance, and 11.16% had 

some other form of insurance. In the Pre ACA period, 0.22% had a missing value for insurance 

type. Post ACA, 11.43% had Medicaid or Medigap, 15.22% had Medicare, 20.75% had no 

insurance, 37.80% had private insurance, and 14.3% had some other form of insurance. In the 

post ACA period, 0.55% had missing values for insurance type. USC was constant across the 

time periods, with 84.68% having a USC Pre ACA and 83.72% having a USC Post ACA. There 

were no responses missing for USC. Health condition also remained constant from Pre to Post 

ACA, with 39.37% reporting poor/fair health, 36.41% reporting average health, and 24.22% 

reporting good/excellent health. Overall, less than a tenth of a percent of responses were missing 
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for health condition, with 0.06% missing from Pre ACA and 0.09% missing from Post ACA. The 

distribution across sexes remained constant across the time periods, with slightly more females 

than males (51.64% and 48.36%, respectively). The distribution of ethnicities across the two 

time periods were slightly different, and there were no missing responses for ethnicity. Pre ACA, 

19.32% of respondents were black, 27.13% Hispanic, 48.94% White, and 4.61% Other. Post 

ACA, 21.98% of respondents were Black, 24.52% Hispanic, 38.06% White, and 15.44% Other. 

Pre ACA, 18.27% of respondents were below the poverty line, with 8.46% missing a response, 

while Post ACA 20.62% were, with 9.32% missing a response. The mean age in years Pre ACA 

was 49.50 and 49.13 Post ACA.   

Associations with Diabetes 

Time-period(Pre or Post ACA), age, sex, utilization, USC, health condition, insurance, 

education, ethnicity, and income were selected for inclusion in the final multivariable multilevel 

model (Table 4.2), and an independent correlation structure was chosen, with 

QIC=16773.27(Table 4.3). 

The final multivariable multilevel model of DM status (table 4.4) showed that the time-

period after the ACA was unrelated to DM in both the bivariate (OR=1.77, 

95%CI=0.99,1.4,p=.07) and the adjusted model (OR=1.90, 95%CI=1.1,1.33,p=.09). Those with 

health insurance were significantly more likely to have DM in the unadjusted analysis (OR=1.51, 

95%CI=1.44,1.58,p<.0001). Once adjusting for covariates, those with DM were also 

significantly more likely to have health insurance (OR=1.21, 95%CI=1.17,1.26, p =.02). Those 

with Medicaid/Medigap (OR=2.17, 95%CI=1.86,2.53,p<.0001), Medicare (OR=2.79, 

95%CI=2.64,2.96,p<.0001), and Other (OR=1.5, 95%CI=1.31,1.7,p<.0001) types of insurance 

were more likely to have DM, compared to those with a private insurance plan. Income above 
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the poverty level was not related to DM outcomes in the adjusted model (OR=0.97, 

95%CI=0.86,1.1,p=.28) but was found to be significant in a simple bivariate analysis (OR=0.76, 

95%CI=0.65,0.89,p=.0007). Those with a high school education had lower odds of having DM 

(OR=0.60, 95%CI=0.58,0.68,p<.0001), and this result remained significant in the adjusted model 

(OR=0.97, 95%CI=0.93,1.03,p=.05). College graduates consistently had significantly lower odds 

of having DM in both the multivariable (OR=0.79, 95%CI=0.64,0.97,p=.05) and bivariate 

(OR=0.39, 95%CI=0.36,0.42, p<.0001) model. Compared to Whites in a bivariate model, Blacks 

(OR=1.88, 95%CI=1.63,2.16,p<.0001), Hispanics (OR=1.72, 95%CI=1.52,1.97,p<.0001), and 

those of Other ethnicity (OR=1.35, 95%CI=1.18,1.56,p<.0001) had higher odds of having DM. 

Compared to Whites in the multivariable model, Blacks (OR=1.88, 95%CI=1.68,2.12,p=.11), 

Hispanics (OR=1.99, 95%CI=1.75,1.2.26,p=.11), and those of Other ethnicity (OR=1.85, 

95%CI=1.66,2.05,p=.11) did not have significantly higher odds of having DM. 

Compared to no visits, having one doctor visit in the past year was not associated with 

increased odds of having DM in both the bivariate (OR=1.03, 95%CI=0.99,1.07) and the 

multivariable (OR=1.03, 95%CI=0.93,1.14,p=.31) model. In the bivariate model, having DM 

was correlated with increased doctor visits, ranging from 2-3 visits (OR=1.77, 

95%CI=1.55,2.03,p<.0001), 4-9 visits (OR=3.34, 95%CI=3.23,3.44, p<.0001), 10-12 visits 

(OR=3.99, 95%CI=3.83,4.15, p<.0001) and 13 or more visits (OR=3.28, 95%CI=2.93,3.67, 

p<.0001). In the multivariable model, having DM was correlated with increased doctor visits, 

ranging from 2-3 visits (OR=1.40, 95%CI=1.26,1.55, p<.0001), 4-9 visits (OR=2.06, 

95%CI=1.88,2.27, p<.0001), 10-12 visits (OR=2.12, 95%CI=1.96,2.29, p<.0001) and 13 or more 

visits (OR=1.83, 95%CI=1.61,2.08, p<.0001).   Compared to males, females had lower odds of 

having DM in both the bivariate (OR=0.83, 95%CI=0.78,0.89, p<.0001) and multivariable 
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(OR=0.72, 95%CI=0.67,0.76, p=.02) models. Average health condition was associated with 

decreased odds of having DM, compared to those of poor health condition in both the bivariate 

(OR=2.79, 95%CI=2.51,3.11) and multivariable (OR=2.45, 95%CI=2.22,2.71) models. Those 

who considered themselves in good or excellent condition had very low odds of having DM, 

compared to those in poor health condition in both the bivariate (OR=6.52, 95%CI=5.68,7.48) 

and multivariable (OR=4.82, 95%CI=4.26,5.45) models.  

Descriptive Statistics for DM Diagnosis  

Table 4.5 includes descriptive statistics of the study variables by DM diagnosis before 

and after the ACA. The prevalence of undiagnosed DM patients was less (21.32%) than before 

the ACA (26.73%). In the Pre ACA period, 75.91% of diagnosed patients were insured, 

compared to 81.03% in the Post ACA period. Of diagnosed patients in the Pre ACA period, 

43.2% had less than a high education, 45.8% had a high school education, and 10.8% had a 

college education or higher. The distribution of education among properly diagnosed patients 

post ACA changed slightly, with 33.7%, 49.8%, and 16.8%, respectively. Post ACA, utilization 

increased overall, with 96.5% of those with properly diagnosed DM had at least 1 doctors visit, 

compared to 96.2% Pre ACA. 82.3% of Medicaid/Medigap patients were properly diagnosed 

after the ACA, compared to only 80.1% before.75.6% of those on Medicare were properly 

diagnosed before the ACA, compared to 84.8% after the ACA. Before the ACA, 76.6% of those 

with a USC were properly diagnosed, compared to 80.8% Post ACA. Before the ACA, only 

71.5% percent of males had properly diagnosed DM, compared to 80.9% Post ACA. 77.2% of 

Blacks, 78.2% of Hispanics, 84.34% of Whites, and 71.3% of other ethnicity had properly 

diagnosed DM after the ACA, compared to 74.5%, 71.0%, 74.3%, and 73.3% Pre ACA, 
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respectively. Post ACA, 78.0% of those below the poverty line had properly diagnosed DM, 

compared to 73.8% before.  

Associations with undiagnosed DM 

Table 4.6 contains the final multivariable multilevel model of an indicator of properly 

diagnosed DM with selected covariates. Utilization of at least one doctors visit was significantly 

related to proper DM diagnosis in a bivariate model(p<.0001), but this effect became 

insignificant in the multivariable model (for 1 visit, OR=2.19, 95%CI=1.63,2.94, p=.31). In a 

bivariate model, USC was related to proper DM diagnosis(OR=4.6, 95%CI=3.5,6.05, p<.0001), 

but in a multivariable model USC was not associated with correct DM diagnosis(OR=1.64, 

95%CI=1.09,2.48, p =.07). In a bivariate model, insurance was not significantly associated with 

correct DM diagnosis (OR=1.92,95%CI=0.97,1.26, p=.06), and the association remained 

insignificant in a multivariable model (OR=2.76, 95%CI=2.3,3.81, p=.34).  In a bivariate model, 

Medicaid/Medigap (OR=1.52, 95%CI=1.14,2.02), Medicare (OR=1.37, 95%CI=1.17,1.60), No 

Insurance (OR=0.65, 95%CI=0.53,0.79) and other forms of insurance (OR=1.44, 

95%CI=1.25,1.65) were significantly associated with having correctly diagnosed DM, compared 

to those on private insurance(p<.0001). In the multivariable model, no particular type of 

insurance is associated with having correctly diagnosed DM(p=.69). In a bivariate model, 

good/excellent health condition (OR=2.9, 95%CI=2.4,3.5) and average health condition 

(OR=1.6, 95%CI=1.37,1.85) were associated with correct DM diagnosis, compared to those in 

poor health condition(p<.0001). However, in a multivariable model, this relationship did not 

hold, and good/excellent health condition (OR=2.42, 95%CI=1.88,3.11) and average health 

condition (OR=1.38, 95%CI=1.11,1.71) were not found to be associated to correct DM 

diagnosis, compared to poor health condition(p=.06).  
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We failed to find an association between income and missed patient status. There was no 

significant association in a bivariate model (OR=1.02, p=.82) and income was not included in the 

multivariable model. In a bivariate model, education was not found to be associated with 

properly diagnosed DM (OR=1.11, 95%CI=0.97,1.26, p=.06). In a bivariate model, sex was not 

significant (OR=0.96, 0.71,1.17, p=.69). In a bivariate model, Black (OR=0.84, 

95%CI=0.67,1.06), Hispanic (OR=0.79, 95%CI=0.61,1.02), and Other ethnicity (OR=0.68, 

95%CI=0.47,0.97) were significantly related to correctly diagnosed DM, compared to those of 

White ethnicity (p=.05). However, in a multivariable model, no other ethnicity was associated 

with correctly diagnosed DM, when compared to those of White ethnicity (p-value=.41).  

Individuals were more likely to have their DM properly diagnosed after the ACA, as 

opposed to before. In a bivariate model, the period after the ACA was significantly associated 

(OR=1.34, 95%CI=1.10,1.64, p=.003) with proper DM diagnosis. In a multivariable model 

adjusted for Time Period, Utilization, USC, Health Condition, Insurance, Ethnicity, and 

Insurance Type, only time period was related to correctly diagnosed DM. Those in the period 

after the ACA were more likely (OR=1.51, 95%CI=1.24,1.85, p=.04) to have properly diagnosed 

DM, when compared to those in the time period before the ACA was passed. 

Discussion 

Controlling for demographic characteristics, the association between insurance status and 

DM has not changed since the passage of the ACA. Those with insurance were still much more 

likely to have DM. A possible explanation for this finding is that many of the uninsured are 

young or in good health and do not feel pressure to purchase health insurance. DM prevalence 

also increases with age. In this sample, those with insurance are, on average, 11 years older than 

those without. Using only the NHANES dataset, it is not possible to determine the effect of 
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insurance on the development of DM. A longitudinal study that follows individuals over time 

could determine whether those who have insurance are less likely to develop DM in the future.  

There have not been any studies of this type conducted in the period after the ACA.  

The association between healthcare utilization and DM have not changed since the 

passage of the ACA. While a single yearly doctor’s visit was not significantly associated with 

having DM, it did significantly decrease the odds of being a missed patient. While this 

association has not been studied in among those who are undiagnosed with diabetes, a failure to 

receive annual Primary Care visits has been found to be associated with poorer outcomes and 

increased hospitalizations due to DM[65]. Although utilization above 2 visits was associated 

with an increased chance of having DM, this is expected due to more frequent doctor’s visits by 

diabetics. Diabetics, particularly those with a formal diagnosis, tend to have a much higher 

frequency of physician visits than those without DM[66]. Controlling for previous diagnosis 

might be a way to further explore this relationship. Future studies analyzing utilization should 

consider if subjects have a DM diagnosis.  

Having a USC and level of health services utilization do seem to be linked. Those with a 

USC generally had much higher utilization rates. However, it is still unclear if there is a causal 

pathway between USC and utilization. Like previous studies suggested, having a USC was more 

strongly related to having properly diagnosed diabetes than having health insurance [31, 34]. 

This could be due to the fact that many who are insured have high copays and do not visit the 

doctor enough to establish a USC. This would explain the lower diagnosis rates.  

A higher percentage of subjects had some form of health insurance after the ACA, 

compared to before. This implies that the legislation may have actually led to increased 

healthcare coverage, as it was intended to. Those without health insurance were much more 
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likely to be a missed patient, compared to those with any type of health insurance. If the trend of 

expanded healthcare coverage in the population continues, the prevalence of missed patients 

should continue to decrease.   

Those without insurance were less likely to go to the doctor or have a USC. We did not 

find evidence to support some earlier studies. Earlier studies found those that a USC alone 

improved access and outcomes, but the effect on DM diagnosis rates due to a USC was 

negligible [31]. The link between these factors and being a missed patient had not been 

previously studied. Although insurance, USC, and utilization all independently influenced 

missed patient status, none were found to be significant in an adjusted model.  

Before the ACA, those on Medicaid/Medigap were less likely to be missed patients than 

those with private health insurance. After the ACA, there was no perceptible increase in 

likelihood of having DM properly diagnosed. This contradicts the idea and previous evidence 

that Medicaid expansion lead to better care and more healthcare attention paid to vulnerable 

populations[67]. The failure of Medicaid expansion in some states and changes in funding could 

be responsible for this effect[68]. Although the geographical data collected by NHANES is 

restricted, study of the differences in missed patients and DM outcomes between Expansion and 

Non-Expansion states or different state-level policies could be informative. This would allow for 

a more specific assessment of policies.  

While we did not find any significant effects due to income other than in the bivariate 

model for DM, prior studies have found lower income to be associated with a greater probability 

of developing DM[18]. This could be because the binary indicator for income did not contain 

enough information to capture these differences or that there truly is no effect, particularly when 

other characteristics are accounted for.  



 
 

22 
 

There were significant disparities and differences in outcomes between races. Compared 

to whites, ethnic minorities were more likely to qualify as a missed patient after the passage of 

the ACA. While ethnic minority changes in missed patient status after the ACA has not been 

studied, a 2016 study found that access for minorities had increased overall[69]. There is no 

research concerning Diabetes outcomes for ethnic and racial minorities in the period after the 

ACA.  Future studies should place an increased focus on outcomes for minorities. Poorer 

outcomes for minorities are a common finding in this study, and targeted interventions are 

needed.  

While this sample does not show a significant difference in DM prevalence between the 

two time-periods, other estimates show that the overall prevalence of DM increased after the 

ACA[1]. Chronic diseases have long latent periods, and it is not realistic to expect any noticeable 

decrease or change in DM occurrence over such a short time period. The increased prevalence of 

DM should not be taken as an indicator that the ACA has been ineffective or has somehow 

contributed to DM cases.  

Controlling for all other relevant factors, ACA time-period was the only significant 

effect, meaning that the time After the ACA was the only factor related to a patient receiving a 

correct DM diagnosis. After the passage of the ACA, patients had lower odds of being a missed 

patient than before the ACA, signifying that the ACA may have had a positive effect on 

awareness of DM and willingness of physicians to screen for DM, even if the prevalence is 

increasing. This effect has not been studied before and is an important piece of evidence in 

determining if the ACA has generated a tangible change in DM diagnosis.  

Methodological Limitations 
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While some research exists concerning other biological measures, there have been no 

studies concerning the validity of the HbA1c results from NHANES[70]. Past studies have found 

that certain biological markers, particularly caloric data, measured by NHANES do not have 

good predictive validity[70]. However, since HbA1c is considered the gold standard for a single-

visit diagnosis of diabetes and past studies have found that DM can be accurately diagnosed from 

HbA1c data, it is reasonable to assume those measurements can be used to predict the presence 

or absence of DM. However, the validity of the NHANES HbA1c values are another matter 

entirely. A 2003 study found that data collected by the survey on blood lead levels suffered from 

widespread methodological errors and failed to approximate the actual population distribution 

levels of lead[71]. While there have been changes in the survey methodology since that time, 

there has been no research on how those changes may have led to better validity.  

Generalizing findings from analyses of NHANES biomarker data is common in the 

literature, but needs further study to ensure that it is valid to do so[72].   NHANES also does not 

select participants from nursing homes, the armed forces, prisons, or those living abroad[4]. As 

these groups make up a significant proportion of the population and ignoring them could lead to 

a lack of generalizability. 

There are also possible measurement issues. While HbA1c values should not be subject 

to bias, not all survey participants are tested and there may be significant differences between 

those tested and those who are not. The methods behind which subjects are tested and why are 

not made clear by the survey, and there is no ‘refused to participate’ or ‘not selected to 

participate’ categories in the laboratory data. NHANES does not provide any information or 

documentation on which participants are selected for blood testing. The particular wording of the 

survey questions could also lead to systematic bias, particularly if wording leads the participant 
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to believe that one response is more desirable than the other, and the self-reported nature of the 

diagnosis questions and much of the healthcare behavior data could be subject to widespread 

inaccuracy.  Primary issues in the questionnaire for this study include recall bias and 

unacceptability of a given response. [73] Whether or not a patient has been diagnosed with DM 

is not verified and based only on the response to a single question.  

Statistical Limitations 

Using retrospective data makes it difficult to establish causality. Future studies could use 

propensity scores and matching to determine causality, rather than just an association.  

Prospective studies could also establish causality.  

A limitation of the GEE method is that all missing values must be assumed to be missing 

completely at random(MCAR). Since there was a low frequency of missing data, and the missing 

values seemed to be evenly distributed and unassociated with any single category, the results 

should not have been significantly affected. Survey weights were not accounted for. Although 

some studies have found that discounting survey weights does not have inferential consequences, 

it still would have been preferable to include them.  

Conclusions 

Since the trends in DM are unlikely to change without massive, societal-level changes, 

focusing on strategies to prevent missed patients seems like a realistic policy focus. Identifying 

populations at risk of being missed patients and focusing efforts and programs in their direction 

will lead to earlier diagnosis and less complications and costs from the disease. Utilization, USC, 

and Insurance would be the best focuses for an intervention, as these are factors that can be 

influenced, unlike demographics. Physicians should be aware of factors that predispose a patient 

to having undiagnosed DM (non-white ethnicity, lower level of education, older age, being 
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uninsured, lack of a USC) and take steps to see if undiagnosed DM could be possible. Patients 

should be more regularly screened for DM. Increasing insurance coverage and encouraging 

regular doctor visits could seriously decrease the amount of undiagnosed cases of DM and the 

associated burden of care. 
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Table 4.1:  Descriptive statistics of socio-demographic, health behavior, and DM study 

variables.  

 
PRE ACA 

Count (%) 

POST ACA 

Count (%) 

TOTAL 

Count (%) 

Variable 15612(50.00%) 15613(50.00%) 31225(100%) 

Diagnosis    

      No 13513(20.08%) 13105(83.94%) 26618(85.25%) 

Yes 1801(11.54%) 2109(13.50%) 3910(12.52%) 

Missing 298(1.91%) 399(2.56%) 697(2.23%) 

Insured    

No 3740(23.95%) 3231(20.69%) 6971(22.33%) 

Yes 

Missing 

11861(75.97%) 

11(0.07%) 

12363(79.18%) 

19(0.12%) 

24224(77.59%) 

30(0.09%) 

Education    

Less than High 

School 

4541(29.09%) 3548(22.72%) 8089(25.91%) 

High School Grad 7963(51.01%) 8123(52.03%) 16086(51.52%) 

College Graduate 

Missing 

3086(19.77%) 

22(0.14%) 

3932(25.18%) 

10(0.06%) 

7018(22.48%) 

32(0.10%) 

Utilization    

0 2590(16.58%) 2567(16.44%) 5157(16.52%) 

1 2697(17.28%) 2795(17.90%) 5492(17.59%) 

2-3 

4-9 

10-12 

>13 

Missing 

4075(26.10%) 

3922(25.12%) 

1096(7.02%) 

1220(7.81%) 

12(0.08%) 

4379(28.05%) 

3890(24.92%) 

916(5.87%) 

1050(6.73%) 

16(0.10%) 

8454(27.07%) 

7812(25.02%) 

2012(6.44%) 

2270(7.27%) 

28(0.09%) 

   Diabetes     

No         13968(89.47%) 13714(87.84%) 27682(88.65%) 

         Yes 1644(10.53%) 1899(12.16%) 3543(11.35%) 

Insurance Type    

      Medicaid/Medigap 1223(7.83%) 1784(11.43%) 3007(9.63%) 

     Medicare 2812(18.01%) 2376(15.22%) 5188(16.61%) 

     None 3742(23.96%) 3239(20.75%) 6981(22.36%) 

     Other 

     Private 

     Missing 

1743(11.16%) 

6058(38.80%) 

34(0.22%) 

2232(14.30%) 

5902(37.80%) 

80(0.51%) 

3975(12.73%) 

11960(38.30%) 

114(0.37%) 

Usual Source of Care    

       No 2391(15.32%) 2542(16.28%) 4933(15.80%) 

Yes 

Missing 

13221(84.68%) 

0 

13071(83.72%) 

0 

26292(84.02%) 

0 

Health Condition    

        Poor/Fair 6267(40.14%) 6018(38.54%) 12885(39.37%) 

        Average 

       Good/Excellent 

5521(35.36%) 

3815(24.45%) 

5839(37.40%) 

3742(23.96%) 

11360(36.41%) 

7557(24.22%) 
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*Missing values included those who responded ‘Don’t Know’ or ‘Refuse to Answer’ 

Definitions: ACA- Affordable Care Act, SD- Standard Deviation, DM- Diabetes Mellitus 

        Missing 9(0.06%) 14(0.09%) 23(0.07%) 

Sex    

        Female 8057(51.61%) 8068(51.67%) 16125(51.64%) 

        Male 7555(48.39%) 7545(48.33%) 15100(48.36%) 

       Missing 0 0 0 

Ethnicity    

        Black 3017(19.32%) 3432(21.98%) 6449(20.65%) 

        Hispanic 4235(27.13%) 3828(24.52%) 8063(25.82%) 

        White 

        Other 

        Missing 

7641(48.94%) 

719(4.61%) 

0 

5942(38.06%) 

2411(15.44%) 

0 

13583(43.50%) 

3130(10.02%) 

0 

Income 

 Below Poverty Line 

Above Poverty Line 

Missing 

 

2852(18.27%) 

11439(73.27%) 

1321(8.46%) 

 

3219(20.62%) 

10939(70.06%) 

1455(9.32%) 

 

6071(19.44%) 

22378(71.67%) 

2776(8.89%) 

    

 Mean (SD) Mean (SD) Mean (SD) 

Age 49.5 (18.2) 49.1 (17.7) 49.3 (17.9) 
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Table 4.2: Multilevel marginal model regression coefficient estimates (p-values) for DM status with selected covariates (n=31,225)+. 
 

Variable Model 1 Model 2 Model 3 Model 4  Model 5 Model 6 Model 7 Model 8 

Fixed intercept -4.39 (.01) -4.47 (.01) -4.41 (.01) -5.10 (.002) -5.21 (.002) -4.96 (.001) -4.94 (.01) -4.99 (.003) 

Affordable Care Act 
    

    

After v. Before 0.02(.01) 0.22(.01) 0.22(.01) 0.21(.002) 0.22(.002) 0.23(.001) 0.15(.01) 0.17(.003) 

Age 
    

    

(in years) 0.04(<.0001) 0.04(<.0001) 0.04(<.0001) 0.03(<.0001) 0.04(<.0001) 0.04(<.0001) 0.04(<.0001) 0.04(<.0001) 

Sex(p-value) 
    

    

Female v. Male -0.17(<.0001) -0.25(<.0001) -0.25(<.0001) -0.27(<.0001) -0.28(<.0001) -0.29(<.0001) -0.31(<.0001) -0.33(<.0001) 

Utilization(p-value)  
   

    

1 visit v. no visits  -0.08(<.0001) -0.11(<.0001) -0.02(<.0001) 0.01(<.0001) 0.02(<.0001) 0.02(<.0001) 0.03(<.0001) 

2-3 Visits v. no visits  0.26(<.0001) 0.22(<.0001) 0.23(<.0001) 0.26(<.0001) 0.28(<.0001) 0.30(<.0001) 0.34(<.0001) 

4-9 Visits v. no visits  0.74(<.0001) 0.70(<.0001) 0.55(<.0001) 0.60(<.0001) 0.62(<.0001) 0.68(<.0001) 0.72(<.0001) 

10-12 Visits v. no visits  0.92(<.0001) 0.88(<.0001) 0.58(<.0001) 0.63(<.0001) 0.65(<.0001) 0.72(<.0001) 0.75(<.0001) 

>13 Visits v. no visits  0.77(<.0001) 0.73(<.0001) 0.36(<.0001) 0.42(<.0001) 0.45(<.0001) 0.56(<.0001) 0.61(<.0001) 

Usual Source of Care         

       No v Yes   -0.01(.29) -0.20(.01) -0.25(.004) -0.26(.003) -0.25(.004) -0.25(.03) 

Health condition         

       Good/Excellent v. Poor/Fair   1.17(<.0001) 1.60(<.0001) 1.50(<.0001) 1.39(<.0001) 1.42(<.0001) 

      Average v. Poor/Fair    0.94(<.0001) 0.93(<.0001) 0.88(<.0001) 0.81(<.0001) 0.83(<.0001) 

Insurance         

       No v. Yes     0.17(<.0001) 0.13(.001) 0.09(.01) 0.14(<.0001) 

Education          

      High School v. Less than High School     -0.12(<.0001) -0.006(.05) -0.02(.07) 

     College Graduate v. Less than High School     -0.36(<.0001) -0.23(.05) -0.23(.07) 

Ethnicity          
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     Black v Other       0.05(<.0001) 0.07(<.0001) 

     Hispanic v Other       -0.02(<.0001) 0.019(<.0001) 

     White v Other       -0.68(<.0001) -0.61(<.0001) 

Income         

     Above Poverty Line v. Below       -0.03(.62) 

QIC 20416.35 20074.16 20075.70 19036.59 19010.63 18957.36 18690.69 16774.19 

+Based on QIC, model 8 was selected 

Smaller QIC values indicate a better fitting model 

*Definitions: QIC- Quasi-Information Criterion, ACA- Affordable Care Act, CI- Confidence Interval, OR- Odds Ratio, 

DM- Diabetes Mellitus 
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Table 4.3: Model comparisons across correlation structures*. 

Variable 
Independence First-order 

Autoregressive 

Compound 

Symmetry 

Intercept            Estimate(p-value) Estimate(p-value) Estimate(p-value) 

        -4.99(<.0001) -3.04(<.0001) -4.99(<.0001) 

Affordable Care Act    

After v. Before 0.17(.003) 0.23(.05) 0.17(.003) 

Age    

(in years) 0.04(<.0001) 0.02(<.0001) 0.04(<.0001) 

Sex    

Female v. Male -0.33(<.0001) -0.23(<.0001) -0.34(<.0001) 

Utilization    

1 visit v. no visits 0.03(.53) 0.03(.15) 0.03(.54) 

2-3 Visits v. no visits 0.33(<.0001) .21(<.0001) 0.33(<.0001) 

4-9 Visits v. no visits 0.72(<.0001) 0.49(<.0001) 0.72(<.0001) 

10-12 Visits v. no visits 0.75(<.0001) 0.53(<.0001) 0.75(<.0001) 

>13 Visits v. no visits 0.60(<.0001) 0.42(<.0001) 0.60(<.0001) 

Usual Source of Care    

       No v Yes -0.24(.03) -0.14(.002) -0.25(.03) 

Health condition    

      Good/Excellent v. Poor/Fair 1.41(<.0001) 0.93(<.0001) 1.41(<.0001) 

       Average v. Poor/Fair 0.83(<.0001) 0.47(<.0001) 0.83(<.0001) 

Insurance    

       No v. Yes 0.14(<.0001) 0.06(<.0001) 0.14(<.0001) 

Education     

      High School v. Less than High 

School 

-0.02(.38) -0.04(.01) -0.02(.38) 

College Graduate v. Less than High 

School 

-0.23(.03) -0.17(.001) -0.23(.03) 

Ethnicity    

Black v Other 0.07(.31) 0.06(.16) 0.08(.30) 

Hispanic v Other 0.02(.71) 0.004(.89) 0.02(.68) 

White v Other -0.61(<.0001) -0.41(<.0001) -0.61(<.0001) 

Income    

Above Poverty Line v. Below -0.03(.62) -0.03(.50) -0.03(.63) 

QICµ 16773.27 19399.92 16773.28 

*Based on QICµ, an Independent correlation structure was chosen for the final model 

Smaller QIC values indicate a better fitting model 

Definitions: QIC- Quasi-Information Criterion, ACA- Affordable Care Act, USC- Usual Source of Care, DM- 

Diabetes Mellitus 
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Table 4.4: Final multivariable multilevel marginal model for the association between DM status 

with selected covariates (n=31225). 

Variable Bivariate  Multivariable  

 Unadjusted OR(95%CI) p-value Adjusted OR (95%CI) p-value 

ACA  .07  .09 

After 1.77(0.99,1.40)  1.90(1.06,1.33)  

Before Reference  Reference   

Sex  <.0001  .02 

Female 0.83(0.78,0.89)  0.72(0.67,0.76)  

Male Reference  Reference  

Utilization  <.0001  .31 

No Visits Reference  Reference  

1 Visit 1.03(0.99,1.07)  1.03(0.93,1.14)  

2-3 Visits  1.77(1.55,2.03)  1.40(1.26,1.55)  

4-9 Visits 3.34 (3.23,3.44)  2.06(1.88,2.27)  

10-12 Visits 3.99 (3.83,4.15)  2.12(1.96,2.29)  

>13 Visits 3.28(2.93,3.67)  1.83(1.61,2.08)  

Usual Source of Care   <.0001  .03 

       No Reference  Reference  

       Yes 2.37(2.07,2.73)  1.28(1.03,1.59)  

Health condition  <.0001  .05 

      Good/Excellent 6.52(5.68,7.48)  4.82(4.26,5.45)  

       Average 2.79(2.51,3.11)  2.45(2.22,2.71)  

     Poor/Fair Reference  Reference  

Insurance  <.0001  .02 

       No Reference  Reference  

     Yes 1.51(1.44,1.58)  1.21(1.17,1.26)  

Education   <.0001  .05 

      College Graduate 0.39(0.36,0.42)  0.79(0.64,0.97)  

   High School Graduate 0.60(0.58,0.68)  0.97(0.93,1.03)  

    Less than High School  Reference  Reference  

Ethnicity  <.0001  .11 

Black 1.88(1.63,2.16)  1.88(1.68,2.12)  

Hispanic  1.72(1.52,1.97)  1.99(1.75,2.26)  

Other  1.35(1.18,1.56)  1.85(1.66,2.05)  

White Reference  Reference  

Income  .0007  .28 

Above Poverty Line 0.76(0.65,0.89)  0.97(0.86,1.10)  

Below Poverty Line Reference  Reference  

Insurance Type  <.0001   

Medicaid/Medigap  2.17(1.86,2.53)    

Medicare 2.79(2.64,2.96)    

None 1.05(0.96,1.14)    

Other 1.50(1.31,1.70)    

Private Reference    

A Marginal Model with Generalized Estimating Equations was used to account for clustering within year; 

probability of Diabetes is modeled  

ǂWald 𝜒2 test, at α=0.05 

Missing Data: Diagnosis (N=697), Insurance (N=30), Education (N=32), Utilization (N=28), Diabetes (N=0), 

Insurance Type (N=114), USC (N=0), Health Condition (N=23), Sex (N=0), Ethnicity (N=0), Income 

(N=2776), Age (N=0) 

Definitions: ACA- Affordable Care Act, CI- Confidence Interval, OR- Odds Ratio, DM- Diabetes Mellitus  
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Table 4.5: Descriptive statistics of study variables by DM diagnosis before and after the ACA 

(n=3394). 

 

 

PRE 

n= 

ACA 

1579 

POST 

n=  

ACA 

1815 

 Diagnosed Diagnosed 
 Yes No Yes No 

Variable 1157(73.27%) 422(26.73%) 1428(78.68%) 387(21.32%) 

Insured     

No 184(64.79%) 100(35.21%) 183(65.83%) 95(34.17%) 

Yes 973(75.91%) 321(24.81%) 1243(81.03%) 291(18.97%) 

Education     

Less than High School 500(74.18%) 174(25.82%) 481(78.59%) 131(21.41%) 

High School 530(72.11%) 205(27.89%) 704(78.57%) 192(21.43%) 

College Graduate 125(74.50%) 43(25.60%) 240(79.21%) 63(20.79%) 

Utilization     

0 41(31.78%) 88(68.22%) 54(36.00%) 96(64.00%) 

1 60(45.45%) 72(54.55%) 104(61.18%) 66(38.82%) 

2-3 

4-9 

10-12 

>13 

258(73.30%) 

469(80.72%) 

160(82.05%) 

167(88.83%) 

94(26.70%) 

112(19.28%) 

35(17.95%) 

21(11.17%) 

350(81.59%) 

592(85.55%) 

162(87.10%) 

164(88.17%) 

79(14.45%) 

100(12.90%) 

24(12.90%) 

22(11.83%) 

Insurance Type     

     Medicaid/Medigap 151(80.32%) 37(19.68%) 232(82.27%) 50(17.73%) 

     Medicare 384(75.59%) 124(24.41%) 397(84.47%) 73(15.53%) 

     None 184(64.79%) 100(35.21%) 184(65.71%) 96(34.29%) 

     Other 

     Private 

297(70.88%) 

140(80.00%) 

122(29.12%) 

35(20.00%) 

388(77.29%) 

223(81.09%) 

114(22.71%) 

52(18.91%) 

Usual Source of Care     

       No 46(35.94%) 82(64.06%) 72(54.94%) 64(47.06%) 

Yes 1111(76.57%) 340(23.43%) 1356(80.76%) 323(19.24%) 

Health Condition     

        Poor/Fair 153(61.20%) 97(38.80%) 165(63.71%) 94(36.29%) 

        Average 

       Good/Excellent 

366(68.67%) 

637(80.13%) 

167(31.33%) 

158(19.87%) 

513(75.78%) 

749(85.31%) 

164(24.22%) 

129(14.69%) 

Sex     

        Female 574(75.23%) 189(24.77%) 656(76.28%) 204(23.72%) 

        Male 583(71.45%) 233(28.55%) 772(80.84%) 183(19.16%) 

Ethnicity     

        Black 316(74.53%) 108(25.47%) 376(77.21%) 111(22.79%) 

        Hispanic 359(71.09%) 146(29.91%) 437(78.18%) 122(21.82%) 

        Other 55(73.33%) 20(26.67%) 184(71.32%) 74(28.68%) 

        White 427(74.26%) 148(25.74%) 431(84.34%) 80(15.66%) 

Income     

Above Poverty Line 786(72.58%) 297(27.42%) 909(78.84%) 244(21.16%) 

Below Poverty Line 239(73.77%) 85(26.23%) 364(77.94%) 103(22.06%) 

Missing Data: Insurance(n=4), Insurance Type(n=10), Education (N=6), Utilization (N=4), Usual Source 

of Care (N=0), Health Condition (N=2), Sex (N=0), Ethnicity (N=0), Income (N=367) 



 
 

37 
 

 

 

Table 4.6: Final multivariable multilevel marginal model of an indicator of properly diagnosed DM with 

selected covariates (n=3394). 

Variable Bivariate  Multivariable  

 Unadjusted 

OR(95%CI) 

p-valueǂ Adjusted OR (95%CI) p-valueǂ 

ACA  .003  .04 

After 1.34 (1.10,1.64)  1.51(1.24,1.85)  

Before Reference  Reference   

Sex  .69  
 

Female 0.96 (0.71,1.17)  
 

 

Male Reference  
 

 

Utilization  <.0001  .31 

No Visits Reference  Reference  

1 Visit 2.30(1.82,2.90)  2.19(1.63,2.94)  

2-3 Visits  1.77(1.55,2.03)  5.99(4.82,7.47)  

4-9 Visits 9.69(8.30,11.32)  8.16(7.03,9.47)  

10-12 Visits 10.57(8.69,12.86)  8.31(7.06,9.79)  

>13 Visits 14.90(10.91,20.37)  10.72(8.55,13.45)  

Usual Source of Care   <.0001  .07 

       No Reference  Reference  

       Yes 4.60(3.50,6.05)  1.64(1.09,2.48)  

Health condition  <.0001  .06 

      Good/Excellent 2.90(2.40,3.50)  2.42(1.88,3.11)  

       Average 1.60(1.37,1.85)  1.38(1.11,1.71)  

     Poor/Fair Reference  Reference  

Insurance  <.0001  .34 

       No Reference  Reference  

     Yes 1.92(1.59,2.33)  2.76(2.30,3.81)  

Education   .06  
 

      College Graduate 1.11(0.97,1.26)  
 

 

     High School Graduate 1.03(0.87,1.14)  
 

 

    Less than High School  Reference  
 

 

Ethnicity  .05  .41 

Black 0.84(0.67,1.06)  0.78(0.60,1.00)  

Hispanic  0.79(0.61,1.02)  0.89(0.64,1.25)  

Other  0.68(0.47,0.97)  0.75(0.55,1.03)  

White Reference  Reference  

Income  .82  
 

Above Poverty Line 1.02(0.84,1.25)  
 

 

Below Poverty Line Reference  
 

 

Insurance Type  <.0001  .69 

Medicaid/Medigap  1.52(1.14,2.02)  0.85(0.63,1.16)  

Medicare 1.37(1.17,1.60)  0.99(0.82,1.21)  

None 0.65(0.53,0.79)  0.39(0.32,0.48)  

Other 1.44(1.25,1.65)  1.02(0.93,1.14)  

Private Reference  Reference  

A Marginal Model with Generalized Estimating Equations was used to account for clustering within year; 

probability modeled was whether diabetic subjects had a proper diabetes diagnosis 
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ǂWald 𝜒2 test, at α=0.05 

Missing Data: Insurance(n=4), Insurance Type(n=10), Education (n=6), Utilization (n=4), Usual Source of 

Care (n=0), Health Condition (n=2), Sex (n=0), Ethnicity (n=0), Income (n=367) 

Definitions: ACA- Affordable Care Act, CI- Confidence Interval, OR- Odds Ratio, DM- Diabetes Mellitus  
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