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RESIDUAL NORMALITY ASSUMPTION AND THE ESTIMATION OF  

MULTIPLE MEMBERSHIP RANDOM EFFECTS MODELS 
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JIERU CHEN 
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ABSTRACT 

Data collected in the human and biological sciences often have multilevel structures. 

While conventional hierarchical linear modeling is applicable to purely hierarchical data, 

multiple membership random effects modeling is appropriate for non-purely nested data wherein 

some lower-level units manifest mobility across higher-level units. Fitting a multiple 

membership random effects model (MMrem) to non-purely nested data may account for lower-

level observation interdependencies and the contextual effects of higher-level units on the 

outcomes of lower-level units. One important assumption in multilevel modeling is normality of 

the residual distributions. Although a few recent studies have investigated the effect of cluster-

level residual non-normality on hierarchical linear modeling estimation for purely hierarchical 



 
 

 
 

data, no research has examined MMrem robustness issues given residual non-normality. The 

purpose of the present research was to extend prior research on the influence of residual non-

normality from purely nested data structures to multiple membership data structures. To 

investigate the statistical performance of an MMrem when the level-two residual distributional 

assumption was unmet, this research inquiry employed a Monte Carlo simulation study to 

examine two-level MMrem fixed effect and variance component parameter estimate biases and 

inferential errors under a fully crossed study design. Simulation factors included the level-two 

residual distribution, number of level-two clusters, number of level-one units per cluster, intra-

cluster correlation coefficient, and mobility rate. The generating parameters for the Monte Carlo 

simulation study were based on an analysis of a subset of the newly-released publicly-available 

data of the Early Childhood Longitudinal Study, Kindergarten Class of 2010-11. By building 

upon previous MMrem methodological studies, this research inquiry sought answers to the 

following questions: When the level-two residual normality assumption was violated, (1) how 

accurate were MMrem fixed effect and variance component parameter estimates, and (2) what 

sample size was adequate with respect to MMrem estimation? The findings should be useful for 

research in education, public health, psychology, and other fields, and contribute to the literature 

on the importance of residual normality for the accuracy of MMrem estimates. 

 

INDEX WORDS: Multiple membership random effects model, Residual normality, Monte Carlo 

simulation  
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CHAPTER 1 

INTRODUCTION 

Background 

In education, psychology, medicine, epidemiology, sociology, and other fields, research 

inevitably studies individual-level outcomes of interest in assessments of the relationship 

between individuals and their environments. For example, educational researchers interested in 

assessing student academic progress often must account for school-level factors, and veterinary 

epidemiologists investigating the outbreak of avian influenza pay careful attention to flocks of 

chickens within poultry farms in certain geographic areas. In these types of research, the 

individual subjects (or lower-level units, such as students in educational studies) and their 

environments (higher-level units, such as schools) are conceptualized as a system in which the 

individuals and environments interact. Accordingly, data in social and other sciences manifest 

frequently in various multilevel structures. Some multilevel data structures can be nested purely 

and strictly hierarchically, wherein a lower-level unit is a member of exactly one higher-level 

unit. This common group affiliation of lower-level units within a higher-level unit entails 

interdependencies amongst the lower-level units. These interdependencies in purely hierarchical 

data can be modeled using the conventional hierarchical linear modeling techniques (e.g., 

Raudenbush & Bryk, 1986, 2002). 

However, researchers also encounter more complex multilevel data when studying 

equally complex social structures, including those in education. In the educational context, for 

example, a student may spend a portion of his/her elementary school years in one school and 

then transfer to another before entering middle school. Therefore, that student has been exposed 

to the educational effects of the elementary schools attended initially and subsequently. In a 
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given school, a subset of students may switch school membership for various reasons and can 

make the move at any time in a school year. It also is possible for students to switch schools 

multiple times. Data from the Early Childhood Longitudinal Study, Kindergarten Class of 2010-

11 (ECLS-K: 2011; Tourangeau, Nord, Lê, Wallner-Allen, Vaden-Kiernan, Blaker, & Najarian, 

2017), which was released recently, showed that approximately 17% of the U.S. students 

sampled changed schools between the fall of kindergarten and the spring of second-grade. This 

type of student mobility has been prevalent over the past decades. A 1994 report issued by the 

U.S. Government Accounting Office revealed similar non-purely nested relationships between 

students and schools. On average, 15% of suburban and 25% of urban students had changed 

schools at least once from first to third grade, and 40% of students who made school transfers 

had attended three or more schools. In some urban elementary schools, as many as 50% of the 

students made school transfers during one school year (Lash & Kirkpatrick, 1994). Complex 

multilevel data structures are also abundant in other disciplines, including psychology, 

preventive veterinary medicine, and economics. Some examples of data structures where some 

lower-level units do not nest strictly within one higher-level unit include patients being cared for 

by multiple doctors, individuals participating in multiple programs, and persons engaging with 

multiple neighborhoods. When all lower-level units are classified by multiple higher-level units 

jointly, the data structure is said to be cross-classified; when some lower-level units have 

memberships in multiple higher-level units, the data structure is called a multiple membership 

data structure. 

Conventional hierarchical linear modeling techniques are inappropriate for the multiple 

membership data structures, because those techniques oversimplify the mathematical models by 

ignoring the mobility of the lower-level units. To address the relationship between certain lower-
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level units with more than one higher-level unit more appropriately, Hill and Goldstein (1998) 

developed multiple membership random effects modeling. Multiple membership random effects 

models extend the conventional hierarchical linear models to permit a detailed decomposition of 

total variance into each contributing higher-level unit and the lower-level unit, thus preventing 

incorrect shifting of variability from one level to another. These multiple membership models are 

especially suitable in education and other social science research to study outcomes of interest 

while accounting for contextual effects that often exert influences on individuals who belong to 

those contextual environments. Under certain modeling assumptions, the multiple membership 

random effects model (MMrem) enables one to account for the changing membership of some of 

the lower-level units and the cumulative contextual effects associated with the cross-classifying 

higher-level units. Using an MMrem, educational researchers can better differentiate the 

academic achievement patterns of mobile and non-mobile students, and similarly, health 

scientists can assess more accurately the outcomes of patients in the care of multiple healthcare 

professionals. Given the broad range of applications and abundant opportunities for modeling 

complex multilevel data, researchers in various fields have used multiple membership random 

effects modeling techniques increasingly in recent years to account for the effect of multiple 

higher-level units over time (e.g., Elghafghuf, Stryhn, & Waldner, 2014; Goldstein, Rasbash, 

Browne, Woodhouse, & Poulain, 2000; Leckie, 2009; Morgan-Lopez & Fals-Stewart, 2006; 

Timmermans, Snijders, & Bosker, 2013). 

Research Questions 

The use of an MMrem has increased in empirical research, and methodological research 

of multiple membership random effects modeling techniques has progressed concomitantly. For 

example, using longitudinal physical and mental health outcomes, Chandola, Clarke, Wiggins, 
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and Bartley (2005) obtained less biased fixed effect and variance component parameter estimates 

when individual mobility was modeled appropriately. In the educational context, Goldstein, 

Burgess, and McConnell (2007) compared MMrem and traditional value-added approaches that 

ignore pupil mobility, and concluded that failure to consider student mobility led to 

underestimation of school-level effects. Chung and Beretvas (2012) extended this line of 

research and found that ignoring student mobility produced a substantial negative bias in the 

estimates of student- and school-level variance components. Further, the estimates of school-

level predictor coefficients were biased and the severity of bias was proportional directly to the 

percent of mobile students. Researchers (e.g., Wolff Smith & Beretvas, 2014b, 2015) have also 

examined the precision of MMrem fixed effect and variance component parameter estimates and 

the effect of using various weighting schemes. Using observed data (which will henceforth be 

referred to as real data) and simulated data, scholars (Grady & Beretvas, 2010; Leroux, 2014; 

Leroux & Beretvas, in press) further elucidated the consequences of ignoring multiple 

membership when assessing student academic growth over time. These studies have sought to 

ascertain the statistical performance of MMrems under the residual normality assumption. 

As in ordinary multiple regression analyses, the residual normality assumption is a 

critical model assumption for multilevel analyses. This assumption is related to the assumption 

that the sample size at each level is sufficiently large, because the multilevel analysis techniques 

conducted commonly are asymptotic, indicating that model estimates are reasonable given a 

large sample size. Violation of these assumptions in a purely nested multilevel modeling case has 

been evaluated in some studies that have shown that such a violation leads to biased fixed effect 

and variance component parameter estimates, lower statistical power, and inflated Type I error 

rates under certain conditions (e.g., Maas & Hox, 2004a, 2005; McNeish & Stapleton, 2016b; 
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Schoeneberger, 2016; Seco, Garcia, M. A., Garcia, & Rojas, 2013). On the other hand, in the 

case of multiple membership modeling, no known studies have investigated the robustness of 

model parameter estimates in the presence of residual non-normality. Specifically, for the 

method of MMrem estimation used commonly, Markov chain Monte Carlo (MCMC; Metropolis, 

Rosenbluth, Rosenbluth, Teller, & Teller, 1953), little is currently known about the direction and 

severity of estimation bias when the residual normality assumption is violated, which may lead 

to erroneous fixed and random effect parameter estimates. 

In purely hierarchical multilevel modeling, studies have shown that small sample sizes 

and residual non-normality both lead to a severe downward bias in variance components and 

their standard error estimates (Maas & Hox, 2004a). To address this issue, some sample size 

guidelines for purely hierarchical linear models have been proposed. For example, guidelines 

cited often stipulate that at least 10 level-two clusters with 30 level-one subjects in each cluster 

are required for accurate fixed effects and standard errors, 30 clusters for accurate random 

effects, and 50 clusters for accurate random effects and their standard errors (Maas & Hox, 

2004b; McNeish & Stapleton, 2016a, 2016b; Pacagnella, 2011). Despite studies that have shown 

to various degrees the sensitivity of purely multilevel model analyses to model assumption 

violations, investigation of the effects of sample size on the MMrem when residual normality 

assumption is violated is lacking. At present, it is unclear how efficient the estimation of model 

parameters, standard errors, and Type I error are when an MMrem is used while the sample size 

and level-two residual normality assumptions are violated. 

The lack of methodological research with respect to model assumption violation when an 

MMrem is used, coupled with its increasingly frequent application in education and other 

sciences, motivated this investigation of the MMrem’s performance in analyzing multiple 
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membership data structures. This research inquiry focused on fixed and random effect parameter 

biases and precision in the presence of level-two residual non-normality and varying sample 

sizes in two-level MMrem analyses, and addressed the following research questions: 

(1) How accurate were MMrem fixed effect and variance component parameter estimates 

when the level-two residual normality assumption was violated? 

(2) What sample size, especially cluster-level sample size, was adequate with respect to 

model fixed effect and variance component parameter estimates when the assumption of level-

two residual normality was unmet? 

Statement of Purpose 

The primary purpose of this study was to ascertain the importance of the level-two 

residual normality assumption to the accuracy of MMrem parameter estimates and their standard 

errors. Similar to the case of purely nested data multilevel modeling, an important issue in 

applying the MMrem often is the restriction in higher-level sample sizes. Therefore, this study 

also examined the effect of different sample sizes on model estimation under various level-two 

residual distributional assumptions. In applied research, when sample size is small or the 

measures of the outcome variable exhibits non-normality, level-two residuals could be non-

normal (Carpenter, Goldstein, & Rasbash, 2003; Maas & Hox, 2004a, 2004b; Seco et al., 2013; 

Wang, Carpenter, & Kepler, 2006). Building on the work of prior research on level-two residual 

normality assumption violation in the purely hierarchical multilevel modeling setting, this 

research inquiry was designed to extend current understanding of the influence of the level-two 

residual distribution and sample size to the analyses of multiple membership data structures. 

Specifically, model parameters and their standard error estimates were examined to discern the 

robustness of MMrem parameter estimates under different combinations of the level-two residual 
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distributional assumptions and sample size conditions. By simulating realistic degrees of student 

mobility and violations of level-two residual normality assumption, this research inquiry was 

designed to quantify potential biasing effects and inferential errors that may be introduced when 

level-two residual normality assumption was violated in the analysis of multiple membership 

data structures. 

Significance of the Study 

An understanding of the bias in MMrem fixed effect and variance component parameter 

estimates when model assumptions are violated is crucially important in two respects. In the 

context of educational research, accurate estimates of student academic performance are an 

important individual-level measure that has far-reaching consequences. Although many 

researchers have examined student academic performance in the presence of mobility, research 

findings have been mixed. Leckie (2009) considered the influence of student mobility on 

academic achievement by taking into account the series of schools attended by mobile students, 

not just the last attended school. His results demonstrated a negative relationship between 

academic achievement and student mobility. Similarly, South, Havnie, and Bose (2007) found 

that student mobility was amongst the many risk factors for educational deficiencies in U.S. 

secondary schools. While some of the differences in educational performance between mobile 

and non-mobile students were found to be a function of preexisting differences in socioeconomic 

and background characteristics, the authors noted a growing body of research that has 

demonstrated the significant detrimental effects of student mobility on a range of educational 

outcomes. On the other hand, studies that control for risk factors (e.g., family income and prior 

achievement) known to be related to lower educational outcomes concluded that student mobility 

had little or no effect on academic achievement (Heinlein & Shinn, 2000; Strand & Demie, 2006, 
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2007), and that low academic achievement at a younger age foreshadowed student mobility 

(Alexander, Entwisle, & Dauber, 1996; Wright, 1999). Consistently absent from these studies is 

an assessment of the residual distributional assumption. It is unclear whether any model 

assumption violation existed and whether an unmet residual normality assumption could have 

played a role in the mixed findings. 

Yet another aspect of educational research underscores the importance of accurate 

MMrem fixed effect and variance component parameter estimates. With the increasing emphasis 

on school accountability, researchers have applied modeling techniques to model multiple 

membership in their value-added or school effectiveness models in an attempt to isolate teachers’ 

or schools’ contributions to student achievement. These models typically evaluate students’ 

progress between measurements to determine the extent to which variation between students is 

attributable to different school effects (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 

2004). In a study that modeled school and neighborhood effects on student academic 

achievement, Leckie (2009) reported that the comparison of school effects was sensitive to 

whether student mobility was modeled. While some prior research has compared results between 

modeling appropriately and ignoring multiple membership data structures, it is unclear whether 

the authors attended to model assumption requirements and whether any potential caveat exists if 

a model assumption is violated. 

When examining fixed effect and variance component parameter estimates using real 

data analyses, researchers cannot assess parameter recovery fully because the true parameters 

often are unknown. No simulation studies to date have investigated the accuracy of MMrem 

fixed effect and variance component parameter estimates when level-two residual normality 

assumption is violated. Thus, through a Monte Carlo simulation study, this research inquiry was 
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designed to fill a gap in gaining insights about the influence of level-two residual non-normality 

that could occur in real data analyses. In addition, this research study should have practical 

significance in shedding some light about the effects of insufficient multilevel sample sizes on 

MMrem performance under a variety of conditions including when level-two residual normality 

assumption is unmet. 

Study Overview  

To evaluate the influences of the level-two residual distribution and sample size 

assumptions on the accuracy of MMrem parameter estimates, this dissertation presents a 

literature review of multilevel modeling, the influence of violation of residual normality 

assumption, and insufficient sample sizes on purely hierarchical linear models in Chapter 2. In 

Chapter 3, the methodology of a Monte Carlo simulation study using a two-level conditional 

MMrem that included both level-one and level-two predictors is presented. In this simulation 

study, the generating parameters of the MMrem were derived from a real data analysis of a 

subset of the ECLS-K: 2011 student achievement data. Prior research in appropriately modeling 

multiple membership data structures informed the selection of simulation conditions. The 

simulation entailed varying the type of level-two residual distribution, number of clusters, 

number of units per cluster, size of the intra-cluster correlation coefficient, and the rate of lower-

level unit mobility. Under fully crossed simulation conditions, the fixed effect and variance 

component parameter values were estimated using MCMC estimation. The accuracy of MMrem 

fixed and random effect parameter estimates derived across these simulation conditions was 

investigated by analyzing bias and variability in parameter estimates using various measures 

(e.g., relative parameter bias, coverage rates of the 95% credible intervals, root mean square 

errors of the parameters). Simulation data analysis results are presented and summarized in 
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Chapter 4. In Chapter 5, analysis results obtained from this simulation study and reported in 

Chapter 4 are discussed with reference to the findings of previous investigations of the influence 

of residual non-normality on purely hierarchical multilevel modeling. Chapter 5 also offers a 

discussion of the implications, limitations, and suggestions for future MMrem methodological 

research.  
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CHAPTER 2 

REVIEW OF THE LITERATURE 

Introduction to Multilevel Modeling 

In many disciplines, multilevel data are typical rather than exceptional. In cross-sectional 

educational research, for example, a multistage survey produces observations of students who are 

nested within classrooms and, in turn, nested within schools. Multilevel data are used regularly 

in other fields as well. In epidemiology, outbreaks of diseases are investigated commonly with 

respect to the individuals infected, their communities, and geographic areas; in organizational 

studies, observations of employees are analyzed jointly with respect to their characteristics and 

those of their employers; and in medical research, patients are nested within physicians, 

departments, and hospitals. Clustered data also may be encountered in meta-analyses in which 

subjects are nested within studies, or in longitudinal studies in which a series of repeated 

measures collected over time are nested within study participants. Compared to ordinary 

modeling (e.g., some methods in the generalized linear regression family), the analysis of 

multilevel data presents particular problems in model specification. The problem of “ecological 

fallacy” (Hox, 2002; Piantadosi, Byar, & Green, 1988; Robinson, 1950; Selvin, 1958), a problem 

associated with data clustering, is known well in research that uses multilevel data. This problem 

refers to drawing invalid conclusions in which characteristics of individuals are inferred 

incorrectly from data about the clusters, or results obtained at the ecological level are transferred 

to the individual level. Another reciprocal problem concerns the “individualistic fallacy,” in 

which one fails to recognize the effects of the context within which the individuals interact 

(Alker, 1969). Both of these fallacies fail to preserve the complex relationships in multilevel 

data. Without special attention to the lack of independence among measurements in clustered 
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data, erroneous results may be obtained. Ordinary statistical analytical techniques are inadequate 

to analyze multilevel data (Burstein, 1980; Kreft & de Leeuw, 1998), and thus may lead to 

information loss, reduced statistical power, and finding significant relationships where none 

exist. 

A multilevel methodological perspective establishes a suitable framework to address 

these concerns. Techniques for the analysis of multilevel data have been evolving. Following 

some earlier work with longitudinal data (Goldstein, 1979) and complex survey samples (Holt, 

Smith, & Winter, 1980), additional methodological development (e.g., Bryk & Raudenbush, 

1992; Raudenbush & Bryk, 1986, 2002) has permitted researchers not only to address the 

complexity in analyzing nested data, but also assess the contextual effects of the clustering units 

to which the lower-level units belong. Multilevel modeling techniques use the strengths of the 

hierarchical data structure fully, and enable estimation of variance at each level while taking into 

consideration the characteristics of within-cluster homogeneity. Many scholars (e.g., Aitkin & 

Longford, 1986; Goldstein, 1987, 2011a; Hox, 2010; Snijders & Bosker, 1999, 2012) have 

discussed thoroughly the importance of applying multilevel models to multilevel data. 

Conceptually, multilevel modeling techniques can be viewed as a hierarchical system of 

regression equations in which coefficients at a lower level are functions of higher-level 

predictors. These techniques are particularly useful for research questions such as those 

concerning educational effectiveness. Because they permit the simultaneous examination of the 

effects of predictor variables at each level of the data structure, multilevel modeling techniques 

have prominent applications in research on student achievement, which typically is modeled as 

the outcome of a combination of student, classroom, and school characteristics. The advantage of 

being able to take into account the nested data structures appropriately, and partition outcome 
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variability at each level of the hierarchy explicitly, allows a more accurate educational 

evaluation. In addition, the advantage of being able to estimate latent traits at various levels has 

theoretical and practical importance. This is particularly true in research for the purposes of 

accountability. Many applications can be found in state standards-based assessments that provide 

insight at both the student and school levels (Lane, Parke, & Stone, 2002). 

Purely Nested Data Structures and Analysis 

Multilevel data can manifest in a purely nested structure. When each lower-level unit is 

nested in exactly one higher-level cluster, the data are said to be nested purely. For instance, in 

some family research, a child is considered to be associated with one household. A similar data 

structure also can be seen in some school research, such as value-added modeling that 

distinguishes a teacher’s influence from that of other factors (e.g., student ability, family 

background, prior achievement level, school resources, and peer influence). This kind of research 

on teacher effectiveness considers that a group of students “belongs” to one teacher. As lower-

level units (here, the students) that are nested in higher-level units (teachers) tend to be correlated 

(Goldstein, 1987, 2003; Longford, 1993; Raudenbush & Bryk, 1986, 2002; Snijders & Bosker, 

1999), the correlation of the lower-level units renders the assumption of independent 

observations in ordinary modeling untenable (Maxwell & Delaney, 2004; Pedhazur, 1997; 

Stevens, 2009). Table 1 depicts a purely nested data structure of students (represented by lower 

case letters) nested cleanly in schools (represented by upper case letters).  
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Table 1 

Students Nested in a Purely Hierarchical Multilevel Data Structure 

School 

A B C D 

a, b, c, d, e, f    

 g, h, i   

  j, k, l, m, n, o  

   p, q, r, s, t 

Note. Lower-case letters represent students. 

 

 

 

Analysis of purely nested multilevel data designed to separate out effects that are 

attributable to the influences at these hierarchical levels is achieved best using hierarchical linear 

modeling techniques. Hierarchical linear modeling is an extension of ordinary least squares 

regression that takes into consideration the interdependencies of the lower-level units. By 

allowing the decomposition of outcome and predictor variance into within- and between-unit 

components, application of hierarchical linear modeling reduces the risk of producing downward 

biased variance estimates (Aitkin & Longford, 1986; Raudenbush & Bryk, 1986) and inflated 

Type I errors (Kreft & de Leeuw, 1998; Guo & Zhao, 2000; Hox, 2010; Snijders & Bosker, 

1999). Hierarchical linear modeling enables the analysis of both fixed and random effects, in 

which random effect estimates reflect the residual variability not explained by fixed effects 

(Agresti, Booth, Hobert, & Caffo, 2000; Aitkin & Longford, 1986; Raudenbush & Bryk, 1986, 

2002; Snijders & Bosker, 1999).  

Two-level hierarchical linear models. For purely nested data structures, such as those in 

the teacher effectiveness research example noted above (students can be nested only within one 

teacher when multiple teachers are included in the sample), a two-level hierarchical linear model 
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(HLM) can be employed to estimate academic performance. It can account for the shared 

variance within teachers and provide a way to analyze the purely nested data accurately. 

Typically, an HLM is performed in two steps, in which the first step is for estimating an 

unconditional HLM that does not include any predictors. Estimates obtained from an 

unconditional HLM are used to calculate the intra-cluster correlation coefficient (ICC). A 

substantial ICC is indicative of the need for a second step, estimating a conditional HLM in 

which variability that may be attributable to level-one and -two characteristics can be 

investigated further. 

Unconditional hierarchical linear models. A two-level unconditional HLM at level-one, 

using notation introduced by Raudenbush and Bryk (2002) is: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑒𝑖𝑗, (1) 

where Yij is the outcome score for level-one unit i which is nested in level-two unit j, β0j is the 

average outcome for all level-one units nested in level-two unit j, and eij is the level-one residual 

associated with level-one unit i nested within level-two unit j. Level-one residuals eij are assumed 

to be independently and normally distributed with a mean of zero and a constant variance, 𝜎2, 

which is notated as eij ~ N(0, σ2). 

At level-two, the unconditional model is as follows: 

 𝛽0𝑗 = 𝛾00 +  𝑢0𝑗, (2) 

where γ00 is the overall average outcome scores across all level-one and -two units. The level-two 

residuals are expressed in the term u0j which is the random effect of level-two unit j. Random 

effect u0j is assumed to be normally and independently distributed with a mean of zero and 

variance, 𝜏00, which is notated as u0j ~ N(0, τ00). In addition, the covariance between eij and u0j is 

assumed to be zero. 
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With this unconditional HLM, one can calculate the ICC, which is defined as the 

proportion of total variance (σ2 + τ00) in the outcome that is attributable to variability amongst the 

level-two units: ICC = 
𝜏00

𝜎2 + 𝜏00
. 

Conditional hierarchical linear models. To assess the effects of predictor variables at 

level-one and -two simultaneously in a purely hierarchical data structure to explain variability in 

the outcome further, level-one and -two variables can be included in the two-level unconditional 

HLM to develop a conditional HLM. A researcher may hypothesize that a student-level 

characteristic, 𝑋𝑖𝑗, is related to an academic outcome and that a teacher-level indicator, 𝑍𝑗, may 

explain some of the outcome variability. A corresponding two-level conditional HLM has the 

following parameterization at level-one: 

 𝑌𝑖𝑗 = 𝛽0𝑗 +  𝛽1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗, (3) 

and the model at level-two is: 

 {
𝛽0𝑗 = 𝛾00 + 𝛾01𝑍𝑗 + 𝑢0𝑗

𝛽1𝑗 = 𝛾10  + 𝛾11𝑍𝑗 + 𝑢1𝑗
, (4) 

where γ00 represents the average outcome when both student- and teacher-level predictors are 

zero; γ01 is the average change in the intercept per unit change in Zj, controlling for Xij; γ10 

characterizes the change in the outcome per unit change in Xij, controlling for Zj; and γ11 

indicates the influence of teacher-level variable Zj on the effect of student-level variable Xij on Yij 

while all others are held constant; 𝑒𝑖𝑗 is the conditional student-level residual associated with 

student i and teacher j assumed 𝑒𝑖𝑗 ~ 𝑁(0, 𝜎2), and teacher-level residuals 𝑢0𝑗 and 𝑢1𝑗 are assumed 

to be distributed normally with the following variance and covariance structure: 𝑐𝑜𝑣 ([
𝑢0𝑗

𝑢1𝑗
]) =

[
𝜏00 𝜏01

𝜏10 𝜏11
], where 𝜏00 is the variance of the intercept residuals, 𝜏11 is the variance of the slope 

residuals, and 𝜏01 = 𝜏10 is the covariance between the residuals 𝑢0𝑗 and 𝑢1𝑗. 
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Model assumptions and methodological research. In conventional hierarchical linear 

modeling, multilevel data structures necessitate a set of specific modeling assumptions. In fact, 

multilevel modeling’s ability to partition variance at different levels requires a larger number of 

assumptions than ordinary least squares regression modeling. Several of the assumptions in 

multilevel modeling are analogous to those for ordinary linear models. For example, there is an 

assumption of linearity, which stipulates that the relationship between variables is linear 

(although multilevel modeling can also be non-linear). Another general assumption concerns 

homogeneity of variance. Under this assumption, equal level-one residual variance is assumed 

for each level-two unit. Furthermore, the assumption of normality must be satisfied. However, in 

the multilevel context, normality has a more intricate implication. Because data at each level 

generate residuals, normality indicates that the residuals at every level of the model must be 

distributed normally. In addition to the assumptions mentioned above, several others are needed 

for modeling purely hierarchical data. Multilevel modeling assumptions stipulate that residuals 

across levels and predictors at all model levels are independent (Raudenbush & Bryk, 2002). 

Finally, conventional hierarchical linear modeling requires that data are strictly hierarchical, such 

that each lower-level unit is nested in a single unit at the higher level. Independent observations, 

an important assumption of ordinary linear models, are not required in multilevel modeling. This 

is because lower-level observations within the same cluster lack independence in multilevel data 

structures, and observations cannot be regarded as random samples of the population. 

Among these assumptions, one warrants careful consideration: that of normality of the 

residuals. In multilevel modeling, residuals are modeled explicitly at each level and multiple 

residual distributions are included in model estimation. Non-normal residual distributions may 

result in variance components and standard errors that are biased severely and negatively, as 
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reported in studies that have investigated the influence of residual non-normality in the 

multilevel modeling framework with purely nested data structures (Maas & Hox, 2004a, 2004b; 

Seco et al., 2013). 

Residual normality assumption. To investigate the influence of non-normally distributed 

residuals at the second level on parameter estimates with purely nested multilevel data structures, 

Maas and Hox (2004a) conducted a Monte Carlo simulation study in which they analyzed a 

conventional two-level HLM. The manipulating factors included the number of groups, group 

size, ICC, and type of level-two residual distribution. Combinations of these factors formed 27 

testing conditions and 1,000 simulated datasets were generated for each, with total sample sizes 

that ranged from 150 to 5,000. The authors simulated the second-level residuals to a normal and 

a chi-square distribution with one degree of freedom, which is skewed severely (and positively) 

and deviates significantly from a normal distribution. Given that the influence of non-normality 

of the first-level residuals on parameter and standard error estimates would be less than that for 

the second-level residuals with the test sample sizes, the authors did not study the consequences 

of the violation of the level-one residual normality assumption. The two-level model parameter 

estimates were examined through the performance of the asymptotic estimation method and an 

approach to correct the asymptotic standard errors when level-two residual normality assumption 

was unmet. Specifically, the parameter estimates obtained by using the restricted maximum 

likelihood (RML) estimation approach were compared with estimates derived from the 

Huber/White or sandwich estimator (Huber, 1967; White, 1982). The accuracy of parameter 

estimates was measured by the percentage relative bias of the parameter estimates (defined as 

100 * (𝜃𝑘/𝜃𝑘), where 𝜃𝑘 is the kth generating parameter and 𝜃𝑘 is the estimate of parameter 𝜃𝑘) 

and the coverage of the 95% confidence intervals. 
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Simulation results showed that under a normally distributed level-two residual 

distribution, both the fixed (the intercept and regression slopes) and the random (the variance 

components) effect parameters had an inconsequential bias (less than or equal to |0.3%|) under 

all combinations of the number of groups, group size, and ICC. As for standard errors, the fixed 

effects were not sensitive to the number of groups, but the random effects were affected by the 

number of groups and group size. With 30 groups, the standard errors for the second level 

variance components were estimated as being approximately 15% too small; and with a group 

size of five, the standard errors for the second-level variance components were estimated as 

being approximately 3% too small. Coverage of the 95% confidence intervals was not sensitive 

to the ICC.  

When the level-two residual distribution was a chi-square distribution with one degree of 

freedom, the percentage relative bias for the fixed and random effect parameters was not 

statistically significant, except for the condition with the smallest number of groups (30), 

smallest group size (five), and smallest ICC (0.1). Even then, the bias was practically 

nonremarkable. The level-two residual non-normality led to biased standard error estimates, 

however. The coverage of the 95% confidence intervals of the fixed effect parameters was 

significantly affected by sample size at both levels. Under the conditions where level-two 

residuals followed a chi-square distribution with one degree of freedom, the RML standard errors 

were accurate at level-one whereas the Huber/White standard errors were overestimated at level-

one. At level-two, neither the RML nor the Huber/White estimation of the level-two standard 

errors of the random effects were accurate. The coverage of the 95% confidence intervals for the 

random effects was significantly affected by all test conditions. Unlike the situation for fixed 

effects, however, the improvement in estimation accuracy was small as the number of groups 
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increased. Nevertheless, the Huber/White estimator produced better results than the RML 

estimator. The coverage rates of the 95% confidence intervals for the random effects at level-two 

ranged from 64% to 66% with the RML estimation and from 85% to 87% with the Huber/White 

estimation. Despite that a larger number of groups can compensate level-two standard error bias 

when the group-level variances were skewed in the case of using the Huber/White estimation, 

this correction was achieved at the cost of having overcorrected standard errors at level-one.  

In another investigation of the influence of violations of assumptions on multilevel 

parameter and standard error estimates, these authors (Maas & Hox, 2004b) extended level-two 

non-normal residual distribution from a chi-square distribution with one degree of freedom to 

include three non-normal distributions: a chi-square distribution with one degree of freedom, a 

uniform distribution, and a Laplace distribution. Other simulation factors and conditions were the 

same as those used in the previously reviewed study. Similarly, a two-level model was estimated 

using RML and the Huber/White standard error estimators; the accuracy of parameter estimates 

was evaluated using the percentage relative bias; and the accuracy of the standard errors was 

investigated by analyzing the observed coverage of the 95% confidence intervals. The results 

showed that fixed and random effect parameter estimates from either the RML or the 

Huber/White estimator were generally robust for all three non-normal residual distributions at 

level-two and various sample sizes. The non-normally distributed level-two residuals were 

observed to affect the estimates of the standard errors of the random effects. The RML produced 

accurate coverage of the 95% confidence intervals for the variance estimates at level-one but 

substantial deviation from the nominal coverage at level-two. In contrast, the Huber/White 

estimator overcorrected standard errors at level-one and produced large deviations at level-two, 

although these deviations were smaller than those of the RML standard errors. When level-two 
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residuals followed a Laplace or chi-square distribution with one degree of freedom, coverage 

rates of the 95% confidence intervals were as low as 64% with the RML estimation and 85% 

with the Huber/White estimation. In general, when level-two residuals followed non-normal but 

symmetrical distributions (the uniform and Laplace distribution), the Huber/White estimator 

seemed to produce less inaccurate confidence intervals for the parameters in the random part at 

level-two compared to when level-two residuals followed a skewed distribution (chi-square 

distribution with one degree of freedom). When level-two residuals followed a chi-square 

distribution with one degree of freedom, all RML and Huber/White estimated confidence 

intervals for level-two variance components were inaccurate and untrustworthy.  

Under the non-normally distributed level-two residual distributions, the coverage of the 

95% confidence intervals of both fixed and random effect parameters were affected by the 

number of groups and by the group size, although the influences on fixed effects were relatively 

small and mostly occurred when level-two residuals followed a chi-square distribution with one 

degree of freedom. For the fixed effects, larger group sizes led to a better approximation of the 

nominal coverage while larger numbers of groups had larger effect on results derived using the 

Huber/White estimator than on results obtained from the RML. With the Huber/White standard 

errors, the estimated confidence intervals for the level-two variance components approached the 

nominal coverage while the standard errors at level-one were overcorrected as the number of 

groups approached 100. For all fixed effect parameter estimates, the ICC had no significant 

effects across level-two residual non-normal distributions and estimation methods. When the 

random effect parameters were estimated using the RML estimation method, the ICC had the 

same effect on the coverage of the 95% confidence intervals across the three non-normal level-

two residual distributions. When using the Huber/White estimation approach, on the other hand, 
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the ICC had basically a consistent effect on the coverage of the 95% confidence intervals for the 

intercept residuals, but led to more significant deviations from the nominal confidence interval 

for level-one explanatory variable residuals when the ICC value was larger than .10. Note that 

these results were reported without information about group size. 

Seco et al. (2013) conducted a Monte Carlo study to examine the performance of the 

RML method and residual bootstrap (RB) approaches when residual normality assumptions were 

violated. In addition to manipulating the number of groups, group size, and value of ICC, these 

authors also included different combinations of unequal group sizes matched with unequal 

variances, and normally and non-normally distributed (exponentially distributed) error terms at 

all levels. For each of the 1,000 simulated datasets for each of the 32 simulation conditions, a 

two-level conventional HLM was estimated using both RML and RB. The evaluation criteria 

included bias (defined as the difference between a parameter and its average bootstrap estimate), 

coverage (defined as the percentage of times that a true parameter value was covered by the 

estimated 95% confidence interval), and precision, which was indicated by the parameter’s root 

mean square error (RMSE). Defining positive pairing as the treatment condition with the 

smallest number of groups associated with the smallest variance, and negative pairing as the 

opposite, the authors showed that fixed effect parameter estimates were generally insensitive to 

testing conditions. Fixed effect parameter estimate bias was small (less than 6%) even when the 

data were skewed with the worst simulation condition for both RML and RB. For the second-

level variance components, the RML estimates were slightly overestimated when the pairing was 

positive and the ICC was low, and marginally underestimated when the pairing was negative and 

the ICC was high. In addition, for the RML method, the standard errors of the fixed effects were 

positively/negatively biased for positive/negative pairing, respectively, and the standard errors of 



 

23 
 

the variance components were severely negatively biased. On the other hand, RB standard errors 

of the fixed effects were positively biased, and standard errors of the variance components were 

moderately biased either positively or negatively, depending on the simulation condition. In 

particular, the coverage rates of the random effects at level-two ranged from 46.5% to 91.9% 

with the RML estimation, and the coverage rates ranged from 78.1% to 99.9% with the RB 

approach. The accuracy of the fixed effect estimates as measured by RMSE was slightly better 

using the RB method than the RML approach, especially when the residual normality assumption 

was unmet, but the performance of RB was inconsistent for variance component estimates. 

Nevertheless, the precision as measured by the RMSE was worse when using RML versus RB. 

Sample size requirements. Simulation studies designed to investigate the effect of 

violation of the residual normality assumption also often investigate the effect of this violation 

and the effect of insufficient sample sizes (e.g., Maas & Hox, 2004a, 2004b, 2005; Seco et al., 

2013). Frequently, multilevel models are estimated primarily using maximum likelihood (ML) 

methods. An essential assumption underpinning ML estimation is having a sufficiently large 

sample size to assure the theoretical asymptotic properties of consistency and efficiency. 

Multilevel data structures, however, make it more challenging to obtain a sufficiently large 

sample size, because in addition to the total sample size, one must consider the sample size at 

each level. In applied research, cluster-level sample sizes are of particular concern, as they are 

more restricted under logistic and cost constraints. While it may be relatively simple to increase 

the total sample size by sampling a larger number of individuals within the clusters sampled, 

increasing the number of clusters generally is more difficult (Snijders & Bosker, 1994). In school 

effectiveness research, for example, gaining the cooperation of more schools may be more 

problematic and expensive than collecting data from more students within each participating 
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school. Although larger lower-level sample sizes may attenuate some problems of insufficient 

higher-level sample size under certain conditions, a large total sample size alone may not 

compensate fully for the potential risk of biased fixed effect and variance component parameter 

estimates when the group-level sample size is inadequate. 

Questions about the validity of research findings when cluster-level sample size is 

inadequate have motivated many studies that investigated the performance of purely multilevel 

modeling with various group sizes (cf. Afshartous, 1995; Bagaka, 1989; Bell, Morgan, 

Schoenberger, Kromrey, & Ferron, 2014; Browne & Draper, 2000, 2006; Ferron, Dailey, & Yi, 

2002; Hox, Maas, & Brinkhuis, 2010; Kreft & Yoon, 1994; Maas & Hox, 2004a, 2004b, 2005; 

McNeish, 2016a; McNeish & Stapleton, 2016a, 2016b; Schoeneberger, 2016; Seco et al., 2013; 

van der Leeden, Busing, & Meijer, 1997; van der Leeden, Meijer, & Busing, 2008; Verbeek, 

2000). While research on multilevel modeling sample sizes has been conducted with different 

methodological focuses, these studies generally have demonstrated that fixed effect estimates are 

robust, but small group-level sample sizes can lead to negatively biased estimates of variance 

components and their standard errors, as well as bias in the estimation of standard errors of 

regression coefficients. Searle, Casella, and McCulloch (1992) showed that when the sample size 

requirement is not met, the full maximum likelihood estimation of the variance components is 

biased downward. Research with multilevel sample sizes also has reported that level-one 

variance components tend to be biased negatively, while level-two random effect variances are 

overestimated when level-one sample sizes are smaller than five (Clarke, 2008; Clarke & 

Wheaton, 2007). As sample size increases, research has shown that bias in fixed effect and 

variance component parameter estimates decreases and statistical power increases (Austin, 2005, 

2010; Pacagnella, 2011; Rodriguez & Goldman, 1995). 
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Given the research findings that violation of the residual normality assumption and 

sample size affects variance components and standard error estimates, research has been 

conducted to determine the acceptable minimum group-level sample size in purely nested 

multilevel modeling. The literature has reported some divergent conclusions with respect to the 

minimum sample size that is needed for unbiased estimates. This lack of complete consensus 

may be due in part to the nuances in individual study conditions and factors unique to a specific 

study, such as the complexity of the multilevel model, the type of outcome measure (and hence 

the type of link function), and whether the research focused on fixed effects or variance 

components. There are several group-level sample size guidelines in the literature. 

The guidelines Maas and Hox (2004a, 2005) (and similarly, Pacagnella, 2011) discussed 

for continuous outcomes are cited frequently. For research intended to obtain accurate fixed 

effects and standard error estimates, a minimum of 10 clusters are needed with 30 level-one units 

per cluster; to calculate accurate random effects, the cluster-level sample size should increase to 

30, and to achieve accurate random effects and their standard errors, a minimum of 50 clusters is 

required. This set of guidelines is comparable to those recommended by Kreft (1996) who 

suggested 30 level-two units. Slightly different from the 30 level-two sample size guideline, 

Snijders and Bosker (2012) proposed a minimum sample size of 20 level-two clusters. In 

addition, Hox (1998, 2010) suggested using 100 level-two units with 10 level-one units per 

cluster for unbiased variance components estimates, and 50 level-two units with 20 level-one 

units per cluster to assess cross-level interaction effects. Kreft and de Leeuw (1998) advised 

having a minimum sample size of 100 level-two clusters for accurate variance component 

estimates. In summary, these studies indicate generally that models with approximately 20 to 40 

clusters exhibit desirable properties. 



 

26 
 

The literature also makes some other specifications. Longford (1993) stated that, if one 

wants to maintain comparable levels of statistical power, nominal Type I error rates, and effect 

sizes, the purely nested multilevel model demands a larger sample size when the outcome is 

binary compared to that when it is continuous. Moineddin, Matheson, and Glazier (2007) 

introduced a guideline for multilevel modeling when estimating logistic regression models, and 

suggested that a minimum sample size of 50 level-two units with 50 level-one units in each is 

required for accurate estimates. More recently, McNeish and Stapleton (2016a, 2016b) 

expounded further on the issue of purely multilevel modeling sample size, and their findings 

were generally consistent with previous guidelines. Without taking statistical power into 

consideration, the authors recommended a minimum sample size of 50 level-two clusters for 

accurate parameter, variance component, and cluster-level variance standard error estimates at 

both level-one and level-two with continuous outcomes, and a sample size of 100 level-two units 

with binary outcomes. 

Notwithstanding the general agreement on multilevel modeling sample size guidelines 

proposed by many researchers, there also are different points of view. In fact, level-two sample 

size guidelines for purely nested multilevel models range from 6 to 100 for level-two units 

(Austin, 2005, 2007, 2010; Browne & Draper, 2000; Kreft & de Leeuw, 1998; Maas & Hox, 

2004a, 2004b, 2005; Pacagnella, 2011). Austin (2005, 2007, 2010) quantified the degree of bias 

in variance component estimates when the outcome variable is binary, and reported that when 

level-two sample sizes are greater than 10 and having adequate level-one sample sizes, the bias 

in variance component estimates is less than 10%. Furthermore, when the primary research 

interest is in fixed effect estimates with multilevel logistic regression models having two 

predictor variables, one needs only five level-two units with 30 level-one units each, while when 
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the interest is in variance components, the models require 10 to 15 level-two units. While 

Bayesian estimation could yield accurate variance component estimates when level-two sample 

size is less than 10, unsatisfactory estimates may result when the level-one sample size is five per 

cluster, even when level-two sample sizes are large (Austin, 2010). 

It should be mentioned that because Bayesian estimation methods continue to gain 

popularity in many research fields (cf. Pugesek, Tomer, & von Eye, 2003; van de Schoot, 2016), 

and the availability of software packages equipped with Bayesian estimation methods has 

increased, there is an active line of research on multilevel sample sizes using Bayesian 

estimation (cf. Baldwin & Fellingham, 2013; Depaoli, 2013; Gelman, 2006; Hox, van de Schoot, 

& Matthijsse, 2012; Lambert, Sutton, Burton, Abrams, & Jones, 2005; McNeish, 2016b; 

McNeish & Stapleton, 2016a; Price, 2012; Soares, Gonçalves, & Gamerman, 2009; Stegmueller, 

2013; van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg, & van Loey, 2015). The 

Bayesian method with the Markov chain Monte Carlo (MCMC) algorithm is a resampling-based 

technique. These methods do not rely on asymptotic theory and the properties of the Bayesian 

estimators are based on sufficiently large MCMC chains, and thus may be useful in situations 

with small samples (cf. Ansari & Jedidi, 2000; Ansari, Jedidi, & Dube, 2002; Ansari, Jedidi, & 

Jagpal, 2000; Depaoli & van de Schoot, 2015; Dunson, 2000, 2001; Kruschke, 2010; Lee & 

Song, 2004). Researchers have warned, however, that switching blindly from ML-based 

estimation methods to Bayesian approaches may not alleviate concerns associated with small 

sample size problems, and Bayesian solutions obtained in such a simplistic fashion may not be 

trustworthy, or may even be worse than those derived using ML estimation methods (Kadane, 

2015; McNeish, 2016a; Muthén & Asparouhov, 2012; van de Schoot, Kaplan, Denissen, 

Asendorpf, Neyer, & Aken, 2014). This cautionary note was offered based on theory, as well as 
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the results of MCMC simulation studies, in which the authors demonstrated that Bayesian 

estimates were very sensitive to the specification of prior distribution, especially when sample 

sizes were small. The authors concluded that for addressing small sample size problems, 

Bayesian estimations can be theoretically and practically more advantageous compared to ML 

estimation approaches only when an informative prior is selected. 

Limitations of hierarchical linear models. As noted above, the conventional hierarchical 

linear modeling requires that each level-one unit is nested in a single level-two unit. With this 

framework, the conventional HLM can model the effects of one higher-level unit on multiple 

lower-level units, and has enjoyed widespread applications in social and other sciences, such as 

education, public health, and sociology. Because of this requirement, however, hierarchical 

linear modeling is unable to model data when more than one level-two unit exerts influence on 

level-one units and when such influences need to be considered jointly. Indeed, this requirement 

renders modeling the effects of multiple higher-level units simultaneously an intractable issue in 

the conventional multilevel modeling framework. As work in multilevel modeling is developing 

rapidly, and the fact that the conventional HLM is an inadequate representation of certain types 

of multilevel data, the HLM has been extended to more complicated methods to handle more 

complex data structures. 

Impurely Clustered Data Structures and Analysis 

The conventional hierarchical linear modeling framework considered in the previous 

section may be unduly simplistic given that not all multilevel data are nested purely. In complex 

multilevel data structures, lower-level units have a multiplicity of relationships with the 

environments in which they belong simultaneously. A typical example (Goldstein, 2003) is that 

students who attend an elementary school may not all live in the same neighborhood. 
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Conversely, not all children who live in a neighborhood attend the same elementary school. In 

this example, a student is not nested strictly within the elementary school or the neighborhood, 

but may be characterized as being nested in the school and the neighborhood. Notice that the 

neighborhood and the school are not nested in one another. Take another example, in which a 

student transfers from one to another school between the first and third grades. As noted 

previously, this student is said to be mobile, or has multiple membership in the two elementary 

schools. This student mobility nests the student effectively in both elementary schools attended. 

Again, these two elementary schools are not nested within one another. Students’ switching of 

schools alters the organization of the data collected, such that the data structure is no longer 

purely hierarchical. In another example, in an investigation of a disease outbreak, an infected lab 

technician is a member of a group of employees in his/her workplace. At the same time, this 

person also is an individual member of a residential community. Thus, to investigate the disease 

outbreak fully, both the workplace environment and the residential community must be 

considered jointly, such that the infected person is in fact a level-one unit situated in two, non-

nested level-two units in the data hierarchy. 

Complex and non-purely nested multilevel data are indeed observed often in real-world 

longitudinal studies. Using as an example the Early Childhood Longitudinal Study-Kindergarten 

(ECLS-K: 2011; Tourangeau, Nord, Lê, Wallner-Allen, Vaden-Kiernan, Blaker, & Najarian, 

2017) data released recently, when looking at the initial and subsequent measurement periods, 

approximately 17% of students had different school identification numbers during the first three 

consecutive school years. A similarly prevalent phenomenon is observed in the National 

Educational Longitudinal Survey (NELS: 88), which followed a cohort of students from the 8th 

to 12th grades. These data showed that approximately 10% of the sample students in this cohort 
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made at least one school transfer that was not a result of regular grade promotion. These mobile 

students cannot be viewed as being a member of one school but rather have multiple membership 

in multiple schools attended (Chung & Beretvas, 2012). 

Cross-classified multilevel data structure. In all examples described above in this 

section, a lower-level unit is not nested cleanly within one higher-level unit, but may be 

classified by multiple higher-level units collectively. Note that in the example in which students 

are affiliated with both the elementary school and the neighborhood, school and neighborhood 

represent different classification types. Table 2 may help illuminate this type of non-purely 

nested relationship amongst students, schools, and neighborhoods. The row classification is the 

elementary school, and the column classification is the neighborhood. Twenty students are 

represented by lower case letters (a, b, …, etc.) and the students are cross-classified in a two-way 

table defined by elementary school and neighborhood. Note that students a, b, and c, who attend 

elementary school 1, all come from neighborhood A. On the other hand, student f differs from 

students d and e, in that, while all three attend elementary school 2, student f comes from 

neighborhood C, while students d and e live in neighborhood A. Students j and o in elementary 

school 4 disrupt the purely nested data structure similarly, where j comes from neighborhood A, 

and o from neighborhood D, while students k, l, m, and n live in neighborhood C. 
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Table 2 

Students Nested in a Cross-classified Multilevel Data Structure 

Elementary 

School 

Neighborhood 

A B C D 

1 a, b, c    

2 d, e  f  

3  g, h i  

4 j  k, l, m, n o 

5    p, q, r, s, t 

Note. Boldface and italicized lower-case letters represent students who disrupt the purely 

hierarchical data structure. 

 

 

 

Grouping students along more than one higher-level dimension and collecting data in this 

way imply that the higher-level effects are more complex compared to that in the case of purely 

hierarchical data structures, and that the influences on the lower-level units may now derive from 

two cross-cutting hierarchies. This example typifies a multilevel data structure referred to as 

cross-classified — a student is said to be cross-classified by both the school and the 

neighborhood, and the corresponding data collected are referred to as cross-classified multilevel 

data (Garner & Raudenbush, 1991). In view of this, it may be logical to attempt to partition the 

effects of schools and neighborhoods on various student outcomes. The added complexities that 

stem from the cross-cutting hierarchy present challenges in applying multilevel modeling. 

However, assessing the effects between each higher-level unit and its affiliated lower-level unit 

may be important, because if any one of the higher-level units has an effect that remains 

unspecified, the variability of the unspecified association may be attributed incorrectly to the 

other units (Hox 2010; Raudenbush & Bryk, 2002). 



 

32 
 

Multiple membership multilevel data structure. In the example in which students 

switch schools between the first and third grades, the students’ academic outcomes may be 

influenced by both schools they attended. This situation is a special case of the cross-classified 

data structure described above, in which some lower-level units are cross-classified by each 

higher-level unit of which the lower-level unit is a member. Note, however, that while the mobile 

student is cross-classified by two higher-level cross-classification factors (the two elementary 

schools), both factors represent the same classification type (elementary school). This scenario 

gives rise to another type of complex data structure in which one may wish to disentangle the 

effects of each of the schools. Table 3 shows an example that while students a and c remained in 

school A in the third grade, student b changed from school A to school B. Similarly, student f 

transferred from school B to school A between the first and third grades. This data structure is 

referred to as a multiple membership multilevel data structure. 

 

 

Table 3 

Students Nested in a Multiple Membership Multilevel Data Structure 

 

Student 

First Grade  Third Grade 

School A School B  School A School B 

a ✔   ✔  

b ✔    ✔ 

c ✔   ✔  

d  ✔   ✔ 

e  ✔   ✔ 

f  ✔  ✔  

Note. Boldface and italicized lower-case letters represent students who disrupt the purely 

hierarchical data structure. 

 

 



 

33 
 

Methods used to analyze impurely clustered data found in the applied literature. 

Applied researchers commonly use three approaches to model non-purely nested data. These are 

the conventional hierarchical linear modeling, cross-classified random effects modeling (Fielding 

& Goldstein, 2006; Goldstein, 1994, 1995; Raudenbush, 1993; Raudenbush & Bryk, 2002), and 

multiple membership random effects modeling (Beretvas, 2010; Goldstein, 2011a; Hill & 

Goldstein, 1998; Rasbash & Browne, 2001). While all three approaches take note of the 

multilevel data structures to model variability in outcomes and the relationship between lower- 

and higher-level units, they diverge in the way in which they handle the non-purely nested data 

structures and specify the effects of higher-level units on lower-level units. To explain the idea of 

these modeling approaches without losing generality, the discussion that follows will use two-

level models. Modeling with three or more levels can be extended similarly. 

Ignoring the impurely clustered data structures. Using the conventional HLM requires 

the implicit claim that the data structure is nested purely. In the case of non-purely nested data 

structures, some applied researchers have opted to address the added data complexity with one of 

two shortcuts: (1) deleting the units that disrupt the purely nested data structure (HLM-delete), or 

(2) keeping those units, but regarding them as members of only one higher-level unit and 

ignoring the other cross-classifying higher-level units: In the case of data containing mobile 

students, the last school attended is typically treated as the only one attended (HLM-last); and in 

the case of students being cross-classified by schools and neighborhoods, the effect of one of the 

cross-classification factors is ignored (HLM-complete). Each of these approaches circumvents 

the need to model the effects of multiple higher-level units, but creates a new set of challenges at 

the same time. 
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The HLM-delete approach focuses on only a subset of the data rather than the full 

dataset. For example, in a study by McCoach, O’Connell, Reis, and Levitt (2006), the authors 

used the first four waves of data from the ECLS-K 1998-1999 to study academic outcomes 

during the first two years of school. To avoid the difficulties of separating the effects of multiple 

schools attended by mobile students, the authors restricted their analyses to those who were not 

mobile. Similarly, to estimate teacher and school effects using longitudinal repeated measures of 

test scores, Palardy (2010) restricted the ECLS-K 1998-1999 to non-mobile students. In these 

and other studies in which mobile students were deleted from the datasets analyzed (e.g., 

Ainsworth, 2002; De Fraine, van Landeghem, van Damme, & Onghena, 2005), the multilevel 

modeling was applied to a reduced sample. 

An alternative approach, the HLM-last (cf. Demie, 2002; George & Thomas, 2000; 

Gruman, Harachi, Abbott, Catalano, & Fleming, 2008; Heinlein & Shinn, 2000; Ma & Ma, 2004; 

Ma & Wilkins, 2002; Mantzicopoulos & Knutson, 2000; South et al., 2007; Strand & Demie, 

2006, 2007) is also problematic. Some authors may include an indicator to signify whether a 

student was mobile, or a variable that represents the proportion of mobile students in each 

school, thus allowing them to evaluate the effects of mobility on the outcomes to a certain 

degree. However, this treatment still fails to consider the omitted higher-level units’ 

characteristics and their potential contributions to student academic achievement during the data 

collection period. This treatment therefore may lead to biased estimations of parameters and 

standard errors (Chung & Beretvas, 2012; Luo & Kwok, 2009; Rasbash & Browne, 2001; Wolff 

Smith & Beretvas, 2015). The direction of relative parameter bias and relative standard error bias 

depends on predictors included in the model and testing condition. For example, in the study 

conducted by Chung and Beretvas (2012), results of an HLM-last approach showed that 
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estimates of the level-two predictor and variance component were negatively biased while 

estimates of the level-one variance component were positively biased. In the Wolff Smith and 

Beretvas (2015) study where both a student mobility covariate and a proportion of mobile 

students per school contextual effect covariate were included in an HLM-last approach, estimates 

of the coefficient of student mobility were positively biased whereas the estimates of the 

coefficient of school mobility and level-two variance component were negatively biased. 

From a substantive research point of view, failing to model the effects of all higher-level 

units fully and jointly makes it impossible to assess certain effects of cross-level interactions on 

outcomes of interest. In educational research, student academic achievement may be postulated 

to be the result of the influences of the series of schools that, at one point or another, had 

contextual influences on student academic growth, not simply the last school attended. Not 

accounting for every school attended could conceal the effects of important observed or latent 

factors effectively. From a statistical perspective, recognizing only one of the higher-level cross-

classifying factors could result in an underspecified model and underestimate the true extent of 

between-school variability. 

Prior research has shown the negative consequences of ignoring a non-purely nested data 

structure (HLM-delete, HLM-last, or HLM-complete) (Chung & Beretvas, 2012; Meyers & 

Beretvas, 2006; Wolff Smith & Beretvas, 2015). By deleting the records of mobile students, the 

dataset is reduced unnecessarily, which weakens the statistical power and undermines the 

researchers’ ability to make inferences about the multilevel relationship in a study population 

that includes both mobile and non-mobile students. Research has shown that when ignoring one 

cross-classification factor (e.g., assuming that mobile students are in the same school on each 

occasion data are collected, or ignoring the effect of middle schools when students are cross-
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classified by middle and high schools), variance of the ignored crossed factor at the kth level may 

be redistributed inappropriately to the (k − 1)th level and the remaining variability at the kth level 

(Beretvas, 2008; Leroux, 2014; Luo & Kwok, 2009). Leckie (2009) investigated school and 

neighborhood effects on student academic outcomes using data with mobile students. His 

findings showed that an underspecified model produced smaller school- and neighborhood-level 

variance component estimates, and that the validity of inferences based on the underspecified 

model may not be trustworthy. Aitkin, Bonnet, and Hesketh (1981) reanalyzed the data from a 

well-known study on teaching styles conducted by Bennett (1976) who ignored student mobility. 

In the re-analysis, Aitkin et al. (1981) reworked the data using an appropriate multilevel 

modeling method and showed that the previously significant findings became non-significant. 

During the past decades, appropriate multilevel modeling methods have been developed. 

These methods offer a collection of elegant and useful analytical tools with which to address 

research questions associated with a variety of complex multilevel data structures. 

Cross-classified random effects models. Scholars have shown that a cross-classified 

random effects model (CCrem) allows proper handling of cross-classified multilevel data 

(Fielding & Goldstein, 2006; Rasbash & Goldstein, 1994; Raudenbush, 1993; Raudenbush & 

Bryk, 2002). Without having to delete cases or ignore a cross-classification factor, application of 

a CCrem can obtain the correct partitions of variability in the outcomes of interest amongst 

different levels using cross-classified multilevel data. 

A number of studies have demonstrated the flexibility and utility of applying a CCrem to 

cross-classified data. Raudenbush (1993) reanalyzed a study conducted previously (Garner & 

Raudenbush, 1991) to test schools’ and neighborhoods’ effects on educational outcomes using a 

dataset with a cross-classified data structure. The original study ignored the cross-classification 
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feature, but the re-analysis applied a CCrem to model between-school variance and illustrated an 

application with which to study neighborhood and school effects on educational attainment 

appropriately. O’Muircheartaigh and Campanelli (1999) also applied a CCrem to survey 

research. The goal of the study was to explore survey interviewers’ influence on survey non-

responses. As the primary sampling unit was considered a contextual space in which several 

survey interviewers collected data, and a survey interviewer could be assigned to multiple 

primary sampling units, the authors incorporated a cross-classified perspective to define 

respondents according to the combination of interviewers and primary sampling units. Such a 

multilevel modeling approach enabled the researchers to estimate correlations between refusals 

and non-contact rates attributable to survey interviewers, and illustrate that the variability in 

household refusal and non-contact rates was primarily an interviewer effect rather than an effect 

of the primary sampling units. 

Using the cross-classification example in which schools and residential neighborhoods 

classify students simultaneously, CCrem parameterization is illustrated in the following using 

Beretvas’ (2008) notation. Let subscript j1 represent the cross-factor school, and j2 the cross-

factor neighborhood. The notation convention is to include these two subscripts in parentheses to 

indicate that they are at the same level in the data hierarchy, but the order of j1 and j2 is 

unimportant. The unconditional CCrem at level-one is: 

 𝑌𝑖(𝑗1,𝑗2) = 𝛽0(𝑗1,𝑗2) + 𝑒𝑖(𝑗1 ,𝑗2), (5) 

where 𝑌𝑖(𝑗1,𝑗2) represents the outcome score for student i, who is nested in both school j1 and 

neighborhood j2, 𝛽0(𝑗1,𝑗2) is the average outcome score for students in the cross-classified unit 

defined by school j1 and neighborhood j2, and 𝑒𝑖(𝑗1,𝑗2) is the student-level residual, a random 

effect associated with student i who is nested within school j1 and neighborhood j2. This level-
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one residual is the variability in scores between student i and the mean score amongst students 

nested within school j1 and neighborhood j2. Similar to the conventional two-level model, 

student-level residuals 𝑒𝑖(𝑗1,𝑗2) are assumed to follow a normal distribution with a mean of zero 

and constant variance σ2, which is notated as 𝑒𝑖(𝑗1,𝑗2) ~ N(0, σ2) (Rasbash & Browne, 2001). 

At level-two, the unconditional CCrem is expressed as follows: 

 𝛽0(𝑗1,𝑗2) = 𝛾000 +  𝑢0𝑗10  + 𝑢00𝑗2
 + 𝑢0𝑗1𝑗2

, (6) 

where γ000 represents the overall average outcome score across all students, schools, and 

neighborhoods; 𝑢0𝑗10 is the random effect associated with school; 𝑢00𝑗2
 is the random effect 

associated with neighborhood, and 𝑢0𝑗1𝑗2
 is the random effect of the interaction between cross-

classification factors school j1 and neighborhood j2. In much methodological and applied 

research, this interaction random effect 𝑢0𝑗1𝑗2
 is set to zero (Beretvas, 2008; Raudenbush & 

Bryk, 2002), although some research has contested this assumption (Shi, Leite, & Algina, 2010; 

Wallace, 2015). Under CCrem assumptions, the two level-two random effects, 𝑢0𝑗10 and 𝑢00𝑗2
, 

follow independent and normal distributions with means of zero and variances of 𝜏0𝑗10 and 𝜏00𝑗2
, 

respectively. Further, the covariance amongst the random effects of the cross-classified factors is 

assumed to be zero (Beretvas, 2008). Similar to the conventional HLM, one may compute the 

ICC for each of the cross-classification factors, in which the total variance is (𝜎2 + 𝜏0𝑗10 + 

𝜏00𝑗2
). For example, the ICC for the level-two cross-classification factor, school, or the 

correlation in the outcomes of two students i and i' who attend the same school j1, but live in 

different neighborhoods (j2 and 𝑗2
′ ), is calculated using the following expression: 

𝜌𝑌𝑖(𝑗1,𝑗2)𝑌
𝑖′(𝑗1,𝑗2

′ )
= 

𝜏0𝑗10

𝜎2 + 𝜏0𝑗10+ 𝜏00𝑗2

. 
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To assess the effects of predictor variables at the student- and cross-classified level to 

explain variability in the outcome scores further, explanatory variables can be added to the two-

level unconditional CCrem to build a conditional CCrem. This may be done, for example, when 

the ICC is large and an investigator theorizes that a student-level attribute, 𝑋𝑖(𝑗1,𝑗2), is related to 

academic outcomes, and that a school-level characteristic, 𝑍𝑗1
, may help explain some of the 

variability. Thus, a two-level conditional CCrem is represented at level-one as: 

 𝑌𝑖(𝑗1,𝑗2) = 𝛽0(𝑗1,𝑗2) + 𝛽1(𝑗1,𝑗2)𝑋𝑖(𝑗1,𝑗2) + 𝑒𝑖(𝑗1,𝑗2), (7) 

and the level-two conditional CCrem with the influence of 𝑋𝑖(𝑗1,𝑗2) assumed random is as 

follows: 

 {
𝛽0(𝑗1,𝑗2) = 𝛾000 + 𝛾010𝑍𝑗1

+ 𝑢0𝑗10 + 𝑢00𝑗2 

𝛽1(𝑗1,𝑗2) = 𝛾100 +  𝛾110𝑍𝑗1
+ 𝑢1𝑗10 + 𝑢10𝑗2

, (8) 

where 𝑌𝑖(𝑗1,𝑗2) represents the outcome score for student i, who is nested in both school j1 and 

neighborhood j2; γ000 represents the predicted overall outcome score across students when 

predictors 𝑋𝑖(𝑗1,𝑗2) and 𝑍𝑗1
 equal zero; γ010 represents the effect of school characteristic 𝑍𝑗1

 on the 

intercept controlling for 𝑋𝑖(𝑗1,𝑗2); γ100 represents the influence of student-level attribute 𝑋𝑖(𝑗1,𝑗2) 

on the outcome while controlling for school-level characteristic 𝑍𝑗1
; and γ110 represents the 

influence of school characteristic 𝑍𝑗1
 on the student attribute effect on the outcome. This 

conditional CCrem allows both the intercept and the slope of the student attribute to be random. 

In modeling level-two residuals 𝑢0𝑗10 and 𝑢00𝑗2
, the researcher hypothesizes that there is residual 

variability in the intercept across schools and neighborhoods, and by including 𝑢1𝑗10 and 𝑢10𝑗2
, it 

is assumed that there is residual variability in the effects of student attributes across schools and 

neighborhoods. Additional student-, school-, or neighborhood-level explanatory variables may 

be added to the model to assess any variability remaining. If, however, the data or substantive 
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knowledge suggests that the student attribute effect is invariant across schools and 

neighborhoods, then the slope should be modeled as fixed. The residuals of the school cross-

classification factor, 𝑢0𝑗10 and 𝑢1𝑗10, are assumed to be distributed normally with means of zero 

and 𝑐𝑜𝑣 ([
𝑢0𝑗10

𝑢1𝑗10
]) = [

𝜏0𝑗10 𝜏𝑗101

𝜏𝑗110 𝜏1𝑗10
]. Similarly, the residuals of the neighborhood cross-

classification factor, 𝑢00𝑗2
 and 𝑢10𝑗2

, are assumed normally distributed with means of zero and 

𝑐𝑜𝑣 ([
𝑢00𝑗2

𝑢10𝑗2
]) = [

𝜏00𝑗2
𝜏𝑗201

𝜏𝑗210 𝜏10𝑗2
]. Residual 𝑒𝑖(𝑗1 ,𝑗2) is the conditional student-level residual, a 

random effect associated with student i who is nested within school j1 and neighborhood j2, and it 

is assumed that 𝑒𝑖(𝑗1,𝑗2) ~ N(0, σ2). 

Multiple membership random effects models. When one has complex multiple 

membership data, other advanced methods are needed. For example, in healthcare, a patient may 

receive care from one physician for a month and then be referred to other specialists for 

treatment for more months. In education, a student may spend a portion of his/her elementary 

schooling in school A and the remaining portion in schools B and C. In these cases, the 

individual’s multiple membership in different higher-level units may be better addressed by 

another refined methodological treatment than do those discussed earlier. While a CCrem in 

which the influence of multiple higher-level units on the outcome of lower-level units can be 

ascertained may address these examples, a CCrem may become unnecessarily complicated or 

unsuitable in certain circumstances. For example, for highly mobile students who switched 

elementary schools four times for various reasons, or patients who were cared for by four 

healthcare professionals, the use of a CCrem means that the number of cross-classification 

factors will equal four, the maximum number of schools the student attended or the maximum 

number of healthcare professionals who treated the patient. In such cases, the number of variance 
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components to be estimated in a CCrem will increase very quickly. It is known that estimating 

many level-two variance components can be challenging. An especially demanding situation 

occurs when a CCrem is used to model data with highly mobile lower-level units. If the lower-

level units’ mobility occurs at different times (e.g., groups of students switched schools at 

different times, or patients were referred to different doctors at different times), then it is 

reasonable to expect the use of four cross-classification factors at each of the mobility points 

observed. This expansion in cross-classification factors will lead to a substantial increase in the 

number of level-two variance components that must be estimated, potentially pushing the model 

toward the limit of convergence unless sample size is more than sufficient. In addition to the 

potentially unmanageable modeling difficulties, a CCrem assumption may not be tenable in the 

scenarios discussed. The CCrem assumes that the effects of the cross-classification factors are 

independent. In reality, however, it is almost certain that the effects of multiple schools that the 

students attended are not independent, and that the effects of healthcare provided by multiple 

doctors are correlated; hence, these uncompromising technical and theoretical difficulties 

indicate the need to develop alternative methods to handle highly mobile lower-level units in 

multilevel data. 

Hill and Goldstein (1998) initially developed the multiple membership random effects 

model (MMrem). As noted previously, an MMrem is a special case of a CCrem in which the set 

of level-two units associated with level-one units can be partitioned appropriately. An additional 

benefit of an MMrem is that it assumes a common higher-level residual variance component. 

This assumption makes the MMrem especially effective in handling the additional nuances when 

level-one mobility occurs at uneven times, when only some but not all of the level-one units are 
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cross-classified, or when mobility is high but the type of cross-classification factors is the same. 

For these cross-classified data, an MMrem provides a parsimonious solution. 

Two-level unconditional MMrem. Using the notation Rasbash and Browne (2001) 

developed, a two-level unconditional MMrem at level-one is expressed as follows: 

 𝑌𝑖{𝑗} = 𝛽0{𝑗} + 𝑒𝑖{𝑗}, (9) 

where Yi{j} is the outcome for student i who is a member of a set of schools {j}, β0{j} is the 

average outcome for the set of schools {j}, and ei{j} is the student-level residual associated with 

student i who is a member of a set of schools {j}. The modeling assumption is that student-level 

residuals ei{j} are distributed normally with a mean of zero and a variance of σ2. At level-two, the 

model is: 

 𝛽0{𝑗} = 𝛾00 + ∑ 𝑤𝑖ℎ𝑢0ℎℎ∈{𝑗} , (10) 

where γ00 is the average outcome across all students and schools. To account explicitly for the 

contribution of each school, predetermined weights wih need to be assigned to specify student i’s 

association with school h in set {j}, or the amount of membership of student i to school h, and 

the weights must satisfy the condition ∑ 𝑤𝑖ℎℎ∈{𝑗}  =1 (weighting will be discussed later). The 

residual of school h is captured in the term u0h. School-level residuals u0h are assumed to be 

distributed normally with a mean of zero and variance τ00, which is notated as u0h ~ N(0, τ00). 

Therefore, the intercept is modeled as varying randomly across schools and manifests the 

weighted average of the effects of the schools. 

Combining Equations 9 and 10, the unconditional MMrem would be parameterized as 

follows: 

 𝑌𝑖{𝑗} = 𝛾00 + ∑ 𝑤𝑖ℎ𝑢0ℎ + 𝑒𝑖{𝑗}ℎ∈{𝑗} . (11) 

Using the data in Table 3 and Equation 11, the outcomes 𝑌𝑖{𝑗} would be: 
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𝑌𝑎{𝐴} = 𝛾00 + 𝑢0𝐴 + 𝑒𝑎{𝐴}, 

𝑌𝑏{𝐴 𝑎𝑛𝑑 𝐵} = 𝛾00 + 0.5𝑢0𝐴 + 0.5𝑢0𝐵 + 𝑒𝑏{𝐴 𝑎𝑛𝑑 𝐵}, 

𝑌𝑐{𝐴} = 𝛾00 + 𝑢0𝐴 + 𝑒𝑐{𝐴}, 

𝑌𝑑{𝐵} = 𝛾00 + 𝑢0𝐵 + 𝑒𝑑{𝐵}, 

𝑌𝑒{𝐵} = 𝛾00 + 𝑢0𝐵 + 𝑒𝑒{𝐵}, 

𝑌𝑓{𝐵 𝑎𝑛𝑑 𝐴} = 𝛾00 + 0.5𝑢0𝐴 + 0.5𝑢0𝐵 + 𝑒𝑓{𝐵 𝑎𝑛𝑑 𝐴}, 

for students a, b, c, d, e, and f, respectively. Note that the schools each student attended are 

enclosed inside the bracket in the subscript of the outcome and the student-level residual. In the 

student-specific equations given above, an equal weighting approach is taken. Therefore, the 

weights wih for school residuals for each student are determined by the number of schools each 

student attended, and the weights equal one divided by the number of schools attended. For 

example, the weight for school A residual 𝑢0𝐴 for student a is one since student a only attended 

school A. On the other hand, student b attended both schools A and B. Thus, the weight equals 

0.5 for each school residual 𝑢0𝐴 and 𝑢0𝐵 for student b. 

Two-level conditional MMrem. To investigate level-specific characteristics when 

examining variability at each level in the multiple membership data hierarchy, level-one and -

two predictor variables can be added to the unconditional MMrem to develop a conditional 

MMrem. Let a student-level predictor be 𝑋𝑖{𝑗} and a school-level predictor be 𝑍ℎ, then a 

conditional MMrem at level-one has the following parameterization: 

 𝑌𝑖{𝑗} = 𝛽0{𝑗} + 𝛽1{𝑗}𝑋𝑖{𝑗} + 𝑒𝑖{𝑗}, (12) 

and at level-two, the model is: 

 {
𝛽0{𝑗} = 𝛾00 + ∑ 𝑤𝑖ℎ(𝛾01𝑍ℎ + 𝑢0ℎ)ℎ∈{𝑗}

𝛽1{𝑗} = 𝛾10                                                   
, (13) 
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where Yi{j}, i, {j}, and wih are as defined above, but γ00 has a different meaning than that in the 

unconditional model. Here, γ00 is the mean outcome when the student-level predictor Xi{j} is zero 

and the average contribution of the school-level predictor 𝑍ℎ across all schools in set {j} is zero. 

Parameter γ01 represents the change in β0{j} per unit change in school-level predictor Zh, while all 

other values in the model are held constant. 𝛽1{𝑗} represents the change in Yi{j} per unit change in 

student-level predictor Xi{j}, while all other values are held constant. In this parameterization, the 

slope of student-level predictor Xi{j} is assumed to be fixed and hence, γ10 represents the change 

in the outcome per unit change in Xi{j} while all other values in the model remain the same. 

Similar to that in the unconditional model depicted above, the intercept is allowed to vary 

randomly across schools, and 𝑢0ℎ ~ N(0, τ00) represents the unexplained school-level residuals 

after controlling for predictors 𝑋𝑖{𝑗} and 𝑍ℎ. The term ei{j} represents the student-level residual 

associated with student i who is a member of a set of schools {j}. The student-level residuals ei{j} 

are assumed to follow a normal distribution with a mean of zero and variance σ2, which is 

notated as ei{j} ~ N(0, σ2). The conditional MMrem can be elaborated further by allowing for 

random coefficients and more characteristic predictors at different levels to address specific 

research questions. 

Examples of applied research using the MMrem. In the fields of education and other 

sciences, studies that have compared appropriately modeling versus ignoring multiple 

membership data structures have revealed significant differences. For example, Fielding (2002) 

applied an MMrem to education data in England to isolate the effects on student academic 

outcomes of teachers from other influences in the classroom environment. By recognizing that 

the data had a multiple membership structure and modeling multiple teacher effects on response 

scores, the author reported the MMrem’s usefulness in studying the important role that teachers 
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played. As a recent application where the MMrem has been applied to value-added school 

research, Timmermans, Snijders, and Bosker (2013) used an MMrem on data collected from 

Dutch primary and secondary schools to explore the effects of student mobility and long-term 

primary school effects on the estimated value added of secondary schools. While the results 

showed few long-term effects of primary school on the estimated value added of secondary 

schools, secondary school effectiveness was found to be a function of student mobility in 

secondary schools. 

Research using an MMrem can also be found in other sciences (e.g., veterinary 

epidemiology, animal ecology, genetics, public health, and psychology). For example, in public 

health, Chandola et al. (2005) used the MMrem to assess the physical and mental health function 

of people within households and the areas in which they live. The authors compared results using 

a conventional HLM and an MMrem with two- and three-level models for each outcome of 

interest. They found differences in variance estimates between the two approaches, and 

concluded that taking into account household (cluster sampling unit) membership and 

characteristics is more advantageous than ignoring them and that longitudinal health studies 

should assess mobility in those units over time. Although true parameter recovery was not 

feasible in the real data analysis, the estimation of applied two-level and three-level MMrems 

was an important contribution of Chandola et al.’s study. 

Multiple membership models have also been used to study disease mapping and area 

effects on measurements of individuals. Leyland (2001) applied variants of spatial statistical 

analysis models to investigate the incidence of lip cancer in Scotland from 1975-1980. The 

author also provided extensions of spatial models to higher-order autoregressive and spatial-

temporal models to study the heterogeneity and spatial components for area effects in disease 
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incidence research. Other examples of MMrem applications include Goldstein’s (2011a) and 

Rasbash and Browne’s (2001) applications of a complex multiple membership model to study 

salmonella infection in flocks of chickens; Jenkins, Rasbash, and O’Connor’s (2003) use of an 

MMrem to study depression while considering human genetics and family effects; and Gengler, 

Wiggans, and Gillon’s (2004) study that examined the crossed effects on cow milk production of 

milking frequency and heritability of milk yields. In addition to applying an MMrem to 

continuous outcomes, Elghafghuf et al. (2014) applied a three-level cross-classified, multiple 

membership Cox model in survival analysis to study calf mortality. 

Methodological research with the MMrem. Because the MMrem is gaining popularity in 

a wide range of applications, there has been active methodological research on it over the past 

decades. In their comparison of estimates obtained from a conventional HLM in which student 

mobility was omitted to results derived when mobility was modeled, Goldstein et al. (2007) 

showed that the conventional HLM underestimated the importance of schools’ contributions to 

student academic measures. Leckie (2009) furthered this investigation by exploring whether 

neighborhood and school effects affected simultaneously student academic achievement using a 

national dataset in England. In addition to confirming Goldstein et al.’s (2007) findings, Leckie’s 

study revealed that MMrem estimates generated improved random effect estimates of the cross-

classification factors, and highlighted the importance of incorporating student mobility in model 

estimation in school performance research. Leckie showed that school rank order was found to 

be sensitive to the way in which the researcher handled student mobility. 

More recently, Wolff Smith and Beretvas (2015) made important contributions to 

MMrem methodological research. To investigate the consequences of model misspecification in 

analyzing multiple membership data structures, the authors compared estimates obtained using 
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an MMrem with those using an HLM-delete or HLM-last. Their results showed that HLM 

methods led to substantial negative bias (as measured by relative parameter and standard error 

biases) in the coefficient of the level-two predictor variable, and substantial positive bias in the 

coefficient of the level-one mobility predictor. Further, HLM-based methods produced 

substantial bias in the level-two variance component. However, it should be noted that 

substantial bias also was found under some conditions when using an MMrem, even though no 

consistent pattern could be identified in the bias. In this research inquiry, both real data and 

simulation studies were conducted. In their simulation study, the authors manipulated the 

mobility coefficient, ICC, percent of mobile students, number of schools, and number of students 

per school. The combinations of these simulation factors formed 32 simulation conditions.  

As in longitudinal educational research where students may have missing school 

identification numbers across data collection occasions, Hill and Goldstein (1998) and Fielding 

and Goldstein (2006) investigated missing identifications of level-two units in a multiple 

membership framework using auxiliary data. The authors proposed a weighting scheme for 

mobile students with missing school identification numbers such that the sum of weights will not 

be one but the variance of the random effects is the school variance associated with the only 

known school. Recently, Wolff Smith and Beretvas (2014a) also conducted a simulation study to 

investigate various techniques to assess mobility and handle missing school identification 

numbers in two-level data. In this study, the simulation factors included the ICC, number of 

schools, percent of mobile students, and percent of mobile students with missing school 

identification numbers (32 simulation conditions). The results showed a substantial positive bias 

(as measured by relative parameter and standard error biases) in the coefficient of the level-one 

predictor as well as the level-one and -two variance component estimates when missing school 
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identification numbers were addressed incorrectly. However, there was substantial bias in the 

coefficient for the student mobility predictor even when missing school identification numbers 

were handled appropriately. 

It is an important feature of an MMrem to specify the contributions of level-two units to 

the outcome of level-one units by assigning a specific weight to each level-two unit for each 

level-one unit. Different weighting schemes have been used to model multiple membership data 

(Browne, Goldstein, & Rasbash, 2001; Grady & Beretvas, 2010; McCaffrey et al., 2004). Several 

studies that assessed MMrem performance under different weighting schemes yielded interesting 

findings. In a study that evaluated teacher effects, Fielding (2002) explored different weighting 

schemes and found that the main results were relatively robust to the choice of weighting scheme 

except in extreme cases in which multiple membership was ignored completely, and therefore 

one of the schools attended was assigned a weight of one. Similarly, Wolff Smith and Beretvas 

(2014b) compared certain known correct and incorrect ways to assign weights when estimating 

the MMrem. Their study results also indicated that model parameter estimates were relatively 

insensitive to the different methodologies used to assign weights. The simulation factors in the 

Wolff Smith and Beretvas (2014b) study included the percentage of students that changed 

schools, ICC, number of schools, and number of students per school. Galindo (2015) conducted 

both a real data analysis and a simulation analysis to investigate the effect of weighting 

assignment scheme when using an MMrem. Relative parameter and standard error biases were 

evaluated using two correct and two incorrect weight patterns. Inconsistent to previous findings, 

Galindo’s results showed that, in some conditions, there were substantial differences between 

weight patterns used for the level-two school mobility predictor, as well as for the level-two 

variance component parameter and standard error estimates. The simulation factors manipulated 
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by Galindo included the percent of mobility, ICC, and generating values of the level-one and -

two mobility predictors (16 simulation conditions). These varied findings from different studies 

may be attributable, in part, to different data generation and estimation models. For example, in 

the study of Wolff Smith and Beretvas (2014b), mobility status was randomly assigned to 

students and to schools. In the Galindo (2015) study, on the other hand, student mobility was not 

randomly assigned but modeled as a propensity of student-level predictors. 

Methodological research with multiple membership data structures has been conducted 

using both cross-sectional and longitudinal data. In the case of cross-sectional data, Chung 

(2009) conducted a simulation study using a two-level multiple membership model in which 

students were not nested purely within schools. The author compared the results derived from the 

MMrem with those from the conventional two-level HLM that ignored the multiple membership 

data structure. Chung found substantial bias (as measured by relative parameter and standard 

error biases) in the estimation of level-one and -two variance components in the results of the 

conventional two-level HLM analysis. Further, the substantial negative bias in the estimation of 

the level-two predictor’s coefficient was directly proportional to the percentage of mobile 

students when the conventional HLM estimation methods were used. In this study, the 32 

simulation conditions were the combinations of percent of mobile students (10%, 20%), ICC 

(5%, 15%), number of schools (30, 50), number of students per school (20, 40), and number of 

schools attended by mobile students (2, 3). 

In the case of longitudinal data, several studies have been conducted in the recent past 

(e.g., Grady & Beretvas, 2010; Leroux, 2014; Leroux & Beretvas, in press; Luo & Kwok, 2012). 

Grady and Beretvas (2010) developed a three-level cross-classified multiple membership growth 

curve model to analyze data with repeated measurements nested within students who, in turn, 
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were nested within schools. Through analyses of real data and simulations, the authors compared 

the biases in parameter and standard error estimates, as well as model-fit statistics obtained with 

a conventional growth curve model (GCM) to those obtained with a cross-classified multiple 

membership growth curve model (CCMM-GCM). Their results showed some advantages of 

CCMM-GCM over GCM on school effect estimates, but both approaches yielded substantially 

biased parameter estimates under some simulation conditions. Leroux (2014) extended the three-

level latent variable regression growth curve modeling techniques (HM3-LVR) and proposed a 

new cross-classified multiple membership latent variable regression (CCMM-LVR) in the 

presence of student mobility. As an extension of the former, Leroux showed the flexibility of 

CCMM-LVR in directional parameter hypothesis testing, while considering multiple clustering 

effects appropriately. By comparing the relative biases in parameter and variance component 

estimates, RMSEs, and coverage rates of the 95% credible intervals, the author showed that the 

CCMM-LVR model produced relatively more accurate and efficient parameter estimates than 

the HM3-LVR did under the study conditions. 

Broadly speaking, results of MMrem methodological research have been consistent, in 

that modeling lower-level multiple membership was preferable to ignoring it. Although some 

biases were observed when an MMrem was used under some testing conditions, the magnitude 

of those biases was smaller than was found using conventional hierarchical linear modeling in 

which multiple membership data structures were not modeled appropriately. These findings are 

crucial, especially for educational research, in which cumulative contextual effects over time and 

across contextual settings influence student academic performance. 

As reviewed above, model assumption research, especially the assumption of residual 

normality, has been conducted for conventional hierarchical linear modeling with purely nested 
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data (cf. Maas & Hox, 2004a, 2004b, 2005; Seco et al., 2013). Despite the increasing amount of 

applications and research with the MMrem, no known studies have examined the effects of 

residual distributions on MMrem performance. In the simulation studies reviewed, assessments 

of MMrem estimation performance, including parameter recovery, precision, and bias analyses, 

were carried out under many study conditions, except that related to the varying residual 

distribution assumptions. This gap suggests that there is a need for such research. 

MMrem and its importance in educational research. A host of reports has shown that 

mobility is a ubiquitous phenomenon in U.S. education. These reports suggest that more frequent 

applications of the MMrem in applied educational research are especially relevant: The National 

Assessment of Educational Progress (NAEP) 1998 Math Assessment showed that 34% of fourth 

graders changed schools at least once in the two years preceding data collection (Rumberger, 

2003). A report by the U.S. Government Accounting Office (1994) found that on average, 17% 

of U.S. third graders switched schools between the first and third grades. State-level data have 

provided further insights about student mobility over the years. In Rhode Island, for example, the 

average mobility amongst public school students in 2012 was 11% (Rhode Island Department of 

Elementary and Secondary Education, 2013), and in Nebraska, the average mobility rate from 

2007 to 2012 was 12% (Nebraska Department of Education, 2013). A study conducted by the 

Institute of Educational Services (Fong, Bae, & Huang, 2010) reported that more than a quarter 

(27.7%) of students in Arizona experienced at least one mobility event over the 2004-05 school 

year. 

 Prior studies have indicated that student mobility affects students disproportionally. 

Students in large inner cities have been reported to have a high mobility rate. The U.S. 

Government Accounting Office report (1994) revealed that on average, 15% of suburban and 
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25% of urban students had changed schools at least once from first to third grade. Kerbow 

(1996a, 1996b) found that amongst Chicago students enrolled in 1994, less than 40% had 

attended the same school throughout their elementary schooling. The proportion of students in 

the Los Angeles Unified School district who entered after school started or left before school 

ended in one school year (1990-91) was reported to exceed 40% (Rumberger, 2003). Lash and 

Kirkpatrick (1990, 1994) reported that in urban elementary schools, the student mobility rate was 

as high as 50% during one academic year. 

While student mobility is prevalent, studies have found mixed effects of such mobility on 

academic outcomes. Recognizing that some of the observed variability in academic 

measurements between mobile and non-mobile students may be a function of differences in 

factors such as socioeconomic status and family structure (Alexander et al., 1996; Pettit & 

McLanahan, 2003), researchers have reported many compromised educational outcomes 

associated with student mobility. These include declining trends in classroom participation and 

academic performance; negative teachers’ attitudes about mobile students (e.g., less 

academically competent); an elevated risk of grade retention; disruption of social ties with 

friends and community; and an increased likelihood of receiving special education services 

(Coleman, 1988; Crowder & South, 2003; Gruman et al., 2008; Ingersoll, Scamman, & 

Eckerling, 1989; Kerbow, 1996a, 1996b; Mantzicopoulos & Knutson, 2000; Rumberger, 2003, 

2015, 2016; Swanson & Schneider, 1999). On the other hand, several researchers have reported 

that the academic achievement differences between mobile and non-mobile students fell short of 

significance when prior academic performance and background characteristics were controlled 

(Alexander et al., 1996; Heinlein & Shinn, 2000; Strand & Demie, 2006, 2007; Wright, 1999). In 

some instances (e.g., when students move to higher performing or better matching schools), 
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student mobility may actually bring some positive effects (Cullen, Jacob, & Levitt, 2005; 

Hanushek, Kain, & Rivkin, 2004; Holme & Richards, 2009). 

While it appears that conclusions about the effects of student mobility are not yet 

consistent, it is not entirely clear how different studies handled the nuances of modeling student 

mobility, which multilevel modeling methods were applied, and which modeling assumptions 

were followed to analyze multiple membership multilevel data. Because violations of modeling 

assumptions often can lead to distorted relationships between variables, investigation of the 

accuracy in model parameter recovery when modeling assumptions are violated is of utmost 

importance. Therefore, the purpose of this study was to build on the methodological research in 

purely nested multilevel modeling when assumptions are violated (Maas & Hox, 2004a, 2004b, 

2005; Seco et al., 2013) and studies of MMrem performance under residual normality 

assumption (e.g., Browne et al., 2001; Chung & Beretvas, 2012; Galindo, 2015; Wolff Smith & 

Beretvas, 2015) to ascertain MMrem performance when the level-two residual normality 

assumption was violated, and under various sample size conditions.  
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CHAPTER 3 

METHODOLOGY 

This research inquiry is a Monte Carlo simulation study. The primary research question 

to be addressed was how accurate were multiple membership random effects model (MMrem) 

fixed effect and variance component parameter estimates when violating the assumption that the 

level-two residual distribution was normal. Of additional interest in this inquiry were the 

influences of various sample sizes on MMrem parameter estimates given symmetrical or 

asymmetrical non-normal level-two residual distributions. Building on prior research that 

investigated robustness issues with purely hierarchical data structures (Maas & Hox, 2004a, 

2004b, 2005; Seco et al., 2013), and studies that addressed parameter recovery using an MMrem 

under the residual normality assumption (e.g., Browne et al., 2001; Chung, 2009; Leroux, 2014; 

Galindo, 2015; Wolff Smith & Beretvas, 2015), this research inquiry was designed to extend 

methodological research of the statistical performance of the MMrem when level-two residual 

distributions deviate from normality with various choices of sample size at level-one and -two. 

As a preparatory step of the Monte Carlo simulation study, an analysis using a subset of a 

large-scale national educational assessment dataset was conducted to provide a frame of 

reference for fixed effect and variance component parameter estimates. Given that an analysis of 

the observed data (henceforward referred to as real data) does not allow one to address fully the 

research questions posed concerning MMrem robustness under various types of violation of the 

level-two residual normality assumption or to test the adequacy of sample sizes, parameter 

estimates obtained from the real data analysis were used only as values of the generating 

parameters for the Monte Carlo simulation study to answer the two research questions.  
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To describe the methodology of conducting this Monte Carlo simulation study, this 

chapter is divided into nine sections: The first section provides information of the preparatory 

step where an MMrem was applied to a subset of real data for obtaining realistic parameter 

estimates; the second section summarizes the simulation study design, including simulation 

factors and conditions; the third section discusses data generation; the fourth section introduces 

the generating MMrem for the simulation study; the fifth section discusses generating level-one 

and level-two predictor variables; the sixth section is about level-one unit mobility; the seventh 

section presents the estimating MMrem; the eighth section provides information about the two-

level conditional MMrem estimation procedure used in the simulation study; and the ninth 

section defines the MMrem parameter recovery evaluation criteria. 

A Preparatory Step — A Real Data Analysis 

Data source. With an objective to obtain realistic generating parameters for the Monte 

Carlo simulation study, a subset of the Early Childhood Longitudinal Study, Kindergarten Class 

of 2010-11 public-use data (ECLS-K: 2011; Tourangeau, Nord, Lê, Wallner-Allen, Vaden-

Kiernan, Blaker, & Najarian, 2017) was chosen for a real data analysis. The ECLS-K: 2011 

contains rich information on measures of student-level cognitive, social, emotional, and physical 

growth collected from a sample of students in public and private schools, and captures school-

level data related to student development and information that enables determination of student 

mobility. The ECLS-K: 2011 has a multiple membership data structure and offers an ideal 

dataset to apply an MMrem. 

The currently available ECLS-K: 2011 public-use file is comprised of data collected 

during six rounds (fall 2010, spring 2011, fall 2011, spring 2012, fall 2012, and spring 2013). In 

fall and spring during the base-year (2010-11 school year), data were collected from a nationally 
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representative sample of 18,174 kindergartners from approximately 968 schools. Subsequently, 

data were collected again in fall and spring during the 2011-12 and 2012-13 school years.  

Assessment instruments used in the ECLS-K: 2011 study included: child assessment, 

parent interviews, and questionnaires from classroom teachers, special education teachers, and 

school administrators. More details about the ECLS-K: 2011 sampling design, data collection 

procedures, assessment instruments, raw data elements, and composite scores can be found in 

Tourangeau et al. (2017).  

Variables of interest. The ECLS-K: 2011 public-use dataset provides three academic 

achievement measures: reading (language and literacy), mathematics, and science. In the real 

data analysis, spring of second-grade item response theory (IRT) scaled overall reading 

achievement scores were extracted as the outcome of interest. 

It was hypothesized that some student-level variables were related to academic outcomes. 

Several student-level variables with potential correlations to the outcome of reading achievement 

were selected based on prior educational research literature, and were followed by exploratory 

analyses. From these analyses and prior research, students’ kindergarten IRT scaled overall 

reading achievement scores were selected. 

Several school-level variables were explored based on the educational research literature 

(Beatty, 2010; Han, 2014; Lash & Kirkpatrick, 1994, 1996; Xu, Hannaway, & D’Souza, 2009). 

Consistent with what is reported in the literature, descriptive analyses showed that schools in 

urban settings contained high student mobility. Therefore, a dichotomous school location type 

variable was chosen as the school-level predictor variable. 

 Analysis sample. While the currently available ECLS-K: 2011 public-use data have 

measurements on six occasions, not all data elements at the student-level and school-level were 
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available for each measurement occasion, largely because of the ECLS-K: 2011 study design 

(e.g., data collection subsampling in fall of first- and second-grade) and students lost to follow-

up for various reasons (e.g., student transferred to non-sampled schools or could not be located). 

In fitting an MMrem, unique student and school identifications are required for each 

measurement occasion considered. Because the purpose of this real data analysis was only to 

obtain MMrem parameter estimates for the Monte Carlo simulation study instead of making 

statistical inferences about the U.S. student population, two measurement occasions were 

included to minimize sample size reduction because of missing values. Specifically, measures in 

the fall of kindergarten and spring of second-grade were used. Students with missing or invalid 

school identifications on any of these two measurement occasions were excluded from the 

analysis. In addition, only records with non-missing and valid values of outcome and predictor 

variables were retained, leading to the analysis dataset containing complete records of 11,658 

students and 825 schools. The percentage of mobile students in the analysis dataset was 17.14% 

(1,998 students). 

Weights. A signature strength of an MMrem is that it allows the accurate specification of 

multiple membership data structures wherein some level-one units are associated with more than 

one level-two unit; hence, the model accounts for the effects of multiple schools on mobile 

students’ academic achievement accurately. As seen in the MMrem specifications in Chapter 2 

(both for an unconditional and conditional MMrem), the relative importance of each school, or 

its weight, needs to be predetermined to attribute such importance to each school attended. This 

association of level-two units with each level-one unit was accomplished by including a weight 

variable wih in the MMrem (see Equations 10, 11, and 13). Note that the only requirement 
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pertaining to weights in an MMrem is that the sum of the weights for each level-one unit equals 

one: ∑ 𝑤𝑖ℎℎ∈{𝑗}  = 1. 

The inclusion of weights suggests that in addition to be affected by student-level 

predictor, the reading achievement score of a level-one unit was a weighted function of level-two 

residuals and the level-two predictor values (school locale) across different data collection 

occasions. Thus, the influence of school locale occurs through the weighted average of the values 

of the school locale variable for fall of kindergarten and spring of second-grade. While there are 

options for assigning weights to mobile students, this study chose to implement an equal 

weighting approach. This choice was not expected to affect model estimation appreciably based 

on most prior research findings that MMrem parameter and residual estimates were robust to the 

choice of weight assignment approach (Fielding, 2002; Goldstein et al. 2007; Wolff Smith & 

Beretvas, 2014b). With this approach, it was assumed that each level-two unit contributed 

equally to the outcome of each mobile student’s reading achievement. That is, for the 

unconditional and conditional models, weights were assumed equal for each school attended for 

each mobile student (i.e., 0.5 for each school attended). Non-mobile students attended the same 

school in fall of kindergarten and spring of second-grade. Therefore, for non-mobile students, the 

weight for the same school attended was one.  

MMrem estimation. A two-level MMrem was fit to the analysis dataset extracted from 

ECLS-K: 2011. Both unconditional and conditional MMrems were estimated. The unconditional 

MMrem at level-one and -two was the same as Equations 9 and 10 given in Chapter 2, and the 

conditional MMrem at level-one and -two had the same form as that given in Equations 12 and 

13, respectively. Here, the level-one predictor, 𝑋𝑖{𝑗}, represents student i’s kindergarten 

uncentered reading score, and the level-two predictor, 𝑍ℎ, represents school locale (coded 1 for 



 

59 
 

urban schools and 0 for non-urban schools). While the intercept is modeled as random across 

schools, the effect of the student-level predictor variable was modeled as fixed.  

Through the package R2MLwiN (Zhang, Parker, Charlton, & Browne, 2016), the models 

were estimated using the software MLwiN (version 2.36; Rasbash, Steele, Browne, & Goldstein, 

2016). Specifically, the Markov chain Monte Carlo (MCMC) estimation procedure in MLwiN 

was executed in the R environment to estimate both unconditional and conditional MMrems. 

Parameters in each model were estimated using diffuse priors and the default setting of the 

MCMC procedure in MLwiN. Prior MMrem methodology studies (e.g., Chung, 2009; Chung & 

Beretvas, 2012; Galindo, 2015; Grady, 2010; Wolff Smith & Beretvas, 2014a, 2014b, 2015) 

show that one chain with 50,000 iterations and a burn-in of 5,000 is sufficient for stable 

estimation of a reasonably parsimonious MMrem. Therefore, in the real data analysis, each 

model was estimated with 50,000 iterations and a burn-in period of 5,000 iterations. 

Descriptive analyses. The analysis dataset showed that the sample average reading 

achievement score overall in spring of second-grade was 96.42 for this subset of ECLS-K: 2011 

students (Table 4). When dividing schools into schools where some students switched schools 

(these schools were defined as mobile schools) and schools where no students switched schools 

(these schools were defined as non-mobile schools), the average reading achievement score was 

95.48 for students in mobile schools and 98.37 for students in non-mobile schools, showing a 

difference in average reading achievement score of 2.89 points without controlling for any 

covariates. During this data collection period, 67.27 percent of the 825 schools in this analysis 

dataset were located in non-urban settings (Table 5).  
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Table 4 

Descriptive Statistics for Reading Achievement IRT Scaled Score in Spring of Second-grade 

Reading Achievement Score M SD N 

Overall  96.42 12.12 11,658 

Students in Mobile Schools 95.48 12.56 7,848 

Students in Non-mobile Schools 98.37 10.91 3,810 

 

 

 

Table 5 

Descriptive Statistics for Level-one and Level-two Predictor Variables in the Real Data Analysis 

Level-one Predictor  M SD 

Fall of Kindergarten Reading Score  47.18 11.59 

Level-two Predictor  N Percentage 

School Locale     

Urban  270 32.73 

Non-urban  555 67.27 

 

 

 

Table 6 shows the distribution of schools by school locale and school mobility status in 

the fall of kindergarten. Of the 825 schools in the subset of data extracted from the ECLS-K: 

2011, 542 (65.70%) were mobile schools (at least some students were mobile) and 283 (34.30%) 

were non-mobile (no students were mobile). In the mobile school stratum, 37.45% (or 203 out of 

542) schools were in urban setting whereas in the non-mobile school stratum, 23.67% (or 67 of 

283) schools were urban schools (Table 6). 
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Table 6 

Distribution of Schools by School Locale and School Mobility Status in Fall of Kindergarten  

 Percent by School Mobility Status  

 Mobile School Non-mobile School 

School Locale  

Urban 37.45% 23.67% 

Non-urban 62.55% 76.33% 

 

 

 

Table 7 describes the distribution of students by school locale between the fall of 

kindergarten and spring of second-grade. Most students transferred between schools with the 

same location type (e.g., transferring from an urban school to another urban school). 

 

 

Table 7 

Student Distribution in Fall of Kindergarten and Spring of Second-grade 

 

 Kindergarten School Locale  

 Urban Non-urban 

Second-grade School Locale   

Urban 74.77% 13.93% 

Non-urban 25.23% 86.07% 

 

 

 

Using R2MLwiN, the point estimates and the standard errors (SEs) of the fixed effects 

and variance components of the unconditional and conditional MMrems were estimated by the 

MCMC method in MLwiN. MMrem fixed effect and variance component parameter estimate 

results are shown in Table 8. 
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Table 8 

Fixed and Random Effect Parameter and Standard Error Estimates for the Unconditional and 

Conditional Multiple Membership Random Effects Models 

 

 Estimating Model 

 Unconditional Model  Conditional Model 

 Coefficient SE  Coefficient SE 

Fixed Effects      

Intercept (𝛾00) 95.97 0.20  68.44 0.42 

Kindergarten Reading Score Xi{j} (𝛾10) — —  0.60 0.01 

School Locale Zh (𝛾01) — —  −1.58 0.31 

Variance Components      

Between Students (�̂�2) 123.36 1.70  86.17 1.18 

Between Schools (�̂�00) 27.59 2.04  11.77 1.00 

Note. — = not applicable. 

 

 

Overall, the reading achievement score in spring of second-grade was 68.44, controlling 

for kindergarten reading achievement score and school locale. Compared to the unconditional 

model, between-school variability reduced from 27.59 to 11.77 when including the school-level 

predictor variable in the model, although considerable variability remains. The between-student 

variability was reduced after adding the student-level predictor variable, from 123.36 to 86.17. 

In the following section, other design features and procedural steps of the Monte Carlo 

simulation study for the evaluation of the statistical performance of a two-level conditional 

MMrem under various level-two residual distribution and sample size conditions will be 

presented. 
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Simulation Study Design 

In this simulation, a two-level multiple membership data structure with two measurement 

occasions in the educational context was used as the framework to investigate the effects of 

violating the normality assumption of the level-two residual distribution. Similar to the MMrem 

employed in Chung’s (2009) study, two predictors (one student- and one school-level predictor) 

were included in the data-generating and estimating models using a conditional MMrem. In this 

simulation study, the student-level predictor was theorized to be an individual-level and 

continuous variable that was related to the outcome of interest. In addition, the school-level 

predictor was hypothesized to be a dichotomous variable and contribute to explaining the 

variability in the outcome measure. The continuous outcome measure was defined as a function 

of both student- and school-level predictors in the presence of some students’ multiple 

membership over a period of three consecutive school years. 

Five factors were manipulated in this simulation study: the type of level-two residual 

distribution, number of schools (level-two sample size), number of students per school (level-one 

sample size per level-two unit), student mobility rate, and intra-cluster correlation coefficient 

(ICC). In a fully crossed design, the combinations of these five factors yielded 48 simulation 

conditions. In each of these simulation conditions, 1,000 datasets were simulated, and the 

MCMC estimation method was employed to estimate fixed effect and variance component 

parameters. The two research questions of this dissertation were addressed by evaluating biases, 

coverage rates of the 95% parameter credible intervals, and root mean square errors (RMSEs) of 

the parameters derived across the 48 simulation conditions. Details of the simulation study 

design and factors will be discussed in the following subsections. 
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Simulation conditions. There were three levels in the simulation factor for the type of 

level-two residual distribution in this study. These included normal, uniform, and a chi-square 

distribution with one degree of freedom. Two levels for the number of schools simulation factor 

were considered: 30, 100. Two levels were used for the number of students per school simulation 

factor: 20, 40. In addition, two levels of student mobility rate were evaluated: 10% and 30%. For 

the manipulating factor ICC, the last simulation factor, two levels were considered: .10 and .20. 

Under each of the 48 simulation conditions that were the combinations of these five simulation 

factors, 1,000 datasets were generated to prepare for MMrem model estimation and model 

performance analyses. 

Level-two residual distribution assumption. Level-two residuals were manipulated to 

investigate the influence of violating the level-two residual normality assumption. For 

manipulating the level-two residual distribution, first, multiple membership data was generated 

under the normality assumption. The inclusion of the normal level-two residual distribution was 

to establish a baseline standard of fixed effect and variance component parameter estimates for 

comparison with those obtained when the level-two residual normality assumption was violated. 

Next, a uniform distribution was utilized to assess the accuracy of MMrem estimation when 

level-two residuals followed a symmetrical but non-normal distribution. In addition, a chi-square 

distribution with one degree of freedom which is severely and positively skewed was used to 

evaluate the MMrem’s performance further when the level-two residuals followed an 

asymmetrical and non-normal distribution. Both the uniform and chi-square distribution with one 

degree of freedom were considered a marked deviation from the normal distribution, and thus 

violating an important modeling assumption. Both of these non-normal level-two residual 

distributions were investigated in the purely hierarchical multilevel data structure case (Maas & 
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Hox, 2004b) and considered possible scenarios that may be encountered in applied research in 

which the level-two sample sizes may be restricted, and the level-two residual assumptions met 

only in part. 

Number of schools (number of clusters). To evaluate the performance of the MMrem 

when the assumption of level-two residual normality was violated, close attention also was given 

to the sample size requirement, because of the close theoretical relationship between sample size 

and a distribution’s normality. There is no complete consensus about the optimal minimum 

cluster-level sample size in methodological research on purely nested multilevel modeling cases, 

but sizes of 20 to 40 typically are considered reasonable and a size of 100 is considered sufficient 

(e.g., Kreft & de Leeuw, 1998; Maas & Hox, 2004a). Prior MMrem studies (e.g., Chung & 

Beretvas, 2012; Wolff Smith & Beretvas, 2014a) have used level-two sample sizes ranging from 

30 to 100. Chung and Beretvas (2012) found reasonable parameter recovery when school-level 

size was 50, with more accurate results when it was 100. Therefore, school-level sample sizes in 

this study was set to 30 and 100 to investigate MMrem performance under different level-two 

residual distribution assumptions. 

Number of students per school (school size). When choosing the number of students to 

generate for each school, the average number of students sampled per school in the real data was 

considered. In the ECLS-K: 2011 data, the average sample size per school was 14 students. In 

addition, average school size conditions in prior studies using non-purely nested data structures 

were referenced. The literature review showed that MMrem simulation studies have used school 

sizes ranging from 20 to 80 (Chung & Beretvas, 2012; Grady, 2010; Leroux, 2014). Therefore, 

two levels of the number of students per school, 20 and 40, were chosen for this study. 
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Student mobility rate. Student mobility is defined as switching schools when not required 

by the grade structure of the school system. Promotional school change is not assumed in the 

context of the three consecutive years from kindergarten to the second-grade in a typical 

elementary school. As noted previously, in the subset of the ECLS-K: 2011 data used in the real 

data analysis, the mobility rate was approximately 17.14%. The literature review showed that 

student mobility rates observed in other national level student academic assessment datasets 

(NELS:88, NELS: 2000, ECLS-K) have comparable values (Chung, 2009). Further, several 

MMrem methodological research studies have used student mobility rates of 10% and 25% as 

simulation conditions. In this study, student mobility rates of 10% and 30% were selected. 

ICC. The ICC, or the proportion of total variance in the outcome that is attributable to 

variability amongst the level-two units, was manipulated. In the educational setting, the range of 

the ICC values are typically between .05 and .30 (Hedges & Hedberg, 2007; Meyers & Beretvas, 

2006; Spybrook & Raudenbush, 2009) and such values have been used in prior multilevel 

methodological research (e.g., Chung, 2009; Maas & Hox, 2004a; Seco et al., 2013). In the real 

data analysis of a subset of the ECLS-K: 2011 data, the unconditional ICC was .18 and the 

conditional ICC was .12. As such, ICC values of .10 and .20 were used in the Monte Carlo 

simulation study. 

In summary, MMrem performance using MCMC estimation was assessed under the 48 

simulation conditions derived from the combinations of the five simulation factors in a fully 

crossed study design. Table 9 summarizes the conditions of the Monte Carlo simulation study 

design. 
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Table 9 

Simulation Conditions of the Study Design 

Manipulated Factor Manipulated Level 

Level-two Residual Distribution Normal 

 Uniform 

 Chi-square with One Degree of Freedom 

Number of Schools 30 

 100 

Number of Students per School 20 

 40 

Student Mobility Rate 10% 

 30% 

ICC .10 

 .20 

 

 

 

Data Generation 

For each of the 48 simulation conditions, 1,000 two-level multiple membership datasets 

were generated in R (version 3.4.1; R Core Team, 2017) to produce a total of 48,000 simulated 

datasets which, in turn, were estimated using a two-level conditional MMrem. Level one of the 

data hierarchy was the student level and level two was the school level. Each student-level record 

included two school IDs, one for the first data collection occasion and the second for the 

subsequent data collection occasion. Although both school IDs were identical for non-mobile 

students, the two school IDs for mobile students were different because these students were 

assumed to have attended two schools. 

As shown in Table 4, the sample average reading achievement scores for students in 

schools where some of the students were mobile was 2.89 points lower than that for students in 
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schools where no students were mobile. In order to mimic the real data where students in mobile 

schools were observed to have had a lower reading achievement than that of students in non-

mobile schools, two independent level-two residual distributions were used, one for all simulated 

students in mobile schools and another for students in non-mobile schools. That is, two 

independent level-two residual distributions were used to implement each level-two residual 

simulation condition (normal, uniform, and chi-square distribution with one degree of freedom). 

This data simulation approach was utilized in previous MMrem methodological research (e.g., 

Leroux, 2014) and was considered a finer representation of the real-world data than simulating 

all data from a single level-two residual distribution. 

The real data also revealed that approximately 65.70% of schools (542 out of 825 

schools) had mobile students while the remainder of schools did not. Motivated by these real 

data distributions of schools by mobility and prior research (e.g., Leroux, 2014), this study 

designated two strata of schools: 30% of schools in the simulated datasets were non-mobile (no 

students were mobile) and 70% were mobile (some students were mobile). Note that mobile and 

non-mobile school strata were assumed closed, indicating that once a student was assigned to 

one of the strata, the student would remain in that stratum on both data collection occasions. This 

assumption set a clear context without losing generality for assessing the MMrem’s statistical 

performance under the simulation conditions given. The next paragraph describes the assignment 

of students to non-mobile and mobile schools when the level of schools is 30, thus with 30% of 

the schools (9) being non-mobile and 70% of the schools (21) being mobile schools. 

While several previous MMrem methodology studies (Chung & Beretvas, 2012; Wolff 

Smith & Beretvas, 2014a, 2014b, 2015) have randomly assigned student mobility without taking 

into account school-level characteristics, this study assigned students considering school location 
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type and mobility status. With reference to school distribution by urbanicity and school mobility 

status in the subset of the ECLS-K: 2011 data, this simulation study used 30% and 35% as the 

proportions of urban schools in the non-mobile and mobile school stratum, respectively. School 

locale was assumed constant from fall of kindergarten to spring of second-grade. When a student 

was assigned to one of the 9 non-mobile schools, s/he was a non-mobile student. When a student 

was assigned to one of the 21 mobile schools, s/he had a probability of being a mobile student, 

and that probability depended on the mobility rate condition (10% or 30%). For mobile students, 

the first and second schools attended both belonged to the stratum of mobile schools. A scheme 

that modified a feature used in prior MMrem research (e.g., Galindo 2015; Leroux, 2014) to 

assign school ID numbers is depicted below in Table 10. In Galindo’s study, for example, a 

student who switched schools was assigned school IDs such that school ID at the destination 

school was the school ID at the initial school plus one within the mobile school stratum. In the 

assignment scheme that was used in this study, on the other hand, schools were further 

subdivided by urbanicity within each school mobility stratum. For all non-mobile students — 

students in non-mobile schools and non-mobile students in mobile schools, these students stayed 

in the same school within the same school location type for both fall of kindergarten and spring 

of second-grade. Therefore, the first school ID was the same as the second school ID for these 

non-mobile students. For each mobile student in the mobile school stratum, the second school ID 

was assigned with reference to the proportions of urban and non-urban schools as specified (35% 

urban and 65% non-urban) and student mobility distribution by school urbanicity for fall of 

kindergarten and spring of second-grade within the mobile school stratum (Table 7). This data 

generating approach ensured that the school distribution by location type and student mobility 

between the two types of school locales on the first (fall of kindergarten) and second (spring of 
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second-grade) measurement occasions in the simulated datasets was relatively similar to that of 

the real data (the subset of the ECLS-K: 2011 data that was used to obtain the generating 

parameters for the Monte Carlo simulation study). 
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Table 10 

School ID Assignment for 30 Schools Conditions 

Mobile 

School 

Mobile 

Student 

School ID on First Data 

Collection Occasion (ID_1) 

School ID on Last Data 

Collection Occasion (ID_2) 

No No 22 ≤ ID_1 ≤ 30, 

controlling for the proportion of 

schools by urbanicity in this stratum 

ID_2 = ID_1 

Yes No 1≤ ID_1 ≤ 21, 

controlling for the proportion of 

schools by urbanicity in this stratum 

ID_2 = ID_1 

Yes Yes 1 ≤ ID_1 ≤ 21, 

controlling for the proportion of 

schools by urbanicity in this stratum 

1 ≤ ID_2 ≤ 21, 

approximately resembling the 

proportions of school location 

type (Table 6) in this stratum and 

student mobility between the two 

school locale types amongst 

mobile students (Table 7). If 

school locale on both 

measurement occasions is the 

same, then ID_2 is sequentially 

assigned the next school ID in 

the same urbanicity substratum 

within the mobile school stratum; 

if school locale on the two 

measurement occasions differs 

(i.e., urban to non-urban, or non-

urban to urban), then ID_2 is 

sequentially assigned the next 

school ID in the destination 

school location type substratum. 

If ID_1 is the highest school ID 

number in the respective locale 

substratum in the mobile school 

stratum, then ID_2 is assigned 

the first school ID in the same 

school locale substratum in the 

mobile school stratum. 
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Similarly, the school IDs for the 100 schools conditions corresponded to 71-100 and 1-70 

for non-mobile and mobile schools, respectively. Despite school location type not being a 

simulation factor, this school ID assignment scheme was motivated by the mobility patterns in 

the real data. Because student mobility rate was a simulation factor, controlling for school 

location type was considered important when studying the effect of student mobility on academic 

achievement. 

All simulated datasets were generated using R software (version 3.4.1; R Core Team, 

2017). Data generation and estimation are discussed in the subsequent sections. 

Generating MMrem 

This simulation study used two-level conditional MMrem to evaluate parameter recovery. 

The generating MMrem included student-level and school-level predictors. The student-level 

predictor 𝑋𝑖{𝑗} was a continuous variable designated to correspond to the kindergarten reading 

score variable. The school-level predictor variable 𝑍ℎ was a dichotomous variable that was 

intended to correspond to school locale. For non-mobile students, the school-level predictor was 

assumed time-invariant. For mobile students, on the other hand, two school locale variables were 

used jointly to provide information about the school locale predictor. Note that while two school 

IDs and two school locale values corresponding to the two data collection occasions were used in 

the MMrem estimation to reflect some students’ multiple membership with multiple schools 

attended, this Monte Carlo simulation study was not a longitudinal data modeling study. One 

student-level outcome variable for one data collection occasion was used when fitting the 

conditional MMrem in this simulation study.  

With the inclusion of a continuous student-level predictor variable, 𝑋𝑖{𝑗}, and a 

dichotomous school-level predictor variable, 𝑍ℎ, the data generating conditional MMrem at 



 

73 
 

level-one had the same parameterization as Equation 12 (repeated and renumbered to Equation 

14): 

 𝑌𝑖{𝑗} = 𝛽0{𝑗} + 𝛽1{𝑗}𝑋𝑖{𝑗} + 𝑒𝑖{𝑗}, (14) 

and at level-two, the model was: 

 {
𝛽0{𝑗} = 68.44 + ∑ 𝑤𝑖ℎ(−1.58𝑍ℎ + 𝑢0ℎ)ℎ∈{𝑗}

𝛽1{𝑗} = 0.60                                                           
, (15) 

where Yi{j} is a student-level continuous outcome of interest that corresponds to reading 

achievement scores in the spring of second-grade; subscript i indicates a student, and {j} 

represents the set of schools a student i attended over the data collection period. For non-mobile 

students, {j} was a set of one element (the only school the student attended); for mobile students, 

{j} had two elements corresponding to the first and second schools that the mobile student 

attended. In this generating MMrem, the intercept was allowed to vary randomly across schools, 

and 𝑢0ℎ ~ N(0, τ00) represented the unexplained school-level residuals after controlling for 

predictors 𝑋𝑖{𝑗} and 𝑍ℎ. The term ei{j} represented the student-level residual associated with 

student i who was a member of a set of schools {j}. The student-level residuals ei{j} were 

assumed to distribute normally with a mean of zero and variance σ2, which was notated as ei{j} ~ 

N(0, σ2). 

As discussed in Chapter 2, weight wih would be used to account explicitly for the 

contribution of each school h in set {j} of which a student i was a member, and the weights must 

satisfy the condition ∑ 𝑤𝑖ℎℎ∈{𝑗}  = 1. For a non-mobile student, weight 𝑤𝑖1 was designated as 

corresponding to the only school s/he attended, and 𝑤𝑖1 had a value of one whereas weight 𝑤𝑖2 

was set to zero. For a mobile student, an equal weighting scheme was adopted in this simulation 

study, leading to 𝑤𝑖1 = 𝑤𝑖2 = 0.5 for each mobile school that the mobile student attended. As 

such, Yi{j} was a weighted function of school-level residuals and school-level predictor values 
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across two data collection occasions. These weights were integral to generate, as well as 

estimate, fixed effects and variance component parameters. 

Fixed effects. Coefficient 68.44 (γ00) in the data generating MMrem was the intercept, or 

the mean outcome when the student-level predictor Xi{j} was zero, and the average contribution 

of the school-level predictor 𝑍ℎ across all schools in set {j} was zero. Coefficient −1.58 (γ01) 

represented the change in the intercept β0{j} when school-level predictor Zh changes from 0 to 1 

while other values in the model were held constant. The slope coefficient 0.60 (γ10) represented 

the change in the outcome per unit increase in the student-level predictor Xi{j}, when all other 

values in the model remained the same. These generating values were obtained from the real data 

analysis using a subset of the currently-available public-use data of the ECLS-K: 2011 presented 

previously. 

Random effects. In this MMrem parameterization, the intercept was allowed to vary 

randomly across level-two units, the schools, and the level-two residuals were assumed to follow 

three different residual distributional assumptions described previously. As noted above, for each 

simulation condition, the level-two residuals were generated from two separate and independent 

distributions, with one for students in mobile schools and another for students in non-mobile 

schools. This finer distinction of level-two residuals between the two groups of students was 

intended to mimic closely the academic achievement patterns observed in the real data analysis, 

as well as to avoid arbitrarily obscuring a potential nonrandom relationship between student 

mobility and academic outcome. Data generation will be described separately for normal and 

non-normal level-two residual distributional conditions in the following: 

(1) For a simulation condition under a normal level-two residual distribution, the 

distribution 𝑢0ℎ ~ N(0, 11.77) (Table 8) represented the unexplained level-two 
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residual after controlling for predictors 𝑋𝑖{𝑗} and 𝑍ℎ. As stated earlier in this Chapter, 

in order to mimic the real data where students in mobile schools were observed to 

have had a lower average reading achievement than that of students in non-mobile 

schools, two independent and normally distributed level-two residual distributions 

were used, one for all simulated students in mobile schools and another for students 

in non-mobile schools. The difference between the sample means of mobile and non-

mobile schools has been observed to be approximately 0.26 standard deviation on the 

sample standard deviation scale, or approximately 0.9 standard deviation on the 

standard deviation scale of the overall level-two normal residual distribution N(0, 

11.77). Thus, to reflect the assignment of 30% and 70% school in non-mobile and 

mobile school stratum, respectively, the mean of the level-two residual distribution 

for non-mobile schools was set at 0.63 and that for mobile schools was −0.27. Using 

these two normal distributions, level-two residuals were sampled separately for 

students in non-mobile and mobile schools, and the overall mean of the school-level 

residuals was zero. Note that since ICC was a simulation factor, the condition-specific 

generating value of the level-two residual variance was a function of the level-one 

variance and the generating value of ICC. When generating the level-two residual 

data across conditions, the value of the level-one variance used was 86 (86.17 was 

obtained in the real data analysis). Hence, the condition-specific level-two variance 

component’s generating value was calculated to match the respective condition-

specific ICC using τ00 = 
86∗𝐼𝐶𝐶

(1−𝐼𝐶𝐶)
. 

(2) For a simulation condition under a uniform level-two residual distribution, two 

independent uniform distributions were used for constructing and generating level-
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two residuals. While both of these uniform distributions having the same level-two 

variance based on the level-one residual variance and condition-specific ICC as 

described above, the mean of the uniform distribution for students simulated for non-

mobile schools was set at 0.63 and for students simulated in mobile schools at −0.27, 

and the overall mean of level-two residuals was zero.  

(3) For a simulation condition where the level-two residuals followed a chi-square 

distribution with one degree of freedom, two independent chi-square distributions 

with one degree of freedom were used for constructing and generating level-two 

residuals. While both of these chi-square distributions having the same level-two 

variance based on the level-one residual variance and condition-specific ICC as 

described above, the mean of the chi-square distribution for students simulated for 

non-mobile schools was set at 0.63 and for students simulated in mobile schools at 

−0.27, and the overall mean of level-two residuals was zero.  

As described previously, the level-one residual term ei{j} represented the conditional 

residual associated with student i, who was a member of a set of schools {j}. Note that level-one 

residuals were not a simulation factor. Regardless of level-two residual conditions, the level-one 

residuals were sampled randomly from a normal distribution for each student with the 

assumption that ei{j} ~ N(0, 86.17). This study design of not manipulating level-one residual 

distribution was based on the following two reasons: (1) While the sample size overall of the 

datasets generated varied depending on simulation condition, the smallest sample size overall 

corresponded to the simulation condition with 30 schools and 20 students per school, for a total 

sample size per dataset of 600 in this simulation condition. The largest sample size overall was 

4,000 per dataset for the condition of 100 schools with 40 students per school. Even under the 
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simulating condition in which the smallest overall sample size was 600, the level-one sample 

size was considered reasonable, and thus, the asymptotic property of level-one residuals was 

expected to be satisfied approximately. (2) Prior research of robustness issues in purely 

hierarchical multilevel modeling case similarly opted to focus on the effects of the violation of 

level-two residual normality assumption (Maas & Hox, 2004a, 2004b). The rationale for 

focusing on level-two residual distribution assumption was that influence of non-normality of the 

first-level residuals on parameter and standard error estimates would be less than that for the 

second-level residuals with the test sample sizes.  

As in the case of fixed effect generating values discussed above, the generating values of 

the variance components of the random effects were adopted from results obtained in the real 

data analysis. The objective of this approach was simply to obtain realistic generating MMrem 

parameter estimates for the Monte Carlo simulation. 

Generating Level-one and Level-two Predictor Variables 

Generation of both level-one (student-level) and level-two (school-level) predictor 

variables were guided by the results obtained in the real data analysis. The level-one predictor 

variable values were randomly sampled from a normal distribution because the level-one 

predictor variable distribution observed in real data analysis was approximately normal with a 

mean of 47.18 and standard deviation 11.59 (Table 5). Similarly, the proportions of the level-two 

predictor resembled closely the proportions of schools located in urban or non-urban settings. 

Student Mobility 

A level-one (student-level) mobility indicator variable was created by using school IDs 

for the first and second data collection occasions. For non-mobile students, one school ID was 

assigned to both data collection occasions and the mobility indicator variable had a value of zero. 
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For a mobile student, the first and second school IDs were different, and the mobility indicator 

variable had a value of one. Student mobility was assigned to reflect the mobility rate simulating 

condition (10% or 30%). In addition, the proportions of mobile students by school locale in the 

simulated datasets relatively closely resembled that of mobile students by locale in the real 

dataset (Table 7). 

Estimating MMrem 

All generated data were estimated using a two-level conditional MMrem as specified by 

Equations 12 and 13. Similar to the generating model, the estimating model included student-

level and school-level predictors. The student-level predictor 𝑋𝑖{𝑗} was a continuous variable 

whereas the school-level predictor variable 𝑍ℎ was a dichotomous variable. An equal weighting 

approach was used to account for the contextual effect of the two schools attended by mobile 

students. The outcome Yi{j} was a weighted function of school-level residuals and school-level 

predictor values across two data collection occasions. 

Parameter Estimation Procedure 

A two-level conditional MMrem (Equations 12 and 13) was estimated for each of the 

simulation conditions and 1,000 datasets generated using Equations 14 and 15. Similar to the 

procedure described in the real data analysis, R software package R2MLwiN (Zhang et al., 2016) 

was used in the simulation study. Through R2MLwiN, the MCMC estimation procedure in 

MLwiN (version 2.36; Rasbash et al., 2016) was executed in the R environment to estimate the 

conditional MMrem defined previously. Parameters in each model was estimated using diffuse 

priors with 50,000 iterations and a burn-in period of 5,000 iterations. These settings were based 

on, as noted previously, prior MMrem methodology studies (e.g., Chung, 2009; Chung & 

Beretvas, 2012; Galindo, 2015; Grady, 2010; Wolff Smith & Beretvas, 2014a, 2014b, 2015) 



 

79 
 

which show that one chain with 50,000 iterations and a burn-in of 5,000 is sufficient for stable 

estimation of a reasonably parsimonious MMrem. Fixed effect and random component parameter 

estimates were extracted for each model estimation and organized for analysis, as described 

below. 

Analyses 

The analyses to assess the MMrem’s statistical performance under various level-two 

residual distributional assumptions and different sample sizes were conducted to evaluate 

relative parameter bias, relative SE bias, coverage rates of the 95% parameter credible intervals, 

and RMSE. The R software (version 3.4.1; R Core Team, 2017) was used to summarize the 

estimated MMrem fixed effects and variance components. A detailed description of these 

evaluation measures is presented in the following. 

Relative parameter bias. Parameter recovery evaluation included the intercept 𝛾00, the 

level-one predictor coefficient 𝛾10, level-two predictor coefficient 𝛾01, level-one variance 

component 𝜎2, and level-two variance component 𝜏00. 

Parameter recovery was evaluated using the relative parameter bias (Hoogland & 

Boomsma, 1998) given by: 

 B(𝜃𝑘) = 
�̅̂�𝑘−𝜃𝑘

𝜃𝑘
, (16) 

where 𝜃𝑘 is the generated true value of the kth parameter, and �̅�𝑘 is the average of the estimates 

𝜃𝑘 for the kth parameter across 1,000 simulated datasets per simulation condition. An absolute 

value of relative parameter bias greater than 0.05 would be indicative of substantial bias, 

otherwise, the amount of bias would be considered acceptable. Parameter overestimation would 

be defined when a positive relative parameter bias was observed whereas an underestimation was 

designated by a negative relative parameter bias. 
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Relative standard error bias. Precision of the fixed effect parameter estimates was 

evaluated using relative SE bias given by: 

 B(�̂��̂�𝑘
) = 

�̅̂��̂�𝑘
−�̂�𝜃𝑘

�̂�𝜃𝑘

, (17) 

where �̂�̅
�̂�𝑘

 is the average SE estimate of parameter 𝜃𝑘 across the 1,000 simulated datasets per 

simulation condition, and �̂�𝜃𝑘
 is the empirical SE observed of the kth parameter 𝜃𝑘. The empirical 

SE was obtained by calculating the standard deviation of the 1,000 𝜃𝑘 (estimates of 𝜃𝑘) for each 

simulation condition using 

 �̂�𝜃𝑘
 = [

∑ (�̂�𝑘𝑚−�̅̂�𝑘)2𝑛
𝑚=1

𝑛−1
]

1/2

, (18) 

where 𝜃𝑘𝑚
 is the estimate of parameter 𝜃𝑘 from the mth simulated dataset per simulation 

condition, and �̅�𝑘 is the mean of the estimates for parameter 𝜃𝑘 across all n = 1,000 simulated 

datasets per simulation condition. An absolute value of relative SE bias of 0.10 or larger would 

be considered substantial (Hoogland & Boomsma, 1998), otherwise, the bias would be 

considered acceptable. 

Coverage rates of the 95% credible intervals. To evaluate the precision of a fixed or 

random effect parameter estimate, a 95% credible interval was estimated for each parameter for 

each generated dataset using the MCMC procedure. For each simulated condition, the coverage 

rates of the 95% credible intervals were defined as the percentage of the 1,000 estimated credible 

intervals in which the estimated credible interval contained the true value of the parameter. 

Coverage rates relatively close to the nominal level of 95% were desirable because it was 

characteristic of a relatively accurate parameter recovery.  

RMSE. The RMSE of a parameter estimate across 1,000 simulated datasets per 

simulation condition was calculated using 
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 RMSE = [(�̅�𝑘− 𝜃𝑘)2 + �̂�𝜃𝑘

2 ]1/2, (19) 

where �̅�𝑘 is the average of the estimates for the kth parameter across 1,000 simulated datasets per 

simulation condition, 𝜃𝑘 is the generated true value of the kth parameter, and �̂�𝜃𝑘
 is the empirical 

SE observed of the kth parameter 𝜃𝑘. The RMSE represents a measure of bias and variability of a 

parameter. Smaller values of RMSE would be indicative of less biased and varied parameter 

estimates.  
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CHAPTER 4 

RESULTS 

This chapter details the results derived from the Monte Carlo simulation study that 

explored multiple membership random effects model (MMrem) parameter recovery under 

various level-two residual distributional assumptions and other manipulated conditions. As 

described in Chapter 3, MMrem parameter recovery was assessed with a fully crossed design 

using five simulation factors, including the level-two residual distribution (normal, uniform, and 

chi-square distribution with one degree of freedom), number of level-two clusters (30 and 100), 

number of level-one units per cluster (20 and 40), mobility rate (10% and 30%), and intra-cluster 

correlation coefficient (ICC, .10 and .20). The Markov chain Monte Carlo (MCMC) estimation 

procedure converged in all model estimations using the 48,000 datasets simulated and produced 

no negative variance estimates in any of the 48 simulation conditions.  

The presentation of results is divided into summaries for MMrem fixed and random 

effect parameters. For each parameter estimated, the results are further organized by the level-

two residual’s distribution. To enhance clarity, findings of the analysis for each level-two 

residual distribution are presented according to the evaluation measures as discussed in the 

Analyses section in Chapter 3. 

Fixed Effect Parameter Estimates 

In this study, the estimating MMrem had three fixed effects, including the intercept 

parameter 𝛾00, coefficient for the level-one predictor, 𝛾10, and coefficient for the level-two 

predictor, 𝛾01. Recovery of the fixed effect parameters was assessed using relative parameter 

bias, relative standard error (SE) bias, coverage rates of the 95% credible intervals, and root 

mean square error (RMSE).  
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 Intercept parameter 𝜸𝟎𝟎. Simulation results of the intercept parameter 𝛾00 are 

presented for 48 simulation conditions. By the simulation conditions of ICC, sample sizes at 

level-two and -one, and mobility rate, Tables 11, 12, and 13 provide the summary evaluation 

results of the recovery of the intercept parameter when the conditions in which level-two 

residuals followed a normal distribution, uniform distribution, and chi-square distribution with 

one degree of freedom, respectively.  

When level-two residuals followed a normal distribution. This subsection reports 

recovery of the intercept parameter when level-two residuals followed a normal distribution. As 

Table 11 shows, the evaluation of the recovery covered 16 simulation conditions when the level-

two residuals followed this distribution. 

Relative parameter bias. There was no substantial relative parameter bias in the estimates 

of intercept parameter 𝛾00, for any of the simulation conditions when the level-two residuals 

followed a normal distribution. Across all conditions, the absolute values of the relative 

parameter bias remained small, with only one slightly larger than 0.0010, well below the 

maximum acceptable 0.05 threshold (Hoogland & Boomsma, 1998).  

Relative SE bias. There was no substantial relative SE bias in the estimates of intercept 

parameter 𝛾00 for any of the simulation conditions when the level-two residuals followed a 

normal distribution. The absolute values of the relative SE bias ranged from 0.0043 to 0.0636, 

rendering all absolute values of the relative SE bias smaller than the maximum acceptable 0.10 

threshold (Hoogland & Boomsma, 1998).  

Coverage rates of the 95% credible intervals. Across the 16 simulation conditions in 

which the level-two residuals followed a normal distribution, the coverage rates of the 95% 
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credible intervals for the estimates of the intercept parameter were reasonably close to the 

nominal level of 95%, ranging from 94.1% to 96.4%.  

RMSE. The values of RMSE for the intercept parameter 𝛾00 fluctuated. Across simulation 

conditions, the RMSE displayed a pattern in which, the larger the sample size, the smaller the 

RMSE. A larger level-two sample size appeared to be associated with a substantially smaller 

RMSE when other simulation conditions were held constant. For example, RMSE decreased 

from 1.7259 to 0.9540 when the level-two sample size increased from 30 to 100, holding ICC 

at .10, level-one sample size at 20, and mobility rate at 10%. Similarly, a larger level-one sample 

size was associated with a smaller RMSE when other simulation conditions remained the same, 

although the influence of the level-one sample size on the magnitude of RMSE was not as 

remarkable as was that of the level-two sample size. In addition, the ICC value appeared to affect 

RMSE somewhat, in that a larger ICC was associated with a slightly larger RMSE. There was no 

clear pattern in the change in RMSE when the mobility rate increased from 10% to 30% while 

other simulation conditions were held constant. The smallest RMSE was 0.7259 while the largest 

was 1.9839.  
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Table 11 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Intercept, 𝛾00, by Combination of 

ICC, Level-two Sample Size, Level-one Sample Size, and Mobility Rate, when Level-two 

Residuals Followed a Normal Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾00𝑘
) B(�̂��̂�00𝑘

) % 

 

 

Normal .10 30 20 10%  −0.0005 0.0087 94.9 1.7259 

    30%  −0.0003 0.0197 96.0 1.7062 

   40 10%  0.0009 0.0135 95.9 1.3077 

    30%  −0.0009 0.0467 95.6 1.2671 

  100 20 10%  0.0000 −0.0043 95.4 0.9540 

    30%  −0.0007 −0.0169 94.8 0.9665 

   40 10%  −0.0001 −0.0103 94.5 0.7289 

    30%  0.0004 −0.0046 94.2 0.7259 

 .20 30 20 10%  −0.0003 0.0561 96.4 1.8160 

    30%  0.0003 −0.0291 94.1 1.9839 

   40 10%  −0.0012 −0.0053 95.0 1.5481 

    30%  −0.0005 0.0636 96.3 1.4535 

  100 20 10%  0.0006 −0.0047 94.9 1.0484 

    30%  0.0001 −0.0070 94.5 1.0503 

   40 10%  0.0005 0.0439 95.9 0.8067 

    30%  0.0002 0.0477 95.9 0.8034 

 

 

When level-two residuals followed a uniform distribution. Table 12 provides findings 

from the assessment of the intercept parameter recovery when level-two residuals followed a 

uniform distribution. The uniform distribution deviates markedly from the normal distribution, 

thus presenting a case where the level-two residual normality assumption is violated. 
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Relative parameter bias. No substantial relative parameter bias was found in the 

estimates of the intercept parameter when level-two residuals followed a uniform distribution. As 

shown, the absolute values of all relative parameter bias in the estimates of intercept parameter 

𝛾00 were well below the maximum acceptable 0.05 threshold across the 16 simulation conditions 

that were the combinations of simulation conditions of ICC, level-two sample size, level-one 

sample size, and mobility rate. Across these conditions, the absolute values of the relative 

parameter bias were small, with a significant digit largely only in the fourth decimal place. The 

values of relative parameter bias ranged from 0.0000 to 0.0012.    

Relative SE bias. There was no substantial relative SE bias in the estimates of intercept 

parameter 𝛾00 when the level-two residuals followed a uniform distribution. The absolute values 

of the relative SE bias ranged from 0.0072 to 0.0414, all of which were smaller than the 

maximum acceptable 0.10 threshold.  

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals in the estimates of intercept parameter 𝛾00 were reasonably close to the nominal level of 

95% across all simulation conditions when the level-two residuals followed a uniform 

distribution. The coverage rates ranged from 94.2% to 96.4%.  

RMSE. When the level-two residuals followed a uniform distribution, the RMSEs for the 

intercept parameter 𝛾00 showed a pattern nearly parallel to that observed when the level-two 

residuals followed a normal distribution: the larger the sample size, the smaller the RMSE. A 

larger level-two sample size appeared to be related to a considerably smaller RMSE when other 

simulation conditions were held constant, and a larger level-one sample size was associated with 

a smaller RMSE when other simulation conditions were equivalent. It was observed again that 

the influence of the level-two sample size on the magnitude of RMSE was stronger than that of 
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the level-one sample size. The ICC also appeared to have an effect on the RMSE, in that, when 

all else was equal, an increase in the ICC value was associated with an increase in RMSE. The 

smallest RMSE was 0.7089 while the largest was 1.9339. 

 

 

Table 12 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Intercept, 𝛾00, by Combination of 

ICC, Level-two Sample Size, Level-one Sample Size, and Mobility Rate, when Level-two 

Residuals Followed a Uniform Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾00𝑘
) B(�̂��̂�00𝑘

) % 

 

 

Uniform .10 30 20 10%  −0.0008 −0.0094 94.6 1.7623 

    30%  0.0012 0.0232 95.7 1.7028 

   40 10%  0.0003 0.0216 95.6 1.2998 

    30%  −0.0003 −0.0128 94.7 1.3454 

  100 20 10%  0.0000 −0.0228 94.3 0.9716 

    30%  0.0004 0.0333 96.4 0.9173 

   40 10%  0.0003 −0.0203 94.9 0.7374 

    30%  0.0005 0.0210 95.3 0.7089 

 .20 30 20 10%  0.0007 −0.0072 94.5 1.9339 

    30%  −0.0001 0.0253 95.8 1.8759 

   40 10%  −0.0003 0.0414 96.3 1.4836 

    30%  0.0009 0.0250 95.5 1.5069 

  100 20 10%  0.0012 0.0161 94.7 1.0294 

    30%  −0.0001 −0.0173 94.2 1.0603 

   40 10%  0.0002 −0.0259 94.5 0.8646 

    30%  −0.0004 0.0409 95.4 0.8087 
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When level-two residuals followed a chi-square distribution with one degree of 

freedom. The recovery of the intercept parameter when the level-two residuals followed a chi-

square distribution with one degree of freedom, which is skewed severely, is presented next. 

Table 13 shows the evaluation of the simulation results.  

Relative parameter bias. There was no substantial relative parameter bias in estimates of 

the intercept parameter when the level-two residuals followed a chi-square distribution with one 

degree of freedom. As shown, the absolute values of the relative parameter bias of the intercept 

parameter 𝛾00 were within the maximum acceptable 0.05 limit across the 16 combinations of 

ICC, the level-two and level-one sample size, and mobility rate. The absolute values of the 

relative parameter bias overall were small, with a maximum absolute value of 0.0024, while 

most other values had a single significant digit only in the fourth decimal place.  

Relative SE bias. No substantial relative SE bias was identified in the estimates of the 

intercept parameter 𝛾00 when the level-two residuals followed a chi-square distribution with one 

degree of freedom. Across the 16 simulation conditions, the absolute values of the relative SE 

bias were all less than half of the maximum acceptable 0.10 threshold, with absolute values 

ranging from 0.0014 to 0.0459.  

Coverage rates of the 95% credible intervals. When the level-two residuals followed a 

chi-square distribution with one degree of freedom, the coverage rates of the 95% credible 

intervals for the estimates of the intercept parameter 𝛾00 were reasonably close to the nominal 

level of 95% across the simulation conditions. Values of the coverage rates ranged from 94.0% 

to 96.7%.  
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RMSE. Across the 16 simulation conditions when the level-two residuals followed a chi-

square distribution with one degree of freedom, RMSE of the intercept parameter 𝛾00 fluctuated 

in a manner similar to that when the level-two residuals followed a normal or uniform 

distribution. The values showed that the level-two sample size appeared to have a stronger effect 

on the magnitude of RMSE than did that of the level-one sample size. The larger the level-two 

sample size, the smaller the RMSE when all other conditions were held constant. To a lesser 

degree, the larger the level-one sample size, the smaller the RMSE when all else was held equal. 

The effect of the ICC on RMSE appeared to not be large. The smallest RMSE was 0.7077 while 

the largest was 1.9031. 
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Table 13 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Intercept, 𝛾00, by Combination of 

ICC, Level-two Sample Size, Level-one Sample Size, and Mobility Rate, when Level-two 

Residuals Followed a Chi-square Distribution with One Degree of Freedom 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾00𝑘
) B(�̂��̂�00𝑘

) % 

 

 

𝜒𝑑𝑓=1
2  .10 30 20 10%  0.0011 −0.0218 94.0 1.7784 

    30%  0.0003 0.0087 95.9 1.7200 

   40 10%  −0.0006 −0.0014 95.0 1.3223 

    30%  0.0004 −0.0061 94.9 1.3323 

  100 20 10%  0.0005 0.0019 94.8 0.9477 

    30%  −0.0005 0.0079 95.3 0.9411 

   40 10%  0.0002 0.0143 96.7 0.7113 

    30%  0.0001 0.0179 94.7 0.7077 

 .20 30 20 10%  0.0015 0.0314 95.1 1.8669 

    30%  0.0024 0.0133 95.3 1.9031 

   40 10%  0.0003 0.0099 95.6 1.5209 

    30%  −0.0011 0.0459 95.8 1.4754 

  100 20 10%  −0.0001 0.0385 95.7 1.0038 

    30%  0.0004 −0.0272 94.5 1.0736 

   40 10%  0.0006 −0.0258 94.2 0.8648 

    30%  0.0003 −0.0026 94.4 0.8424 

 

 

Coefficient of the level-one predictor, 𝜸𝟏𝟎. The recovery of the fixed effect parameter 

𝛾10, the coefficient of the level-one predictor, is presented next. Summaries of conditions in 

which the level-two residuals followed a normal, uniform, and chi-square distribution with one 

degree of freedom are presented in the following three subsections, respectively. 
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When level-two residuals followed a normal distribution. This subsection reports 

findings of the estimate of the coefficient of the level-one predictor when the level-two residuals 

followed a normal distribution. Assessment of parameter recovery for this fixed effect parameter 

is presented in Table 14. 

Relative parameter bias. As the table shows, there was no substantial relative parameter 

bias in the estimates of parameter 𝛾10 across the simulation conditions when the level-two 

residuals followed a normal distribution. The absolute values of all relative parameter bias were 

below the maximum acceptable 0.05 threshold. The majority of the relative parameter bias 

values had a significant digit only in the fourth decimal place, while the largest absolute value 

was 0.0028. The smallest absolute value was 0.0000. 

Relative SE bias. When the level-two residuals were distributed normally across the 16 

combinations of ICC, level-two and level-one sample size, and mobility rate, none of the 

absolute values of the relative SE bias in the estimates of the coefficient of level-one predictor, 

γ10, were found to be substantial. The largest absolute value of the relative SE bias was 0.0379, 

and the smallest was 0.0004. All values were well below the maximum acceptable 0.10 

threshold.  

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals of parameter 𝛾10 were reasonably close to the nominal level of 95% under all 

simulation conditions when the level-two residuals were distributed normally. All coverage rates 

were within a 1.5% difference from the nominal level of 95%, ranging from 93.9% to 96.5%.  

RMSE. As Table 14 shows, the RMSE values for parameter 𝛾10 were rather small across 

simulation conditions when the level-two residuals followed a normal distribution. RMSE ranged 

from 0.0121 to 0.0327. The influence of the ICC on the RMSE for the coefficient of the level-
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one predictor appeared to be inconsequential. Given the same ICC level and mobility rate, the 

larger the sample size, the smaller the RMSE, in which the reduction in the RMSE was larger 

when the level-two sample size increased from 30 to 100 compared to when the level-one sample 

size increased from 20 to 40. The effect of mobility rate on the magnitude of the RMSE was 

unremarkable.  
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Table 14 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Coefficient of the Level-one 

Predictor, 𝛾10, by Combination of ICC, Level-two Sample Size, Level-one Sample Size, and 

Mobility Rate, when Level-two Residuals Followed a Normal Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾10𝑘
) B(�̂��̂�10𝑘

) % 

 

 

Normal .10 30 20 10%  0.0015 0.0372 96.5 0.0311 

    30%  0.0015 0.0379 95.5 0.0310 

   40 10%  −0.0001 0.0035 95.4 0.0226 

    30%  0.0021 0.0289 95.7 0.0220 

  100 20 10%  0.0002 0.0004 94.7 0.0177 

    30%  0.0018 −0.0090 94.5 0.0179 

   40 10%  0.0000 −0.0245 94.6 0.0127 

    30%  0.0006 0.0042 95.3 0.0123 

 .20 30 20 10%  0.0025 0.0153 96.0 0.0319 

    30%  0.0004 −0.0089 94.0 0.0327 

   40 10%  0.0028 0.0230 96.0 0.0222 

    30%  0.0006 −0.0053 94.5 0.0228 

  100 20 10%  0.0005 −0.0246 94.4 0.0182 

    30%  0.0001 −0.0101 93.9 0.0179 

   40 10%  −0.0001 0.0019 95.4 0.0123 

    30%  0.0007 0.0214 94.5 0.0121 

 

 

When level-two residuals followed a uniform distribution. This subsection presents 

parameter recovery of the coefficient of the level-one predictor when the level-two residuals 

followed a uniform distribution. Table 15 reports the results of the detailed analysis across the 16 

simulation conditions.  
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Relative parameter bias. No substantial relative parameter bias was found in the 

estimates of the coefficient of level-one predictor, 𝛾10, across the 16 combinations of ICC, level-

two and -one sample size, and mobility rate. All absolute values of the relative parameter bias 

were less than the maximum acceptable 0.05 threshold, and ranged from 0.0001 to 0.0030.   

Relative SE bias. As shown in Table 15, the absolute values of the relative SE bias of the 

coefficient of level-one predictor, 𝛾10, were small, ranging from the smallest of 0.0042 to the 

largest of 0.0603. Using the maximum acceptable 0.10 bias threshold, there was no substantial 

relative SE bias in the estimates of the coefficient of the level-one predictor across all simulation 

conditions when the level-two residuals were distributed uniformly.  

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals of the coefficient of level-one predictor, 𝛾10, were quite close to the nominal level of 

95% across all simulation conditions when the level-two residuals followed a uniform 

distribution. The coverage rates deviated from the nominal level by no more than 1.2% and 

ranged from 93.9% to 96.2%.  

RMSE. Table 15 shows that across the simulation conditions of a given ICC, there 

appeared to exist a negative correlation between sample size and RMSE for the coefficient of 

level-one predictor, 𝛾10: the larger the sample size, the smaller the RMSE. A larger level-two 

sample size appeared to relate to a considerably smaller RMSE when other simulation conditions 

were held constant, and a larger level-one sample size was associated with a smaller RMSE 

when other simulation conditions remained the same. The manipulated factors of ICC and 

mobility rate, on the other hand, did not seem to have any consistent and substantial effects on 

the RMSE, given the same sample size. When the level-two residuals followed a uniform 
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distribution, the RMSEs of the coefficient of level-one predictor, 𝛾10, were small across all 

simulation conditions. The smallest RMSE was 0.0117, while the largest was 0.0331.  

 

 

Table 15 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Coefficient of the Level-one 

Predictor, 𝛾10, by Combination of ICC, Level-two Sample Size, Level-one Sample Size, and 

Mobility Rate, when Level-two Residuals Followed a Uniform Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾10𝑘
) B(�̂��̂�10𝑘

) % 

 

 

Uniform .10 30 20 10%  0.0030 −0.0211 94.6 0.0331 

    30%  −0.0025 −0.0176 94.4 0.0329 

   40 10%  0.0003 −0.0144 94.9 0.0230 

    30%  −0.0001 −0.0227 95.2 0.0232 

  100 20 10%  0.0009 −0.0261 93.9 0.0181 

    30%  0.0002 0.0276 94.9 0.0172 

   40 10%  −0.0001 0.0175 95.9 0.0122 

    30%  −0.0008 0.0116 95.5 0.0122 

 .20 30 20 10%  −0.0002 −0.0086 95.0 0.0326 

    30%  0.0011 0.0069 94.8 0.0322 

   40 10%  0.0010 −0.0042 94.9 0.0228 

    30%  −0.0010 0.0067 95.1 0.0225 

  100 20 10%  −0.0011 −0.0248 94.7 0.0182 

    30%  0.0014 −0.0061 94.9 0.0179 

   40 10%  −0.0001 −0.0186 94.9 0.0126 

    30%  0.0008 0.0603 96.2 0.0117 
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When level-two residuals followed a chi-square distribution with one degree of 

freedom. This subsection presents the results of parameter recovery of the coefficient of level-

one predictor, 𝛾10, when the level-two residuals followed a chi-square distribution with one 

degree of freedom. Table 16 presents the detailed evaluation results.  

Relative parameter bias. As shown, the absolute values of the relative parameter bias 

were within the maximum acceptable 0.05 threshold across the 16 combinations of ICC, level-

two and level-one sample size, and mobility rate. No substantial relative parameter bias was 

found in the estimates of the coefficient of the level-one predictor. Across the simulation 

conditions, half of the values of relative parameter bias had a single significant digit in the fourth 

decimal place when the level-two residuals followed a chi-square distribution with one degree of 

freedom. The largest absolute value of relative parameter bias for the coefficient of level-one 

predictor, 𝛾10, was 0.0054, and the smallest was 0.0001.  

Relative SE bias. Across all 16 simulation conditions in which the level-two residuals 

followed a chi-square distribution with one degree of freedom, none of absolute values of the 

relative SE bias in the estimates of the coefficient of the level-one predictor were substantial 

according to the maximum acceptable 0.10 threshold. The absolute values of the relative SE bias 

for the coefficient of level-one predictor, 𝛾10, ranged from 0.0007 to 0.0357 when the level-two 

residuals followed a chi-square distribution with one degree of freedom.  

Coverage rates of the 95% credible intervals. When the level-two residuals followed a 

chi-square distribution with one degree of freedom, coverage rates of the 95% credible intervals 

for the coefficient of the level-one predictor were reasonably close to the nominal level of 95% 

across the 16 simulation conditions. These coverage rates ranged from 94.4% to 96.0%. 
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Simulation factors ICC, level-two and level-one sample size, and mobility rate did not appear to 

have any consistent and substantial effects on the coverage rates of the 95% credible intervals. 

RMSE. When the level-two residuals followed a chi-square distribution with one degree 

of freedom, a distribution that deviates markedly from the normal distribution, the RMSE 

remained small across all 16 simulation conditions. The smallest RMSE value was 0.0120, while 

the largest was 0.0334. Similar to the cases in which the level-two residuals followed a normal or 

uniform distribution, for a given ICC level and mobility rate, the RMSE for the coefficient of the 

level-one predictor, 𝛾10, exhibited a clear decline when sample size became larger. The decline 

in the RMSE was large when the level-two sample size increased from 30 to 100. For example, 

when ICC = .20, level-one sample size = 20, and mobility rate = 10%, the RMSE magnitude 

decreased from 0.0331 to 0.0176 when the level-two sample size increased from 30 to 100. A 

larger level-one sample size also appeared to be associated with a considerably smaller RMSE 

when other simulation conditions remained the same. In contrast, the manipulated factors of ICC 

and mobility rate did not seem to have any consistent and substantial effects on the RMSE, given 

the same sample size condition.  
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Table 16 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Coefficient of the Level-one 

Predictor, 𝛾10, by Combination of ICC, Level-two Sample Size, Level-one Sample Size, and 

Mobility Rate, when Level-two Residuals Followed a Chi-square Distribution with One Degree 

of Freedom 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾10𝑘
) B(�̂��̂�10𝑘

) % 

 

 

𝜒𝑑𝑓=1
2  .10 30 20 10%  −0.0017 −0.0357 94.4 0.0334 

    30%  −0.0014 −0.0044 95.8 0.0323 

   40 10%  0.0017 0.0164 96.0 0.0223 

    30%  −0.0010 0.0121 95.7 0.0224 

  100 20 10%  −0.0004 0.0013 94.9 0.0177 

    30%  0.0008 0.0007 94.9 0.0176 

   40 10%  −0.0001 0.0115 95.2 0.0122 

    30%  −0.0001 0.0273 95.4 0.0120 

 .20 30 20 10%  −0.0013 −0.0219 95.0 0.0331 

    30%  −0.0054 0.0211 95.2 0.0318 

   40 10%  −0.0015 0.0033 94.6 0.0227 

    30%  0.0013 −0.0015 94.8 0.0227 

  100 20 10%  0.0006 0.0081 95.8 0.0176 

    30%  0.0004 −0.0234 94.4 0.0181 

   40 10%  −0.0008 0.0081 94.7 0.0123 

    30%  −0.0005 −0.0069 94.5 0.0125 

 

  

Coefficient of the level-two predictor, 𝜸𝟎𝟏. This section presents the evaluation results 

for the recovery of the coefficient of the level-two predictor, 𝛾01. These results are organized by 

the level-two residual distribution (Tables 17, 18, and 19).  
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When level-two residuals followed a normal distribution. This subsection focuses on the 

evaluation summary analyses when the level-two residuals followed a normal distribution. 

Details for the 16 simulation conditions are shown in Table 17.  

Relative parameter bias. No substantial relative parameter bias was identified in the 

estimates of the coefficient of the level-two predictor across the 16 combinations of ICC, level-

two and level-one sample size, and mobility rate. All absolute values of the relative parameter 

bias for the coefficient of the level-two predictor were less than the maximum acceptable 0.05 

threshold. When the level-two residuals followed a normal distribution, the absolute values of 

the relative parameter bias for the coefficient of the level-two predictor ranged from 0.0017 to 

0.0442.  

Relative SE bias. As Table 17 shows, there was no substantial relative SE bias in the 

estimates of the coefficient of the level-two predictor when the level-two residuals were 

distributed normally. Absolute values of the relative SE bias were smaller than the maximum 

acceptable 0.10 threshold across all simulation conditions, in which the smallest was 0.0023, and 

the largest was 0.0499.  

Coverage rates of the 95% credible intervals. For all simulation conditions when the 

level-two residuals were normal, the coverage rates of the 95% credible intervals for parameter 

𝛾01 were reasonably close to the nominal level of 95%. Ranging from 93.8% to 96.4%, the 

coverage rates deviated 1.4% at most from the level assumed. Across simulation conditions, the 

simulation values of ICC, sample size at level-two or -one, and mobility rate did not appear to 

affect the coverage rates of the 95% credible intervals consistently or substantially. 

RMSE. When level-two residuals followed a normal distribution, the ICC and the level-

two sample size appeared to affect the values of RMSE for the coefficient of the level-two 
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predictor, 𝛾01. When all else was equal, the RMSE increased when ICC increased from .10 

to .20, and decreased substantially when the level-two sample size increased from 30 to 100. For 

example, when ICC = .10, level-one sample size = 20, and mobility rate = 10%, the RMSE 

decreased from 1.4619 to 0.7982 when the level-two sample size increased from 30 to 100. The 

level-one sample size and mobility rate did not seem to have any consistent and substantial 

effects on the RMSE. Values of RMSE ranged from 0.7137 to 2.0220. 
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Table 17 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Coefficient of the Level-two 

Predictor, 𝛾01, by Combination of ICC, Level-two Sample Size, Level-one Sample Size, and 

Mobility Rate, when Level-two Residuals Followed a Normal Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾01𝑘
) B(�̂��̂�01𝑘

) % 

 

 

Normal .10 30 20 10%  0.0413 −0.0054 93.8 1.4619 

    30%  0.0220 0.0086 94.3 1.4411 

   40 10%  0.0118 0.0219 95.1 1.3121 

    30%  0.0187 0.0452 95.5 1.2916 

  100 20 10%  0.0017 −0.0023 95.1 0.7982 

    30%  0.0046 −0.0037 94.8 0.8008 

   40 10%  0.0039 0.0327 95.7 0.7137 

    30%  0.0372 0.0358 95.4 0.7192 

 .20 30 20 10%  0.0331 0.0499 95.4 1.8854 

    30%  −0.0299 −0.0100 94.4 2.0220 

   40 10%  0.0221 −0.0274 94.3 1.9425 

    30%  0.0442 0.0299 95.3 1.8544 

  100 20 10%  0.0306 −0.0381 94.2 1.1150 

    30%  0.0152 −0.0295 94.8 1.1112 

   40 10%  0.0040 0.0498 96.4 0.9924 

    30%  0.0378 −0.0082 95.4 1.0567 

 

 

When level-two residuals followed a uniform distribution. The following presents the 

recovery of the coefficient of the level-two predictor, 𝛾01, when the level-two residuals followed 

a uniform distribution. Table 18 provides the values of relative parameter and SE biases, 

coverage rates of the 95% credible intervals, and RMSE of this fixed effect parameter. 
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Relative parameter bias. Under all simulation conditions that were the combinations of 

ICC, level-two and -one sample size, and mobility rate, the absolute values of the relative 

parameter bias in the estimates of the coefficient of the level-two predictor were all less than the 

maximum acceptable 0.05 threshold. Therefore, no substantial bias was found for the estimates 

of parameter 𝛾01 when level-two residuals distributed uniformly. The absolute values of the 

relative parameter bias ranged from 0.0033 to 0.0486.  

Relative SE bias. Table 18 shows that there was no substantial relative SE bias in the 

estimates of the coefficient of the level-two predictor across all simulation conditions when the 

level-two residuals followed a uniform distribution. The absolute values of the relative SE bias 

ranged from 0.0007 to 0.0361, all well below the maximum acceptable 0.10 threshold.  

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals for the coefficient of the level-two predictor were acceptable, with coverage slightly 

less than the nominal level of 95% for all but one simulation condition. The coverage rates 

ranged from 92.8% to 95.7%. The manipulated factors of ICC, level-two and -one sample size, 

and mobility rate were not found to have any consistent and substantial effects on the coverage 

rates of the 95% credible intervals of the coefficient of the level-two predictor. 

RMSE. As shown in Table 18, the RMSE appeared to correlate consistently with ICC, 

and the level-two and -one sample sizes. When all other simulation conditions were held 

constant, the larger the ICC, the larger the RMSE. On the other hand, when all else was equal, 

the larger the level-two and level-one sample sizes, the smaller the RMSE. The smallest RMSE 

was 0.7287, while the largest was 2.0215. 
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Table 18 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Coefficient of the Level-two 

Predictor, 𝛾01, by Combination of ICC, Level-two Sample Size, Level-one Sample Size, and 

Mobility Rate, when Level-two Residuals Followed a Uniform Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾01𝑘
) B(�̂��̂�01𝑘

) % 

 

 

Uniform .10 30 20 10%  0.0235 0.0012 93.8 1.4503 

    30%  0.0056 0.0103 94.8 1.4382 

   40 10%  0.0268 0.0322 94.5 1.3110 

    30%  0.0284 0.0361 94.7 1.3122 

  100 20 10%  0.0241 −0.0233 93.9 0.8144 

    30%  0.0279 0.0134 94.6 0.7869 

   40 10%  0.0486 −0.0009 93.9 0.7428 

    30%  0.0111 0.0215 95.7 0.7287 

 .20 30 20 10%  −0.0125 −0.0178 92.8 2.0215 

    30%  0.0033 0.0084 93.7 1.9832 

   40 10%  0.0251 0.0047 94.4 1.8999 

    30%  −0.0325 −0.0157 93.6 1.9369 

  100 20 10%  0.0230 0.0007 93.7 1.0721 

    30%  0.0260 0.0026 94.9 1.0725 

   40 10%  0.0476 0.0245 95.3 1.0227 

    30%  0.0248 0.0066 94.4 1.0398 

 

 

When level-two residuals followed a chi-square distribution with one degree of 

freedom. The recovery of the coefficient of level-two predictor, 𝛾01, is presented next for the 

conditions in which the level-two residuals followed the severely skewed distribution, a chi-
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square distribution with one degree of freedom. Table 19 provides the evaluation summary 

results across simulation conditions.  

Relative parameter bias. As the table shows, the absolute values of the relative parameter 

bias in the estimates of the coefficient of level-two predictor, 𝛾01, were below the maximum 

acceptable 0.05 threshold across the 16 combinations of ICC, level-two and -one sample size, 

and mobility rate. Therefore, there was no substantial relative parameter bias in the estimates of 

the coefficient of the level-two predictor. The absolute values of the relative parameter bias 

ranged from 0.0038 to 0.0469.  

Relative SE bias. No substantial relative SE bias was observed in the estimates of the 

coefficient of level-two predictor, γ01, across the 16 simulation conditions in which the level-two 

residuals followed a chi-square distribution with one degree of freedom. All absolute values of 

the relative SE bias were below the maximum acceptable 0.10 threshold, and ranged from 0.0051 

to 0.0450.  

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals in the estimates of the coefficient of the level-two predictor were acceptable across 

simulation conditions when the level-two residuals followed a chi-square distribution with one 

degree of freedom. The rates deviated 1.3% at most from the nominal level of 95% across the 16 

simulation conditions, and the coverage rates ranged from 93.7% to 96.0%. The simulation 

conditions of ICC, level-two and -one sample size, and mobility rate did not appear to have any 

consistent and substantial effects on the coverage rates of the 95% credible intervals for the 

coefficient of level-two predictor, 𝛾01.  

RMSE. When the level-two residuals followed a chi-square distribution with one degree 

of freedom, the RMSE demonstrated distinct change patterns as ICC, and level-two and -one 
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sample size conditions changed. When all other simulation conditions were the same, the larger 

the ICC, the larger the RMSE. On the other hand, when all else was held constant, the larger the 

level-two sample size, the smaller the RMSE. Similarly, but to a lesser degree, the larger the 

level-one sample size, the smaller the RMSE. The smallest RMSE was 0.7271, and the largest 

was 2.0219. 
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Table 19 

Relative Bias of Parameter Estimate, Relative Bias of Standard Error (SE) Estimate, Coverage 

Rates of the 95% Credible Intervals (CIs), and RMSE of the Coefficient of the Level-two 

Predictor, 𝛾01, by Combination of ICC, Level-two Sample Size, Level-one Sample Size, and 

Mobility Rate, when Level-two Residuals Followed a Chi-square Distribution with One Degree 

of Freedom 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Relative 

SE 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(𝛾01𝑘
) B(�̂��̂�01𝑘

) % 

 

 

𝜒𝑑𝑓=1
2  .10 30 20 10%  −0.0129 0.0080 94.6 1.4171 

    30%  −0.0469 −0.0227 93.8 1.4667 

   40 10%  −0.0166 −0.0316 95.2 1.3668 

    30%  0.0310 0.0421 96.0 1.2804 

  100 20 10%  0.0294 −0.0320 94.5 0.8176 

    30%  0.0083 0.0296 95.7 0.7724 

   40 10%  0.0083 −0.0075 94.7 0.7400 

    30%  0.0372 0.0142 95.7 0.7271 

 .20 30 20 10%  0.0400 0.0051 94.6 1.9797 

    30%  0.0418 −0.0164 94.8 2.0219 

   40 10%  0.0261 −0.0358 94.9 1.9466 

    30%  0.0071 0.0133 95.6 1.8656 

  100 20 10%  −0.0038 −0.0450 93.8 1.1209 

    30%  0.0374 −0.0306 94.1 1.1149 

   40 10%  0.0216 −0.0326 95.5 1.0773 

    30%  0.0218 −0.0332 93.7 1.0773 

 

 

Random Effect Parameter Estimates 

The two-level conditional MMrem had two random effect parameters in this simulation 

study: the level-one variance component 𝜎2, and the level-two variance component 𝜏00. MMrem 
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parameter recovery of the variance components under each of the 48 simulation conditions was 

assessed using relative parameter bias, coverage rates of the 95% credible intervals, and RMSE. 

As discussed in Chapter 3, a parameter is said to have an acceptable relative parameter bias if the 

absolute value of the relative parameter bias is less than 0.05. Coverage rates of the 95% credible 

intervals close to the nominal level and relatively smaller RMSEs were desirable because they 

are considered characteristics of satisfactory parameter recovery. Evaluation results of the 

estimates of the level-one and -two variance components are discussed next.  

Level-one variance component 𝝈𝟐. This subsection presents the results of the recovery 

of level-one variance component 𝜎2 from the Monte Carlo simulation study. Evaluation 

summaries are presented by the level-two residual distribution examined.  

When level-two residuals followed a normal distribution. Table 20 reports the 

assessment of the recovery of level-one variance component 𝜎2 when the level-two residuals 

followed a normal distribution. There were 16 simulation conditions with normally distributed 

level-two residuals. 

Relative parameter bias. As shown, the absolute values of the relative parameter bias in 

the estimates of level-one variance component 𝜎2 were smaller than the maximum acceptable 

0.05 threshold across the 16 combinations of ICC, level-two and -one sample size, and mobility 

rate. Therefore, there was no substantial bias in the estimates of level-one variance component 

𝜎2 when the level-two residuals followed a normal distribution. The absolute values of the 

relative parameter bias were small, ranging from 0.0002 to 0.0078.   

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals for parameter 𝜎2 were reasonably close to the nominal level of 95% under all 

simulation conditions when the level-two residuals were distributed normally. The coverage rates 
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ranged from 93.7% to 96.1%. The simulation conditions of ICC, level-two and -one sample size, 

and mobility rate were not detected to have any consistent and substantial effects on the coverage 

rates of the 95% credible intervals for level-one variance component 𝜎2. 

RMSE. When the level-two residuals were distributed normally, there were some elevated 

values of RMSE in the estimates of the level-one variance component 𝜎2. Across the 16 

simulation conditions, RMSEs ranged from 1.9208 to 5.2775. When the level-two sample size 

increased, RMSE decreased substantially, and when the level-one sample size increased, it 

decreased consistently when all else was held constant. No clear patterns were found between 

RMSE and the simulation factors of ICC or mobility rate. 

 

 

  



 

109 
 

Table 20 

Relative Bias of Parameter Estimate, Coverage Rates of the 95% Credible Intervals (CIs), and 

RMSE of the Level-one Variance Component, 𝜎2, by Combination of ICC, Level-two Sample 

Size, Level-one Sample Size, and Mobility Rate, when Level-two Residuals Followed a Normal 

Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(�̂�2
𝑘) % 

 

 

Normal .10 30 20 10%  0.0055 96.1 5.1105 

    30%  0.0057 94.9 5.2775 

   40 10%  0.0025 94.8 3.5953 

    30%  0.0030 95.5 3.5498 

  100 20 10%  0.0007 93.7 2.8572 

    30%  0.0013 94.1 2.7824 

   40 10%  −0.0004 94.8 2.0052 

    30%  −0.0004 95.0 2.0022 

 .20 30 20 10%  0.0021 94.3 5.1992 

    30%  0.0078 95.6 5.1818 

   40 10%  0.0010 94.7 3.6331 

    30%  0.0030 95.9 3.4815 

  100 20 10%  0.0028 95.3 2.7680 

    30%  0.0017 94.6 2.8766 

   40 10%  −0.0005 95.2 1.9288 

    30%  0.0002 95.1 1.9208 

 

 

When level-two residuals followed a uniform distribution. Table 21 provides the 

assessment of recovering level-one variance component 𝜎2, when the level-two residuals 

followed a uniform distribution. The uniform distribution deviates markedly from the normal 

distribution.  
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Relative parameter bias. As shown in Table 21, all values of the relative parameter bias 

in the estimates of level-one variance component 𝜎2 were less than the maximum acceptable 

0.05 threshold. Hence, no substantial relative parameter bias was found in the estimates of the 

level-one variance component across the 16 combinations of ICC, level-two and -one sample 

size, and mobility rate. The values of the relative parameter bias were small overall. Except for 

the largest value of 0.0102, all other values of the relative parameter bias had significant digits 

only in the third or fourth decimal place. The smallest relative parameter bias was 0.0002.  

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals in the estimates of the level-one variance component were close to the assumed nominal 

level of 95%. All but two coverage rates of the 95% credible intervals for the level-one variance 

component 𝜎2 were within 0.9% of the nominal level. Across simulation conditions, the smallest 

coverage rate was 93.7%, while the largest was 96.2%. 

RMSE. Similar to the case in which the level-two residuals were distributed normally, 

RMSE for the estimates of the level-one variance component had some elevated values when the 

level-two residuals followed a uniform distribution, and several relatively large RMSEs were 

found when the level-two sample size was 30. The results of the analysis presented in Table 21 

showed that the sample size condition appeared to have a substantial and consistent effect on the 

RMSE when other simulation conditions were equal. When all else was held constant, the RMSE 

decreased when the level-two sample size increased from 30 to 100, as it did when the level-one 

sample size increased from 20 to 40. The smallest RMSE was 1.9440, while the largest was 

5.4610. Simulation conditions in ICC and mobility rate did not appear to have any consistent and 

substantial effects on the values of RMSE for the estimates of the level-one variance component. 
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Table 21 

Relative Bias of Parameter Estimate, Coverage Rates of the 95% Credible Intervals (CIs), and 

RMSE of the Level-one Variance Component, 𝜎2, by Combination of ICC, Level-two Sample 

Size, Level-one Sample Size, and Mobility Rate, when Level-two Residuals Followed a Uniform 

Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(�̂�2
𝑘) % 

 

 

Uniform .10 30 20 10%  0.0102 94.6 5.4610 

    30%  0.0099 95.2 5.2340 

   40 10%  0.0039 95.5 3.5484 

    30%  0.0025 95.2 3.5660 

  100 20 10%  0.0013 95.7 2.8048 

    30%  0.0004 96.2 2.7748 

   40 10%  0.0002 94.9 1.9737 

    30%  0.0007 94.8 1.9657 

 .20 30 20 10%  0.0038 94.9 5.2828 

    30%  0.0061 95.9 5.0501 

   40 10%  0.0030 94.5 3.7109 

    30%  0.0025 95.1 3.5681 

  100 20 10%  0.0021 94.2 2.8463 

    30%  0.0016 94.4 2.8330 

   40 10%  0.0005 94.7 1.9440 

    30%  0.0004 93.7 1.9481 

 

 

When level-two residuals followed a chi-square distribution with one degree of 

freedom. This subsection presents results for the recovery of the level-one variance component 

when the level-two residuals followed a chi-square distribution with one degree of freedom. 
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Table 22 provides the relative parameter bias, coverage rates of the 95% credible intervals, and 

RMSE for the estimates of level-one variance component 𝜎2 across the 16 simulation conditions.  

Relative parameter bias. There was no substantial relative parameter bias in the estimates 

of the level-one variance component when the level-two residuals followed a chi-square 

distribution with one degree of freedom. As shown in Table 22, all absolute values of the relative 

parameter bias were less than the maximum acceptable 0.05 threshold. Across the 16 simulation 

conditions, the absolute values of the relative parameter bias were small, and had significant 

digits largely in the third or fourth decimal place. The absolute values of the relative parameter 

bias ranged from 0.0003 to 0.0057. 

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals for the estimates of the level-one variance component 𝜎2 were reasonably close to the 

nominal level of 95% across the 16 simulation conditions when the level-two residuals followed 

a chi-square distribution with one degree of freedom. The largest deviation was within 1.6% 

from the nominal level of 95%. Values of the coverage rates ranged from 93.4% to 96.2%. 

Simulation conditions in the ICC, level-two and -one sample size, and mobility rate did not 

appear to have any consistent and substantial effects on the coverage rates of the 95% credible 

intervals for the estimates of the level-one variance component.  

RMSE. Across the 16 simulation conditions when the level-two residuals followed a chi-

square distribution with one degree of freedom, RMSE for level-one variance component 𝜎2 

showed similarly elevated values as those observed when the level-two residuals followed a 

normal or uniform distribution. Level-two and -one sample size appeared to affect the magnitude 

of RMSE values, in which the effect of the level-two sample size appeared to be larger than that 

of the level-one sample size. The larger the sample size, the smaller the RMSE. The smallest 
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RMSE was 1.8481 and the largest was 5.2049. Simulation conditions in ICC and mobility rate 

did not have any consistent and substantial effects on the values of RMSE for the estimates of 

the level-one variance component. 

 

 

Table 22 

Relative Bias of Parameter Estimate, Coverage Rates of the 95% Credible Intervals (CIs), and 

RMSE of the Level-one Variance Component, 𝜎2, by Combination of ICC, Level-two Sample 

Size, Level-one Sample Size, and Mobility Rate, when Level-two Residuals Followed a Chi-

square Distribution with One Degree of Freedom 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(�̂�2
𝑘) % 

 

 

𝜒𝑑𝑓=1
2  .10 30 20 10%  0.0057 95.7 5.1587 

    30%  0.0055 95.1 5.2049 

   40 10%  0.0020 94.6 3.6265 

    30%  0.0039 95.3 3.6510 

  100 20 10%  0.0030 95.0 2.9093 

    30%  −0.0003 94.6 2.8420 

   40 10%  0.0009 94.5 1.9716 

    30%  0.0003 94.9 1.9380 

 .20 30 20 10%  0.0042 96.1 4.8775 

    30%  0.0047 96.2 5.0622 

   40 10%  0.0044 93.4 3.7411 

    30%  0.0027 96.2 3.4541 

  100 20 10%  0.0011 95.5 2.7842 

    30%  0.0008 93.9 2.8221 

   40 10%  0.0003 96.2 1.8481 

    30%  0.0015 95.3 1.9476 
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Level-two variance component 𝝉𝟎𝟎. Simulation results of the second random parameter, 

level-two variance component 𝜏00, under all simulation conditions are presented next. Detailed 

results are shown in Tables 23, 24, and 25 for simulation conditions in which the level-two 

residuals followed a normal, uniform, and chi-square distribution with one degree of freedom, 

respectively.  

When level-two residuals followed a normal distribution. This subsection presents the 

results for the simulation conditions when the level-two residuals were distributed normally. 

Table 23 displays the parameter recovery evaluation summary for level-two variance component 

𝜏00, across these 16 simulation conditions.  

Relative parameter bias. Using Hoogland and Boomsma’s (1998) 0.05 evaluation 

threshold for acceptable absolute values of the relative parameter bias of a parameter, the 

estimates of the level-two variance component 𝜏00 showed some substantial relative parameter 

bias when the level-two residuals were distributed normally. In seven of eight simulation 

conditions when the level-two sample size was 30, the values of the relative parameter bias of 

the level-two variance component were greater than 0.05. These biases ranged from 0.0618 to 

0.0864. In addition, all substantial biases were positive, indicating overestimates of the level-two 

variance component, although the magnitude of overestimation was within 9%. As the level-two 

sample size increased, the relative parameter bias decreased when all other simulation conditions 

were held constant. No substantial bias was found across the simulation conditions when the 

level-two sample size was 100.  

Coverage rates of the 95% credible intervals. When the level-two residuals followed a 

normal distribution, the coverage rates of the 95% credible intervals for parameter 𝜏00 for most 
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simulation conditions were reasonably close to the nominal level of 95%. The exceptions were 

when ICC = .10, level-two sample size = 30, level-one sample size = 20, and mobility rate = 

10% or 30%, the coverage rate was 91.7% and 91.1%, respectively. The highest coverage rate 

was 96.6%. No clear and consistent patterns were found in the effects of ICC, level-two or -one 

sample size, and mobility rate on the coverage rates of the 95% credible intervals for estimates of 

the level-two variance component when the level-two residuals were distributed normally.  

RMSE. As Table 23 shows, the simulation factor of ICC, and level-two and -one sample 

size appeared to affect the values of RMSE consistently and substantially when the level-two 

residuals followed a normal distribution. When ICC increased from .10 to .20, RMSE increased 

substantially when all other simulation conditions remained constant. When the level-two sample 

size increased from 30 to 100 and all else was equal, the RMSE values decreased substantially. 

When the level-one sample size increased from 20 to 40 and all other simulation conditions 

remained the same, RMSE decreased considerably for some simulation conditions, although 

some elevated RMSE values were observed. Across simulation conditions, the RMSE values 

ranged from 1.7206 to 8.0790. Simulation conditions in mobility rate did not appear to have any 

consistent and substantial effects on the values of RMSE for the estimates of the level-two 

variance component 𝜏00. 
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Table 23 

Relative Bias of Parameter Estimate, Coverage Rates of the 95% Credible Intervals (CIs), and 

RMSE of the Level-two Variance Component, 𝜏00, by Combination of ICC, Level-two Sample 

Size, Level-one Sample Size, and Mobility Rate, when Level-two Residuals Followed a Normal 

Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(�̂�00𝑘
) % 

 

 

Normal .10 30 20 10%  0.0618 91.7 4.3710 

    30%  0.0394 91.1 4.6610 

   40 10%  0.0784 94.7 3.4702 

    30%  0.0835 95.7 3.5638 

  100 20 10%  0.0471 95.8 2.1024 

    30%  0.0237 94.5 2.1910 

   40 10%  0.0349 96.6 1.7206 

    30%  0.0406 95.3 1.8321 

 .20 30 20 10%  0.0640 94.0 7.8564 

    30%  0.0798 94.3 8.0790 

   40 10%  0.0671 94.3 7.0467 

    30%  0.0864 94.5 7.2999 

  100 20 10%  0.0234 95.2 3.8230 

    30%  0.0244 95.4 3.8966 

   40 10%  0.0258 94.6 3.5627 

    30%  0.0282 95.1 3.5585 

Note. Values associated with substantial bias are in bold. 

 

 

When the level-two residuals followed a uniform distribution. This subsection presents 

additional results of parameter recovery of level-two variance component 𝜏00. Table 24 provides 

summary evaluation findings when the level-two residuals followed a uniform distribution. 
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Relative parameter bias. Some substantial relative parameter biases were found when the 

level-two residuals followed a uniform distribution. For six of the eight conditions when the 

level-two sample size was 30, the values of the relative parameter bias for the level-two variance 

component were larger than the 0.05 maximum acceptable threshold. The substantial relative 

parameter bias observed ranged from 0.0629 to 0.0945. Because all of these substantial biases 

were positive, it was concluded that the two-level conditional MMrem overestimated the level-

two variance component 𝜏00 under those simulation conditions. The level-two sample size 

appeared to have a consistent and substantial effect on the estimate of the level-two variance 

component 𝜏00. When the sample size increased from 30 to 100, relative parameter bias 

decreased when all other simulation conditions were held constant. When the level-two sample 

size was 100, there was no substantial relative parameter bias in the estimates of the level-two 

variance component across the simulation conditions when the level-two residuals followed a 

uniform distribution. 

Coverage rates of the 95% credible intervals. When the level-two residuals followed a 

uniform distribution, the coverage rates of the 95% credible intervals for the estimates of level-

two variance component 𝜏00 largely exceeded the nominal level of 95% across the simulation 

conditions. The exception was when ICC = .10, level-two sample size = 30, level-one sample 

size = 20, and mobility rate = 30%, the coverage rate was 94.9%. The highest coverage rate was 

99.3%. The simulation factor ICC appeared to have a detectable effect on the coverage rates of 

the 95% credible intervals. When the ICC increased from .10 to .20, the coverage rates increased 

and deviated further from the nominal level of 95%. On the other hand, level-two and -one 

sample size and mobility rate did not appear to have any consistent and substantial effects on the 
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coverage rates of the 95% credible intervals for the estimates of the level-two variance 

component. 

RMSE. When the level-two residuals followed a uniform distribution, RMSE for the 

estimates of the level-two variance component showed some patterns across the 16 simulation 

conditions. All simulation factors appeared to affect the values of RMSE: Increasing ICC 

from .10 to .20 appeared to relate to a substantial increase in RMSE; increasing the level-two 

sample size from 30 to 100, and increasing the level-one sample size from 20 to 40 were 

associated with a considerable decrease in RMSE, and increasing the mobility rate from 10% to 

30% was linked with an increase in RMSE, respectively, when all other simulation conditions 

were held constant. On average, the ICC appeared to have the strongest effect on the RMSE, 

followed by the level-two sample size, the level-one sample size, and mobility rate. The smallest 

RMSE was 1.4607, while the largest was 6.3965. 
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Table 24 

Relative Bias of Parameter Estimate, Coverage Rates of the 95% Credible Intervals (CIs), and 

RMSE of the Level-two Variance Component, 𝜏00, by Combination of ICC, Level-two Sample 

Size, Level-one Sample Size, and Mobility Rate, when Level-two Residuals Followed a Uniform 

Distribution 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(�̂�00𝑘
) % 

 

 

Uniform .10 30 20 10%  0.0483 96.6 3.7036 

    30%  0.0272 94.9 3.9932 

   40 10%  0.0926 98.6 2.8630 

    30%  0.0945 97.9 3.0638 

  100 20 10%  0.0383 98.0 1.8730 

    30%  0.0158 97.1 1.8972 

   40 10%  0.0367 97.9 1.4607 

    30%  0.0437 98.1 1.5056 

 .20 30 20 10%  0.0629 98.0 6.1691 

    30%  0.0688 98.2 6.3965 

   40 10%  0.0817 98.7 5.4430 

    30%  0.0736 99.1 5.4704 

  100 20 10%  0.0227 99.0 2.9645 

    30%  0.0138 97.6 3.1980 

   40 10%  0.0292 99.2 2.5313 

    30%  0.0243 99.3 2.6041 

Note. Values associated with substantial bias are in bold. 

 

 

When the level-two residuals followed a chi-square distribution with one degree of 

freedom. The recovery of level-two variance component 𝜏00 when the level-two residuals 
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followed a chi-square distribution with one degree of freedom is presented in Table 25. This 

subsection provides evaluation summaries across the 16 simulation conditions.  

Relative parameter bias. When the level-two residuals followed a chi-square distribution 

with one degree of freedom, there were some substantial bias in the estimates of the level-two 

variance component. For six of eight conditions when the level-two sample size was 30, the 

values of the relative parameter bias in the estimates of the level-two variance component 𝜏00 

were larger than the maximum 0.05 threshold, indicating substantial bias. Of those substantial 

relative parameter biases observed, the values ranged from 0.0634 to 0.0899. All substantial 

biases consistently were positive, suggesting overestimates of level-two variance component 𝜏00 

under these simulation conditions. No substantial bias was found for the estimates of the level-

two variance component when the level-two sample size was 100.  

Coverage rates of the 95% credible intervals. The coverage rates of the 95% credible 

intervals in the estimates of the level-two variance component were consistently below the 

nominal level of 95% across all 16 simulation conditions when the level-two residuals followed a 

chi-square distribution with one degree of freedom. Some of those deviations were quite 

remarkable, with a gap of 15% between the coverage rates and the 95% level assumed. Values of 

the coverage rates ranged from 80.0% to 87.5%. An increase in the ICC from .10 to .20 appeared 

to associate with a smaller deviation from the nominal level, but level-two and -one sample sizes 

and mobility rate did not appear to have any consistent and substantial effects on the coverage 

rates when the level-two residuals followed a chi-square distribution with one degree of freedom. 

RMSE. As shown in Table 25, the ICC appeared to have an effect on the RMSE in the 

estimates of the level-two variance component. Across the simulation conditions when level-two 

residuals followed a chi-square distribution with one degree of freedom, RMSE increased 
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substantially when the ICC increased from .10 to .20 when all else was equal. In addition, sample 

size also appeared to have an effect on the RMSE. When sample size increased, however, the 

effect on the RMSE was in the direction opposite to that when ICC increased. Increasing the 

level-two sample size from 30 to 100 was correlated with a decrease in RMSE, and increasing 

the level-one sample size also was associated with a decrease in RMSE, although the effect of 

the level-two sample size on the RMSE was stronger than that of the level-one sample size when 

other simulation conditions were the same. Mobility rate did not appear to have a consistent 

effect on the RMSE when the level-two residuals followed a chi-square distribution with one 

degree of freedom. The smallest RMSE was 2.7296, and the largest was 10.0985. 
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Table 25 

Relative Bias of Parameter Estimate, Coverage Rates of the 95% Credible Intervals (CIs), and 

RMSE of the Level-two Variance Component, 𝜏00, by Combination of ICC, Level-two Sample 

Size, Level-one Sample Size, and Mobility Rate, when Level-two Residuals Followed a Chi-

square Distribution with One Degree of Freedom 

 

 

 

Manipulated Condition  

Relative 

Parameter 

Bias 

Coverage 

Rates of 

the 95% 

CIs RMSE 

Level-

two 

Residual 

 

ICC 

Level-

two 

Sample 

Size 

Level-

one 

Sample 

Size 

Mobility 

Rate  

B(�̂�00𝑘
) % 

 

 

𝜒𝑑𝑓=1
2  .10 30 20 10%  0.0438 80.0 6.3242 

    30%  0.0204 81.4 6.1181 

   40 10%  0.0736 81.2 5.2393 

    30%  0.0799 81.8 5.2545 

  100 20 10%  0.0302 84.0 2.9451 

    30%  0.0216 84.5 2.9948 

   40 10%  0.0350 80.3 2.7296 

    30%  0.0244 80.9 2.7515 

 .20 30 20 10%  0.0899 87.5 10.0985 

    30%  0.0763 87.2 9.9364 

   40 10%  0.0634 87.3 9.0401 

    30%  0.0807 85.3 9.7518 

  100 20 10%  0.0265 87.0 5.1253 

    30%  0.0326 86.3 5.2901 

   40 10%  0.0300 85.8 4.7495 

    30%  0.0212 85.7 4.8190 

Note. Values associated with substantial bias are in bold. 

 

 

Overall, the Monte Carlo simulation study showed that MMrem fixed effect parameter 

estimates and their corresponding SEs were virtually unaffected by level-two residual non-
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normality in combination with various conditions in ICC, sample size, and mobility rate. 

Simulation results for the fixed effect parameters are summarized in the following: 

1) The intercept parameter 𝛾00 was estimated without substantial bias across all 

simulation conditions, and the coverage rates of the 95% credible intervals were 

close to the nominal level. Sample sizes appeared to affect the values of RMSE 

for the intercept parameter estimate inversely when all else was held constant. 

When all else was equal, the ICC also appeared to have an effect on the precision 

for the intercept parameter estimate, in that when the ICC increased from .10 

to .20, the precision in the intercept parameter estimates decreased. The mobility 

rate did not seem to have any consistent and substantial effects on the estimate of 

the intercept parameter.   

2) The coefficient of the level-one predictor, γ10, was estimated without substantial 

bias across all simulation conditions. In addition, the coverage rates of the 95% 

credible intervals were close to the nominal level. At either level, sample size 

inversely affected the values of RMSE for the coefficient of the level-one 

predictor. The effect of the level-two sample size appeared to be larger than that 

of the level-one sample size. On the other hand, simulation conditions of ICC and 

mobility rate did not appear to have any consistent or substantial effects on the 

estimate of the coefficient of the level-one predictor.   

3) The coefficient of the level-two predictor, γ01, was estimated without substantial 

bias across all simulation conditions. The coverage rates of the 95% credible 

intervals were reasonably close to the nominal level. A larger sample size was 

associated with better precision when all else remained equal, and the effect of the 
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level-two sample size appeared to be stronger than that of the level-one sample 

size. A larger ICC was associated with poorer precision when all other conditions 

were the same, but the mobility rate did not appear to have any consistent and 

substantial effects.   

The simulation study offered some divergent results in terms of bias and precision for the 

estimation of the two variance component parameters. Summing over the analyses of bias, 

coverage rates, and RMSE, the recovery of the random effect parameter estimates showed the 

following results: 

1) The level-one variance component 𝜎2 was estimated without substantial bias 

across all simulation conditions. Furthermore, the coverage rates of the 95% 

credible intervals were close to the nominal level regardless of whether the level-

two residuals followed a normal or non-normal distribution. The values of RMSE 

for the level-one variance component 𝜎2 appeared to be affected inversely by 

sample size, and the effect of the level-two sample size was observed to be greater 

than that of the level-one sample size. Simulation conditions of ICC and mobility 

rate did not appear to have any consistent or substantial effects on the estimate of 

the level-one variance component.   

2) The level-two variance component 𝜏00 was estimated with substantial bias for 

some simulation conditions. Specifically, when the level-two sample size was 30, 

the level-two variance component 𝜏00 was overestimated for most conditions, 

regardless of whether the level-two residuals followed a normal or non-normal 

distribution. When the level-two sample size was 100, on the other hand, no 

substantial relative parameter bias was found in the estimates of the level-two 
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variance component across all simulation conditions. Unlike the estimation of the 

level-one variance component 𝜎2, level-two residual distribution influenced the 

coverage rates for the estimates of the level-two variance component 𝜏00. When 

the level-two residuals followed a uniform distribution, most of the coverage rates 

of the 95% credible intervals for the estimates of the level-two variance 

component 𝜏00 exceeded the 95% level assumed. When the level-two residuals 

followed a chi-square distribution with one degree of freedom, on the other hand, 

coverage rates for the level-two variance component 𝜏00 were consistently below 

the nominal level of 95% across all simulation conditions, with values of the 

coverage rates ranging from 80.0% to 87.5%. The precision in the level-two 

variance component parameter estimates was affected by the simulation 

conditions of ICC and sample size, in that RMSE became larger as the ICC 

increased, but became smaller as either the level-two or -one sample size 

increased. The mobility rate did not appear to have any consistent and substantial 

effects on the estimate of level-two variance component. 
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CHAPTER 5 

DISCUSSION 

This study extended the investigation of the influence of non-normal residual 

distributions on parameter estimates from using conventional hierarchical linear modeling with 

purely hierarchical multilevel data to using multiple membership random effects modeling with 

multiple membership data. In the context of educational research, this research inquiry used a 

Monte Carlo simulation study to ascertain the robustness of parameter estimates in a two-level 

multiple membership random effects model (MMrem) when the level-two residual normality 

assumption was violated. In addition, the study investigated the effects of different level sample 

sizes on MMrem parameter estimates under various conditions of the level-two residual 

distributional assumption, ICC, and mobility rate. Specifically, a simulation study that included 

five manipulated factors and 48 simulation conditions was carried out. The generating values of 

the two-level conditional MMrem fixed and random effect parameters were based on the analysis 

of a subset of the newly-released Early Childhood Longitudinal Study, Kindergarten Class of 

2010-11 public-use data (ECLS-K: 2011; Tourangeau, Nord, Lê, Wallner-Allen, Vaden-Kiernan, 

Blaker, & Najarian, 2017). The purpose of the real data analysis was simply to obtain realistic 

generating MMrem parameter estimates for the Monte Carlo simulation rather than to make 

statistical inferences about the U.S. student population. 

The accuracy of two-level conditional MMrem fixed and random effect parameter 

estimates derived from 1,000 simulated datasets for each simulation condition using the Markov 

chain Monte Carlo (MCMC) procedure was analyzed by assessing bias, precision, and variability 

in the parameter estimates. This chapter will discuss the results obtained from this study with 

reference to the findings of previous investigations of the influence of residual non-normality on 

multilevel parameter estimates with purely hierarchical data. The discussion is divided into 
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sections, beginning with a summary of the results derived across simulation conditions and 

reported in Chapter 4, followed by a discussion of the study’s limitations, suggestions for future 

MMrem methodological research, possible implications of the current study, and conclusions.  

Summary of Simulation Study Results 

Fixed effect parameter estimates. This subsection summarizes the results for the three 

fixed effect parameters estimated in the study. These parameters were the intercept parameter 

𝛾00, coefficient of level-one predictor, γ10, and coefficient of level-two predictor, γ01. 

Intercept parameter 𝜸𝟎𝟎. Intercept parameter 𝛾00 was estimated without substantial bias 

across the 48 simulation conditions. Overall, the intercept parameter was recovered satisfactorily 

even when the level-two residual normality assumption was violated severely (e.g., when the 

level-two residuals followed a chi-square distribution with one degree of freedom, which is 

skewed sharply). This finding appeared to be parallel to those of some previous studies that have 

investigated the influence of violations of the level-two residual normality assumption on 

multilevel modeling parameter estimates. In the Maas and Hox’ (2004a, 2004b) studies in which 

a conventional HLM using purely hierarchical two-level data also included one level-one and 

one level-two predictor variable, the intercept parameter was estimated without substantial bias 

when the level-two residuals followed non-normal level-two residual distributions. Seco et al. 

(2013) also reported that when the level-two residual normality assumption was violated, no 

substantial bias was detected in the intercept parameter estimates. The Seco et al. (2013) study 

similarly used HLM and purely hierarchical data. 

The sample size conditions examined in this study appeared to be sufficient for the 

recovery of the intercept parameter. Intercept parameter estimates achieved similar degrees of 

accuracy across simulation conditions, as measured by the relative parameter and SE biases and 
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coverage rates. However, level-one and -two sample sizes were observed to have an inverse 

relationship with RMSE for the intercept parameter when all other simulation conditions were 

held constant. An increased sample size at either level was associated with a decrease in the 

magnitude of RMSE, although the effect of the level-two sample size was greater than that of the 

level-one sample size.  

The ICC also appeared to have an effect on the RMSE for the intercept parameter. When 

the ICC increased from .10 to .20, RMSE increased. The RMSE values had a slightly larger 

magnitude when the level-two residuals were non-normal rather than normal. 

The mobility rate seemed to have no consistent and substantial effect on the estimate of 

the intercept parameter. As the mobility rate changed from 10% to 30%, the measures of relative 

parameter and SE biases, coverage rates, and RMSE fluctuated upward or downward with no 

discernable pattern. 

Coefficient of level-one predictor, 𝜸𝟏𝟎. The coefficient of the level-one predictor, γ10, 

was estimated without substantial bias across all simulation conditions. Regardless of whether 

the level-two residuals followed a normal or non-normal distribution, estimates of the coefficient 

of the level-one predictor were achieved with impressive precision as measured by relative 

parameter and SE biases, coverage rates, and RMSE. This finding was similar to the results 

reported in Maas and Hox’ (2004a, 2004b) studies that used purely hierarchical data. These 

authors reported that the estimate of the coefficient of the level-one predictor was unbiased even 

when the level-two residuals followed a non-normal distribution, such as a chi-square 

distribution with one degree of freedom.  

At either level, sample size had an apparent influence on the RMSE for the coefficient of 

the level-one predictor. Given that the RMSEs were small for all 48 simulation conditions, the 
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influence of sample size appeared to be slight (affecting the magnitude of RMSE in the second 

decimal place only), but there was a substantial percentage reduction in RMSE when the level-

two sample size increased from 30 to 100.  

In estimating the coefficient of the level-one predictor, the ICC and mobility rate did not 

appear to have any consistent and substantial effects. The fluctuation in the summary statistics 

suggested no consistent patterns in the relative parameter bias, relative SE bias, and the coverage 

rates as the level-two residual distribution, ICC, sample size at either level, and mobility rate 

simulation conditions varied.  

Coefficient of level-two predictor, 𝜸𝟎𝟏. The coefficient of level-two predictor, γ01, was 

estimated without substantial bias under all simulation conditions. The violation of the level-two 

residual normality assumption did not appear to have any substantial effects as measured by 

relative parameter and SE biases. For instance, when the level-two residuals followed a chi-

square distribution with one degree of freedom, parameter estimates did not appear to be 

associated with a substantially larger magnitude of relative parameter or SE bias than when the 

level-two residuals followed a normal distribution. Similarly, violation of the level-two residual 

distribution did not appear to correlate with greater deviations from the nominal level in the 

coverage rates. These results are parallel to those in HLM methodology research (Maas & Hox, 

2004a, 2004b; Seco et al., 2013). These authors reported that the level-two predictor coefficient 

was recovered with excellent precision even when the level-two residuals were skewed 

markedly.  

In most simulation condition, both the ICC and sample size at either level appeared to 

have consistent effects on the RMSE for the coefficient of the level-two predictor, as a larger 

ICC was associated with an elevated RMSE when all other conditions were the same. A larger 
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level-two sample size, on the other hand, was associated with a smaller RMSE when all else 

remained equal. With one exception, increasing the level-one sample size from 20 to 40 was 

associated with a decrease in RMSE when other simulation conditions were held constant.  

The mobility rate did not appear to have any consistent and substantial effects on the 

estimate of the coefficient of the level-two predictor. A higher percentage of level-one unit 

multiple membership did not appear to alter the precision and variability measures examined 

across simulation conditions.  

Summary. The recovery of the intercept parameter and coefficients of the level-one and 

level-two predictors in this study suggested that MMrem estimates of the fixed effect parameters 

using the MCMC procedure were robust across ICC, either level sample size, and mobility rate 

simulation conditions as well as when the level-two residual normality assumption was violated. 

These results broaden the scope of methodological research on the influence of residual 

distributions on multilevel data analyses. A few recent studies (Maas & Hox, 2004a, 2004b; Seco 

et al., 2013) that have investigated the influence of violating the level-two residual normality 

assumption using the conventional HLM reported satisfactory recovery for all fixed effect 

parameters in two-level conditional HLMs. Although those studies and the simulation study 

reported in this dissertation were conducted using different theoretical frameworks (the former 

with HLM, the latter with MMrem), some conclusions were parallel: the fixed effect parameter 

estimates were virtually unaffected by level-two residual non-normality. In addition, the 

precision and variability of fixed effect parameter estimates were sensitive to sample size. A 

larger sample size at either level-one or -two was associated with a more precise and less varied 

fixed effect parameter estimate, while the effect of the level-two sample size consistently was 

observed to be stronger than was that of the level-one sample size.  
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Random effect parameter estimates. This subsection presents a summary of the two 

random effect parameters estimated in the study. These random effect parameters were the level-

one variance component 𝜎2, and the level-two variance component 𝜏00. 

Level-one variance component 𝝈𝟐. Level-one variance component 𝜎2 was estimated 

without substantial bias for all simulation conditions. Non-normally distributed residuals at the 

second level (cluster-level) did not appear to have any substantial effects on the level-one 

random effect parameter estimates when other simulation conditions remained constant. When 

the level-two residuals were non-normal and the simulation conditions were the same for other 

factors, the relative parameter bias, coverage rates of the 95% credible intervals, and RMSE were 

on the same order of magnitude as when the level-two residuals were distributed normally.  

Similar to the estimates of the fixed effect parameters, the precision in the estimates of 

the level-one variance component 𝜎2 appeared to be affected by sample size, as measured by 

RMSE. The RMSEs across all simulation conditions were found to be more sensitive to the 

level-two than the level-one sample size. Further, an increase in sample size at either level was 

related inversely to the magnitude of RMSE.  

The finding that the level-one variance component was estimated without substantial bias 

was analogous to those in Maas and Hox’ (2004a, 2004b) studies. In their research using 

conventional HLM with purely hierarchical data, the smallest level-two sample size was 30, 

while the smallest level-one sample size was five (with a total sample size of 150). These authors 

reported that even with the smallest total sample size, the level-one variance component was 

estimated without substantial bias when the level-two residuals were distributed non-normally, 

either as a uniform or chi-square distribution with one degree of freedom.  
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The simulation factors of ICC and mobility rate did not appear to have consistent and 

materially critical effects on the estimate of the level-one variance component. When the level-

two residual distribution and sample size at either level-one or -two were held the same, the 

relative parameter bias, coverage rates, and RMSE did not differ markedly when the ICC or 

mobility rate conditions varied.  

Level-two variance component 𝝉𝟎𝟎. An important result that emerged across the level-

two residual distribution simulation conditions was that the level-two sample size appeared to 

have an important effect on the recovery of the level-two random component parameter 𝜏00. The 

estimates of the level-two variance component showed substantial bias for some of the 

simulation conditions, including that in which the level-two residuals were distributed normally. 

For the conditions in which the level-two sample size was 30, most of the level-two variance 

component estimates were associated with a substantial positive relative parameter bias, 

indicating overestimation in the parameter. The extent of the overestimation was less than 10% 

relative to the respective generating value. For conditions in which the level-two sample size was 

100, on the other hand, the level-two variance component was recovered without substantial bias, 

when measured by the relative parameter bias. The finding of substantial bias when level-two 

sample size was 30 was somewhat comparable to the findings in other research that has used 

multiple membership data. In Chung’s (2009) MMrem methodological research conducted under 

the level-two residual normality assumption, the level-two variance component was estimated 

similarly with substantial positive bias for many simulation conditions. Results from Chung’s 

simulation study showed that the overestimates in the level-two variance component occurred for 

most of the combinations of the level-two sample size (30 or 50), mobility rate (10% or 20%), 

ICC (.05 or .10), and number of schools attended (two or three). The findings in Chung’s study 
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and here, in which biased level-two variance component estimates were concentrated in the 

subset of conditions in which the level-two sample size was 30, seemed to suggest that a cluster-

level sample size of 30 may not be sufficient to obtain accurate level-two variance component 

parameter estimates when modeling multiple membership data, regardless of whether the level-

two residual distribution was normal. 

While the coverage rates were reasonably close to the nominal level of 95% for most 

conditions when the level-two residuals were distributed normally, non-normal level-two 

residuals were associated with under or over coverage, depending on the non-normal distribution 

of the level-two residuals. Across simulation conditions when the level-two residuals followed a 

uniform distribution, all but one of the coverage rates of the 95% credible intervals for the 

estimates of the level-two variance component 𝜏00 exceeded the 95% level assumed, indicating 

an inadequate precision of the estimates of the level-two variance component 𝜏00 when level-two 

residuals followed a uniform distribution. When level-two residuals followed a uniform 

distribution, coverage rates deviated further away from the nominal level as level-one sample 

size increased for all but one simulation condition. One plausible explanation is that the accuracy 

of the estimates was affected by the design effect (Kish, 1965; Maas & Hox, 2004b). The design 

effect is an indicator of the loss in effective sample size attributable to the homogeneity of the 

sample clustering, which is approximately equal to [1 + (average cluster size − 1) * ICC]. For a 

given ICC, the larger the cluster size, the larger the design effect, and the larger the variance 

(Kish, 1965). In their study, Maas and Hox (2004b) similarly noted the effect of the cluster size 

on the coverage intervals and suggested that the design effect accounted for their findings. 

When the level-two residuals followed a chi-square distribution with one degree of 

freedom, coverage rates for the level-two variance component 𝜏00 were below the nominal level 
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for all simulation conditions. The deviation between any of these coverage rates of the 95% 

credible intervals and the nominal level of 95% ranged from 7.5% to 15.0%. The coverage rate 

deviations suggested an insufficient precision in the estimates of the level-two variance 

component 𝜏00 when level-two residuals followed a chi-square distribution with one degree of 

freedom. 

Maas and Hox’ (2004a, 2004b) investigated parameter recovery when level-two residuals 

followed normal and non-normal distributions (uniform, Laplace, and chi-square distribution 

with one degree of freedom). These authors found that the coverage rates deviated from the 95% 

nominal level assumed. Specifically, coverage rates of level-two variance component 𝜏00 were 

estimated with under or over coverage even with the Huber/White (asymptotic correction) 

estimator. The authors reported that they found over coverage when the level-two residuals 

followed a uniform distribution. In contrast, they discovered under coverage when the level-two 

residuals followed a chi-square distribution with one degree of freedom. The coverage rates 

ranged from 81.3% to 92.2%. The authors concluded that when level-two residuals were non-

normal, the level-two variance component was estimated with bias. More severe bias was 

observed when the level-two residuals were skewed (such as is the case with a chi-square 

distribution with one degree of freedom). Under a severely skewed level-two residual 

distribution, only a very large number of groups (e.g., the number of groups being 100 or larger) 

could counteract the severe violation of the normality assumption for the level-two residuals. 

Less accurate recovery of the level-two variance component also can be seen in the 

RMSE for this random parameter. The RMSE for the level-two variance component 𝜏00 ranged 

from 1.4607 to 10.0985 across the 48 simulation conditions. For the level-two variance 

component 𝜏00 the RMSE increased as the ICC increased, but decreased as either level-two or -
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one sample size increased. Given the same conditions in ICC, level-two and -one sample size, 

and mobility rate, RMSE was larger when level-two residuals followed a chi-square distribution 

with one degree of freedom compared to a uniform distribution. When the sample sizes were 

smallest (level-two at 30 and level-one at 20), ICC was the largest (.20), and level-two residuals 

followed a chi-square distribution with one degree of freedom, the precision of the level-two 

variance component was the poorest as measured by RMSE which was the largest at 10.0985 

amongst all simulation conditions. 

Summary. While no substantial bias was found in the estimates of the level-one variance 

component (σ2) across all simulation conditions, estimates of the level-two variance component, 

τ00, were affected when level-two residuals followed a non-normal distribution as well as when 

the level-two sample size was relatively small. Even when level-two residuals were distributed 

normally, substantial bias was found when the level-two sample size was 30, but estimates of the 

level-two random parameter became unbiased when the level-two sample size was 100. It 

appeared that recovery of the MMrem level-two variance component parameter using the 

MCMC procedure depended heavily on the level-two sample size. The results with respect to 

variance component recovery and the effect of sample size on MMrem parameter estimates in 

this study were analogous to other researchers’ findings (Kasim & Raudenbush, 1998; Maas & 

Hox, 2001, 2002), that estimates of the level-one variance component in purely hierarchical 

multilevel modeling generally are unbiased, but estimates of the variance component at level-two 

may be biased. Because those estimation procedures are assumed asymptotic, variance estimates 

become unstable when sample sizes are relatively small. One possible explanation given was that 

with a small sample size at level-two, the sampling distribution of the variance-covariance may 

be skewed, which can affect variance estimates at level-two.  
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In the two situations in which the level-two residual normality assumption was violated, 

the precision of the parameter estimates appeared to be poorer when the level-two residuals 

followed a chi-square distribution with one degree of freedom than when they were distributed 

uniformly. A greater number of large deviations in coverage rates from the nominal level of 95% 

were observed when the level-two residuals followed a non-normal and severely skewed (an 

asymmetrical distribution, the chi-square distribution with one degree of freedom) relative to 

when they followed a non-normal but symmetrical distribution (uniform distribution). These 

findings suggest that when the level-two residual normality assumption is violated, the shape of 

the distribution may play a role in parameter estimates, with a skewed distribution potentially 

having a more detrimental influence on the precision of level-two variance component parameter 

estimates.  

Overall, results from this simulation study revealed that the fixed effect and level-one 

random effect parameter estimates were robust both under moderate and extreme violations of 

the level-two residual normality assumption. However, the MMrem level-two variance 

component was sensitive to the level-two sample size and level-two residual distribution 

assumption. The level-two variance component was estimated with substantial bias and 

insufficient precision for some simulation conditions. Substantial parameter bias in the estimates 

of the level-two variance component was found, regardless of level-two residual distribution, 

when level-two sample size was 30. Unsatisfactory coverage rates in the estimates of the level-

two variance component were identified when the level-two residuals followed a uniform or chi-

square distribution with one degree of freedom. The undesirable effects of the violation of the 

level-two residual normality assumption were most pronounced when the level-two sample size 

was 30. 
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Limitations and Future Research 

This research inquiry was the first study designed to investigate the effect of the violation 

of the cluster-level residual normality assumption on MMrem parameter estimates with two-level 

multiple membership data. While this study offers initial findings to enhance current 

understanding of the effect of cluster-level residual non-normality on MMrem parameter 

estimates and expands the literature on MMrem methodological research, there are limitations in 

the study design that suggest future research.  

 First, as with any simulation study, the findings from this research inquiry reflected only 

the outcomes associated with the simulation factors selected and the specific values for each. The 

choice of the factors manipulated in the simulation and the values of those factors used covered a 

subset of the more comprehensive options that might be encountered in applied research. For 

example, although the mobility rates chosen in the simulation study were informed by prior 

MMrem methodological research and a real data analysis using the most recently-released subset 

of the ECLS-K: 2011 data, additional mobility rates may be tested to reflect more conditions that 

may be observed in social science research, such as those in educational research in the urban 

setting (Lash & Kirkpatrick, 1990, 1994). The pattern of mobility also could be more 

complicated, such that some level-one units are members of more than two higher-level clusters 

(e.g., students who transferred to different schools more than once during the data collection 

period). Given that residential change was found to be one of the most common factors 

associated with student mobility (Kerbow, 1996a), and that more school choices are permissible 

under current educational policy, it could be meaningful to assess MMrem parameter recovery 

under additional conditions of student mobility and cluster-level residual non-normality. 
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In the current study, a two-level conditional MMrem was examined. This model 

constrains the generalizability of the results to more complex, non-purely clustered multilevel 

data structures. For example, to study teachers’ effectiveness in conjunction with that of schools, 

it would be necessary to extend the current research to model a data structure in which some 

students were clustered within teachers who, in turn, were clustered within schools. In such an 

extension, the effects of residual non-normality at both the second (the teacher level) and the 

third level (the school level) can be investigated to elucidate the influence of higher-level 

residual non-normality on MMrem parameter estimates. Similarly, the investigation can be 

applied to growth modeling (e.g., measurement occasions at level-one, students at level-two, 

teachers at level-three, and schools at level-four) to assess the effects of the violation of the 

higher-level residual normality assumption on parameter estimates. Future research with higher-

level modeling could be useful to ascertain the effect of higher-level residual non-normality on 

the accuracy of MMrem parameter estimates.  

Another potential limitation is the effect of the predictors assumed. In the two-level 

conditional MMrem examined in this study, a randomly varying intercept was included to reflect 

what typically is found in educational research. In addition, the model included one predictor at 

each of the two levels and modeled the effects of both predictors as fixed. It is possible that some 

applied research might present situations in which predictors at either level are random. 

Introducing additional random variation of predictors may affect bias evaluation in the 

estimation of the variance components and other findings in a study of residual distributional 

assumptions. Hence, there is room for future research that includes more predictors at different 

levels and different combinations of predictor random and fixed effects to evaluate the range of 

effects of residual non-normality on MMrem parameter recovery. However, one potential issue is 
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that model estimation convergence may become problematic as more predictors and more 

random effects are modeled. 

While several design features of this simulation study may be potential limitations, as 

noted above, these features were chosen because they are used frequently in multilevel 

methodological research in general, and in simulation studies that involve multiple membership 

data structures in particular. Given that this study is the first extension of research on the effects 

of the residual non-normality on MMrem parameter estimates, findings from this research 

inquiry provide knowledge to inform ensuing research.  

Implications and Conclusions  

The effect of violating the residual normality assumption is a research topic that has been 

examined in both single-level and multilevel purely hierarchical data analyses, but is first 

explored in this dissertation for the multiple membership data structure. The results of this 

simulation offer several implications. As summarized above, the fixed effect parameter estimates 

and the standard errors associated with those parameters investigated in the simulation study 

appear to be robust to the violation of the level-two residual normality assumption (for a 

symmetrical or asymmetrical non-normal distribution). Thus, if one’s primary research objective 

is to estimate fixed effect parameters, then MMrem parameter estimates based on the MCMC 

procedure can be valid even when the level-two residual normality assumption is unmet, given 

reasonable sample sizes across different levels of the data hierarchy. On the other hand, if the 

level-two variance component parameter estimate is of a focal interest to a research study, then 

this simulation study suggests that the estimation results obtained using MMrem based on the 

MCMC procedure when level-two sample size is relatively small or level-two residuals follow 

non-normal distributions may not be trustworthy. The deviations between the nominal level 
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assumed and the coverage rates of the 95% credible intervals observed in the estimates of the 

level-two variance component may imply an inflated Type I error rate and overly liberal 

statistical inferences, or a loss of statistical power.  

For other conditions held constant, findings from this study highlight that, relative to the 

ICC and mobility rate, sample sizes at both level-one and -two have more prominent effects on 

the precision of MMrem parameter recovery. In comparison, the level-two (the cluster-level) 

sample size influences parameter recovery more than the level-one sample size does. When the 

level-two sample size reached 100, for instance, the gain in parameter precision was moderate as 

level-one sample size increased from 20 to 40. In contrast, given a level-one sample size at 40, 

the gain in parameter precision was more substantial when level-two sample size increased from 

30 to 100. Beyond echoing to a great extent the results reported by other researchers (e.g., 

Chung, 2009; Kasim & Raudenbush, 1998; Maas & Hox, 2001, 2002) in their investigation of 

the effect of sample size on parameter estimates using multiple membership or purely 

hierarchical data when level-two residuals were distributed normally, this study extends current 

understanding of sample size effects from HLM to MMrem when cluster-level residuals were 

non-normality distributed. When the cluster-level sample size is small or the cluster-level 

residual distribution normality assumption is violated, findings from this dissertation suggest that 

the unmet level-two residual normality assumption should not be ignored.  

Either increasing the level-two sample size or looking into fitting the MMrem with other 

analytical approaches such as the nonparametric residual bootstrap estimation procedure may be 

useful alternatives when level-two residual normality assumption is violated. Non-parametric 

residual bootstrapping has been presented (Carpenter et al., 2003; Goldstein, 2011b; Wang et al., 

2006; Wang, Xie, & Fisher, 2011) as a potential strategy for dealing with bias in the variance 
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estimates and standard errors. In the Seco et al. study (2013), parameter estimates obtained using 

a likelihood-based method (the restricted maximum likelihood estimator) were compared with 

estimates derived using a non-parametric residual bootstrap method for fitting purely hierarchical 

models. The performance of the two methods as measured by bias, coverage, and RMSE showed 

that the non-parametric residual bootstrap method yielded slightly smaller RMSE of the fixed 

effects and substantial reductions in the difference between the nominal and actual confidence 

interval coverage rates for both fixed and random effects. The authors concluded that the non-

parametric residual bootstrap method was superior to the likelihood-based estimator, in general, 

when model assumptions were violated. For a very small level-two sample size, however, the 

authors advised that the non-parametric residual bootstrap method should be applied with care. 

Some MMrem analysis tools (e.g., MLwiN version 2.36; Rasbash et al., 2016) have the non-

parametric residual bootstrap procedure for parameter estimate, but large-scale simulation 

studies for MMrem may be hindered until further software development has been implemented. 

Using conventional hierarchical multilevel modeling techniques, educational researchers 

have applied higher-level variance component analysis to teacher effectiveness studies 

(Aaronson, Barrow, & Sander, 2007; Darling-Hammond, Holtzman, Gatlin, & Heilig, 2005; 

Goe, Bell, & Little, 2008; Marsh & Hattie, 2002; Muijs & Reynolds, 2003). In a study to 

estimate the importance of teachers, for example, Aaronson, Barrow, and Sander (2007) 

analyzed the variance in teacher effectiveness and assessed the relationship between teacher 

effects and some teacher characteristics (e.g., years of teaching experience, degree, certification, 

undergraduate major, and age). Using Chicago public high school data, these authors found that 

teacher effects were positively related to student mathematics achievement, particularly for 

lower-ability students, but no significant correlation between value-added scores for teachers and 
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most teacher characteristics examined was detected. In another teacher effectiveness study, 

Muijs and Reynolds (2003) investigated the influence of teacher effects and student background 

on achievement in mathematics in a longitudinal study. Specifically, these authors examined 

teacher behavior, classroom social context, classroom organization, and student social 

background. Study results showed that teacher behavior accounted for a large portion of 

between-classroom and between-school variance in mathematics achievement, whereas student 

background characteristics explained very little. Similarly, higher-level variance component 

analysis has also been applied in other research fields. For example, Liao and Chuang (2004) 

used a multilevel framework to study the relationship between employee service performance, 

customer outcome, employee-level (e.g., personality) measures, and restaurant-level (service 

climate and organizational practices) characteristics. Through the analysis of both fixed effects 

and random effects at both levels of the data hierarchy, the authors detected some significant 

variance in employee service performance, customer satisfaction, and customer loyalty both 

within and between restaurants, and reported that some employee-level and restaurant-level 

measures explained a moderate amount of the variance. 

In applied research where multiple membership multilevel data are modeled, it is possible 

to encounter non-normally distributed level-two residuals, or level-two cluster sample sizes small 

enough that the normality assumption of the level-two residuals may become questionable. In 

educational research, for example, student achievement data may be skewed, the cluster-level 

sample size might be small, and student mobility may be prevalent. These multiple membership 

student achievement data are often evaluated by educational researchers, teachers, and policy 

makers with respect to teacher and school effectiveness. While prior MMrem research (e.g., 

Chung, 2009; Leroux, 2014; Wolff Smith, 2014a) has illustrated the importance of MMrem in 
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multilevel modeling, the utility of higher-level variance component analysis in teacher 

effectiveness research reviewed above underscores the methodological relevance of this research 

inquiry. The findings from this dissertation that the level-two variance component can be 

estimated with substantial bias and a poor coverage rate when level-two residual normality 

assumption is violated fill a gap in multilevel modeling, including those using multiple 

membership data for teacher and school effectiveness research. Therefore, in addition to a 

methodological extension in MMrem research, new knowledge gained from this simulation study 

could have practical significance in educational research for accurately assessing student 

academic success over time in light of teacher and school contextual effects. Findings from this 

research may serve to inform the appropriate use of MMrem under proper modeling assumptions 

including the residual normality assumption, thus ensuring accurate MMrem parameter estimates 

and allowing for valid evaluation results about potentially different influences arising from 

different aspects of the educational system.  

Social and biomedical data frequently entail multilevel structures which may not always 

be purely hierarchical. Most typically, at least some lower-level units change membership across 

clustering units over time. For instance, workers may change jobs from one company to another, 

students may transfer between schools, and patients may receive care from multiple health care 

providers. Therefore, accurately estimating fixed effects and variance components while 

appropriately modeling lower-level mobility should be an inherent and important aspect of 

multilevel modeling. As an original research inquiry designed to investigate the effects of 

violating the cluster-level residual normality assumption on the accuracy of MMrem fixed and 

random effect parameter estimates, this dissertation may provide some useful guidelines for 

researchers and practitioners in their studies using MMrem.  
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