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ABSTRACT

CHARACTERIZING MULTIPLE SPATIAL WAVES OF THE 1991-1997 CHOLERA EPIDEMIC

IN PERU

By

NATALIE STERRETT

4/23/17

Background

Due to a lack of sanitary infrastructure and a highly susceptible population, Peru experienced a

historic outbreak of Vibrio cholerae O1 that began in 1991 and generated multiple waves of disease

for several years. Though case-fatality was low, the epidemic put massive strain on healthcare and

governmental resources. Here we explore the transmission dynamics and spatiotemporal variation of

cholera in Peru using mathematical models and statistical analyses that account for environmental

conditions favoring the persistence of bacteria in the environment.

Methods

The authors use dynamic transmission models that incorporate seasonal variation in temper-

ature, concentration of vibrios in the environment, as well as separate human and environmental

transmission pathways. The model is fit to weekly department level data obtained from the cholera

surveillance system in Peru. The authors also assess the spatial patterns of cholera transmission

and correlations between case incidence, time of epidemic onset, and department level variables.

Reproductive numbers are compared across departments.

Results

Our findings indicate that the epidemic first hit the coastal departments of Peru and later spread

through the highlands and jungle regions. There was high seasonal variation in case incidence, with

three clear waves of transmission corresponding to the warm seasons in Peru. Department level

variables such as population size and elevation also played a role in transmission patterns. Finally,

basic reproductive numbers most often ranged from one to eleven depending on department and

time of year. Lima had the largest reproductive number, likely due to its population density and

proximity to the coast.

Conclusions

Incorporating environmental variables into an epidemic model predicts the multiple waves of

transmission characteristic of V. cholerae, and effectively differentiates transmission patterns by



geographic region even in the absence of unique parameter estimates. Mathematical models can

provide valuable information about transmission patterns and should continue to be used to inform

public health decision making.
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1 Background

Vibrio cholerae continues to generate outbreaks of acute gastrointestinal illness particularly in

lower-income countries with poor sanitary infrastructure; it currently affects 1.3 to 4 million people

annually worldwide [1]. Transmitted through contaminated food or water, cholera poses a major

public health threat in many countries around the world [2]. Ecological studies have confirmed warm

brackish waters to be an ideal reservoir for V. cholerae, where it can attach to aquatic organisms such

as shellfish and zooplankton [3, 4, 5]. This bacterium thrives at warmer temperatures which increases

the risk of cholera outbreaks among susceptible populations [2]. Although our understanding of this

pathogen has advanced considerably, there are still open questions relating to cholera persistence and

transmission dynamics at different spatial scales. To improve prevention and mitigation strategies,

we must continue to develop our understanding of the transmission dynamics of cholera through the

lens of past epidemics.

Historically, cholera epidemics have been associated with one of two biotypes, both of which

belong to V. cholerae serogroup O1 [2]. Up to 1960, epidemic cholera was primarily caused by the

classical O1 biotype, but it was subsequently replaced by V. cholerae El Tor, which marked the

beginning of the seventh cholera pandemic in 1961 [2, 6, 7]. By the early 1990s, an effective vaccine

had yet to become widely available [8, 9, 10, 11]. Fortunately, infection with the El Tor biotype

most often results in mild or asymptomatic infection, an evolutionary tradeoff for its increased ability

to survive in both human hosts and the environment [12]. However, in approximately one out of

every 10-50 infected individuals it is characterized by the rapid onset of watery diarrhea, vomiting,

cramping, and subsequent dehydration [2, 13, 14]. If left untreated, it can lead to shock, renal failure,

and eventually death [2, 15]. Proper intravenous and oral rehydration, along with appropriate use

of antibiotics, can reduce case-fatality to less than 1% [15].

The ongoing seventh cholera pandemic, caused by an El Tor strain originating in the Bay of

Bengal, involves at least three separate waves of transmission [16]. The pandemic got its start in

Indonesia in 1961 [17], from there spreading through India (1964) [18], Africa (1970) [19, 20], southern

Europe (1970) [21, 22], and South America (1991) [23, 24, 25]. Thereafter, Peru experienced one

of the worst multi-year epidemics in South American history for which an effective vaccine was

unavailable. The first cases were reported in Peru during the final week of January of 1991, and

these cases marked the onset of a brutal assault on the South American population. This epidemic

likely caused close to a million cases and almost 9,000 deaths between January 1991 and December

1993 [26, 27]. Although it was initially speculated that a Chinese ship imported the disease through

an infected crew member [28], it is plausible that the culprit pathogen was already widespread in

the local environment, leading to sporadic cholera cases as early as October 1990 and implicating

an environmental source for the epidemic [29].

A limited picture of the impact of the epidemic in Peru can be gleaned through descriptive

local reports of the epidemic [11, 25, 30, 31, 32, 33]. For instance, some reports suggest that the

first cases of cholera in Peru were reported in the central coast in late January of 1991 [34], whereas

subsequent cases were reported almost simultaneously in coastal cities farther north [33]. The disease

was then reported rapidly in the rest of the country [24]. Cholera continued to generate outbreaks
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for several more years [35]. Nevertheless, a quantitative analysis of the spatiotemporal spread of

this devastating cholera epidemic in Peru is sorely needed in order to understand the transmission

dynamics of cholera in a mostly susceptible population and in the absence of an effective vaccine.

Mathematical modeling studies of cholera epidemics have been useful to quantify transmission

rates and reproductive numbers for epidemics in various areas [36, 37, 38, 39]. However, we argue

that the 1991-1997 cholera epidemic in Peru is an interesting case study as it involved multiple waves

of disease that affected a spatially heterogeneous population at a time when a cholera vaccine was

unavailable. In this study we examine the geographic distribution and temporal variation of this

major cholera epidemic using mathematical modeling and statistical analyses together with a unique

dataset of time series of cholera cases across departments in Peru. We seek to characterize trans-

mission patterns across geographic regions, estimate reproductive numbers for both environment to

human and human to human transmission pathways, and to evaluate the effects of environmental

variables and temporal trends in cholera incidence at different spatial scales: national, regional,

and department. Finally, an appropriate model is applied to examine transmission dynamics and

evaluate the relative importance of environmental and human transmission routes for V. cholerae in

Peru.
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2 Methods

2.1 Setting

Peru is located on the Pacific coast, sharing borders with Bolivia, Brazil, Chile, Colombia, and

Ecuador. In 1990, the total population in Peru exceeded 22 million, heterogeneously distributed in

a surface area of 1,285,220 km2. The geographic setting of Peru is unique compared to other cholera

affected countries. The country is divided into 25 administrative regions and is comprised of three

geographic zones with varying climates: the western coast along the Pacific Ocean, the highlands

or more central departments, and the Amazon jungle toward the East. Respectively, the climates

are dry, temperate, and tropical. In a country like Peru, it is important to differentiate between

the geographic regions, as cholera transmission rates from the environmental route are temperature

dependent [3].

While cholera rarely presents itself in high-income countries, the lack of economic resources and

basic sanitation in Peru allowed cholera to wreak havoc on a susceptible population in 1991 [25, 28].

At the time, Peru struggled with access to healthcare, environmental sanitation, and the resources

necessary to mitigate a large epidemic [35]. In addition, inadequate treatment of water throughout

the country, as well as deficiencies in water storage systems, have been documented [11, 40]. Further,

the political and economic climate in the early 1990s hampered mitigation efforts [11]. Given the

great magnitude of the epidemic, the healthcare infrastructure was overrun by the high number of

cases presenting to clinics and hospitals [41].

2.2 Data

2.2.1 Epidemiologic Data

Peru’s General Office of Epidemiology launched the epidemiological surveillance system with

weekly reporting in 1989, not long before the cholera epidemic hit Peru [42]. This surveillance

system generates weekly surveillance reports across 25 departments by relying on a network of over

6,000 geographically distributed notifying units [43].

During the 1991-1997 cholera epidemic, surveillance included both confirmed and suspected cases.

Confirmed cases were laboratory confirmed with V. cholerae 01 El Tor Inaba [44, 45]. The definition

of suspected cases was stable during the epidemic and consisted of cases defined as individuals greater

than five years of age presenting with acute and watery diarrhea after the epidemic onset [44, 46].

2.2.2 Environmental and Geographic Data

Weekly temperature time series from 1991 to 1997 were obtained from the European Centre for

Medium Range Weather Forecasts ERA-Interim atmospheric reanalysis archive. The ERA-interim

model allows estimation of daily minimum, mean, and maximum temperatures by department [47].

Model estimates were used to assess correlations between case incidence and temperature at the

department level. Weekly mean, minimum, and maximum temperatures by department can be
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seen in Figure 1. We also collected several geographic variables at the department level including

elevation, population size, latitude, and longitude (Table S1), which were used in spatial analyses.

2.3 Spatial Analysis

To evaluate elevation as a proxy for temperature, we used Spearman’s rho (ρ) to assess cor-

relations between cumulative incidence and department elevation. We also examined correlations

between the week of epidemic onset and department level variables such as population size and

elevation. For each department, we defined epidemic onset as the first week with reported cholera

cases. Additionally, we generated maps of cholera attack rates by year. Maps were created using

the choropleth package for R. All statistical analyses were performed using Matlab (The Mathworks,

Inc).

2.3.1 Spatial Autocorrelation

Spatial autocorrelation is a measure of similarity of nearby observations. We assessed spatial

autocorrelation of attack rates across departments using Moran’s I statistic [48]. Moran’s I is calcu-

lated using a nearest neighbor matrix wij of the 25 departments where wij = 1 when departments i

and j share a border. All other entries are equal to zero. The statistic is calculated as in Equation

1, where N is the number of departments, xi is the cholera incidence in department i, x̄ is the mean

cholera incidence across departments, and W is the sum of entries in matrix wij .

I =
N

∑N
i=1

∑N
j=1 wij(xi − x̄)(xj − x̄)

W
∑N
i=1(xi − x̄)2

(1)

To determine significance of Moran’s I, we used a nonparametric random data permutation test

as in [49]. 10,000 random permutations of Peruvian departments were sampled given the observed

data, generating a reference distribution of Moran’s statistics under the null hypothesis of no spatial

autocorrelation. P-values were calculated as the probability of obtaining the observed Moran’s I or

a more extreme value from the reference distribution [50].

2.3.2 Lorenz Curves and Gini Index

Finally, we quantified heterogeneity in attack rates using the Lorenz curve and Gini index [51,

52, 53, 54]. The Lorenz curve is a graphical representation showing the cumulative proportion of

cholera cases plotted against the cumulative proportion of population. Under the assumption of

homogeneity, the distributions will be balanced, and the Lorenz curve will fall on the 45 degree line.

As heterogeneity of attack rates increases, the curve will become farther from this reference line.

The Gini index is a summary measure of heterogeneity, calculated as the ratio of the area between

the Lorenz curve and the reference line to the total area beneath the reference line. The value ranges

from zero to one, with a larger value indicating greater heterogeneity.
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2.4 Model Description and the Reproductive Number

We modeled the weekly trajectory of cholera incidence at two spatial scales: geographic region

and department, using a standard compartmental dynamic model consisting of four equations (Equa-

tions 2-5) and 8 parameters (Table 1) that incorporates a variable transmission rate modulated by

temperature [36, 37, 38]. In addition to the standard susceptible (S), infectious (I), and removed (R)

compartments, this model includes a compartment (B) representing the concentration of vibrios in

the environment. Hence, the model accounts for two transmission pathways: cholera exposure from

the contaminated environment, and human to human transmission, likely corresponding to high dose

infection and low dose infection, respectively [36]. In our model, we further incorporate the effect of

weekly temperature variation (Z(t)) on the cholera transmission rate from the environment.

The corresponding compartmental model diagram is shown in Figure 2. Individuals in a pop-

ulation of size N are born and die at rate µ. Susceptible individuals can be infected through the

environment with transmission rate βe(t) or through human contact with transmission rate βh.

Therefore, they move from susceptible to infectious classes at rates βe(t)
B

B+κ (where κ is the 50%

infectious dose in the environment and B is the current concentration of vibrios in the environment)

and βhI respectively. Vibrios are shed by infectious individuals into the environment at rate λ and

then die at rate δ. Infected individuals are assumed to recover at rate γ. The overall transmission

dynamics can be mathematically described by the following set of nonlinear differential equations:

dS

dt
= µN − βhSI − βe(t)S

B

B + κ
− µS (2)

dI

dt
= βhSI + βe(t)S

B

B + κ
− µI − γI (3)

dR

dt
= γI − µR (4)

dB

dt
= λI − δB (5)

where βe(t) = βe1 + βe2 ∗ Z(t)

In our model, we further break down the parameter βe(t) into two components: βe(t) = βe1 +

βe2 ∗ Z(t), where Z(t) represents the departments weekly standardized temperature at time t. We

estimate three parameters (βe1, βe2, and βh), as well as the initial concentration of vibrios in the

environment, B(0), and a reporting rate which is allowed to vary across departments. The reporting

rate is simply a scaling factor used to adjust for the underreporting of cases, owing to, for instance, the

large proportion of asymptomatic cholera cases. For simplicity, the department-specific reporting

rate is not included in the model specification. Table 1 includes all model parameters and their

definitions, as well as the values chosen for those that are fixed.

The basic reproductive number (R0) is the most common measure of transmission potential
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during the early phase of an epidemic [55]. R0 is interpreted as the average number of new cases

generated by a single infected individual in a completely susceptible population. Mathematically,

this value assumes early exponential growth, and is therefore less useful during later generations of

disease transmission [56, 57]. In our context of cholera transmission comprising multiple epidemic

waves, we sought to monitor the time-dependent changes in the transmission potential associated

with temperature fluctuations. For this purpose, the effective reproductive number, a time depen-

dent measure of transmission denoted by R(t) [58], can be used to describe the average number of

secondary infections as the epidemic evolves. R(t) can be derived by including the time-dependent

transmission rate in the basic reproductive number. The basic reproductive number is derived from

the associated next generation matrices following the method of van den Driessche and Watmough

[56]. R(t) reflects the changing transmission potential over time in the absence of susceptible deple-

tion. Our model specification allows the definition of both an environmental component (Re(t)) as

well as a time-invariant human transmission component (Rh). These quantities can be estimated

separately. We report two estimates for Re(t): a minimum value (Re(1)) and a maximum value

(Re(2)) based on the observed ranges of temperature for each department from 1991-1993. Graphs

are also included showing the effective environmental reproductive number over time. The formulas

for each reproductive number are shown in Equations 6-8 [36].

Rt =
N

δκ(γ + µ)
(λβe(t) + δκβh) (6)

Re =
Nλβe(t)

δκ(γ + µ)
(7)

Rh =
Nβh
γ + µ

(8)

2.5 Parameter Estimation

We independently fit the model (Equations 2-5) to 24 departments and all three geographic

regions for the first three years of the epidemic. We estimated five parameters (βe1, βe2, βh, B(0), and

area-specific reporting rate) using approximate Bayesian computation (ABC) with a noninformative

prior. To ensure the parameter space was sampled effectively, 100,000 estimates were randomly

chosen for each of five parameters using Latin hypercube sampling. The cholera model was evaluated

at each of these estimates, and we calculated the sum of squares error between model-estimated case

incidence and true case counts. Parameter estimates minimized model error for each region and

department.

By solving the system of ordinary differential equations at the resulting parameter estimates, a

best fit incidence curve was generated for each set of best fit estimates. The root mean square error

(RMSE) was evaluated for each model, though RMSE does not allow an objective comparison of

model fit across departments. Therefore, in order to compare model fits, plots of observed versus

predicted case counts are provided for each region and department. We also assessed R2 for the
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linear association between observed and predicted cases.
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3 Results

Though it is possible that cholera appeared months earlier as previously suggested [29], the first

cholera cases were reported to the Peruvian Ministry of Health in January of 1991. Infection spread

so rapidly that by late February, the coastal departments had already received the brunt of the

epidemic, though infection would reappear in subsequent years. As seen in Figure 3, the epidemic

progressed in three waves, first hitting the coast where potential exposure to an aquatic reservoir was

most likely, and subsequently spreading through the highlands and jungle regions. Along with the

explosive onset and rapid progression of disease, this provides strong evidence for an environmental

source of V. cholerae.

It appears that large populations along the coast were seeded first, with the epidemic thereafter

spreading throughout the regions of Peru in a hierarchical manner. The epidemic peaked first in the

coastal departments, with the highlands and then jungle regions following in the next few weeks.

Throughout 1991, coastal departments saw far more cases than the remaining regions (Figure 4).

However, this variability was likely a result of population size and density, because a different picture

emerges when we examine the attack rates in each region (Figure 5a). Clearly, some of the highest

attack rates occurred in the jungle. Loreto and Ucayali suffered attack rates as high as 3,000 per

100,000 persons in 1991. Yet, these departments were also among the last to be hit by the epidemic

(Figure 5b).

Table 2 and Figure 6 show the progression of department level attack rates from 1991 to 1997.

Not only was there significant variability in attack rates across regions, but there was also extreme

variation within regions. For example, Moquegua saw an attack rate of less than 500 per 100,000

in 1991, while La Libertad saw over 2,600 cases per 100,000. Both are coastal departments. On the

other hand, highlands departments appear to have had consitently low attack rates over the years.

Additionally, as seen in Figure 7a, we confirmed that departments with large populations tended

to have earlier epidemic onsets (ρ = −0.519, P < 0.01). However, these departments were likely to

be closer to the coast, which may have contributed to this relationship. On the other hand, there

was no significant relationship between elevation and epidemic onset (ρ = 0.212, P = 0.309) (Figure

7b). Elevation did contribute to case incidence, likely by way of temperature, but it is most likely a

combination of population size, density, and proximity to the coast that determined epidemic onset.

Figure 8 looks more closely at the relationship between elevation and one-year cumulative incidence.

In 1991, elevation seemed to provide significant protection against cholera (ρ = −0.596, P < 0.01).

Thereafter, the relationship is less obvious, possibly because cholera had already established itself

in all three regions. The trend over all seven years of the epidemic was also significant (P < 0.01)

(Figure 9).

Spatial analysis revealed that Moran’s I remained nonsignificant over the course of the epidemic

(Figure 10). The P-value for all seven years of the outbreak was 0.08, perhaps indicating a lack

of spatial autocorrelation, though the borderline significant P-values suggest it may be useful to

further investigate correlations in case incidence between departments. From these results, how-

ever, we hypothesize that cholera incidence in one department was not strongly correlated with

incidence in neighboring departments. Under the assumption that the epidemic was largely driven
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by environmental contamination and not human to human transmission, the nonsignificant spatial

autocorrelation is unsurprising.

Additionally, in 1991 attack rates were largely homogeneous in terms of population size (G =

−0.03). However, as the epidemic progressed, there was increasing heterogeneity, with a Gini index

close to -0.3 in both 1992 and 1995 (Figure 11). This indicates that at the onset of the epidemic,

population size did not necessarily determine the burden of disease, though as the epidemic pro-

gressed, there was more significant association between cholera incidence and population size. The

Gini index summarizing the entire epidemic (1991-1997) indicates mild heterogeneity of attack rates

(G = −0.16).

As expected, there was also a clear seasonal trend throughout the course of the epidemic. Cases

surged at the beginning of each year, a clear pattern emerging that would continue through 1995.

We hypothesized that this seasonal trend was a result of several environmental factors, and we

assessed how fluctuations in temperature might contribute to cholera incidence in each department.

Averaging both minimum temperature and case incidence by week over the first three years of

the epidemic, we saw strong correlations between the two variables, most clearly in the coastal

departments (Figures 12, 13). The highlands region showed weaker positive correlations, two of

which are examined more closely along with two coastal departments in Figure 14, whereas the jungle

departments did not show a consistent relationship between temperature and cholera incidence.

Though as temperature rises the warm coastal waters become an ideal reservoir for V. cholerae,

temperature may have a smaller effect as we move farther from the coast, and human contact may

become an important driver of transmission.

Finally, the compartmental model was used to estimate reproductive numbers, reporting rates,

and initial concentrations of vibrios in the environment. We modelled time series by geographic

region as well as for all 24 departments with sufficient case counts from 1991-1993. Model fit was

assessed by evaluating the linear relationship between observed and predicted cases. Model fit

statistics are presented in Table 3, along with statistics for model fit using fixed parameters, which

is described further below. At the regional level, the model does not provide a strong fit to either

the coastal, highland, or jungle departments (0.4 < R2 < 0.6) (Figure 15). At the department level,

though there are several poorly fit models, there are also several departments which have strong

predictive ability. Most of the poor fits correspond to departments with unusually high or low case

counts in comparison to the rest of Peru. Because the model performs better at the department

level, indicating the need to account for heterogeneity at the regional level, parameter estimates are

reported only at the department level.

In general, the model consistently captures the temporal waves of cholera transmission by incor-

porating fluctuations in weekly temperature (Figures 16, 17). This allowed estimation of a range

of environmental reproductive numbers (Re(1) and Re(2)), which are reported in Table 4 along with

estimates of initial concentration and reporting rates separated by geographic region. Environmental

effective reproductive numbers are plotted in Figure 18, showing the characteristic seasonal fluctua-

tion in transmission potential. In most departments, the environmental reproductive numbers exceed

the estimates for Rh, though this is not always the case. This suggests that environmental exposure

played a larger role in transmission than did human contact. Interestingly, most departments in
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which this did not hold true were grouped in the highlands and jungle regions, where, as previously

mentioned, there was a dampened effect of temperature as compared to coastal departments.

There was also a wide range of estimates for the initial concentration of vibrios in the environment.

Most estimates fell below 100,000 cells/mL, though several departments had initial concentrations

well above this value. Several of these departments also had higher estimates for environmental

reproductive numbers, confirming that the prevalence of vibrios in the environment will directly

affect transmission potential.

Finally, estimates of reporting rates varied greatly, ranging from 0 to 35%. These estimates seem

extremely low, though when examined in context, they are consistent with the ratio of symptomatic

to asymptomatic cholera cases. Given that reporting rates are low and data is limited during such an

epidemic, the performance of the model was examined using fixed parameter estimates while allowing

only temperature to fluctuate. Parameter values were chosen by fitting the model to aggregated

case counts for the country as a whole. Figure 19 shows a comparison of scaled data, calculated

as proportion of total cases, and scaled model-estimated case counts by department. Though for

unscaled case counts the model can perform only as well as the parameters we input, the scaled

graphs show that it is possible to recover the temporal waves of transmission even in the absence

of unique parameter estimates. Values for R2 drop substantially when using fixed parameters, but

the departments for which the original model provided a strong fit continue to reflect moderate

relationships between observed and predicted cases (Table 3).
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4 Discussion

Given the high values of environmental reproductive numbers, our results support the hypothesis

that environmental transmission was the primary driver of the cholera epidemic in Peru. This study

has characterized both the spatial dynamics of transmission as well as the temporal progression of the

epidemic, thereby revealing important consequences of proximity to a large cholera reservoir. In Peru,

initial transmission was characterized by multiple spatial waves. With the coastal waters serving

as an aquatic reservoir, cholera spread first to the coastal departments before generating second

and third waves that spread through the highlands and jungle, respectively. Each geographic region

experienced different epidemic onsets and peak timing. Incidence peaked in coastal departments

only a few weeks after the epidemic onset. However, the second and third waves of transmission

had staggered onsets and epidemic peaks. These differences are likely a result of proximity to the

aquatic reservoir and relative contributions of the two transmission routes: environment to human

and human to human transmissions.

Despite the differences in transmission across regions, we did not identify significant spatial au-

tocorrelation throughout the epidemic. However, statistical significance was borderline, and though

we felt it was unnecessary to further analyze the data using a metapopulation approach, this may be

useful for further research, as it is possible a different approach would lead to new insights. In this

paper, we simply focused on department level transmission dynamics to characterize transmission

parameters and reporting rates. We did, however, identify a potential association between popu-

lation size and attack rates. This heterogeneity in case incidence may indicate that because more

densely populated cities are closer to the coast, individuals may be more likely to come into contact

with contaminated water.

Interestingly, all Rh estimates were below one, indicating that human to human transmission

alone would not have sustained the epidemic. Conversely, Re estimates were almost all greater than

their respective Rh estimates, confirming the greater importance of waterborne transmission. These

results contrast those of Mukandavire et al. in both Haiti and Zimbabwe [36, 37]. Transmission

was driven by environmental contamination in Haiti, though the results were less consistent within

departments [37]. Only one department clearly favored environmental transmission, though this

department housed the contaminated river, resulting in an extremely high estimate of Re. This

weighted the contribution of environmental transmission in the countrys overall reproductive num-

ber. It should also be noted that these studies estimated only the time-invariant basic reproduction

number characterizing early epidemic growth.

In Zimbabwe, Mukandavire et al. revealed that human to human by far outweighed environmental

transmission [36]. This finding is very different than what we identified in Peru. It is clear that

in Peru, transmission originated along the coast from a large aquatic reservoir recently upset by

environmental processes. From there, cholera spread inland, but the coastal waters remained the

primary driver of transmission. Alternatively, in a landlocked country such as Zimbabwe, human to

human transmission may be more important. Additionally, the surprising result in Haiti could be

a consequence of the location of contaminated water. The original contaminated source was found

within the country rather than surrounding it.
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Department estimates of the basic reproductive number range from 0.35 to 10.94, which is con-

sistent with the cholera modeling literature [38, 59, 60, 61, 62], though our study is the first to use a

model incorporating weekly fluctuations in temperature. Previous estimates have most often fallen

between one and four, though in India and Europe some estimates have far exceeded ten [63, 39].

From this analysis, it is clear that Lima was the only department in Peru with such a large repro-

ductive number. We would expect this to be a result of population size and density, though it was

the Re estimate and not the Rh estimate that was unusually high. It warrants further research to

examine potential factors that inflate the environmental reproductive number besides temperature

fluctuations.

It is also important to note that by incorporating temperature into the cholera model, it was

possible to reproduce the shape of the incidence curve without estimating any model parameters.

This may not be useful for predicting exact case counts, but it allows prediction of the broader

temporal course of an epidemic by looking at temperature or climate. This will be more useful in

settings like Peru, where environmental transmission is a clear driver of the epidemic. Additionally,

in countries where cholera is endemic, analysis of temperature could indicate when prevention efforts

should be intensified.

Additionally, these results are consistent with previous evidence that environmental factors con-

tribute to cholera transmission patterns. For example, in the 1991-1996 epidemic in Mexico, Borroto

et al. revealed a geographic pattern similar to that of Peru, demonstrating that coastal cities had

much higher attack rates than did interior cities [64]. Other studies have also confirmed that prox-

imity to a water source results in higher incidence of cholera infection [65, 66]. Similarly, complex

environmental factors have also been implicated in cholera transmission patterns. For example,

Nkoko et al. studied the Great Lakes Region of Africa from 1978 to 2008 and found that abnormally

warm El Niño events corresponded to increases in cholera incidence [67]. This is consistent with

hypotheses that El Niño may have influenced the 1991 epidemic in Peru [29].

Ngwa et al. used a regression model to identify associations between risk of cholera transmission

and environmental variables in Cameroon [68]. They found significant associations with both average

daily maximum temperatures and precipitation levels. However, the current study may be the

first to examine time series correlations between temperature and cholera incidence. Though it is

well established that temperature plays an important role in the persistence of V. cholerae, the

aforementioned results show that fluctuations in temperature closely resemble temporal patterns of

cholera incidence. It is important to note, though, that this relationship is stronger in geographic

regions closest to an aquatic reservoir. In addition, though we did not find a strong effect of

temperature in the jungle region of Peru, these departments had some of the highest attack rates in

1991. This may be related to the accessibility of clean water and sanitation services.

Though these findings should be useful for further research, the results are still subject to limi-

tations. As mentioned previously, cholera cases are often underreported. Though we attempted to

correct for this, it is possible that parameter estimates are biased. On the other hand, the broad

definition for suspected cholera infection may include non-cholera cases [46]. Additionally, it was

impossible to appropriately fit the model to every department in Peru given the small number of

cases in some areas. Finally, we were unable to produce confidence intervals using ABC methods,

12



and so only point estimates have been reported. Ideally, ABC would produce a posterior distribution

useful for parameter inference.
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5 Conclusions

By incorporating environmental variables into a cholera epidemic model, we were able to effec-

tively describe multiple waves of transmission characteristic of V. cholerae. This allows for more

accurate estimation of model parameters and could be useful in future studies which predict the

course of an epidemic. Additionally, the model effectively differentiates transmission patterns by

geographic region even in the absence of unique parameter estimates. The effect of temperature

alone recreates the shape of transmission waves, so with a single set of parameters, fluctuations in

cholera incidence can be approximated in geographic regions with varying climates. These results

indicate that mathematical models can provide valuable information about transmission patterns

and should continue to be used to inform public health decision making.
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7 Appendix I

Tables and Figures

Table 1: Parameter symbols, definitions, units, and baseline values and ranges for Model 1.

Parameter Definition Value Source Range

µ Natural birth & death rates 1
60∗365 days

−1

κ 50% infectious dose 106 cells/mL [69] 96 - 116 cells/mL

γ Recovery rate 1
5
days−1 [70] 1

4
- 1

6
days−1

λ
Rate of contribution of vibrios from 10 cells ∗mL−1 ∗ day−1

[69]
8 - 12 cells ∗mL−1 ∗ day−1

infected individuals to the environment per person per person

δ Death rate of vibrios in the environment 1
30
days−1 [71] 1

25
- 1

35
days−1

βh Human to human transmission rate Estimated

βe Environment to human transmission rate Estimated
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Table 2: Attack rates per 100,000 by department for years 1991-1997.

1991 1992 1993 1994 1995 1996 1997

Tumbes 1304.24 767.01 82.30 44.11 32.92 0 0

Piura 1697.82 573.74 82.87 102.40 46.82 5.31 1.29

Lambayeque 1993.48 931.68 109.79 30.40 58.09 27.15 12.66

La Libertad 2608.99 990.20 218.00 90.62 142.27 23.53 10.46

Ancash 2017.60 625.00 358.74 145.55 139.65 17.52 23.63

Lima 1563.51 3427.94 586.54 214.25 373.15 39.10 12.03

Callao 2431.90 3318.72 430.98 458.25 178.84 4.01 0

Ica 535.84 654.07 392.33 134.84 116.11 17.85 4.06

Arequipa 2509.18 3722.56 581.76 158.99 17.38 0.98 2.06

Moquegua 487.43 1059.35 772.22 48.51 22.69 11.74 5.48

Tacna 730.42 313.37 267.87 10.79 0.94 0 0

Coast 1772.93 2327.69 426.26 171.03 222.26 25.34 9.71

Apurimac 24.85 70.74 10.14 18.26 2.79 0 0

Ayacucho 629.55 492.65 490.94 312.87 50.33 43.28 0.19

Cajamarca 702.48 611.63 479.72 244.46 116.61 28.57 17.80

Cusco 507.95 73.96 30.67 37.88 1.52 1.23 0

Huancavelica 462.83 274.61 149.38 50.04 54.03 2.49 1.00

Huanuco 610.90 436.66 179.86 57.47 111.45 22.05 1.06

Junin 867.68 467.19 302.11 95.61 57.53 7.78 2.78

Pasco 169.42 118.84 105.27 28.78 53.05 3.70 1.23

Puno 22.09 15.77 46.39 134.39 22.00 2.11 1.74

Highlands 500.23 311.58 221.38 124.75 55.38 13.04 4.34

Amazonas 836.86 1528.25 616.92 136.19 263.69 120.54 0

Loreto 3824.30 914.44 758.62 108.39 219.47 68.17 5.93

Madre de Dios 14.08 1.56 0 65.71 0 1.56 0

San Martin 1865.88 1027.57 522.87 64.02 85.93 20.41 8.99

Ucayali 3149.86 612.77 878.94 278.92 652.34 284.48 64.42

Jungle 2533.44 976.59 663.33 126.43 251.29 95.99 14.66
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Table 3: Root mean square error (RMSE) and R2 for model fits with and without parameter
estimation.

Best Fit Estimates Fixed Parameters

RMSE R2 RMSE R2

Tumbes 31.78 0.51 1.28 0.23

Piura 224.53 0.81 0.38 0.6

Lambayeque 308.17 0.64 0.49 0.44

La Libertad 361.96 0.79 0.42 0.55

Lima 2260.84 0.27 0.47 0.16

Callao 137.37 0.77 0.43 0.56

Ica 52.88 0.55 0.59 0.27

Arequipa 198.52 0.67 0.60 0.14

Moquegua 31.17 0.04 1.71 0.01

Tacna 16.73 0.38 1.42 0

Coast 3086.07 0.58 0.39 0.44

Apurimac 7.80 0.10 0.99 0

Ayacucho 44.55 0.19 0.75 0.03

Cajamarca 199.55 0.41 0.50 0.21

Cusco 45.71 0.43 0.54 0.28

Huancavelica 27.12 0.29 0.96 0

Huanuco 32.04 0.64 0.52 0.32

Junin 73.33 0.59 0.54 0.21

Pasco 11.87 0.23 1.38 0.05

Puno 10.99 0.02 0.60 0.04

Highlands 267.40 0.53 0.42 0.35

Amazonas 70.03 0.32 0.81 0.1

Loreto 213.49 0.62 0.63 0.06

Madre de Dios 0.42 0.11 1.94 0.01

San Martin 66.71 0.62 0.52 0.29

Ucayali 88.08 0.61 1.01 0.02

Jungle 408.51 0.44 0.47 0.12
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Table 4: Parameter estimates for 24 Peruvian departments. Horizontal lines separate the coast,
highland, and jungle regions.

Rh Re(1) Re(2) B(0) (cells/mL) Reporting rate (%)

Tumbes 0.43 0.51 2.65 104862 3.0

Piura 0.95 1.18 5.90 84492 3.4

Lambayeque 0.97 0.64 2.07 61039 7.4

La Libertad 0.90 0.49 7.89 97866 6.0

Lima 0.35 0.00 10.59 130678 11.2

Callao 0.53 0.00 2.47 114886 14.1

Ica 0.42 0.00 2.36 90214 3.6

Arequipa 0.57 0.48 0.91 81258 35.0

Moquegua 0.41 0.39 1.27 52687 4.6

Tacna 0.76 0.25 0.46 53446 6.7

Apurimac 0.67 0.31 0.72 69707 0.4

Ayacucho 0.32 0.63 1.07 58611 10.7

Cajamarca 0.94 0.00 3.60 90054 2.1

Cusco 0.47 1.54 3.73 300410 0.8

Huancavelica 0.73 0.31 0.58 60212 4.0

Huanuco 0.78 0.04 1.01 60749 3.2

Junin 0.71 0.32 1.17 121717 4.4

Pasco 0.49 0.00 1.46 69062 1.7

Puno 0.40 0.41 1.15 359611 0.7

Amazonas 0.40 0.00 1.32 90010 15.1

Loreto 0.89 0.32 0.79 59117 13.4

Madre de Dios 0.92 0.00 1.10 63518 0.0

San Martin 0.59 0.47 1.69 53173 5.3

Ucayali 0.94 0.21 0.52 50921 13.3
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Figure 1: Weekly mean, minimum, and maximum temperatures by department, 1991-1997.

Figure 2: Model diagram. Susceptible individuals can be infected through the environment, where
compartment B represents the current concentration of vibrios in the water supply, or through
human contact. Infected individuals move to compartment R after dying or recovering.
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Figure 3: Weekly incidence of suspected cholera cases in Peru by region, January 1991 through
December 1997. Curves represent the national and regional weekly proportions of total cases. The
epidemic peaked first in the coastal departments and shortly thereafter in the highlands and jungle
regions. Throughout the years, there was a clear seasonal trend of cholera infection with peaks
occurring at the beginning of each year.

Figure 4: Color scale image of weekly cholera cases by department. Weekly cases have been log
scaled, and dashed lines separate the coast, highland, and jungle regions. The epidemic hit the
coastal departments early, and the highest case counts were concentrated in this region as well.
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Figure 5: a. Attack rates of cholera per 100,000 for Peruvian departments in 1991. The highest
attack rates occurred in the jungle region, specifically departments such as Loreto, Ucayali, and San
Martin. Coastal departments also showed consistently high attack rates. b. Map showing week of
epidemic onset by department. Darker regions experienced a later onset, defined as the first week in
1991 with reported cholera cases. Ucayali and Madre de Dios were the last to be hit by the epidemic.

Figure 6: Temporal progression in attack rates by department and region for the years 1992-1997.
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Figure 7: a. Correlation between department population and week of epidemic onset. Departments
with larger populations tend to have an earlier epidemic onset (P < 0.01). b. Correlation between
department elevation and week of epidemic onset. There is a non-significant trend for departments
with higher elevation to have later epidemic onsets.

Figure 8: Correlations between department incidence rate and elevation by year. Departments with
higher elevation tended to have lower one-year cumulative incidence rates.
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Figure 9: Correlation between department seven-year cumulative incidence rate and elevation. De-
partments with higher elevation had a lower incidence rate from 1991-1997.

Figure 10: Significance of Morans I by year, 1991-1997. There was minimal evidence of spatial auto-
correlation for all years of the epidemic. The P-value for all seven years combined was nonsignificant
at 0.08.
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Figure 11: Lorenz curves assessing heterogeneity by year. Attack rates were mostly homogeneous,
though there is indication of mild heterogeneity in both 1992 and 1995.

Figure 12: Average weekly cases and minimum temperatures by department are calculated by taking
the mean over the first three epidemic years. Mean scaled incidence and mean minimum temperature
are plotted over a 52 week time period.
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Figure 13: Correlation coefficients for mean case incidence and mean minimum temperature over the
first three years of the epidemic. There are moderately strong positive correlations for most coastal
and highland departments. Correlations are less consistent for departments in the jungle region.

Figure 14: Correlation between average weekly cases and minimum temperatures for two coastal
departments (Tumbes and Ica) and two highland departments (Apurimac and Puno).
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Figure 15: Assessment of model fit by region by evaluating the linear relationship between observed
and predicted cases from 1991-1993.

Figure 16: Model fit for 24 departments using approximate Bayesian computation. Blue lines are
the model fit using the best estimates for all five parameters, and black lines are the original cholera
case counts.
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Figure 17: Model fit for the three regions using approximate Bayesian computation. Blue lines are
the model fit using the best estimates for all five parameters, and black lines are the original cholera
case counts.

Figure 18: Environmental effective reproductive numbers by department, 1991-1993.
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Figure 19: Model fit by department using fixed parameters: Rh = 0.6 and B(0) = 500000, βe(1) =
0.001, and βe(2) = 0.00033. Blue lines are the scaled model fits, and black lines are the scaled
case incidence for the 24 departments. By fixing all parameters and allowing only the temperature
component to vary, we saw that the model is still able to capture the temporal waves characteristic
of cholera transmission.
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8 Appendix II

Supplementary Material

Table S1: Department level geographic variables.

Population Elevation (meters) Latitude (°) Longitude (°)

Amazonas 345101 2334 -6.22 -77.85

Ancash 981760 3052 -9.53 -77.53

Apurimac 394380 3952 -14.17 -72.76

Arequipa 920819 2335 -16.40 -71.54

Ayacucho 524505 2761 -13.16 -74.22

Cajamarca 1281171 2750 -7.16 -78.51

Callao 623464 1 -12.03 -77.13

Cusco 1053244 3399 -13.53 -71.97

Huancavelica 401663 1950 -12.77 -74.98

Huanuco 657717 1880 -9.93 -76.24

Ica 565844 406 -14.07 -75.73

Junin 1079426 4818 -11.48 -74.98

La Libertad 1262368 34 -8.00 -78.50

Lambayeque 924463 3078 -6.43 -79.87

Lima 6331733 1548 -12.04 -77.03

Loreto 708521 220 -4.00 -78.32

Madre de Dios 63917 3932 -11.99 -70.59

Moquegua 127814 3756 -16.80 -70.80

Pasco 243185 4380 -10.50 -75.30

Piura 1392612 29 -4.99 -80.41

Puno 1090838 3830 -15.84 -70.02

San Martin 534172 3080 -7.20 -76.80

Tacna 213166 562 -17.60 -70.20

Tumbes 151889 7 -3.88 -80.59

Ucayali 305823 120 -9.96 -73.19
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