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 CHARACTERIZING THE HEME UPTAKE PROTEINS HTAB AND CHTB IN 

CORYNEBACTERIUM DIPHTHERIAE 

 

by 

           

BRANDON LEE FERRELL 

Under the Direction of Dabney K. W. Dixon, PhD 

 

ABSTRACT 

Corynebacterium diphtheriae is a Gram-positive, pathogenic bacterium. Pathogenic 

bacteria require iron as a key nutrient for survival. C. diphtheriae utilizes a direct heme uptake 

system in which the heme binds to a receptor protein that transfers the heme along the pathway 

to an ABC transporter, which facilitates the transfer of heme into the bacterial cell. This heme 

uptake pathway is encoded by the hmu and cht gene loci, which includes the genes for the 

surface-anchored proteins HtaB and ChtB. HtaB is proposed to have a function in transporting 

the heme obtained by HtaA to HmuT. ChtB is proposed to have a similar function to that of 

HtaB. Bioinformatics analysis shows that both HtaB and ChtB contain conserved tyrosine and 

histidine residues that are consistent with that of HtaA domains. A combination of UV-visible, 

circular dichroism, resonance Raman, and fluorescence spectroscopy have been used to 

characterize these proteins further. 
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1 CHAPTER 1: INTRODUCTION  

1.1 Heme and Heme Sources  

Heme plays an important part in pathogenic bacterial life (Anzaldi and Skaar, 2010; 

Braun and Hantke, 2011; Benson and Rivera, 2013). The iron coordinated within the tetrapyrrole 

ring gives heme its reactivity and enables utilization of this transition metal as a cofactor for 

enzymes involved in various processes including cellular respiration, signal transduction, and 

oxygen transport (Farrand and Skaar, 2014). Although necessary for cellular growth, free heme 

can be damaging to many components of the cell. Free heme can oxidize lipids, which leads to 

the damage of membrane bilayers and organelles (Farrand and Skaar, 2014). Hydrogen peroxide 

may interact with free heme to generate reactive oxygen species that can oxidize proteins, 

causing protein degradation. Binding of heme to proteins prevents free heme from causing 

cellular damage. 

Three main types of heme are biologically relevant: heme a, heme b, and heme c. The 

core structure of these heme molecules is the same. They each have a protoporphyrin ring system 

composed of four aromatic pyrrole rings connected by methine bridges. Each pyrrole contains a 

single methyl group extending outwards. All hemes have two propionic acids attached to two of 

the pyrrole groups. The groups attached to the remaining two pyrrole groups determined the 

identity of the heme. Heme a contains a methyl group on one of the pyrrole rings that has been 

oxidized to a formyl group and an isoprenoid chain group attached to one of the vinyl side 

chains. Heme b, the most common (Figure 1.1), contains a methyl group on one of the remaining 

pyrrole rings and a vinyl group on the other. Heme c differs from both heme a and b in that it is 

covalently linked to a protein through two thioester linkages on two of the pyrrole rings. Heme b, 

is found in myoglobin and hemoglobin (Edelstein et al., 1970; Antonini and Brunori, 1971; 
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Fermi and Perutz, 1981). The iron found chelated in the heme molecule exists most commonly in 

its ferric (3+) and ferrous (2+) states.  

 For pathogenic bacteria, heme can be a rich source of iron that is essential for cellular 

growth of the pathogen during infection. Most bacterial pathogens contain extensive systems 

dedicated to the capture and uptake of heme as an iron source (Nobles and Maresso, 2011; Smith 

and Wilks, 2012; Benson and Rivera, 2013; Contreras et al., 2014; Farrand and Skaar, 2014; 

Rodgers and Lukat-Rodgers, 2014; Wilks and O'Neill, 2014; Naoe et al., 2017). Once captured, 

the heme can be incorporated into hemoproteins or degraded to release the iron (Farrand and 

Skaar, 2014; Wilks and Ikeda-Saito, 2014). 

Bacteria are becoming increasingly more resistant to commonly-used antibiotics (Bassetti 

et al., 2013). Bacterial that have developed resistance continue to multiply, resulting in a resistant 

population that is then transmitted from person to person. Bacteria use various biochemical 

mechanisms to counter antibiotic pressure: antibiotic-degrading enzymes, antibiotic-altering 

enzymes, and antibiotic efflux pumps. Alternatively, eliminating the nutritional sources of these 

pathogens, such as iron in the form of heme, could be effective in deterring the growth of these 

bacteria. Therefore, heme uptake studies in pathogenic bacteria may allow development of an 

alternative approach to combat antibiotic resistance (Rodgers and Lukat-Rodgers, 2014; Wilks 

and Ikeda-Saito, 2014).  

Within the human body, there are various proteins which use heme as a cofactor. The 

total amount of iron in the body, approximately four grams, consists of heme bound to 

hemoglobin, myoglobin, a few heme enzymes, and ferric ions found in ferritin (Tong and Guo, 

2009).  
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The most abundant heme source is hemoglobin. Upon being liberated from the red blood 

cells by hemolysis, hemoglobin dimers are bound by haptoglobin, a serum heterotetrameric 

glycoprotein, to form a hemoglobin-haptoglobin complex (Hb-Hp) (Tong and Guo, 2009). The 

two bind with a Kd ~ 10-12 M (Tong and Guo, 2009). The hemoglobin-haptoglobin complex is 

transported to the reticuloendothelial system by CD163 receptor-mediated endocytosis 

(Kristiansen et al., 2001). This system is responsible for the formation of red blood cells, the 

formation of plasma proteins, and the storage of iron in the liver and bone marrow. Not all 

bacterial pathogens can use the Hb-Hp complex as an iron source. However, some species, such 

as Hemophilus influenza and Porphyromonas gingivalis are capable of obtaining iron through 

receptors specific for the Hb-Hp complex.  

 Free heme in plasma is bound by hemopexin, a 60 kDa protein plasma glycoprotein with 

a Kd ~ 10-13 M (Tong and Guo, 2009). Hemopexin helps to prevent heme-mediated oxidative 

stress (the production of oxygen free radicals) and heme-bound iron loss. Once hemopexin binds 

to heme, the complex is transported to the liver. Apo-hemopexin is regenerated, and the heme is 

released inside the liver cells.  

 Human serum albumin (HSA) is the most abundant protein found in the plasma, and 

serves to both sequester and transport free hemin (Zunszain et al., 2003). HSA it is a monomer 

that consists of three homologous domains (I, II, and II), each of which is made up of two 

separate subdomains (A and B) that are connected to one another by random coils. HSA binds 

heme with a Kd ~ 10-8 M. The heme binds to a hydrophobic, narrow D-shaped cavity in the IB 

subdomain. The propionate groups of heme are bound to a group of three basic residues at the 

entrance of the heme-binding pocket (Wardell et al., 2002; Zunszain et al., 2003). The iron in 

heme is ligated to a Tyr161. 
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Both low and high-density lipoproteins also can bind heme with high affinity, having Kd 

values of 10-11 M and 10-10 M, respectively (Grinshtein et al., 2003). The binding of heme to 

these molecules is kinetically faster than that of serum albumin and hemopexin. 

1.2 Heme Uptake in Gram-positive Bacteria  

Gram-positive and Gram-negative bacteria show many similarities in their heme uptake 

systems (Nobles and Maresso, 2011; Smith and Wilks, 2012; Benson and Rivera, 2013; 

Contreras et al., 2014; Farrand and Skaar, 2014; Rodgers and Lukat-Rodgers, 2014; Wilks and 

O'Neill, 2014). The key difference between the two is that Gram-positive bacteria must remove 

heme from host hemoproteins in solution or at the bacterial surface. They must then transport 

heme through the thick peptidoglycan layer and the plasma membrane (Farrand and Skaar, 

2014). Most Gram-positive bacteria employ cell surface receptors to bind heme from the host. 

Gram-positive bacteria are classified into two phyla: Actinobacteria and Firmicutes. 

Actinobacteria are classified by having high G + C content in their genome; Firmicutes contain 

low G + C content. Some Actinobacteria of medical importance include the genera 

Corynebacterium, Mycobacterium, and Actinomyces. Likewise, some examples of Firmicutes 

include the genera Streptococcus, Staphylococcus, and Clostridium.  

1.3 Heme Uptake in Streptococcus pyogenes 

S. pyogenes, also known as Group A streptococcus (GAS), is a pathogenic, Gram-

positive bacterium that causes a variety of infections such as pharyngitis, impetigo, and toxic 

shock syndrome in more serious cases (Cunningham, 2008; Eichenbaum, 2012). S. pyogenes 

requires iron as a key nutrient and utilizes heme-containing proteins as sources of this iron (Bates 

et al., 2003; Sachla et al., 2014). Hemoglobin acts as an iron source for this pathway. The heme 
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uptake pathway for S. pyogenes is a very well-studied example from the Firmicutes phylum and 

is discussed below in some detail. 

S. pyogenes contains the sia iron-regulated ten-gene operon (Bates et al., 2003; Lei et al., 

2003; Sun et al., 2010). Suppression of the sia locus results in reduced iron uptake and decreased 

hemoglobin binding, suggesting that the genes in the operon are responsible for both iron uptake 

and hemoglobin binding. A schematic of the heme uptake pathway for S. pyogenes is shown in 

Figure 1.2 (Akbas et al., 2016). The sia locus encodes a hemoprotein receptor, Shr, a heme-

binding protein, Shp, SiaA, and an ABC transporter SiaBC. Shr is found on the outer surface, 

interacts with host hemoproteins, and transfers heme to Shp. SiaA is a heme-binding lipoprotein. 

Once SiaA binds a heme molecule, it then transfers it to SiaB, the membrane permease. SiaC, on 

the inside of the membrane, is the ATPase. ATP hydrolysis serves as the energy source to 

transport the heme into the cell. The heme is degraded inside the cell, and the iron is extracted.  

 Hemoglobin binds to the membrane-bound protein Shr (Ouattara et al., 2010). Shr 

contains two NEAT (NEAr iron Transporter) domains (Honsa et al., 2014), NEAT1 and NEAT2 

(Nygaard et al., 2006; Ouattara et al., 2010). Under high heme conditions, Shr-NEAT2 is thought 

to receive heme from Shr-NEAT1 and store the heme until the cell enters a low heme state, upon 

which Shr-NEAT2 transfers the heme back to Shr-NEAT1 (Ouattara et al., 2013). Holo Shr-

NEAT1 transfers heme to apo-Shp with a rate constant of 18.7 ± 3.8 s-1 and 0.60 ± 14 s-1, 

indicating a biphasic kinetic system (Lu et al., 2012). Holo Shr-NEAT2 shows only minimal and 

slow transfer of heme to apo-Shp (Ouattara et al., 2013).  

Shp is a membrane-bound protein that contains only one domain that binds heme (Aranda 

et al., 2007). Shp has an immunoglobulin-like β-sandwich fold with eight β-strands and one α-

helix. The eight β-strands are divided into three and four-stranded antiparallel β-sheets that form 
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a twisted β-sandwich with the eighth β-strand connecting the two β-sheets. The heme-bound to 

Shp has bis-methionyl coordination. Met66 and Met153, located on the α-helix and between the 

B7 and B8 β-strands, respectively, bind the heme on opposite sides. The sulfur atoms from both 

Met66 and Met153 are located 2.4 Å from the iron atom of heme. Met66 is more solvent 

exposed than Met153. Holo Shp transfers heme to apo SiaA with a rate constant of 43 ± 3 s-1 

(Nygaard et al., 2006). 

Homology modeling of SiaA shows that SiaA contains a bisligated heme center (Grigg et 

al., 2007). The low-spin heme is hexacoordinated by methionine and histidine residues (Sook et 

al., 2008; Akbas et al., 2016). The model structure of SiaA contains the classic two-lobe 

organization in the superfamily of bacterial periplasmic binding proteins, with a specific 

topology characteristic of the metal-binding receptor family (Tam and Saier, 1993). Each of the 

lobes is composed of a central β-sheet surround with α-helices. One long α-helix serves as a 

linker between the N- and C-terminal domains. SiaA has a pI value of 9.7 (Sook et al., 2008). Its 

reduction and oxidative midpoints are 83.3 ± 3 and 64 ± 3, respectively. 

1.4 Heme Uptake in C. diphtheriae 

1.4.1 C. diphtheriae hmu Gene Cluster 

Heme transport in C. diphtheriae is encoded by the hmu gene cluster, shown in Figure 1.3 

(Allen and Schmitt, 2009). The hmu cluster contains a six-gene cluster that contains three distinct 

iron- and DtxR (diphtheria toxin repressor)-regulated transcriptional regions (Bibb et al., 2005; 

Allen and Schmitt, 2009). The genes encoded in this region include htaA, htaB, htaC, and 

hmuTUV. The hmuTUV and htaA genes comprise a single operon, while htaB and htaC are 

independently transcribed. The htaA gene encodes a 61 kDa protein that is known to be a 

surface-anchored heme binding protein (Drazek et al., 2000; Schmitt and Drazek, 2001). HtaA 
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contains an N-terminal leader peptide sequence and a hydrophobic C-terminal region that is 

predicted to anchor the protein to the cytoplasmic membrane. There are two conserved repeats of 

approximately 150 amino acids in HtaA that are designated CR-1 (conserved region 1) and CR-2 

(conserved region 2). The htaB gene encodes a 35 kDa protein that contains a C-terminal 

hydrophobic region, similar to the conserved regions of HtaA. The htaC gene encodes a 30 kDa 

protein that is predicted to be membrane-associated but has an undefined function. The hmuTUV 

gene produces three proteins identified as the lipoprotein HmuT (37 kDa), the permease HmuU 

(37 kDa), and the ATPase HmuV (30 kDa). The three proteins function as an iron-regulated 

ABC-type transporter. 

1.4.2 Proposed Mechanism of hmu Heme Uptake 

The heme uptake pathway in the C. diphtheriae involves the use of the iron-regulated 

hmu and cht hemin uptake loci (Allen and Schmitt, 2009; Allen et al., 2013). The schematic of 

the hmu and cht heme uptake pathways is shown in Figure 1.4. It is proposed that HtaA binds 

hemoglobin and takes a heme. HtaA can transfer heme to HtaB. HtaB is a surface-anchored 

protein found in the peptidoglycan layer of the cell wall that may transfer the heme to the 

lipoprotein HmuT. HmuT transfers the heme to the ABC transporter comprised of the permease 

HmuU and the ATPase HmuV. This protein complex will then facilitate the transport of heme 

into the bacterial cell. Figure 1.3 shows the schematic of the hmu and cht heme uptake pathway 

is C. diphtheriae. 

1.4.3 C. diphtheriae Heme Source Utilization 

ELISA analysis showed that HtaA, ChtA, ChtC, and ChtB could all bind hemoglobin 

(Allen et al., 2013). HtaB did not show significant binding to hemoglobin (Allen and Schmitt, 
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2011). HtaA, ChtA, ChtB, and ChtC had hemoglobin binding Kd values within a factor of two of 

one another (0.28 μM, 0.41 μM, 0.51 μM, 0.52, respectively).  

C. diphtheriae also can use the hemoglobin-haptoglobin (Hb-Hp) complex as a heme 

source (Allen and Schmitt, 2015). Growth analysis with Hb-Hp as the only iron source has 

shown that C. diphtheriae can utilize the heme from this protein in the presence of HtaA-WT. 

Nonpolar deletions of htaA and hmuTUV abolish the use of Hb-Hp as the sole iron source, 

suggesting that these proteins are necessary for Hb-Hp utilization. Separate nonpolar deletions of 

chtA, chtC, and a chtA/chtC double mutant were constructed, and growth was measured with Hb-

Hp as the sole iron source. The single chtA and chtC deletions showed no change in growth in 

comparison to WT. The chtA/chtC double mutant showed a significant reduction in growth. This 

may suggest that ChtA and ChtC could be interchangeable for one another when Hb-Hp is the 

iron source. The deletion of htaA, chtA, and chtC abolished the ability of the organism to use Hb-

Hp. Growth analysis suggested that HtaA and either ChtA or ChtC are necessary for the use of 

Hb-Hp as the sole iron source. The data may also suggest that there is no other uptake pathway 

available for the use of Hb-Hp.  

HtaA binds the Hb-Hp complex (Allen and Schmitt, 2015). An in vitro ELISA assay of 

various HtaA derivatives showed that full-length HtaA and HtaA-CR2 bind Hb-Hp the most 

strongly with Kd values of 210 nM and 200 nM, respectively. HtaA-CR1 had a Hb-Hp binding 

Kd value that was approximately two-fold weaker than that of both full-length HtaA and HtaA-

CR2. The full-length Y361A derivative (altering the conserved tyrosine in CR2) showed reduced 

binding to Hb-Hp (Kd = 870 nM), while the HtaA-CR2 domain showed no evidence of binding. 

The Y49A derivative (altering the conserved tyrosine in CR1) had only slightly smaller Hb-Hp 

binding (Kd = 270 nM) than HtaA-WT. The results from the in vitro ELISA assay provide 
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evidence in the importance of the conserved tyrosine found in the second conserved region of 

HtaA when Hb-Hp is the iron source. HtaA showed background levels of binding to haptoglobin 

in comparison to that of Hb-Hp, indicating that the interaction between HtaA and Hb-Hp is 

primarily through the hemoglobin subunit. 

Hb-Hp binding studies with Strep-tagged proteins showed that HtaA bound Hb-Hp more 

tightly than did ChtA and ChtC (Allen and Schmitt, 2015). Full-length ChtA and ChtC showed 

reduced binding in comparison to HtaA with Kd values greater than 2 μM each. The ChtA-CR 

(Kd = 890 nM) showed enhanced Hb-Hp binding in comparison with the full-length ChtA (Kd > 

2 μM).  

Myoglobin (Mb), human serum albumin (HSA), and hemopexin (Hpx) may also serve as 

heme sources for C. diphtheriae (Allen and Schmitt, 2015). Growth studies were performed on 

C. diphtheriae using Mb, HSA, and Hpx in separate experiments. C. diphtheriae grew with 

HAS-heme as the sole iron source. Deleting either htaA or hmuTUV significantly reduced 

organism growth. Similar results were shown when Mb was the only iron source. There was no 

growth in the presence of Hpx. These studies provided evidence that HtaA and HmuTUV could 

be involved in HSA or Mb utilization. 

1.5  Lac Promoter and Protein Expression 

A staple in prokaryotic research and protein expression is the lac promoter from the lac 

operon (Müller-Hill, 1996). The lac operon encodes for the proteins that are required to import 

and digest lactose. The genes found within the operon consist of lacI, lacZ, lacY, and lacA. The 

lac repressor is encoded by lacI. LacI is transcribed separately, while lacZYA are all expressed on 

a polycistronic mRNA. The lac repressor is transcribed within the bacteria under normal 

conditions. The repressor then binds to the operator that exists partially within the promoter to 
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prevent the expression of the other lac operon products until needed. In the absence of lactose, 

the repressor remains bound to the operator, and the full lac operon transcription does not occur. 

In the presence of lactose, β-galactosidase, the product of lacZ, catalyzes the intramolecular 

isomerization of lactose to allolactose, which is the lac operon inducer. Allolactose binds to the 

Lac repressor, which causes a conformational change in the repressor. This change in 

conformation causes the repressor to be no longer able to bind to the operator sequence. RNA 

polymerase is then able to transcript the remaining lac genes. 

 Glucose is the most common carbon source used by prokaryotes. Under normal 

conditions, glucose inhibits adenylyl cyclase, which converts ATP to cyclic AMP (cAMP). 

When glucose levels are low, the organism needs to utilize an alternate carbon source. Cyclic 

AMP levels rise when the amount of glucose in the cell depletes. The catabolite activator protein 

(CAP) binds two cAMP molecules under these conditions. The CAP/cAMP complex then binds 

in a region on the DNA upstream of the lac repressor, enhancing the ability of RNA polymerase 

to transcribe the lac genes. 

 The T7 promoter system in pET vectors is commonly used in recombinant protein 

expression (Silverstone et al., 1970). In the pET system, the gene of interest in cloned behind a 

promoter sequence specifically recognized by T7 RNA polymerase (Rosano and Ceccarelli, 

2014). This polymerase is most frequently placed into the bacterial genome in a prophage 

(λDE3) encoding for the T7 RNA polymerase under the transcriptional control of a lacUV5 

promoter (Studier and Moffatt, 1986). This system can be induced by the non-hydrolysable 

analog of lactose, β-D-thiogalactopyranoside (IPTG). Basal expression of the target protein is 

controlled by lacIQ or by T7 lysozyme co-expression. T7 lysozyme inhibits premature 
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transcription by binding to T7 RNA polymerase (Stano and Patel, 2004). After induction, the 

amount of T7 RNA polymerase exceeds that of T7 lysozyme.  

1.6 Thesis Goals 

Characterization studies of the use of pathogenic heme uptake pathways has steadily been 

on the rise. Most of the heme uptake work has been performed Gram-negative bacteria. Our 

studies focus mainly on the strategies used by Gram-positive bacteria for heme uptake. In this 

study, we will work to characterize the relatively new heme-binding proteins HtaB and ChtB 

from C. diphtheriae. We will use a combination of techniques to determine some biochemical 

and biophysical characteristics of these proteins. A bioinformatics study will be performed in 

Chapter 2 to determine more information about the HtaA domains and which types of Gram-

positive bacteria prefer the HtaA system or NEAT system. Chapters 3 and 4 will focus on the 

studies involving HtaB and ChtB, respectively.  
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Figure 1.1 Structure of heme b. 
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Figure 1.2 Overview of the S. pyogenes Sia/Hts heme uptake pathway. 
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Figure 1.3 Schematic of the hmu and cht gene clusters in C. diphtheriae. Taken from 

(Allen and Schmitt, 2009; Allen et al., 2013) 
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Figure 1.4 Heme uptake pathway in C. diphtheriae. 
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2 CHAPTER 2: BIOINFORMATIC STUDIES OF HTAB AND CHTB 

2.1 Introduction 

The goal of this work was to extend literature bioinformatic studies on HtaA domains to 

gain a deeper understanding of the similarities and differences in this class of proteins. In 

addition, we performed a comparison of the HtaA and NEAT domains to probe the structural 

motifs involved in readily reversible heme binding and develop an overall picture of heme 

uptake in Gram-positive bacteria.  

2.1.1 Bioinformatics Studies of Corynebacterium diphtheriae 

A sequence alignment of the conserved regions of HtaA was performed previously by 

Allen and Schmitt (Allen and Schmitt, 2011). The sequence alignment compared the two 

conserved regions of HtaA and the conserved region of HtaB with other HtaA homologs from 

various Corynebacterium species. The sequence alignment showed two conserved tyrosines and 

one conserved histidine (Y49, H107, and Y197 in CR1 and Y361, H412, and Y490 in CR2 of 

HtaA). The conserved region of HtaB contained two conserved tyrosines at positions 56 and 222 

and a conserved histidine at position 121. The conserved region of ChtB contained two 

conserved tyrosine residues at positions 30 and 202 and a histidine at position 95 (Allen et al., 

2013). Tyrosine and histidine residues are known to coordinate the iron atom of heme in other 

well-characterized heme binding proteins (Grigg et al., 2007; Pilpa et al., 2009; Rodgers and 

Lukat-Rodgers, 2014; Wilks and O'Neill, 2014; Sheldon and Heinrichs, 2015; Brewitz et al., 

2016). 

2.1.2 Literature Studies of HtaA Domains 

A pan-genomic study was performed on various C. diphtheriae strains to determine 

which ones contained the HtaA-CR genes (Trost et al., 2012; Allen et al., 2013). Figure 2.1 
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shows the results of this study. Not all C. diphtheriae strains contain a fully functioning HtaA 

sequence. Allen and Schmitt (2013) found that some of the strains from Brazil have the genes 

present which code for HtaA, but that these genes contain point mutations predicted to result in 

premature termination of HtaA (e.g., without the membrane-anchoring sequence). Most 

sequences of the full genome available at the time of that study contained the genes for HtaB but 

not ChtB. The C7 strain, the most widely used in laboratory research in the United States, does 

not contain HtaA, HtaB, or ChtB. The C7 strain does, however, contain the sequence for what 

would be expected to be a fully functioning hemin-specific ABC transporter encoded by 

hmuTUV. The C7 strain only shows a slight defect in the ability to use hemin and Hb as iron 

sources. This shows that there may be other mechanisms present for utilizing heme iron. 

2.1.3 Structure of NEAT Domains 

The second heme-binding paradigm in Gram-positive heme uptake proteins is the NEAr-

iron Transport (NEAT) domain (Andrade et al., 2002; Honsa et al., 2014; Sheldon and Heinrichs, 

2015). Examples of bacteria using this system include Bacillus anthracis, Staphylococcus 

aureus, Streptococcus pyogenes, and Listeria monocytogenes.  

NEAT domains are composed of eight β-strands that form a β-barrel (Sharp et al., 2007). 

As an example, the crystal structure of the NEAT-5 domain of IsdX2 from B. anthracis is shown 

in Figure 2.2 (Honsa et al., 2013a). This NEAT domain has a small 310-helix (lip-region) that 

folds to form a hydrophobic heme-binding pocket. The 310-helix has an SXXXXY motif, where 

X represents any amino acid. The serine residue of the helix hydrogen bonds with the propionate 

group of the heme, which may help to increase binding affinity. At the other end of the helix, the 

tyrosine can undergo π-stacking interactions with the heme ring (Li et al., 2011; Ekworomadu et 

al., 2012).  
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In a 2014 study, approximately 70% of NEAT domains analyzed contained the 

SXXXXY motif (Honsa et al., 2014). Another 11% (39 examples) had either Phe (38 examples) 

or His (1 example) in place of the tyrosine (SXXXXF/H). These domains may have a similar 

heme-binding environment to those with an SXXXXY motif, using the aromatic Phe or His for 

π-stacking instead of tyrosine. Another 17% of the NEAT domains studied did not have the 

conserved SXXXXY motif. It appears that only NEAT domains with the conserved 310-helix 

motif bind heme (Honsa et al., 2013b). It was proposed that the NEAT domains without the 310-

helix motif may help other NEAT domains within the same protein to bind heme, as seen in 

IsdB-N1, IsdH-N1, and IsdH-N2 (Pilpa et al., 2006; Watanabe et al., 2008; Honsa et al., 2013b).  

Across the heme from the SXXXXY region is a five-amino acid motif on the eighth β-

strand that generally begins with a Tyr and ends with Tyr, His, or Phe [YXXXY(H/F)] (Honsa et 

al., 2014). It was found that approximately 50% of the NEAT domains contain the YXXXY 

motif, utilizing a tyrosine in the last position (Honsa et al., 2014). The first tyrosine in the 

YXXXY motif often forms a coordinate covalent bond with the iron atom of the heme, with the 

second tyrosine hydrogen bonding to the first (Pilpa et al., 2009; Grigg et al., 2010; Honsa et al., 

2011). Approximately 10% of the NEAT domains possess the first tyrosine but have another 

aromatic amino acid in the place of the second tyrosine YXXX(H/F), with 9% having His and 

1% having Phe. The NEAT domains that do not contain this motif lack any other noticeable 

heme-binding motifs, suggesting that either these NEAT domains play a structural role, as in the 

NEAT domains of IsdB and IsdH of S. aureus, or there is a yet unidentified heme-coordinating 

axial ligand in these proteins (Pilpa et al., 2009). 
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2.2 Materials and Methods 

2.2.1 Sequence Alignments 

Sequence alignments were performed using the Clustal Omega software from the 

European Bioinformatics Institute (EMBL-EBI) database (Sievers et al., 2011; Li et al., 2015). 

The conserved regions (CR1 and CR2) of HtaA proteins of various Corynebacterium species 

were aligned with the conserved regions of HtaA (CR1 and CR2), HtaB, and ChtB.  

Clade diagrams were constructed using the DrawGram program from the Phylip package. 

The tree was run from HtaA-CR1 (http://evolution.genetics.washington.edu/phylip/credits.html).  

2.2.2 Gram-Positive Bacteria BLAST Search 

The CR2 sequence of HtaA from C. diphtheriae (Accession: AEX48107.1) (Trost et al., 

2012) and the NEAT domain of IsdA from Staphylococcus aureus (PDB: 2ITE) (Grigg et al., 

2010), were used with the Basic Local Alignment Search Tool (BLAST) from the National 

Center for Biotechnology Information (NCBI). The protein sequence from each domain was 

blasted into various Gram-positive genera of medical importance. 

2.2.3 Homology Modeling 

Homology models were constructed using the I-TASSER software (Yang et al., 2015). 

PyMol was used for further visualization (DeLano, 2015). 

2.3 Results and Discussion 

2.3.1 Sequence Alignments 

The results from the sequence alignment are shown in Figure 2.3. Similar to previous 

alignments (Allen and Schmitt, 2011; Allen et al., 2013), two conserved Tyr residues and one 

conserved His residue are seen, typical of HtaA domains. There is a highly-conserved Phe 
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residue three residues before the conserved His and another almost fully-conserved Phe residue 

four residues before the second conserved Tyr residue. There are conserved Ser and Trp residues 

four and nine residues before the first conserved Tyr. 

The first conserved Tyr has been proposed to be the axial ligand for HtaA in C. 

diphtheriae (Allen and Schmitt, 2011; Uluisik et al., 2017), largely because the mutation of the 

first Tyr has a larger effect on heme uptake than the mutation of the second Tyr. A higher level 

of conservation in the residues surrounding the first conserved Tyr compared with the second is 

also consistent with the first Tyr as the axial ligand (Allen and Schmitt, 2011). However, absent 

a published crystal structure, the identity of the axial tyrosine cannot be firmly assigned.  

Biochemical studies on the conserved His residue have shown that it also plays an 

important role in the heme pocket (Allen and Schmitt, 2011). The His residue may be acting as a 

hydrogen-bonding partner to the axial Tyr. His hydrogen bonding to an axial Tyr has been shown 

in HasA from various species (Arnoux et al., 1999; Alontaga et al., 2009; Kumar et al., 2013).  

The sequence alignments of CR1 and CR2 can be visualized in a circular phylogenetic 

tree. Figure 2.4 shows that all CR1 domains are grouped, and all CR2 domains are grouped. 

HtaA is closest in sequence to the sister group (closest relatives of another given unit in an 

evolutionary tree) Cu-CR1 and Ctb-CR1. The alignment (Figure 2.3) shows that these two 

proteins contain a Thr residue in place of the Ser residue that is found in all other HtaA domains 

in the diagram.  

The CR regions of HtaB, ChtB, and ChtA appear between the CR1 and CR2 sequences. 

HtaB and ChtB are a sister group, consistent with the idea that HtaB and ChtB may be able to 

substitute for one another in vivo (Allen et al., 2013). ChtA contains a common ancestor with all 

CR1 domains, HtaB, and ChtB but does not have any immediately related proteins. The 
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alignment in Figure 2.3 shows that ChtA has a Tyr in the place of the conserved His found in 

other HtaA domains. It is relatively common for tyrosine to serve as a hydrogen partner to an 

axial Tyr in heme proteins, as shown in a recent data compilation (Draganova et al., 2015). 

Alanine mutations constructed of the conserved residues in HtaA (Y49A, H107A, and 

Y197A in CR1; Y361A, H412A, and Y490 in CR2) were shown to decrease the ability of the 

protein to bind heme with respect to wild type (Allen and Schmitt, 2011). Alanine replacement 

of the conserved residues also showed a decrease in the ability of the proteins to bind 

hemoglobin. 

2.3.2 SXXXY Conserved Motif 

Our analysis of the HtaA domains reveals a highly-conserved SXXXY motif. Figure 2.3 

shows that most HtaA domains contain a conserved serine residue four residues before the first 

conserved tyrosine, shown at positions 52 and 26 in HtaB and ChtB, respectively. Of the tested 

sequences, 90% contained this motif. The first conserved HtaA regions from C. ulcerans and C. 

tuberculostearicum contained a Thr residue in place of the serine. The Ser and Thr residues may 

act in the same manner since both side chains contain a hydroxyl group. Of the HtaA domains 

tested, all contain an aromatic amino acid directly following the Ser, with CR1 domains having 

50% Tyr and 50% Phe and all CR2 domains having Phe. Following the aromatic residue, 100% 

of CR1 domains possess an Arg residue after the aromatic residue. Of the CR2 domains tested, 

70% possess an Arg residue at the same position, while the other 30% possess a Gln residue. The 

third amino acid between the Ser and Tyr residue of both CR1 and CR2 domains does not appear 

to follow an obvious pattern.  

At first glance, the SXXXY motif found herein seems similar to the SXXXXY motif 

(Honsa et al., 2014) found in the 310-helix portion of NEAT domains (71% of the sequences 
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studied) (Figure 2.5). In the NEAT domain motif, the serine is a hydrogen-bond partner of one of 

the propionates and the tyrosine π-stacks with the heme. In contrast, the HtaA data to date have 

been interpreted in terms of the tyrosine in the SXXXY motif being the heme-bound axial ligand 

(Allen and Schmitt, 2011) (although the absence of a published crystal structure means that this 

assignment could be open to reinterpretation). Therefore, as of this writing, it seems that these 

SXXXY (HtaA) and SXXXY (NEAT) motifs, while appearing similar, seem to have different 

roles in heme binding.  

2.3.3 FXGH Conserved Motif 

A highly conserved FXGH motif involving the signature His residue is seen in all HtaA 

sequences in Figure 2.3. The His residue in HtaA is proposed to be the hydrogen-bonding partner 

to the heme axial tyrosine (Uluisik et al., 2017). The Phe residue may be involved in helping 

stabilize the heme in the pocket as seen in other heme binding proteins (Schneider et al., 2007; 

Smith et al., 2010). The “X” residues following immediately after the Phe are all polar residues. 

Of the polar residues, approximately 80% of those contain side chains that have at least one 

oxygen atom (Asn, Asp, Glu, Ser, and Thr). Directly before the His is a fully conserved Gly 

residue. The combination of these specific residues could serve as another fingerprint in 

combination with the other conserved motifs to identify future HtaA domain-containing proteins. 

2.3.4 FXXXY Conserved Motif 

Most of the CR2 domains investigated show a conserved FXXXY motif towards the N-

terminal region. Some CR1 domains have this motif, and some have an FXXY motif in the same 

position. Maresso and colleagues have discussed the possible role of Phe in terms of stabilizing 

heme binding by π-stacking with the heme (Balderas et al., 2012). For Hal from B. anthracis, is 

it proposed that the tyrosine in the YXXXF motif binds to the heme while the Phe stacks with the 
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heme pyrrole rings. The Clostridium NEAT domains also lack the classic YXXXY NEAT 

signature (Honsa et al., 2014). Most of the NEAT domains from this group contain a Phe residue 

on the eighth β strand comparable to the position of the second Tyr residue in the YXXXY motif 

previously described. It is proposed that this Phe residue may function in heme binding by 

forming π-stacking interactions with the pyrrole units of the heme (Schneider et al., 2007; Smith 

et al., 2010). 

2.3.5 Gram-Positive Bacteria BLAST Search 

A goal of this research was to determine if there were an overall species pattern for 

bacterial use of either the HtaA or NEAT domain. Results of the domain-specific BLAST search 

are shown in Figure 2.6. Enterococci have neither the HtaA nor NEAT sequences. Beyond this, 

for the major medically-important Gram-positive bacteria, Actinobacteria utilize the HtaA 

system and Firmicutes use the NEAT system in their heme uptake pathways. None of the listed 

bacteria are shown to possess both methods for heme uptake. This is the first demonstration of 

this pattern. We note that two of the approximately 1300 Bacillus genes seems to indicate the 

presence of an HtaA sequence. However, as pointed out in a previous study on HtaA alignments 

(Allen et al., 2013), the observation of sequence homology does not necessarily correlate with 

viable proteins; truncation and frame-shift mutations can produce peptides that are not functional 

in heme uptake. 

2.3.6 Homology Modeling 

The I-TASSER structure prediction program can give good models for proteins if 

structures of sufficient sequence homology have been structurally characterized. For HtaB-CR 

and ChtC-CR, the closest sequences were gp39 for the former and UspA1 for the latter (only 

7.4% and 9.4% sequence identity, respectively). Possible models for the conserved regions of 
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HtaB-CR and ChtB-CR are shown in Figure 2.7 and Figure 2.8, respectively. In addition to the 

low sequence identity, the large amount of unstructured protein and the very large difference 

between the proposed structures for HtaB and ChtB (which are very similar in terms of 

biophysical characteristics and ability to substitute for one another in vivo) indicate that these are 

novel proteins, whose structure is not as yet well-described by homology modeling. 
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Figure 2.1 Blast search showing which strains of C. diphtheriae contain the proteins 

encoded in the hmu and cht gene loci. Data from columns HtaA-CR1, HtaA-CR2, and ChtB-CR 

are from (Allen et al., 2013). The asterisk (*) the presence of HtaA that contains point mutations 

with unknown functional status. 
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Figure 2.2 Crystal structure of IsdX2 NEAT-5 domain from B. anthracis. Protein Data 

Bank code 4H8P (Honsa et al., 2013b). 
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Figure 2.3 Multiple sequence alignment of the conserved regions of HtaA proteins from 

related species with the conserved regions of HtaB, ChtB, and ChtA. The diagram includes C. 

ulcerans (Cu), C. tuberculostearicum (Ctb), C. jeikeium (Cj), C. pseudodiphtheriticum (Cpd), C. 

propinquum (Cp), C. striatum (Cst), C. singular (Csi), C. aurimucosum (Ca), C. glutamicum 

(Cg). 
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Figure 2.4 Circular phylogenetic tree demonstrating the relationship of 20 HtaA domains 

with those of HtaB, ChtB, and ChtA. The tree was run from HtaA-CR1. The diagram includes C. 

ulcerans (Cu), C. tuberculostearicum (Ctb), C. jeikeium (Cj), C. pseudodiphtheriticum (Cpd), C. 

propinquum (Cp), C. striatum (Cst), C. singular (Csi), C. aurimucosum (Ca), C. glutamicum 

(Cg). 
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Figure 2.5 The signature sequence characteristics of HtaA and NEAT domains are shown 

below. The residues that are both underlined and bolded are the respective heme axial ligands. 
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Figure 2.6 Overview of medically important gram-positive bacteria and their heme 

uptake strategies. The numbers in parenthesis refer to the number of results obtained from the 

BLAST search with a HtaA (red) or NEAT (blue) sequence. 
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Figure 2.7 Homology model of WT HtaB-CR. The model was constructed from gp39 in 

marine virus Syn5 (PDB: 4BML). 
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Figure 2.8 Homology model of WT ChtB-CR. The model was constructed from UspA1 in 

Moraxella catarrhalis (PDB: 4BML). 
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3 CHAPTER 3: EXPERIMENTAL CHARACTERIZATION OF THE HTAB HEME 

UPTAKE PROTEIN IN CORYNEBACTERIUM DIPHTHERIAE 

The Raman spectroscopy sections are intended for publication verbatim in Rizvan C. 

Uluisik, Brandon L. Ferrell, Gudrun S. Lukat-Rodgers, Courtni E. Allen, Michael P. Schmitt, 

Kenton R. Rodgers, and Dabney W. Dixon. 

3.1 HtaB 

HtaB is a heme-binding protein encoded in the hmu operon, which is involved in the heme 

uptake pathway in C. diphtheriae (Allen and Schmitt, 2009). Unlike the other hmu genes, the 

htaB gene has a separate promoter and is transcribed separately from the other gene products. 

The expression of HtaB is both iron-regulated and DtxR-regulated. HtaB contains a conserved 

region of approximately 200 amino acid residues that shares almost 50% sequence similarity to 

HtaA-CR2. HtaB contains a predicted signal peptide sequence and a putative transmembrane 

region towards the C-terminal, which is followed by two positively charged residues (Lys and 

Arg). 

HtaB does not bind hemoglobin (Allen and Schmitt, 2011). As shown in Figure 3.1, when  

HtaB was added to a hemoglobin-enriched plate using the ELISA method, there was no evidence 

of binding to hemoglobin. Thus, HtaB is not the protein that initially binds to hemoglobin for 

heme extraction.  

 HtaB can accept heme from HtaA, as shown in Figure 3.2 (Allen and Schmitt, 2011). In 

panel A, HtaB is analyzed before and after incubation with excess holo HtaA. In panel B, holo 

HtaA is analyzed before and after incubation with HtaB. From panel A, it can be seen that after 

HtaB is incubated with holo HtaA, there is a significant increase in absorbance at the Soret band. 

This shows that HtaB can accept heme from the holo HtaA. In panel B, it can also be seen after 
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holo HtaA is incubated with HtaB, there is a clear reduction of the Soret band for HtaA. This 

also provides evidence that holo HtaA can donate its heme with HtaB acting as the acceptor.  

 The goal of this study was to complement the previous microbiological studies with 

biophysical characterization of this protein. Herein we describe the optical and CD spectra, 

Raman characterization of eh ferric, ferrous, and ferrous-CO states, and unfolding induced by 

both heating and addition of GdnHCl. 

3.2 Materials and Methods 

3.2.1 General 

UV-visible spectra were taken on a CaryBio UV-Visible spectrophotometer. Fast protein 

liquid chromatography (FPLC) was performed on a GE Healthcare ÄKTApurifier. Water from a 

Barnstead water purifier had 18.2 mΩ resistance. Buffer A was a solution of 100 mM Tris-Cl 

and 150 mM NaCl at pH 8.0. Buffer B was a solution of 100 mM Tris-Cl, 150 mM NaCl, and 

2.5 mM d-desthiobiotin at pH 8.0. Buffer R was a solution of 100 mM Tris-Cl, 150 mM NaCl, 

and 1 mM 2-(4-hydroxypenylazo)benzoic acid. The His-column binding buffer was a solution of 

20 mM sodium phosphate, 0.5 M NaCl, and 20 mM imidazole at pH 7.4. His-column elution 

buffer was a solution of 20 mM sodium phosphate, 0.5 M NaCl, and 500 mM imidazole at pH 

7.4.  

3.2.2 Expression and Purification 

Large-scale lysogeny broth (LB) media was prepared by adding 10 g of tryptone, 10 g of 

sodium chloride (NaCl), and 5 g of yeast extract to a 2-L flask and filling it up to 1000 mL with 

water. Small-scale solutions were prepared by adjusting the above ratios to 100 mL. Glucose was 

added to a final concentration of 0.3%. The broth media was autoclaved and cooled to room 

temperature. Kanamycin (80 μM final) was added to the room-temperature broth media. The 
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small-scale flasks were inoculated with the E. coli cells containing the HtaB sequence (Figure 

3.3) with an N-terminal strep tag cloned into the pET-24a(+) expression vector (supplied by Dr. 

Michael Schmitt) using the sterile flame loop technique. The flasks were incubated at 37 °C at 

220 rpm overnight. The contents of the flask in 5 mL portions were returned to the 2-L flask 

containing the 1000 mL LB and kanamycin to allow for large-scale growth. The cells were 

grown until the OD600 was between 0.5 and 0.7. The media were induced with isopropyl β-D-1-

thiogalactopyranoside (IPTG) with a final concentration of 100 μM, and the temperature was 

decreased to 28 °C. The media were allowed to shake overnight. The cells were harvested using 

a Beckman centrifuge with a JLA 8.100 rotor at 3100 rpm for 30 min at 4 ºC. The cells were 

lysed using a buffer consisting of 0.1 mM phenylmethanesulfonyl fluoride (PMSF), 0.2 mg/mL 

lysosome, 10 mM MgCl2, 1 g of DNAase, 1 g of RNAase, and buffer A. The lysed cell 

solution was exposed to sonication on a Branson Ultrasonics Sonifier for 30 min at 15% 

amplitude with 10 sec on and off pulses. The solution was centrifuged at 7000 rpm for 40 min at 

4ºC. The supernatant was collected and stored at -80ºC.  

 The protein was purified using FPLC. A 5 mL Step-Tactin Superflow column from GE 

Healthcare was equilibrated with buffer A. Approximately 50 mL of the cell solution was loaded 

onto the column. Unbound material was washed out with buffer A. HtaB was eluted by the 

addition of buffer B via a linear gradient of 0-100%. Fractions (2 mL) were collected. The 

fractions containing HtaB were centrifuged at 6500 rpm for 20 min at 4ºC. The tubes were again 

filled with buffer A, and this process repeated three times. The purity of the proteins was tested 

by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Figure 3.4 shows 

the protein yield for HtaB expression. The protein was stored at -20ºC. 
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 The plasmid containing His-tagged HtaB-WT (sequence in Figure 2.5) previously  

constructed in a pET24a(+) expression vector was a gift from Dr. Michael Schmitt (Allen and 

Schmitt, 2009). The His-tagged HtaB-WT-containing cells were grown in the same manner as 

described above. His-tag binding buffer (20 mM sodium phosphate, 0.5 M NaCl, 20 mM 

imidazole, pH 7.4) was used in the place of buffer A in the lysis buffer. A 5 mL HisTrap HP 

column from GE Healthcare prepped in the same manner as above with binding buffer. The 

protein was loaded onto the column and eluted with His-tag elution buffer (20 mM sodium 

phosphate, 0.5 M NaCl, 500 mM imidazole, pH 7.4). Fractions were collected and centrifuged. 

Protein purity was tested by SDS-PAGE. The protein was stored at -20 °C. 

3.2.3 HtaB-WT Sire Directed Mutagenesis  

E. coli cells containing the pET24a(+) plasmid with the strep-tagged HtaB-WT gene were 

grown overnight in 10 mL of Luria-Bertani (LB) broth. The DNA from the E. coli was extracted 

using the QIAprep Spin Miniprep Kit according to the directions from the manufacturer. The 

extracted DNA was analyzed via nanodrop spectroscopy to determine its concentration. The 

primers were designed from Sigma Aldrich for the Y56A and H121A mutations and are shown 

in Table 3.1. The extracted plasmids were transformed using the polymerase chain reaction. The 

parameters used for the PCR reaction are shown in Table 3.2. The results of the PCR were 

analyzed using gel electrophoresis with a 2% agarose gel. The running buffer used was Tris-

acetate-EDTA (10x TAE) buffer. The samples were loaded and run at 70 V for 70 min. The gel 

was stained with SYBR safe dye for 30-45 min. Figure 3.5 shows the image of the gel using a 

UVP BioDoc-ItTM Imaging System from the Y56A mutation after PCR. 

After determining which plasmids had been successfully mutated, DpnI digestion was 

performed on the selected plasmids by combining 38.5 L PCR reaction mixture with 5 L DpnI 
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buffer (from Sigma-Aldrich) and water to a final volume of 49 L. To the mixture, 1 L of DpnI 

was added. The mixture was incubated at 37C for 1 h; 1 L of DpnI was added again and the 

solution incubated for 1 h.  

The plasmids were transformed into competent BL21 (DE3) cells by adding 1 μL of 

plasmid to 50 μL competent cells. The cells were incubated on ice for 20 min, heat shocked in a 

42°C water bath for 45 s, and incubated again on ice for 2 min. To the cell solution, 250 μL 

warm LB broth without kanamycin was added and incubated at 37°C for 1 h. The cell solution 

was inoculated onto agar plates and incubated at 37°C overnight. One colony was selected from 

the plate. Half of the colony was inoculated in 5 mL LB with kanamycin. The other half of the 

colony was streaked onto a new agar-kanamycin plate and grown overnight at 37°C to preserve 

the cell line. The DNA from the newly grown E. coli cells was extracted using the QIAprep Spin 

Miniprep Kit. The concentration of the DNA was determined using nanodrop spectroscopy. The 

DNA was then sent for sequencing at GENEWIZ to confirm that the mutation was successful. 

The WT and mutant gene sequences were aligned using the Clustal Omega program. The results 

of the sequence alignment of WT and H121A are shown in Figure 3.6.  

After confirming the mutation, cells from the agar-kanamycin plate were grown in 10 mL 

of LB broth containing kanamycin overnight. The stock mutant-containing cells were made by 

adding 20% glycerol to the cell solution to a final volume of 1 mL. The stock solutions were 

placed in cryogenic tubes, flash frozen with liquid nitrogen for 2 min, then stored at -80°C.  

The HtaB mutants were expressed in the same manner as described in section 3.3.2. 

3.2.4 UV-visible Absorption Spectroscopy 

The absorbance spectra of HtaB and the mutants were taken with a Cary 50 Bio UV-

visible spectrophotometer. The spectra were taken at room temperature in buffer A. 



39 

3.2.5 Determination of Percent Heme-loaded and Soret Extinction Coefficients 

A stock solution of (5.5 x 10-5 M, ε280 = 43824 M-1 cm-1, Fischer Scientific) bovine serum 

albumin (BSA) was dissolved in H2O and used as a standard for the Bradford assay. The BSA 

absorbance was taken at 280 nm and diluted to have a final concentration of approximately 200 

μg/mL. The solutions were prepared by adding the indicated amount of water to an Eppendorf 

tube. The BSA solution and Coomassie Brilliant Blue G-250 solution were added at 2 min 

intervals to cuvettes. Each sample was allowed to stand for 10 min before the spectrum was 

recorded. The reaction was run in duplicate. 

HtaB-WT (800 μL of diluted stock solution, Abs280 ~ 0.3) was combined with 200 μL of 

dye. The HtaB-dye solution was allowed to sit for 10 min. The spectrum was taken of the 

solution. The absorbance at 595 nm was used with the calibration curve from the Bradford assay 

to determine the stock concentration of HtaB-WT. 

For the pyridine-hemochrome assay (Berry and Trumpower, 1987), a basic pyridine 

solution was prepared by mixing 4 mL of pyridine with 6 mL of 400 mM NaOH. A 500 μL 

saturated sodium dithionate solution was prepared in a capped glass vial. Into a cuvette with a 

septum, 740 L of pyridine solution were added using a 500 L glass syringe. The spectrum was 

blanked with the pyridine solution. To the cuvette, 250 L of the HtaB-WT solution used for the 

Bradford assay was added. The cuvette was inverted to ensure mixing. The spectrum was taken. 

The sodium dithionite solution (10 L) was added via glass syringe. The spectrum was taken. 

The concentration of heme was calculated using the extinction coefficient of the bispyridine 

ferrous heme complex at 556 nm (ε556 = 34640 M-1 cm-1 at 556 nm) (Berry and Trumpower, 

1987). 
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3.2.6 CD Spectroscopy of HtaB-WT and Mutants 

Circular dichroism spectra were recorded using a Jasso J-810 spectropolarimeter using 

quartz Suprasil cuvettes with a 1 mm path length. The spectra were taken from 190 to 260 nm. 

The scanning speed was set to 100 nm/min in the continuous scanning mode. The data pitch was 

set to 0.5. As-isolated samples of HtaB-WT (~25% heme loaded), HtaB-Y56A (~5%), HtaB-

H121A (~5%) were recorded in 100 mM Tris-Cl and 150 mM NaCl at pH 7.0. The final spectra 

each represent an average of 20 scans. 

3.2.7 Heme Transfer Between Y56A and Hemoglobin 

A five mL StrepTactin column was equilibrated with five column volumes of buffer A. 

One mL of 39 μM as-isolated HtaB-Y56A was loaded onto the column. Fractions were checked 

via UV-visible spectroscopy while loading to ensure no protein had eluted from the column. Two 

mL of 100 μM equine hemoglobin (ε280 = 12.91 mM-1 cm-1, Sigma-Aldrich) were slowly loaded 

onto the column while checking fractions to ensure no protein had eluted from the column. The 

column was capped and incubated overnight at 4 °C. Excess hemoglobin was eluted with buffer 

A. The protein was eluted with buffer B. The buffer was exchanged with buffer A by 

centrifugation at 6500 rpm and 4°C for 40 min. 

3.2.8 Heme Titration of HtaB and Mutants 

A sample of approximately 24% heme-loaded 7.7 μM HtaB-WT (concentration 

calculated from ε280 from ExPASY) was used for the single cuvette heme titration. A solution of 

2.0 mM hemin was prepared in DMSO (ε624 = 6.23 mM-1 cm-1, Sigma-Aldrich). Single 1 μL 

aliquots of hemin were added to the solution and allowed to stir on ice for 10 min. The volume of 

DMSO in the cuvette was not allowed to exceed 2%. The UV-visible spectrum was recorded 

after each hemin addition and incubation until a hemin:protein ratio of 0.75 was reached. 
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A sample of approximately 5% heme loaded 18 μM HtaB-Y56A (concentration 

calculated from calculated ε280 from ExPASY) was used for the two cuvette heme titration 

technique. A 3.7 mM hemin solution was prepared in DMSO (ε624 = 6.23 mM-1 cm-1, Sigma-

Aldrich). Two quartz cuvettes were used for the titration: one containing the protein in buffer and 

the other containing only buffer. Hemin was added in 1 μL aliquots, without the volume of 

DMSO exceeding 2% in the protein solution, to both cuvettes. The cuvettes were allowed to stir 

on ice for 10 min. The spectrophotometer was blanked with the cuvette containing only buffer 

with hemin additions. The spectrum of HtaB-Y56A after the hemin addition and incubation was 

recorded. This was repeated up to a hemin:protein ratio of 0.74.The experiment was repeated for 

HtaB-H121A and His-tagged HtaB in the same manner. 

3.2.9 Resonance Raman Spectroscopy 

Resonance Raman Spectroscopy analysis was performed at North Dakota State 

University by Dr. Kenton Rodgers and Dr. Gudrun Lukat-Rodgers.  

Resonance Raman (rR) spectra were recorded from ferric samples using the 413.1-nm 

emission line from a Kr+ laser and ferrous samples with 441.6-nm excitation from a HeCd laser. 

The Raman shifts for toluene, dimethyl sulfoxide, and methylene bromide were used as external 

standards for spectral calibration. Spectra were recorded at ambient temperature using the 135° 

backscattering geometry with the laser beam focused to a line on a spinning 5 mm NMR tube. 

UV−visible spectra were recorded before and after rR experiments to verify that the samples 

were not altered by their exposure to the laser beam. The final protein concentration was 30 M 

for the HtaB-WT. The buffers used were 100 mM glycine (9.6), Tris-HCl (pH 8.8 or 8.0), and 

sodium phosphate buffer (pH 5.8). Ferrous samples were prepared under anaerobic conditions by 

adding buffered dithionite in 300-fold molar excess over heme. The FeII-CO samples were 
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prepared with a 300-fold molar excess of dithionite under an atmosphere of natural abundance 

CO or 13CO at pH 8.8. 

3.2.10 Thermal Unfolding in the Presence of GdnHCl 

Thermal unfolding was performed on the UV-visible spectrophotometer equipped with a 

TC125 Quantum Northwest temperature controller. A screw-top quartz cuvette with a 1 cm path 

length was used. As-isolated HtaB was prepared in 50 mM NaH2PO4 at pH 7.0 containing 1 M 

GdnHCl. The thermal unfolding was carried out over a temperature range of 34 to 82 ˚C. Spectra 

were recorded every two ˚C after a 1 min incubation period at each temperature. 

Kaleidagraph (version 4.01, Synergy Software) was used to fit the data using a two-state 

protein unfolding model (Swint and Robertson, 1993): 

 

𝐴 =  
(𝐴𝑓 + 𝑚𝑓𝑇) + (𝐴𝑈 + 𝑚𝑈𝑇)exp [

𝛥𝐻𝑚

𝑅(𝑇𝑚−1 − 𝑇−1)
]

1 + exp [
𝛥𝐻𝑚

𝑅(𝑇𝑚
−1 − 𝑇−1)

]
 

 

where A is the absorbance at any temperature along the unfolding curve, Af is the absorbance of 

the folded state, mf is the slope of A vs. T for the folded state, AU is the absorbance of the 

unfolded state, mU is the slope of A vs. T for the unfolded state, Tm is the temperature at which 

the protein is half unfolded, ΔHm is the enthalpy of unfolding, R is the ideal gas constant, and T 

is the temperature (Kelvin). 

3.2.11 Time Scale Unfolding of HtaB in the Presence of 4.0 M GdnHCl 

Solutions of ChtB and GdnHCl were each prepared in buffer A. The GdnHCl stock 

concentration was determined to be 7.5 M by the refractive index method (Pace and Scholtz, 

1997). The stock GdnHCl solution was added to the ChtB solution to give a final concentration 



43 

of 4 M. The absorbance was recorded every 5 min for 12 h. The absorbance at 407 nm (Soret) vs. 

time was fit to a single-term exponential function: 

𝐴𝑡 = (𝐴0 − 𝐴∞) exp(−𝑘𝑈𝑡) + 𝐴∞ 

where At is the absorbance at any time during the unfolding reaction, A0 is the initial absorbance, 

A∞ is the absorbance of the completely unfolded protein, (A0 - A∞) is the total change in 

absorbance for complete unfolding, and kU is the unfolding rate constant. The sample was 

dialyzed after unfolding to evaluate the reversibility of the unfolding process. 

 

3.3 Results and Discussion 

3.3.1 HtaB and Mutants Growth and Expression 

In the absence of glucose, the competent cells containing the HtaB gene did not grow 

well, as shown in Figure 3.7. After one h of shaking in the large-scale broth, the cells reached an 

average OD600 maximum of approximately 0.2. Beyond one h of incubation, the OD600 dropped 

below 0.1 and remained unchanged even after seven h. As described above, the pET vector may 

be experiencing early expression of HtaB before the inducing agent is added. It may also be the 

case that the glucose levels of the cell are being depleted, causing the levels of cAMP to rise in 

the cell. This may lead to early expression of HtaB. Because HtaB is a foreign protein to E. coli, 

an early protein expression may have a toxic effect on the growth of the competent cells before 

the proper OD600 can be reached.  

The addition of glucose to the large-scale broth showed a positive effect on the growth 

of the competent cells, as shown in Figure 3.8. An OD600 of 0.6 was reached after four h of 

shaking. All growth and expressions for HtaB and mutants were performed with the addition of 

0.3% glucose to help maximize the expression of protein. The FPLC spectra from the 
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purification of HtaB-WT, HtaB-Y56A, and HtaB-H121A are shown in Figure 3.9, Figure 3.10, 

and Figure 3.11, respectively. Each spectra shows a single protein peak on the onset of linear 

gradient of buffer B. The single-peak fractions were collected and analyzed by SDS-PAGE to 

assess protein purity. The SDS gel for HtaB-WT is shown in Figure 3.12. The protein was 

confirmed to be pure HtaB-WT with a molecular weight of approximately 32 kDa. 

3.3.2 UV-visible Spectroscopy of HtaB-WT and Mutants 

The UV-visible spectra of HtaB-WT and mutants are shown in Figure 3.13. HtaB-WT 

shows a Soret peak at 409 nm and four α/β bands at 505, 546, 567, and 626 nm. The charge-

transfer band at 626 nm is indicative of a high-spin heme iron interacting with an oxygen 

species, which is often through a Tyr ligand (Tiedemann and Stillman, 2011; Rodgers and Lukat-

Rodgers, 2014). The H121A mutant showed a UV-visible spectrum similar to that of HtaB-WT, 

having a hypsochromic-shifted Soret peak at 405 nm. The Soret peak of Y56A showed a 

bathochromic shift to 414 nm with a single-large band in the α/β region between 545 and 600 

nm. The disappearance of the charge-transfer band at 626 nm is consistent with the loss of an 

oxygen-bound ligand, which indicates that Y56 may be the acting axial ligand.  

3.3.3 Determination of Percent Heme Loading and Soret Extinction Coefficient 

The results for the determination of percent heme-loaded for HtaB-WT and mutants are 

shown in Figure 3.14. 

The Bradford assay was run on a BSA stock solution of approximately 5.5 x 10-5 M. The 

solution of HtaB used four μL of HtaB, 200 μL dye, and 790 μL water. The absorbance of this 

solution at 595 nm was 0.22 nm. Using the equation from the Bradford assay, the concentration 

of the protein was found to be 0.60 g/L (21.6 μM).  
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An aliquot of the same solution of HtaB was subjected to the pyridine hemochrome 

assay. The absorbance of the bispyridine ferrous heme complex was 0.086 at 556 nm. Given the 

literature extinction coefficient of 34640 M-1
 cm-1 at this wavelength (Berry and Trumpower, 

1987), the concentration of pyridine hemochrome was 9.93 μM (which is also the concentration 

of holo protein). From the Bradford assay, the total concentration of HtaB, containing both holo 

and apo protein, was 21.6 μM, indicating that the HtaB solution was 45% heme loaded. Using 

the absorbance at the Soret of 0.63 (the solution was diluted by 2x, so the absorbance of the stock 

solution was 1.26) and given the holo protein concentration of 9.93 M, the extinction 

coefficient for HtaB-WT at 409 nm is 1.26 x 105 M-1 cm1.  

The Soret:280 nm ratio is an indication of the heme loading of a protein. The Soret:280 

nm ratio for the HtaB-WT sample used in the above experiment was 1.13. If a Soret:280 nm ratio 

of 1.13 corresponds to 45% heme loading, a Soret:280 nm ratio of 2.44 would be expected for 

the fully heme loaded species. From the results of HtaB-WT, the Soret:280 nm ratios of HtaB-

Y56A and HtaB-H121A were calculated to be approximately 0.14 (6% heme loaded) and 0.09 

(4% heme loaded), respectively. The results indicate that the Tyr and His conserved residues are 

important for heme binding of HtaB. This is consistent with previous microbiological results that 

mutations in the respective Tyr and His residues in HtaA decreases the heme binding of the 

protein (Allen and Schmitt, 2011). 

3.3.4 CD Spectroscopy of HtaB-WT and Mutants 

The CD spectra of HtaB-WT, Y56A, and H121A are overlaid in Figure 3.15. HtaB-WT 

appears to contain mostly β-sheets, as apparent by the single minimum at 215 nm. Both of the 

HtaB mutants are very similar to that of HtaB-WT. There appears to be no change in the protein 
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secondary structure with the mutations of the conserved Tyr and His residues. In addition there 

appears to be no significant change in secondary structure as the percent heme loading decreases. 

3.3.5 Hemoglobin Heme Transfer to HtaB-Y56A 

Previous studies showed that HtaB-WT has the ability to accept heme when hemoglobin 

is the sole iron source (R. Uluisik, unpublished data). Our experiments show that HtaB-Y56A 

can also accept heme from hemoglobin. Figure 3.16 shows the spectrum of a sample HtaB-Y56A 

before and after incubation with hemoglobin. Before incubation, the Soret:280 ratio was 0.06:1, 

indicating predominately apo protein. After incubation, the Soret:280 changed from 0.06 (~2% 

heme-loaded) to 0.7 (~24% heme-loaded), which indicates a significant increase in heme-bound 

protein. After the uptake of heme from Hb, the Soret showed a hypsochromic shift from 415 nm 

to 409 nm. In addition to the change at the Soret, the bands at 546 nm and 567 nm disappeared, 

and new bands appeared at 505 nm and 624 nm. This spectrum is similar to that of HtaB-WT. As 

described above, a band at approximately 625 nm is consistent with a 6-coordinate, high-spin 

heme complex in which one of the axial ligands is coordinated through an oxygen atom. Since 

the presumed Y56 axial ligand is no longer present, the spectrum may indicate that the protein 

has undergone a conformational change to provide another oxygen-coordinated axial ligand, 

presumably a tyrosine or water molecule. 

3.3.1 HtaB Hemin Titration 

The results of the one-cuvette hemin titration for a sample of HtaB-WT (~24% heme-

loaded) are shown in Figure 3.17. The Soret:280 nm ratio increased from 0.6 to 1.4. As the ratio 

of hemin to HtaB-WT increased the λmax Soret stayed almost constant (changing from only 410 

to 408 nm over the range of ratios of 0.00-0.58). This indicates that most of the hemin is being 

taken up at the hemin binding site of the protein. A shoulder starts to appear at approximately 
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365 nm, as the amount of added heme increases. This might be due to free hemin in solution or 

heme on the surface of the protein. A plot of Abs365/Abs406 vs. the ratio of hemin to HtaB-WT 

(Figure 3.18) shows an increase as the concentration of hemin increases, indicating that the 

additional hemin is not binding to the canonical binding site. This titration resulted in a sample 

that was approximately 60% heme-loaded.  

 The result for the two-cuvette heme titration of HtaB-Y56A is shown in Figure 3.19. 

HtaB-Y56A as-isolated was approximately 5% heme-loaded. As described above, the fully 

heme-loaded Soret:280 nm ratio for HtaB-Y56A was expected to be 2.52. HtaB-Y56A reached a 

Soret:280 nm ratio of 1.41, indicating that the sample ended as only ~50% heme-loaded. Figure 

3.20 shows the plot of the absorbance at the Soret versus the heme:protein ratio. Once the 

heme:protein ratio of 0.4 was reached, the slope of the line changed little, again indicating little 

or no further binding. The reason for the inability of this protein to fully bind hemin is not 

known. 

 The results for the two-cuvette heme titration for a sample of HtaB-H121A is shown in 

Figure 3.21. HtaB-H121A as-isolated was approximately 4% heme loaded. A shoulder around 

365 nm began to form once the heme:protein ratio reached 0.65. The formation of a shoulder 

could indicate that the heme is binding in another position. A plot of the Abs365:AbsSoret ratio 

versus the heme:HtaB-H121A ratio (Figure 3.22) was constructed to assess whether or not the 

spectra were changing. There may be some numerical evidence of heme binding outside the 

conical pocket. The protein was not fully heme-loaded by the end of the titration (~45%). 

 Figure 3.23 shows the results of the two cuvette heme titration of the His-tagged HtaB. 

The as-isolated spectrum of His-tagged HtaB-WT is similar to that of strep-tagged HtaB-WT. 

Both spectra show a Soret peak at 409 nm and similar α/β regions. Upon heme additions, the 
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protein spectrum of His-tagged HtaB changes. A shoulder peak at approximately 435 nm beings 

to appear. The α/β regions begin to change with two dominant bands at 545 nm and 570 nm 

becoming more prevalent as the heme:protein ratio increases. The region around 350 nm 

decreases, which is different from what is seen in the Strep-tagged HtaB. It may be that the His 

tag itself is binding the heme. This is not surprising as His is a known heme axial ligand of 

various proteins (Arnoux et al., 1999; Alontaga et al., 2009; Kumar et al., 2013). It has been 

shown that the His-tag can interfere with proper heme binding to the protein (Owens et al., 

2012). 

3.3.2  Resonance Raman of Ferric HtaB-WT 

The Resonance Raman (rR) spectra were taken by Dr. Kenton Rodgers and his group at 

North Dakota State University. 

The rR spectrum of ferric HtaB is pH independent, as evidenced by the unchanging high-

frequency spectrum over the pH range from 5.8 to 9.6 (Figure 3.24). The 3, 38, and 2 core 

stretching frequencies of 1483, 1520 and 1561 cm−1, respectively, reveal the heme to be in a 6-

coordinate high spin (6cHS) state (Hu et al., 1996). Another protein in a heme uptake pathway, 

Yersinia pseudotuberculosis (Yp) HasA, has been shown to exist as an equilibrium mixture of 

6cHS and 5-coordinate high-spin (5cHS) states (Ozaki et al., 2014), the former presumably 

having a water molecule as the sixth ligand. YpHasA also does not show a pH dependence over 

the pH range from 5 to 10. Serratia marcescens (Sm) HasA (Lukat-Rodgers et al., 2008) and 

CdHmuT are mixtures of 6cHS and six-coordinate low-spin (6cLS) states (Draganova et al., 

2015). Even though the CR domain of HtaB shares approximately 27% sequence identity and 

38% similarity with the CR2 domain of HtaA, the hemin binding motifs are distinct because 

CdHtaA is 5cHS in the ferric form (Uluisik et al., 2017). HtaA exhibits a rR spectrum typical of 
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5cHS hemin that is bound to the protein through a proximal tyrosine ligand. The 3 (1490 cm−1) 

and 2 (1568 cm−1) rival the intensity of the 4 which is unusual for other hemin proteins but has 

been observed in bovine liver catalase (Chuang et al., 1988) and Shigella dysenteriae ShuT 

(Eakanunkul et al., 2005), both of which share the proximal Tyr binding motif. 

3.3.3 Resonance Raman of Ferrous Carbonyl HtaB-WT 

Through the sensitivity of Raman-active Fe-CO group frequencies to -back bonding and 

donor strength of the trans (proximal) ligand, resonance Raman spectra of heme protein 

carbonyls are useful probes of both the bonding and non-bonding properties of the heme pocket. 

The extent of -back bonding is evidenced by the νFe−C, νC−O frequencies which, when placed on 

a plot of νFe−CO versus νC−O frequencies, yield insight into the electrostatic and steric properties of 

the distal heme pocket and the nature of the trans axial ligand (Vogel et al., 2000; Spiro and 

Wasbotten, 2005; Streit et al., 2010; Spiro et al., 2013). The Fe−13CO isotopolog of HtaB was 

used to verify the identity of rR bands corresponding to the Fe−C stretching (Fe−CO), Fe-CO 

bending (Fe-CO) and C−O stretching (C−O) modes, as shown in Figure 3.25. 

Under an atmosphere of carbon monoxide, the UV-visible spectrum of ferrous HtaB 

exhibits a shift of the Soret band maxima to 417, along with sharpening and shifting of the Q 

bands (Figure 3.25). These absorbance changes are consistent with the formation of the HtaB 

carbonyl. 

The Soret-excited rR spectrum of HtaB−CO reveals two Fe−CO bands at 503 and 532 

cm−1, which shift to 501 and 527 cm−1, respectively, upon 13CO substitution. Despite having two 

νFe−CO stretches, the spectrum reveals only one C−O band and a single Fe-CO band at 1949 and 

562 cm−1, respectively, which shift to 1902 and 554 cm−1 in the 13CO isotopolog (Figure 3.25). 

Placement of the C−O and Fe−CO frequencies on the -back bonding correlation plot is consistent 



50 

with two heme carbonyls having different proximal ligands (Figure 3.26). One form falls near 

the line correlating C−O and Fe−CO of carbonyls having neutral imidazole ligands. The other falls 

on the correlation line neutral proximal ligands coordinated through an O atom. This position is 

consistent with a proximal Tyr ligand whose coordinated O atom interacts with a single 

hydrogen bond donor (vide infra). 

The CO ligand in the trans ImH form is in a weak hydrogen bond interaction with the 

distal pocket as evidenced by its low position along the neutral imidazole line (Smulevich et al., 

1988). This interaction likely involves the native, conserved Tyr56 axial ligand interacting with 

the exogenous CO ligand like that reported for CdHmuT mutants R237A and M292A 

(Draganova et al., 2016). The position of the form having an O-bound proximal ligand, which is 

likely the conserved Tyr56, is indicative of stabilization of the oxygen by a single neutral 

hydrogen-bonding partner. The position is close to both YpHasA (Ozaki et al., 2014) and 

SmHasA (Caillet-Saguy et al., 2008) which have been shown to have a trans neutral His that is 

hydrogen bonded to the axial Tyr (Arnoux et al., 1999; Ozaki et al., 2014). The trans ligand 

environment of HtaB differs from that of CdHmuT, which has been shown to have a pair of 

hydrogen bonds from the guanidinium side chain of a nearby Arg residue (Draganova et al., 

2015; Akbas et al., 2016). The positioning of the Arg hydrogen-bonding partner of the Tyr ligand 

in the crystal structure of CgHmuT has been shown (Muraki and Aono, 2015). A possible neutral 

hydrogen-bonding partner could be Tyr53 which could stabilize the Tyr56 heme ligand in HtaB, 

similar to what is seen with IsdB (Gaudin et al., 2011). 

3.3.4 Thermal Unfolding in the Presence of GdnHCl 

It was previously shown that heating HtaB to 70°C did not show any significant change 

in the Soret (R. Uluisik, unpublished data). Therefore, the thermal denaturation was monitored in 
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the presence of a 1.0 M GdnHCl. Figure 3.27 shows the unfolding curve for HtaB. The apparent 

Tm in the presence of 1.0 M GdnHCl was 61 °C. There is an isosbestic point at 375 nm for the 

unfolding spectra up to the Tm point (data not shown). After the Tm, the spectra deviated from the 

isosbestic point. 

The HtaB solution was allowed to cool back to the starting temperature to test for 

reversibility of the unfolding. Approximately 50% of the Soret was recovered after refolding.  

3.3.5 Time Scale Unfolding of HtaB in the Presence of 4.0 M GdnHCl 

The unfolding curve of HtaB in the presence of 4 M GdnHCl is shown in Figure 3.28. As 

HtaB unfolded, the Soret band decreased, and a shoulder band around 350 nm increased. The 

data at 409 nm were fit to a single-term exponential decay function, which suggested a single 

first-order unfolding process. Unfolding was taken to 95% completion. The rate constant was 

0.018 ± 0.001 min-1 (half-life of 39 min). In contrast, HtaA-CR2 was shown to have a half-life of 

330 min in the presence of 6.6 M GdnHCl (Uluisik et al., 2017). After dialysis, the Soret band 

decreased by 50%, indicating that HtaB was less heme loaded after dialysis. Considering the loss 

of some protein from dialysis, the refolding of HtaB is at least 50% reversible. 

 

 

 

 

 

 

 

 



52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Hemoglobin binding to various hmu gene proteins. Taken from (Allen and 

Schmitt, 2011). 
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Figure 3.2 Heme transfer between HtaA and HtaB. Taken from (Allen and Schmitt, 

2011). 
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Figure 3.3 The sequence of the conserved domain of HtaB as supplied by Dr. Michael 

Schmitt. The strep tag sequence is underlined and bolded. 
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Figure 3.4 Comparing the protein yield of HtaB-WT, HtaB-Y56A, and HtaB-H121A. 
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Figure 3.5 Agarose gel of the PCR reaction of HtaB Y56A.  Lanes corresponding to the 

five reactions in Table A are shown. 
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Figure 3.6 DNA sequence alignment of wild type HtaB-CR and the HtaB-CR H121A 

mutant in the forward direction. The missing stars represent the mutation in the seventh row 

(CAT = His, GCG = Ala). Clustal Omega was used for the alignment (Sievers et al., 2011; Li et 

al., 2015). 
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Figure 3.7 The optical densities at 600 nm for the growth of HtaB-containing cells with 

no glucose are plotted as a function of time. The three data points represent triplicate runs. 
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Figure 3.8 The optical densities at 600 nm for the growth of HtaB-containing cells with 

0.3% glucose are plotted as a function of time. The three data points represent triplicate runs. 
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Figure 3.9 Absorbance as fraction collected of strep-tagged HtaB-WT purified on a 

StrepTactin column. HtaB-WT is seen as a peak between 42-50 mL. The FPLC was run at 4 °C 

with a linear gradient of buffer B (0-100%). 
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Figure 3.10 Absorbance as fraction collected of strep-tagged HtaB Y56A purified on a 

StrepTactin column. HtaB Y56A is seen as a peak between 84-92 mL. The FPLC was run at 4 °C 

with a linear gradient of buffer B (0-100%). 
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Figure 3.11 Absorbance as fraction collected of strep-tagged HtaB H121A purified on a 

StrepTactin column. HtaB H121A is seen as a peak between 56-66 mL. The FPLC was run at 4 

°C with a linear gradient of buffer B (0-100%). 
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Figure 3.12 SDS PAGE gel of WT HtaB-CR confirms a molecular weight of ~ 32 kDa. 

The first two lanes consist of protein ladders, and lanes 3-5 consist of purified strep-tagged 

HtaB. The big bands in the second lane represent proteins with masses of 68 kDa and 26 kDa. 
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Figure 3.13 The UV-visible spectra of HtaB-WT, Y56A, and H121A. The absorbances at 

280 nm have been normalized to 1.0. All spectra were taken in buffer A. 
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Figure 3.14 Comparing the heme-loading of HtaB-WT, HtaB-Y56A, and HtaB-H121A. 
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Figure 3.15 Circular dichroism spectra of HtaB-WT, Y56A, and H121A. All spectra were 

an average of 20 scans in buffer A. 
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Figure 3.16 The UV-visible spectra of 40 μM HtaB Y56A are shown before and after 

incubation overnight at 4 °C with 100 μM hemoglobin. The spectra were normalized to 1.0 at 

280 nm. 
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Figure 3.17 Absorbance versus wavelength of a solution of HtaB-WT with the indicated 

ratio of hemin added. The spectra were taken in buffer A. 
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Figure 3.18 The ratio of the absorbances at 365 nm and 406 nm of WT HtaB as a 

function of the ratio of hemin to WT HtaB. 
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Figure 3.19 Absorbance versus wavelength for the two cuvette heme titration of HtaB 

Y56A up to a heme:protein of 0.74. The spectra are normalized to 1.0 at 280 nm. All spectra 

were taken in buffer A. 
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Figure 3.20 The absorbance at the Soret is plotted as a function of the ratio of the 

concentration of heme to the concentration of HtaB-Y56A. The titration is performed until a 

heme:protein of 0.74. 
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Figure 3.21 Absorbance versus wavelength of the two cuvette heme titration of HtaB-

H121A with the indicated ratio of hemin added. The spectra were normalized to 1.0 at 280 nm. 

The spectra were taken in buffer A. 
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Figure 3.22 The Abs365:AbsSoret is plotted as a function of the ratio of the concentration of 

heme to the concentration of HtaB-H121A. The titration is performed until a heme:protein of 

0.65. 



74 

 

 

 

 

 

 

 

 

Figure 3.23 UV-visible spectra of as-isolated His-tagged HtaB overlaid with increasing 

titrations of hemin. The spectra represent the different equivalents of heme. All spectra are 

normalized to 1.0 at 280 nm and taken in buffer A. 
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Figure 3.24 Ferric high-frequency rR of 

HtaB as a function of pH. Glycine (pH 9.6, 

black), Tris-HCl (pH 8.8, red and 8.0, blue), and 

phosphate (pH 5.8, green) buffers at 100 mM 

were used. Resonance Raman scattering was 

excited with 413.1-nm emission from a Kr+ laser 

using ten mW of power. The assignments are 

made by analogy with other heme proteins. 
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Figure 3.25 Resonance Raman spectra 

of the heme carbonyls of HtaB-WT.  Raman 

scattering was excited using 413.1-nm emission 

from a Kr+ laser; 5.7 mW.  Natural-abundance 

HtaB−CO (top), HtaB−13CO (middle) and 

12CO−13CO difference (blue, bottom) spectra 

are shown in the νFe−CO, δFeCO, and νC−O 

regions.  Bands in the low-frequency region 

were fit using Gaussian peak functions (gray).  

These bands were used to calculate the red 

difference spectrum superimposed on the blue 

points in the bottom left spectrum.  The bands 

sensitive to 13CO substitution are labeled with 

their respective mode designations.  Spectra 

were recorded at pH 8.8.  Inset: UV-visible 

absorbance spectrum of HtaB−CO. 
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Figure 3.26 Resonance Raman correlation plot showing the frequency of the 

iron-carbon bond stretching as a function of the frequency of the carbon-oxygen bond 

stretching. Data courtesy of Dr. Kenton Rodgers and Dr. Gudrun Lukat-Rodgers. The 

two forms of HtaB-CO are shown as filled red stars while the two forms of ChtB-CO 

are shown as filled green stars. HmuT and mutants of HmuT are shown as unfilled blue 

stars (Draganova et al., 2015; Draganova et al., 2016); catalase as a blue hexagon (Hu 

and Kincaid, 1992); SmHasA(WT), SmHasA(H83A), SmHasA(H32A) as magenta 

circles (Lukat-Rodgers et al., 2008). The data for HRP (grey triangle) and globins (grey 

squares) have been previously compiled (Lukat-Rodgers et al., 2008). The dotted line is 

the least squares fit for six-coordinate heme carbonyls in which the proximal ligands is 

a neutral imidazole from a histidine residue (Smulevich et al., 1988; Lukat-Rodgers et 

al., 2008; Streit et al., 2010). The solid blue line represents a compilation of heme 

proteins in which the ligand trans to CO is coordinated through an oxygen atom that is 

hydrogen bonded to an arginine residue via two hydrogen bonds (Hu and Kincaid, 

1992; Draganova et al., 2015). The solid magenta line is the least squares fit for six-

coordinate Fe-CO adducts which are coordinated through an O atom having a single 

hydrogen bond to histidine or tyrosine (Lukat-Rodgers et al., 2008). 
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Figure 3.27 Absorbance at 410 nm as a function of temperature for the ChtB and HtaB 

conserved regions (CR). Experiments were performed in 1 M GdnHCl in buffer A. The line is a 

fit to the equation described in Section 3.2.10. 
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Figure 3.28 Absorbance at 409 nm versus time of the ChtB and HtaB conserved regions 

(CR) at 25 °C. Experiments were performed in 4 M GdnHCl in buffer A pH 8.0. The line is a fit 

to the equation described in Section 3.2.11. 
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Table 3.1 HtaB Mutant Primers 
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Table 3.2 PCR reaction mixtures of lanes 1-5 from HtaB-Y56A agarose gel. 
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4 CHAPTER 4: EXPERIMENTAL CHARACTERIZATION OF THE CHTB HEME 

UPTAKE PROTEIN IN CORYNEBACTERIUM DIPHTHERIAE 

The Raman spectroscopy sections are intended for publication verbatim in Rizvan C. 

Uluisik, Brandon L. Ferrell, Gudrun S. Lukat-Rodgers, Courtni E. Allen, Michael P. Schmitt, 

Kenton R. Rodgers, and Dabney W. Dixon. 

4.1 ChtB in Corynebacterium diphtheriae 

ChtB is a 32.6 kDa hemin-binding protein encoded in the chtA-chtB operon (Allen et al., 

2013). Transcription from a promoter region upstream of chtA is repressed under high-iron 

conditions, similar to the strategy observed for the hmu gene cluster. A putative DtxR-binding 

site overlaps the chtA promoter region. The chtAB operon is surrounded by inverted repeats 

composed of identical putative IS elements. The configuration of the chtAB region suggests that 

the gene may be present on a composite transposon in certain C. diphtheriae strains. Further 

analysis shows that only six out of 13 C. diphtheriae strains studied contain the chtAB genes.  

Sequence analysis predicts that ChtB has an N-terminal leader peptide, which suggests 

that it is secreted; it also has a predicted C-terminal transmembrane region that anchors the 

protein to the cytoplasmic membrane (Allen et al., 2013). ChtB contains a single conserved 

domain (CR) similar to that associated with hemin and hemoglobin binding in HtaA and HtaB 

(Allen and Schmitt, 2009). Due to the high sequence similarity between HtaB and ChtB over the 

full length of the protein, it is possible that the two proteins may have similar functions (Allen et 

al., 2013).  

Previous western blotting studies show that ChtB is expressed more in low-iron media 

than in high-iron media, providing evidence that ChtB expression is iron-regulated (Allen et al., 

2013). Localization studies show that ChtB is predominately associated with the cytoplasmic 
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membrane, which is consistent with a C-terminal transmembrane region on the protein. These 

results are similar to those seen for HtaA and HtaB (Allen and Schmitt, 2009). 

ELISA analysis shows that ChtB binds hemoglobin with a Kd ~5.1 x 10-7 M (Allen et al., 

2013), a binding constant about half that of CR1 and CR2 of HtaA. The deletion of the chtB gene 

had no effect on growth with hemoglobin as the sole iron source; this was similar to the 

observation for htaB. However, an htaB-chtB double mutation shows a significant reduction in 

bacterial growth when compared to the WT. This suggests that HtaB and ChtB have similar 

functions in iron utilization and may also be able to substitute for one another.  

4.2 Materials and Methods 

4.2.1 Expression and Purification 

The ChtB construct, which includes an N-terminal Strep tag, was a gift of Dr. Michael 

Schmitt (Figure 4.1). ChtB was expressed and purified from BL21(DE3) (pETchtB) cells. 

Protein expression was performed as described above. 

Purification was performed manually using a five mL Strep Trap HP column (GE 

Healthcare). The column was equilibrated by washing with five column volumes of buffer A. 

The supernatant from the procedure described above was loaded onto the column, and the 

column was washed with buffer A to remove any unbound material. The eluted fractions were 

checked via UV-visible spectroscopy to ensure all unbound material had eluted off the column. 

Solutions of various concentrations of buffer B, ranging in 10% increments from 10% to 100% 

(one column volume each), were used to elute the protein off the column. The fractions were 

checked with UV-visible spectroscopy to confirm the elution of the protein. A buffer exchange 

by centrifugation (4600 x g, 15 min, and three times) was performed on the fractions using an 
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Amicon Ultra centrifugal filter with a 10 kDa molecular weight cut off to remove d-desthiobiotin 

from solution. The purity of the fractions was confirmed by using SDS-PAGE.  

4.2.2 Spectroscopy: UV-visible and Circular Dichroism 

UV-visible spectra were taken as described in Section 3.3.4.  

Circular dichroism spectra were recorded using a Jasso J-810 spectropolarimeter using 

quartz Suprasil cuvettes with a 1 mm path length. The spectra were taken from 190 to 260 nm. 

The scanning speed was set to 100 nm/min in the continuous scanning mode. The data pitch was 

set to 0.5. As-isolated ChtB (~40% heme loaded) was recorded in 100 mM Tris-Cl and 150 mM 

NaCl at pH 7.0. The final spectrum represents an average of 15 scans.  

The same ChtB sample was heme-loaded to 100% using the two cuvette method 

previously described. A CD spectrum of heme-loaded ChtB was obtained as described above. 

The final spectrum was an average of 15 scans. 

4.2.3 Determining Percent Heme Loading 

Bovine serum albumin (BSA) was used as the standard for the assay. The concentration 

of BSA was calculated using UV-visible spectroscopy with an extinction coefficient of 43,824 

M-1 cm-1 at 280 nm (Fisher). A stock solution of 458 μg/mL BSA was made by dissolving a 

small amount of BSA in 1 mL of buffer A. Coomassie Brilliant Blue G-250 was from Thermo 

Scientific. A solution containing 200 μL dye and 800 μL buffer and allowed to stand for 10 min 

before being used to blank the UV-visible spectrophotometer. BSA standards were made by 

adding 2 to 10 μL of BSA stock to Eppendorf tubes containing volumes of buffer ranging from 

798 to 790 μL, making a total protein and buffer volume of 800 μL. To each Eppendorf tube, 200 

μL of dye were added to make a final volume of 1000 μL. The solution allowed to incubate for 

10 min. The absorbance at 595 nm was recorded for each sample. Each standard was repeated in 
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duplicate and averaged. A plot of [BSA] in μg/mL vs. Abs595 was constructed. The plot was fit to 

a linear equation. The ChtB sample was prepared in the same manner as the 6 μL BSA standard. 

The sample was allowed to incubate for 10 min, and the spectrum was taken. The absorbance at 

595 nm was used to calculate the concentration of ChtB from the standard curve. 

The same ChtB sample from the Bradford assay was used to determine the percent heme-

loaded of as-isolated ChtB using the pyridine hemochrome assay (Berry and Trumpower, 1987). 

A pyridine solution was prepared under the fume hood in a 15 mL conical centrifuge tube 

(Thermo) by adding 4 mL of pyridine and 6 mL of 400 mM NaOH, and the solution was 

inverted to ensure mixing. The UV-visible spectrophotometer was blanked by adding 750 μL of 

the pyridine solution into a black-capped quartz cuvette using a 500 μL glass syringe. The ChtB 

sample was prepared by adding 250 μL of ChtB into the cuvette and shaken to ensure mixing. A 

saturated sodium dithionite solution was prepared by adding excess sodium dithionite into 500 

μL of buffer A. The solution was quickly mixed, and 10 μL of the dithionite solution was added 

to the cuvette containing ChtB using a ten μL glass syringe. The solution was shaken to ensure 

mixing, and a spectrum was taken. The heme concentration was calculated using an extinction 

coefficient of 34640 M-1 cm-1 at 556 nm (Berry and Trumpower, 1987). 

4.2.4 Resonance Raman Spectroscopy 

Resonance Raman studies were performed by Dr. Kenton Rodgers as described in 

Section 3.3.8. 

4.2.5 ChtB pH Titration 

A 1 mL solution of as-isolated ChtB in a buffer consisting of 20 mM Tris-Cl (7.0-9.0, 

Sigma), 20 mM CHES (pH range 8.6-10.0, Sigma), and 20 mM CAPS (pH range 9.7-11.1, 

Sigma) was prepared with a starting absorbance of 0.369 at the Soret. Aliquots of 1 M NaOH (2 
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μL each) were added to the solution while stirring. The solution was allowed to stir for 5 min 

before the next NaOH addition. As-isolated ChtB was titrated with NaOH from pH 6.7 to 10.96. 

4.2.6 Heme Transfer between ChtB and HtaB 

Hemin transfer from fully heme-loaded ChtB to HtaB was assessed using as-isolated His-

tagged HtaB (heme loading ~ 15%). A 1 mL sample of strep-tagged ChtB was fully heme loaded 

by the two cuvette described for the heme titration. The protein solution was run down a 

desalting column to ensure that no free heme was in solution. The ChtB solution was loaded onto 

a five mL streptavidin column. The column was washed with 4 CV of buffer A. A volume of 1 

mL of His-tagged HtaB was added to the column. The column was capped and allowed to sit at 4 

°C for one h. HtaB was washed off with buffer A in 2 mL fractions. The fractions were checked 

via UV-visible spectroscopy to track the elution of HtaB from the column. ChtB was eluted with 

a linear gradient of buffer B in 2 mL fractions. The fractions were checked with UV-visible 

spectroscopy. The fractions were collected and concentrated using the centrifuge at 6000 rpm for 

15 min. An SDS PAGE was used to test for the purity of the samples. 

4.2.7 Thermal Unfolding in the Presence of GdnHCl 

Thermal unfolding was performed on the UV-visible spectrophotometer equipped with a 

TC125 Quantum Northwest temperature controller. A screw-top quartz cuvette with a 1 cm path 

length was used. As-isolated ChtB was prepared in 50 mM NaH2PO4 at pH 7.0 containing 1 M 

GdnHCl. The thermal unfolding was carried out over a temperature range of 34 to 82 ˚C. Spectra 

were recorded every two ˚C after a 1 min incubation period. 

Kaleidagraph (version 4.01, Synergy Software) was used to fit the data using a two-state 

protein unfolding model (Swint and Robertson, 1993): 
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𝐴 =  
(𝐴𝑓 + 𝑚𝑓𝑇) + (𝐴𝑈 + 𝑚𝑈𝑇)exp [

𝛥𝐻𝑚

𝑅(𝑇𝑚−1 − 𝑇−1)
]

1 + exp [
𝛥𝐻𝑚

𝑅(𝑇𝑚
−1 − 𝑇−1)

]
 

 

where A is the absorbance at any temperature along the unfolding curve, Af is the absorbance of 

the folded state, mf is the slope of A vs. T for the folded state, AU is the absorbance of the 

unfolded state, mU is the slope of A vs. T for the unfolded state, Tm is the temperature at which 

the protein is half unfolded, ΔHm is the enthalpy of unfolding, R is the ideal gas constant, and T 

is the temperature (Kelvin). 

4.2.8 Time Scale Unfolding in the Presence of 4.0 M GdnHCl 

Solutions of ChtB and GdnHCl were each prepared in buffer A. The GdnHCl 

concentration was determined to be 7.5 M by the refractive index method (Pace and Scholtz, 

1997). The stock GdnHCl solution was added to the ChtB solution to give a final concentration 

of 4 M. The absorbance was recorded every 5 min for 12 h. The absorbance at 407 nm (Soret) vs. 

time was fit to a single-term exponential function: 

𝐴𝑡 = (𝐴0 − 𝐴∞) exp(−𝑘𝑈𝑡) + 𝐴∞ 

where At is the absorbance at any time during the unfolding reaction, A0 is the initial absorbance, 

A∞ is the absorbance of the completely unfolded protein, (A0 - A∞) is the total change in 

absorbance for complete unfolding, and kU is the unfolding rate constant. The sample was 

dialyzed after unfolding to evaluate the reversibility of the unfolding process. 

4.2.9 Fluorescence of GdnHCl-induced Unfolding of ChtB 

The GdnHCl-induced unfolding of as-isolated ChtB (~30% heme loaded) and heme 

loaded (~80%) was investigated by observing the tryptophan emission spectrum at 340 nm on a 

Perkin Elmer LS fluorescence spectrophotometer. The unfolding was followed using a double 
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cuvette technique in which one cuvette contained buffer A and the other contained ChtB in 

buffer A. A GdnHCl titration was performed on both cuvettes in the same manner up to a 

GdnHCl concentration of 2.1 M. The protein was excited with 285 nm light, and the emission 

spectrum was observed between 300 to 500 nm. The same was performed on fully heme-loaded 

ChtB to investigate the effect of heme loading on unfolding. 

The unfolding curves were analyzed using the following equation (Pace and Scholtz, 

1997): 

𝐼 =
(𝐼𝐹 + 𝑚𝐹[𝐷]) + (𝐼𝑈 + 𝑚𝑈[𝐷])exp [

𝑚([𝐷] − [𝐷]1
2

)

𝑅𝑇

1 + exp [
𝑚 ([𝐷] − [𝐷]1

2
)

𝑅𝑇 ]

 

where I is the fluorescence intensity at any point along the curve, IF is the intensity of the folded 

state, mF is the slope of the folded state, [D] is the concentration of GdnHCl, IU is the intensity of 

the unfolded state, mU is the slope of the unfolded state, [D]1/2 is the concentration of GdnHCl at 

the midpoint of the unfolding curve, R is the ideal gas constant, and T is the temperature in 

Kelvin. 
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4.3 Results and Discussion 

4.3.1 ChtB Expression and Purification 

The FPLC chromatogram of the purification of ChtB is shown in Figure 4.2. The SDS gel 

used to assess protein purity is shown in Figure 4.3. ChtB appears to be pure and shows a 

molecular weight of approximately 27 KDa. This matches the expected molecular weight 

calculated from the protein sequence (26.6 KDa). 

4.3.2 UV-Visible Spectroscopy of ChtB 

Figure 4.4 shows the UV-visible spectrum of ChtB overlaid with that of HtaA-CR2 and 

HtaB. ChtB has a Soret peak of 407 nm and three α/β-peaks at 501, 542, and 625 nm. A charge 

transfer band appears at 625 nm in all three spectra. This band is consistent with a high-spin 

heme coordinated through an oxygen-containing ligand, often a tyrosine (Du et al., 2011; 

Tiedemann and Stillman, 2011). The UV-visible spectrum of ChtB is very similar to that of 

HtaB, which is proposed to have a Tyr axial ligation; the Soret peak of ChtB has only a one nm 

hypsochromic shift in comparison to HtaB. As-isolated ChtB has a higher Soret:280 ratio, 

indicating that as-isolated ChtB is more heme-loaded than as-isolated HtaB. 

4.3.3 Determination of Percent Heme Loading 

The as-isolated ChtB sample was determined to have a concentration of 1.71 μg/mL by 

the Bradford Assay. The sample was diluted by a factor of 167 in comparison to the stock 

solution. Therefore, the stock solution was found to be 285 μg/mL. The molecular weight of this 

construct of ChtB is 26.6 KDa. Using these values, the concentration of as-isolated ChtB was 

found to be 10.2 μM.  

The spectrum after the addition of sodium dithionite and pyridine contains the signature β 

peak at 525 nm and α peak at 556 nm (Berry and Trumpower, 1987). The absorbance of at 556 
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nm was 0.055. This peak corresponds to the presence of the bispyridine ferrous heme complex 

(Berry and Trumpower, 1987). Using the extinction coefficient of this complex and the 

absorbance, the concentration was calculated to be 1.59 μM. The original ChtB solution was 

diluted by a factor of 4, so the concentration of heme in the original solution was 6.35 μM and 

hence the concentration of holo protein. Using the total protein concentration obtained from the 

Bradford assay and the heme concentration, the amount of holo protein was determined to be 

approximately 60%.  

The ChtB stock solution showed an absorbance at the Soret (407 nm) of 0.715. The Soret 

peak corresponds to the heme-bound protein. Since the concentration of holo protein in the stock 

solution was determined, the extinction coefficient at the Soret can be determined using Beer’s 

Law. The extinction coefficient at the Soret (407 nm) was calculated to be 1.13 x 105 M-1 cm-1. 

4.3.4 Resonance Raman of ferric ChtB 

ChtB forms a 6cHS hemin complex with spectral characteristics consistent with a 

proximal Tyr binding motif (Figure 4.5). The 3, 38, and 2 core stretching frequencies of 1486, 

1522 and 1560 cm−1, respectively, indicate 6cHS hemin (Hu et al., 1996). Unlike ferric HtaB, 

peripheral substituent modes in ChtB exhibit slight pH dependences, as seen in the shifts of the 

in-plane vinyl stretch from 1613 to 1627 cm−1, the in-plane CC stretch from 1560 to 1558 

cm−1, the in-plane pyrrole breathing mode from 761 to 754 cm−1, out-of-plane pyrrole fold from 

739 to 735 cm−1 and an increase at 666 cm−1, and out-of-plane wags from 329 to 327 cm−1 and 

from 311 to 308 cm−1. None of these vibrations are particularly sensitive to the coordination 

number or spin state of the heme, as evidenced by the constancy in the 4 and 3 frequencies 

among these proteins. This indicates that the structural determinants for coordination number and 



91 

spin state in the hemin binding pockets of HtaB and ChtB are similar, with the environments that 

impact conformations of the peripheral substituents being slightly variable. 

4.3.5 Resonance Raman of ferrous ChtB 

Ferrous ChtB was solely 5cHS as evidenced by its 3 at 1468 cm−1 and Soret maximum 

of 425 nm. The 11, 2, and 10 core stretching frequencies of 1556 cm−1, 1584 cm−1, and 1623 

cm−1, respectively, indicate a 5cHS heme environment, similar to the 5cHS contribution to the 

ferrous HtaB spectrum. The absence of bands attributable to a 6cLS form indicates that reduction 

destabilizes its 6cLS heme to an even greater extent than in HtaB. 

4.3.6 Resonance Raman of ferrous carbonyl ChtB 

Through the sensitivity of Raman-active Fe-CO group frequencies to  back bonding and 

donor strength of the trans (proximal) ligand, resonance Raman spectra of heme protein 

carbonyls are useful probes of both the bonding and non-bonding properties of the heme pocket. 

The extent of -back bonding is evidenced by the νFe−C, νC−O frequencies which, when placed on 

a plot of νFe−CO versus νC−O frequencies, yield insight into the electrostatic and steric properties of 

the distal heme pocket and the nature of the trans axial ligand (Vogel et al., 2000; Spiro and 

Wasbotten, 2005; Streit et al., 2010; Spiro et al., 2013). The Fe−13CO isotopolog of ChtB was 

used to verify the identity of rR bands corresponding to the Fe−C stretching (Fe−CO), Fe-CO 

bending (Fe-CO) and C−O stretching (C−O) modes, as shown in Figure 4.6. 

Under an atmosphere of carbon monoxide, the UV-visible spectrum of ferrous ChtB 

exhibits a shift of the Soret band maxima to 415 nm, along with sharpening and shifting of the Q 

bands (Figure 4.6). These absorbance changes are consistent with the formation of the ChtB 

carbonyl. 
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ChtB−CO exhibits two Fe−CO bands [503(−3) and 531(−5) cm−1], one FeCO band at 

563(−13) cm−1 and one C−O band at 1953(−47) cm−1, similar to what was observed for 

HtaB−CO (Figure 4.6). Placement of these pairs of C−O and Fe−CO frequencies on the -back 

bonding correlation plot is consistent with two heme carbonyls having different proximal ligands 

(Figure 3.26). One form falls near the line correlating C−O and Fe−CO of carbonyls having 

neutral imidazole ligands. The other falls on the correlation line neutral proximal ligands 

coordinated through an O atom. This position is consistent with a proximal Tyr ligand whose 

coordinated O atom interacts with a single hydrogen bond donor. These results are similar to 

what was seen in HtaB-WT. 

4.3.7 pH Titration of ChtB 

The pH titration showed no significant spectral changes over the 6.7 – 10.9 pH range 

(data not shown). There was only a 3% change at the Soret and a 7% change in the charge 

transfer band at 625 nm.  

4.3.8 Heme Transfer between ChtB and HtaB 

Previous studies showed that holo HtaA can transfer a heme to HtaB (Allen and Schmitt, 

2011). This has been the only transfer shown thus far in the hmu-cht heme uptake pathway. As 

discussed in Chapter 2, HtaB and ChtB both have significant sequence similarities, suggesting 

that the proteins may have similar functions as intermediate transport proteins. Previous studies 

have also shown that single deletions of htaB or chtB showed no effect on cell growth with 

hemoglobin as the sole iron source, while a double deletion significantly reduced cell growth 

(Allen et al., 2013). Based on these results it was proposed that HtaB and ChtB may be able to 

substitute for one another. Because these two proteins may have the same function and may be 

able to substitute for one another, the possibility of heme transfer between the two was studied. 
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To assess heme transfer between HtaB and ChtB, heme-loaded strep-tagged ChtB was 

bound to a StrepTactin column and incubated with as-isolated His-tagged HtaB. The proteins 

were separated by washing the column with buffer A to elute all His-tagged HtaB followed by 

the elution of strep-tagged ChtB with a linear gradient of buffer B. The fractions were collected, 

concentrated, and assessed for purity by SDS-PAGE, as shown in Figure 4.7. The gel clearly 

shows that there is only one protein per fraction. The UV-visible spectra of as-isolated ChtB 

before and after the transfer are shown overlaid in Figure 4.8. The spectra show clear indications 

that heme loading of ChtB decreased after incubation. This is evident a decrease in the Soret:280 

nm ratio from 1.50 to 0.68, indicating a decrease in the amount of heme-loaded strep-tagged 

ChtB. Figure 4.9 shows the shows the UV-visible spectra of His-tagged HtaB before and after 

the transfer. The Soret:280 nm ratio increased from 0.41 to 0.86, indicating an increase in the 

amount of heme-loaded His-tagged HtaB. The results show that HtaB and ChtB readily transfer 

heme to one another. This indicates that there may be an extent of crossover of heme transfer 

between the hmu and cht heme uptake pathways in vitro.  

4.3.9 CD Spectroscopy 

The CD spectra of as-isolated ChtB is shown in Figure 4.10. Like HtaB (Figure 3.15), 

ChtB appears to consist mostly of β-sheets as indicated by a single local minimum at 

approximately 215 nm. The CD shows little difference between as-isolated ChtB (~30% heme-

loaded) and holo ChtB (~70% heme-loaded), as shown in Figure 4.11. The transition from apo- 

to holo-ChtB does not have any effect on the secondary structure of the protein. 

4.3.10 Time Scale Unfolding in the Presence of GdnHCl 

The unfolding curve of ChtB in the presence of 4 M GdnHCl is shown in Figure 3.28. 

The kinetics were assessed in GdnHCl for comparison with an earlier study on HtaA (Uluisik et 
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al., 2017). The curve was fit to a single-term exponential decay function, which suggested a 

single first-order unfolding process. Unfolding was taken to 95% completion. The rate constant 

was 0.018 ± 0.001 min-1 (half-life of 39 min). The kinetics for HtaB were identical. In contrast, 

HtaA-CR2 was shown to have a half-life of 330 min in the presence of higher (6.6 M) GdnHCl 

(Uluisik et al., 2017). Thus, both HtaB and ChtB are significantly less stable that HtaA-CR2 with 

respect to unfolding. After dialysis to remove GdnHCl, the Soret band of ChtB decreased by 

40%. Considering the loss of some protein from dialysis, the refolding of ChtB is at least 60% 

reversible. The reversibility of ChtB is similar to that of HtaB. 

4.3.11 Thermal Unfolding in the Presence of GdnHCl 

Figure 3.27 shows the thermal unfolding curves for HtaB and ChtB in 1 M GdnHCl. 

Previous studies showed that HtaB without the presence of denaturant did not readily unfold, so 

1 M GdnHCl was added to facilitate protein unfolding (R. Uluisik, data not shown). The 

apparent Tm was 61 °C for ChtB. ChtB had an isosbestic point at approximately 390 nm up to the 

Tm, similar to what was observed for in HtaB (data not shown). The ChtB solution was allowed 

to cool back to the starting temperature and incubate for 30 min. Approximately 60% of the 

original absorbance at the Soret was recovered, indicating that ChtB was able to bind heme upon 

refolding. HtaB showed similar properties with approximately 50% of the Soret was recovered 

upon refolding.  

The thermal unfolding curves of HtaB and ChtB in 1 M GdnHCl are almost identical, 

with lower Tm values (61 °C) compared to HtaA 84 °C (Uluisik et al., 2017). The unfolding is 

also more readily reversed, with HtaB, ChtB and HtaA recovering 50%, 60% and 30%, 

respectively of the original spectrum upon cooling. It was previously shown that a deletion of 

htaA reduces cell growth, but a single deletion of htaB or chtB showed no effect on cell growth 
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(Allen et al., 2013). A double deletion, however, slightly decreased cell growth in comparison to 

WT. The results from the thermal unfolding help to strengthen the proposal that HtaB and ChtB 

are very similar and can substitute for one another in the heme uptake pathway. 

4.3.12 GdnHCl-induced Unfolding of ChtB 

Fluorescence spectroscopy was used to observe the effect of heme loading on the stability 

of WT ChtB with respect to increasing concentrations of GdnHCl. The tryptophan emission at 

340 nm was monitored as a function of the concentration of GdnHCl. Figure 4.12 and Figure 

4.13 show the unfolding curves for as-isolated (~30% heme-loaded) and holo (~80%) protein, 

respectively. The midpoint denaturation concentrations were 0.75 ± 0.03 for as-isolated and 0.63 

± 0.03 for heme-loaded. The D1/2
 values for the as-isolated and holo proteins were not 

substantially different. The experiment implies that heme loading does not substantially affect 

the stability of the protein with respect of the concentration of GdnHCl.  
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Figure 4.1 The sequence of the conserved domain of ChtB as supplied by Dr. Michael 

Schmitt. The strep tag sequence is underlined and bolded. 
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Figure 4.2 Absorbance as fraction collected of strep-tagged ChtB-WT purified on a 

StrepTactin column. ChtB-WT is seen as a peak between 85-95 mL. The FPLC was run at 4 °C 

with a linear gradient of buffer B (0-100%). 
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Figure 4.3 SDS PAGE of ChtB-WT after purification. Lane 1 consists of the protein 

ladder. Lane 2 contains both BSA (67 kDa) and myoglobin (17 KDa). Lanes 3-4 consist of 

varying concentrations of ChtB after purification. 



99 

 

 

 

 

 

 

 

 

Figure 4.4 The spectra of as-isolated HtaA-CR2, HtaB-CR, and ChtB-CR overlaid. These 

spectra are normalized to 1.0 at the Soret. The spectra were taken buffer A at room temperature. 
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Figure 4.5 Ferric high-frequency rR of 

ChtB as a function of pH.  Tris-HCl (pH 8.8, 

blue and 8.0, red) and phosphate (pH 5.8, 

green) buffers at 100 mM were used.  The 

excitation wavelength from 413.1 nm from Kr 

ion laser with 11.4 mW of power. The νC=C band 

shifts under the ten band as the pH is decreased 

indicating a change in the interactions between 

the vinyl groups and the heme pocket. 
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Figure 4.6 Resonance Raman spectra of 

the ferrous carbonyls of WT ChtB with 

conditions and interpretation as described in 

the legend of Figure 3.25. 
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Figure 4.7 SDS PAGE of HtaB-WT and ChtB-WT after the heme transfer experiment. 

ChtB-WT is in lanes 2-3, and HtaB is in lanes 4-5. 
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Figure 4.8 Absorbance versus wavelength of a solution of heme-loaded ChtB-WT before 

and after incubation with as-isolated HtaB-WT. The spectra were taken in buffer A. 
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Figure 4.9 Absorbance versus wavelength of a solution of as-isolated HtaB-WT before 

and after incubation with heme-loaded ChtB-WT. The spectra were taken in buffer A. 
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Figure 4.10 Circular dichroism spectra of as-isolated ChtB-WT and HtaB-WT 

normalized to -20 mdeg at 215 nm. The spectra are an average of 20 scans taken in buffer A. 
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Figure 4.11 CD spectra of ChtB-WT before and after heme loading. The spectra are an 

average of 20 scans taken in buffer A. 
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Figure 4.12 Tryptophan emission of as-isolated ChtB (30% heme loaded) 

as a function of GdnHCl concentration. The reaction was in 100 mM Tris-HCl, 

150 mM NaCl, pH 8.0. The data points were recorded after chemical 

equilibration (10 min). Solid points represent the fluorescence intensity at the 

respective concentration of GdnHCl. The data were fit using the equation 

described in Section 4.2.9. 
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Figure 4.13 Tryptophan emission of fully heme-loaded ChtB as a function of 

GdnHCl concentration. The reaction was in 100 mM Tris-HCl, 150 mM NaCl, pH 

8.0. The data points were recorded after chemical equilibration (10 min). Solid 

points represent the fluorescence intensity at the respective concentration of 

GdnHCl. The data were fit using the equation described in Section 4.2.9. 
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5 GENERAL CONCLUSIONS 

Iron is an essential nutrient for many pathogenic bacteria. Invading pathogenic bacteria 

use the body’s heme-containing proteins as sources of iron. This thesis analyzes a combination 

of the bioinformatics, biochemical, and biophysical properties of the HtaB and ChtB heme 

uptake proteins in C. diphtheriae.  

As of this writing, a crystal structure of HtaA has not been published. There are two types 

of heme uptake systems utilized by Gram-positive pathogenic bacteria: the NEAT system and 

HtaA system. Our bioinformatics study indicates that for the two classifications of Gram-positive 

bacteria (Actinobacteria and Firmicutes), the Actinobacteria group utilize the HtaA system and 

Firmicutes utilize the NEAT system. The HtaA domains are consistently characterized by the 

conservation of two Tyr residues and one His residue. These domains also contain structural 

motifs that are similar to those found in the NEAT domains, such as the conserved SXXXY 

motif in the HtaA domains.  

The heme uptake proteins HtaB and ChtB were previously proposed to function similarly 

and possibly be interchangeable for one another (Allen et al., 2013). A comparison of sequence 

alignments, UV-visible spectroscopy and resonance Raman studies of HtaB-WT and WT ChtB 

predict that both proteins utilize Tyr as the heme axial ligand. Resonance Raman data of ferrous-

CO HtaB and ChtB shows that both contain two heme coordination forms: one with a Tyr trans 

to the CO group and the other with a His trans to the CO group. The data indicates that the first 

conserved Tyr and conserved His residues are near the bound heme. The Tyr-bound form of the 

ferrous-CO form of both HtaB and ChtB falls on the line on the resonance Raman correlation 

plot correlating with a single hydrogen bonding partner. These data are consistent with the 
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proposal that Tyr acts as the axial ligand with His acting as a hydrogen bonding partner to the 

Tyr.  

HtaB and ChtB are nearly identical when analyzing their biochemical and biophysical 

properties. Both proteins have a Tm of 61°C in the presence of 1.0 M GdnHCl and both have 

half-lives of 39 min in the presence of 4.0 M GdnHCl at 25 °C. This substantial biophysical 

similarity of these proteins is consistent with their being able to substitute for one another in 

heme uptake, as has been proposed from microbiology studies (Allen and Schmitt, 2011; Allen et 

al., 2013) 

The level of antibiotic resistant bacteria is continually on the rise. This makes it more 

difficult to treat patients infected with these pathogens. Heme uptake has been shown to play a 

critical role in the ability of some of these pathogens to obtain the necessary iron and survive. 

Due to the importance of these uptake systems in bacteria, understanding the heme uptake 

mechanism utilized by bacteria could allow for the development of alternative treatments for 

antibiotic-resistant bacteria. 
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