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ABSTRACT 

C. elegans provides a number of tools for understanding cellular networks and neural 

connections. We identified jd1500 in previous reports as a mutation that affects forward 

locomotion, which is unusual. Our aims were to: 1) identify the gene responsible for the 

phenotype that jd1500 exhibits and 2) distinguish the basis for the locomotive asymmetries. 

Using next-gen whole genome sequencing, we were able to identify specific genes that are likely 

responsible for the phenotype it shows. Our results suggest that gap junction mutations mask 

jd1500 activity, but also suggest that jd1500 masks acr-2 activity.  

 

INDEX WORDS: Proprioception, Gap Junctions, C. elegans, jd1500, Neural Development.   



CHARACTERIZING A NOVEL FORWARD LOCOMOTION MUTANT IN  

CAENORHABDITIS ELEGANS 

 

 

 

by 

 

 

 

 

CHRISTIAN RANDALL 

 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

in the College of Arts and Sciences 

Georgia State University 

2018 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Christian Anthony Randall 

2018  



CHARACTERIZING A NOVEL FORWARD LOCOMOTION MUTANT IN  

CAENORHABDITIS ELEGANS 

 

 

by 

 

 

CHRISTIAN RANDALL 

 

 

Committee Chair:  Walter Walthall 

 

Committee: Barbara Baumstark 

Chun Jiang 

 

 

Electronic Version Approved: 

 

 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

May 2018  



iv 

 

DEDICATION 

I’d like to dedicate this paper to my mother and father, Maureen and Lawrence. Without 

them, I would neither exist nor have made it this far. I’d also like to dedicate this paper to coffee. 

I’m fairly sure I wouldn’t have finished it without that elixir.



v 
 

 

ACKNOWLEDGEMENTS 

As far as acknowledgements go, I’ve got to give special acknowledgements to Dr. 

Walthall. There was a point in the initial data analysis where I honestly didn’t think I’d actually 

be doing this as a thesis paper. To write a thesis was my goal from the very beginning and Dr. 

Walthall actually encouraged me to pursue it when I thought I couldn’t. I’d also be remiss if I 

didn’t mention my lab mates, both former and current: Richard, Aaron, Michael, Ling, Xiaobei, 

Linzie, and Jessie. You guys will probably never read this, but thanks for making the lab a fun 

environment to work in.  

I’d also like to acknowledge Dr. Baumstark and the Biobus crew, for providing a great 

workplace separate from my lab work. Also, I’d like to thank both Dr. Baumstark and Dr. Jiang 

for their input on my committee. Then there’s Dr. Cymbaluk who graciously allowed me to use 

his lab equipment to complete my experiments, and Nicolette Dutken with Thermofisher, who 

walked me through the process for sorting sequencing data.  Finally, I want to acknowledge my 

best friend, Lyndon, who isn’t a biology student but helped me sort a huge portion of my data for 

analysis. 

Thank you for your help. You guys are the best.



vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................ V 

LIST OF TABLES ................................................................................................................... VIII 

LIST OF FIGURES .................................................................................................................... IX 

1 INTRODUCTION............................................................................................................. 1 

1.1 Neurons and the Cellular Networks that form them Insert text here… ......... 1 

1.2 C. elegans as a model system ............................................................................... 4 

1.3 The C. elegans Nervous System ........................................................................... 5 

1.4 Aims of this study ................................................................................................. 6 

2 EXPERIMENT ................................................................................................................. 9 

2.1 Strain Maintenance and Mating Protocol .......................................................... 9 

2.2 Whole genome sequencing ................................................................................. 10 

2.3 Locomotion assays .............................................................................................. 10 

2.3.1 Coil Frequency Assay ................................................................................... 10 

2.3.2 DV Ratio Analysis ......................................................................................... 11 

2.3.3 L1 Bias Analysis ........................................................................................... 12 

3 RESULTS ........................................................................................................................ 13 

3.1 Next-Gen Whole Genome Sequencing and Genetic Screening ...................... 13 

3.2 Locomotion Assays ............................................................................................. 17 

3.3.1 L1 Bias Testing ............................................................................................. 17 



vii 

3.3.2 Proprioceptive Mutant Analyses .................................................................. 17 

3.3.3 Innexin Mutant Analyses ............................................................................. 22 

4 DISCUSSION .................................................................................................................. 27 

REFERENCES ............................................................................................................................ 33 

APPENDIX .................................................................................................................................. 39 

 

  



viii 

LIST OF TABLES 

Table 1 Candidate genes found within the deficiency region. Gene descriptions are sourced 

from wormbase.org. Stars indicate genes that have been tested. Genome effect data is 

sourced from analysis. ...................................................................................................... 14 

Table 2 P-values for Proprioceptive mutants coil frequency comparisons. Bold indicated 

One-Way ANOVA. ‘>’ indicated Student T-Test. If ANOVA P-value was less than 0.05, 

t-tests were deployed......................................................................................................... 39 

Table 3 DV ratio values for Proprioceptive mutants vs jd1500.............................................. 39 

Table 4 P values for Proprioceptive Mutant DV ratios. Student T-tests were used. ............... 39 

Table 5 P-values for Innexin mutants coil frequency comparisons. Bold indicated One-Way 

ANOVA. ‘>’ indicated Student T-Test. If ANOVA P-value was less than 0.05, t-tests 

were deployed. .................................................................................................................. 40 

Table 6 DV ratio values for Innexin mutants vs jd1500. ......................................................... 40 

Table 7 P values for Innexin Mutant DV ratios. Student T-tests were used. ........................... 40 

Table 8 DV ratio values for Innexin controls. .......................................................................... 41 

Table 9 P values for Innexin controls. Bold indicated One-Way ANOVA. ‘>’ indicated 

Student T-Test. If ANOVA P-value was less than 0.05, t-tests were deployed. .............. 41 

  

 

  



ix 

LIST OF FIGURES 

Figure 1 C. elegans life cycle (Altun et. al., 2012; Fielenbach et. al., 2008). ................................ 4 

Figure 2 jd1500 coiling behavior. Compared against wild-type (adapted from Alcala et. al, 

2016). .................................................................................................................................. 7 

Figure 3 jd1500 DV Ratio analysis example. Scale Bar represents 101 μm ............................. 11 

Figure 4 Data from Ion Server. a) Read coverage. b)Accuracy across different read lengths .. 13 

Figure 5 Coil Frequency Comparison for jd1500 and proprioceptive mutants. Error bars 

represent standard deviation. Significance was calculated using ANOVA. If p-values 

were less than 0.05 in ANOVA, t-tests were applied to discern which of the tested 

mutants were similar or not. (n=15) (Table 2) .................................................................. 19 

Figure 6 DV Ratio Time Series. Error bars indicate Standard Error. See Table 3 in appendix for 

values. ............................................................................................................................... 22 

Figure 7 Coil Frequency Comparison for Gap Junction Mutants Error bars represent 

standard deviation. Significance was calculated using ANOVA. If p-values were less than 

0.05, t-tests were employed. (n=15) (Table 5) .................................................................. 23 

Figure 8 DV Ratio Time Series. Error bars indicate Standard Error. See Table 6 in appendix for 

values. ............................................................................................................................... 25 

Figure 9 DV Ratio Time Series. Error bars indicate Standard Error. See Table 8 in appendix for 

values. ............................................................................................................................... 26 

  

 

 



1 

1 INTRODUCTION  

1.1 Neurons and the Cellular Networks that form them 

Cellular networks provide intercellular communication tools that allow groups of cells to 

adapt to their environment together. Cellular networks are the sum total of a number of ‘moving 

parts’: the cells themselves, proteins both on the surface of and within the cell, specific 

molecules necessary for protein activity, and various nucleic acids. Of the cellular networks, 

neural networks are arguably the most important. Neural networks are formed between a 

combination of interconnected neurons and other neurons or non-neural target cells (Foster et. 

al., 1897). Neural communication is integral parts of a variety of systemic functions that include 

are not limited to nociception in dermal cells, memory formation, and locomotion. In most 

animal species, locomotion involves interconnected neural and muscular networks. Neural 

connections between both neurons and muscle cells are referred to as synapses, of which there 

are two kinds (Foster et. al, 1897; Fitzpatrick et al., 2001).  

Chemical synapses are a specialized cellular communication tool that allows neurons to 

communicate with each other and with muscle cells. They are characterized by synaptic clefts, 

which are small gaps between the communicating cells that allow the transmission of 

neurotransmitters (Fitzpatrick et al., 2001). Within the synaptic cleft are a few functional parts on 

both the presynaptic and postsynaptic cell. The presynaptic cell contains neurotransmitter 

vesicles and cellular machinery that facilitates vesicular release on its axonal end (Fitzpatrick et 

al., 2001). The postsynaptic cell has receptors on its dendrite that bind to the neurotransmitter 

released by the axon of the presynaptic cell (Fitzpatrick et al., 2001). Also found in the dendrite 

of the postsynaptic cell is a complex of intercellular anchoring and trafficking proteins—the post 

synaptic density—that allow the postsynaptic cell to modulate the number of available receptors 
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for neurotransmitters (Fitzpatrick et al., 2001). Neurotransmitters modulate the activity of the 

postsynaptic cell in one of two ways: by attaching to gated ion channels or by modulating the 

activity of second messenger pathways within the cell (Fitzpatrick et al., 2001). Because of the 

small length of 20 to 40 nm found in the synaptic cleft, neurons involved can quickly alter the 

concentration of neurotransmitters by releasing more or increasing re-uptake of released 

neurotransmitters (Fitzpatrick et al., 2001). In this way, chemical synapses control the firing of 

neural action potentials. 

Some neurons use both chemical synapses and electrical synapses. Termed gap junctions, 

these electrical synapses are formed by multi-subunit pores between two adjacent cells (Hu et. 

al., 1999). These are approximately 3.5 nm in length and allow ions and other small molecules to 

pass between cells without using neurotransmitters. In neurons, gap junctions allow electrical 

impulses to pass between cells, which helps propagate action potentials (Hu et. al., 1999). In 

vertebrate animals, gap junctions are called connexins. These share no sequence similarity with 

innexins, which are the invertebrate equivalent and are expressed in C. elegans (The C. elegans 

Sequencing Consortium, 1998). There are a number of innexins expressed in C. elegans, of 

which a few are functionally related to locomotion (Barnes et. al., 1997; Phelan et. al., 2001; 

Starich et. al., 1993). Because electrical synapses do not use neurotransmitters, they are not as 

readily alterable as the chemical synapses (Fitzpatrick et al., 2001). However, due to the direct 

linkage of the cytoplasm via gap junctions, electrical synapses provide a faster response between 

the two involved cells (Fitzpatrick et. al., 2001). Gap junctions also allow cells to mirror each 

other, with the postsynaptic cell mirroring either the depolarization or hyper polarization of the 

presynaptic cell (Fitzpatrick et. al., 2001). 
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Both synaptic controls can contribute to a rhythmic neural system, which allows for 

precise control of muscular contractions. The cellular networks that are responsible for 

generation of rhythmic contractions in mammals and other animals are referred to as Central 

Pattern Generators (Proske et. al., 2009). CPGs use proprioceptive elements to manage muscle 

tension and tone in rhythmic contractions. They do this by detecting the positioning and velocity 

of a muscle (Proske et. al., 2009; Prochazka et. al., 2007). Proprioceptive feedback in mammals 

involves a combination of vestibular neurons, eyes, joint, and stretch receptors located in the 

muscle of the animal (Proske et. al., 2009). This feedback system can mediate both extension and 

flexion in antagonistic muscle groups, allowing an animal to fine tune its muscle use to its terrain 

(Proske et. al., 2009). Insight for the mechanism has been found in many animal species, 

including the mouse and the cat. The cat, in particular, alters its muscle activation patterns during 

walking in response to the pitch of its head (Gotschall et. al., 2007). Proprioceptive reflexes 

found in the neck of the cat activate when the head of the animal is tilted upward or downward 

while parallel to a fixed surface (Gotschall et. al., 2007). Upward tilts caused forelimb flexion 

and downward tilts caused hindlimb flexion (Gotschall et. al., 2007). 

To better understand complex neural networks, simpler neural systems like that of 

Caenorhabditis elegans are used. C. elegans is a tractable model for studies surrounding neural 

development because the challenges faced in developing its cellular networks are similar to mice 

and many of its cellular mechanisms are conserved across species. C. elegans has a number of 

advantages that make it a suitable model system. It is a dimorphic species of nematode worms, 

containing both hermaphrodites and males. The presence of hermaphrodites allows a single 

animal to generate progeny independent of a mating event. C. elegans animals are nearly 

microscopic, at 1.5 mm on average for an adult hermaphrodite.  
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1.2 C. elegans as a model system 

C. elegans worms have a short life cycle that starts as an egg. The animal hatches into its 

first larval stage from an egg laid by the hermaphroditic mother after sixteen hours. The animal 

then undergoes the first of four molts to become a young adult (fig 1). This growth can occur as 

fast as 3 days. Due to the short life cycle and the presence of male/hermaphrodite dimorphism, 

C. elegans can be crossed quickly for genetic screens. Hermaphrodites produce both eggs and 

sperm, allowing them to self-fertilize in the event that males are not present. In this way, 

hermaphrodites can create nearly identical genetic copies of themselves. Variation is introduced 

into a population of hermaphrodites by introducing males, who only produce sperm. 

 

Figure 1 C. elegans life cycle (Altun et. al., 2012; Fielenbach et. al., 2008). 

The whole genome of C. elegans has been sequenced, and many of the genes are 

homologous to mammalian genes (The C. elegans Sequencing Consortium, 1998). This provides 

an advantage in using this model system in that many insights concerning mammalian genetic 

activity can be ascertained at a cellular level. Also, every cell has been categorized and all of the 

lineages have been described. Many of the cellular networks are also well understood, especially 
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with regards to neuromuscular connections. The locomotion of these animals has been studied 

extensively, though there is still more to learn. These facts combine to make C. elegans a good 

model system for studying neuromuscular cellular networks and their underlying gene networks. 

1.3 The C. elegans Nervous System 

C. elegans has a small nervous system when compared to complex model organisms like 

mice and Drosophila melanogaster. In total, an adult C. elegans hermaphrodite has 302 neurons 

(Altun et. al., 2013). The nervous system is grouped into classes of neurons defined by their 

synaptic connections (White et. al., 1986; Altun et. al., 2013). For example, mechanosensory 

neurons such as ALM and PLM are defined by their connection to the surface of the animal, 

which allows them to respond to stimuli applied to the “skin” of the animal (Chalfie et. al., 

1985).  

The cell bodies of seventy-five motor neurons are grouped along the ventral side of the 

animal. There are eight different classes of motor neurons: AS, DA, DB, DD, VA, VB, VC, and 

VD. The location of the neuromuscular junction denoted by ‘D_’ for dorsal and ‘V_’ for ventral. 

On the dorsal side, there is a dorsal nerve cord that consists of neurites that extend from the 

ventral processes via commissures that allow the “D_” motor neurons of each class (Altun et. al. 

2013).  

The A-, AS and B motor neurons produce acetylcholine and stimulate body wall muscle 

cells. The D motor neurons produce GABA (gamma-amino butyric acid) and inhibit body wall 

muscle cells  (White et. al., 1976; Chalfie et. al., 1985). Along with the motor neurons are five 

interneuron classes that innervate the A- and B- motor neurons in a type-specific manner. 

Interneurons that directly influence motor neurons include AVB, PVC, AVA and AVD/E 

(Chalfie et. al., 1985). AVB neurons provide stimulus via gap junctions between them and the B 
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motor neurons while PVC uses chemical synapses to do the same (Altun et. al, 2013). The B 

motor neurons propagate forward locomotion while the A- and D- motor neurons propagate 

backward locomotion (White et. al., 1976). AVA uses both chemical synapses and gap junctions 

while AVD/E uses just chemical synapses to stimulate A motor neurons (Altun et. al, 2013). 

Innervating those interneurons is the aforementioned ALM and PLM neurons that respond to 

external stimuli (Chalfie et. al., 1985). These neural connections attach to four muscle strands 

that span the length of the animal. The two dorsal strands contract in synchrony and the two 

ventral muscle strands contract in synchrony but because of the cross-inhibitory network 

established by the VD and DD motor neurons, the dorsal and ventral muscle strands conduct 

contractile waves that are 180o out of phase with one another. These cellular networks allow the 

animal to move forward and backward in a rhythmic, sinuous motion due to continuous waves of 

muscle contraction that run from anterior to posterior when the animal moves forward and 

posterior to anterior when the animal is moving backward. 

1.4 Aims of this study 

The B motor neurons propagate forward locomotion while the A- and D- motor neurons 

propagate backward locomotion (White et. al., 1976). jd1500, first described by Alcala and 

Walthall, (2015), has an uncoordinated coiler phenotype that specifically affects forward 

locomotion. Forward locomotion is generally considered to be less susceptible to mutation due to 

the reduced number of uncoordinated mutants that affect forward locomotion alone as compared 

to backwards locomotion. This mutation shows a variance in coiling bias, with ~70% of all 

forward coils occurring on the ventral side of the animal and ~30% occurring on the dorsal side, 

indicating that the mutation causes a locomotive asymmetry that can affect either side of the 

animal (Alcala, 2016). 
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All VNC motor neuron cell bodies are present based on prior experiments (Alcala, 2016). 

Analysis of double mutants for unc-4, unc-25, and unc-42 suggested that the mutation is not 

localized to the DA/VA, DD/VD, or AVA/D/E neuron networks, respectively (Alcala, 2016). 

unc-4 codes a homeobox protein necessary for the identity of A motor neurons  (Miller et. al., 

1992). unc-25 codes glutamic acid decarboxylase, which is necessary for DD/VD activity  

(McIntire et. al., 1993). unc-42 codes a paired homeodomain necessary for AVA/D/E fate 

specification  (Baran et. al., 1999). Interpretation of these data suggested the DB motor neurons 

are the targets of this mutation, though more study is needed due to this being a negative result. 

Mapping data showed that it is an X-linked defect mapped between -9.42 cM and -11.73 cM 

(Alcala, 2016).   

 

Figure 2 jd1500 coiling behavior. Compared against wild-type (adapted from Alcala et. al, 

2016). 

 

 

V 

D 
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We tested two hypothetical explanations for the cellular basis of the jd1500 

uncoordinated phenotype.  Our first hypothesis was that the mutation affects the nematode’s 

proprioceptive feedback system, which for forward locomotion has been shown to involve the B 

motor neurons. Previous research demonstrated that proprioceptive coupling of B motor neurons 

is necessary for the generation of the sinusoidal body wave (Wen et. al., 2012). Our second 

hypothesis posited that the mutation affects the gap junctions that are between the B motor 

neurons and the PVC/AVB interneurons (Kawano et. al. 2011). In this study, we aim to 1) 

identify the specific gene associated with the jd1500 phenotype and 2) distinguish the basis for 

the locomotive asymmetries. 
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2 EXPERIMENT 

2.1 Strain Maintenance and Mating Protocol 

The following alleles were used for experimentation: acr-2 (ok1887), ceh-63 (UL2652 

,UL2651), jd1500, unc-7 (e5), unc-9 (e101), sax-1 (ky211), tag-52 (ok1072), trp-4 (sy695), and 

vab-7 (e1562). Alleles for ceh-63 were obtained from the Ian Hope lab at the University of 

Leeds. All other strains, with the exception of jd1500, which was generated in our lab, were 

obtained through the Caenorhabditis Genetics Center (CGC). N2 Bristol was used as the wild-

type strain. All strains were maintained on NGM plates with a lawn of OP50 E. coli according to 

the protocol outlined in Brenner (Brenner, 1974).  

 Matings were performed in order to generate double mutants and for complementation 

tests. For these matings, jd1500 males were obtained by mating five N2 males with two jd1500 

hermaphrodites. In the F1 generation, males showing the forward coiler phenotype were selected 

and used for further matings. To ensure successful crosses using jd1500 males, between ten and 

fifteen males expressing the jd1500 phenotype were plated with two L4 to young adult 

hermaphrodites. These matings were checked at day 3 for young male offspring and screened on 

day 4. 

 For complementation tests, the following mutants were used: ceh-63, sax-1, and tag-52. 

Each mutant was crossed according to the mating protocol listed above. For these crosses, the F1 

generation was screened for male progeny to confirm success, then hermaphrodites showing 

either wild-type or forward uncoordinated locomotion. For ceh-63, data from both alleles was 

combined. For double mutant generation, all other strains were used. These were screened in the 

F1 generation for wild-type behavior. Wild-type animals were then isolated and allowed to self-

fertilize. In the F2 generation, animals were screened to identify and isolate double mutants. 
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2.2 Whole genome sequencing 

Whole genome sequencing was performed with assistance from the CORE facilities at 

GSU. The jd1500 genome was isolated by Aaron Alcala using a genomic DNA prep protocol 

developed by the Hobert lab. The Gentra Puregene kit by Qiagen was used to collect a sample 

and the sample was tested for purity using a spectrophotometer. Samples were sequenced using 

the Ion PGM System Next-Gen. Sequencer. The jd1500 genomic sequence was compared to the 

WB235.75 C. elegans genome sequence obtained using the Ion Torrent client. Data were 

analyzed using excel databases developed in GALAXY to identify the defective locus (Enis et. 

al. 2016). Data obtained through sequencing was constrained by the region identified in the 

deficiency mapping experiment. Higher priority was placed on genes that had internal deletions 

or non-synonymous polymorphisms within an exon region. Genes expressed in the VNC motor 

neurons or the motor circuit interneurons were prioritized. From this analysis, a list of likely 

candidates for the jd1500 allele was developed. 

2.3 Locomotion assays 

2.3.1 Coil Frequency Assay 

 L4 Hermaphrodites were used for locomotion assay. This was done to remove the 

presence of eggs as a variable for locomotion. Animals used in assays include: jd1500, acr-2, 

unc-7, unc-9, vab-7, trp-4, jd1500 acr-2, jd1500 unc-7, jd1500 unc-9, jd1500; vab-7, and 

jd1500; trp-4. Animals were transferred to an unseeded plate for all locomotion assays. To 

determine the coil frequency of each strain, animals were agitated via either by prodding the tail 

of the animal with a pick, or by dropping the plate from 10-15 cm. The animals were then 

allowed to move freely for one minute and each forward coil was recorded.  
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2.3.2 DV Ratio Analysis 

To determine the dorso-ventral ratio of the animal, videos were recording for individual 

animals from each strain using the Leica MZ 16 FA microscope provided by the Cymbaluk lab at 

GSU. Analysis of dorso-ventral ratios was performed according to procedure outlined in 

Oommen (Oommen, 1999). For each individual animal, analysis was performed on no more than 

5 forward locomotion events. Forward locomotion events are defined as an animal’s forward 

movement lasting between 2-3s, without any pauses or backward movements. Videos were then 

sorted into 1s portions, which were then clipped in order to view animal forward locomotion in 

0.25s intervals. The animals were then examined using the dorsoventral (DV) ratio technique, 

measures asymmetry between the forces generated by the dorsal and ventral muscles. The DV 

ratio measures the length of a line produced at a right angle between two body bends (Fig. 3; 

Oommen, 1999). The line is set at the furthest point within the measured area. Those measured 

values would be assigned as dorsal or ventral depending on whether it was measured for the 

dorsal side or the ventral side. Ratios were developed by dividing the ventral side from the dorsal 

side, which gives a value greater than 1 for animals with a dorsal bias and a value less than 1 for 

animals with a ventral bias. Animals were not evaluated in the tail region past the preanal 

ganglion. This was done to remove the non-muscular and non-neural portions of the animal from 

the analysis, as it would provide an inaccurate representation of the animal’s bias. 

 

Figure 3 jd1500 DV Ratio analysis example. Scale Bar represents 101 μm 
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2.3.3 L1 Bias Analysis 

jd1500 L1 animals were also observed to determine the directionality of the coil in young 

animals. For this, individual worms were isolated and tested under a dissecting scope. Animals 

were touched on the tail and each coil was scored according to whether it was ventral or dorsal. 
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3 RESULTS 

3.1 Next-Gen Whole Genome Sequencing and Genetic Screening 

To learn more about the genetic aberration responsible for the jd1500 allele, we 

employed next-gen whole sequencing techniques. Genomic DNA was isolated by Aaron Alcala 

using the Gentra Puregene Kit. The sample was pure, at 260/280=1.85, where anything below 

1.8 is considered impure. Raw Genomic DNA was then sequenced by the CORE facilities using 

the Ion torrent DNA sequencer. Genome sequences were compared against the N2 Bristol strain. 

The total number of sequenced base pairs was 6.87 G. The sequence underwent 58,252,270 total 

reads, of which 55,103,047 reads were aligned, giving an approximate 92% read coverage. A 

mean raw accuracy of 98.8% was found at a read length of approximately 128 bp. This indicates 

that most of the genome was read, and that the read sections are accurate (Fig. 3). 

 

Figure 4 Data from Ion Server. a) Read coverage. b) Accuracy across different read lengths  

c) Histogram of read lengths that provided most accurate reads. d) Mapped reads, Base coverage 

depth, and uniformity of base coverage. 
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Before beginning analysis, the data were introduced into GALAXY (Enis et. al. 2016). 

GALAXY has a number of tools that simplify analysis of genomic data. All data can be exported 

to Microsoft Excel for sorting. For our work, only two tools were used: snpEFF and VCFsort. 

The tool snpEFF allows users to sort aligned genomic data based on the known aberrations found 

on each chromosome. This method of sorting lists data in numerical order based on base pair 

positions. It also provides an expected genomic effect. VCFsort takes the same data and sorts it 

based on gene name. VCFsort allows users to search for specific genes and review the gene for 

any effects that are given their own category. While snpEFF provides statistical likelihood of 

effect with terms like HIGH or MODERATE, VCFsort lists just the numerical values like the 

position on the genome. Used in tandem, these tools can provide insight into all potential 

mutations. 

Given that the mutation is on the X chromosome, and located in an interval covered by 

the deficiency, which covers from -9.42 to -11.73 cM, Within this region, nineteen genes had 

been identified by mutant phenotype (Table 1). Of those genes, higher priority was placed on 

genes that have mutations within identifiable exon regions and that are expressed within the 

neuromuscular network. Two mutations, ceh-63 and tag-52, were found at -9.43 cM and -9.83 

cM, respectively, that fit the aforementioned criteria (table 1).  

Table 1 Candidate genes found within the deficiency region. Gene descriptions are sourced 

from wormbase.org. Stars indicate genes that have been tested. Genome effect data is sourced 

from analysis. 

Gene  Location  (cM) Known Phenotypes Genome effect data 

ceh-18 -9.28 +/- 0.025 Larval lethal Intron variant, 1 bp 

lim-4 -9.21 +/- 0.025 Dauer formation variant, 

Butanone Chemotaxis variant 

Stop gained, 1 bp 

sup-12 -9.17 +/- 0.056 Body Wall Muscle Morphology 

variant 

Upstream Gene variant, 1 

bp 

fkh-9 -9.33 +/- 0.020 n/a Downstream gene 

variant, 14 bp 
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rgl-1 -10.75 +/- 0.016 Indirect – Organism Development 

variant 

Intron variant, 1 bp 

C18B2.2 -9.95 +/- 0.000 n/a Downstream gene 

variant, 22 bp 

mir-271 -10.34 +/- 0.000 MicroRNA mutation Upstream Gene variant, 1 

bp 

dhs-26 -10.42 +/- 0.000 n/a Intron variant, 1 bp 

clc-3 -10.40 +/- 0.020  Body wall myosin organization 

defect 

Upstream Gene variant, 1 

bp 

rgs-7 -10.11 +/- 0.034 n/a Missense variant, 1 bp 

Intron variant, 1 bp 

ckc-1 -10.03 +/- 0.000  Reduced brood size Missense variant, 1 bp 

sax-1* -9.91 +/- 0.019 Axon outgrowth variant 

Ectopic Neurite outgrowth 

Upstream Gene variant, 1 

bp 

ceh-63* -9.84 +/- 0.000 n/a Upstream gene variant, 

41 bp 

tag-52* -9.83 +/- 0.014 n/a Frameshift mutation, 41 

bp 

gbb-1 -12.67 +/- 0.001 Acetylcholinesterase inhibitor 

hypersensitive 

Aldicarb hypersensitivity 

Intron variant, 100 bp 

dhs-27 -10.34 +/- 0.000 n/a Intron variant, 1 bp 

Upstream Gene variant, 1 

bp 

sox-4 -10.25 +/- 0.008 n/a Downstream gene 

variant, 1 bp 

fax-1* -10.75 +/- 0.120  Axon guidance variant, axon 

regeneration defective, 

locomotion variant. 

n/a 

unc-78* -10.34 +/- 0.003 Actin organization biogenesis 

variant, aldicarb resistant, body 

wall muscle sarcomere variant, 

locomotion variant. 

Synonymous variant, 1 bp 

Upstream gene variant, 1 

bp 

sax-3* -10.34 +/- 0.008 Axon guidance variant, axon 

outgrowth variant, alm migration 

variant, kinker. 

Dowstream Gene variant, 

1 bp 

unc-20* -11.61 +/- 0.197 Kinker, coiler, axon outgrowth 

variant, head muscle contraction 

variant. 

n/a 
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spc-1* -12.14 +/- 0.054 Aldicarb resistant, dumpy, 

locomotion variant. 

n/a 

wrt-6* -10.31 +/-0.015 Body vacuole, intestinal vacuole, 

locomotion variant. 

n/a 

fkh-2* -9.5 +/- 0.044 Embryonic lethal, L1 arrest, 

sluggish 

n/a 

dop-1* -7.65 +/- 0.029 Backward Locomotion, forward 

locomotion decreased, head bend 

angle variant, locomotion variant. 

n/a 

unc-2* -13.79 +/- 0.063 Backward locomotion variant, 

aldicarb resistant. 

n/a 

 

At -9.43 cM, we identified an upstream gene mutation of 41 bp in ceh-63 (table 1). ceh-

63 encodes a homeobox protein that is similar to vertebrate Hox3 proteins and to the D. 

melanogaster HOX protein ROUGH (Feng et. al., 2012). ceh-63 is expressed in hermaphrodites 

in two cells: primarily in DVC and a vulva cell found separate from the uterus  (Feng et. al., 

2012). DVC is a stretch receptor neurons that is thought to be necessary for backward 

locomotion (Feng et. al., 2012). Phenotypically, it is incompletely penetrant, showing variations 

of forward and backward coiling in its population ranging from completely paralyzed to freely 

moving. 

At -9.83 cM, we identified a frameshift mutation caused by an internal deletion of 41 bp 

in the gene tag-52 (table 1). This mutation was flagged as ‘HIGH’ in the snpEFF data. tag-52 

encodes a protein that is predicted to have Rho-guanyl exchange factor activity  (Ziel et. al., 

2009). It is an ortholog of human ARHGEF39 that is expressed in the nervous system, pharynx, 

and reproductive system of C. elegans  (Spencer et. al., 2010; Ziel et. al., 2009). tag-52 has no 

locomotion phenotype. Using modENCODE, we were able to confirm that the mutation is on the 

fifth exon, deleting the amino acid sequence ‘MPLCKYEPSA’ starting at amino acid 296  
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(Celniker et. al., 2009). tag-52 is directly upstream of ceh-63, and the data from the snpEFF 

confirmed that the deletion in tag-52 causes the frameshift in ceh-63.  

Using the insights we gained from the genome analysis, we set up complementation tests 

for tag-52, ceh-63, and sax-1. Due to data from the genomic analysis, we hypothesized that the 

phenotype in jd1500 is caused by a mutation in tag-52. Of the three genes tested, all genes 

complemented jd1500. This suggested that neither of these genes were responsible for the mutant 

phenotype of jd1500. 

3.2 Locomotion Assays 

3.3.1 L1 Bias Testing 

We wanted to confirm that L1 animals had a similar pattern of ventral bias to older 

animals. To do this, we tested individual animals on their forward locomotion response to light 

touch. In the five animals tested, we saw a similar ratio of 24% dorsal to 76% ventral bias. This 

suggested that the defect is likely caused in embryonic cells. This lends credence to the 

hypothesis that embryonic cells are the cells primarily affected by the mutation.  

3.3.2 Proprioceptive Mutant Analyses  

We then performed locomotion assays on animals. For these, L4 to young adult animals 

were chosen. Double mutants were tested for gene interactions.  Epistasis describes a gene 

interaction scenario in which one of the two mutant phenotypes masks the second phenotype in 

the double mutant. We tested the locomotion patterns of selected double mutants, first to 

determine whether the animals displayed any differences in the frequency of the coiling 

behavior. For this experiment, a coil was counted if the head of the animal touched the midbody 

of the animal near its vulva when attempting forward movement.  
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To analyze interactions between jd1500 and proprioception we tested double mutants of 

jd1500 with acr-2, vab-7, and trp-4. Each of these mutations is necessary for proprioceptive 

feedback of C. elegans  (Li et. al., 2006; Wen et. al., 2016).  acr-2 encodes a nicotinic 

acetylcholine receptor that creates a channel when coexpressed with unc-38. It is expressed 

across the C. elegans motor circuit. In particular, acr-2 is expressed in the B motor neurons, 

which are responsible for forward locomotion. acr-2  (ok1887) has a mild backward locomotion 

phenotype, in which it backs faster than controls, as well as increased head bend angles and 

increased nose movement. jd1500 acr-2 exhibited forward coiling similar to jd1500, however the 

increased nose movement can be observed. The jd1500 single mutant had a coil frequency of 5.8 

coils per minute and the acr-2 single mutant had a coil frequency of 0.267 coils per minute, 

which were not statistically similar (p=0.0001).  jd1500 acr-2 had a coil frequency that is 

statistically similar to jd1500, at an average of 5.53 (p=0.764) coils per minute (Fig. 5).  

However, when compared against acr-2, it exhibits a significantly higher coil frequency 

(p=0.0002).  This suggests that jd1500 is masking acr-2 in coil frequency measurements. 
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Figure 5 Coil Frequency Comparison for jd1500 and proprioceptive mutants. Error bars 

represent standard deviation. Significance was calculated using ANOVA. If p-values were less 

than 0.05 in ANOVA, t-tests were applied to discern which of the tested mutants were similar or 

not. (n=15) (Table 2) 

 

 Next, we observed jd1500; vab-7 double mutants. vab-7 encodes a homeodomain protein 

that is responsible for DB motor neuron identity  (Esmaeili et. al., 2002). In mutants of vab-7, 

locomotion defects can be observed. Animals exhibit a larger amplitude of sinuous motion when 

compared against wild type animals (Esmaeili et. al., 2002). vab-7 mutants also exhibit various 

morphological defects localized to the tail region. These can range from a truncated tail to a tail 

with blisters. These physiological defects can hamper backward locomotion in these animals. 

jd1500; vab-7 exhibits forward coiling, with the morphological differences acting as a marker for 

vab-7. The jd1500 single mutant had a coil frequency of 5.8 coils per minute and the vab-7 

single mutant had a coil frequency of 3.8 coils per minute, which were not statistically similar 

(p=0.033) (Fig. 5). The jd1500; vab-7 double mutant had a coil frequency of 5 coils per minute, 
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which was statistically similar to both jd1500 (p=0.346) and vab-7 (p=0.055). This suggests that 

vab-7 is not masking jd1500 in coil frequency measurements.  

Finally, we tested trp-4. trp-4 encodes a subunit of a TRPN channel that acts as a pore for 

that channel  (Li et. al., 2006). It is specifically expressed in the DVA interneuron, which is an 

important interneuron that acts as a stretch receptor for forward locomotion. It is also expressed 

in the DVC a single interneuron thought to be necessary for backward locomotion. trp-4 is 

required for proprioception in C. elegans that is controlled by stretch receptors (Li et. al., 2006). 

Single mutants of trp-4 exhibit increased amplitude of sinuous motion similar to vab-7. trp-4 

mutants can move backwards where vab-7 sometimes cannot, but this movement also exhibits 

the same increased amplitude. Double mutants of jd1500 and trp-4 exhibit forward coiling. 

jd1500; trp-4 also exhibits backward coiling, where jd1500 did not. The jd1500 single mutant 

had a coil frequency of 5.8 coils per minute and the trp-4 single mutant had a coil frequency of 

5.33 coils per minute, which were statistically similar (p=0.849). The coil frequency of jd1500; 

trp-4 was statistically similar to jd1500, with an average coil frequency of 5.6 (p=0.849) coils per 

minute (Fig. 5). This suggested that trp-4 is not masking jd1500 in coil frequency measurements. 

We further tested the whether jd1500 is masked by proprioceptive mutants by recording 

videos of each mutant for comparison and gathering DV ratios. This method was used because it 

provided an approximation of differential coiling behavior between animal populations that can 

be quantified. For this set of experiments, we chose 6-8 animals from each genotype, recording 

and analyzing no more than 5 coils from each animal. We chose not to examine vab-7 using this 

method because it exhibits a morphological defect in addition to its neurological defect that 

could potentially provide erroneous information about its coiling behavior when compared to 

jd1500 using this method. For the animals tested, we then sorted the locomotion events by 
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whether they coiled toward the dorsal side or the ventral side of the animal. Due to the smaller 

sample size of dorsal coils, we chose to focus on ventral coils. The critical differences arose at 

the 0.75s and 1s mark for most animals tested, so we focused on that portion of the data for 

statistical analysis. 

Interactions were assumed if a statistically significant difference was observed between 

jd1500 and tested double mutants using t-tests. DV ratios for each of the single mutants were 

also determined for comparative purposes. To determine whether jd1500 masked the phenotype 

of those mutants. jd1500 single mutants had a mean DV ratio of 0.511 at 0.75s and a mean ratio 

of 0.411 at 1s for ventral coils. trp-4 single mutants had a mean DV ratio of 0.36 at 0.75s and 

0.683 at 1s (Table 3; Fig. 6). jd1500; trp-4 had a mean DV ratio of 0.547 at 0.75s and 0.594 at 1s 

(Table 3; Fig. 6). At 0.75s, jd1500 was statistically similar to both trp-4 (p=0.355) and jd1500; 

trp-4 (p=0.776). These similarities also held for earlier points in the time series. These data, 

taken together with the coil frequency data, suggested that trp-4 and jd1500 are similar to each 

other and that neither single mutant is masking the other. 

The next comparison was jd1500 acr-2 with  jd1500 and acr-2. jd1500 single mutants 

had a mean DV ratio of 0.511 at 0.75s and a mean ratio of 0.411 at 1s for ventral coils. acr-2 

single mutants had a mean DV ratio of 0.895 at 0.75s and a mean ratio of 0.918 at 1s for ventral 

coils (Table3; Fig. 6). jd1500 acr-2 had a mean DV ratio 0.463 at 0.75s and 0.747 at 1s, neither 

of which was statistically different from jd1500 at either time point (p=0.689; p=0.071) 

However, jd1500 acr-2 showed significant differences when compared against acr-2 at 0.75s 

(p=0.0002) (Table3; Fig. 6). Differences in DV ratio between jd1500 acr-2 and acr-2 could also 

be observed at 0.25s and 0.5s. This, in conjunction with coil frequency data, suggested that 

jd1500 masked acr-2. 
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Figure 6 DV Ratio Time Series. Error bars indicate Standard Error. See Table 3 in appendix for 

values. 

a) Ventral Coiling ratio comparison for jd1500, jd1500 acr-2, acr-2. 

b) Ventral Coiling ratio comparison for jd1500, jd1500; trp-4, trp-4. 

 

3.3.3  Innexin Mutant Analyses 

Gap junctions are formed by innexins in C. elegans (Kawano et. al., 2011). They act as 

electrical synapses that facilitate direct intercellular communication between cells. In C. elegans, 

there are a number of innexins that provide connections between the interneurons and specific 

classes of motor neurons (Kawano et. al., 2011). For the DB and VB motor neurons, the relevant 

innexin genes are unc-7 and unc-9. unc-7 is localized to the AVB interneuron that synapses onto 

VB and DB motor neurons.  unc-9 is similar to unc-7, but it is localized to PVC rather than 

AVB. Phenotypically, these animals appear very similar. They both have forward and backward 

locomotion defects characterized by frequent pauses and uncoordinated motion (kinking). jd1500 

unc-7 mutants revealed no noticeable change in its backward locomotion but coiling when 

prodded on its tail as the animal attempted to move forward was observed. This can also be seen 

in jd1500 unc-9. Coiling can occur spontaneously, however it takes longer to occur in the double 

mutants than in jd1500 single mutants (Fig. 7).  
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Figure 7 Coil Frequency Comparison for Gap Junction Mutants Error bars represent 

standard deviation. Significance was calculated using ANOVA. If p-values were less than 0.05, 

t-tests were employed. (n=15) (Table 5) 

 

The jd1500 single mutant had a coil frequency of 5.8 coils per minute (Fig. 7). unc-7 

single mutants had a coil frequency of 0.6 coils per minute, while unc-9 single mutants had a coil 

frequency of 0.533 coils per minute (Fig. 7). In jd1500 unc-7 double mutants, the coil frequency 

averaged 0.867 coils per minute, while in jd1500 unc-9 double mutants the coil frequency 

averages 1.6 coils per minute (Fig. 7). Coil frequency analysis of the double mutant jd1500 unc-7 

yielded no statistically significant differences when compared against unc-7 (p=0.431), but did 

yield significant differences when compared with jd1500 (p=0.023). Coil frequency analysis of 

the double mutant jd1500 unc-9 showed statistically significant differences when compared with 

unc-9 (p=0.007) as well as statistically significant differences when compared with jd1500 

(p=0.0007). The difference in the coil frequency data for these double mutants could be 

attributed to the fact that these innexins mutants primarily affect different cells. These data 
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suggest that jd1500 is masked by both unc-7 and unc-9 in the frequency of coiling events. 

 We hypothesized that if unc-7 and unc-9 are masking jd1500, we should see a significant 

difference in the DV ratio of jd1500 unc-7 and jd1500 unc-9 at 0.75s and 1s when compared to 

the jd1500 single mutant, but not when compared against unc-7 and unc-9, respectively. jd1500 

single mutants had a mean DV ratio of 0.511 at 0.75s and a mean ratio of 0.411 at 1s for ventral 

coils. unc-9 single mutants had a DV ratio of 0.908 at 0.75s and 0.904 at 1s (Table 6; Fig. 8). 

jd1500 unc-9 had a mean DV ratio of 0.849 at 0.75s and 0.741 at 1s (Table 6; Fig. 8). These 

values were significantly different when compared to jd1500 at both 0.75s (p=0.014) and 1s 

(p=0.021) but similar to unc-9 at 0.75s (p=0.587) and 1s (p=0.207). These data suggested unc-9 

is masking the jd1500 phenotype and is required for jd1500 to function (Fig. 8). 

Because unc-7 appeared to have more differences to jd1500 in DV ratios, we chose to 

examine 0.25s and 0.5s as well. jd1500 single mutants had a mean DV ratio of 1.07 at 0.25s, 

0.792 at 0.5s, 0.511 at 0.75s, and a mean ratio of 0.411 at 1s for ventral coils. unc-7 exhibited a 

mean DV ratio of 0.984 at 0.25s, 1.02 at 0.5s, 0.743 at 0.75s, and 0.884 at 1s (Table 6; Fig. 8). 

jd1500 unc-7 exhibited a mean DV ratio of 0.553 at 0.25s, 0.484 at 0.5s, 0.522 at 0.75s, and 

0.891 at 1s (Table 6; Fig. 8). jd1500 unc-7 did not have statistically significant differences when 

compared with jd1500 at time 0.5s (p=0.076) or 0.75s (p=0.929), which was not expected. It did 

however have statistically significant differences at 0.25s (p=0.007) and 1s (p=0.036). When 

compared with unc-7,  jd1500 unc-7 had significant ventral biasing at 0.25s (p=0.002), 0.5s 

(p=0.003), and 0.75s (0.025). When taken in context with the entire time series, unc-7 mutants 

appeared to accelerate bias formation for ventral coils (Table 6; Fig. 8).  
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Figure 8 DV Ratio Time Series. Error bars indicate Standard Error. See Table 6 in appendix for 

values. 

a) Ventral Coiling ratio comparison for jd1500, jd1500 unc-7, unc-7. 

b) Ventral Coiling ratio comparison for jd1500, jd1500 unc-9, unc-9. 

 

To further investigate the epistatic interaction between unc-7 and unc-9 and jd1500, we 

tested unc-7 and unc-9 in an unc-30 background. Since the gap junction mutants masked the bias 

of jd1500, we asked whether the gap junction mutants would mask other uncoordinated 

phenotype of unc-30.  We chose unc-30 mutants, which have a defect in the release of GABA a 

critical neurotransmitter involved in proper locomotion. unc-9 single mutants had a mean DV 

ratio of 0.908 at 0.75s and 0.904 at 1s. unc-30 single mutants had a mean DV ratio of 0.595 at 

0.75s and 0.676 at 1. unc-9; unc-30 double mutants had a mean DV ratio of 0.614 at 0.75s and 

0.587 at 1s. Tests for unc-9 and unc-9; unc-30 yielded statistically significant differences at 

0.75s (p=0.008) and 1s (p=0.016). Comparisons of unc-30 to unc-9; unc-30 yielded no 

significant differences at 0.75s (p=0.882) or 1s (p=0.364). This suggested that unc-9 did not 

mask unc-30 (Table 8; Fig. 9).  

unc-7 exhibited a mean DV ratio of 0.984 at 0.25s, 1.02 at 0.5s, 0.743 at 0.75s, and 0.884 

at 1s. unc-30 exhibited a mean DV ratio 0.914 at 0.25s, 0.62 at 0.5s, 0.595 at 0.75s, and 0.676 at 

1s. unc-7; unc-30 exhibited a mean DV ratio of 0.791 at 0.25s, 0.585 at 0.5s, 0.641 at 0.75s, and 

0.6 at 1s. Statistical tests for unc-7, unc-7; unc-30, and unc-30 yielded no statistically significant 
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differences at 0.25s (p=0.333; ANOVA) or 0.75s (p=0.447; ANOVA), but did exhibit 

differences at 0.5s (p=0.031) and 1s (p=0.04; ANOVA) (Table 8; Fig. 9). These differences were 

tested further using t-tests. Unc-7 and unc-7; unc-30 showed differences at 0.5s (p=0.043) and 1s 

(p=0.034). unc-30 and unc-7 unc-30 showed no differences at either time point (p=0.85; 

p=0.523). These data suggested did not mask unc-30.  These data suggested that unc-7 and unc-9 

were not necessary for unc-30 function. 

 

Figure 9 DV Ratio Time Series. Error bars indicate Standard Error. See Table 8 in appendix for 

values. 

a) Ventral Coiling ratio comparison for unc-7, unc-7; unc-30, unc-30. 

b) Ventral Coiling ratio comparison for unc-9, unc-9; unc-30, unc-30. 
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4 DISCUSSION 

Dissecting neural networks is a key component of understanding behavior in a wide 

variety of animals. Locomotive behavior, in particular, is typically more driven by the neural 

connections than by the muscular components. Developing models for how these connections are 

formed and isolating the parts involved presents unique challenges for the scientific community. 

To attempt to circumvent these challenges, model systems like C. elegans are often used. C. 

elegans has a number of functionally similar components to other model systems while being 

more easily manipulated. Because of the wealth of existing knowledge surrounding C.elegans 

morphology, as well as its genomic data, we can employ a number of techniques to discover 

more information about the functional components of its neural networks. 

4.1 Characterization of the jd1500 gene 

In a previous study, Aaron Alcala identified a deficiency on the X chromosome that 

failed to complement jd1500. He then used complementation testing for seven genes; dop-1, fax-

1, fkh-2, sax-3, unc-2, unc-20, and unc-78 (Alcala, 2016). Mutations in these genes all exhibited 

forward locomotion phenotypes but all successfully complemented the jd1500 mutant 

phenotype.  We next employed Next Generation Sequencing (NGS) techniques to learn what 

gene might be responsible for our mutation. From that data set, a few genes emerged as potential 

candidates. These genes were given markers for whether they were very likely to be the mutated 

gene. Of these genes, tag-52 was given a ‘HIGH’ likelihood. NGS presents some limitations, 

however, as it does not say definitively whether a mutated allele is responsible for our 

phenotype. Two of the mutants studied by Alcala, unc-78 and sax-3 were flagged as having 

SNPs in the NGS data set.  We performed complementation tests on tag-52, ceh-63, and sax-1 to 

determine whether one of those mutants was responsible for the mutant phenotype. All three 
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genes complemented jd1500, which suggested that none were allelic with jd1500. This result 

runs contrary to the NGS experiment, which prompts further testing. Of the genes left in the 

region, 12 are untested and could potentially be responsible for the jd1500 phenotype. 

In order to more effectively test these genes, as well as the genes that were previously 

tested, a multiplex PCR technique like Ampliseq or HiSeq should be employed. These are 

techniques that can be used to genotype a population of animals with similar phenotypes. It has 

been shown to be useful for identifying genetic variations in a large number of genes per 

experiment using either DNA or RNA and, with recent advances, can be used with very small 

amounts of DNA or RNA (Campbell et. al., 2014; Li et.al., 2015). This technique can sort alleles 

by frequency within the population, with the highest frequency being the responsible gene 

(Campbell et. al., 2014).  

4.2 Characterization of the Gene and Cellular Networks 

Forward locomotion is driven by a dedicated set of interneurons, two PVCs and two 

AVBs that form gap junctions and chemical synapses with a set of motor neurons, the VB and 

DBs (Bryden et. al, 2008; Fouad et. al., 2018; Kawano et. al. 2011).  Two gap junction mutants, 

unc-7 and unc-9, had been identified that contribute to forward locomotion (Starich et. al., 2009). 

We found that mutations in unc-9 were epistatic to the mutant phenotype of jd1500. This 

masking suggested that the unc-9 innexin was required for the jd1500 mutant phenotype.  In 

contrast, the DV ratio data for mutants in a second gap junction gene unc-7 did not mask the 

forward bias of jd1500, but instead actually accelerated the locomotive asymmetries found when 

the double mutants attempted to move forward (Fig. 8).  The difference between these 

interactions is interesting considering that they are both innexins that mask the jd1500 

phenotype, but in different ways. The key to understanding these differences can be explored 
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further by looking at jd1500 in the context of the differences in expression between unc-9 and 

unc-7. unc-9 is expressed in the PVC interneurons and B motor neurons. Given that unc-9 is 

expressed in the B motor neurons, a candidate class of motor neurons suggested to be targets of 

the jd1500 mutation, UNC-9 is preventing the bias control phenotype associated with jd1500 in 

these cells (Alcala, 2016).  

As mentioned earlier, the PVC functions as a set of command interneurons that are 

involved in forward locomotion and express UNC-9 innexins. PVC acts as a modulatory element 

using chemical synapses and gap junctions to suppress activity of the backward locomotion 

network during forward locomotion (Kawano et. al. 2011). Mutants in unc-9 disable gap 

junctions between AVB-B, PVC-AVA, and AVA-A. The effects caused by gap junction 

disruption in jd1500 happen alongside undisrupted chemical synaptic activity. PVC also 

functions as an inhibitory element for the B motor neurons and AVB interneurons via chemical 

synapses. AVA is generally excitatory to A and AVB is excitatory to AVA (Kawano et. al, 2011; 

Rakowski et. al., 2013). The gap junctions disabled between PVC and AVA may increase the 

excitation of AVA and A motor neurons while the gap junctions disabled in AVB significantly 

reduce the excitation of B motor neurons while the animal is moving forward. These effects, 

taken together, can explain why unc-9 masks jd1500. If jd1500 is responsible for synchronous 

forward locomotion and is expressed in B motor neurons, then decoupling AVB from B and 

PVC from AVA by removing unc-9 could mask jd1500 by significantly reducing the amount of 

forward locomotion activity and increasing the backward locomotion circuit. 

UNC-7 is also altering the bias control phenotype associated with jd1500. unc-7 is not 

expressed in the B motor neurons or PVC, but in the AVB and AVA interneurons. It is also 

expressed in some D and A motor neurons. unc-7 has previously been shown to be involved in 



30 

mediating forward locomotion by suppressing the backward locomotion circuit (Kawano et. al., 

2011). unc-7 gap junctions appear to have a modulatory effect on B motor neurons via AVB, 

which may explain why an unc-7 mutation accelerates the onset of forward bias of the jd1500 

mutant phenotype when the animal attempts forward movement. Given our new knowledge 

regarding jd1500, it may be important to consider the AVB interneurons as a potential area of 

study surrounding this gene. Like the PVC, an ablation of AVB in jd1500 may yield some 

important information. 

One lab dissected AVB activity and found that AVB interneurons regulate the ability of 

the B motor neuron to generate a synchronous motor neurons circuit (Qi et. al., 2013). They 

observed a reduction in acr-2(gf) expression when they ablated AVB, which suggested that AVB 

is mediating B motor neuron activity (Qi et. al., 2013). They also found that unc-7 and unc-9 

were not directly mediating B motor neuron acr-2(gf) activity, which was measured in 

convulsion frequency (Qi et. al., 2013). This was explained by the absence of unc-7 and unc-9 

activating the backward motor neuron circuit when the animal attempted to move forward 

(Kawano et. al. 2011; Qi et. al., 2013). Confirming expression of jd1500 in the interneurons 

AVB or B motor neurons could explain the asymmetrical biasing of jd1500 animals as well. 

AVB interneurons drive both ventral and dorsal B motor neurons. If there is a defect in these 

interneurons, then one could expect differential locomotive disruption due to in interactions 

between these cells and the B motor neurons.  

AVB has also been suggested to play a role in activating rhythm generators (Fouad et. al., 

2018). We found that jd1500 masked the phenotype of acr-2, which is one of the mutants 

implicated in proprioceptive feedback. These data suggest that jd1500 is mediating at least one 

component of proprioceptive feedback. Given this result, the data suggests that gap junctions and 
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proprioceptive elements do not operate independent of each other, though our assay doesn’t 

address how the two systems are linked. To further understand how these systems can interact 

with each other, there are a number of approaches that have proven valuable. One such approach 

is to use an optogenetic dissection of the involved locomotory systems. One lab used this 

approach and discovered that there is a distinct rhythmic linkage between anterior head bend 

frequency and tail bend frequency, termed 2FU (Fouad et. al., 2018). By disrupting this linkage 

using optogenetics, they were able to determine that the C. elegans locomotory activity is driven 

by multiple coupled “rhythm generating units” that work in tandem to produce the wave-like 

motion observed in animals (Fouad et. al., 2018).  

In their study, they addressed whether unc-7 and/or unc-9 are required for this functional 

coupling to occur and found that both strains could still experience decoupling of anterior and 

posterior wave frequency (Fouad et. al., 2018).  This suggests that neither is required to generate 

coupling in rhythmic units, though they found that AVB—which expresses unc-7—might be. 

Their reasoning for this discrepancy was that other premotor interneurons may attempt to 

“compensate for the loss of gap junctions between AVB and B neurons” (Fouad et. al., 2018). 

This data, when taken with Qi’s data, suggests a model where AVB is directly responsible for 

forward locomotion and synchrony throughout the animal. Current evidence suggests that unc-9 

forms a heterotypic hemichannel with unc-7 between the B motor neurons and AVB 

interneurons (Starich et. al., 2009). If unc-7 and unc-9 expression could be disrupted in AVB 

interneurons and B motor neurons without disrupting expression in the backward circuit, one 

might see reduction in synchrony of forward locomotion and in coupling of the rhythm 

generators. Our assay appears to categorize jd1500 as a potential intermediary between the 
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pattern generators and the gap junctions. This must be explored further, and a combined genomic 

and optogenetic approach will further elucidate the position of jd1500 in the locomotory system. 

Within the same study, they concluded that rhythm generation is a unique feature of the B 

and possibly the AS motorneurons (Fouad et. al., 2018). Given that jd1500 has been suggested in 

previous research to be a component of the B motor neurons and results here suggesting a role in 

gap junctions via the forward interneuron PVC, one could hypothesize that jd1500 tested under 

the same conditions would lack 2FU. This would serve two purposes: to confirm whether the 

cellular networks impacted by jd1500 also participate in rhythm generating units. 

Rhythmic generators, or Central Pattern Generators, are not unique to C. elegans. 

Understanding the functional units of rhythm generators and how they interact with other 

locomotory systems within C. elegans can provide useful information with potential application 

in therapeutic areas of science. One such area is gene therapy for gait rehabilitation in genetic 

disorders. Current knowledge of central pattern generators suggests that gait is controlled 

rhythmically (Proske et. al., 2009; Gotschall et. al., 2007). If a link between rhythmic control of 

gait and gap junction activity is firmly established, new avenues of therapy addressing the gap 

junction side of locomotion can be developed. Coupling an intensive NGS PCR experiment with 

optogenetic manipulation of jd1500 will provide valuable information about the link between 

rhythm generators and gap junction activity.   
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APPENDIX 

Table 2 P-values for Proprioceptive mutants coil frequency comparisons. Bold indicated 

One-Way ANOVA. ‘>’ indicated Student T-Test. If ANOVA P-value was less than 0.05, t-tests 

were deployed. 

Strains P-value 

jd1500 - acr-2 - jd1500 acr-2 0.0002 

>jd1500 - acr-2 0.0001 

>jd1500 - jd1500 acr-2 0.764 

>acr-2 - jd1500 acr-2 0.0002 

jd1500 - trp-4 - jd1500; trp-4 0.849 

jd1500 - vab-7 - jd1500; vab-7 0.042 

>jd1500 - vab-7 0.033 

>jd1500 - jd1500; vab-7 0.346 

>vab-7 - jd1500; vab-7 0.055 

 

 

Table 3 DV ratio values for Proprioceptive mutants vs jd1500. 

Strains 0 0.25 0.5 0.75 1 

jd1500 0.95006588 1.06600963 0.79174818 0.51112384 0.414624546 

jd1500 acr-2 1.06472919 0.78883816 0.53064651 0.46325570 0.747690941 

acr-2 0.96740052 1.22675487 0.99447233 0.89502763 0.918055177 

jd1500; trp-

4 1.02199202 1.21007937 0.85090525 0.54716065 0.594813923 

trp-4 1.14043737 1.02279408 0.47310259 0.3604381 0.683420434 

 

Table 4 P values for Proprioceptive Mutant DV ratios. Student T-tests were used. 

Strain 0 0.25 0.5 0.75 1 

jd1500 - acr-2 0.921 0.497 0.223 0.003 0.001 

jd1500 - jd1500 acr-2 0.599 0.124 0.11 0.689 0.071 

acr-2 - jd1500 acr-2 0.633 0.048 0.0006 0.0002 0.322 

jd1500 - trp-4 0.332 0.891 0.0062 0.355 0.146 

jd1500 - jd1500; trp-4 0.689 0.547 0.712 0.776 0.189 

trp-4 - jd1500; trp-4 0.519 0.579 0.006 0.229 0.598 
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Table 5 P-values for Innexin mutants coil frequency comparisons. Bold indicated One-Way 

ANOVA. ‘>’ indicated Student T-Test. If ANOVA P-value was less than 0.05, t-tests were 

deployed. 

Strains P-value 

jd1500 - unc-7 - jd1500 unc-7 0.0002 

>jd1500 - unc-7 0.012 

>jd1500 - jd1500 unc-7 0.023 

>unc-7 - jd1500 unc-7 0.431 

jd1500 - unc-9 - jd1500 unc-9 0.0003 

>jd1500 - unc-9 0.012 

>jd1500 - jd1500 unc-9 0.0007 

>unc-9 - jd1500 unc-9 0.007 

 

Table 6 DV ratio values for Innexin mutants vs jd1500. 

Strains 0 0.25 0.5 0.75 1 

jd1500 0.950065886 1.066009631 0.791748183 0.511123845 0.414624546 

jd1500 unc-7 1.362171335 0.552455219 0.483801115 0.522213528 0.890897694 

unc-7 1.038139336 0.984213952 1.0266231 0.742780276 0.884918298 

jd1500 unc-9 0.833775992 1.018977077 0.8119037 0.849252845 0.741233028 

unc-9 1.01332936 0.936752789 0.868133366 0.907856885 0.904955063 

 

Table 7 P values for Innexin Mutant DV ratios. Student T-tests were used. 

Strain 0 0.25 0.5 0.75 1 

jd1500 - unc-7 0.751 0.632 0.217 0.054 0.001 

jd1500 unc-7 - jd1500 0.418 0.007 0.076 0.929 0.036 

unc-7 -  jd1500 unc-7 0.55 0.002 0.003 0.025 0.976 

jd1500 - unc-9 0.719 0.502 0.703 0.004 0.0023 

jd1500 unc-9 - jd1500 0.529 0.806 0.905 0.014 0.021 

unc-9 - jd1500 unc-9 0.293 0.637 0.75 0.587 0.207 
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Table 8 DV ratio values for Innexin controls. 

Strains 0 0.25 0.5 0.75 1 

unc-7 1.038139336 0.984213952 1.0266231 0.742780276 0.8849182 

unc-7; unc-30 0.927885746 0.790750836 0.58482959 0.641484727 0.6001680 

unc-9 1.01332936 0.936752789 0.868133366 0.907856885 0.9049550 

unc-9; unc-30 1.097082818 1.117621852 0.862333647 0.614023028 0.5875847 

unc-30 0.984747958 0.913971761 0.619902491 0.594835748 0.6762852 

 

 

Table 9 P values for Innexin controls. Bold indicated One-Way ANOVA. ‘>’ indicated 

Student T-Test. If ANOVA P-value was less than 0.05, t-tests were deployed. 

Strains 0 0.25 0.5 0.75 1 

unc-7 - unc-7; unc-30 - unc-30 0.083 0.333 0.031 0.447 0.04 

>unc-7 - unc-30 

  
0.23 

 
0.051 

>unc-7 - unc-7; unc-30 

  

0.043 

 

0.034 

>unc-30 - unc-7; unc-30 

  

0.85 

 

0.523 

unc-9 - unc-9; unc-30 - unc-30 0.841 0.744 0.268 0.034 0.027 

>unc-9 - unc-30 

   

0.031 0.07 

>unc-9 - unc-9; unc-30 

   

0.008 0.016 

>unc-30 - unc-9; unc-30 
   

0.882 0.364 
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