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ABSTRACT 

Human immunodeficiency virus (HIV) is a pandemic that has infected nearly 1% of the 

world population. Despite numerous FDA approved antiviral drugs, HIV drug resistance remains 

a large challenge. HIV protease is an enzyme that is required by the virus to cleave Gag and 

Gag-Pol polyproteins into functional and structural proteins necessary for viral maturation. 

Currently, nine clinical inhibitors target HIV protease, but multiple clinical viral strains have 

developed resistance to these drugs. Therefore, it is necessary to continue developing new drugs 

to tackle the problem of HIV drug resistance, and X-ray crystallography is one tool that is used 

to study how drug candidates bind to HIV-1 protease. In order to study the interactions between 

inhibitor atazanavir and HIV-1 protease, the crystal structure of the complex has been solved at 

atomic resolution (1.09 Å). This structure will improve the design of new inhibitors for resistant 

protease.  
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1 INTRODUCTION  

Human Immunodeficiency Virus (HIV) was transmitted to humans from non-human primates 

via cross-species transmission probably through hunting and butchering bushmeat and perhaps 

through capturing and trading primates and keeping them as pets.1  

1.1 HIV Subtypes  

Over 40 nonhuman primate species harbor species-specific simian immunodeficiency viruses. 

Independent cross-species transmissions have led to multiple HIV lineages. HIV-1 consists of 

groups M, N, O and P and HIV-2 groups A-H. HIV-1 group M is the primary source of the 

global HIV pandemic, and has infected over 33 million individuals, and HIV-1 group O has 

caused a few tens of thousands of infections primarily in West Africa. HIV-1 groups N and P 

have only been identified in a handful of individuals in Cameroon. HIV-1 groups M and N are 

believed to have originated from Pan troglodytes troglodytes in West Africa in independent 

cross-species transmission events, whereas HIV-1 groups O and P originated from Gorilla 

gorilla gorilla in Cameroon.1  

1.2 Discovery of the Acquired Immune Deficiency Syndrome virus 

In 1981, an editorial in The New England Journal of Medicine pointed out that scientists and 

doctors were puzzled by the fact that many men who sleep with men were suddenly contracting 

rare opportunistic bacterial, fungal and protozoan infections (including: Mycobacterium 

pneumoniae, M. aviumintracellulare, Klebsiella pneumoniae, Candida albicans, Cryptococcus 

neoformans, Pneumocystis carinii, Toxoplasma gondii and Entamoeba histolytica) and 

developing the rare Kaposi’s sarcoma.2 In 1983, two articles were published nearly 

simultaneously that identified the cause of this obscure immunodeficiency to be a retrovirus, 

later termed the human immunodeficiency virus.3-4  
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1.3 HIV replication cycle 

HIV first infects its host using viral membrane-bound envelope (Env) glycoprotein trimers that 

bind to the host cell receptor and chemokine co-receptor, which is commonly CCR5 or CXCR4. 

The viral glycoprotein trimer consists of three heterodimers, each of which contains a 

noncovalently associated transmembrane glycoprotein gp41 and a surface glycoprotein gp120, 

which binds to the host cell receptor.5-6 The viral and host membranes then fuse, and the contents 

of the viral particle are subsequently mixed with the host cells contents, including two single-

stranded RNAs.6  

Once inside the host cell, the viral RNA genome is reverse transcribed into DNA via the virus’s 

reverse transcriptase (RT). RT contains two necessary functions in order to carry out this task: 

DNA polymerase activity, which can copy either a DNA or RNA template, and an RNase H, 

which degrades RNA only if it is forming an RNA-DNA duplex.6-7 Next, the dsDNA is carried 

into the host cells nucleus and integrated into the host cell’s chromosomes through integrase 

(IN), which acts as a multimeric complex.8 The viral genome is then transcribed and translated 

using the host cells proteins. The resulting proteins are inactive gag and gag-pol polyproteins 

that must be further processed to produce mature viral particles; the gag polyprotein precursor 

contains matrix, capsid and p6 domains (as well as the spacers SP1 and SP2), and the gag-pol 

polyprotein precursor additionally contains the viral enzymes protease, reverse transcriptase and 

integrase.9  

The virus then starts to assemble new viral particles inside of the host cell once the gag 

polyprotein has been translated and translocated to an assembly site.9 Assembly occurs at the 

plasma membrane, where Env glycoproteins accumulate; the viral particle is released after gag 

recruits ESCRT, which drives the membrane scission reaction.9  
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Once the viral particles have been released from the host cell, the polyproteins must then be 

cleaved via HIV protease (PR) to form mature infectious viral particles.9-10 

1.4 Historical and current HIV treatments 

In the late 1980’s, zidovudine (AZT) was the first antiretroviral agent to be approved for 

treatment of advanced HIV infection.11-12 AZT is a nucleoside analog, which is converted to its 

active triphosphate form by various intracellular enzymes; once in its active form it binds to 

HIV-1 reverse transcriptase and prevents viral DNA synthesis.11-12 For many years AZT was the 

only antiviral agent available for treatment of those with HIV and AIDS, and when given alone 

to patients with HIV, CD4 counts increased as well as general patient well being.11-12 The 

infection still progressed to AIDS, and the life spans of patients with late-stage AIDS were mere 

months.11-12 It was quickly realized that the benefits of AZT alone were short-lived, and AZT-

resistant strains of HIV-1 were developing.11  

1.4.1 Highly active antiretroviral therapy (HAART) 

In the mid-1990’s doctors began treating patients with HIV-1 with multiple antiviral agents 

with great success.11, 13-15 Protease inhibitors were introduced in 1995, starting with 

saquinavir (SQV).10 This treatment strategy, Highly Active Antiretroviral Therapy 

(HAART), was noted as a turning point in HIV treatment, with a dramatic decrease in HIV 

morbidity and life expectancy improvements.16 HAART is a combination therapy that is 

comprised of at least three drugs from two different classes; typically one protease 

inhibitor or non-nucleoside reverse transcriptase inhibitor, combined with two nucleoside 

reverse transcriptase inhibitors.11, 17 To date, there are antiviral agents that target different 

stages of the viral life cycle: cell entry and fusion, reverse transcription, integration, and 

maturation. While HAART clearly had many advantages, eventually it was uncovered that 
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it came with problems as well; HAART required patients to take upwards of 20 pills a day 

with very specific instructions, and missing even one dose a week could drastically 

increase the chance of the regimen failing.11 Fortunately, HAART is capable of reducing 

viral load, improving immune function and increasing life expectancy.17 

1.5 HIV protease  

HIV PR is a member of the aspartic protease family, and cleaves specific sites in gag and gag-

pol precursor polyproteins, and is essential for viral maturation.18  

 

Figure 1.1 HIV protease mechanism, drawn in ChemDraw. 
 

Rather than recognizing particular amino acid sequences, HIV PR works by recognizing the 

asymmetric shape of the peptide substrates; meaning that all of the cleavage sites have different 

sequences.18 By inhibiting HIV PR, cell-to-cell transmission of the virus is stopped, because HIV 

PR is necessary for viral maturation.19 HIV is able to mutate extremely rapidly because of 

reverse transcriptase lacks a proofreading function, and thus if the levels of antiviral drugs drop, 

then the development of drug resistance is likely.11 Currently there are nine FDA approved 

protease inhibitors (PIs), and unfortunately, resistance mutations have been observed for each of 

these drugs.18, 20  
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1.5.1 General structure of HIV-1 protease 

The active form of HIV-1 PR is a homodimer made of two 99 amino acid subunits, with 

the active site being along the dimer interface and each monomer contributing one of the 

two catalytic aspartates.21 Two β-hairpins cover the active site, and act as highly flexible 

“flaps” that undergo large conformational changes upon binding and release of substrates 

and inhibitors.22  

 

Figure 1.2 Crystal structure of HIV-1 PR in complex with amprenavir.  
 
The crystal structure of 3NU3 is shown in Figure 1.2, modeled in PyMol.23 The protease 

dimer is displayed as cyan ribbons and amprenavir as magenta sticks. The dimer is in a 

closed conformation when bound to substrate or inhibitor, and the flaps open away from 

the catalytic site to allow substrate or inhibitor to enter or be released.10 In WT HIV-1 

PR, three categories of flap conformations have been identified: closed, semi-open, and 

open.24 In resistant mutants, flap dynamics are complex, and it is suggested that altered 

flap flexibility may contribute to drug resistance.24   
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1.5.2 Atazanavir 

 

Figure 1.3. Structure of atazanavir, drawn with ChemDraw. 

Atazanavir (ATV) is a peptidomimetic PI that has been approved in many countries for the 

treatment of adults with HIV-1 infection and in some countries, including the United 

States, children.17 ATV is commonly used as a first-line therapy, and in some cases, ATV 

is administered with a boosting agent, ritonavir, and it is typically administered once 

daily.17, 25 Like other PIs, ATV inhibits the cleavage of gag and gag-pol polyproteins, a 

step that must occur in an ordered fashion, and is essential for viral replication.17, 20 ATV 

resistance profiles have been shown to be distinct from other PIs, and a signature resistance 

mutation has been identified as I50L, which was present in 100% of ATV resistant clinical 

isolates of patients not responding to ATV treatment.17-18 In addition to I50L, the most 

common mutations that have co-emerged for patients using ATV +/- ritonavir include 

L10I/F/V/C, G16E, K20R/M/I/T/V, V32I, L33I/F/V, E34Q, M36I/L/V, M46I/L, G48V, 

F53L/Y, I54L/V/M/T/A, D60E, I62V, I64L/M/V, A71V/I/T/L, G73C/S/T/A, V82A/T/F/I, 
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I84V, I85V, N88S, L90M, and I93L/M.17, 26 Mutations that are specific to patients using 

ATV (+/- ritonavir) are L10C, G16E, K20I/T/V, L33I/V, E34Q, F53Y, D60E, I64L/M/V, 

A71I/L, G73C/T, V82I, I85V, and I93L/M.26 

1.6 HIV-1 protease and drug resistance 

The RT used by HIV-1 during replication has notoriously low fidelity and lacks the ability to 

proofread, with typical retroviral RT error rates thought to be 10-4 to 10-6 errors per nucleotide, 

and is thus thought to be mostly responsible for the virus’s rapid rate of mutation.7, 27 Similar to 

other RNA viruses, HIV is faced with dynamic environments and thus must be a master of 

adaptation, though because of this, it must be careful also not to acquire too many mutations that 

lower viral fitness and push it towards extinction.27 RNA viruses, like HIV, commonly exist as 

quasi-species, with enormous genetic diversity, which consequently allows them to escape 

control rapidly by antiretroviral drugs.7, 28 In addition, the long-term nature of HAART often 

results in loss of adherence to the drug program and allows for the selection of resistant strains.10  

Resistance to PIs is caused by mutations in HIV-1 PR that either alter the inhibitor binding site 

or the dimer interface, while simultaneously retaining the ability to process Gag and Gag-Pol 

polyproteins.10 In addition, Gag cleavage site mutations have also been observed that contribute 

to resistance.25 HIV-1 PR is more susceptible to mutations than any other target of HAART, and 

multiple resistance mutations can be acquired, leading to highly resistant variants.10, 25 “Major” 

resistance mutations of HIV-1 PR decrease binding of PIs, as well as natural substrates, which 

leads to reduced viral replication. “Minor” mutations can improve replication in viruses that 

contain “major mutations”.29  
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1.7 Highly resistant HIV-1 protease variants 

Despite the two newest PIs, darunavir (DRV) and tipranavir, being specifically designed to be 

effective against resistant mutants, PRs that are highly resistant to DRV and other PIs have been 

clinically isolated, leading to an interest in developing strategies to successfully inhibit resistant 

HIV PRs.10 Many possible combinations of mutations in HIV PR are possible and highly 

resistant mutants frequently have 20 or more mutations, with the mutations likely acting 

synergistically in order to evade inhibitors in different fashions.10, 24, 30   

1.7.1 Highly resistant mutant containing 20 mutations (PR20) 

A clinically isolated highly resistant mutant of HIV-1 PR containing 19 mutations (PR20) 

retains its ability to process Gag and Gag-Pol polyproteins, even in the presence of 

current clinical protease inhibitors, although it processes the Gag polyprotein ~4 times 

slower than WT HIV-1 PR while maintaining the same order of cleavage.24, 29, 31 PR20 

contains 15 mutations that are classified as either major or minor drug resistance 

mutations.32 Additionally, PR20 contains three major mutations associated with DRV 

resistance and has an 8,000-fold weaker binding affinity for DRV compared to WT HIV-

1 PR.30 PR20 exhibits a kcat similar to that of wild-type (WT) PR, and PR20 also exhibits 

a Km for a synthetic substrate that is ~13-fold higher relative to WT HIV-1 PR.29 

Additionally, PR20 exhibits a dimer dissociation constant (Kd) that is ~3 fold higher than 

that of WT HIV-1 PR, and uninhibited PR20 exhibits a thermal stability significantly 

greater than WT HIV-1 PR, being that PR20’s Tm is 6°C higher than WT HIV-1 PR.29 

Inhibition of autoprocessing of a 56 amino acid transframe region is not observed for 

PR20, even in the presence of DRV and SQV that exceeds estimated plasma or 

intracellular concentrations.29  
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With all of these observations in mind, it is likely that PR20 is clinically unresponsive to 

all current PIs.29 To date, the crystal structures of PR20 without inhibitor, as well as PR20 

in complex with DRV and SQV, have been solved by the Weber lab.29 By comparing the 

crystal structures of PR20 and WT HIV-1 PR, evolving mechanisms of drug resistance 

can be revealed, and strategies for targeting multidrug resistance mutants can potentially 

be improved.29  

1.7.2 Highly resistant mutant containing 15 mutations (PR17) 

PRS17 is another rationally selected clinically isolated highly resistant mutant of HIV-1 

PR that is currently being studied in the Weber lab and contains six mutations in common 

with PR20.30, 33 PRS17 retains its ability to autoprocess, and despite only containing one 

mutation in the substrate-binding cavity, PRS17 is resistant to all clinical inhibitors.30, 33 

The mutations of PRS17 are found in clusters and lack direct interactions with inhibitors.30  

Additionally, despite lacking all of the major mutations associated with DRV resistance, 

PRS17 has a binding affinity for DRV that is 10,000 fold weaker than WT HIV-1 PR, 

suggesting the basis of drug resistance may differ between PR20 and PRS17.30 PRS17 

exhibits a low Kdimer, comparable to WT HIV-1 PR.33 Structural studies of PRS17 in 

complex with DRV revealed that only two G48V and V82S, have contact with DRV, and 

the complex exhibits the closed flap conformation.30 PRS17 in complex with DRV, 

compared to WT HIV-1 PR, exhibits a large conformational change in the hinge loop 

region (residues 34-42), which leads to a loss in the ion pair between E35 and R57 

observed in WT HIV-1 PR.30 It is possible that PRS17 represents a common mechanism of 

drug resistance, and thus it could be a representative model to design inhibitors for drug 

resistant mutants whose resistance is due to distal mutations.30  
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2 X-RAY CRYSTALLOGRAPHY AND DRUG DESIGN 

2.1 Current techniques in structural biology 

Current techniques in structural biology include cryo-electron microscopy (cryo-EM), nuclear 

magnetic resonance (NMR), neutron crystallography, and X-ray crystallography.34-36 Cryo-EM is 

a technique that allows for structure determination with near-atomic resolution (~3.5Å) and does 

not require crystallization, which poses a major bottleneck in crystallography techniques.34, 37 

However, using cryo-EM for determining the structure of smaller and dynamic samples remains 

a significant challenge.37 NMR is especially useful in studying protein dynamics, however it has 

intrinsic low sensitivity and thus requires large amounts of protein.38 While there have been 

recent advancements in protein NMR methods; it is typically quite difficult to study large 

proteins, or those with a mass above 30 kDa.38 Despite a few fundamental limitations (protein 

crystallization, unresolved dynamics, and limited detection of chemical heterogeneity), X-ray 

crystallography has remained the primary method of 3-D structure determination of proteins, 

viruses and nucleic acids, and structures determined by X-ray crystallography continue to be the 

majority of structures deposited in the PDB.34, 39     

2.2 Why use X-ray crystallography? 

X-ray crystallography is the central experimental technique used in structure-assisted drug 

design because structure solution and refinement are becoming increasingly more automated and 

newer synchrotrons allow for diffraction data to be collected rapidly and with high resolution 

from small crystals.34, 36, 38 Furthermore, resolution of the diffraction data for a structure is an 

important parameter to consider, especially when using a structure for drug-design, because the 

atomic coordinates of a 1.5 Å structure are much more reliable than that of a structure with 3.5 Å 

resolution.40 Unfortunately, structures in the PDB may contain errors, which can be problematic 
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for structure-guided drug design, specifically with structures that contain errors in the modeling 

of ligands in protein-ligand complexes.34  

2.3 Structure-guided drug design and HIV-1 PR 

Structure-guided drug design uses structure determination techniques (such as X-ray 

crystallography or NMR) and computational biology to guide the synthesis of drugs.41 Structural 

studies of HIV-1 PR in complex with various inhibitors have been important in drug design; 

however, they have also historically been complemented with computational studies, such as 

docking and molecular dynamics, to understand the mode of inhibitor binding, and for 

optimization of inhibitor design.41 Inhibitors of HIV-1 PR have been designed to maximize 

interactions with the enzymes backbone in the active site, which has led to potent FDA approved 

inhibitors with high barriers to resistance.42 Analysis of crystal structures of WT HIV-1 PR in 

complex with DRV, as well as mutant PRs, have shown extensive hydrogen bonding between the 

PR backbone and inhibitor.42 This suggests that designing inhibitors with increased interactions 

with the WT HIV-1 PR backbone will likely retain potency against mutant strains due to their 

lack of the ability to eliminate inhibitor-backbone interactions.42    

2.3.1 The importance of atomic resolution 

X-ray crystal structures can potentially reveal the locations of H atoms typically around 1 

Å resolution, which is extremely important in structure-guided drug design, because H 

atoms play critical roles in H-bonding, electrostatic interactions and catalysis.35, 42  

2.4 Protein crystallization 

To solve the crystal structure of a protein (or DNA, small molecule, etc.), first a crystal must be 

formed. To achieve this a solution of protein is manipulated to induce supersaturation of the 

protein to produce protein crystals. There are three main methods to produce crystals: vapor-
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diffusion, liquid-diffusion and batch, however for this work only vapor-diffusion was used. 

Vapor-diffusion can be further divided into hanging-drop and sitting-drop methods. In vapor-

diffusion methods, a protein solution is mixed with a reservoir solution to form a small drop, 

which is typically just a few µL, and the drop is placed on a surface. The droplet is then sealed 

inside an airtight chamber, along with the reservoir solution. The droplet and the reservoir 

solution undergo a dynamic equilibration until the drop and the reservoir together reach a state of 

equilibrium.  

 

Figure 2.1 Simplified phase diagram for crystallization of proteins, created in 

ChemDraw. 

The goal is for the protein to exceed its solubility limit, in the metastable zone, and not 

precipitate, but instead form crystals.43 There is no way to predict what conditions will achieve 
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this goal, but fortunately there are many kits that assess a wide array of crystallization 

conditions, assisting one in determining what conditions to start with.39, 43  

2.5 X-ray diffraction, data processing and refinement 

Once crystallization conditions have been optimized to produce crystals that are seemingly 

worthy of diffraction, the crystal is fished into a loop and frozen, and then X-ray data can be 

collected using either a home source, or an X-ray beam generated by a synchrotron.44 Typically, 

a synchrotron is preferred over a home source, due to the higher quality of data that it can yield.44 

During data collection, the crystal is rotated, and many frames of diffracted X-rays are collected 

on a detector.45 Each reflection provided on the diffraction map is characterized both by its 

amplitude and phase; the peak intensities can provide amplitudes, but the reflection does not 

provide any direct information about the phase.39 The phase of light cannot be directly measured, 

so to solve the structure, the phase problem must be addressed.45 While there are a few ways to 

approach the phase problem, in the case of HIV-1 protease, many high-quality structures are 

available, so the molecular replacement method can easily be employed to solve this problem (in 

fact, this method has been used for nearly 80% of structures deposited in the PDB).39, 46 Once the 

phase problem has been addressed an electron density map can be produced, which can then be 

refined (varying model parameters to achieve similarity between observed and calculated 

reflection amplitudes) and fit to solve the crystal structure.47       

2.6 Currently available structures of HIV-1 PR and ATV complex 

Prior to this study, there were three structures of other groups’ HIV-1 PRs in complex with ATV 

available in the protein data bank (PDB), however these structures are considered to have 

moderate resolution (Table 1) compared to what has been recently achievable with HIV-1 PR in 

the Weber lab, and the WT sequences are not identical (Figure 2.2) to that of the Weber lab.48-49 
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Additionally, the three current structures have differences between the conformation(s) of ATV. 

It is important to note that proteases studied in the Weber lab have optimizing mutations, Q7K, 

L33I, and L63I, to increase protein stability and C67A and C95A to prevent the formation of 

disulfide bonds.23 Other sequences differences are presumed to be polymorphisms. 

PDB ID Resolution (Å) Space group Rfree Rwork 

2AQU 2.0 P61 0.238 0.227 

3EKY 1.8 P212121 0.209 0.176 

3EL1 1.7 P212121 0.205 Not provided 

Table 1. Crystallographic data for crystal structures of WT HIV-1 PR available in PDB.  
 

 

Figure 2.2 Multiple sequence alignment of sequences from other WT HIV-1 PR structures 
currently available in the PDB. 

 
2.7 Benefits of protease – inhibitor atomic resolution structures 

By solving an atomic resolution structure of WT HIV-1 PR in complex with ATV, more accurate 

comparisons of drugs interacting with WT HIV-1 PR can be made between ATV and DRV. 

Additionally, the interactions between ATV and highly drug resistant mutants can be compared 

with interactions in WT HIV-1 PR. By comparing these interactions in both WT and highly drug 

resistant mutants, more insight can be provided into designing drugs that are more potent against 

highly drug resistant mutants.  
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3 EXPERIMENT 

Using Escherichia coli cells, HIV-1 protease was expressed in inclusion bodies, which were 

cleaned and HIV-1 PR was purified using gel filtration chromatography and high performance 

liquid chromatography. The PR was then dialyzed and refolded. The pure protein was then used 

to produce crystals in complex with ATV, and X-ray diffraction patterns were collected at a 

synchrotron, and the data was used to solve the structure of WT HIV-1 PR in complex with ATV 

structure with 1.09 Å resolution.  

3.1 Purification of HIV-1 Protease 

3.1.1 HIV-1 protease overexpression 

Using BL21(DE3) cells harboring a plasmid containing the gene for HIV-1 PR, a 100 mL 

culture of pre-innoculum cells was grown in Luria Bertani (LB) broth containing 100 

mg/ml carbenicillin. 10 mL of pre-innoculum was used to inoculate four 1 L flasks of LB 

broth containing 100 mg/mL carbenicillin. The cultures were grown at 37°C at 200 rpm to 

an OD of 0.6-0.8 when they were then induced with a final concentration of 2 mM 

isopropyl β-D-1-thiogalactopyranoside. The cultures were grown for 4 hours after 

induction and were then centrifuged at 5,000 rpm for 20 minutes at 4°C. The cells pellets 

were then stored at -80°C until further use. 

3.1.2  HIV-1 protease inclusion body processing 

The pellets were homogenized in 20 mL/1g cell pellet sonication buffer (50 mM tris pH 8.0, 10 

mM EDTA pH 8.0, 1 mg/mL Lysozyme).  200 µL Triton-X 100 was added per 20 mL 

sonication buffer, and the cells were stirred for 2 hours. The cells were then sonicated on ice 

six times for 1 minute with 2 minute breaks. The cells were then centrifuged at 12,000 rpm 

4°C for 20 min, the supernatant was discarded, and the pellet was resuspended in buffer B (50 
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mM tris mM, 10 mM EDTA pH 8.0, 2 M urea). The cells were then centrifuged again at 

12,000 rpm, 4°C for 20 minutes and the pellet was resuspended again in buffer B. The cells 

were then centrifuged again at 12,000 rpm, 4°C for 20 minutes and the pellet was resuspended 

in buffer A (50 mM tris pH 8.0, and 20 mM EDTA pH 8.0). The cells were then centrifuged 

again at 12,000 rpm, 4°C for minutes. The pellet was resuspended in 10 mM DTT and stored at 

-20°C until further use.  

3.1.3 Gel Filtration Chromatography 

HiLoadTM 26/600 SuperdexTM 75 pg size exclusion column was washed with two column 

volumes of degassed deionized water, and again with two column volumes of gel filtration 

buffer (3 M guanidine HCl, 50 mM Tris pH 8.0, 5 mM EDTA pH 8.0, 5 mM DTT). The 

inclusion bodies were thawed in a water bath and centrifuged at 12,000 rpm for 20 minutes at 

4°C. The pellet was resuspended in 8 M guanidine HCl, 10 mM DTT and mixed for 1 hour. 

The solution was then filtered with a 0.8 micron filter. The sample was then injected into the 

column and run with a flow rate of 2.000 mL/min. The HIV-1 PR peak was collected and 

pooled and stored at -20°C for further use. 

3.1.4 High-Performance Liquid Chromatography 

HPLC column was equilibrated with two column volumes of 0.05% trifluoroacetic acid. The 

HPLC column was loaded with 5 mL gel filtration fractions and run with a flow rate of 1.000 

mL/min. The protease eluted at 30% acetonitrile/70% water/0.05% trifluoroacetic acid. The 

HIV-1 PR peak was collected and pooled and stored at -20°C for further use. 

3.1.5 Dialysis and refolding 

The HPLC fractions were injected into a Slide-A-LyzerTM dialysis cassette and incubated in 2 

L 25 mM formic acid/1 mM DTT overnight at 4°C. The cassette was then transferred to 50 
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mM sodium acetate pH 5.0 at 4 °C for 4 hours. The protein was then concentrated by 

centrifugation, and the protein concentration was determined by absorbance at 280 nm. 

3.2 Crystallization of HIV-1 protease in complex with atazanavir  

3.2.1 Initial crystallization screening 

Crystallographic conditions were screened using Hampton Research Crystal ScreenTM 

HR2-112 kit and the hanging drop vapor diffusion method. The crystallization drops 

consisted of 1 µL of 4.2 mg/mL HIV-1 PR/2mM ATV and 1 µL reservoir solution.   

3.2.2 Crystallization for X-ray diffraction 

Four of the most promising conditions from the screening kit that produced crystals were 

further explored. Optimization involved varying concentrations of the screening reagents 

and the pH of the buffers. The HIV-1 PR and ATV concentration, temperature and 

hanging drop vapor diffusion method remained the same.  

3.3 X-ray Data Collection and Structure Refinement 

X-ray diffraction data was collected on ID beamline of the Southeast Regional Collaborative 

Access Team (SER-CAT) at the Advanced Photon Source at Argonne National Laboratory. The 

diffraction data was scaled and integrated with HKL2000, and the HIV-1 PR in complex with 

ATV structure was solved by molecular replacement with the HIV-1 PR in complex with 

amprenavir (3NU3) as the starting model by PHASER and CCP4.50-52 The structure was refined 

using SHELX-2014 and model building was carried out using Coot, and anisotropic B factor 

refinement was applied.53-54  
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4 RESULTS 

HIV-1 protease was purified from inclusion bodies using gel filtration chromatography and high-

performance liquid chromatography and was dialyzed, refolded and concentrated. The protease 

was then crystallized using hanging drop vapor diffusion, and X-ray diffraction patterns were 

collected for numerous crystals. The highest quality diffraction data was used to solve the HIV-1 

in complex with ATV by molecular replacement, using 3NU3 as a model.   

4.1 HIV protease purification 

4.1.1 Gel filtration chromatography of HIV protease 

HIV-1 protease inclusion bodies were washed and dissolved in 5 mL 8 M guanidine HCl 

10 mM DTT and injected into the gel filtration column and ran with a flow rate of 2.000 

mL/min. The protein eluted in fractions 24-34 (Figure 4.1) and had a λmax280 = 200 mAU. 

In Figure 4.1, the x-axis represents mL, and the y-axis represents mAU.  

 

Figure 4.1 Gel filtration chromatogram of HIV protease. 



19 

4.1.2 HPLC of HIV protease 

The resulting protein fractions from gel filtration chromatography were pooled and 

injected into the HPLC, which was run with a flow rate of 1.000 mL/min. The protease 

eluted at 30% acetonitrile/70% water/0.05% trifluoroacetic acid in fractions 10 – 15 

(Figure 4.2) and the protein peaks had a λmax280 = 290 mAU. In Figure 4.2, the x-axis 

represents mL and the y-axis represents mAU.  

 

Figure 4.2 High performance liquid chromatogram of HIV protease. 
 

4.1.3 Dialysis, refolding, and concentration of HIV-1 PR  

HIV-1 PR was dialyzed and subsequently refolded by placing it in a solution of acetic acid 

at its active pH, 5.0, for ~4 hours. The protein was concentrated by centrifuging, and the 
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concentration was determined to be 8.4 mg/mL based on its absorbance at 280 nm. The 

HIV-1 PR was determined to be active via a fluorescence activity assay that involves 

cleaving of an artificial peptide substrate (of which the fluorescence is otherwise 

quenched).  

4.2 Crystallization and data collection 

4.2.1 Crystal optimization 

After analyzing X-ray diffraction patterns from various crystals, it was determined that the 

crystal grown under the following conditions produced the highest resolution diffraction 

pattern: 0.1 M sodium cacodylate pH 6.0, 0.2 M magnesium acetate, and 16% PEG 8000. 

4.2.2 X-ray diffraction 

The crystal with the highest resolution diffraction diffracted at 1.09 Å and belonged to the 

space group P21212. The diffraction pattern of this crystal was clean and well defined and was 

used to successfully determine the structure of HIV-1 PR in complex with ATV. The data 

collection statistics are summarized in Table 2.  

Space group P21212 

Unit cell dimensions (Å)  

α 58.72 

β 85.79 

γ 46.58 

Resolution range (Å) 50-1.09 (1.13-1.09) 

Unique reflections 91524 (5026) 

Rmerge (%) 7.8 (29.6) 
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I/σ (I) 28.1 (3.3) 

Completeness (%) 92.9 (51.6) 

Redundancy  6.4 (2.3) 

Refinement  

 R (%) 14.7 

 Rfree (%) 17.4 

Solvent molecules (total occupancies) 269 (209.7) 

  1 Cl- + 2 GOL + 1 CAC + 251 H2O 

RMS deviation from ideality  

 Bonds (Å) 0.0153 

 Angle distance (Å) 0.0350 

Average B-factors (Å2)  

 Wilson Plot B factor 7.9 

 Main-chain atoms 10.9 

 Side-chain atoms 16.2 

 Whole chain atoms 13.5 

 ATV 9.9 

 Solvent 23.8 

RMS deviation to DRV (2IEN) (Å) 0.29 

Table 2. X-ray diffraction data-collection and model-refinement statistics.  
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4.3 Analysis of HIV-1 atazanavir complex structure 

The crystallography asymmetric units contain a HIV-1 PR dimer with the residues of the subunits 

numbered 1-99 and 100-199. Excellent electron density was shown for all protease atoms, ATV and 

solvent molecules.  

4.3.1 RMSD between HIV-1 PR atazanavir complex and darunavir complex 

 

 

Figure 4.3. RMSD between WT HIV-1 PR in complex with atazanavir and WT HIV-1 PR 
in complex with darunavir. 

 

Root-mean-square deviation (RMSD) values between WT HIV-1 PR in complex with ATV and 

WT HIV-1 PR in complex with DRV for chain A are displayed in the top, and RMSD values for 

chain B are displayed on the bottom. 
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4.3.2 Alternate conformations 

Alternate conformations were modeled for 19 residues (Chain A – K7, E21, K45, I50, G51, I63, A71, 

V82, I84, L97 Chain B – K114, V132, S137, M146, I150, G151, Q161, E165, L197) in the crystal 

structure, as well as two conformations of atazanavir (Figure 4.7). The relative occupancy of the 

ATV conformations is 0.70/0.30. The residues with alternate conformations were not the same in 

both subunits, aside from I50/I150, G51/G151 and L97/L197, in which alternate conformations were 

modeled for both subunits (Figures 4.5 and 4.6). Clear electron density for was present for both 

conformations of the residues. 2F0-Fc electron density maps were used for all comparisons and all 

σ levels are set to 1.50 for each map in Figures 4.4-4.8. 

 
Figure 4.4 Electron density map of active site aspartates interacting with ATV 
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Figure 4.5 Electron density map displaying multiple conformations of L97 (left) and L197 (right) 
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Figure 4.6 Alternate conformations of I50 and G51 (top) and I150 and G151 (bottom) 
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Figure 4.7 Electron density map displaying multiple atazanavir conformations 



27 

4.3.3 Solvent structures 

The high quality data allowed for modeling of a second shell of solvent, with over 200 water 

molecules included in the model, some with partial occupancy. Additionally, chloride was 

modeled, and glycerol and cacodylate were fitted to the density (examples are shown in Figure 

4.8).  

 

Figure 4.8 Electron density map of cacodylate (left) and glycerol (right) 

4.4 Comparison of multiple conformations with published structures 

2AQU modeled multiple conformations for K43, I47, I64, and ATV; 2AQU also reported 0.50 

occupancy of I15, however no second conformation. Aside from ATV, none of these alternate 

conformations are the same as in the Weber WT structure.  

3EL1 modeled multiple conformations for M46, I50, G51, V75, C95, I150, G151, C167, and 

ATV. M46, I50, G51, I150, and ATV also had multiple conformations in the Weber WT 

structure. However, V75, C95, and C167 did not exhibit multiple conformations in the Weber 

WT structure.  

4.5 Comparison of atazanavir density with published structures 

The ATV ligands from 3EL1 and 2AQU were superimposed with the ATV of the Weber WT 

HIV-1 PR in complex with ATV structure. 3EK1 was not used for comparisons, as it was 

published in conjunction with 3EL1. It is the same space group (P212121) but displays one 
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conformation of ATV, rather than two like all of the other structures. Additionally, 3EL1 is 

slightly higher resolution than 3EKY (1.7 and 1.8 Å respectively), and the electron density map 

is clearly higher quality than 3EKY.  

The ATV from the Weber WT structure is displayed in green, 3EL1 in pink, and 2AQU in teal. 

The superimposition of ATV shows that the ATV conformation modeled in 3EL1 differs fairly 

significantly from that of 2AQU and the Weber WT structure.  

 

Figure 4.9 Superimposition of atazanavir of 2AQU, 3EL1 and Weber WT structure 
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Figure 4.10 Electron density map of ATV from Weber WT structure 
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Figure 4.11 Electron density map of ATV from 3EL1. 

 

Figure 4.12 Electron density map of ATV from 2AQU 
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2F0-Fc electron density maps were used and all σ levels are set to 1.50 for each map in Figures 

4.10-12. 2AQU and 3EL1 have also modeled alternate conformations of ATV; however, the 

occupancy of each conformation is 0.50/0.50 in each structure, whereas in the Weber WT 

structure, the occupancy is 0.70/0.30. The higher resolution Weber WT structure displays clear 

density for the major conformation of ATV and slightly less well-defined density for the minor 

conformation of ATV (Figure 4.10). Both 2AQU and 3EL1 show nearly no electron density for 

the terminal rings of ATV as seen in Figures 4.11 and 4.12.  

 
4.6 Comparison of protease-inhibitor interactions 

Protease-inhibitor interactions were compared between the ATV complex, and a previously 

reported DRV complex (PDB ID: 2IEN).55 For both structures inhibitor was modeled in two 

conformations. However, when comparing the structures, only the major conformation was 

considered. The relative occupancy in the ATV complex is 0.70/0.30, and the relative occupancy 

of the DRV complex is 0.55/0.45. Hydrogen bonds between inhibitor and protease or solvent are 

demonstrated in Figure 4.15 and Figure 4.16.  

The major conformation of ATV forms hydrogen bonds with the side chains of D25, D125, and 

D129 and the backbone of D29, G27, G127, and G148, as well as numerous waters. The major 

conformation of DRV forms hydrogen bonds with the side chains of D25, D30, and D125 and 

the backbone of G127, D129, and D130, in addition to waters. While ATV forms hydrogen 

bonds with the N in the amide of the D129 backbone, it does not form hydrogen bonds with 

D130, which attributes to the high barrier of resistance displayed by DRV.42  
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4.6.1 Hydrogen bonding comparison between HIV-1 PR atazanavir complex and darunavir 

complex 

 

Figure 4.13 Interactions between ATV and HIV-1 PR, drawn in ChemDraw. 
 

 

Figure 4.14 Interactions between DRV and HIV-1 PR, drawn in ChemDraw. 
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5 CONCLUSIONS 

WT HIV-1 PR was expressed in inclusion bodies in E. coli, and purified using gel filtration 

chromatography and HPLC. The PR was then dialyzed, refolded, and concentrated by 

centrifugation, and then the protein was determined to be active using an enzymatic assay with 

an artificial peptide substrate. WT HIV-1 PR in complex with ATV was crystallized, and 

crystallization conditions producing the highest resolution diffraction patterns were determined 

to be: 0.1 M sodium cacodylate pH 6.0, 0.2 M magnesium acetate, and 16% PEG 8000. The structure 

of the WT HIV-1 PR in complex with ATV structure was solved with a resolution of 1.09 Å. 

Multiple conformations of 19 side chains were modeled. The structure indicates that ATV forms 

hydrogen bonds with three side chains and four hydrogen bonds with the PR backbone. Additionally, 

the high quality electron density map allowed for two conformations of ATV to be modeled (with 

occupancies of 0.70/0.30). This atomic resolution structure of HIV-1 PR in complex with ATV can 

be used to make comparisons of future crystal structures of highly drug resistant mutants in complex 

with atazanavir to provide insights to mechanisms of drug resistance, as well as provide insight to 

create new protease inhibitors with high barriers to resistance.  
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