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THE STABILITY AND CONTROL OF STOCHASTICALLY SWITCHING

DYNAMICAL SYSTEMS

by

RUSSELL CLARKE JETER

Under the Direction of Dr. Igor Belykh

ABSTRACT

Inherent randomness and unpredictability is an underlying property in most realistic

phenomena. In this work, we present a new framework for introducing stochasticity into

dynamical systems via intermittently switching between deterministic regimes. Extending

the work by Belykh, Belykh, and Hasler, we provide analytical insight into how randomly

switching network topologies behave with respect to their averaged, static counterparts (ob-

tained by replacing the stochastic variables with their expectation) when switching is fast.



Beyond fast switching, we uncover a highly nontrivial phenomenon by which a network can

switch between two asynchronous regimes and synchronize against all odds. Then, we es-

tablish rigorous theory for this framework in discrete-time systems for arbitrary switching

periods (not limited to switching at each time step). Using stability and ergodic theories,

we are able to provide analytical criteria for the stability of synchronization for two coupled

maps and the ability of a single map to control an arbitrary network of maps. This work not

only presents new phenomena in stochastically switching dynamical systems, but also pro-

vides the first rigorous analysis of switching dynamical systems with an arbitrary switching

period.

INDEXWORDS: Stochastically Switching Dynamical Systems, Synchronization, Stabil-
ity, Control, Complex Networks, Lyapunov Exponents, Stochasticity
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The results contained in this thesis have been published in five journal articles: [79, 80, 14,
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Additionally, these doctoral studies resulted in the following journal articles that are not

directly related to stochastically switching dynamical systems, but concentrate on switch-

ing dynamical models of human gait and pedestrian bridge interactions [20, 17] as well as
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CHAPTER 1

INTRODUCTION

Anything that changes in time can be represented mathematically by a Dynamical

System, from the population size of a bacterial culture [26], to the spread of HIV in the

bloodstream [111], to even romantic feelings in a relationship [133]. Attempting to model

the change of something (and the phenomena underlying that change) not only satisfies the

basic human desire to describe the world around us, but also carries a significant amount of

scientific worth. Mathematical models informed by scientific understanding can, in turn, give

insight back to the scientists, because models provide a quick, cheap test bed for performing

initial experiments. For example in [137] and [138], the authors present a mathematical model

for accurately describing the mouse ventricular myocyte (heart cell), which they are able to

use to ascertain the biochemical and electrophysical effects of various drugs. Because of this

interplay between mathematicians and traditional lab scientists, it is critical to develop tools

for creating and understanding dynamical systems in general. In this work, we present a

new framework for dynamical systems that switch randomly in time, then prove and describe

phenomena that are natural consequences of this new framework.

1.1 Dynamical Systems

Readers familiar with dynamical systems theory can skip ahead to Section 1.2 or even

1.3. Dynamical systems are divided into two categories, discrete- and continuous-time dy-

namical systems, based on how they treat time. Discrete-time dynamical systems, called

maps, are characterized by countable, iterated steps. For example, if you were to use a map

to describe how a rabbit population changes in time, you might only consider the change

across generations, and not how the population changes at every physical instance of time.
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Figure 1.1 The behavior of the Logistic map for different values of the growth rate r. The
dynamics are: constant (r = 2.5, top plot), periodic (r = 3.5, middle plot), and chaotic
(r = 3.7, bottom plot).

Mathematically, a map is typically described by a recurrence relationship of the form:

x(k + 1) = f(x(k)), (1.1)

where k is the current time step (or iteration, or generation), x(k) is the current state of

the system, and f is a function that describes how the state changes from generation to

generation. In words, (1.1) says that the state, x, at the next instance of time, k+1, is given

by some function, f , of the current state, x(k).

A common map, that exhibits the basic types of behavior for discrete-time dynamical

systems is the Logistic map, which is given by

x(k + 1) = rx(k) (1− x(k)) , (1.2)

where r is the growth rate of a population. The Logistic map is a rudimentary model for
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describing the growth of a population that reaches some carrying capacity, and then remains

constant. However, depending on the value of growth rate r, the map can behave drastically

differently. There are many types of behavior that maps can yield. These dynamics can be

unconstrained growth (where x(k) → ∞), fixed points (where x(k + 1) = x(k) = x∗ after

some amount of time), periodic orbits (where the trajectory repeats with some period m,

for example x(1) = x(4) = x(7) = · · · ), and chaotic orbits (where x(k) never repeats and its

long-term state can not be predicted). These dynamics are summarized with respect to the

Logistic map in Fig. 1.1.

Whereas, continuous-time dynamical systems, called flows (which are expressed as Or-

dinary Differential Equations, shortened ODEs), are characterized by a fluid, instantaneous

time variable. For example, if you were to describe a rabbit population using a flow, you

would be concerned with how the population changes at every instance of time. With how

rabbit life cycles are, this may be a more appropriate method for modeling their population

dynamics. Mathematically, a flow can be described by

dx

dt
= F (x(t)), (1.3)

where x(t) is the state of the system at time ta, dx
dt

b is the rate of change of x(t) with respect

to time, and F is a function describing that rate of change. In words, (1.3) describes how

some quantity changes in time, based on its state at a given instant of time.

The same types of behavior we have seen in discrete-time dynamical systems naturally

extend to continuous-time systems. Possible dynamics for flows include: constant fixed points

(x(t) = c after some initial time), periodic limit cycles (x(t) = x(t + T ) = x(t + 2T ) = · · ·

for some period T ), chaotic orbits (where x(t) never repeats and behavior is unpredictable

beyond nearby instances of time), and many more. Some of the possible dynamical regimes

are summarized in Fig. 1.2. With this preliminary understanding of dynamical systems

aIn general, dynamical systems are described with respect to some independent variable, which is not
limited to being time. However, this is the most natural way to describe them.

bDepending on the context, dx
dt is often stylized as ẋ where the overset dot indicates differentiation with

respect to time.
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Figure 1.2 Illustration of different types of dynamical behavior in flows using the forced
Duffing equation [83]. Flow dynamics include fixed points (top), limit cycles (middle), and
chaotic orbits (bottom).

in place, we briefly focus our attention to a subclass of dynamical systems called Complex

Networks. For a more detailed treatment of dynamical systems, see [148] or [106].

1.2 The Paradigm of Complex Networks

While some chapters of this work focus on general dynamical systems, to understand the

original motivations in the literature, a basic understanding of complex networks is necessary.

Much like anything that changes in time can be described as a dynamical system,

anything that has some inherent, underlying network structure can be described as a complex

network. Networks are pervasive in science and engineering: from neuronal networks to

power grids; from social networks to schools of fish; from the telephone network to artificial

neural networks. Complex networks do not always have this immediately obvious network

structure. Even a footbridge can be viewed as a network consisting of a girder node attached

to pedestrian nodes by means of their impact on the motion of each other (for example, see
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Figure 1.3 Typical visualization of a complex network. In this network, there are N = 200
nodes, and the probability of there being an edge between two nodes is p = 0.05.

[20] and [17]). More formally, a complex network network is defined as a graph G = (V , E)

which consists of a set of vertices (nodes), V , and edges, E , connecting those vertices. Figure

1.3 provides a visual representation of an arbitrary complex network.

1.2.1 Network Structure and Node Dynamics

A graph G can be described in many different ways mathematically, such as the tuple

(V , E), an adjacency list, or a Laplacian or connectivity matrix. The two network descriptions

that are particularly useful are the Laplacian matrix, and the adjacency list. An adjacency

list is a list with three columns that indicate the source of an edge, the target of an edge,

and the edge weight. Often this is simplified to two columns, ignoring the edge weight if

the edges all have uniform weight. The adjacency list for the network in Fig. 1.4 is given in

Table 1.1. Adjacency lists are a convenient way to describe networks, because they describe

the network completely with as little information as possible. The other way we will describe
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Figure 1.4 Simple network for describing different types of network representation.

is called a Laplacian matrix, which is an N ×N matrix (where N is the number of vertices

in the network) where the diagonal gives the out-degree (the number of edges for which this

edge is the source), and the ij-th entry of the matrix is 1 if there is an edge from vertex i to

j, and 0 otherwise. The Laplacian matrix, Lc for the network in Fig 1.4 is

L =



−1 0 0 0 1

0 −2 1 0 1

0 1 −3 1 1

0 0 1 −2 1

1 1 1 1 −4


(1.4)

Beyond this graph G that describes the structure (topology) of the network, there are

also dynamics that take place on each of the nodes. This means that each node describes

some quantity (or quantities) that changes (change) in time (such as the human population

in a specific area), and independent of influence from other nodes in the network (if the

city is completely isolated) the dynamics change according to some rule, as in (1.1) or (1.3).

cFor undirected networks (which are described a little later in the text), the Laplacian matrix is a real,
symmetric matrix. This means that its eigenvalues are necessarily real, and it is diagonalizable.



7

Source Target
1 5
2 3
2 5
3 4
3 5
4 5

Table 1.1 Adjacency list for the network in Fig. 1.4. Because the network is undirected, the
sources and targets are interchangable.

With this understanding of the dynamics of the isolated node, now we must incorporate

node-to-node interactions in the dynamical system. There are numerous ways to represent

this “coupling” between nodes dynamically, including diffusive coupling, mean-field coupling,

adaptive coupling, etc. In this work, we focus on diffusive coupling, which is simply adding

the difference between the state of node i and node j (that is, xi − xj) multiplied by some

“coupling strength,” ε. More formally, a network can be described by the equation

ẋi = F (xi(t)) + ε
N∑
j=1

lij(xj − xi), for i = 1, 2, . . . , N, (1.5)

where xi(t) gives the state of node i at time t, F (xi(t)) governs the evolution of node i

when it is isolated from the network, and lij is the ij-th entry of the Laplacian matrix that

describes the network topology. While (1.5) describes a network in which each node only has

one state variable (an oversimplification in most cases), this equation can easily be extended

toM state variables for each node (resulting in aM ·N -dimensional dynamical system). It is

important to notice that the node dynamics as well as the edge interaction can be described

by discrete- or continuous-time dynamical systems, and the impact of the difference between

continuous and discrete model representations will be discussed at length in this work.

1.2.2 Network Properties and Types of Networks

While individual node dynamics can be complex themselves, there are also numerous

ways that the underlying graph topology can affect the behavior of the network dynamically,
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so it is worth studying important properties of the structure that describe the network. In

this section, we review network properties (in terms of the structure, specifically).

As noted before, a network can be described by a graph, G that consists of a set of

vertices (nodes), V , and a set of edges, E that connect those vertices. Edges are represented

by a tuple e = (Source,Target,Weight). Consider a network describing a social network that

information flows through. The source is the node sending a signal to a specific target, and

the edge weight is the strength of this signal. Edges (and subsequently networks) can be

directed or undirected, meaning that information flows either unidirectionally from source

to target, or bidirectionally from source to target and target to source. While there are

networks with self-loops, in which a single node is both the source and the target, we limit

our attention to networks without self-loops unless it is specifically stated otherwise.

The degree of a node is the number of incoming edges that either target that node (called

the in-degree, din), or the number of edges for which that node is the source (called the out-

degree, dout). If the network is undirected, the in-degree and out-degree are equivalent, and

usually referred to as the node degree d. The average degree, davg, of a network can be

computed by averaging all of the din and dout for a directed network, or simply dividing the

number of edges by the number of nodes in an undirected network. The density, ρ of a

network is a measure of how connected the graph is, computed by comparing the number of

edges (denoted by |E|) to the total possible number of edges in the network,
(
N
2

)
= N(N−1)

2
.

More compactly,

ρ =
2|E|

N (N − 1)
.

If ρ→ 0, the network is said to be sparse and if ρ→ 1, the network is dense.

A path is a route from one vertex in the graph to another. For example, in Fig. 1.4,

1→ 5→ 4→ 3 represents a path from vertex 1 to vertex 3 of length 3d. The diameter of a

graph is the greatest distance between two nodes in the graph. If there is not a path from

one node in the network to another node in the network, the graph consists of more than one

dThat is, the path traverses three edges.
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component, or self-contained subgraph, from which there are no paths between components

of the graph.

1.2.3 Collective Behavior

How do these different network properties affect how the nodes behave dynamically?

This question is actually the central question of study when studying dynamical complex

networks. There are a few types of collective behaviore that a network can exhibit: inco-

herence (when the nodes behave seemlingly without interacting at all), complete synchro-

nization (when all of the nodes act in unison), cluster synchronization (when the network is

partitioned into groups of nodes that act as a cohesive unit, while between groups there is

incoherence), and “chimera states” (where there is one group that is competely synchronized,

and one group that is incoherent). These types of collective behavior are hardly a mathe-

matical artifact: AC power generators must be running at the same frequency (synchronized

to) the grid to supply power [25]. Groups of fireflies can synchronize their pulse frequency

to an external driver (like a handheld flashlight), collectively blinking along with the driver

(“pacemaker”) [99]. These are just two examples of a ubiquitous tendency in nature for

systems to synchronize.

Because of how prevalent synchronization is, it has been the subject of numerous studies

in the literature, especially in regard to finding necessary and sufficient conditions for a

network to synchronize. Two seminal works on network synchronization are [109] and [22],

in which the authors reduce studying synchronization of a network of N nodes to studying

synchronization in a network of two nodes. In [109], Pecora and Carroll show the relationship

between the local stability of the synchronization solutionf, the eigenvalues of the Laplacian

matrix, and the function describing the individual node dynamics. Whereas, in [22], Belykh,

Belykh, and Hasler are able to place sufficient conditions on the coupling strength that ensure

eCollective behavior describes how all of the nodes in the network behave in reference to the other nodes
in the network, not their individual dynamical behavior in time.

fThat is, whether or not the network converges to synchronization when starting from an almost syn-
chronous state.
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the global stability of the synchronization solution. These conditions explicitly depend on the

individual node dynamics as well as the collection of paths between nodes in the network.

The conditions in [22] are particularly significant, because they even apply to networks that

evolve in time (Evolving Dynamical Networks), which are discussed later in this chapter and

are a topic of study in this work.

1.3 Network Control

As collective behaviors like synchronization are so wide-spread and important, it is

reasonable to understand why there has been a significant amount of attention devoted to

network control. Network Control is the process of influencing a subset of the network to

drive it towards a desired state. For example, consider a robotically controlled fish that seeks

to form a school with a group of real fish (complete synchronization of the shoal of fish), and

in turn, lead those fish away from harm. Naturally, this desire to control dynamical systems

has been the subject of a significant volume of literature.

One of the most significant works on control in recent memory was [107], in which the

authors proposed a method in which one can strategically vary the system parameters to

drive a chaotic orbit to a nearby periodic orbit embedded in the chaotic attractor. This work

presented the first method for which one could consistently tame a chaotic trajectory, and

subsequently spawned a significant number of experimental and theoretical studies, see for

example [136, 48, 126]. While significant (and useful) in its own right, the glaring limitation

of this type of control is that it is limited to a single dynamical system, and is not meant to

specifically handle driving a network towards some dynamical regime, or towards network

synchronization.

Network control was first studied in discrete-time dynamical systems with regular struc-

tures. In [59], Gang and Zhilin introduce the notion of “pinning control,” which involves

targeting a subset of the nodes in a network (pinning sites) with a feedback mechanism.

Using this feedback mechanism on a few nodes, they were able to steer a network of chaotic

maps towards both constant and periodic dynamics. This problem was later extended to
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require fewer pinning sites and was then treated more rigorously in [65].

The next (and probably most significant in our context) major advancement in control

was by Sorrentino, et. al. in [143], in which the authors consider the problem of driving a

network of N nodes that are pinned at n sites towards some desired trajectory s(t). This

amounts to synchronizing the network to some predetermined dynamical regime, be it a

chaotic attractor, periodic orbit, or fixed point. This method extends the Master Stability

Function [109] approach, which gives conditions on the stability of synchronization in a

network without control, to the controlled system by accounting for the pinned sites in

the network Laplacian and increasing the dimensionality of the linearized system. Their

approach largely reduces the understanding of pinning control to computing the eigenratio

of the smallest (most negative) eigenvalue, µN+1 (in their case), and the largest non-zero

eigenvalue, µ2. This work sparked a significant amount of literature directed toward finding

even more optimal (often dynamic) control strategies (for example [151]), or used this work

to explore the role of a driver in directed networks (for example [95]). For a more in-depth

overview of the control literature, see the review paper [152] and the references therein.

Now that we have established the significance of understanding how to control dynamical

systems, and its utility in practice, we are ready to motivate the class of dynamical systems

that this body of work focuses on: stochastically switching dynamical systems. Before ex-

plicitly discussing stochastically switching dynamical systems, we will give some background

on what caused their re-emergence in the literature (switching discrete-time systems, called

“jump linear systems” have received attention intermittently for decades).

1.4 Evolving Dynamical Networks

While there are some examples of networks that are fixed, static things (such as me-

chanical structures), often networks are dynamic and evolve in time. Examples of this type

are much more numerous, for example face-to-face human interactions or neuronal networks
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Figure 1.5 Schematic of the “Blinking” Network Model from [19] at two different time in-
stances.

which are well-documented to change and adaptg in response to brain function [127] or even

chronic pain [57]. Indeed, it is likely easier to think of examples of networks that inherently

evolve randomly or according to some fixed rule than static networks. Technological and

social networks are in a constant state of reinvention and adaptation. Within the complex

networks framework that we have introduced, evolving networks were first introduced as

intermittent or adaptive controllersh, whose goal was to control the network like in the pre-

vious section, but only periodically driving the network [146, 86], or changing pinning sites

[151]. While they had appeared in the literature for most of a decade by the time it was

published, the definition of an Evolving Dynamical Network (EDN) was first formalized in

[62] by Gorochowski, et. al in 2012. Much like a network is defined, an evolving dynamical

network consists of a vertex set, V , a possible edge set, E = V × V , and state spaces V and

E where the dynamical states of the nodes and edges exist. In addition to these components

of a dynamic graph, there is also a set I of inputs from the environment, and a set of evolu-

gNeuronal networks change through many means: the addition or removal of neurons and synapses, and
even altering the weights along specific synapses.

hThis is not entirely true. Both [142] and [46] utilize “Fluid Neural Networks” (FNNs) to represent a
time-varying topology. Fluid neural networks describe mobile automatons on a grid, that activate based on
their proximity to other automatons. Typically, fluid neural networks do not have complex dynamics on the
nodes, though the networks can exhibit complex behavior. Their activation is similar to that of “neurons”
in Artificial Neural Networks (ANNs), hence the name fluid neural network.
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Figure 1.6 Schematic of the average of the “Blinking” Network Model from [19].

tionary plans τ that dictate the evolution of the network in timei. This formal mathematical

framework certainly includes all of the networks we have mentioned, and will mention in this

work, but is overly technical for understanding this material. More concisely, an evolving

dynamical network is a complex network whose topology changes in time deterministically

or according to a stochastic (random) rule.

Stepping back about a decade, the first examples of networks with evolving topologiesj

were developed concurrently, yet independently in [19] and [140]. In [19], Belykh, et al.,

present a 2K-Nearest Neighbor Networkk that has shortcuts across the network that turn on

and off randomly at a fixed period τ l. They called this model a “Blinking Network Model,”

and an example is shown in Fig. 1.5. Each time the shortcuts reconfigure, the network

describes a different small-world networkm (described in [154] and [102]). The authors use

their recently developed connection graph stability method [22] and averaging theory to

iThis evolution can be through either a deterministic or stochastic rule or set of rules, depending on the
context.

jThese works were presented outside of the control framework, and the evolving topologies were not a
control strategy, but a more realistic paradigm for approaching modeling real phenomena.

kA 2K-Nearest Neighbor network is a network that is laid out on a circle, and each node is connected to
its K neighbors on its left and K neighbors on its right.

lThis τ is not to be confused with the set of evolutionary plans that describe a general Evolving Dynamical
Network

mA small-world network is a regular graph (like a 2K-Nearest Neighbor graph) with additional long-range
connections that link distant nodes.



14

Figure 1.7 Moving neighborhood network from [140]. People can only spread diseases when
within a radius r (depicted by the circles) of one another.

prove that the addition of these random shortcuts dramatically decreases synchronization

thresholds (the coupling strength required for synchronization) compared to a 2K-Nearest

Neighbor graph without these random shortcuts. In fact, they find that if switching is fast

relative to the timescale of the node dynamics, that the synchronization thresholds match

those of a complete graph (see Fig. 1.6) with edge weights given by the expectation of the

randomly switching coupling variables. This work is especially important, because it is the

first work in continuous-time that describes stochastically switching dynamical systems as

an “on-off” blinking process. Additionally, these are the type of dynamical systems we study

in this work.

The other work that helped establish evolving dynamical networks that we will discuss

is [140], which had a similar evolving network. Motivated by the idea of modeling the spread

of infectious diseases by means of social interactions, the authors of [140] present what they

call a “Moving Neighborhood Network” (MN), which is conceptually shown in Fig. 1.7. Their

moving neighborhood network has both dynamics on the nodes, and 2D dynamics for the

position of the nodes in space. If two nodes are within some distance r of each other, there
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is an edge connecting them in the network topography. Using a network in which each node

moves according to an identical chaotic Duffing oscillator with different initial conditions,

the authors are able to prove the local stablity of synchronization using the Master Stability

Function approach from [109]. Their results rely heavily on the fact that chaotic Duffing

oscillators are ergodic (fill the state space), and therefore, the positions can be averaged over

space, and not over time. This allows the connections in the network to be treated as weak,

averaged connections, instead of as random, intermittent connections.

Both of these works reach a similar result, but through different means. They both find

a way to replace the evolving dynamical network with a static, averaged network, that can

be analyzed using traditional methods for proving the local and global stability of diffusively

coupled complex networks. That is not to say these works were not significant. They

represent a change in paradigm from the complex networks community, and since then,

evolving dynamical networks have been subject of a substantial volume of work (see, for

example, [63, 45, 146, 76, 19, 68, 140, 96, 97, 100, 38, 158, 125, 124, 122, 118, 115, 114, 63,

45, 157, 44, 42, 144, 141, 69, 70, 14, 49, 62, 1, 58, 43]).

1.5 Stochastically Switching Dynamical Systems

While evolving dynamical networks come in many forms, such as networks whose topolo-

gies evolve according to some fixed or dynamic predetermined rule, we will focus on networks

that either randomly reconfigure themselves and/or the dynamics on the node randomly

switch between states. While the original “blinking" model [19] was limited to switching

edges in a network, and inspired the work presented here, we will define our stochastically

switching system more generally.

1.5.1 Statement of the General Problem

Specifically, the general form for a stochastically switching continuous-time dynamical

system (flow) is:
dx

dt
= F(x(t), s(t)), (1.6)
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Figure 1.8 Illustration of the stochastic switching process. The time axis is divided into
intervals of length τ . For each interval, sk(t) = 1 with probability pk and sk(t) = 0 with
probability 1− pk.

where x(t) ∈ RN is the state of the system at time t, F gives the rate at which the state vector

x(t) changes (dependent on the current state and the switching process), and s(t) ∈ {0, 1}M

is a constant binary vector sk = [sk1, s
k
2, . . . , s

k
M ] for the time interval t ∈ [(k − 1)τ, kτ). Put

simply, we discretize the time axis into intervals of length τ time units. For the interval

[(k − 1)τ, kτ) the i-th entry in the binary vector sk is 1 with probability pi, and 0 with

probability 1 − pi. That is, after every τ time, we flip a weighted coin; if the coin is heads

(with probability p), si(t) = 1, otherwise si(t) = 0, and remains constant until the next

switching time. The switching vector sk can be thought of as a random sequence generated

by the switching process, and the events in si are independent and identically distributed

(i.i.d). The switching process is illustrated in Fig. 1.8. This means that each successive

event does not depend on preceeding events (a 0 in the i-th entry has no effect on the value

of the (i+ 1)-th entry). When time is instead iterated in discrete units, the general form of

the switching system (map) is given by:

x(k + 1) = F(x(k), s(k)), (1.7)

where x(k) ∈ RN gives the state of the system at iteration k, F updates the state vector

based on its value at the current iteration, x(k) and the switching process, and s(k) ∈ {0, 1}M

is again a binary vector. However, in this setting, the stochastic variables are re-switched
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after m iterations, such that s((m− 1)k) = s((m− 1)k+ 1) = · · · = s(mk− 2) = s(mk− 1).

Again, si(k) (that is, the i-th entry of vector s(k) at time step k) is 1 with probability pi,

and 0 with probability 1− pi and the switching process is i.i.d.

The nature of the switching process, while analogous in both of our settings, is quite

different from other implementations of stochasticity in dynamical systems in the literature.

Our blinking systems switch between a finite set of deterministic regimes, and are effectively

deterministic at each time step, but randomly switch to a different regime after some pre-

determined length of time. This is markedly different from examples that have stochastic

variables chosen from a distribution and continuous switching times. For example, the most

common way to add randomness to a system is to introduce a stochastic variable ξ(t) which

follows either a uniform distribution with ξ ∈ [0, 1] or normal distribution with ξ ∼ N(0, 1).

Typically, this method of incorporating stochasticity is called “noise.” Driving noise and

is capable of inducing various dynamical phenomena, including stochastic synchronization

[2, 6, 5] and stochastic resonance [155, 8, 7], and is so common that there is an entire class of

differential equations (Stochastic Differential Equations) named for themn. Another, differ-

ent, type of switching process was detailed in [91] in which the switching is a Markov process

with a finite number of states, and switching rate is not fixed. In the discrete-time setting,

typically stochasticity is implemented by switching at each time-step between random ma-

trices pulled from a finite (or infinite) set of state matrices. Traditionally, the literature has

focused on linear maps, and the term “Linear Jump Systems” has been coined for this setting

[41].

Systems (1.6) and (1.7) provide the general mathematical description for switching

dynamical systems. Although dynamical network models are covered by these general equa-

tions, it will improve readability to describe the general form for continuous- and discrete-

time switching networks (as they appear throughout this dissertation). Mathematically, a

nSee [104] and the references therein for a thorough introduction to Stochastic Differential Equations.
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blinking network of ODEs is given by:

dx

dt
= F(x(t), s(t)) + H(x, t) (1.8)

which is the general form (1.6) with an additional term, H(x, t) that is an arbitrary, po-

tentially “blinking,” vector-valued function that represents the manner in which the network

topology affects each node. Typically, this H(x, t) is simply diffusive coupling, and the

equation for the dynamics reduce to:

dx

dt
= F(x(t), s(t)) + L(t)⊗H(x), (1.9)

where ⊗ is Kronocker matrix multiplication and L(t) is the Laplacian matrix at time t.

Unpacking this a little further, we assume that the network is composed of N nodes, and

each node has n state equations. Vector x is organized x = [x1x2 · · ·xN ]T such that the

state variables for node i are stacked on the state variables for node i + 1. L(t) gives

the time-varying Laplacian matrix, and H(x) projects the coupling onto the appropriate

state equations. For example, to describe a network of x-coupled Lorenz oscillators with a

switching topology the equations for the i-th node would be:

ẋi = σ(yi − xi) +
N∑
j=1

lij(t)(xj − xi),

ẏi = xi(ρ− zi)− yi,

żi = xiyi − βzi.

The general form for a discrete-time blinking network is:

xi(k + 1) = F(xi(k), s(k)) +
N∑
j=1

L(k)H(xj(k)), (1.10)

where i = 1, 2, . . . , N , L is the Laplacian matrix for the network at time step k, and H is an

arbitrary vector-valued function that defines the coupling between nodes.
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While it may seem unnecessary to introduce these two general systems separately, the

treatment of the time variable in either case is crucial to the analysis of the respective system.

Mathematical tools for flows and maps are not the same, and even when they overlap, the

implementation is not identical. For this reason, they must be treated as separate, though

not entirely independent, cases.

With this in mind, we now review existing methods in blinking continuous- and discrete-

time dynamical systems.

1.5.2 Existing Methods for Continuous-Time Dynamical Systems

In this section, we discuss the literature concerning the switching system in continuous

time as defined in (1.6), and examine the existing methods for this type of switching system.

The existing methods rely heavily on comparing the dynamics of the blinking system to that

of the “averaged” system which is obtained by replacing the stochastic variables with their

expectation. The averaged system for the general blinking model (1.6) is:

dx

dt
= Φ(x(t)), (1.11)

where Φ(x) = F(x(t),E [s(t)]), and E [s(t)] is the expectation (mean) of the stochastic vector

s(t). In (1.11), the stochasticity has been removed, and replaced with a fixed, deterministic

process. In a blinking network model, this means that the blinking network topology has

been replaced with a static topology with weaker connections. In the seminal works on

blinking dynamical systems [69] and [70] the authors sought to determine how and under

what conditions the dynamics of the blinking systems relate to the dynamics of the averaged

system. The authors extend and generalize the setting that they established in [19] to create

a new class of continuous-time, stochastically switching dynamical systems (instead of the

limited switching network that they originally presented). In general, they found that as

τ → 0 (that is, the switching rate is infinitely fast), the dynamics of the blinking system

follow those of the averaged system. However, their findings are more nuanced than that.
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Figure 1.9 Four cases distinguishing the possible asymptotic behavior of a blinking system
as shown in [70].

The work is divided into two parts: one focused on finite time properties [69] (what the

authors could prove about switching dynamical systems near the initial time point) and one

focused on the asymptotic properties [70] (what the authors could prove about the eventual

behavior of switching dynamical systems). In finite time, they are able to place bounds on the

switching period, τ , for which the stochastic system stays within some ε-neighborhood of the

averaged system from some initial time (t = 0) to some final time (t = T ). These bounds are

obtained from Lipschitz constants, and are therefore conservative, but they depend explicitly

on the parameters of the dynamical system. This means that it is clear how changes in the

system parameters affect the requisite changes in the switching period (that is, how slow or

fast the system needs to switch) for the stochastic system to stay near the averaged system.

When studying the asymptotic properties [70], the authors seek to understand the con-

ditions under which the blinking system will converge to the attracting set of the averaged

system (or near the attracting set if it does not exist in the blinking system). They isolate

four distinct cases for switching dynamical systems, organized based on how restrictive the
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class is. The cases are distinguished by the attracting sets in the different instances of the

blinking system and the averaged system. There can be a single attractor (such as a globally

stable fixed point) or multiple attractors (a stable fixed point and stable limit cycle separated

by an unstable limit cycle), and this/these attractor/attractors can be invariant (present)

in all of the instances of the switching system and averaged system or they can not be in-

variant. The cases are organized: Case I, multiple attractors in the averaged system that

are not attractors in the blinking systems; Case II, a single global attractor in the averaged

system that is not an attractor in the blinking systems; Case III , multiple attractors that

are invariant between the switching and averaged systems; Case IV, a single global attractor

that is invariant between the switching and averaged systems. These cases are summarized

in Fig. 1.9. While each case poses different technical difficulties that lead to more or less

conservative bounds, the overall message of the paper is that if switching is sufficiently fast,

the long-term behavior of the blinking system is to converge to the same attractor as the

averaged system (or to the neighborhood of the attractor of the averaged system if it is not

invariant in the blinking systems).

1.5.3 Existing Methods for Discrete-Time Dynamical Systems

The study of switching discrete-time systems has primarily focused on two different

approaches: switching linear systems (“Jump Linear Systems”) and stochastically switching

networks of maps (much like the switching networks in flows). We will review both of these

approaches, as they both provide important pieces of foundation that we build on later in

this work.

1.5.3.1 Jump Linear Systems Jump linear systems are both more specific and

more general than our stochastically switching discrete time systems described by (1.7). In
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[55], a jump linear systemo is described by:

x(k + 1) = A(σ(k))x(k), (1.12)

where {σk} is a finite-state Markov chain form process with transition matrix P , and the

individual mode matrices A(1), A(2), . . . , A(N) are real, invertible d × d matrices (where d

is the dimension of the state vector x(k)). This is more general than our setting, because

the switching process is a Markov process, it is not assumed to be i.i.d. (though this i.i.d.

assumption can be relaxed in our setting in a straightforward way). However, it is also more

specific, because the system only switches between linear dynamical regimes, and switching

occurs at every time step.

In [54] and [55] Fang and Loparo provide concise recipes for deducing the δ−moment

stability and sample path stability of jump linear systems, as well as the relationships be-

tween these types of stability. They study the stability of these systems using Lyapunov

exponents. In general, a Lypaunov exponent gives a measure of the exponential convergence

or divergence of nearby trajectories (that is, whether or not two initial conditions that are

close by come together or separate with time). In discrete-time, this Lyapunov exponent is

computed as

λ = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(x(i))|. (1.13)

For linear systems, like in (1.12), this reduces to

λ = lim
n→∞

1

n

n−1∑
i=0

ln ||A(i)|| = lim
n→∞

1

n
ln ||

n−1∏
i=0

A(i)||. (1.14)

The authors concern themselves with two types of stability, almost sure stability, and δ-

moment stability. We say that a stochastically evoloving discrete-time dynamical system is

oIndeed, jump linear systems have been extensively studied in the literature, and we can barely scratch
the surface of this field. See [41] and the references therein for more on Jump Linear systems.
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almost surely stable if

P ( lim
k→∞
||x(k)|| = 0) = 1, (1.15)

where || · || is a suitible norm in RN and P denotes a probability measure with respect to the

σ-algebra induced by the switching process. In words, this means that for almost all initial

conditions and stochastic sequencesp, the norm of the trajectory converges to 0. This is a

convergence problem, hence almost sure stability can be reduced to computing the “top” or

“sample path” Lyapunov exponent:

λ = lim
k→∞

1

k
ln ||A(σ(k − 1)) · · ·A(σ(2))A(σ(1))||. (1.16)

As (1.15) requires showing that almost every stochastic sequence converges, it is the most

informative (and therefore least conservative) measure of stability, however it is also the

hardest to prove, in general.

Because of the technical challenges in determining almost sure stability of a stochastic

system, it is helpful to consider other, more conservative types of stability. One such type

of stability, δ-moment stability, holds if

lim
k→∞

E
[
||x(k)||δ

]
= 0, (1.17)

where E [·] denotes expectation with respect to the σ-algebra induced by the switching pro-

cess. When δ = 2 and (1.17) holds, we say that the switching system is asymptotically

mean-square stable. Like almost sure stability, there is a δ-moment stability analogue to the

sample path Lyapunov exponent. The top δ-moment Lyapunov exponent is computed as

g(δ) = lim
k→∞

1

k
ln E

[
||x(k)||δ

]
, (1.18)

pAlmost all in the sense that the set of initial conditions and stochastic sequences for which this does not
happen is of measure 0.
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which for jump linear systems becomes

g(δ) = lim
k→∞

1

k
ln E

[
||A(σ(k − 1)) · · ·A(σ(2))A(σ(1))||δ

]
.

δ-moment stability is particularly useful in practice, because it reduces the study of a stochas-

tic system to the study of a deterministic one (which significantly more tools have been

developed for). The authors go on to show the relationships between these two types of

stability and under what conditions they are equivalent. Further discussions of these types

of stability can be found in Appendix D.

1.5.3.2 Stochastic Synchronization for Coupled Maps Much like [125] and

[123] sought to establish a theory for switching networks of ODEs, [114, 115, 1] (to name a

few) worked to establish a similar theory for switching networks of discrete-time dynamical

systems. The significant seminal work is [114], which aims to present a master stability

function for the synchronization of stochastically switching networks of maps (like [109] did

for static, diffusively coupled networks of ODEs). It utilizes tools from probability theory,

stability theory, and matrix analysis to present concise criteria that ensure the mean-square

stability of a switching network of maps. Their setup is as follows:

xi(k + 1) = F(xi(k))−
N∑
j=1

Mij(k)H(xj(k)) for i = 1, 2, . . . , N, (1.19)

where x(k) ∈ Rn is an n-dimensional vector composed of the states of one node, F : Rn → Rn

is the vector-valued function governing the individual dynamics of each node, M(k) is the

random (i.i.d.), time-varying connectivity matrix for the network, and H : Rn → Rn is the

vector-valued coupling function between the nodes.

The authors linearize the system about the synchronization solution to construct varia-

tional equationsq in order to determine the local stability of that solution. Next, the authors

construct the autocorrelation matrix Ξ(k) = E
[
ξ(k)ξ(k)T

]
, which is a symmetric, positive

qThe variation is denoted by ξi = xi − s where s is the common trajectory the nodes synchronize to.
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semidefinite matrix with trace E [||ξ(k)||2]. This trace (the sum of the eigenvalues) converg-

ing to zero (meaning all of the variation converge to zero, i.e the nodes converge to a common

trajectory) means that the system is mean-square stable. The analysis of the autocorrelation

matrix reduces the stochastic problem to the stability of a higher dimensional, static system

that can be decomposed into the eigendirections transverse to the synchronous manifold,

and studied using classical methods in dynamical systems.

1.6 Dissertation Outline

With these building blocks in place, we are prepared to discuss the novel additions to

this framework of stochastically switching dynamical systems. This work is divided into

two parts. In the first partr we explore the complex behaviors of stochastically switching

dynamical systems in continuous-time, uncovering surprising phenomena beyond the fast-

switching limit. Then, in the second parts (in an effort to uncover the mechanism for these

phenomena in continuous-time) we rigorously analyze stochastically switching discrete-time

systems when switching is either fast or has an arbitrary period.

In Chapter 2 we examine a simple dynamical example in polar coordinates to illustrate

how stochastically switching flows work in practice. Using this example, we show how to use

the theory from [69] and [70] to describe the asymptotic properties of a switching system in

the fast-switching limit. While the behavior of the stochastic system in the fast-switching

limit is straightforward, we show that beyond fast switching, stochastic systems can behave

unpredictably. Next, in Chapter 3 we consider stochastically switching networks (in which

all links are randomly chosen in time) and place bounds on the switching period for which a

network of Lorenz oscillators will synchronize, even when the network is potentially discon-

nected at every time instant. Beyond fast switching, we present examples of networks that

can synchronize, despite switching between two coupling regimes that discourage synchro-

nization, with an averaged coupling that also discourages synchronization. That is, when

rThis includes Chapters 2, 3, and 4.
sThis includes Chapters 5 and 6.
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switching is too fast or too slow the synchronization solution is not stable, however for in-

termediate switching periods, the network converges to synchrony remarkably consistentlyt.

Then, in Chapter 4 using the lens of interconnected ecological systems, we provide a real-

world example for which stochastically switching systems fill an obvious gap in traditional

modeling of ecological systems. We show that stochasticity can play an important role in

ecological systems, and insist that it be taken into account for future modeling efforts.

Turning to part two, in Chapter 5 we examine the simplest case for stochastically switch-

ing coupled maps: two stochastically coupled 1-D maps. We derive an analytical expression

for the stochastic Lyapunov exponent for two coupled maps, and using the paradigm of cou-

pled sigmoid mapsu and the stochastic Lyapunov exponent, we discover a bounded window

of intermediate switching periods for which synchronization is stable, even when it is not

stable for fast or slow switching. Next, in Chapter 6 we add layers of complexity to the

previous chapter by considering a broadcasting control problem. We study the stochastic

synchronization of a network to a reference node that is randomly broadcasting a signal to

an arbitrary network of nodes. We examine the role that the static network topology and the

properties of the stochastic broadcasting signal have in the network’s ability to synchronize

to the reference node.

Lastly, we detail the appendices. Appendix A includes the details of the proof for the

bounds on the switching period in Chapter 2. Appendix B includes the derivation of the

bounds found in Chapter 4. Appendix C describes the Sigmoid map that is introduced in

Chapter 5 and includes the proof of the closed-form expression for the stochastic Lyapunov

exponent for two coupled sigmoid maps. Lastly, in Appendix D we compare δ-moment

stability and almost sure stability in more detail than we did in this introduction.

ENJOY!

tWe call this optimal range of switching periods for which synchronization is stable a “Window of Op-
portunity” for the system.

uThe sigmoid map is a generalization of a class of maps that includes the logistic map and tent map. It
is introduced and explored thoroughly in Chapter 5.
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CHAPTER 2

MULTISTABLE RANDOMLY SWITCHING OSCILLATORS: THE ODDS

OF MEETING A GHOST

In this chapter we familiarize the reader with the stochastically switching setup for

continuous-time dynamical systems by considering simple example of oscillators whose pa-

rameters randomly switch between two values at equal time intervals. If random switching

is fast compared to the oscillator’s intrinsic time scale, one expects the switching system to

follow the averaged system, obtained by replacing the random variables with their mean. In

this example, the averaged system is multistable and one of its attractors is not shared by

the switching system and acts as a ghost attractor for the switching system. Starting from

the attraction basin of the averaged system’s ghost attractor, the trajectory of the switching

system can converge near the ghost attractor with high probability or may escape to another

attractor with low probability. We apply the general results on convergent properties of ran-

domly switching dynamical systems developed in [69] and [70] to derive explicit bounds that

connect these probabilities, the switching frequency, and the chosen initial conditions.

2.1 Introduction

We consider a multistable switching oscillator as an example of a blinking system. The

oscillator randomly and rapidly switches its damping coefficient between two values, yielding

an averaged system with two attractors: a stable equilibrium and a stable limit cycle, being

a ghost attractor for the switching oscillatora. We apply the general theory [69, 70] to

derive bounds on the probability that the trajectory of the switching oscillator converges

to a neighborhood of the ghost attractor and on the remainder of the time interval it may

aGhost attractor in the sense that the attractor in the averaged system is not invariant in the switching
systems.



28

stay in this neighborhood. We construct an appropriate Lyapunov function and show how

to estimate its various bounds and decreasing rate to describe the probabilistic convergence

to the ghost attractor. We also analyze the switching oscillator’s system numerically within

and beyond the fast switching limit.

The layout of this chapter is as follows. First, in Section 2.2, we describe the ran-

domly switching oscillator and the corresponding averaged system. Then, in Section 2.3, we

construct a Lyapunov function for the switching system and derive the preliminary results,

necessary for formulating the main theorem. In Section 2.4, we derive the main analytical

result of the chapter (see Theorem 2.1) and discuss its implications for the convergence prop-

erties of the switching oscillator. Finally, a brief discussion and summary of the obtained

results is given in Section 2.5.

2.2 Multistable Switching Oscillator: The Model

We consider the following randomly switching (blinking) systemb:

ẋ = −y − λ
2

[ρ2 − 2(2− s(t))ρ+ (7− 10s(t))]x

ẏ = x− λ
2

[ρ2 − 2(2− s(t))ρ+ (7− 10s(t))] y, where ρ = (x2 + y2)/2,
(2.1)

λ > 0 is a damping parameter, and s : [0,∞) → {0, 1} is a binary switching function. To

define s(t), we divide the time axis into intervals of length τ and let s(t) take the value 1 with

probability p = 1/2 and the value 0 with probability q = 1 − p = 1/2 in the time interval

t ∈ [(k − 1) τ, kτ) . The binary switching function s(t) can be viewed as a switch in system

(2.1); the switch is closed when sk = 1 and open when sk = 0. The sequence of binary vectors

sk, k = 1, 2, ... is called the switching sequence as each component sk switches on (sk = 1) or

off (sk = 0) during the k-th time interval. These switching random variables are independent

for different time intervals and identically distributed. Put simply, our stochastic model is as

follows. During each time interval of length τ , the switch is closed with probability p = 0.5,

bThis simple example was designed to explicitly show the existence of a ghost attractor that is not
invariant in the switching systems to demonstrate the power of the general theory for switching systems.
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independently of whether or not it has been closed during the previous time interval.

System (2.1) can be rewritten in polar coordinates with ρ = (x2 + y2)/2 and Θ =

arctan(y/x) as follows

ρ̇ = F (ρ, s(t)) = −λρ [ρ2 − 2(2− s(t))ρ+ (7− 10s(t))] ; Θ̇ = 1. (2.2)

When the switch is closed (s = 1), system (2.2) takes the form

ρ̇ = −λρ [ρ2 − 2ρ− 3] = −λρ(ρ+ 1)(ρ− 3); Θ̇ = 1. (2.3)

System (2.3) has a unique stable limit cycle at ρ = 3, encircling an unstable fixed point at

the origin (see Fig. 2.1a).

When the switch is open (s = 0), system (2.2) transforms into the following equations

ρ̇ = −λρ [ρ2 − 4ρ+ 7] ; Θ̇ = 1. (2.4)

System (2.4) has a unique globally stable fixed point at the origin (see Fig. 2.1b). Thus, the

blinking system (2.1) randomly switches between system (2.3) with a stable limit cycle and

system (2.4) with the globally stable origin.

If the switching period τ is small with respect to the characteristic times of systems

(2.3) and (2.4), one can expect that the dynamics of the stochastically switching system

(2.1) is close to that of the averaged system where the stochastic variable s(t) is replaced by

its mean value p = 0.5.

The averaged system associated with the switching system (2.1) reads as

ξ̇ = −η − λ
2

[r2 − 3r + 2] ξ

η̇ = ξ − λ
2

[r2 − 3r + 2] η, where r = (ξ2 + η2)/2.
(2.5)
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Figure 2.1 The oscillator randomly switches between two systems: the one with closed switch s = 1
(a) and the one with open switch s = 0 (b). Its averaged system is multistable and has a stable
equilibrium at the origin and a stable limit cycle at r = 2, separated by an unstable limit cycle at
r = 1 (c). Note that the stable limit cycle of the averaged system is not an invariant set of the two
systems with s = 1 and s = 0.

Written in polar coordinates, it takes the form

ṙ = Φ(r) ≡ E(F (ρ, s(t))) = −λr(r − 1)(r − 2); Θ̇ = 1, (2.6)

where E(F (ρ, s(t))) is the expected value of F (ρ, s(t)). The averaged system has a stable

limit cycle at r = 2 and a stable fixed point at the origin; an unstable limit cycle at r = 1

separates their basins of attraction (see Fig. 2.1 (c) ). It is worth noticing that while the

trivial equilibrium at the origin is shared by both the switching and averaged systems, the

stable limit cycle of the averaged system is not an invariant set of the switching system.

Therefore, the trajectory of the switching system cannot converge to the stable limit cycle of

the averaged system, it can only reach a neighborhood of the stable limit cycle and remain

close most of the time with high probability when switching is fast (this statement will be

made more precise later in Section 2.4). In this case, the stable limit cycle of the averaged

system acts as a ghost attractor for the switching system (see Figs. 2.2 and 2.3).

The averaged system is multistable, therefore the main question in this study is whether
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or not the trajectory of the switching system will converge near the same (ghost) attractor

as the averaged system when starting from the same initial state. In the following, we will

derive explicit bounds that relate the probability of convergence near the ghost limit cycle,

the switching period, and the choice of initial conditions to each other. In other words, we

will analyze the odds of converging to a neighborhood of the ghost attractor and link them

to the switching period. Before formulating the main result regarding the switching system,

we need to analyze the convergent properties of the averaged system.

2.3 Preliminary Analysis: The Lyapunov Function and Its Bounds

To apply the general theory developed in [69, 70], we need to introduce and estimate

the following functions and constants. To facilitate cross-paper reading, we shall use the

same notation as in [69, 70].

We first estimate the sizes of the compact absorbing (attracting) domain R for both

the switching and averaged systems. Clearly, these domains are 0 ≤ ρ ≤ 3 and 0 ≤ r ≤ 2,

respectively, such that the ultimate bound for both the systems is R : 0 ≤ ρ ≤ 3.

The averaged system (2.6) has a Lyapunov function that can be constructed as an

integral of the system’s (2.6) nonlinearity:

WΦ(r) =

r∫
0

(q(q − 1)(q − 2))dq = r2(r − 2)2/4. (2.7)

The graph of Lyapunov function W (r) is a fourth-order parabola with two minima, the r-

intercepts, W (0) = 0 and W (2) = 0, corresponding to the stable origin and the stable limit

cycle, respectively. Its local maximum is at r = 1, corresponding to the unstable limit cycle.

The absolute maximum of W (r) in the absorbing domain R : 0 ≤ r ≤ 3 is reached at the

endpoint r = 3.

The derivative of WΦ(r) along the trajectories of the averaged system (2.6) becomes

ẆΦ = −λr2(r − 1)2(r − 2)2. (2.8)
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Following the notation used in [70], this derivative represents DΦW in [70] such that ẆΦ ≡

DΦW . In what follows, we will use ẆΦ to calculate various quantities in Theorem 2.1.

Similarly, we introduce a Lyapunov function for the switching system (2.1)-(2.2)

WF (ρ) = ρ2(ρ− 2)2/4. (2.9)

Upper bounds for the first and second derivatives of Lyapunov functions WΦ and WF

in the absorbing domain R : 0 ≤ ρ ≤ 3 can be estimated as follows (the detailed calculations

are given in Appendix A):

BWΦ = max
0≤r≤3

∣∣∣Ẇ ∣∣∣ = 36λ

LBWΦ = max
0≤r≤3

∣∣∣Ẅ ∣∣∣ = 792λ2

BWF = max
s∈{0,1}

max
0≤r≤3

∣∣∣ẆF

∣∣∣ = 72λ

LBWF = max
s∈{0,1}

max
0≤r≤3

∣∣∣ẄF

∣∣∣ = 33264λ2.

(2.10)

2.4 The main result: the odds of converging near the ghost attractor

Let a trajectory of the averaged system (2.6) start from the initial condition r(0) = 1+δ,

where 0 < δ < 1/2 is a constant. This trajectory converges to the stable limit cycle of

the averaged system at r = 2. Let V1 = (1 − ε1)/4 be a level of the Lyapunov function,

corresponding to r(0) = 1+δ (see Fig. 2.2). The constant ε1 satisfiesWΦ(1+δ) = (1−ε1)/4.

Let C1 be a connected component of the level set {r | WΦ (r) ≤ V1} . Note that C1 is

an annulus that contains the stable limit cycle of the averaged system and is bounded from

below by r = 1+ δ and from above by r = 1+
√

2− δ′′, where constant δ′′ is chosen to satisfy

WΦ(1 +
√

2− δ′′) = (1− ε1)/4.

Choose a neighborhood of the stable limit cycle of the averaged system 2−δ < r < 2+δ′.

Constants δ and δ′ are chosen such that the two bounds 2−δ and 2+δ′ satisfy the same level

of Lyapunov function V0 = ε0/4, where ε0 is a constant that depends on δ. This neighborhood

2 − δ < r < 2 + δ′ will be related to a region around the ghost limit cycle in the switching
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system. Its trajectory should reach this neighborhood and stay inside with high probability

(see Theorem 2.1) .

Before formulating Theorem 2.1, we shall estimate the following minimal convergence

speed of Lyapunov function WΦ in C1 :

γ = min
r∈C1, V0≤WΦ≤V1

|ẆΦ|. (2.11)

Simple analysis shows that this minimum in the annulus C1 is reached at r = 1 + δ, the

endpoint value closest to the unstable limit cycle at r = 1, separating the basins of attraction

for the origin and the stable limit cycle. Therefore,

γ = |ẆΦ(1 + δ)| = λδ2(1− δ2)2. (2.12)

We introduce the following quantities to be used for deriving Theorem 2.1:

∆t = γ
2(LBWF +LBWΦ)

= δ2(1−δ2)2

68112λ

α = BWF +BWΦ = 108λ

c = 1
64(LBWF +LBWΦ)B2

WF
= 1

11298963456λ4 ,

(2.13)

where constants BWΦ, LBWΦ, BWF , LBWF , and γ are given in (2.10) and (2.12), respectively.

The following theorem is obtained from Theorem 8.3 in [70] by substituting constants

(2.12) and (2.13) into the conditions of Theorem 8.3 and therefore is given without the

proof (the detailed proof of Theorem 8.3 can be found in [70]). Theorem 8.3 describes the

behavior of a general blinking system in the most general case where the blinking system

has multiple ghost attractors. The main merit of this study is in giving the first example

of a randomly switching dynamical system with probabilities of converging to a neighbor-

hood of a ghost attractor, explicitly calculated via the parameters of the switching system

(the damping parameter λ and switching period τ) and the initial conditions, expressed via δ.
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Theorem 2.1 Choose the neighborhood V0 of the ghost limit cycle in the averaged system

such that

V1 − V0 =
1− 6δ2 + 4δ3

4
≥ 3δ4(1− δ2)4

136224
. (2.14)

Assume that the switching period τ is sufficiently small such that

2e ·
(

216λ

λδ2(1− δ2)2
+ 1

)
exp

(
− δ6(1− δ2)6

11298963456λ
· 1

τ

)
≤ 1−

√
e

3
. (2.15)

Consider the two open regions

U0 =
{
ρ
∣∣∣ WF (ρ) < (2−δ)2δ2

4
+ δ4(1−δ2)4

68112

}
,

U∞ =
{
ρ
∣∣∣WF (ρ) > (1−δ2)2

4
+ δ4(1−δ2)4

68112

}
.

(2.16)

Then the following inequalities hold:

1. The probability P direct
escape that the solution ρ (t) of the switching system (2.1)-(2.2) reaches

U∞ before reaching U0 (see Fig. 2.2) is bounded by

P direct
escape ≤

419904

δ4(1− δ2)4
exp

(
− δ6(1− δ2)6

11298963456λ
· 1

τ

)
. (2.17)

Conversely, the probability that the solution ρ (t) of the switching system reaches U0

before reaching U∞ is at least

P direct
attraction ≥ 1− 839808

δ4(1− δ2)4
exp

(
− δ6(1− δ2)6

11298963456λ
· 1

τ

)
. (2.18)

2. Let Tattraction be the time for the solution of the switching system to enter U0 through

its boundary and Tremain be the time it stays close to the ghost attractor and remains

in

Ū0+ =

{
ρ

∣∣∣∣ WF (ρ) ≤ (2− δ)2δ2

4
+

(
3δ2(1− δ2)2

2
+ 108

)
δ2(1− δ2)2

68112

}
(2.19)
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Figure 2.2 Illustration of Theorem 2.1. The trajectory of the averaged system (regular red
line) starts from an initial condition, corresponding to a level WΦ (r) = V1 and converges to
the stable limit cycle at which WΦ(r) = 0. This limit cycle acts as a ghost attractor for the
switching system whose trajectory (solid irregular blue line) reaches a small neighborhood U0

of the ghost attractor in time Tattraction with probability P direct
attraction. The trajectory oscillates

around the ghost attractor and may eventually, after some time Tremain, diverge from the
ghost attractor; however, this probability can be made arbitrarily small by decreasing the
switching period τ (cf. (2.21) ). There also is a non-zero probability P direct

escape that the trajectory
of the switching system may also escape from the attraction basin C1 right away and converge
to the origin (dashed irregular blue line). Note that this probability decreases exponentially
fast when τ → 0.
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after reaching U0. These times are random variables with the following properties

P
(
Tattraction ≤ 1−6δ2+4δ3

2λδ2(1−δ2)2

)
> 1− 68112(1−6δ2+4δ3)

δ4(1−δ2)4 ×

× exp
(
− δ6(1−δ2)6

11298963456λ
· 1
τ

) (2.20)

and

P (Tremain > T ) > 1− T 136224λ

δ2(1− δ2)2
exp

(
− δ6(1− δ2)6

11298963456λ
· 1

τ

)
. (2.21)

Remark 1 The switching period τ appears only in the denominator of the exponent in con-

ditions (2.15), (2.17), (2.18). Therefore, the probability P direct
escape of escaping from the ghost

attractor’s basin of attraction before reaching the ghost attractor’s neighborhood U0 can be

made arbitrarily small by decreasing the switching period τ. Note that if the trajectory of the

switching system converges to the “wrong” attractor (the origin), it has to pass first through

U∞. Therefore, P direct
escape is an upper bound on the probability that the trajectory escapes from

the ghost attractor and converges to the origin.

Remark 2 The bounds for the probabilities of escaping from and converging to the ghost

attractor’s neighborhood, given in Theorem 2.1, explicitly depend on the choice of initial

conditions ρ(0) = 1 + δ. These bounds indicate that the smaller parameter δ (i.e., the closer

the initial condition is to the unstable limit cycle that separates the attraction basins), the

higher the probability of escaping to the origin.

Remark 3 Note that probability bounds P direct
escape and P direct

attraction do not sum to 1, as one would

expect. Therefore, the trajectories of the switching system that never reach U0 or U∞ and get

trapped between the ghost attractor and the origin might have positive probability. However,

this probability could not be larger than P direct
escape and the case that this probability vanishes is

compatible with the bounds [70].

Figure 2.3 presents numerical simulations of the switching system (2.1)-(2.2) for different

switching periods and initial conditions. When the initial state of the switching system is
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(a) (b)

Figure 2.3 (top left) Trajectories of the averaged system (black smooth curve) and stochastic
system with switching times τ = 0.1 (blue and teal) and τ = 0.01 (pink). The trajectories start
from the same initial condition ρ = 1+ δ with δ = 0.01 in the attraction basin of the stable (ghost)
limit cycle. For the given stochastic sequence the switching system follows the averaged system for
τ = 0.01 and oscillates about the ghost limit cycle. For slower switching with τ = 0.1 (blue and
teal), two different stochastic sequences cause the trajectory of the switching system to converge
near the ghost limit cycle (blue) or to escape to the wrong attractor (teal). (top right) Plot of
the trajectories in (top left), but in the polar phase space. (bottom) Probability of converging to
a neighborhood of the ghost limit cycle ρ = 2, starting from initial conditions with radius ρ0 for
τ = 0.1 (pink) and τ = 0.01 (blue). Notice a sharp transition around ρ = 1, corresponding to the
unstable limit cycle, separating the attraction basins of the ghost limit cycle and origin. As the
analytical bounds (2.17), (2.18) suggest, decreasing τ significantly increases the odds of converging
near the ghost. Probability calculations are based on 1000 trials. The damping parameter equals
λ = 0.01.
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close to the attraction basin boundary (see Fig. 2.3 top left), i.e., for small δ, there always

is a small probability P direct
escape of escaping to the wrong attractor. This can also be clearly

viewed from the bound (2.17) and the expression for the speed of convergence γ (2.12), where

δ is the distance from the attraction basin boundary, defined by the unstable limit cycle at

r = 1. The smaller δ and the slower the switching, the bigger this probability is (see Fig. 2.3

bottom).

In Fig. 2.4, we examine probability outcomes for different switching periods across

a range of different initial conditions ρ0. We find that for larger switching periods τ the

switching system can converge to the origin despite the initial conditions chosen in the

attraction basin of the ghost attractor, far away from the attraction basin boundary. Though

it is important to remember that Fig. 2.4 is only one realization (one trial from each initial

condition) and not an average of numerous trials, it does show that there are certain “windows

of opportunity” for which the optimal stochastic sequence/frequency can give the system

enough kicks in the wrong direction at the appropriate time and to cause the system to

rather consistently converge to the wrong attractor.

2.5 Chapter Summary

We have considered a multistable switching oscillator as an example of a stochastically

blinking system. The switching oscillator has two attractors with the stable limit cycle being

a “ghost”. Switching is assumed to be a stochastic process (with identically distributed inde-

pendent random switching variables), therefore the convergence properties of the switching

oscillator have a probabilistic flavor. We applied the general theory [69, 70] to prove weak

convergence (with probability P direct
attraction approaching 1 when the switching period τ → 0)

to a neighborhood of the correct (ghost) attractor. Using the Lyapunov function method,

we gave explicit bounds on the probabilities of converging to and escaping from the ghost

attractor’s neighborhood and switching time. More precisely, we have derived the follow-

ing result. We choose an initial condition for the switching and averaged systems in the

attraction basin of the ghost attractor. For this initial condition, we identify V1, a level of a
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Figure 2.4 The role of different initial conditions and stochastic frequencies. For each fixed τ ,
we vary ρ0 and observe where ρf ends, namely whether or not the switching system converges
near the ghost or to the origin. Yellow corresponds to convergence near the ghost, while pink
is convergence to the origin. The intermediate colors (dark yellow and orange) indicate that
the system is still oscillating in between the attractors (with yellow closer to the ghost and
green closer to the origin). This is only a single realization for each set of initial conditions,
the system becomes more unpredictable as τ increases. For larger values of τ , the system
can converge to the origin despite initial conditions near the ghost (note the pink “valleys”
at ρ0 ≈ 2 and τ ≈ 0.75). The damping parameter equals λ = 0.01.

Lyapunov function for the averaged system. We also choose a neighborhood U0 of the ghost

attractor of the switching system. We then find a bound for the minimum convergence speed

γ of the Lyapunov function in the subregion of the ghost’s attraction basin, bounded by V1

and U0. Consequently, we prove that the probability that the trajectory of the switching sys-

tem rapidly reaches U0 can be made arbitrarily close to 1 by decreasing the switching period.

We find the reciprocal of τ to be a critical quantity, effectively controlling the probability of

convergence.

We also showed that if switching is not sufficiently fast, the switching system may have

“windows of opportunity”, in terms of optimal switching periods and sets of initial con-
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ditions, within which the trajectory escapes to the wrong attractor against all the odds.

Loosely speaking, the existence of the windows of opportunity in randomly switching mul-

tistable oscillators may be viewed somewhat similarly to stochastic resonance [155, 8, 7].

Although, the two phenomena have completely different dynamical origins; the coincidence

of favorable initial conditions and stochastic sequences for the switching oscillator and a

favorable condition to go over a threshold in a bistable system due to matching the time

scales of a periodic driving force and driving noise for stochastic resonance.

In the next chapter, we will add a layer of complexity to these switching systems by

considering the synchronization of a network of chaotic oscillators that can be completely

disconnected at any given time instant.
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CHAPTER 3

SYNCHRONIZATION IN ON-OFF STOCHASTIC NETWORKS:

WINDOWS OF OPPORTUNITY

With this simple example to give an idea of how stochastically switching dynamical

systems work, as well as a teaser of some of the complex behavior that can emerge beyond

fast switching, we approach a more challenging problem. Namely, in this chapter, we study

dynamical networks whose topology and intrinsic parameters stochastically change, on a

time scale that ranges from fast to slow. This is an especially interesting problem, because

at any given moment in time, the network can be disconnected (which does not allow for

synchronization, in general). When switching is fast, the stochastic network synchronizes as

long as synchronization in the averaged network, obtained by replacing the random variables

by their mean, becomes stable. We apply a recently developed general theory of blinking

systems to prove global stability of synchronization in the fast switching limit. We use a

network of Lorenz systems to derive explicit probabilistic bounds on the switching frequency

sufficient for the network to synchronize almost surely and globally. Going beyond fast

switching, we consider networks of Rössler and Duffing oscillators and reveal unexpected

windows of intermediate switching frequencies in which synchronization in the switching

network becomes stable even though it is unstable in the averaged/fast-switching network.

The purpose of this chapter is two-fold. First, we show how the established theory on

fast-switching can be applied to synchronization in dynamical networks of concrete periodic

or chaotic oscillators (Sections 3.1 and 3.2). In particular, we consider a network of chaotic

Lorenz systems with both stochastically switching connections and intrinsic parameters and

derive bounds on the switching frequency and the time sufficient to converge globally and

surely to approximate synchronization (Section 3.2). Remarkably, these bounds are explicit

in the parameters of the blinking network. We also demonstrate how the probability of stable
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synchronization scales with the switching frequency beyond the conservative bounds. Sec-

ond, we focus on synchronization of networks with non-fast switching connections (Section

3.3). We show the advantages of slower switching over fast switching by means of prototyp-

ical examples such as networks of (i) chaotic Rössler systems; (ii) non-autonomous Duffing

oscillators in which slow switching provides opportunities for network synchronization while

fast switching does not. More specifically, the network switches between topologies where

synchronization is unstable, with its averaged network also being unstable for synchroniza-

tion. Yet, there is a “window of opportunity” in which an intermediate, not-fast switching

frequency causes synchronization in the unstable network to stabilize. We also reveal this

unexpected behavior in periodically switched dynamical networks with additional windows

of opportunity.

3.1 The Stochastic Network Model

Introduced in [19], the blinking network consists N oscillators interconnected pairwise

via a stochastic communication network:

dxi
dt

= Fi(xi, ŝi(t)) + ε
N∑
j=1

sij(t)P (xj − xi) , (3.1)

where xi(t) ∈ Rd is the state of oscillator i, Fi : Rd → Rd describes the oscillators’ individual

dynamics, ε > 0 is the coupling strength. The d × d matrix P determines which variables

couple the oscillators, sij(t) are the elements of the time-varying connectivity (Laplacian)

matrix G(t). The existence of an edge from vertex i to vertex j is determined randomly

and independently of other edges with probability pij ∈ [0, 1]. Expressed in words, every

switch in the network is operated independently, according to a similar probability law, and

each switch opens and closes in different time intervals independently. All possible edges

sij = sji are allowed to switch on and off so that the communication network G(t) is con-

stant during each time interval [kτ, (k + 1)τ) and represents an Erdös-Rényi graph of N

vertices. Figure 3.1 gives an example of a “blinking" graph. The generalization of all the
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Figure 3.1 (top) Two subsequent instances of the switching network. Probability of an edge
is p = 0.5. (bottom): The corresponding averaged network where the switching connections
of strength ε are replaced with static all-to-all connections of strength pε, representing their
mean value.

results of chapter to more complex switching topologies [147, 3] and directed graphs [124]

is straightforward. In the model (3.1), we have also introduced stochasticity into one of the

intrinsic system parameters, such that it switches between two values according to the same

stochastic rule ŝi(t) (though with an independent switching frequency and sequence). This

stochastic intrinsic parameter accounts for internal fluctuations in the circuit. As a result,

the randomly switching oscillators are non-identical and complete synchronization between

the oscillators is impossible. Thus, we have chosen to tackle a more difficult problem of prov-

ing the stability of approximate synchronization in this switching network with stochastic

intrinsic parameters, rather than considering identical oscillators. However, all the results of

this chapter are directly applicable to networks with identical oscillators. This can be done

by setting the mismatch parameter a = 0 in the network of Lorenz oscillators (3.2) (Section

3.2) and applying more restrictive Theorem 11.1 from [70], which yields tighter bounds on

the switching period.

The switching network (3.1) is a relevant model for stochastically changing networks
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such as information processing cellular neural networks [68] or epidemiological networks

[125, 58]. For example, independent and identically distributed (i.i.d.) stochastic switching

of packet networks communicating through the Internet comes from the fact that network

links have to share the available communication time slots with many other packets belonging

to other communication processes and the congestion of the links by the other packets can

also occur independently. As far as network synchronization is concerned, local computer

clocks, that are required to be synchronized throughout the network, are a representative

example. Clock synchronization is achieved by sending information about each computer’s

time as packets through the communication network [19]. The local clocks are typically

implemented by an uncompensated quartz oscillator. As a result, the clocks can be un-

stable/inaccurate and need to receive synchronizing signals, that aim to reduce the timing

errors. These signals must be sufficiently frequent to guarantee sufficient precision of syn-

chronization between the clocks. At the same time, the communication network must not

be overloaded by the administrative signals. This is a compromise between the precision of

synchronization and the traffic load on the network. Remarkably, this blinking network ad-

ministration can provide precise functioning of a network composing of imprecise elements. It

also indicates the importance of optimal switching frequencies that ensure this compromise.

In the following, we will explore the dependence of network synchronization on different

stochastic switching rates.

3.2 Fast Switching: Lorenz Oscillators

If switching is fast compared to the oscillator’s intrinsic time scale, it is natural to expect

the switching system (3.1) to follow the averaged system, which is obtained from taking the

expectation of all of the stochastic variables sij(t) and ŝi(t). This amounts to replacing the

non-zero entries of G (i 6= j) and the intrinsic parameter ŝi(t) with the switching probability

p. We denote this averaged system Φ, as in the previous chapter. Conceptually, for the

coupling, this equates to connections between nodes that are always present, but that are

weaker than ‘on’ connections (as a connection in Φ has coupling pε and an ‘on’ connection
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in F has coupling ε) (see Fig. 3.1).

3.2.1 Rigorous Bounds

In this section, we apply this rigorous theory to network synchronization and demon-

strate what bounds on the dynamics of the switching network must be satisfied to guarantee

the convergence to stable synchrony. We use the Lorenz oscillator as an individual unit, com-

prising the network (3.1). The network (3.1) of x-coupled Lorenz oscillators with stochastic

coupling and a stochastic intrinsic parameter is given as follows:

ẋi = σ(yi − xi) + ε
N∑
j=1

sij(t) (xj − xi)

ẏi = xi ([1 + aŝi(t)] r − zi)− yi

żi = xiyi − bzi,

(3.2)

where i = 1, 2, . . . , N and a is an additional positive parameter, forcing the main parameter

r to switch between two values r and (1 + a)r. The corresponding averaged system Φ reads:

ẋi = σ(yi − xi) + εp
N∑
j=1

(xj − xi)

ẏi = xi (r
∗ − zi)− yi

żi = xiyi − bzi,

(3.3)

where r∗ = (1 + pa)r. Synchronization in the averaged network (3.3) with all-to-all con-

nections of strength pε is defined by the invariant manifold M = {x1 = x2 = ... = xN ,

y1 = y2 = ... = yN , z1 = z2 = ... = zN}. It is important to emphasize that this synchroniza-

tion solution does not exist in the stochastically switching network (3.2) due to the presence

of the intrinsic parameter a, bringing stochastically changing parameter mismatch into the

system. Therefore, the trajectory of the switching network cannot converge to the completely

synchronized solution, and it can approach and reside in its δ-neighborhood, corresponding

to approximate δ-synchronization. The faster the switching, the smaller the synchronization

mismatch (error) δ is. Our goal is to prove the global stability of δ-synchronization and
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demonstrate that the set of on-off switching sequences that fail to trigger δ-synchronization

is of measure zero as long as synchronization in the averaged network is globally stable and

switching is fast enough. We also aim at deriving the probabilistic bounds on the switching

frequency and δ that can be calculated explicitly via the parameters of the switching network

(3.2).

The proof involves two steps. In the first step, we construct a Lyapunov function for

the difference (transverse) oscillators’ variables in the averaged network (3.3) and proves

that it decreases to zero. Therefore, we prove that complete synchronization is globally

stable in the averaged network. In the second step, we use that same Lyapunov function for

the convergence to the δ-neighborhood of the ghost synchronized solution in the switching

network (3.2). Due to the stochastic nature of the switching, this Lyapunov function may

increase at a given time step, but the general tendency is to decrease. Switching is a stochastic

process, therefore, the convergence properties also have a probabilistic flavor. This can be

expressed by showing that after a certain time the Lyapunov function decreases with high

probability as long as the switching frequency is sufficiently fast.

We define the Lyapunov function as:

W =
1

2

N−1∑
i=1

{
X2
i,i+1 + Y 2

i,i+1 + Z2
i,i+1

}
, (3.4)

where Xi,i+1 = xi − xi+1, Yi,i+1 = yi − yi+1, Zi,i+1 = zi − zi+1 are the N − 1 difference

variables. We notice that both the averaged system (3.3) and the stochastic system (3.2)

are assumed to have the same Lyapunov function, so we will differentiate between the two of

them using WΦ and WF for the averaged and stochastic systems, respectively. Before we can

begin to understand the behavior of the stochastic network, it is important to understand

the dynamics of the static, averaged network. Global stability of complete synchronization

in networks of x-coupled Lorenz systems has been extensively studied, for example, in [22].

Based on the previous analysis [22], we can formulate the following statement.

Proposition 3.1: Synchronization in the averaged all-to-all x-coupled Lorenz network (3.3)
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with coupling strength pε and the averaged intrinsic parameter r∗ = (1 + pa)r is globally

stable if

pε > pε∗ =

(
1

N

)(
b (b+ 1) (r∗ + σ)2

16 (b− 1)
− σ

)
. (3.5)

Proof The direct application of the bound on the coupling strength sufficient for global

synchronization in the x-coupled network of Lorenz oscillators with arbitrary topologies (see

Appendix A in [22]) to the averaged network (3.3) yields the condition (3.5). �

This bound can be generalized to more complex averaged network topologies, corre-

sponding to networks with given switching connections that are not all-to-all. For example,

the bound for a 2K-nearest neighbor network of x-coupled Lorenz oscillators can be obtained

by replacing the 1
N

in (3.5) with
(

1
N

) (
N
2K

)3 (
1 + 65K

4N

)
, using the Connection Graph method

[22]. In the case of directed networks, one can use the Generalized Connection graph [13].

The theory for the behavior of stochastic on-off systems [69] and [70] involves placing

upper bounds on the first and second time derivatives of the Lyapunov functionW, calculated

along solutions of the averaged and switching systems:

BWΦ = max
x∈R
|DΦW (x)|

LBWΦ = max
x∈R
|D2

ΦW (x)|

BWF = max
s

max
x∈R
|DFW (x, s)|

LBWF = max
s,̄s

max
x∈R
|D2

FW (x, s̄, s)|,

(3.6)

where x is the vector composed of xi = {xi, yi, zi}, i = 1, ..., N, R represents the systems’

absorbing domain, vector s indicates a set of stochastic sequences corresponding to
(
N
2

)
stochastic connections and N intrinsic parameter switching sequences; similarly, s̄ corre-

sponds to a set of another realizations of the stochastic switching sequences.

Before giving all of the explicit bounds (3.6) for the N -node networks (3.2) and (3.3),

we will walk the reader through the process of obtaining BWF and LBWF for the two-node

network (3.2) with ŝ1 = ŝ2 = s(t). We shall use the notation X = x1 − x2 and Y = y1 − y2,

and Z = z1−z2. We start with the first time derivative of the Lyapunov function (3.4) along
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the solutions of the stochastic two-node system (3.2):

DFW (x, s) = XẊ + Y Ẏ + ZŻ, (3.7)

where the derivatives of the difference variables are governed by the following equations,

obtained from the system (3.2) with N = 2 [22, 12]:

Ẋ = σ(Y −X)− 2s12(t)εX

Ẏ =
[
(1 + as(t))r − U (z)

]
X − Y − U (x)Z

Ż = U (y)X + U (x)Y − bZ, i, j = 1, ..., N,

(3.8)

where U (ξ) = (ξ1 + ξ2)/2 for ξ = x, y, z are the corresponding sum variables. For simplicity,

we assume that the coupling and intrinsic stochastic parameters are governed by the same

stochastic sequence s12(t) = s(t). The generalization to different sequences is straightfor-

ward. We can rewrite the equation (3.7) as a quadratic form

DFW (x, s) = −
[
(2s(t)ε+ σ)X2 +

[
U (z) − (1 + as(t))r + σ

]
XY + Y 2 − U (y)XZ + bZ2

]
.

(3.9)

To bound the absolute value of this derivative by its maximum and obtain BWF , we will

maximize each term in the quadratic form (3.9). It is well-known that the individual Lorenz

system has bounds that guarantee its trajectories will remain in the absorbing domain. These

bounds can be found, for example, in [22] and are |x, y| < |ϕ| and |z| < |ϕ| + r + σ, where

ϕ = b(r+σ)

2
√
b−1

. Therefore, for example, X = x1 − x2 = ϕ − (−ϕ) = 2ϕ is the upper bound for

the difference X. As we are maximizing the quadratic form term by term, we can guarantee

that it is maximized if s(t) = 1. While in practice, this will lead us to a more conservative

result, it is much more analytically tractable. We show this term by term maximization

max
x∈R
|DFW (x, s)| = |4(2ε+ σ)ϕ2 + [ϕ+ r + σ + ((1 + a)r − σ)]ϕ2 + 4ϕ2 + 4ϕ3 + 4bϕ2|

= |4(2ε+ σ) + 5ϕ+ (2 + a)r + 4(b+ 1)|ϕ2 = BWF .

(3.10)
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To get LBWF , we follow a similar procedure, but using the second derivative of the

Lyapunov function:

D2
FW (x, s) = Ẋ [σ(Y −X)− 2s(t)εX] +X

[
σ(Ẏ − Ẋ)− 2s(t)εẊ

]
+

Ẏ
[(

[1 + as(t)]r − U (z)
)
X − Y − U (x)Z

]
+

Y
[
((1 + as(t))r − U (z))Ẋ −XU̇ (z) − Ẏ − U (x)Ż − ZU̇ (x)

]
+

Ż
[
U (y)X + U (x)Y − bZ

]
+ Z

[
U (y)Ẋ +XU̇ (y) + U (x)Ẏ + Y U̇ (x) − bŻ

]
.

(3.11)

Of course, the stochastic sequences in these new derivatives are different from the stochastic

sequences in the previous derivatives. To make this clear, we denote these new stochastic

variables s̄, which means D2W (x, s, s̄) is a function of the state variables and two different

stochastic sequences. We place the bound on LBWF in much the same way that we placed

the bound on BWΦ. When finding the maximum value of the function D2W (x, s, s̄), we must

consider not only the optimal values of the state variables and the stochastic variables from

the first derivative DFW (i.e whether the function is maximized for s = 0 or s = 1), but

we must also find the optimal values including the stochastic variables introduced by the

second derivative D2
FW . These calculations are somewhat tedious, so we omit them here.

However, the reader should be able to reproduce the results, following these steps. Using

the ideas above (term-by-term maximization of the derivatives and conservative (optimal)

choices for the stochastic variables (0 vs 1)), we get the following bounds for the original
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N -node networks (3.2) and (3.3):

BWΦ = (N − 1)ϕ2|4(Npε+ σ) + 5ϕ+ (2 + ap)r + 4(b+ 1)|,

LBWΦ = (N − 1)4ϕ
[
11ϕ2 + 2ϕ

(
6r + 3apr + 8σ + 3b+ 3pε(N − 1) + 7

)
+ 2 + 2b2+

(2pε(N − 1))2 + r(6 + 3ap+ 4r + 4apr + a2p2r + b+ 5apσ + 10σ) + 4σ+

10σ2 + σb+ pε(N − 1)((2 + ap)r + 12σ)
]

BWF = (N − 1)ϕ2|4(Nε+ σ) + 5ϕ+ (2 + a)r + 4(b+ 1)|

LBWF = (N − 1)4ϕ
[
11ϕ2 + 2ϕ

(
6r + 3ar + 8σ + 3b+ 3ε(N − 1) + 7

)
+ 2 + 2b2+

(2ε(N − 1))2 + r(6 + 3a+ 4r + 4ar + a2r + b+ 5aσ + 10σ) + 4σ + 10σ2+

σb+ ε(N − 1)((2+)r + 12σ)
]
.

(3.12)

This completes the first step towards formulating the stability criterion.

The second step is to define the size of the δ-neighborhood of the ghost synchronization

solution of the stochastic system (3.2). This is done by choosing a level curve of the Lyapunov

function WΦ for the averaged system (3.3):

V0 : WΦ =
1

2

N−1∑
i=1

{
δ2
Xi,i+1

+ δ2
Yi,i+1

+ δ2
Zi,i+1

}
. (3.13)

We let δ = max{δX12 , . . . , δZN−1,N
}, which gives us the level V0 : WΦ ≤ 3

2
(N − 1)δ2. We

define another level, V1 as absorbing domain of the Lyapunov function, which we obtain by

replacing each difference variable with its maximum value, subject to the constraints on x.

We obtain

V1 : WΦ ≤
1

2
(N − 1)

(
8ϕ2 + 4 (ϕ+ r + σ)2) . (3.14)

These level curves let us define the following quantity:

γ = min
x∈R,V0≤WΦ≤V1

|DWΦ(x)|.

Notice that the derivative of the Lyapunov function DWΦ for the averaged system is similar

to the quadratic form (3.9) where the stochastic variables s(t) are replaced with probability
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p. Under the condition that the coupling strength ε exceeds the threshold (3.5), we can

bound γ by:

γ = (N − 1) |Npε+ σ − 2ϕ− apr + 1 + b| δ2, (3.15)

where the level V0, corresponding to δ-synchronization yields the minimum value γ on the

interval V0 ≤ WΦ ≤ V1. To derive the bound (3.15), we have used term-by-term mimimiza-

tion/maximization and replaced the difference variables with δ and set U (z) = −(ϕ+ r + σ)

and U (y) = ϕ.

We also define the following constants [69, 70] that use the bounds from (3.6), which

help make the statement of the following theorem more manageable and explicit:

c = 1
64(LBWF +LBWΦ)B2

WF

D = 8(LBWF + LBWΦ)

U0 =
{

x|WΦ(x) < V0 + 4γ2

D

}
,

(3.16)

where U0 is a neighborhood of the synchronization solution of the averaged system (3.3) and

is slightly larger that the level curve V0, corresponding to δ-synchronization.

Theorem 3.1. Assume that the coupling strength ε is strong enough, i.e greater than the

bound given in (3.5), such that synchronization in the averaged network (3.3) is globally

stable. Then, the following properties hold:

• If the switching time τ is small enough to satisfy

τ <
cγ3

ln
[
D (V1−V0)

γ2

] , (3.17)

then the trajectory of the switching system (3.2) almost surely reaches the U0-

neighborhood of the ghost-synchronization solution, in finite time. Therefore, the

switching network (3.2) converges to approximate synchronization globally and almost

surely.

• Assume that (3.17) holds and that W (x(0)) ≤ V1 (i.e the initial condition is chosen in
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the attracting domain). Let P1(n), ∀n ∈ N, be the probability that it takes time 2nV1−V0

γ

to reach U0. Then

P1(n) ≤ exp

(
−n
(
cγ3

τ
− ln

[
D
V1 − V0

γ2

]))
. (3.18)

Proof This theorem is a shortened version of the general theorem, Theorem 9.1, given in [70]

and applied to the Lyapunov function (3.4) and its bounds (3.12)-(3.16) for the global stability

of approximate synchronization in the stochastic network (3.2). The complete statement and

proof of Theorem 9.1 can be found in [70]. �

Remark 1. The difference between the δ- and U0-neighborhoods is a technicality, com-

ing from the proof of Theorem 9.1. The desired precision of the approximate synchronization

in the switching network is defined by U0 and can be explicitly calculated through δ. As δ is

typically chosen arbitrarily, we generally view U0-synchronization as δ-synchronization.

Remark 2. The probability bound (3.18) depends on the number of discrete steps n

as this is the probability that the system will take at least time 2nV1−V0

γ
to converge to the

U0-neighborhood. Notice that this time depends on how far from the neighborhood of the ghost

synchronization solution lies from the border of the attracting domain, expressed via V1.

In order to make the theorem more explicit, we shall consider what this looks like when

the attractor is in a typical chaotic regime, i.e let r = 30, a = 2/30, b = 8
3
, and σ = 10. Also,

let δ = 0.1. Doing this, we get

c = 2187
[
274877906944000(N − 1)2 ·

(
175 + 80

√
15 + 6Nε

)2 (
242021 + 52704

√
15+

9
(
173 + 34

√
15
)
p+ 18p2 + 18ε2(N − 1)2(1 + p2) + 9ε(N − 1)

(
91 + 32

√
15+

(90 + 32
√

15)p+ p2
))]−1

,
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D = 40960
27
·
(

242021 + 52704
√

15 + 9
(
173 + 64

√
15
)
p+ 18p2 + 18ε2(N − 1)2(1 + p2)+

9ε(N − 1)
(
91 + 32

√
15 + (90 + 32

√
15)p+ p2

))
,

γ = |3.33× 10−3(N − 1)(−2.0687× 103 + (−6 + 3εN)p|.

To give the reader an idea of the magnitude of these numbers, we set N = 2, ε = 1 and

p = 0.5, which gives us:

c ≈ 7.14722× 10−23, D ≈ 6.84128× 108, γ ≈ 6.895× 10−1.

These values determine the size of the neighborhood U0 = {x|W (x) < 0.05} . Turning our

attention back to (3.17), we use the values that we have computed to get the explicit bound

on τ for the two node stochastic network (3.2). Thus, if:

τ < 7.5615× 10−25, (3.19)

then the probability (3.18) is bounded by:

P1(n) ≤ exp

(
n (−2.34354× 10−23 + 30.993τ)

τ

)
.

Of course, given the bound that we have on τ , it is evident that the probability (3.18)

converges to 0 very quickly if τ is this small. This probability guarantees a few things that

are not immediately clear. It shows that if the switching rate is fast enough, the stochastic

system will not just asymptotically converge to the U0-neighborhood, but converge in a finite

amount of time, with the faster switching is, the shorter the time guaranteeing convergence

is. This leads to an additional implication of this probability bound: it ensures that there

is a window for values of τ in which the stochastic system will converge within some given

finite time, i.e for 0 < τ ≤ τ ∗. As we emphasized, the explicit bound given in (3.19) is very

conservative; however, it rigorously proves that synchronization can be stably achieved in

the switching network (3.2) even if the probability of switching p is small and the network

is disconnected most of the time. It also suggests that the probability of not converging to
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Figure 3.2 Transversal stability of synchronization in the averaged ten-node, x-coupled
Lorenz network (blue) and the averaged ten-node, x-coupled Rössler system (pink), ex-
pressed via the Lyapunov exponent. For the Lorenz network, when ε > ε∗ ≈ 1.5, the system
tends to synchrony, whereas for the Rössler system, there is a synchronization window for
ε− < ε < ε+ the system exhibits synchronous behavior. The values of ε used in Fig. 3.5 are
marked with dot in blue, pink, and green on the pink curve.

δ-synchronization within the finite time (see (3.18)) decreases at least exponentially fast as

τ decreases.

In the following subsection, we present numerically calculated bounds in order to isolate

a more realistic range of switching periods τ, corresponding to δ-synchronization.

3.2.2 Numerical Results

As an example, we consider a ten-node network of coupled Lorenz oscillators (3.2).

Hereafter, the intrinsic parameters and the switching probability are chosen and fixed as

follows: r = 30, a = 2/30, b = 8
3
, σ = 10, and p = 1/2. The coupling strength ε = 3 is chosen

such that synchronization in the averaged system with pε = 1.5 is stable (see Fig. 3.2.

Considering small values of τ , Fig. 3.3 shows that for ε
2
≈ ε∗, the system synchronizes

with probability 1 for τ = 0.0001, but the probability decays rapidly for bigger values of

τ , until τ ≈ 0.01, where there is no longer synchrony (also see Fig. 3.4). The window for
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Figure 3.3 Probability of δ-synchronization in the stochastic ten-node Lorenz network (3.2)
for small values of τ . For τ = 0.001, and ε = 3, there is convergence with probability 1,
which rapidly decays as τ increases. Nearly identical convergence probabilities for different
choices of the integration steps.

convergence, 0 < τ ≤ τ ∗ is guaranteed by the probability bound given by (3.18), and while

this window is expected, the extent of it shown in Fig. 3.3 is not. There are circumstances for

which not converging to the averaged system is favorable, and the present theory is not able

to make definitive claims about the behavior of the stochastic system beyond fast switching.

This leads us to explore the effects of non-fast-switching (where τ is not necessarily small)

on the dynamics of the switching network.

3.3 Beyond Fast Switching: Windows of Opportunity

We consider switching networks (3.1) of Rössler and Duffing oscillators. These networks

are known to exhibit synchronization properties distinct from those of the Lorenz network

considered in Section 3.1. While the Lorenz network belongs to Class I, x-coupled Rössler

networks and networks of coupled Duffing-type oscillators [145] are in Class II [28]. Class

I networks synchronize when the coupling exceeds a threshold value, and synchronization

remains stable for infinitely strong coupling (see Fig. 3.2 for the unbounded stability window
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Figure 3.4 (left) Traces for x1 (blue) and x2 (pink) in the stochastic Lorenz network for
τ = 0.0001. The two traces practically coincide, showing δ-synchronization. (right): The
synchronization error corresponding to two switching frequencies, τ = 0.01 (pink) and τ =
0.0001 (blue). The blue curve oscillates about a small value, close to 10−13, because the
stochasticity in the parameter r prevents the stochastic network from converging to complete
synchronization. This mimics the expected behavior from Fig. 3.3.

.

for synchronization in the Lorenz networks, to the right from the threshold coupling value).

Class II networks have a bounded range of coupling where synchronization remains stable

(see a well in the stability diagrams of the Rössler and Duffing networks in Fig. 3.2 where

synchronization loses its stability when the coupling increases). These differences between

Class I and Class II networks generate distinct windows of switching frequencies, yielding

stable synchrony in the corresponding switching networks.

It is important to emphasize that Class II networks such as x-coupled Rössler networks

can only exhibit local synchronization within the stability well and global synchronization

cannot be achieved/proved for any coupling. This is due to so-called shortwave length bifur-

cations [108] and the persistent presence of saddle fixed points, lying outside of the synchro-

nization manifold in the phase space of the x-coupled Rössler system [21]. Hence, there are

trajectories that escape to infinity, and the existence of the global absorbing domain cannot

be proved. As a result, the above rigorous theory of global convergence to synchronization

in fast switching networks cannot be applied to the Class II networks considered below.
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3.3.1 x-Coupled Rössler Oscillators

We begin with a switching network of ten x-coupled Rössler oscillators:

ẋi = −(yi + zi) +
N∑
j=1

εijsij(xj − xi)

ẏi = xi + ayi

żi = b+ zi(xi − c).

(3.20)

Hereafter, the intrinsic parameters are chosen and fixed as follows: a = 0.2, b = 0.2, c = 7. To

simplify multi-trial simulations, we did not include a stochastic intrinsic parameter into this

system; however, all the reported windows of switching are robustly seen when it is present

[78]. The averaged network is an all-to-all network, similar to that of the Lorenz network.

As discussed above, synchronization in a network of x-coupled Rössler systems is known

[109] to destabilize after a critical coupling strength ε∗, which depends on the eigenvalues of

the connectivity matrix G. We choose the coupling strengths in the stochastic network such

that the coupling in the averaged network is defined by one of the three values, marked in

Fig. 3.2. In particular, for ε = 1, synchronization in the averaged network is unstable. As a

result, synchronization in the fast-switching network is also unstable. Surprisingly, there is a

window of intermediate switching frequencies for which synchronization becomes stable (see

Fig. 3.5). In fact, the stochastic network switches between topologies whose large proportion

does not support synchronization or is simply disconnected.

To better isolate the above effect and gain insight into what happens when switching be-

tween a connected network in which the synchronous solution is unstable, and a completely

disconnected network in which the nodes’ trajectories behave independently of one another,

we consider a two-node Rössler network (3.20). Figures 3.6 and 3.7 demonstrate the emer-

gence of synchrony windows for various intermediate values of τ for which the fast-switching

network does not support synchronization. In essence, the system is switching between two

unstable systems, and yet when the switching period τ is in a favorable range, the system

stabilizes. Figure 3.7 also indicates the role of switching probability p and shows that the
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Figure 3.5 Probability of synchrony in the ten-node stochastic Rössler network with differing
coupling strengths, showing the effects of varying τ . These are coupling strengths for which
synchronization in the averaged system is stable (blue), weakly unstable (pink), and strongly
unstable (teal), respectively (cf. Fig. 3.2 for the values marked with appropriately colored
dots). The bell-shaped curve corresponds to an optimal range of non-fast switching 0.6 < τ <
2.2 (the “window of opportunity”), where synchronization in the stochastic network becomes
stable with high probability, whereas synchronization in the corresponding averaged system
is unstable (ε = 1). Switching probability p = 0.5. Probability calculations are based on
1000 trials.
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Figure 3.6 (top) Probability of synchrony in the two-node Rössler network (3.20) as a function
of the switching probability p and switching period τ . Pink (lighter) colors correspond to
higher probability of convergence (with light pink at probability 1) and blue (darker) colors
correspond to lower probabilities (dark blue at probability 0). The coupling strength of the
connection is fixed at ε = 7. As p increases, pε, the effective coupling in the averaged/fast-
switching network progresses through the window of synchrony indicated in Fig. 3.2. For the
two-node network this interval is pε ∈ [0.08 2.2], yielding the stability range p ∈ [0.011 0.31]
(the pink interval on the y-axis) for ε = 7 and small τ . (bottom) Slices from the top Figure for
different p. Notice the emergence of “windows of opportunity” for not-fast switching periods
at which synchrony in the fast-switching network is unstable. Switching probability around
p = 0.5 yields the largest stability window. Probability calculations are based on 1000 trials.
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Figure 3.7 Role of switching probability p in the two-node Rössler network. pε = 3.5 is chosen
in the instability window in the fast switching network and kept constant when changing p.
There is a window of opportunity for each chosen value of p (p = 0.1 (blue), p = 0.5 (pink),
p = 0.9 (teal). Notice the largest window for p = 0.5, indicating a positive role of more
probable re-switching between the unstable systems.

largest synchrony window is achieved at probability p = 0.5. This probability corresponds

to the most probable (frequent) re-switching for a fixed switching period τ and indicates

a stabilizing effect of re-switching. In an attempt to better understand the underlying

phenomenon, we consider what happens in this connected/disconnected network when the

switching is periodic instead of stochastic. We find that for periodic switching (the pink

curve in Fig. 3.8) there is a window of similar length to when switching is stochastic, and for

similar values of τ . Furthermore, when switching is periodic, we have an additional, though

smaller, window for τ ∈ [4.5, 5].

The appearance of additional windows of opportunity in the periodically switching net-

work and the overall better stability of synchronization, compared to the stochastic network

can be explained by an analogy to the dynamics of Kapitza’s pendulum. Kapitza’s pendulum

is a rigid pendulum in which the pivot point vibrates in a vertical direction, up and down

[84]. The unusual property of Kapitza’s pendulum is that the vibrating suspension can stabi-
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Figure 3.8 Comparison of the probability of synchrony in the two-node Rössler network in
which switching is stochastic (blue) and periodic (pink) when switching is slow. The networks
switch between two couplings strengths: ε = 0 and ε = 7, both corresponding to unstable
synchrony. The averaged network with ε = 3.5 is also unstable for synchronization. There
is substantial overlap between the two switching frequency windows that induce synchrony.
Notice the second stability window for periodic switching (around τ = 4.5) where stochastic
switching fails to stabilize synchronization. Probability calculations are based on 1000 trials.
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lize the pendulum in an upright vertical position which corresponds to an otherwise unstable

equilibrium in the absence of suspension vibrations. This effect is also known as dynamic sta-

bilization. Loosely speaking, the switching network of Rössler oscillators performs a similar

function as it switches between two unstable networks, yet it dynamically stabilizes the syn-

chronous state. In this context, the stabilizing oscillations around the unstable equilibrium

in Kapitza’s pendulum may be viewed as switchings in our network. While both periodic

and stochastic vibrations of the suspension can stabilize Kapitza’s pendulum, the periodic

forcing clearly has an advantage over the stochastic perturbation as the latter can generate

a sequence of “unfortunate” pushes in one direction, letting the pendulum pass the point of

no return and fall down. The same is likely to happen in our network of Rössler systems

where periodic switching provides better dynamic stabilization of the unstable synchronous

state and has wider ranges of favorable switching frequencies.

3.3.2 Duffing Network

To demonstrate that the emergence of windows of opportunity is a general phenomenon

in Class II networks, we consider a network of driven Duffing oscillators:

ẋi = yi

ẏi = −x3
i − hyi + q sin(ηt) + ε (xj − xi)

(3.21)

for i, j = 1, 2, i 6= j. This network has a multiple window diagram for stability of synchro-

nization (see Fig. 3.2 (bottom)) and belongs to Class II networks. The intrinsic parameters

are chosen and fixed as follows: η = 1, h = 0.1, and q = 5.6 [145]. Figure 3.9 demonstrates

the emergence of windows of opportunity for stable synchronization in an intermediate range

of switching periods.

3.4 Chapter Summary

We have studied the stability of synchronization in dynamical networks with both

stochastically switching connections and intrinsic parameters. In particular, we have proven
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Figure 3.9 (top) Transversal stability of synchronization in the two-node, Duffing network
(3.21). There are two synchronization windows, for ε1 < ε < ε2 and ε3 < ε. (bottom)
Probability of synchrony in the Duffing network. Switching probability: p = 1/2, number
of trials: 100. (Blue solid line) On-off connected/disconnected network, switching between
ε = 0 and ε = 1.75 (right black dot in (top)). (Red dashed line) On-off connected/connected
network, switching between ε = 0.45 and ε = 1.75, (black dots in (top)) corresponding to two
instability zones (top). In either case, the network switches between two configurations that
do not support stable synchronization. Synchrony in the fast switching/averaged network is
unstable, yet there are windows of opportunity, yielding stable synchrony for intermediate
τ.
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that approximate synchronization in the fast-switching network of Lorenz oscillators can

be achieved globally and almost surely, provided that the corresponding averaged network

synchronizes globally. For the first time, we have given the explicit bounds on the switching

frequency sufficient for global synchronization and the probability that synchronization is

achieved within some given finite time.

In this chapter, we have used examples to show that connections, that are only present

with some probability p in a complex network, can stabilize synchronization even in a nor-

mally unstable regime. We have explored the possibilities when the time scale for the

stochastic process does not approach zero, and showed that not-fast switching can be fa-

vorable, compared to fast switching, when one does not want to follow the dynamics of the

averaged system. We have also shown that switching cannot be too slow, as this can make

the system even more unpredictable. This gives the impression that there is some window for

each system for which we have a sense of “controlled unpredictability.” Moreover, this phe-

nomenon also seemed to appear in [14] when we were analyzing an entirely different system

whose parameters blink stochastically (i.e, not a network with stochastic connections). We

named this controlled unpredictability, “windows of opportunity,” to further emphasize that

there seem to consistently be favorable conditions in which the stochastic and deterministic

parameters match up appropriately, and allow the system to behave favorably, against all

odds.

The numerical results for the non-fast switching networks reveal unexpected windows

of opportunity and give plenty of insight as to the effects of stochastic coupling in dynamical

networks (and how stochastic connections can actually be favorable to static ones). The effect

of non-fast switching between stable two-dimensional nonlinear [10] and linear [91] systems

has previously been analytically explored. An interesting observation is that switching at

exponential times between two stable linear degenerate nodes can cause the trajectory to

escape to infinity when the switching is not fast [91]. The highly nonlinear dynamical effects

in multidimensional stochastic networks with non-fast switching reported in this chapter call

for analytical approaches and techniques and represent a subject of future study.
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CHAPTER 4

SYNCHRONY IN METAPOPULATIONS WITH SPORADIC DISPERSAL

In this chapter, we present a realistic example for which our framework of stochastically

switching dynamical systems can be used. We study synchronization in ecological networks

under the realistic assumption that the coupling among the patches is sporadic/stochastic

and due to rare and short-term meteorological conditions. Each patch is described by a

tritrophic food chain model, representing the producer, consumer, and predator. If all three

species can migrate, we rigorously prove that the network can synchronize as long as the

migration occurs frequently, i.e, fast compared to the period of the ecological cycle, even

though the network is disconnected most of the time. In the case where only the top trophic

level (i.e., the predator) can migrate, we reveal an unexpected range of intermediate switch-

ing frequencies where synchronization becomes stable in a network which switches between

two non-synchronous dynamics. As spatial synchrony increases the danger of extinction,

this counterintuitive effect of synchrony emerging from slower switching dispersal can be

destructive for overall metapopulation persistence, presumably expected from switching be-

tween two dynamics which are unfavorable to extinction.

4.1 Introduction

Synchronization of the growth cycles in ecological networks of multi-species populations,

called metapopulations, across a geographic region has been widely documented and studied

(see, for example, [129, 50, 40] and the references therein). Multiple examples of population

synchronization include moths and butterflies [67, 82], crabs [74], fish [129], birds [35], hares

[129], lynx [51] and sheep [64].

The first example of population synchrony was given in the study of fur returns of

Canadian lynx to the Hudson Bay Company [52]. The cause for spatial synchrony is believed



66

to be a combination of correlated atmospheric conditions (the Moran effect) [128, 36, 40, 73]

and the presence of migration between population patches. Synchronization of Canadian

lynx was initially attributed to the Moran effect; however, several studies have indicated

that sufficiently strong dispersal in networks of tritrophic food chain models, related to

the Canadian boreal forest, can induce synchrony without common atmospheric conditions

(see for example, [27, 18]). These studies, supported by DNA analysis [139] revealing high

dispersal of Canadian lynx over large distance between the East and West Coasts, suggest

that dispersal plays a key role in spatial synchronization of the Canadian lynx. Moreover,

there are numerous factors which can influence both the frequency and rate at which species

migrate, and subsequently inhibit or promote spatial synchrony. It is generally accepted

that the Moran effect is typically responsible for synchrony on the continental scale, whereas

migration facilitates local, metapopulation synchrony.

In most theoretical studies, the migration is assumed to be a continuous process with

net migration flow proportional (through a constant dispersal coefficient) to the unbalance

of population densities. Under this assumption, the metapopulation model is an N -patch

network of linearly coupled food-chain models with a static graph. The static interaction

is typically assumed to be of diffusive nature (on an arbitrary coupling graph) and defined

by a zero-row sum connection matrix (see, for example, [18]). There has also been a fair

amount of work focused on density dependent migration models (for example, a model where

predator migration is dependent on the prey density in a given patch [75]). However, a more

realistic assumption could be that the dispersal among the patches is not constant, but

of intermittent nature. More precisely, migration episodes are due to rare and short-term

particular meteorological conditions such as high winds or strong water currents, but occur

relatively frequently during the period of the ecological cycle. The prominent example of

an ecological network with random, “blinking” interactions is a chain of lakes connected

via narrow, shallow channels where the migration of algae and zooplankton is due to weak,

random water currents. These sporadic algae-zooplankton interactions among the lakes have

been shown to trigger synchronous algae outbreaks and crashes, resulting in synchronous
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clear water episodes in Lake Lugano, Switzerland [130, 131]. Synchronization of insect-pest

outbreaks in forests, connected by high, but sporadic winds has also been largely debated

(see [132] and the references therein).

When considering migration within a metapopulation, it is natural to think of the

metapopulation as a network of patches that is sporadically connected through migration

routes by which species can travel from a patch to a nearby patch, such as, e.g., insects

dispersing using favorable wind conditions. This means that to model the inherent stochas-

ticity in the migration, we can turn the links between nodes in the network “on” and “off”

randomly. This requires that both the time scale of the metapopulation and the stochastic

process be considered in modeling (see [92, 37, 33] for the discussion on the problem of pat-

tern and scale in Ecology). While stochastic dispersal and its role in population persistence

have received a great deal of attention (see [156]), the patches are typically assumed to have

simple dynamics and often described by simple discrete-time models.

In this chapter, we aim at the hardest case where individual patches can have chaotic

dynamics which are described by the tritrophic Rosenzweig-MacArthur model [135]; in ad-

dition, one of the intrinsic parameters and the on-off dispersal between the patches are

stochastic, with their own time-scales, ranging from fast to slow. We put the general blink-

ing network model [19] with fast on-off stochastic connections into the ecological context

and use the rigorous theory [69, 70, 14] on probabilistic convergence to derive upper bounds

on the switching frequency of on-off dispersal to achieve approximate synchronization in the

stochastic metapopulation network in the fast switching limit. More precisely, we show that

if the migration of all three species is allowed, the stochastic ecological network converges

to approximate synchrony globally and almost surely as long as the switching is fast and

the dispersal strength is sufficiently strong to guarantee synchronization in the averaged net-

work, obtained by replacing the stochastic variables with their means. Going beyond fast

switching, we report a counterintuitive effect when non-fast switching makes synchronization

stable even though it is unstable in the averaged/fast-switching network. In this case, the

network, switching between two non-synchronous states, each of which supports population
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persistence, can promote spatial synchrony and therefore increase the risk of extinction.

We show that the effect is maximized when the probability of switching p is close to 0.5,

suggesting a stabilizing effect of the most probable re-switching.

The layout of this chapter is as follows. First, in Section 4.2, we introduce the stochastic

model and discuss its synchronization properties. Then, in Section 4.3, we consider the case

when switching is fast. We formally state the main theorem, in which we derive explicit

analytical upper bounds for the switching frequency for migration that guarantees synchrony.

While we would ideally like to lead the reader through all of the ins and outs of the proof,

we recognize some of the details are too technical (and spatially cumbersome) to include

in the main text. For this reason, the majority of the proof can be found in Appendix B.

In Section 4.4, we consider the case in which the switching is not fast (relative to the time

scale of the ecological system), but not too slow. We find somewhat striking results for this

intermediate switching, for which a rigorous theory has not yet been established. Finally, in

Section 4.5, a brief discussion of the obtained results is given.

4.2 The Model and Problem Statement

4.2.1 Individual Patch Model

We use the tritrophic extension of the Rosenzweig-MacArthur prey-predator model [135]

as the individual patch in the metapopulation stochastic network. The individual model

reads
ẋ = rx

(
1− x

K

)
− a1xy

1+a1b1x

ẏ = a1xy
1+a1b1x

−m1y − a2yz
1+a2b2y

ż = a2yz
1+a2b2y

−m2z,

(4.1)

where x, y, and z are the producer, consumer, and predator population densities, respectively,

r and K are the growth rate and carrying capacity of the producer, while a1 and a2 are

conversion rates (a1 from producer to consumer and a2 from consumer to predator), with

their respective saturation constants b1 and b2. Lastly, m1 and m2 are the mortality rates
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of the consumer and predator, respectivelya. The model (4.1) can exhibit periodic and

chaotic behavior, including Shilnikov-type chaos [47, 90]. Hereafter, the mortality rate of

the predator populationm2 is assumed to be lower than that of the consumerm1 as predators

typically have a longer life span than consumers (e.g., fish v.s. zooplankton in the algae-

zooplankton-fish food chain). This assumption together with a high carrying capacity of the

producer, K, typically leads to chaotic dynamics in the patch. Unless specified otherwise,

the values of parameters r = 1.15, K = 1.07, a1 = 5, b1 = 0.6, m1 = 0.4, a2 = 0.1, b2 = 20,

m2 = 0.0037 are chosen and fixed to place the individual model in a chaotic regime (see

Fig. 4.1).

4.2.2 The Stochastic Network

Introduced in [19], the general “blinking” network [69, 70] fits well with the peculiar na-

ture of random, sporadic interaction between metapopulations and can be used as the main

tool in the study of synchronization in ecological models with realistic sporadic interactions.

We consider a network composed of N tritrophic Rosenzweig-MacArthur prey-predator mod-

els (4.1), interconnected pairwise via stochastic dispersal:

ẋi = rxi
(
1− xi

K

)
− [a1+∆aξi(t)]xiyi

1+a1b1xi
+ εx

N∑
j=1

sij(t) (xj − xi)

ẏi = [a1+∆aξi(t)]xiyi
1+a1b1xi

−m1yi − a2yizi
1+a2b2yi

+ εy
N∑
j=1

sij(t) (yj − yi)

żi = a2yizi
1+a2b2yi

−m2zi + εz
N∑
j=1

sij(t) (zj − zi) , i = 1, ..., N,

(4.2)

where εx, εy, and εz are the coupling strengths (strengths of dispersal of the producer,

consumer, and predator populations, respectively). Stochastic variables sij(t) form the time-

varying connectivity (Laplacian) matrix C(t). We define the stochastic variables sij as we did

in the previous chapter. Every migration link in the metapopulation network turns on and

off, according to a similar probability law, and the migration between any two patches opens

and closes in different time intervals independently. All possible migration links sij = sji are

aThe mortality rate for the producer is inherently included in the growth rate, r.
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Figure 4.1 (Top): The chaotic attractor of the uncoupled patch model (4.1). The attractor
resembles an upside down tea cup shape. (Bottom): The corresponding time series. The
top, middle, and bottom graphs depict the time series for x, y, and z, respectively. The
population size is given in a dimensionless unit. The dashed lines indicate the beginning
and end of a population cycle, the characteristic period (T ) of the metapopulation, which is
approximately T = 200 units of time.
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Figure 4.2 (Left): Example of the stochastic process with p = 0.5 and τ = 10. The time
axis is divided into intervals of length τ ; for each interval, sk = 1 with probability p and
sk = 0 with probability 1− p. (Right): Three different instances of the same stochastically
switching network. Note the disconnected node in the network at t = 65, making network
synchronization impossible during this lapse of time.

allowed to turn on and off so that the metapopulation network C(t) remains constant during

each time interval [kτ, (k + 1)τ) between the re-switching and represents an Erdös-Rényi

graph of N vertices (see Fig. 4.2).

The stochastically blinking sporadic interactions sij(t) in the network (4.2) describe

the stochastic opening of migration corridors when conditions are favorable (for example,

heavy rains allowing fish to migrate to another lake through streams that are normally too

shallow to traverse). It is also reasonable to assume that the intrinsic parameters of the

individual patch model (4.1) can also be stochastic functions, similar to sij(t). For example,

when producer-consumer interaction rate a1 switches between two different values based on

some stochastic process; for instance, when the weather is especially fierce, a rabbit may not

leave his burrow to eat grass. To account for this intrinsic stochasticity in patch i, we have

replaced the traditional parameter a1 (cf. (4.1)) with [a1+∆aξi(t)], where ξi(t) is a stochastic

variable. For simplicity, we assume that ξi(t) is governed by the same stochastic process (but

by a different stochastic sequence) and can switch on and off at the same times as sij(t). For

example, strong winds, allowing the migration of insects between nearby patches, can also

prevent the insects, already present in the patches, from food searching, thereby affecting

parameter a1.

This intrinsic stochasticity parameter makes the patches, comprising the network (4.2),

non-identical such that complete synchronization between the patches is no longer possible.
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However, approximate synchronization with fluctuating synchronization errors can be ob-

served in this metapopulation network with stochastic connections and intrinsic parameters.

Thus, we have knowingly decided to handle approximate synchronization in the mismatched

network that better represents realistic ecological systems with no perfect symmetries. In

the next section we will derive sufficient stability conditions of approximate synchronization

in the stochastic network. The generalization of all the results of this chapter to networks

of identical patches is straightforward.

4.3 Fast Switching

4.3.1 Comparing the Switching and Averaged Networks

If dispersal switching is fast compared to the ecological cycle of the individual patch, one

can expect the behavior of the stochastic network (4.2) to be close to that of the averaged

network, obtained by replacing the stochastic variables sij(t) and ξi(t) by their expected

value, the switching probability p. Hence, the averaged network is an all-to-all coupled static

network with weaker connections:

ẋi = rxi
(
1− xi

K

)
− [a1+∆a·p]xiyi

1+a1b1xi
+ εxp

N∑
j=1

(xj − xi)

ẏi = [a1+∆a·p]xiyi
1+a1b1xi

−m1yi − a2yizi
1+a2b2yi

+ εyp
N∑
j=1

(yj − yi)

żi = a2yizi
1+a2b2yi

−m2zi + εzp
N∑
j=1

(zj − zi) .

(4.3)

The fact that the fast switching network has the same dynamics as the averaged network

seems apparent; however, there are exceptions and a rigorous proof is needed to show what

parameters are responsible for the occurrence of the exceptions.

In the following, we apply this theory to synchronization in the ecological network (4.2)

and derive bounds on the switching frequency that guarantees stable synchronization. Note

that synchronization in the static averaged network (4.3) of identical patches is defined by

the invariant hyperplane M = {x1 = x2 = ... = xN , y1 = y2 = ... = yN , z1 = z2 =
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... = zN}. At the same time this hyperplane is no longer invariant under the dynamics of the

switching network (4.2) with stochastically mismatched parameters [1+∆aξi(t)]a1. Therefore,

only approximate synchronization, when trajectories of the switching network approach and

stay in a δ-neighborhood of the “ghost” synchronization solution is possible. We show that

under the condition that the averaged network exhibits globally stable synchronization, the

switching network reaches approximate synchronization, provided that the switching period

is sufficiently small. While expected, this effect is not obvious as the switching network is

disconnected most of the time, yet is able to synchronize.

4.3.2 Synchronization in the Averaged Network

Before proceeding with the study of the stochastic network, we should first understand

synchronization properties of the averaged network. Following [18], we explore several sce-

narios of possible migration schemes between ecological patches when all three trophic levels

(x, y, z-coupling) or only one trophic level can migrate. Figure 4.3 presents the Master Sta-

bility function [109] for synchronization in the averaged network. As Fig. 4.3 suggests the

x, y, z-coupling when three species can migrate is the most effective mechanism for promoting

spatial synchrony. Notice that the x, y, z-coupling has the lowest synchronization threshold

εx = εy = εz = ε = ε∗xyz among the four migration schemes; and the largest stability zone,

expanding to the right from ε∗xyz = 0.002 up to infinite coupling strengths. If only one

species can migrate, the dispersal of the consumer (i.e., the intermediate trophic level) is the

most effective in establishing spatial synchrony. Notice that the dispersal of only producer

(x-coupling) never induces synchrony, whereas the dispersal of predator (z-coupling) yields a

bounded stability well such that increasing the dispersal strength εz eventually destabilizes

the synchronization solution. The latter property of the z-coupled migration scheme will be

used later in the chapter to discuss synchronization when exploring the effects of non-fast

switching.

We choose the most effective migration scheme of x, y, z-coupling with εx = εy = εz = ε

to study synchronization in the averaged network (4.3) and approximate synchronization in
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Figure 4.3 The largest transversal Lyapunov exponent (λ) vs. coupling strength ε for the
two-patch x-coupled (green curve), y-coupled (red, dashed curve) z-coupled (blue curve)
and x,y,z-coupled (blue, dotted curve) averaged network (4.3). λ < 0 corresponds to stable
synchronization. While the x,y,z-coupled system is stable for all ε > ε∗xyz = 0.002 (not
shown), the z-coupled system has a window of stability, outside of which the patches exhibit
asynchronous behavior. The solid circle (•) indicates the value of ε = 0.175 used in the
calculations for the non-fast switching case of Fig. 4.5.

the stochastic network (4.2). We first formulate conditions on the coupling strength sufficient

for global stability of the synchronization hyperplane M .

Theorem 4.1: Synchronization in the averaged x, y, z-coupled network (4.3) of n patches

with coupling strength pεx = pεy = pεz = pε and the averaged intrinsic parameter a∗1 =

[1 + ∆a · p]a1 is globally asymptotically stable if coupling ε exceeds the critical value

ε∗ = 1
p

max{ε1, ε2, ε3, ε4, ε5}, such that

pε1 >
r
N

; pε2 >
1
N

[ 1
b1
−m1]; pε3 >

1
N

[ 1
b2
−m2]

(Nε4 − r)(Nε4 +m1 − 1/b1) > 1
2b21

;

(Nε5 +m1 − 1/b1)(Nε5 +m2 − 1/b2) > 1
2b22
.

(4.4)

Proof. The proof directly follows from the one given in [18] for the two-patch static network

(4.3) (see the Appendix in [18]) where the coupling ε is replaced with pε and the network is

extended to the all-to-all configuration with N patches. �
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4.3.3 Absorbing Domain

To obtain the lower bound for trajectories of the averaged network (4.3) with εx =

εy = εz = ε, we notice upon examining (4.3) that the trajectories may not leave the region

A+ = {xi > 0, yi > 0, zi > 0} for initial conditions xi,yi,zi ≥ 0 such that the system is

restricted to the positive orthant of R3N . Next, we must show that the system (4.3) is

bounded in that orthant as well. To do this, we will introduce the following function:

V =
N∑
i=1

(xi + yi + zi − ϕ) , (4.5)

where ϕ is a constant to be determined. We need to find the constant ϕ that makes V a

Lyapunov-type function such the vector field of (4.3) on levels of V is oriented towards the

origin.

We take the derivative of V with respect to system (4.3) and get

V̇ =
N∑
i=1

(ẋi + ẏi + żi) =
N∑
i=1

(
rxi(1−

xi
K

)−m1yi −m2zi

)
, (4.6)

where the terms ± [a1+∆ap]xiyi
1+a1b1xi

and ± a2yizi
1+a2b2yi

and the coupling terms have canceled out.

Using the assumption that m1 > m2 (which is a natural assumption in ecological mod-

els), we can bound the RHS of (4.6) by replacing the term m1yi with m2yi. This yields

V̇ <
N∑
i=1

(
rxi(1−

xi
K

)−m2(yi + zi)
)
<

N∑
i=1

(
rxi −

rx2
i

K
−m2(ϕ− xi)

)
V=0

, (4.7)

where we have replaced the term m2(yi + zi) with its minimum value m2(ϕ− xi), reached at

V =
N∑
i=1

(xi + yi + zi − ϕ) = 0 and, hence, yi + zi = ϕ− xi. Therefore,

V̇ <

N∑
i=1

(
rxi(1−

xi
K

)−m2(ϕ− xi)
)

(4.8)
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which implies that V̇ < 0 if ϕ > ψ, where

ψ =
K

4rm2

(r +m2)2 . (4.9)

This means that the region of the positive orthant bounded by Vψ is an absorbing domain

such that 0 ≤ xi, yi, zi ≤ ψ.

4.3.4 Stochastic Network: Rigorous Bounds

As in Chapter 3, to obtain the rigorous bounds for the switching system, we introduce

the Lyapunov function

W =
N∑
i=1

N∑
j>i

1

2

(
X2
ij + Y 2

ij + Z2
ij

)
, (4.10)

where Xij = xj − xi, Yij = yj − yi, Zij = zj − zi are the difference variables between the

population densities in patches i and j. The averaged x, y, z-coupled network (4.3) and

the corresponding stochastic network (4.2) have the same Lyapunov function, so we will

differentiate between the two of them using WΦ and WF for the averaged and stochastic

networks, respectively. Clearly, the zero of the Lyapunov function WΦ corresponds to com-

plete synchronization in the averaged network. At the same time, the trajectories of the

stochastic network can only reach the neighborhood of the ghost synchronization solution

in the stochastic network, therefore the Lyapunov function WF cannot converge to zero,

yet can become small. Governed by the stochastic switching, this Lyapunov function may

increase temporarily, but the general tendency is to decrease. Therefore, the bounds of the

sufficiently fast switching will have a probabilistic flavor.

The calculations of the probabilistic bounds are spatially cumbersome, therefore for

clarity, we present a bound for the two-cell stochastic network (4.2) and its averaged analog

(4.3) with the Lyapunov function (4.10) and N = 2. The two-cell stochastic network helps

isolate the robust effect of synchronization as a result of stochastic switching as the network

becomes and stays completely uncoupled for a large fraction of time when the probability of

switching p is small. At the same time, the larger N -patch network can remain connected
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or have at least most of the patches connected during a switching event (see Fig. 4.2). The

extension of the rigorous bound to the n-patch network (4.2) is straightforward and can be

performed.

Theorem 4.2. Assume that the coupling strength ε = εx = εy = εz is sufficiently strong, i.e

greater than the bound given in (4.4), such that synchronization in the two-patch averaged

x, y, z-coupled network (4.3) is globally stable. Assume that the switching period τ is small

enough to satisfy

τ < τ ∗, (4.11)

where the bound τ ∗ is given in (B.18) (see Appendix B). Then, the trajectory of the two-

patch stochastic x, y, z- coupled network (4.2) almost surely reaches the U0-neighborhood of

the ghost synchronization solution, in finite time. Therefore, the stochastic x, y, z-coupled

network converges to approximate synchronization globally and almost surely. The size of

the U0-neighborhood is defined by the level of the Lyapunov function WΦ (4.10) (N = 2)

such that U0 = V0 + C1, where V0 = 3
2
δ2 is the level of WΦ with uniform synchronization

mismatch X12 = Y12 = Z12 = δ and constant C1 is given in (B.16). The constant δ in (B.17)

controls the size of the U0-neighborhood (i.e. the desired synchronization mismatch) and can

be chosen arbitrarily small.

Proof. This theorem directly follows from the conditions of the general theorem, Theo-

rem 9.1, given in [70] and applied to the Lyapunov functions WΦ and WF (4.10) with N = 2

and their bounds on the first and second time derivatives, calculated along solutions of the

averaged (4.3) and stochastic (4.2) networks. The details of their calculations are given in

Appendix B. �

Remark 1. The bound (4.11)-(B.18) is conservative as it comes from the application

of Lyapunov functions and large deviation bounds [70]. However, it explicitly relates the

sufficient switching period τ with the probability p and strength of switching connections

ε, the precision of synchronization δ, the size of the absorbing domain ψ, and the intrinsic

parameters on the individual patch model. In particular, it suggests that the carrying capacity

K and growth rate r of the producer, being the leading terms in (B.18), are destabilizing



78

factors for promoting synchrony in the switching network as their increase lowers the bound

τ ∗ and requires faster switching to maintain spatial synchronization.

Remark 2. The bound (4.11)-(B.18) guarantees a few things that are not immediately

clear. It shows that if the switching rate is fast enough, the stochastic system will not just

asymptotically converge to the U0-neighborhood, but converge in a finite amount of time. It

also guarantees globally stable synchronization in the switching x, y, z-coupled network (4.2)

even if the probability of switching p is very small and the network is decoupled most of the

time.

4.3.5 Numerics

We present numerically calculated bounds on τ to isolate the real window of switching

periods τ, corresponding to approximate synchronization. As an example, we consider the

two-patch xyz-coupled network (4.2) switching on and off with probability p = 0.5. The

intrinsic parameter a1 = 4.99 and ∆a = 0.04 are such that the individual patch system

switches between a1 = 4.99 and a1 + p∆a = 5.01, both corresponding to chaotic dynamics.

The averaged individual system is the model (4.1) with a1 = 5, being the mean value of

the two parameter values. The other switching parameters, sij, turn on and off stochasti-

cally, according to the process that we laid out in Section 2. Note that sij and a1 switch

with separate identically and independently distributed stochastic processes both with the

probability of an ‘on’ connection given by p = 0.5. To test how the theory holds up, we

pick a coupling strength such that the average coupling is slightly stronger that the synchro-

nization threshold, representing a challenging case for the onset of synchronization in the

stochastic network. If switching is fast enough, we expect that the network synchronizes,

whereas is switching is not fast enough, we expect to see asynchrony. In Fig. 4.4, we observe

exactly what we expect to see from the theory. As switching is fast (τ = 0.0001), the system

tends to synchrony (this is shown by the red, dashed curve). Slower switching at τ = 0.01

and τ = 1 does not provide the desired synchronization accuracy. We also notice that as

switching becomes less fast, our intuition about the behavior of the network is less and less
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Figure 4.4 The effect of the switching period τ on synchronization in the two-patch (x, y, z)-
coupled stochastic network. The synchronization error corresponding to three switching
periods, τ = 0.0001 (red, dashed curve), τ = 0.01 (blue, dotted curve), and τ = 1 (solid,
green curve). Non-zero size oscillations in the neighborhood of the ghost synchronization
solution are due to stochastic parameter mismatch. The coupling strength ε = 0.005.

reliable, because slower switching periods can tend to synchrony more quickly than faster

switching periods when switching is not fast (compare the green (τ = 1) and blue (τ = 0.01)

curves where the slower switching with τ = 1 provides smaller synchronization errors for

these particular switching sequences).

4.4 Non-Fast Switching

While in the previous section we considered x, y, z-coupled network desynchronizes when

the switching is not sufficiently fast, z-coupled stochastic networks (4.2) yield a highly non-

trivial synchronizing effect. This migration coupling scheme where only predators are allowed

to migrate (coupling through the z-variable only) has synchronization properties distinct

from those of x-, y- and x, y, z-coupled networks. This is the only migration scheme which

has a bounded range of coupling ε, where synchronization remains stable (see a well in its

stability diagrams in Fig. 4.3). As a result, a stronger coupling, pushing the network out of

the stability well, destabilizes synchronization. It is important to notice that the z-coupled

networks of Rosenzweig-MacArthur prey-predator models demonstrate only locally stable

synchronization within the stability well and global synchronization cannot be achieved for

any coupling. Therefore, the rigorous theory of global convergence to synchronization in fast
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switching networks cannot be used for this network.

We choose the coupling strength εz = ε = 0.35 in the two-node z-coupled network,

switching on and off with probability p = 0.5. When turned on, this excessively strong cou-

pling corresponds to an asynchronous state of the network. When the coupling is turned

off, the network is decoupled and cannot be synchronized. It is worth noticing that synchro-

nization in the averaged network is also unstable as the mean coupling value pε = 0.175,

marked by a solid circle in Fig. 4.3, is outside its stability well. Thus, the network switches

between two asynchronous regimes; when the switching is fast and its dynamics becomes

close to those of the averaged network, synchronization in the network is unstable, as ex-

pected. However, we find a window of intermediate switching periods (5 < τ < 20) in which

approximate synchronization becomes stable with high probability, against all odds (see Fig.

4.5). To give the reader a sense of how these switching periods relate to the characteristic

period of the individual patch’s ecological cycle T ≈ 200, we present the window of their

ratio: 1
40
< τ

T
< 1

10
, suggesting that the coupling between the patches must be activated at

least as many as 10 and as few as 40 times during the ecological cycle for stable approximate

synchronization to emerge from switching between two non-synchronous dynamics. Fig-

ure 4.5 also shows that the probability p = 0.5 yields the largest window of synchronization

and suggests the importance of the most probable re-switching between the non-synchronous

dynamics to maximize the stabilization effect.

4.5 Chapter Summary

We have proposed a switching “blinking” network of tritrophic food-chain models as a

realistic description of ecological networks where migration episodes are due to short-term

meteorological conditions; however, the migration occurs relatively frequently during the

characteristic period of the ecological cycle. Following [18], we showed that the dispersal of

all the species is much more effective that those of one trophic level in promoting synchronized

dynamics. We used this three-species dispersal case to derive explicit probabilistic bounds on

the switching frequency sufficient for the switching stochastic network to synchronize almost
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Figure 4.5 (Top) Probability of approximate synchronization in the two-patch z-coupled network
as a function of the switching probability p and the switching period τ. The colors mirror the values
on the z-axis, with red (lighter colors) corresponding to higher probability of convergence (with
dark red at probability 1) and blue (darker colors) corresponding to lower probabilities (dark blue
at probability 0). The coupling in the averaged network is fixed at pε = 0.175 , marked by • in
Fig. 4.3, to be outside the stability well. As the probability p changes, the coupling strength ε in
the stochastic network is adjusted to keep pε = 0.175 unchanged. When switching is fast and the
switching period τ is close to zero, the probability of synchronization is zero as the switching network
behaves similarly to the unstable averaged network. Notice the large bump on the irregular surface
indicating the emergence of approximate synchronization in a window of non-fast switching periods.
(Bottom) Various cross-sections from the surface above. When p is small, such as for p = 0.1 (blue,
dotted curve) and p = 0.25 (red, dashed curve), there are narrow windows for intermediate switching
for which approximate synchronization is stable with high probability. For p = 0.5 (black curve),
there is a trade-off between high probability of approximate synchronization and the length of the
window for τ . Switching probability around p = 1/2 yields the largest stability window. When p is
large, such as for p = 0.75 (green dotted curve), and p = 0.9 (magenta curve), the network does not
converge to approximate synchronization consistently for any value of τ . Probability calculations
are based on 100 trials.
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surely and globally.

Going beyond fast switching, we considered a switching network where only the preda-

tor population can migrate and discovered a large window of intermediate switching periods

in which synchronization in the switching network becomes stable even though it is un-

stable in the averaged/fast-switching network. In this case, the network switches between

two asynchronous regimes; one corresponds to the uncoupled network, whereas the other

is determined by a network topology with overly strong, desynchronizing dispersal. Yet,

the network can synchronize in this “resonant” window of intermediate switching periods

with high probability. In this context, the sporadic stochastic switching plays a constructive

role in stabilizing metapopulation synchrony and indicates the importance of re-switching

between the unstable states. At the same time, metapopulation synchrony increases the

probability of extinction as all patches synchronously follow the same ecological cycle with

typical outbreaks and crashes such that one patch in an endangered state cannot be saved

by the migration from another equally endangered patch. In this respect, the role of stochas-

ticity in the switching ecological network can be viewed as destructive as it decreases overall

metapopulation persistence. Remarkably, the opposite examples of stochastic dispersal are

available [156] where switching between two sets of dynamics, each of which leads to extinc-

tion, can promote persistence of marine organisms’ metapopulations. However, the models

and type of stochastic dispersal used in this study [156] are quite different from ours.

We have chosen identically distributed independent random variables as the driving

stochastic process for the migration in the ecological network. As a result, migration episodes

occur independently from each other. As the migration episodes are often governed by

meteorological conditions that could be driven by a Markov process, the extension of this

study to ecological networks where the probability of a migration episode depends on the

present migration connections is an important research topic.
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CHAPTER 5

WINDOWS OF OPPORTUNITY FOR SYNCHRONIZATION IN

STOCHASTICALLY COUPLED MAPS

Several complex systems across science and engineering display on-off intermittent cou-

pling among their units. Most of the current understanding of synchronization in switching

networks relies on the fast switching hypothesis, where the network dynamics evolves at a

much faster time scale than the individual units. We have presented numerical evidence

demonstrating the existence of windows of opportunity, where synchronization may be in-

duced through non-fast switching. Here, we study synchronization of coupled maps whose

coupling gains stochastically switch with an arbitrary switching period. In this chapter, we

determine the role of the switching period on the synchronization through a detailed analyt-

ical treatment of the Lyapunov exponent of the stochastic dynamics. Through closed-form

and numerical findings, we demonstrate the emergence of windows of opportunity and eluci-

date their nontrivial relationship with the stability of synchronization under static coupling.

Our results are expected to provide a rigorous basis for understanding the dynamic mecha-

nisms underlying the emergence of windows of opportunity and leverage non-fast switching

in the design of evolving networks.

5.1 Introduction

We focus on a discrete-time setting, where the coupling between the maps is held fixed

for a finite number of time steps (switching period) and then it stochastically switches,

independent of the time history. In this case, non-fast switching can be contemplated by re-

scaling the time variable and consequently modifying the individual dynamics of the coupled

maps. This enables the formulation of a rigorous mathematical framework for the analysis of

the stochastic stability of synchronization as a function of the switching period. We restrict
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our analysis to two coupled maps with the two-fold aim of: i) providing a clear demonstration

for the origin of this phenomenon, which may be hidden by topological factors in large

networks and ii) establishing a toolbox of closed-form results for the emergence of windows

of opportunity.

We study the stability of synchronization by analyzing the linear stability of an aug-

mented system, associated with the linear mean square transverse dynamics. We perform a

detailed analysis of the Lyapunov exponent of the transverse dynamics, based on the knowl-

edge of the probability density function for the synchronized trajectory. We establish a

necessary condition for stochastic synchronization in terms of the synchronizability of the

coupled maps with a static coupling. The necessary condition can be used to demonstrate

that switching between configurations which do not individually support synchronization

will not stabilize stochastic synchronization for any switching frequencies. This is in con-

trast with networks of continuous-time oscillators where windows of opportunity for stable

synchronization may appear as a result of switching between unstable states [78, 79, 80].

To illustrate our approach, we use the paradigm of two linearly coupled one-dimensional

“sigmoid” maps, which encompasses the traditional logistic and tent maps. Statically coupled

tent maps are known to have two symmetric ranges of positive and negative coupling for

which synchronization is locally stable [71], and a similar behavior is observed for their

smooth versions in the form of sigmoid maps. In our setting, we let the coupling stochastically

switch between values within and outside these stability regions to explore the emergence

of windows of opportunity. We demonstrate that while fast switching, occurring at each

time step may not synchronize the maps, there can be a range of lower frequencies that

yields stable synchronization. We argue that this is possible for coupled maps where the

probability of switching between stable and unstable configurations is uneven, inducing a

non-trivial balance between the dynamics of the coupled maps and the switching periods.

The layout of this chapter is as follows. First, in Section 5.2, we present the stochastic

model of coupled maps and introduce the mean square stability of the transverse dynamics.

In Section 5.3, we establish a mathematically-tractable form for the Lyapunov exponent of
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the stochastic dynamics, which unveils its relationship with the stability of synchronization

when the maps are statically coupled. We discuss two distinct cases where the individual map

has a fixed point or exhibits chaotic dynamics. We derive a necessary condition for stochastic

synchronization, implicitly involving the switching period required for stable synchronization.

In Section 5.4, we study in detail the case of coupled sigmoid maps through both analysis

and numerics. In Section 5.5, a brief discussion of the obtained results is given. Appendix

C.1 contains the description of the sigmoid map along with its probability density function.

Finally, Appendix C.2 presents the derivation of the closed-form expression of the Lyapunov

exponent of stochastically coupled tent maps used to reveal windows of opportunity.

5.2 Linear Stability of Synchronization Under Stochastic Switching

5.2.1 Problem Statement

We study the stochastic synchronization of two maps characterized by the state variables

xi ∈ R, i ∈ {1, 2}. We assume that the individual dynamics of each node evolves according

to xi(k+ 1) = F (xi(k)), where k ∈ Z+ is the time step and F : R→ R is a smooth nonlinear

scalar function. The maps are linearly coupled through the stochastic gains ε1(k), ε2(k) ∈ R,

such that x1(k + 1)

x2(k + 1)

 =

F (x1(k)) + ε1(k)(x2(k)− x1(k))

F (x2(k)) + ε2(k)(x1(k)− x2(k))

 . (5.1)

Each of the sequences of coupling gains, ε1(0), ε1(1), ε1(2), . . . and ε2(0), ε2(1), ε2(2), . . .,

is assumed to be switching stochastically at the same period m ∈ Z+ \ {0}. Every m time

steps, the coupling gains simultaneously switch, such that ε1(mk) = ε1(mk + 1) = . . . =

ε1(mk+m− 1) = ε̃1(k) and ε2(mk) = ε2(mk+ 1) = . . . = ε2(mk+m− 1) = ε̃2(k) for every

time step k, where ε̃1(0), ε̃1(1), . . . and ε̃2(0), ε̃2(1), . . . are two sequences of independent and

identically distributed random variables.

The evolution of the coupled maps in equation (5.1) is determined by the random
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variables ε̃1 and ε̃2, from which the coupling gains are drawn. In general, these random

variables may be related to each other and may not share the same distribution. For example,

in the case of uni-directional stochastic coupling, one of the random variables is zero; on the

other hand, for bi-directional interactions, the two random variables coincide.

The current state of knowledge on stochastic synchronization of coupled discrete maps

is largely limited to the case m = 1, for which the coupling gains switch at every time

step [16]. In this case, the random variables εi(0), εi(1), εi(2), . . ., for i ∈ {1, 2}, are mutually

independent. For each value of k, x1(k+ 1) and x2(k+ 1) are functions only of the previous

values x1(k) and x2(k), and equation (5.1) reduces to a first order Markov chain with explicit

dependence on time through the individual dynamics. In the case of m > 1, the random

variables εi(0), εi(1), εi(2), . . ., for i ∈ {1, 2}, are no longer independent, which poses further

technical challenges for the analysis of the system, while opening the door for rich behavior

to emerge from the stochastically driven coupling.

The oscillators synchronize at time step k if their states are identical, that is, x1(k) =

x2(k). From equation (5.1), once the oscillators are synchronized at some time step, they will

stay synchronized for each subsequent time step. The common synchronized trajectory s(k)

is a solution of the individual dynamics, whereby s(k + 1) = F (s(k)). The linear stability

of synchronization can be studied through the following variational equation, obtained by

linearizing equation (5.1) in the neighborhood of the synchronization manifold:

ξ(k + 1) = [F ′(s(k))− d(k)] ξ(k), (5.2)

where prime indicates differentiation, d(k) = ε1(k) + ε2(k) is the net coupling, and

ξ(k) = x1(k)− x2(k) is the synchronization error at time step k. Equation (5.2) defines the

linear transverse dynamics of the coupled oscillators, measured with respect to the difference

between their states ξ(k). This quantity is zero when the two oscillators are synchronized.

Equation (5.2) rests on the assumption that the mapping governing the individual dynamics,

F , is differentiable everywhere. This assumption can be relaxed, however, to functions that
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are differentiable almost everywhere [112].

Only the sum of the two coupling gains ε1(k) and ε2(k) affects the transverse dynamics,

thereby only the statistics of the random variable d(k) modulate the linear stability of the

synchronization manifold. To simplify the treatment of the variational problem in equation

(5.2), we can rescale the time variable with respect to the switching period as follows:

ξ̃(k + 1) =
m−1∏
i=0

(F ′(s(mk + i))− d̃(k))ξ̃(k), (5.3)

where ξ̃(k) = ξ(mk) and d̃(k) = ε̃1(k)+ ε̃2(k). Equation (5.3) casts the variational dynamics

in the form of a first order time-dependent Markov chain, generated by a linear time-varying

stochastic finite difference equation [54, 89].

It is important to emphasize that the synchronization manifold x1(k) = x2(k) is an

invariant set of the stochastic equation (5.1). Therefore, the dynamics of the synchronization

manifold is governed by an attractor of the mapping function F (s(k)).

5.2.2 Mean Square Stability of Synchronization

In determining the stability of the synchronous state, various criteria can be consid-

ered, such as almost sure, in probability, and mean square [54, 89]. The concept of mean

square stability is particularly attractive, due to its practicality of implementation and its

inclusiveness with respect to other criteria. Mean square stability of the synchronous state is

ascertained through the analysis of the temporal evolution of the second moment of the error

E[ξ̃2], where E[·] indicates expectation with respect to the σ-algebra generated by the switch-

ing. By taking the square of each side of equation (5.3) and computing the expectation, we

obtain

E
[
ξ̃2(k + 1)

]
= E

[
m−1∏
i=0

(F ′(s(mk + i))− d̃(k))2

]
E
[
ξ̃2(k)

]
. (5.4)

The above recursion is a linear, time-varying, deterministic finite difference equation
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whose initial condition is ξ̃2(0), which is treated as a given value and not as a random

variable. We say that equation (5.3) is mean square asymptotically stable if equation (5.4)

is asymptotically stable, that is, if the Lyapunov exponent λ of equation (5.4) is negative.

This implies that any small difference between the states of the oscillators will converge to

zero in the mean square sense as time increases.

The Lyapunov exponent is a function of the switching period m and can be computed

from equation (5.4) as follows [112]:

λ(m) = lim
k→∞

1

k
ln

k−1∏
j=0

E

[
m−1∏
i=0

(F ′(s(mj + i))− d̃(j))2

]
. (5.5)

In general, the stability of the synchronization manifold depends on the underlying

synchronous solution, whereby λ(m) in equation (5.5) explicitly depends on s(k). In what

follows, we focus on the case where s(k) is a fixed point of the individual map or a chaotic

trajectory. We comment that our approach is based on the linearized dynamics in equation

(5.2), which describes small perturbations from the synchronous state. Thus, our analysis

is only applicable to the study of local stability of the synchronization manifold, and initial

conditions cannot be arbitrarily selected in the basin of attraction.

5.3 Main Results

5.3.1 Preliminary Claims

We assume that d̃(k) takes values on a finite sample space D = {d1, d2, . . . , dn} of

cardinality n. For l = 1, . . . , n, the probability that the net coupling is equal to dl is chosen

to be equal to pl. For example, in the case of simple on-off connections, the individual

coupling gains take values 0 and ε with corresponding probabilities p and 1− p. Therefore,

the net coupling gain d̃(k) takes values d1 = 0, d2 = ε, and d3 = 2ε with corresponding

probabilities p1 = p2, p2 = 2p(1− p) and p3 = (1− p)2.

From the individual values of the net coupling and their probabilities, we can evaluate
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the Lyapunov exponent in equation (5.5) as

λ(m) = lim
k→∞

1

k

k−1∑
j=0

ln

[
n∑
l=1

pl

m−1∏
i=0

(F ′(s(mj + i))− dl)2

]
. (5.6)

One of the central objectives of this study is to understand the relationship between

the synchronizability of the coupled maps when statically coupled through the net coupling

gains in D and their stochastic synchronizability when the net coupling randomly switches

at a period m. Toward this aim, we adjust equation (5.6) to the case of statically coupled

maps with a net coupling d?

λst(d?) = lim
k→∞

1

k

k−1∑
j=0

ln
[
(F ′(s(j))− d?)2

]
. (5.7)

For convenience, we write λst
l = λst(dl) for l = 1, . . . , n. Depending on the value of dl, the

statically coupled systems may synchronize or not, that is, the corresponding error dynamics

may be asymptotically stable or unstable.

If all of the Lyapunov exponents of the statically coupled systems are finite, then we

can establish the following relationship between the Lyapunov exponent of the stochastic

error dynamics (5.6) and {λst
r }nr=1:

λ(m) = mλst
r + lim

k→∞

1

k

k−1∑
j=0

ln

[∑n
l=1 pl

∏m−1
i=0 (F ′(s(mj + i))− dl)2∏m−1

i=0 (F ′(s(mj + i))− dr)2

]
. (5.8)

Equation (5.8) is derived from equation (5.6) by: i) dividing and multiplying the argument

of the logarithm by
∏m−1

i=0 (F ′(s(mj+ i))− dr)2; ii) using the product rule of logarithms; and

iii) applying equation (5.7) upon rescaling of the time variable by the period m.

By multiplying both sides of equation (5.8) by pr and summing over r, we obtain the

following compact relationship between the Lyapunov exponent of the stochastic dynamics
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and the individual Lyapunov exponents for statically coupled maps:

λ(m) = m
n∑
l=1

plλ
st
l + lim

k→∞

1

k

k−1∑
j=0

ln

∑n
l=1 plζl(j)∏n
l=1 ζ

pl
l (j)

. (5.9)

Here, we have introduced:

ζl(j) =
m−1∏
i=0

(F ′(s(mj + i))− dl)2, (5.10)

which we assume to be different than zero to ensure that the Lyapunov exponent stays finite.

The first summand on the right-hand side of equation (5.9) is linearly proportional

to the switching period m and the “effective” Lyapunov exponent λ̄ =
∑n

l=1 plλ
st
l , which

corresponds to the average of the Lyapunov exponents associated with the statically coupled

maps, weighted by the probability of the corresponding switching. The second summand is

a residual quantity, which is always nonnegative and encapsulates the complex dependence

of the transverse dynamics on the switching period beyond the linear dependence associated

with the first summand.

5.3.2 Necessary Condition for Mean Square Synchronization

Proposition 5.1 The synchronization of the stochastic system (5.1) is mean square

stable only if the effective Lyapunov exponent λ̄ is negative.

Proof. A lower bound for the Lyapunov exponent λ(m) can be obtained by applying the

weighted arithmetic-geometric mean inequality [31]

n∏
l=1

ζpll 6
n∑
l=1

plζl. (5.11)

From inequality (5.11), it follows that the argument of the logarithm in equation (5.9) is

larger than or equal to 1. As a result, we obtain

λ(m) > mλ̄. (5.12)
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This inequality establishes that for λ(m) to be negative, λ̄ must also be negative.

�

Remark 4 From the previous claim, we posit if none of the Lyapunov exponents {λst
r }nr=1 are

negative, synchronization is not feasible for any selection of m and {pr}nr=1. Thus, stochastic

synchronization cannot be achieved without at least one coupling configuration to support

synchronization. This is in contrast with observations from continuous-time systems which

indicate the possibility of stable synchronization even if none of the coupling configurations

support synchronization [79, 80].

Remark 5 The weighted arithmetic and geometric mean, introduced in (5.11), are equal if

and only if ζ1 = ζ2 = . . . = ζn. Thus, inequality (5.12) reduces to an equality if and only if

m−1∏
i=0

(F ′(s(mj + i))− d1)2 =
m−1∏
i=0

(F ′(s(mj + i))− d2)2 = . . . =
m−1∏
i=0

(F ′(s(mj + i))− dn)2

(5.13)

holds for any j ∈ Z+. For the case of chaotic dynamics, where s(k) does not evolve periodi-

cally in time, this condition cannot be satisfied and (5.13) is a strict inequality.

For continuous-time systems [19, 68, 124, 125, 118, 119, 120, 122, 123], it was shown

that under fast switching conditions the synchronizability of stochastically switching system

can be assessed from the synchronizability of the averaged system. Here, we re-examine this

limit in the case of coupled maps, whereby the averaged system is obtained by replacing

the switching gain by its expected values. The synchronizability of the averaged system

is ascertained by studying the Lyapunov exponent obtained by replacing d? with E[d] in

equation (5.7), that is,

λaver = lim
k→∞

1

k

k−1∑
j=0

ln
[
(F ′(s(j))− E[d])2

]
. (5.14)

In what follows, we demonstrate through examples that the weighted average Lyapunov

exponent λ̄ can be positive or negative, independent of the value of λaver. Therefore, the
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averaged system does not offer valuable insight on the stability of the synchronization man-

ifold of the stochastically coupled maps. For the sake of illustration, we consider the case in

which the individual dynamics corresponds to the identity, such that

x1(k + 1)

x2(k + 1)

 =

x1(k) + ε1(k)(x2(k)− x1(k))

x2(k) + ε2(k)(x1(k)− x2(k))

 . (5.15)

In this case, the transverse dynamics in (5.2) takes the simple form

ξ(k + 1) = [1− d(k)] ξ(k). (5.16)

Statically coupled identity maps should have a Lyapunov exponent given by (5.7) with

F ′(s(j)) = 1, that is,

λst(d?) = ln
[
(1− d?)2

]
. (5.17)

Suppose that the net switching gain is a random variable that takes values d1 = 1 and

d2 = −1 with equal probabilities 0.5. Then, using equation (5.17) we compute

λ̄ =
1

2

(
λst(1) + λst(−1)

)
= −∞, (5.18a)

λaver = λst(0) = 0 > λ̄. (5.18b)

Thus, the average coupling does not support synchronization, even though the effective

Lyapunov exponent is negative.

Now, we assume d1 = 0 and d2 = 2 with the same probability 0.5, which yields

λ̄ =
1

2

(
λst(0) + λst(2)

)
= 0, (5.19a)

λaver = λst(1) = −∞ < λ̄. (5.19b)

This posits that the stochastically coupled maps cannot synchronize for any selection of the

period m, even though the average coupling affords synchronization in a single time step.
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If the difference between the possible values of the net coupling gain in D is sufficiently

small, the stability of the stochastic system can be related to the stability of the error

dynamics of the averaged system. In this case, if for all l = 1, . . . , n, we can write F ′(x)− dl

as F ′(x)−∆dl+E[d], where |∆dl| � |F ′(x)−E[d]| is the deviation of the stochastic switching

with respect to their expected value. Thus, we obtain

λ̄ =
n∑
l=1

pl lim
k→∞

1

k

k−1∑
j=0

ln
[
(F ′(s(j))− E[d] + ∆dl)

2
]
≈

lim
k→∞

1

k

k−1∑
j=0

(
ln
[
(F ′(s(j))− E[d])2

])
+

n∑
l=1

lim
k→∞

k−1∑
j=0

2pl∆dl
F ′(s(j)− E[d]

= λaver, (5.20)

where we have expanded the logarithm in series in the neighborhood of F ′(s(j))− E[d] and

we have used the fact that
∑n

l=1 pl∆dl = 0 by construction.

5.3.3 The Case of Fixed Points

We start the analysis by considering synchronization at a fixed point s0, that is, s0 =

F (s0). In this case, the computation of the Lyapunov exponent for the stochastically coupled

system in equation (5.6) can be simplified as

λ(m) = ln

[
n∑
l=1

ple
mλst

l

]
, (5.21)

where the Lyapunov exponents of the statically coupled maps are given by equation (5.7),

which takes the following form:

λst
l = ln

[
(F ′(s0)− dl)2

]
. (5.22)

Depending on the value of the Lyapunov exponents of the statically coupled maps (5.22)

and the probabilities of occurrence of the corresponding gains, we classify three distinct

behaviors of the function eλ(m) =
∑n

l=1 ple
mλst

l , given by the argument of the logarithm in

(5.21), as shown in Fig. 5.1. The existence of these three behaviors can be demonstrated by
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considering m as a real variable. First, we note that eλ(m) is a convex function in m, since

its second derivative with respect to m is nonnegative. As m goes to 0, eλ(m) tends to 1 and

its slope approaches λ. As m goes to infinity eλ(m) will grow unbounded if there is a net

coupling gain with nonzero probability that would not support synchronization.

Thus, if the coupling switches between states such that λst
l < 0 for all l = 1, 2, . . . , n,

λ(m) will decrease with m and will always be negative (Fig. 5.1(top)). This corresponds to

a system that stochastically switches between coupling gains which would individually lead

to synchronization for statically coupled maps. In the case of maps of a higher dimension,

a similar finding should not be expected given the possibility of complex, non-commuting

eigenstructures [150]. On the other hand, if the coupling switches between values such that

λ > 0, λ(m) will always be positive and will increase with m (Fig. 5.1(middle)).

Finally, if the system has at least one coupling gain corresponding to λst
l > 0, but

λ < 0, we may observe a window of opportunity. Specifically, if eλ(1) < 1, the stochastically

coupled maps will synchronize for m = 1, . . . ,mcr − 1, where mcr is the lowest integer such

that eλ(mcr) > 1, and will not synchronize for larger switching periods (Fig. 5.1(bottom)).

Notably, such a window of opportunity must encompass the fast switching limit, m = 1,

and disconnected windows are not feasible. For chaotic dynamics, we demonstrate that

both these constraints can be relaxed, with disconnected windows of opportunity extending

beyond the fast switching limit.

5.3.4 The Case of Chaotic Dynamics

Direct computation of the Lyapunov exponent as a limit of a time series from equation

(5.6) or (5.9) may be challenging or even not feasible; for example, if F ′(x) is undefined

on a finite set of points x. Following the approach of [71], we replace the summation with

integration using Birkhoff’s ergodic theorem [32].

Toward this aim, we introduce ρ(x) as the probability density function of the map F (x),

defined on a set B and continuously differentiable on B except for a finite number of points.

The probability density function of each map can be found analytically or numerically [24,
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Figure 5.1 Stability analysis for fixed points. Lyapunov exponent for the stochastically
coupled maps about a fixed point (5.21), where the net coupling switches between values
such that: (top) λst

l < 0 for l = 1, 2, . . . , n; (middle) λ > 0; and (bottom) λ < 0 and eλ(1) < 1.

30]. Using Birkhoff’s ergodic theorem, equations (5.6), (5.7), and (5.9) can be written as

λst
l =

∫
B

ln
[
(F ′(t)− dl)2

]
ρ(t)dt, (5.23a)

λ(m) =

∫
B

ln
n∑
l=1

plYl(t,m)ρ(t)dt, (5.23b)

λ(m) = m

n∑
l=1

plλ
st
l +

∫
B

ln

∑n
l=1 plYl(t,m)∏n
l=1 Y

pl
l (t,m)

ρ(t)dt. (5.23c)

Here, we have introduced the function of time and switching period

Yl(t,m) =
m−1∏
i=0

(F ′(F i(t))− dl)2, (5.24)

where F i(t) = [F ◦ F ◦ . . . ◦ F ] (t) is the composite function of order i.

If the analytical expression of the probability density function is known, the Lyapunov
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exponents can be found explicitly as further detailed in what follows when we study coupled

tent maps. Numerical analysis can also benefit from the above formulation, which obviates

with computational challenges related to uncertainties in rounding variables in equations

(5.6), (5.7), and (5.9) for large values of k. This may be especially evident for large curvatures

of the individual map, which could result in sudden changes in the synchronization dynamics.

Remark 6 Equation set (5.23) can be used to explore the synchronizability of an N-periodic

trajectory s(Nk + i) = si, where i = 0, 1, . . . , N − 1, k ∈ Z+, and N ∈ Z+/{0}, by using the

appropriate probability density function [30] ρ(s) = 1
N

∑N−1
i=0 δ(s− si), where δ(·) denotes the

Dirac delta distribution. Specifically, from (5.23a) and (5.23b), we establish

λ(m) =
1

N

N−1∑
i=0

ln
n∑
l=1

plYl(si,m), (5.25)

which reduces to the fixed point analysis presented in Section 5.3.3 for the case N = 1.

5.4 The Paradigm of the Coupled Sigmoid Maps

Here, we illustrate our approach for the analysis of stochastic synchronization of coupled

chaotic maps by focusing on the so-called modified sigmoid function S : [0, 1] → [0, 1], see

further details in Appendix C. The sigmoid map is a continuously differentiable function,

which can be used to proxy the classical logistic and tent maps by varying a single control

parameter, see Appendix C.1.

Lyapunov exponents are computed from equations (5.6) and (5.7) for stochastically or

statically coupled maps by using a nominal trajectory s(k) generated by initializing a sigmoid

map with initial conditions, chosen randomly from the unit interval. In all computations,

the argument of the logarithm in (5.6) and (5.7) is monitored at each time step to ensure it

was above numerical precision.

We should comment that the direct computation of the Lyapunov exponent from the

time series of the two coupled maps poses further technical challenges [112], related to: i) the

varying size of the invariant manifold as a function of the coupling gain and the switching
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period; ii) potential numerical overflow for diverging trajectories; and iii) false reading for

trajectories converging within numerical precision.

The latter possibility should also be contemplated when studying synchronization from

the error dynamics rather than the Lyapunov exponent [79] in the case of stochastic switch-

ing. For large values of the switching period, it may be possible that the error dynamics

reaches values before numerical precision in correspondence of a coupling gain which would

support synchronization in case of static coupling. As a result, the two trajectories become

identical for all times, irrespective of the sequence of coupling gains. This possibility would

lead to incorrectly identifying windows of opportunity.

5.4.1 Statically Coupled Maps

As a first step, we investigate the synchronizability of statically coupled maps in terms

of the Lyapunov function for their transverse dynamics in (5.7). Specifically, we evaluate

equation (5.7) for different values of the net coupling d?, ranging from −4 to 4, using a step

of 0.0001. Simulations are run for 10,000 times steps, the first 10% of the data points are

discarded, and the remaining 90% are averaged to estimate the Lyapunov exponent.

Figure 5.2 illustrates the dependence of the Lyapunov exponent on the net coupling

gain for different values of the control parameter γ, ranging from 1 to 1000. As further

elaborated in Appendix C.2, the selected range of the control parameter γ spans the case of

logistic maps (γ = 1) and approximates the case of tent maps (γ = 1000). Figure 5.2(top)

indicates the existence of disjoint intervals of d?, where the Lyapunov exponent is negative

and synchronization is attained, similar to the tent map [71]. The existence, location, and

extent of these intervals depend on the parameter γ. For γ = 1, these intervals do not exist,

indicating that logistic maps do not synchronize for any selection of the coupling gains. As

γ increases to approximately 10, we observe the formation of two narrow intervals where the

maps synchronize.

Such intervals are generally not symmetric with respect to d? = 0, except for the

limit cases of the logistic and tent map, due to the asymmetry in the probability density
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Figure 5.2 Synchronizability of statically coupled maps. (top) Lyapunov exponent of the
transverse dynamics of two statically coupled sigmoid maps as a function of the net coupling
d? for different values of the parameter γ. Data are restricted to the interval [−4, 4] for
improved legibility. The dashed line identifies the limit of synchronization λst = 0; and
(bottom) range of the net coupling gain d? that is supporting synchronization of the statically
coupled sigmoid maps, as a function of the control parameter γ. The dashed line identifies
the tent map solution [71].
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function, which is elucidated in Appendix C.1. For the considered cases, we specifically find

that the Lyapunov exponent is negative in the following approximate intervals for γ = 10,

100, and 1000, respectively: (−2.72,−2.69) and (2.37, 2.82); (−2.20,−1.87) and (1.70, 2.35);

and (−2.23,−1.75) and (1.72, 2.25). Figure 5.2(bottom) also shows that the range of the

Lyapunov exponent in these intervals is a function of the control parameter γ. Specifically,

as γ increases we widen the range of variation of the Lyapunov exponent, which becomes

infinitely large as γ goes to infinity and the sigmoid map approaches the tent map. In this

case, synchronization may be possible within a single time step.

The role of γ on synchronizability is further illustrated in Fig. 5.2(bottom), where we

depict the dependence of these intervals on the control parameter γ, which varies with a

step of 1 for γ ∈ [1, 10], 10 for [10, 100], and 100 for [100, 1000]. Figure 5.2 suggests that

synchronization becomes feasible for γ = 6, and that until γ = 9 only positive values of

the net coupling gains ensure synchronization. As γ further increases, we observe that

the intervals converge to theoretical predictions from the tent map, that is, (−
√

5,−
√

3) ∪

(
√

3,
√

5). In these intervals, the Lyapunov exponent for the tent map is given by [71]a

λst = ln |2− d?|+ ln |2 + d?|. (5.26)

5.4.2 Stochastically Coupled Maps

To elucidate synchronizability of stochastically coupled sigmoid maps, we assume that

the net coupling gain d takes values d1 and d2 with corresponding probabilities p1 and

p2 = 1− p1. The numerical computation of the Lyapunov exponent in (5.6) is performed for

different values of d2 from −4 to 4 with a step of 0.01 and m from 1 to 25 with a step of 1.

The probability p1 is held fixed to 0.5 and the net coupling gain d1 to −1.90. Further, we

consider the same four different values of γ as in Fig. 5.2.

This wide parameter selection allows for exploring the connection between the stabil-

aNote that equation (5.26) differs from equation (4.13) in [71] in a factor of 2 which is due to our analysis
of mean square error dynamics.
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Figure 5.3 Synchronizability of stochastically coupled maps. Lyapunov exponent of two
stochastically coupled sigmoid maps, where the net coupling is switching with equal prob-
ability between d1 = −1.90 and d2 at a period m. Each subfigure refers to a specific value
of the control parameter γ, which is varied to elucidate the response of the sigmoid map
(γ = 1) from the logistic to the tent map approximation (γ = 1000). The color bar illus-
trates the range of Lyapunov exponents attained for each value of γ. The dashed line identify
the values of d2 and m for which the Lyapunov exponent is zero; the regions within such
contours correspond to negative values of the Lyapunov exponent and thus stochastic syn-
chronization. The solid lines refer to the values of d2 and m for which the effective Lyapunov
exponent is zero, calculated analytically from statically coupled sigmoid maps. The vertical
bands identified by such solid lines correspond to regions where stochastic synchronization
is feasible, as predicted by Proposition 5.1. (For interpretation of the references to color in
this figure legend, the reader is referred to the digital version of this chapter.)

ity of synchronization for static coupling and the resulting stochastic synchronization. We

consider different cases, where stochastic switching is implemented on coupling gains which

could individually support or hamper synchronization for statically coupled maps. Specifi-

cally, we contemplate the case in which: none (case I), one (case II), or both (case III) of

the coupling gains yield synchronization. Simulations are run for 103 ×m times steps, the

first 10% of the data points are discarded, and the remaining 90% are averaged to estimate

the Lyapunov exponent.
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Figure 5.3 demonstrates the dependence of the Lyapunov exponent on m and d2 and

the selected values of γ, including the logistic map (γ = 1) and the tent map approximation

(γ = 1000). Therein, the dashed contour identifies the combination of m and d2 for which

the Lyapunov exponent is zero and synchronization initiates. The solid lines depict the

values of d2 for which the effective Lyapunov exponent is zero and synchronization may

begin to be feasible based on the necessary condition in Proposition 5.1. The effective

Lyapunov exponent is analytically calculated from the static Lyapunov exponents depicted

in Fig. 5.2 for any value of d2 and γ. Figure 5.4 illustrates the interplay between stochastic

synchronization and the stability of synchronization for static coupling, grouped into cases

I, II, and III. The possible combinations are identified through different colors, where darker

colors (blue and green) mark windows of opportunity and lighter colors (yellow, orange, and

red) correspond to asynchronous states.

For γ = 1, the Lyapunov exponent of the statically coupled logistic maps is positive for

any value of the coupling gain (Fig. 5.2), which corresponds to case I where the switching

is implemented between two configurations that would not support synchronization. As a

result, there is no value of m which affords synchronization of the coupled logistic maps as

shown in Figs. 5.3(a) and 5.4(a).

For γ = 10, we encompass both cases I and II, depending on the value of d2, since λst
1 ≈

1.59 and λst
2 can be negative, as shown in Fig. 5.2. When applying our necessary condition,

we cannot dismiss the possibility of stochastic synchronization, whereby we could attain a

negative effective Lyapunov exponent for d2 between 2.66 and 2.73, as shown in Fig. 5.3(b).

However, the maps do not stochastically synchronize, since the Lyapunov exponent of the

stochastically coupled maps is positive for all m = 1, 2, . . . , 25, as displayed in Figs. 5.3(b)

and and 5.4(b).

For γ = 100 and γ = 1000, we encompass cases II and III, depending on the value

of d2, since λst
1 is negative (λst

1 ≈ −0.08 for γ = 100 and λst
1 ≈ −0.83 for γ = 1000).

For both values of γ, we find two intervals of d2 where the effective Lyapunov exponent,

analytically calculated through Proposition 5.1, is negative. Specifically, it is negative when
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Figure 5.4 Interplay between synchronization in stochastically and statically coupled maps
as in Fig. 5.3. The stochastic stability of the synchronization manifold for each pair d2 andm
is ascertained from the sign of the Lyapunov exponent in Fig. 5.3. The partition into cases I,
II, and III is based on the sign of the Lyapunov exponent in Fig. 5.2, corresponding to the net
couplings d1 and d2. The regions are colored as follows: red (case I); orange (case II without
stochastic synchronization); yellow (case III without stochastic synchronization); green (case
II with stochastic synchronization); and blue (case III with stochastic synchronization).
White coloring identifies pairs of d2 and m, for which synchronization cannot be precisely
assessed due to oscillations in the Lyapunov exponent within ±0.025. Note that case I
prevents the possibility of stochastic synchronization. (For interpretation of the references
to color in this figure legend, the reader is referred to the digital version of this chapter.)
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(−2.21,−1.88) and (1.67, 2.37) for γ = 100, and (−2.45,−1.40) and (1.34, 2.49) for γ = 1000,

as shown in Figs. 5.3(c) and (d). Regions of stochastic synchronization are located within

these intervals as shown in Figs. 5.3(c) and (d). For γ = 100, the effective Lyapunov exponent

provides a very close estimate of the region of synchronization in the vicinity for negative

values of d2.

As illustrated in Figs. 5.4(c) and (d), synchronization may be attained by switching

between a coupling gain which supports synchronization and another which does not, as

described by case II. This is particularly evident for γ = 1000, where we observe two thin

triangular regions depicted in green where the instability of one of the coupling configurations

does not hamper stochastic synchronization. For example, fast switching at m = 1 ensures

synchronization for d2 between approximately −2.29 and −1.67, which contains the range

where λst
2 is negative, that is, (−2.23,−1.75).

Numerical results in Figs. 5.4(c) and (d) also indicate that case III, where each coupling

configuration would independently lead to synchronization, does not guarantee stochastic

stability of synchronization for any choice of the switching period. Specifically, for d2 > 0,

the region of stochastic synchronization has wedge-like shape, for which synchronization

may only be possible for sufficiently large values of m. Notably, the wedges do not touch the

m = 1 axis, whereby the stochastic Lyapunov exponents are found to be always positive for

m less than 5 and 3 for γ = 100 and γ = 1000, respectively. Thus, fast switching between two

coupling gains that would individually support synchronization does not produce stochastic

synchronization. By increasing the value ofm, we confirm our intuition that slowly switching

in case III would favor stochastic synchronization, whereby we would trap the trajectory in

a static coupling configuration which supports synchronization. By hypothesizing uniform

stability of the synchronization manifold for each of the individual values of the net coupling

gains, this claim could be proved in the context of the theory of dwell time [150]b.

Increasing the value of m in the numerical simulations to illustrate the role of slow

bWhile the stability of fixed points could be properly addressed by using dwell time theory, chaotic orbits
pose further challenges associated with the existence of a common Lyapunov function.
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switching is not feasible, due to the excessive lengths of the time series and resulting chal-

lenges in estimating the Lyapunov exponents. To address this issue and offer further vali-

dation for our claims, we focus on the case γ → ∞, which corresponds to the tent map as

further elaborated in Appendix C.1. Not only does the analytical treatment of the tent map

addresses the issue of numerical overflow for long trajectories, but also it enables a closed-

form solution of the stochastic Lyapunov exponents. Such an analytical result is critical for

accurately resolving the transition between the regions shown in Fig. 5.4, which can be only

approximately predicted through numerical computations.

A closed-form expression for the Lyapunov exponent of coupled tent maps can be derived

from equation (5.23b) using the probability density function ρ(t) = 1, see Appendix C.2 for

a precise derivation,

λ(m) =
1

2m

m∑
i=0

(
m

i

)
ln

(
n∑
l=1

pl(2− dl)2(m−i)(2 + dl)
2i

)
. (5.27)

We comment that for largem the binomial coefficient grows as 2m/
√
m according to Stirling’s

formula, which ensures that the summation is well behaved in the slow switching limit [105].

Figure 5.5(left) extends the results presented in Fig. 5.3(d) by an order of magnitude

in m through equation (5.27) specialized to binary switching. The effective Lyapunov ex-

ponent is directly computed from equation (5.26), which for the select parameters, p1 =

p2 = 0.5 and d1 = −1.90, yield the following intervals for d2:
(
−
√

4 + 1
0.39

,−
√

4− 1
0.39

)
∪(√

4− 1
0.39

,
√

4 + 1
0.39

)
. Analytical results are in excellent agreement with numerical predic-

tions for γ = 1000, offering compelling evidence for the accuracy of the proposed closed-form

expression and the validity of our computational approach to estimate Lyapunov exponents.

Importantly, analytical results for large periods in Fig. 5.5(right) confirm that slow switch-

ing in case III favors stochastic synchronization, whereby we observe that the blue regions

vertically extends beyond m = 25 as numerically shown in Fig. 5.4(d). Figure 5.5(right) also

confirms the existence of a thin green zone surrounding the blue bands, where synchroniza-

tion is stable even though one of the coupling gains does not support synchronization (case
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Figure 5.5 Analytical demonstration of slow switching synchronization. (left) Lyapunov
exponent of two stochastically tent maps, where the net coupling is switching with equal
probability between d1 = −1.90 and d2 at a period m, analytically computed from equa-
tion (5.27). The color bar illustrates the range of Lyapunov exponents attained for each
value of γ. The dashed line identifies the values of d2 and m for which the Lyapunov expo-
nent is zero; the regions within such contours correspond to negative values of the Lyapunov
exponent and thus stochastic synchronization. The solid lines refer to the values of d2 and
m for which the effective Lyapunov exponent is zero. The vertical bands identified by such
solid lines correspond to regions where stochastic synchronization is feasible, as predicted
by Proposition 5.1. (right) Interplay between synchronization in stochastically and stati-
cally coupled tent maps. The partition into cases I, II, and III is based on the sign of the
Lyapunov exponent in equation (5.26), corresponding to the net couplings d1 and d2. The
regions are colored as follows: orange (case II without stochastic synchronization); yellow
(case III without stochastic synchronization); green (case II with stochastic synchronization);
and blue (case III with stochastic synchronization). (For interpretation of the references to
color in this figure legend, the reader is referred to the digital version of this chapter.)

II). For example, in the case of fast switching, m = 1, these regions are (−2.33,−2.24) and

−1.73, 1.64 from the closed-form expressions in equations (5.26) and (5.27).

The analytical solution in equation (5.27) allows for shedding further light on the pos-

sibility of synchronizing coupled maps in case II. Specifically, we consider switching between

coupling gains d1 = −1.9999 and d2 = 1.7000, which are associated with λst
1 = −7.82

(strongly stable synchronization) and λst
2 = 0.10 (weakly unstable synchronization). We

systematically vary the probability of switching p1 from 0.6 to 1 with a step 0.001, so that

when the coupled maps spend most of the time with the coupling gain that would sup-

port synchronization. In this case, the effective Lyapunov exponent is always negative, and

synchronization may be attained everywhere in the parameter space.

Surprisingly, under fast switching conditions, synchronization is not attained if p1 / 1
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Figure 5.6 Analytical demonstration of emergence of windows of opportunity. (left) Lya-
punov exponent of two stochastically tent maps as a function of the switching probability
p1 and the period m, analytically computed from equation (5.27) with d1 = −1.9999 and
d2 = 1.7000. The color bar illustrates the range of Lyapunov exponents attained for each
value of γ. The dashed line identify the values of d2 and m for which the Lyapunov expo-
nent is zero; the regions within such contours correspond to negative values of the Lyapunov
exponent and thus stochastic synchronization. (right) Interplay between synchronization in
stochastically and statically coupled tent maps. For the select values of the net couplings,
λst

1 = −7.82 and λst
2 = 0.10, which correspond to case II. The regions are colored as follows:

orange (case II without stochastic synchronization) and green (case II with stochastic syn-
chronization). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this chapter.)

as shown in Fig. 5.6. Although the maps spend most of the time in a configuration that

would strongly support synchronization, the sporadic (p2 ≈ 0) occurrence of a coupling

gain which would lead to weak instability hampers stochastic synchronization under fast

switching. Increasing the switching period, synchronization may be attained for p1 > 0.995

(see the “Pinocchio nose” in Fig. 5.6(right)). For 0.753 < p1 < 0.795, we observe a single

window of opportunity, whereby synchronization is achieved in a compact region around

m = 10. For 0.795 / p1 / 0.824, a second window of opportunity emerges for smaller values

of m around 5. The two windows ultimately merge for p1 ≈ 0.83 in a larger window that

grows in size as p1 approaches 1.

5.5 Chapter Summary

While the study of synchronization in evolving dynamical networks has been recently

gaining significant momentum, the vast majority of rigorous mathematical investigations fo-
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cus on the case of fast switching network topology as compared to the individual, intrinsic,

node dynamics. In this chapter, we have made a first step towards understanding synchro-

nization in stochastically switching networks of coupled maps beyond the fast switching

limit.

To isolate the delicate mechanisms underpinning stochastic synchronization, we have

considered two coupled maps with independent identically distributed stochastic switching

and studied the stability of synchronization as a function of the switching period. We

have studied the stochastic stability of the transverse dynamics using the notion of mean

square stability, establishing a mathematically-tractable form for the Lyapunov exponent

of the error dynamics. We have demonstrated the computation of the stochastic Lyapunov

exponent from the knowledge of the probability density function. A necessary condition

for stochastic synchronization has been established, aggregating the Lyapunov exponents

associated with each static coupling configuration into an effective Lyapunov exponent for

the stochastic dynamics. We have focused on the sigmoid map, which bridges the logistic and

tent maps as a function of a single control parameter. For tent maps, we have established

a closed-form expression for the stochastic Lyapunov exponent, which helps dissecting the

contribution of the coupling gains, switching probabilities, and switching period on stochastic

synchronization.

We have demonstrated the central role of non-fast switching, which may provide oppor-

tunity for stochastic synchronization in a range of switching periods where fast switching fails

to synchronize the maps. More specifically, non-fast switching may promote synchronization

of maps whose coupling alternates between one configuration where synchronization is un-

stable and another where synchronization is stable (case II). These windows of opportunity

for the selection of the switching period may be disconnected and located away from the fast

switching limit, where the coupling is allowed to change at each time step.

In contrast to one’s expectations, fast switching may not even be successful in synchro-

nizing maps that are coupled by switching between two configurations that would support

synchronization (case III). However, a sufficiently slow switching that allows the maps to
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spend more time in one of the two stable synchronization states will induce stochastic syn-

chronization. The emergence of a lower limit for the switching period to ensure stochas-

tic synchronization is highly non-trivial, while the stabilization of synchronization by slow

switching in the dwell time limit should be expected as the maps will spend the time nec-

essary to synchronize in one of the stable configurations, before being re-wired to the other

stable configuration.

The proposed necessary condition demonstrates that switching between two unstable

states (case I) cannot stabilize synchronization for any switching frequencies, in contrast

with networks of continuous-time oscillators where windows of opportunity appear as a

result of switching between two unstable (saddle) states. These windows of opportunity

for synchronization in continuous-time Rössler and Duffing oscillators [79] and tritrophic

Rosenzweig-MacArthur food-chain models [80] were reported earlier, but the derivation of

explicit conditions for the emergence of these windows in the continuous-time case is more

challenging and remains a subject of future study.

Not only will the continuous-time setting challenge the use of a power expansion in the

mean square stability analysis, but also it will increase the dimensionality of the problem.

The latter research direction should also be pursued when expanding the framework to large

networks, where the relationship between the eigenstructures of the switching Laplacian

graphs will likely play a major role. Focusing on a discrete-time setting and scalar maps has

enabled us to undertake a first, necessary step toward the prediction and quantification of

windows of opportunity for stochastic synchronization beyond fast switching.
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CHAPTER 6

NETWORK SYNCHRONIZATION THROUGH STOCHASTIC

BROADCASTING

Building on our results in the previous chapter on the stochastic synchronization of

two intermittently coupled maps, in this chapter, we approach a more complicated net-

work synchronization problem. Synchronization is often observed in interacting dynamical

systems, comprising natural and technological networks; however, seldom do we have pre-

cise knowledge and control over the synchronous trajectory. In this chapter, we investigate

the possibility of controlling the synchronization of a network by broadcasting from a sin-

gle reference node. We consider the general case in which broadcasting is not static, but

stochastically switches in time. Through an analytical treatment of the Lyapunov exponents

of the error dynamics between the network and the reference node, we obtain an explicit

dependence of synchronization on the strength of the broadcasting signal, the eigenvalues

of the network Laplacian matrix, and the switching probabilities of broadcasting. For cou-

pled chaotic tent maps, we demonstrate that: (i) time averaging fails to predict the onset

of controlled synchronization and (ii) the success of broadcasting depends on the network

topology, where the more heterogeneous the network is, the more difficult it is to control.

6.1 Introduction

In this chapter, we study the feasibility of broadcasting from a common reference node

to control synchronization of a network of coupled dynamical systems. Within this approach,

every node in the network has access to the same information from the reference node at a

given time, but we allow for this information to stochastically change in time. For example,

the reference node could share information with the network only sporadically in time or

could alternate between several conflicting messages. With respect to schooling fish, for
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example, leaders may use sudden changes in swimming direction as a visual cue to elicit

followership of the group [87].

The problem of controlled synchronization through broadcasting shares similarities with

the literature on pinning control, where a control action is applied to a small selected subset

of nodes to tame the dynamics of the entire network on the trajectory of a reference node

[34, 152]. Building on the standard approach developed a decade ago [117, 143, 39], most of

the literature considers the case in which pinning control is statically applied to the network,

such that control gains are held constant in time. This is in contrast with the broadcasting

approach, in which all nodes are controlled but for a limited fraction of time and with a

varying gain. Only few studies have explored the possibility of time-varying pinning control,

but we still have limited analytical insight into the interplay between the internal nonlinear

dynamics of the nodes, the evolution of the control gains, and the network structure [34].

Here, we seek to close this gap in the context of stochastic broadcasting. Toward this

aim, we extend our recent work [61, 116], where we established a rigorous methodology for

assessing the mean square stability of the synchronous solution in a pair of coupled discrete-

time oscillators. Specifically, we derive a master equation for the mean square stability

of the error dynamics, parametrized in terms of the eigenvalues of the graph Laplacian of

the network. We apply ergodic theory [9] to study the Lyapunov exponent of the master

equation, which we specialize to chaotic tent maps. In an effort to compare our analysis

with the state of the art on switching networks [110], we also challenge the practical use of

time-averaging to predict the onset of stochastic synchronization of discrete-time oscillators.

6.2 Problem Formulation

We study the synchronization of a network ofN coupled discrete-time oscillators (yi ∈ R,

where i = 1, 2, . . . , N), interacting with a reference oscillator (x ∈ R) that broadcasts to the

entire network, as shown in Fig. 6.1. The network nodes are interconnected by an arbitrary,

undirected and unweighted, topology, which is represented by the graph G = (V , E), where

V is the vertex set and E is the edge set. The evolution of all the oscillators (network and
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Figure 6.1 Illustration of the problem: the reference oscillator, x, (black) stochastically
broadcasts to a network of N oscillators, y1, . . . , yN (white).

reference nodes) is governed by the same nonlinear function F : R → R. That is, in the

absence of coupling, yi(k+ 1) = F (yi(k)) and x(k+ 1) = F (x(k)). The broadcasting process

is independent and identically distributed (i.i.d.) in time, such that, at each time step k, the

control gain of the reference node, ε(k), is randomly drawn from a set {ε1, ε2, . . . , εm} with

probabilities p1, p2, . . . , pm, respectively (with
∑m

i=1 pi = 1). As broadcasting is global, the

value of the switching gain is common to all nodes. We say that the reference node and the

network are synchronized if y1(k) = y2(k) = · · · = yN(k) = x(k) for k ∈ Z+.

To summarize the setup of the problem, the system of equations governing the discrete-

time evolution is

x(k + 1) = F (x(k)),

yi(k + 1) = F (yi(k)) + ε(k)(x(k)− yi(k)) +
N∑

j=1,ij∈E
µ(yj(k)− yi(k)),

(6.1)

for i = 1, 2, . . . N , where µ is a network coupling used to scale the node-to-node interactions

versus the strength of the broadcasting signal. System (6.1) is a stochastic dynamical system

whose study requires tools from both stability and ergodic theories [9]. More specifically,

system (6.1) describes a switched nonlinear linear system, with an underlying memoryless

switching.
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In general, the network dynamics can be written in the following vector form

y(k + 1) = F(y(k))− µLy(k)− ε(k)IN (y(k)− x(k)1N) , (6.2)

where y(k) is the vector comprised of all the network states, F(y) is the vector-valued

extension of the mapping function F (y), 1N is the vector of ones of length N , and L is the

Laplacian matrix of G [60], that is,

L =


Lij = −1 ij ∈ E

Lii =
∑
j

1 i = 1, 2, . . . , N,

with eigenvalues γ1 = 0 ≤ γ2 ≤ · · · ≤ γN .

To understand the role of broadcasting in inducing synchronization with the reference

trajectory x(k), we look at the evolution of the error dynamics ξ(k) = x(k)1N − y(k). To

study the stability of synchronization, we linearize the system about the reference trajectory:

ξ(k + 1) = [DF (x(k)) IN − µL− ε(k) IN ] ξ(k), (6.3)

where IN is theN×N identity matrix andDF (x(k)) is the Jacobian of F at x(k). In (6.3), we

have assumed infinitesimal perturbations ξ(k) in the directions transversal to the synchronous

solution thereby, allowing for the linearization and application of the Jacobian DF. The

linearized discrete-time system in (6.3) is a first order Markov chain, due to the presence of

the switching gain ε(k). Although ε(k) is drawn from an i.i.d. distribution, (6.3) describes a

linear time-varying switching system, since the reference trajectory x(k) generally varies in

time. Stochasticity and time-dependence, however, only appear as a compound multiplier

of the identity matrix, thereby affording the possibility of diagonalizing the system in terms

of the eigenspaces of the Laplacian matrix. In other words, to a first linear approximation,

the error dynamics on the eigenspaces of the Laplacian evolve independently of each other,

allowing for the use of a single stochastic master equation.
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Specifically, diagonalizing (6.3), we obtain

ζ(k + 1) = [INDF (x(k))− µγ − ε(k)IN ] ζ(k), (6.4)

where γ ∈ {γ1, . . . , γN} encapsulates the role of the network topology on the evolution of

the error dynamics along the eigenvectors of L, identified by ζ(k). Master equation (6.4)

can be parametrically studied as a function of µγ to illuminate the influence of the strength

of the broadcasting signal and the switching probabilities of broadcasting on the stability

of synchronization along each eigenvector of L. This equation reduces to the traditional,

deterministic master stability equation in [109] in the absence of stochastic broadcasting

(ε(k) = 0).

6.3 Master Stability Function

While there are many criteria that one can contemplate when examining stochastic

stability of a network about a synchronous solution, we use the lens of mean square stability

for its practicality of implementation and inclusiveness with other criteria [89, 54]. For

example, as shown in [101], mean square asymptotic stability of switching linear systems

with an underlying time-homogenous finite-state Markov chain is equivalent to exponential

second moment stability and implies almost sure stability. Several studies have demonstrated

the feasibility of using mean square stability in the study of synchronization of discrete-time

systems, and we build on this literature toward an analytical treatment of broadcasting

[159, 114]. Through this lens, the error dynamics is controlled by both the mean and the

variance of the switching signal, different from fast-switching approaches in continuous-time

systems that only rely on the mean [124, 79]. We discuss different types of stability and

their relationships in Appendix D.

Definition 6.1. The synchronous solution y1(k) = y2(k) = ... = yN(k) = x(k) in the

stochastic system (6.1) is locally asymptotically mean-square stable, if lim
k→∞

E[ξ2(k)] = 0 for

any initial condition ξ(0) of (6.3), where E[·] denotes expectation with respect to the σ-algebra
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generated by the stochastic process of switching.

Analyzing mean square stability of the stochastic system (6.3), and therefore of the

master equation (6.4), corresponds to studying the deterministic evolution of the second

moment of ζ(k) toward the derivation of a rigorous convergence criterion. To this end, we

take the expectation of the square of both sides in (6.4), to obtain

E[ζ2(k + 1)] =
[

(DF (x(k))− µγ)2 + 2(µγ −DF (x(k)))E[ε(k)] + E[ε2(k)]
]
E[ζ2(k)]. (6.5)

The stability of the deterministic system in (6.5) can be inferred through the study of

its Lyapunov exponent [112]. If the limit exists, the Lyapunov exponent is computed from

the error dynamics for a non-zero initial condition ζ(0) as

λ = lim
k→∞

1

k
ln

[
E[ζ2(k)]

ζ2(0)

]
= lim

j→∞

1

j

j∑
k=1

ln E[ζ2(j)]. (6.6)

The study of the stochastic stability of the N -dimensional error dynamics in (6.3) reduces

to monitoring the sign of λ as a function of γ.

Lemma 6.1. The synchronous solution x(k) of the nonlinear stochastic system (6.1) is

locally asymptotically mean-square stable if the Lyapunov exponent λ in (6.6) is negative for

every γ ∈ {γ1, . . . , γN}.

Proof. The proof is trivial. The negativenesses of the Lyapunov exponent implies the con-

vergence of E[ζ2(k)] to zero, and therefore guarantees local asymptotic mean-square stability,

according to Definition 1. �

Given the strength of the node-to-node interaction µ, the mean and variance of the

broadcasting signal E[ε(k)] and E[ε2(k)], and the individual dynamics F , one can numeri-

cally compute λ for a range of values of γ to generate a so-called master stability function.

From the master stability function, one can then infer which network topology will support

synchronization to the reference trajectory.

Remark 1. For a linear system, F (x) = αx, where α ∈ R, the Lyapunov exponents can be
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easily computed from the limit in (6.6), such that

λ = ln
[

(α− µγ)2 + 2(µγ − α)E[ε(k)] + E[ε2(k)]
]
. (6.7)

Remark 2. For nonlinear discrete-time systems, numerical computation of Lyapunov expo-

nents may be a challenging task, potentially leading to false predictions on stochastic synchro-

nization. For example, stable dynamics may lead to E[ζ2(k)] attaining values below numerical

precision in a few steps, thereby hampering the evaluation of the Lyapunov exponent; and

similarly, unstable dynamics may lead to sudden numerical overflow.

Toward overcoming potential confounds associated with numerical computation of (6.6),

we adopt Birkoff’s ergodic theorem [9] to derive the main general statement of this chapter.

Proposition 6.1. The synchronous solution s(k) of the stochastic system (6.1) with the

invariant density ρ(x) of F is locally mean square stable if

λ =

∫
B

ln
[

(DF (z)− µγi)2 + 2(µγ − DF (z))E[ε(k)] + E[ε2(k)]
]
ρ(z)dz, (6.8)

where B ⊆ R is where the invariant density ρ(x) is defined.

Proof. The key step in the proof lies in the introduction of the invariant density function

of F , which measures the probability that a typical trajectory will visit a neighborhood of the

state x – for example, for a periodic trajectory of period two, such that x(k) = x(k + 2), the

invariant density ρ(x) will correspond to two Delta distributions of equal intensity at x(0)

and x(1) and for more complex, possibly chaotic, systems the invariant density may become a

continuous function. By virtue of Birkoff’s ergodic theorem [9], using ρ(x), one can replace

the summation over time in (6.6) with the integration over the probability space in (6.8),

following the line of argument in [61, 116]. �

Remark 3. With knowledge of the invariant density, (6.8) can be analytically or nu-

merically evaluated to establish a master stability function for controlled stochastic synchro-

nization through broadcasting, without incurring in the computational challenges indicated
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in Remark 2.

For non-switching broadcasting, such that the switching gain ε is constant in time and

equal to ε̄ , (6.8) reduces to

λ = 2

∫
B

ln
∣∣DF (t)− µγ − ε̄]

∣∣ρ(z)dz. (6.9)

Notice that the dependence of the argument of the logarithm on γ is linear, different from

(6.8), where we find linear and quadratic dependencies. Equation (6.9) will be used to eluci-

date the predictive power, or lack thereof, of the averaged system on stochastic synchroniza-

tion. Specifically, we will examine the sign of the Lyapunov exponent in (6.9) with ε̄ = E[ε(k)]

and compare with (6.8).

Remark 4. Since 0 is necessarily an eigenvalue of the Laplacian matrix (due to the zero

row-sum property), one of the Lyapunov exponents is always given by λ1 =
∫
B

ln
[
DF (z)2 −

2DF (z)E[ε(k)] + E[ε2(k)]
]
ρ(z)dz. This Lyapunov exponent indicates that the stability of

synchronization of an individual oscillator to the reference oscillator is necessary for the sta-

bility of synchronization of the entire network to broadcasting. Therefore, the network can

not facilitate synchronization as it introduces further constraints on the switching gain be-

yond those implied by a direct one-to-one coupling between an isolated node and the reference

node.

6.4 Application to Chaotic Tent Maps

To illustrate the implications of (6.8), we consider the case of the chaotic tent map

[71] with parameter equal to 2, which has a known density function ρ(x) = 1 on the interval

B = [0, 1]. We limit the analysis to two control gains for the broadcasting signal, εi ∈ {ε1, ε2}.

These gains could exemplify a single broadcasting message (if ε2 = 0), or two conflicting

messages (if ε1 6= ε2). In our numerical demonstrations, we parametrically vary ε1 and µ,

with ε2 = 2.2 and p1 = p2 = 0.5. The value of ε2 is chosen such that a single, isolated

map would synchronize to a non-switching broadcasting signal [71]. At the same time, ε1
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may take a value such that it would destabilize synchronization in the non-switching case.

Therefore, ε1 and ε2 can be assimilated to conflicting messages broadcasted by the reference

node to the network.

6.4.1 Master Stability Function

Substituting the invariant density function into the integral in (6.8), we can compute

in closed-form the Lyapunov exponent for the mean square stability of the error dynamics,

thereby arriving at the following application of Proposition 6.1 to the chaotic tent maps.

Corollary 6.1. The Lyapunov exponent for the mean square stability of the synchronous

solution in the system (6.1) of chaotic tent maps is

λ = ln
[
(2−µγ)2 +2(µγ−2)E[ε(k)]+E[ε2(k)]

]
·
[
(−2−µγ)2 +2(µγ+2)E[ε(k)]+E[ε2(k)]

]
,

(6.10)

where E[ε(k)] = p1ε1 + p2ε2 and E[ε2(k)] = p1ε
2
1 + p2ε

2
2.

This Lyapunov exponent demonstrates the explicit dependence of the stability of

stochastic synchronization on the node-to-node coupling strength, the eigenvalues of the

Laplacian matrix, and the stochastically switching coupling strengths along with their re-

spective probabilities.

Figure 6.2 illustrates the dependence of λ on ε1 and µγ. The dashed curve in Fig. 6.2

indicates the boundary between positive and negative Lyapunov exponents, identifying the

onset of mean square stability of the error dynamics. In order for the network to synchronize

to the reference node, the point (ε1, µγ) must fall within the dashed curve for every eigen-

value in the spectrum of the Laplacian matrix. In agreement with our predictions, we find

that as µγ increases the range of values of ε1 which affords stable synchronization becomes

smaller and smaller. This suggests that the resilience of the network to synchronize improves

with µγ.

Remark 5. While the nonlinear dependence of the stability boundary on ε1 and µγ is modu-
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Figure 6.2 Master stability function for stochastic synchronization of chaotic tent maps,
for ε2 = 2.2 and p1 = p2 = 0.5. For synchronization to be stable, each eigenvalue of the
Laplacian matrix must correspond to a negative Lyapunov exponent (indicated by the yellow
color, isolated by the black dashed curve). For example, the black vertical line shows the
range of admissible values of µγ that would guarantee stability at ε1 = 2.
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lated by the nonlinearity in the individual dynamics, it should not be deemed as a prerogative

of nonlinear systems. As shown in Remark 1, the stochastic stability of synchronization in

the simplest case of a linear system is also nonlinearly related to the spectrum of the Lapla-

cian matrix and to the expectation and variance of the broadcasting signal – even for classical

consensus with α = 1 [34].

Remark 6. In this example of a chaotic tent map, the stability boundary is a single curve,

defining a connected stability region. To ensure stable synchronization of a generic network,

it is thus sufficient to monitor the largest eigenvalue of the Laplacian matrix, γN , such that

(ε1, µγ) will fall within the stability region. This is in contrast with the master stability func-

tion for uncontrolled, spontaneous synchronization [109], which would typically require the

consideration of the second smallest eigenvalue, often referred to as the algebraic connectivity

[60]. However, similar to master stability functions for uncontrolled, spontaneous synchro-

nization [145], we would expect that for different maps, one may find several disjoint regions

in the (ε1, µγ)-plane where stable stochastic synchronization can be attained.

6.4.2 Comparing the Static and Stochastic Systems

Next, we wish to gain insight into the ability of the averaged system to predict the

onset of synchronization on the broadcasting trajectory. From (6.9), we obtain the following

closed-form for the Lyapunov exponent:

λ = ln
∣∣ (2− µγ − E[ε(k)]) (−2− µγ − E[ε(k)])

∣∣. (6.11)

In Fig. 6.3, we summarize predictions on the stability of stochastic synchronization for

a ring of 100 nodes, gathered through the master stability function depicted in Fig. 6.2 and

the averaged system described through (6.11). Figure 6.3 identifies distinct regions of the

parameter space spanned by µ and ε1, where predictions from the averaged system with

respect to the exact result from the master stability function should be considered valid or

invalid.
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Figure 6.3 Verification of predictions from the averaged system on the stochastic synchro-
nization of a ring of 100 chaotic tent maps, for ε2 = 2.2 and p1 = p2 = 0.5. The red region
indicates when averaged system correctly identifies the stability of synchronization, the yel-
low region indicates when the averaged system predicts stability of synchronization against
the master stability function that posits unstable synchronization, and the blue region indi-
cates when the averaged system correctly anticipates unstable synchronization. The regions
enclosed by the dashed vertical lines identifies the values of ε1 that could support stable
synchronization of an isolated node, that is, µ = 0.
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Remark 7. Our results suggest the presence of a wide region of the parameter space in which

the averaged system fails to predict the stability of synchronization, while we find no evidence

of invalid predictions on the instability of synchronization by the averaged system. Hence, in

this particular example, the averaged system seems to provide a necessary condition. Care

should be placed in extending this claim to other settings, whereby, as shown in [61, 116],

one can construct examples for N = 1 in which unstable synchronization in the averaged

system does not imply unstable synchronization for stochastically coupled systems.

6.4.3 Role of Network Topology

The master stability function in Fig. 6.2 shows that both µ and γ contribute to the

resilience of the network to synchronization induced by stochastic broadcasting. For a given

value of the node-to-node coupling strength µ, different networks will exhibit different res-

idences based on their topology. Based on the lower bound by Grone and Merris [66] and

the upper bound by Anderson and Morley [4], for a graph with at least one edge, we can

write max{di, i = 1, . . . , N} + 1 ≤ γN ≤ max{di + dj, ij ∈ E}, where di is the degree

of node i = 1, . . . , N . While these bounds are not tight, they suggest that the degree distri-

bution has a key role on γN . For a given number of edges, one may expect that networks

with highly heterogeneous degree distribution, such as scale-free networks [29], could lead to

stronger resilience to broadcasting as compared to regular or random networks, with more

homogenous degree distributions [29].

In Fig. 6.4, we illustrate this proposition by numerically computing the largest eigen-

value of the graph Laplacian for three different network types:

(i) A 2K-regular network, in which each node is connected to 2K nearest neighbors, such

that the degree is equal to 2K. As K increases, the network approaches a complete

graph.

(ii) A scale-free network which is grown from a small network of q nodes. At each iteration

of the graph generation algorithm, a node is added with q edges to nodes already in
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Figure 6.4 Largest eigenvalue γN of the Laplacian matrix as a function of the number of
edges for three different types of networks of 100 nodes: a 2K-regular network (black curve
with square markers), scale-free (red curve with circle markers), and random Erdös-Renyi
(blue curve) networks. Scale-free and random networks are run 10000 times to compute
means and standard deviations, reported herein – note that error bars are only vertical for
scale-free networks since the number of edges is fully determined by q, while for random
networks also horizontal error bars can be seen due to the process of network assembly.
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the network. The probability that an edge will be connected to a specific node is given

by the ratio of its degree to the total number of edges in the network. Nodes are added

until there are N nodes in the network. When q is small, there are a few hub nodes

that have a large degree and many secondary nodes with small degree, whereas when

q is large, the scale-free network is highly connected and similar to a complete graph.

(iii) A random Erdös-Renyi network which takes as input the probability, p, of an edge

between any two nodes. When p is small, the network is almost surely disconnected,

and when p approaches 1, it is a complete graph.

We fix N to 100 and vary K, q, and p in (i), (ii), and (iii), respectively, to explore the role

of the number of edges.

As expected from the bounds in [66, 4], for a given number of edges, the scale-free

network tends to exhibit larger values of γN . This is particularly noticeable for networks of

intermediate size, whereby growing the number of edges will cause the three network types to

collapse on a complete graph of N nodes. As the largest eigenvalue of the Laplacian matrix

fully controls the resilience of the network to broadcasting-induced synchronization (in the

case of linear and chaotic tent maps), we may argue that, given a fixed number of edges, the

network can be configured such that it is either more conducive (regular graph) or resistant

(scale-free graph) to synchronization. The increased resilience of scale-free networks should

be attributed to the process of broadcasting-induced synchronization, which globally acts on

all nodes simultaneously, without targeting critical nodes (low or high degree) like in pinning

control [34, 152].

6.5 Chapter Summary

Much attention recently has been placed on controlling the synchronization networks,

though the vast majority of the literature considers cases in which the control is continuously

applied on selected network sites. Here, we have taken a different approach, by addressing the

problem of broadcasting-induced synchronization of a network of oscillators, using a single,
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external, reference node. The reference node is stochastically coupled with the network, such

that control actions are intermittently applied over time, switching over a set of potentially

conflicting messages.

In the context of mean square convergence, we have examined the stochastic stability

of the error dynamics of the network oscillators with respect to the reference trajectory.

By decomposing the error dynamics on independent components along the eigenvectors of

the Laplacian matrix, we have established a master stability equation to predict the onset

of stable synchronization. From the Lyapunov exponent of the master stability equation,

we posit a master stability function, which can be used to systematically study the role of

the mean and variance of the broadcasting control gain on synchronization. In a principled

manner, we have applied elements of ergodic theory to cast the computation of the Lyapunov

exponent in terms of an integration in a probability space, which is amenable to analytical

and numerical treatments. We have illustrated the approach for chaotic tent maps, for which

we have clarified the predictive power of time-averaging and systematically analyzed the role

of network topology.

Our general approach is not limited to one-dimensional maps but directly applicable

to higher dimensional node dynamics, provided that the invariant ergodic measure of the

given map can be calculated. In rare cases which include Anosov maps (two-dimensional

diffeomorphisms on tori) [72], invariant density functions can be assessed analytically. In

some examples of two- and higher-dimensional chaotic maps, the invariant density can be

calculated numerically and approximated by an explicit continuous function. Known exam-

ples of such numerically-assisted approximations include volume-preserving two-dimensional

standard maps and the four-dimensional Froeschlé map [93].

In contrast to classical master stability functions for uncontrolled, spontaneous synchro-

nization, where both the algebraic connectivity and the largest eigenvalue of the Laplacian

matrix determine the onset of synchronization, we report that the algebraic connectivity

has no role on broadcasting-induced synchronization of linear maps and chaotic tent maps.

Specifically, the resilience of the network to broadcasting synchronization increases with the
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value of the largest eigenvalue of the Laplacian matrix. Heterogenous topologies with hubs of

large degree should be preferred over homogenous topologies, when designing networks that

should be resilient to influence from a broadcasting oscillator. On the contrary, homogenous

topologies, such as regular or random topologies, should be preferred when seeking networks

that could be easily tamed through an external broadcasting oscillator. Interestingly, these

predictions would be hampered by a simplified analysis based on averaging, which could lead

to false claims regarding the stability of synchronous solutions.

Two of the key assumptions of the current setup are the lack of a memory in switching

and the need for switching at every time step. Both these assumptions could be relaxed

by building on our recent work on synchronization of two coupled maps [61, 116], where we

have demonstrated potential advantages of memory and non-fast switching. The analysis

presented therein corresponds to broadcasting-induced synchronization for N = 1. We

anticipate that combining those findings with the methodology proposed in this work could

lay the foundation for a general theory of non-fast broadcasting with memory, which could

translate into control strategies with improved energy efficiency and performance.
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CHAPTER 7

CONCLUSIONS

Inherent randomness and unpredictability is an underlying property in most realistic

phenomena that scientists would want to model. In an effort to improve our collective ability

to model systems with these fundamental random properties, we present a new framework for

describing stochastically switching dynamical systems. Traditionally in continuous-time dy-

namical systems, stochasticity is incorporated through a “noise” term ξ(t) which is randomly

chosen from some continuous distribution at every time step. This type of stochasticity is

fairly arbitrarily introduced into systems (either as driving noise, or causing parameters to

jitter about some value) and needlessly challenging to approach on a technical level. We offer

an alternative dynamical strategy in which the system is deterministic at any given step, but

the system switches between deterministic regimes randomly. This can account for random

changes to the environment of a system (like unpredictable periods of extreme weather) or

random adaptation/evolution of a social or technological network. This framework builds

on [69] and [70] in regard to continuous-time dynamical systems and [54, 55] and [114] in

discrete-time systems.

In continuous-time dynamical we first introduced a simple example to motivate the use

of these switching dynamical systems, and to familiarize the reader with both the existing

theory in the fast switching limit as well as the types of non-intuitive behaviors that are

possible when switching is not almost instantaneous. We show that it can be proven that

if the switching period is sufficiently fast, the dynamics of the switching system closely

follows the dynamics of the average system (obtained by replacing the stochastic variables

with their expectations). Beyond fast switching, we show that even in this simple example,

the switching system can hop between attraction basins to converge to the wrong attractor

against all odds. With these ideas in mind, we then extend our framework to stochastically
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switching networks that change topology every τ units of time (as well as change dynamics

on the nodes). We specifically present an example of a network of randomly connected

ecological metacommunities that are only connected by unpredictable events (like erratic

rainfall or strong winds). We prove conditions for which these networks can synchronize, even

if they are disconnected at nearly every time step (which prevents the ability to synchronize

in static networks). Surprisingly, we find “Windows of Opportunity,” or bounded ranges

of optimal, intermediate switching frequencies for which a network can synchronize despite

switching between a disconnected network and a network with destabilizing coupling (with

an average coupling value that is also destabilizing). This phenomenon is similar in spirit to

stochastic resonance, from which systems can be stabilized by intermediate levels of noise,

or Kapitza’s pendulum, in which an upright pendulum can be stabilized by intermittent

vertical oscillations. While it certainly has a similar spirit to both of these phenomena, it

arises in a different dynamical setting, and has a different underlying mechanism.

To understand some of the observed behavior at intermediate switching frequency, we

reduce the complexity of the problem and consider the case of two stochastically switching

discrete-time dynamical systems. For this scaled-down example, we were able to analytically

derive a formula for the stochastic Lyapunov exponent indicating the mean-square stability of

two coupled maps. This formula reduces even further if the dynamics of the individual maps

are ergodic (so that they Lyapunov exponent can be computed from averaging over space,

instead of time). Using sigmoid maps, we showed the relationships between the static and

stochastic maps, as well as the interplay between the different parameters for the switching

process (the switching probabilities, coupling strengths, and switching period). Then, for the

first time, we analytically showed the existence of a bounded region for which intermediate

switching periods favor synchrony when both fast and slow switching do not. Adding some

layers of complexity to this example, we then consider the control problem of stochastically

broadcasting a signal from a reference node to a network connected through an arbitrary

topology. When switching is fast, the network topology only adds more conditions for the

system to be mean-square stable (the nodes in the network converging to the trajectory of
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the reference node). Indeed, each node synchronizing to the reference node in that absence

of a network is a necessary condition for the new broadcasting problem. However, we find

that for both fast-switching and arbitrary switching periods, the network can be altered in

minor ways that will allow for the network to be synchronized.

Even with the strides we have made and the phenomena we have discovered and stud-

ied, we have hardly scratched the surface of stochastically switching dynamical systems. To

conclude, we will examine some of the natural directions in which this work can be extended.

Firstly, all of this work was done assuming that the stochastic variables are independent and

identically distributed. While a recent work [116] extended some of our work with discrete-

time dynamical systems to a more general Markov switching process, the i.i.d assumption

can be relaxed in general, and will likely unveil an entirely new set of phenomena. Techni-

cally, even the behavior in the fast switching limit has not been proven for other stochastic

processes, so there are immediate rigorous gaps in the literature that need filling. Another

direction that follows immediately from the work presented in continuous-time would be to

rigorously analyze these systems for intermediate switching periods. This is motivated by

the “Windows of Opportunity” phenomenon, by which a system can switch between unstable

states with an unstable average and reliably converge to a stable state. This has not been

observed in any other context, and is more than a mathematical curiosity: it could be quite

useful in physics and engineering. Likely this analysis would first be completed for a periodic

switching process, eliminating the random element would hopefully expose the underlying

dynamical mechanism for this behavior. Lastly for continuous-time systems, it would be

interesting to see these types of systems used for modeling to fit some kind of data, for

example by modeling a stochastically switching neuronal network. Also, to see what other

behaviors are possible when incorporating this type of stochasticity into classical dynamical

systems problems.

In discrete-time systems with stochastic switching, it would be interesting to develop a

theory beyond fast switching outside of the networks/control paradigm. The current state-

of-the-art only focuses on finite-state Markov processes applied to linear switching systems.
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It is not clear what happens in non-linear systems, or when switching does not occur at

every time instant. In the contexts of network control, it would be interesting to explore less

restrictive control schemes than the broadcasting we have studied. It would also be worth

investigating what type of behavior is possible for higher dimensional problems.

The framework presented here is highly adaptive and presents a significant advancement

in creating more realistic models by virtue of better incorporating stochasticity into models.
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Appendix A

APPENDIX FOR CHAPTER 2

In this appendix, we give the details for the calculation of upper bounds (2.10) for the

first and second derivatives of Lyapunov functions WΦ and WF .

The upper bound for the first derivative of Lyapunov function ẆΦ (2.8) on R : 0 ≤ ρ ≤ 3

falls on the endpoint r = 3 and equals

BWΦ = max
0≤r≤3

∣∣∣Ẇ ∣∣∣ = max
0≤r≤3

λr2(r − 1)2(r − 2)2 = 36λ. (A.1)

The second derivative Ẅ (r) ≡ D2
ΦW (see the notation in [70]) reads as

ẄΦ = 2λ2(3r2 − 6r + 2)r2(r − 1)2(r − 2)2 = 2λ(3r2 − 6r + 2)
∣∣∣ẆΦ

∣∣∣ .
Hence, the absolute value of its bound on R, also at r = 3, is

LBWΦ = max
0≤r≤3

∣∣∣ẄΦ

∣∣∣ < 2λ · 11 · max
0≤r≤3

∣∣∣ẆΦ

∣∣∣ = 792λ2. (A.2)

Similarly, we calculate the first derivative of Lyapunov function WF (2.9) for the switching

system (2.1)-(2.2)

ẆF = gradW · F = Wρ (ρxẋ+ ρyẏ) = −λρ2(ρ− 1)(ρ− 2)(ρ2 − 2(2− s)ρ+ 7− 10s).

Note that ẆF depends on a particular sequence of s(t) = 0 and s(t) = 1, generated by the

i.i.d. stochastic switching. In terms of notation in [70], ẆF ≡ DFW (x, s).
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The absolute value of its bound on R can be estimated by

BWF = max
s∈{0,1}

max
0≤r≤3

∣∣∣ẆF

∣∣∣ < λ max
0≤ρ≤3

|ρ(ρ− 1)(ρ− 2)| ×

× max
s∈{0,1}

max
0≤r≤3

|.ρ(ρ2 − 2(2− s)ρ+ 7− 10s)| .
(A.3)

The maximum of the first co-factor in (A.3), |ρ(ρ− 1)(ρ− 2)| , on R is reached at the

endpoint r = 3 and equals 6. The second co-factor |ρ(ρ2 − 2(2− s)ρ+ 7− 10s)| depends

on s which may take on values 0 and 1. When the switch is on and s = 1, it becomes

|ρ(ρ2 − 2ρ− 3)| , whereas when the switch is off and s = 0, it takes the form |ρ(ρ2 − 4ρ+ 7)| .

Simple analysis shows that the maximum of the latter function for s = 0 on R is larger than

that of the former function for s = 0. It is reached at ρ = 3 and therefore equals 12. Hence,

the upper bound for estimate (A.3) becomes

BWF = λ · 6 · 12 = 72λ. (A.4)

Finally, we calculate the second derivative ẄF (ρ) ≡ D2
FW (see the notation in [70]):

ẄF = grad ẆF · F = −λρ2(ρ− 1)(ρ− 2)(ρ2 − 2(2− s)ρ+ 7− 10s)×

× (−λρ(ρ2 − 2(2− s̃)ρ+ 7− 10s̃)) ,
(A.5)

where s and s̃ are taken from two different stochastic sequences, corresponding to ẆF and

the switching system (2.1)-(2.2) (via F ). Depending on the combination of random values

s = 0, 1 and s̃ = 0, 1, function (A.5) has four different expressions for (s = 1, s̃ = 1),

(s = 1, s̃ = 0), (s = 0, s̃ = 1), and (s = 0, s̃ = 0). Our analysis indicates that the maximum

value of ẄF on R is produced by the combination s = 0, s̃ = 0, generating the following

function:

max
s,s̃∈{0,1}

ẄF = λ2(6ρ5 − 35ρ4 + 84ρ3 − 87ρ2 + 28ρ)(ρ(ρ2 − 4ρ+ 7). (A.6)

The first co-factor polynomial P1 = 6ρ5 − 35ρ4 + 84ρ3 − 87ρ2 + 28ρ can be bounded from
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above as follows: max
0≤r≤3

|P1| < max
0≤r≤3

|6ρ5 − 35ρ4| + max
0≤r≤3

|84ρ3 − 87ρ2 + 28ρ|. The latter two

maximum values are reached at the endpoint ρ = 3 so that max
0≤r≤3

|P1| < 1377 + 1395 = 2772.

The second co-factor polynomial P2 = (ρ(ρ2 − 4ρ + 7) in (A.6) was estimated above (cf.

(A.4) ) and is bounded by 12. Thus,

LBWF = max
s∈{0,1}

max
0≤r≤3

∣∣∣ẄF

∣∣∣ = λ2 max
0≤r≤3

|P1| max
0≤r≤3

|P2| = 33264λ2. (A.7)

Collecting (A.1),(A.2),(A.4), and (A.7) yields bounds (2.10).
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Appendix B

DERIVATION OF THE BOUND FROM THEOREM 4.2

In this appendix, we present the calculations of the constants used in the statement of

Theorem 4.2. As we consider the two-patch network, we can rewrite the Lyapunov function

(4.10) for the different variables X = x2 − x1, Y = y2 − y1, Z = z2 − z1 as

W =
1

2

(
X2 + Y 2 + Z2

)
. (B.1)

To apply Theorem 9.1 in [70] to the global stability of approximate synchronization in the

two-patch x, y, z-coupled network (4.2) with ε = εx = εy = εz, we need to calculate upper

bounds on the first and second time derivatives of the Lyapunov function W , calculated

along solutions of the averaged and switching networks. As in the main text, we use the

same notation for the Lyapunov functions and their derivatives as in [70]. The required

derivatives are
BWΦ = max

x∈R
|DΦW (x)|

LBWΦ = max
x∈R
|D2

ΦW (x)|

BWF = max
s∈0,1M

max
x∈R
|DFW (x, s)|

LBWF = max
s,̄s∈0,1M

max
x∈R
|D2

FW (x, s̄, s)|,

(B.2)

where x is the vector of xi = {xi, yi, zi}, i = 1, 2, R is the systems’ absorbing domain, s

is a set of stochastic sequences corresponding to the connections between patches and the

switching of the parameter a1; similarly, s̄ corresponds to another set of stochastic switching

sequences. We start with BWΦ, which requires the first time derivative of the Lyapunov

function of the averaged system:

DΦW (x) = XẊ + Y Ẏ + ZŻ.
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Here, the derivatives Ẋ, Ẏ , and Ż are given by the following difference system, obtained by

subtracting the corresponding equations of the averaged network

Ẋ = [(f(x2)− f(x1))− (g(x2)y2 − g(x1)y1)]− 2pεX

Ẏ = [(g(x2)y2 − g(x1)y1)− (h(y2)z2 − h(y1)z1)]− (m1 + 2pε)Y

Ż = [h(y2)z2 − h(y1)z1]− (m2 + 2pε)Z

(B.3)

with f(η) = rη
(
1− η

K

)
, g(η) =

a∗1η

1+a∗1b1η
, where η = x1, x2 and a∗1 = [1 + ∆a · p]a1 and

h(ξ) = a2ξ
1+a2b2ξ

with ξ = y1, y2.

Recall that 0 ≤ xi,yi,zi < ψ = K
4rm2

(r +m2)2 (cf. (4.9)). We use this bound to find

BWΦ = max
x∈R
|DΦW (x)| by substituting either 0 or ψ for each xi,yi, zi (i = 1, 2), depending

on which will maximize each term. While this may not give the tightest bound, it simplifies

the derivation of the bound, and makes the final bound a little more manageable:

max |DΦW (x)| =
[
ψ
(
rψ + pεψ + rψ2

K
+ a∗1ψ + pεψ

)
+ ψ

(
a∗1ψ

2 + pεψ +m1ψ + a2ψ
2

+pεψ
)

+ ψ
(
a2ψ

2 + pεψ +m2ψ + pεψ
)]
,

which reduces to

BWΦ = ψ2
(
r + rψ

K
+ 2a∗1ψ +m1 + 2a2ψ +m2 + 6pε

)
. (B.4)

Next, we repeat this process for LBWΦ = max
x∈R
|D2

ΦW (x)| which requires the second time

derivative of the Lyapunov function of the averaged system, D2
ΦW (x). Taking the second

time derivative of WΦ, we get:

D2
ΦW (x) = Ẋ2 +XẌ + Ẏ 2 + Y Ÿ + Ż2 + ZZ̈,
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where Ẍ, Ÿ , and Z̈ are defined by the system

Ẍ =
[
ḟ(x2)− ḟ(x1)

]
−
[
ġ(x2)y2 + g(x2)ẏ2 − ġ(x1)y1 − g(x1)ẏ1

]
− 2pεẊ

Ÿ = [ġ(x2)y2 + g(x2)ẏ2 − ġ(x1)y1 − g(x1)ẏ1]−
[
ḣ(y2)z2 + h(y2)ż2 − ḣ(y1)z1 − h(y1)ż1

]
− (m1 + 2pε) Ẏ

Z̈ = ḣ(y2)z2 + h(y2)ż2 − ḣ(y1)z1 − h(y1)ż1 − (m2 + 2pε) Ż.

(B.5)

Then, using the same methods as before, we replace all of the variables with either ψ or

0, depending on which helps maximize the equation term by term. Using Mathematica, we

simplify the tedious expression to get:

LBWΦ = max |D2
ΦW (x)|

= ψ2
[
4(a∗1)2ψ2 + 6a2

2ψ
2 + 2m2

1 +m2 + 2m2
2 + 2pε+ 7pm1ε+ 5pεm2 + 20p2ε2+

a2ψ (1 + 5m1 + a∗1ψ (4 +m1) + 4m2 + 17pε+m1pε) + 6 rεψ
K

+ 6pεr + 2pεψr+

3ψ
2r2

K
+ 2ψr

2

K
+ r2 +

a∗1ψ

K
(3Km1 + 16pεK + 5ψr + 3Kr)

]
.

(B.6)

After finding these bounds for the averaged network, we must do the same thing for the

stochastic system. We start by finding

max |DFW (x, s)| = XẊ + Y Ẏ + ZŻ,

where the derivatives Ẋ, Ẏ , and Ż are governed by the difference system which is identical to

(B.19), when p is replaced with s12(t) and a∗1 with [1+∆a·ξ1]a1 and a∗1 with [1+∆a·ξ2]a1 in the

functions g(x1) and g(x2), respectively. Similarly to the calculations of BWΦ, the expression

for max |DFW (x, s)| can be simplified using the same bounds. It is worth mentioning that in

choosing the favorable bound term by term, the inequalities will be maximized for s12 = 1,
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i.e when the switch is ‘on’ and ξ1 = ξ2 = 1 such that

BWF = max |DFW (x, s)|

=

[
ψ
(
rψ + εψ + rψ2

K
+ â1ψ + εψ

)
+ ψ

(
â1ψ

2 + εψ +m1ψ+

a2ψ
2 + εψ

)
+ ψ (a2ψ

2 + εψ +m2ψ + εψ)

]
,

where â1 = [1 + ∆a]a1. The bound further reduces as follow

BWF = ψ2
(
r + rψ

K
+ 2â1ψ +m1 + 2a2ψ +m2 + 6ε

)
. (B.7)

Then, we take the second time derivative of WF to get

D2
FW (x, s, s̄) = Ẋ2 +XẌ + Ẏ 2 + Y Ÿ + Ż2 + ZZ̈,

with Ẍ, Ÿ , and Z̈ defined in difference system (B.19), when p is replaced with s̄12(t) and a∗1

with [1 + ∆a · ξ̄1]a1 and a∗1 with [1 + ∆a · ξ̄2]a1 in the functions g(x1) and g(x2), respectively.

The reader should notice the additional stochastic variables s̄12, ξ̄1, and ξ̄2. This is another

realization of the stochastic sequence that does not match the realization given by s12, ξ1,

and ξ2. However, after substituting the bounds on the state variables, we observe that the

maximum is obtained when s12 = s̄12 = 1, ξ1 = ξ̄1 = 1, and ξ2 = ξ̄2 = 1. Therefore, the

bound simplifies to

LBWF = max |D2
FW (x)|

= ψ2
[
4â2

1ψ
2 + 6a2

2ψ
2 + 2ε+ 20ε2 + 7εm1 + 2m2

1 +m2 + 5εm2 + 2m2
2 + a2ψ·

· (1 + 5m1 + â1ψ (4 +m1) + ε (17 +m1) + 4m2) + 6ψεr
K

+ 6εr + 2ψεr+

3ψ
2r2

K2 + 2ψr
2

K
+ r2 + â1ψ

K
(16εK + 5ψr + 3K (m1 + r))

]
.

(B.8)

The next step in deriving the bound τ ∗ of Theorem 4.2 is to define the size of the

δ-neighborhood of the ghost synchronization solution of the stochastic system (4.2). To do
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this, we choose a level curve of the Lyapunov function WΦ for the averaged system (4.3):

V0 : W =
1

2

(
δ2
X + δ2

Y + δ2
Z

)
. (B.9)

We let δ = max{δX , δY , δZ}, which simplifies the level to

V0 : WΦ ≤
3

2
δ2. (B.10)

We define another level, V1 as the absorbing domain of the Lyapunov function, which we ob-

tain by replacing each difference variable with its maximum value, subject to the constraints

on x. We get:

V1 : WΦ =
1

2

(
ψ2 + ψ2 + ψ2

)
=

3

2
ψ2. (B.11)

These level curves allow us to define the following quantity used in the general Theorem 9.1

[70]:

γ = min
x∈R,V0≤WΦ≤V1

|DΦW (x)|.

We can see that |DΦW (X)| is minimized at the level V0, which corresponds to the δ-

neighborhood. Hence, we calculate γ as:

γ = min
x∈R,V0≤WΦ≤V1

|DΦW (x)| = |δ2
(
r − r

K
δ −m1 −m2 − 6pε

)
|. (B.12)

We must also define the following constants that are used in the theorem:

c = 1
64(LBWF +LBWΦ)B2

WF

D = 8(LBWF + LBWΦ)

U0 =
{
x|W (x) < V0 + 4γ2

D

}
,

(B.13)

where U0 is a neighborhood of the synchronization solution of the averaged system (4.3),

and is slightly larger than V0, which corresponds to the δ-neighborhood of the ghost syn-

chronization solution in the stochastic system (4.2). After substituting the values for BWF ,
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LBWF , and LBWΦ we obtain

c = K4 ·
[
64ψ4

(
2â1ψK + 2a2ψK +Km1 +Km2 + 6Kpε+ ψr +Kr

)2( 1
K2ψ2

(
6a2

2ψ
2K2+

4(â1)2ψ2K2 + 2K2m2
1 +K2m2 + 2K2m2

2 + 2pεK2 + 7pεK2m1 + 5pεK2m2 + 20p2ε2K2+

a2ψK
2
(
15m1 + â1ψ (4 +m1) + 4m2 + 17pε+ pεm1

)
+ 6ψpKrε+ 6pεK2r + 2ψpεrK2+

3ψ2r2 + 2ψr2K +K2r2 + â1ψK
(
3Km1 + 16pεK + 5ψr + 3Kr

))
+ 1

K2ψ2

(
6a2

2ψ
2K2+

a2ψK
2
(
1 + 4m2 + 4a∗1ψ + 17pε+m1

(
5 + a∗1ψ + pε

))
+ 3ψ2r2 + ψKr

(
5a∗1ψ + 6pε+ 2r

)
+

K2
(
2m2

1 +m2 + 2m2
2 + 2pε+ 3a∗1ψm1 + 7pεm1 + 5pεm2 + 4(a∗1)2ψ2 + 16a∗1ψpε+ 20p2ε2+

3a∗1ψr + 6rpε+ 2ψrpε+ r2
)))]−1

(B.14)

and

D = 8ψ2
(

12a2
2ψ

2 + 4(a∗1)2ψ2 + 4â2
1ψ

2 + a2ψ
(
(â1ψ + a∗1ψ) (4 +m1) + 2

(
1 + 5m1 + 4m2+

17pε+m1pε
))

+
(a∗1+â1)ψ

K

(
5ψr +K

(
3m1 + 16pε+ 3r

))
+ 2
(

1
K

(
3ψ2r2 + 2ψKr (3pε+ r)

+2m2
1 +m2 + 2m2

2 + r2 + pε
(
2 + 7m1 + 5m2 + 20pε+ 6r + 2ψr

)))
.

(B.15)

With C1 being defined as 4γ
D
, we get

C1 = δ4
(
r − r

K
δ −m1 −m2 − 6pε

)2 1
2

[
ψ2
(

12a2
2ψ

2 + 4(a∗1)2ψ2 + 4â2
1ψ

2+

a2ψ
(
(â1ψ + a∗1ψ) (4 +m1) + 2

(
1 + 5m1 + 4m2 + 17pε+m1pε

))
+

(a∗1+â1)ψ

K

(
5ψr+

K
(
3m1 + 16pε+ 3r

))
+ 2
(

1
K

(
3ψ2r2 + 2ψKr (3pε+ r) + 2m2

1 +m2 + 2m2
2 + r2+

pε
(
2 + 7m1 + 5m2 + 20pε+ 6r + 2ψr

)))]−1

.

(B.16)

The desired bound on the switching period τ ∗ in Theorem 4.2 comes from the bound in

Theorem 9.1 [70] such that

τ < τ∗ =
cγ3

ln
[
D (V1−V0)

γ2

] (B.17)

Plugging the constants c (B.14), γ (B.12), D (B.15), V0 (B.10), V1 (B.11) into the
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general expression (B.17) yields the final bound used in Theorem 4.2:

τ < τ∗ = K4|δ2
(
r − r

K
δ −m1 −m2 − 6pε

)
|3 ·
(

64ψ4
(
2â1ψK + 2a2ψK +Km1+

Km2 + 6Kpε+ ψr +Kr
)2( 1

K2ψ2

(
6a2

2ψ
2K2 + 4â2

1ψ
2K2 + 2K2m2

1 +K2m2+

2K2m2
2 + 2pεK2 + 7pεK2m1 + 5pεK2m2 + 20p2ε2K2 + a2ψK

2
(
15m1+

â1ψ (4 +m1) + 4m2 + 17pε+ pεm1

)
+ 6ψpKrε+ 6pεK2r + 2ψpεrK2+

3ψ2r2 + 2ψr2K +K2r2 + â1ψK
(
3Km1 + 16pεK + 5ψr + 3Kr

))
+ 1

K2ψ2 ·(
6a2

2ψ
2K2 + a2ψK

2
(
1 + 4m2 + 4a∗1ψ + 17pε+m1

(
5 + a∗1ψ + pε

))
+ 3ψ2r2+

ψKr
(
5a∗1ψ + 6pε+ 2r

)
+K2

(
2m2

1 +m2 + 2m2
2 + 2pε+ 3a∗1ψm1 + 7pεm1+

5pεm2 + 4(a∗1)2ψ2 + 16a∗1ψpε+ 20p2ε2 + 3a∗1ψr + 6rpε+ 2ψrpε+ r2
))))
·

ln
[
8ψ2
(

12a2
2ψ

2 + 4(a∗1)2ψ2 + 4â2
1ψ

2 + a2ψ
(
(a∗1ψ + â1ψ) (4 +m1) + 2

(
1+

5m1 + 4m2 + 17pε+m1pε
))

+
(a∗1+â1)ψ

K

(
5ψr +K

(
3m1 + 16pε+ 3r

))
+

2
(

1
K

(
3ψ2r2 + 2ψKr (3pε+ r) + 2m2

1 +m2 + 2m2
2 + r2 + pε

(
2 + 7m1+

5m2 + 20pε+ 6r + 2ψr
))) 3

2(ψ2−δ)
δ4(r− r

K
δ−m1−m2−6pε)

2

)]−1

,

(B.18)

where once again ψ = K
4rm2

(r +m2)2 is the absorbing domain bounds (cf. (4.9)), a∗1 =

[1 + ∆a · p]a1, and â1 = [1 + ∆a]a1. Note that the bound τ ∗ is explicit in the parameter of

the stochastic network. The size of the neighborhood U0 used in Theorem 4.2 is given by

U0 = V0 +C1, where V0 = 3
2
δ2 (cf. (B.10)) and C1 is given in (B.16). The constant δ defines

the required precision of synchronization and can be chosen arbitrarily.

This completes the calculation of the bounds are necessary to apply general theorem

Theorem 9.1 [70] on the convergence near the ghost attractor in a stochastically switching dy-

namical system to formulate Theorem 4.2 for approximate synchronization in the stochastic

ecological network (4.2).
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Ẍ = [f ′(x2, ẋ2)− f ′(x1, ẋ1)]−
[
g′(x2, ẋ2)y2 + g(x2)ẏ2 − g′(x1, ẋ1)y1 − g(x1)ẏ1

]
− 2pεẊ

Ÿ = [g′(x2, ẋ2)y2 + g(x2)ẏ2 − g′(x1, ẋ1)y1 − g(x1)ẏ1]−
[
h′(y2, ẏ2)z2 + h(y2)ż2 − h′(y1, ẏ1)z1−

h(y1)ż1

]
− (m1 + 2pε) Ẏ

Z̈ = h′(y2, ẏ2)z2 + h(y2)ż2 − h′(y1, ẏ1)z1 − h(y1)ż1 − (m2 + 2pε) Ż.

(B.19)
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Appendix C

THE SIGMOID MAP AND THE LYAPUNOV EXPONENT FOR

STOCHASTICALLY COUPLED SIGMOID MAPS

C.1 Sigmoid map

The sigmoid map is described by the following equation:

S(x) =
−γ x

2
− ln (1 + e−γ(x−0.5)) + ln (1 + e0.5γ)

−γ
4
− ln 2 + ln (1 + eγ/2)

, (C.1a)

where γ is a parameter that controls the shape of the map. The map is constructed to be an

endomorphism in the unit interval. Fig. C.1 shows the sigmoid map and its first derivative

for a few selected values of the parameter γ.

For values of γ on the order of 1, the first derivative of S is approximately linear,

similar to a logistic map with parameter equal to 4, see for example [30]. As γ increases,

the curvature of S in the vicinity of x = 0.5 increases, and the map approaches the classical

tent map, see for example [30]. Specifically, in the limit γ → ∞, the sigmoid map can be

approximated by the tent map

f(x) =


2x, x 6 0.5

2(1− x), x > 0.5

(C.2)

and in the limit γ → 1 we recover

4x(1− x), (C.3)

the logistic map with parameter equal to 4.
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From the time series of the sigmoid map for different values of γ, we can estimate

the probability density function ρ(x) associated with the chaotic dynamics. The positive

Lyapunov exponents for each of these cases can be obtained from Fig. 5.2(top) for d? = 0.

From simulation data over 100000 time steps and binning with a bin size of 0.05, we obtain

the probability density functions in Fig. C.2. Therein, we also report closed form results

for the tent (ρ(x) = 1) and the logistic map (ρ(x) = 1/(π
√
x(1− x))), see for example [30].

Numerical results confirm analytical predictions for γ = 1 and indicate close agreement

between the sigmoid map and the tent map for γ = 1000. For intermediate values of γ, we

observe a nonsymmetric probability density function with respect to x = 0.5.

C.2 Lyapunov exponent for stochastically coupled tent maps

Here, we present the derivation of the closed-form expression for the Lyapunov exponent

of the stochastically coupled tent maps (5.27). By using the probability density function

ρ(x) = 1, equation (5.23b) becomes

λ(m) =

∫ 1

0

ln

(
n∑
l=1

plYl(t,m)

)
dt, (C.4)

where F is given by equation (C.2) and Yl(t,m) is defined in (5.24). For convenience, we in-

troduce the 2m subintervals of [0, 1] of length 1
2m

: τ1 =
[
0, 1

2m

)
, τ2 =

(
1

2m
, 1

2m−1

)
, . . . , τ2m−1 =(

2m−1
2m−1 ,

2m−1
2m

)
, τ2m =

(
2m−1

2m
, 1
]
. These subintervals constitute a partition of the unit interval

up to a set of measure zero, where Y l(t,m) is not uniquely defined as detailed below.

For each of these subintervals, we can determine the sequence of composite functions

that is needed for calculating Yl(t,m) in the following way. For t ∈ τ1 we find F 0(t) = t < 1
2m

.

This quantity is less than 0.5, thereby from (5.27), we find F 1(t) = 2F 0(t), which is, in turn,

less than 2 1
2m

. The latter quantity is again less than 0.5 and the argument above can be

iterated for any composite function up to the (m − 1)-th order. As a result, within τ1,

F ′(F i(t)) will be equal to 2 for i = 0, 1, . . . ,m− 1, and Yl(t,m) reduces to (2− dl)2m.

Following a similar line of arguments, we can study the sequence of composite functions
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for t ∈ τ2. In this case, we find F i(t) < 0.5 for i = 0, 1, . . . ,m− 2 and Fm−1(t) > 0.5. Thus,

F ′(F i(t)) will be equal to 2 for i = 0, 1, . . . ,m− 2 and −2 for i = m− 1, which imply that

Yl(t,m) = (2− dl)2(m−1)(2 + dl)
2. Note that this value is different from the value attained in

τ1, confirming that Yl(t,m) jumps between two contiguous subintervals.

By carrying out this procedure for all of the considered 2m subintervals, we find that

Yl(t,m) is constant in each subinterval and equal to one of the following values: Y (0,m)
l =

(2− dl)2m, Y
(1,m)
l = (2− dl)2(m−1)(2 + dl)

2, . . . , Y
(i,m)
l = (2− dl)2(m−i)(2 + dl)

2i, . . . , Y
(m,m)
l =

(2 + dl)
2m. Each of these values occurs

(
m
i

)
times, corresponding to the number of possible

ways to obtain (2 − dl)2i(2 + dl)
2(m−i) from the product of m quantities each taking values

in {(2− dl)2, (2 + dl)
2}.

By partitioning the integral in equation (C.4) in 2m integrals over τ1, . . . , τ2m , we obtain

λ(m) =
2m∑
i=1

∫
τi

ln

(
n∑
l=1

plYl(t,m)

)
dt =

1

2m

m∑
i=0

(
m

i

)
ln

(
n∑
l=1

plY
(i,m)
l

)
, (C.5)

which implies equation (5.27).
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Figure C.1 Sigmoid map (left) and its derivative (right) for different values of γ.

x

0 0.2 0.4 0.6 0.8 1

ρ

0

1

2

3

4

5

x

0 0.2 0.4 0.6 0.8 1

ρ

0

1

2

3

4

5

x

0 0.2 0.4 0.6 0.8 1

ρ

0

1

2

3

4

5

x

0 0.2 0.4 0.6 0.8 1

ρ

0

1

2

3

4

5

Figure C.2 Asymmetric ergodic behavior of the sigmoid map. Probability density
functions of the sigmoid map (C.1a) for different values of the control parameter γ: (a)
γ = 1, (b) γ = 10, (c) γ = 100, and (d) γ = 1000. Probability density function of the tent
and logistic maps are shown as dot-dashed and dashed lines, respectively.
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Appendix D

WINDOWS OF OPPORTUNITY FOR THE STABILITY OF JUMP LINEAR

SYSTEMS: ALMOST SURE VERSUS MOMENT CONVERGENCE

In this appendix, we examine the role of the switching period on the stochastic stabil-

ity of jump linear systems. More specifically, we consider a jump linear system in which

the state matrix switches every m time steps randomly within a finite set of realizations,

without a memory of past switching instances. Through the computation of the Lyapunov

exponents, we study δ-moment and almost sure stability of the system. For scalar systems,

we demonstrate that almost sure stability is independent of m, while δ-moment stability

can be modulated through the selection of the switching period. For higher-dimensional

problems, we discover a richer influence of m on stochastic stability, quantified in an almost

sure or δ-moment sense. Through the detailed analysis of a two-dimensional problem, we

illustrate the existence of a disconnected window of opportunity where the system becomes

unstable, even though it switches between two asymptotically stable states.

This appendix represents submitted, but currently unpublished work [121].

D.1 Introduction

Assessing stochastic stability is a critical problem in the study of jump linear systems,

with important applications in modeling biological systems, formulating hybrid control al-

gorithms, and designing power electronics, see, for example, [? ]. An excellent review of

the history of research on stochastic stability of jump linear systems can be found in [56]

. Rosembloom [134] was the first to study moment stability of jump linear systems and

Bellman [11] was the first to tackle moment stability through Kronecker algebra. Kats and

Krasovskii [85] and Bertram and Sarachick [23] put forward criteria based on Lyapunov’s

second method to study moment and almost sure stability.
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Building on these seminal papers over sixty years back, several breakthroughs have been

made in the study of stochastic stability of jump linear systems, summarized in a number

of comprehensive books, doctoral dissertations, and review papers [89, 41, 88, 56, 98] While

there is not a general consensus on the most desirable stability property for a jump linear

system, almost sure stability seems to be the most useful criterion for practical applications

and mean-square stability the simplest criterion to implement. Moment stability implies

almost sure stability, but the converse is generally false, as shown by Kozin [88]. In an almost

sure stability context, one seeks to ensure the stability of the system for any realization of

the underlying stochastic process, with the exception of a set of measure zero. Moment

stability, instead, pertains to the deterministic dynamics of the moments, with mean-square

stability specifically referring to the second moment of the state.

In this appendix, we examine a specific class of jump linear systems in which the state

matrix switches every m ∈ Z+ time steps, within a finite set of realizations, without a

memory of past switching instances. As a result, in each time interval of length m, the state

matrix is constant and the dynamics progresses analogously to a time-invariant system.

Schur-stable matrices, whose spectrum is contained in the unit circle, will tend to steer

the dynamics toward the origin, while unstable matrices will push the dynamics away from

it. Every m time steps, the state matrix switches following an independent and identically

distributed (i.i.d.) random process, drawing from state matrices. For these classes of jump

linear systems, we seek to investigate the role of m on moment and almost sure stability.

This study is motivated by our previous work on the synchronization of coupled sys-

tems, which are intermittently coupled by a dynamic network that rewires without memory

of its past at a constant switching period. Through the study of scalar chaotic discrete

maps [61, 77] and chaotic continuous-time oscillators [79], we have unveiled a rich and of-

ten counterintuitive dependence of the stochastic stability of the synchronous solution on

the switching period. More specifically, for chaotic tent maps, we have analytically demon-

strated the existence of multiple, disconnected intervals of the switching period where the

synchronous solution is mean-square stable [61]. For Rössler chaotic oscillators, we have com-
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putationally studied almost sure stability and uncovered an equivalently rich dependence on

the switching period, where synchronization in the switching network becomes stable even

though it is unstable in the averaged/fast-switching network [79].

We use the name “windows of opportunity” to describe these intervals of the switching

period where stochastic stability is attained. The characterization of these windows of oppor-

tunity for jump linear systems is the main objective of this appendix. By focusing on linear

stochastic systems, we seek to gain insight into the determining factors for the occurrence

of windows of opportunity, without potential confounds associated with nonlinearities. We

focus on both moment and almost sure stability, bringing to light key differences between

them for scalar and higher-dimensional jump linear systems.

The rest of this appendix is organized as follows. In Sec. D.2, we review key findings

on the stochastic stability of jump linear systems, drawing upon the work of Fang, Feng,

and Loparo [56, 53, 55]. In Sec. D.3, we present the main claims of this appendix by first

focusing on scalar systems and then higher-dimensional problems. We study in detail a

two-dimensional problem that allows for the derivation of closed-form results. The main

conclusions of the study are summarized in Sec. D.4, together with an outlook of open

research areas and potential lines of further inquiry.

D.2 Mathematical preliminaries

Here, we briefly review key concepts on the stability of jump linear systems from the

classical work of Fang, Feng, and Loparo [53]. Consider a linear discrete-time system of the

following form:

xk+1 = H(σk)xk (D.1)

where k ∈ N is the discrete time variable, xk ∈ Rn is the state variable with n being a positive

integer defining the dimension of the system, H is a real valued matrix function in Rn×n,

and σk is a finite-state independent i.i.d. random process taking values in {1, . . . , N} with

N being the number of state matrices and p1 . . . , pN their respective probability to occur.
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For simplicity, we assume that the initial condition x0 is a constant vector. This setup is a

specialization of the general framework considered in [53], where σk could be a finite state,

homogeneous Markov process.

Definition 2.1 in [53] can be restated as follows:

Definition D.1 Let Pr(·) and E(·) indicate, respectively, probability and expectation

with regard to the sigma-algebra induced by the i.i.d. process, and let ‖ · ‖ be a norm in Rn

(for example, the Euclidean norm). The jump linear system in (D.1) is said to be

1. Asymptotically δ-moment stable, if for any x0 ∈ Rn

lim
k→∞

E(‖xk‖δ) = 0 (D.2)

We speak of mean-square stability if δ = 2.

2. Exponentially δ-moment stable (δ > 0), if for any x0 ∈ Rn, there exist α, β > 0 such

that

E(‖xk‖δ) < α‖x0‖δe−βk, k ∈ N (D.3)

Similar to asymptotic stability, for δ = 2, we say that the system is mean-square

exponentially stable.

3. Almost sure asymptotically stable, if for any xo ∈ Rn,

P( lim
k→∞
‖xk‖ = 0) = 1 (D.4)

By adapting the claims in Theorem 4.1, Proposition 4.3, and Lemma 4.8 in [53]a, we

formulate the following set of relationships between these notions of stability.

Proposition D.1 Given the jump linear system in (D.1) and the stability notions in

Definition D.1, the following relationships hold:

1. (Theorem 4.1) Asymptotic and exponential δ-moment stability are equivalent.

aSome of these claims can also be found in [56], albeit in a less general form.
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2. (Proposition 4.3) Exponential δ-moment implies almost sure stability.

3. (Lemma 4.8) For any 0 < δ1 ≤ δ2, asymptotic δ2-moment stability implies δ1-moment

stabilityb.

This Proposition supports our intuition that exponential and asymptotic moment stabilities

are equivalent for jump linear systems, similar to classical time-invariant systems. Also, it

clarifies that almost sure stability is the least conservative notion of stability and that the

higher is the value of δ, the more conservative stability criteria are formulated.

To assess the stability of (D.1), we may examine the sign of the top Lyapunov exponent

associated with the δ-moment or sample-path evolution. More specifically, if the limit exists

[55], we define the following:

Definition D.2 The top (or largest) sample-path Lyapunov exponent and the top δ-

moment Lyapunov exponent of (D.1) are defined, respectively, as

λ = max
x0 6=0

lim
k→∞

1

k
log ‖xk‖ = lim

k→∞

1

k
log ‖H(σk−1) · · ·H(σ0)‖ (D.5a)

g(δ) = max
x0 6=0

lim
k→∞

1

k
log E‖xk‖δ = lim

k→∞

1

k
log E‖H(σk−1) · · ·H(σ0)‖δ (D.5b)

where the computation is independent of the norms used for vectors or matrices. If λ (g(δ))

is negative, the system is almost sure (δ-moment) asymptotically stable and it is unstable

otherwise – these claims also include infinitely large values of the Lyapunov exponents that

would imply convergence in one time step.

Computing the top δ-moment Lyapunov exponents for δ ∈ R+ can be undertaken by

using the notion of generalized spectral radius studied in a general setting in [103]. For the

more common case of mean-square stability, it is easy to verify the following:

g(2) = log[ρ(E(H(σ)⊗H(σ)))] = log

[
ρ

(
N∑
j=1

pjH(j)⊗H(j)

)]
(D.6)

bLemma 4.8 is an implementation of Jensen’s inequality, and it specifically states that for any random
variable ξ, the function F (y) = E(‖ξ‖y)

1
y is nondecreasing in R+ whenever it is well defined. This is sufficient

to prove our claim, which appears in a more general form as Theorem in 4.7 in [53].
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where ρ(·) is the spectral radius of a matrix and ⊗ is the Kronecker product c.

Evaluating the top sample-path Lyapunov exponent is a much more challenging task

[153]. If a closed-form result is available for g(δ) and all the state matrices are invertible,

then one may consider applying Proposition 2.3 in [55], which posits that λ = g′(0+) –

corresponding to the derivative of g(δ) from above. Alternatively, one may advocate the law

of large numbers to compute

λ = lim
k→∞

1

k
E log ‖H(σk−1) · · ·H(σ0)‖ (D.7)

almost surely, from Lemma 4.5 in [53].

Very few closed-form results are presently available for nontrivial higher dimensional

systems, whereby exact computations are typically restricted to scalar systems or commuting

matrices. The seminal paper by Pincus [113] and later refinements in [94] have put forward

analytical results for the case of binary switching between two 2 × 2 matrices with one of

them being singular. More recently, tight bounds for binary switching between 2× 2 “shear”

hyperbolic matrices have been presented by [149], which also offer a meticulous overview

of the state-of-the-art in the computation of Lyapunov exponents associated with random

matrix products.

D.3 Windows of opportunity

Rather than switching between state matrices at every time step as in (D.1), we consider

the more general case in which the same state matrix is retained form consecutive time steps.

By scaling the time variable, our problem becomes

xk+1 = H(σk) · · ·H(σk)︸ ︷︷ ︸
m

xk = Hm(σk)xk (D.8)

cEquation (D.6) can be found by writing the Lyapunov equation for the second moment matrix E
[
xkx

T
k

]
where T indicates matrix transposition, see, for example, [? ]
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where we take the m-th power of each individual state matrix in one “scaled” time step.

When m = 1, the problem is equivalent to (D.1).

D.3.1 Scalar systems

For a scalar system (n = 1), we can compute in closed-form the δ-moment Lyapunov

exponent in (D.5b), which is simply given by

g(m, δ) = log

[
N∑
j=1

pj|H(j)|δm
]

(D.9)

with an explicit dependence on our control parameter m. δ-moment stability depends on

the sign of g(m, δ), which is determined by the values of |H(1)|, . . . , |H(N)|, the choice of δ,

and the value of m. To examine this complex interplay, we evaluate the exponential of both

sides of the previous equation, such that,

eg(m,δ) =

[
N∑
j=1

pj|H(j)|δm
]

(D.10)

Extending the analysis in [? ] for δ = 2 to an arbitrary, positive, value of δ, we define the

right-hand-side of (D.10) as q(µ) where the nonnegative real variable µ takes the place of the

integer m. It is easy to verify that q(0) = 1 and q′′(µ) ≥ 0 in R+, where a prime indicates

derivative with respect to the argument.

Therefore, q(µ) is a concave function which can attain values below 1 only if q′(0) < 0,

that is,
N∑
j=1

pj log |H(j)| < 0 (D.11)

which requires that at least one of the individual realization H(1), . . . , H(N) is Schur-stable,

that is, less than one in magnitude. If this condition is not verified, then no choice of m can

ensure the asymptotic stability of the system.

On the other hand, if condition (D.11) is verified, we may have a window of δ-moment

asymptotic stability. Specifically, if all the individual realization H(1), . . . , H(N) are Schur-
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stable, then limµ→∞ q(µ) = 0 and (D.8) is asymptotically δ-moment stable for any value ofm.

If at least one of the individual realizations H(1), . . . , H(N) is unstable, then limµ→∞ q(µ) =

∞ and (D.8) is δ-moment asymptotically stable for m between 1 and m = bµc, such that

q(µ) = 1 with µ > 0. This set might be empty if m is zero or one, however, for sufficiently

small values of δ, we should expect to always identify a window of opportunity for weak

stochastic stability. If the system is not δ-moment asymptotically stable for m = 1, there is

no value of m that can ensure δ-moment asymptotic stability.

With respect to almost sure stability, we can compute the derivative of (D.9) with

respect to δ, such that

λ(m) = m

N∑
j=1

pj log |H(j)| (D.12)

which poses a condition analogous to (D.11). This result indicates that almost sure stability

is independent of m, in contrast with δ-moment stability that can be hampered or improved

by increasing the value ofm. This surprising result is unique to the scalar case and one should

not attempt at generalizing it to higher-dimensional systems, as we will make clear in what

follows. Through the detailed study of an exemplary system, we will in fact demonstrate

the existence of nontrivial windows of opportunity for both almost sure and mean-square

stability.

We can summarize the previous analysis in the following proposition.

Proposition D.2 Consider the scalar jump linear system in (D.8). The sign of the

sample path Lyapunov exponent is independent of m, such that sample path stability is

not influenced by the switching period. If the system is almost sure asymptotically stable,

then it is δ-moment asymptotically stable for any value of m if the individual realizations

H(1), . . . , H(N) are all Schur-stable d. If one of the realizations is unstable, then for suf-

ficiently large values of m, δ-moment asymptotic stability is lost. Specifically, the system

is δ-moment asymptotically stable for m ∈ Was = {1, . . . , bµc}, with µ being the nonzero

solution of g(µ, δ) = 0 given by (D.9) for µ ∈ R+.

dThis claim is true even if some of the realization have unitary magnitude, provided there is at least one
which is Schur-stable.
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As an example, consider the two-state process (N = 2) with H(1) = 5
8
and H(2) = 9

8

of equal probability p1 = p2 = 1
2
. The sample-path Lyapunov exponent in (D.12)

is λ ' −0.176m, such that the system is almost sure asymptotically stable for any

switching period, that is, Was = Z+. The δ-moment Lyapunov exponent in (D.9) is

log
(
2−3δm−15δm + 2−3δm−19δm

)
, such that the system is mean-square asymptotically stable

only in the narrow window Wms = {1, 2}.

Based on prior literature on fast-switching stability of continuous systems [? ? ? ], one

may be tempted to infer the stability of the jump linear system for m = 1 from the average

system, whose state-matrix is E[H(σk)]. However, this is incorrect, as pointed out in [? ] in

the context of mean-square stability of scalar maps.

First, stability of the average system does not imply stability of the jump linear system.

As an example, consider the two-state process with H(1) = 2 and H(2) = −2 of equal

probability p1 = p2 = 1
2
. The average system allows to reach the origin in a single time step,

while the sample-path Lyapunov exponent in (D.12) is log 2, such that the system is not

almost sure (or δ-moment) asymptotically stable. Second, lack of stability of the average

system does not prevent the jump system to be stable. As an example, consider again a

two-state process with H(1) = 15
8

and H(2) = 3
8
of equal probability p1 = p2 = 1

2
. The

average system is unstable with Lyapunov exponent of log 9
8
, while the system is almost sure

asymptotically stable with sample-path Lyapunov exponent in (D.12) equal to 1
2

log 45
64

and

δ-moment asymptotically stable for δ < 0.562 with δ-moment Lyapunov exponent in (D.9)

equal to log
[

1
2

(
15
8

)δ
+ 1

2

(
3
8

)δ].
D.3.2 Higher-dimensional systems

For n larger than one and state matrices that do not commute, we cannot expect

an equivalent case to the scalar system analyzed above. More specifically, the notions that

almost sure asymptotic stability is independent ofm and that δ-moment stability is restricted

to a single window in m that must start from m = 1 are both invalid.

We illustrate the highly nontrivial nature of the problem through the analysis of a
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Figure D.1 Phase portraits for the state matrices H(1) (left) and H(2) (right) in (D.13)
for a = 7

10
. Temporally-adjacent states are connected for ease of illustration. Trajectories

converge to the stable fixed point at the origin along the eigenvector (black line in each
panel) in the direction of the black arrows.

two-dimensional (n = 2) example. Specifically, we consider a two-state process

H(1) =

a 1

0 a

 , H(2) =

 a 0

−1 a

 (D.13)

where 0 < a < 1 and p1 = p2 = 1
2
. In this case, each of the realization is Schur-stable as the

spectral radius of each matrix is a < 1, but the coupled stochastic dynamics will reveal a

complex dependence on m. Figure D.1 illustrates the evolution associated with each of the

state matrices for a selected value of a.

We start the analysis by examining mean-square stability through the top second-

moment Lyapunov exponent in (D.6), which is equivalent to the computation of the spectral
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m 1 2 3 4 5 6 7 8 9 10

g(m, 2) −0.010 0.199 0.181 −0.001 −0.289 −0.649 −1.062 −1.512 −1.993 −2.498
Prop. D.3
- 1 norm

N/A N/A N/A N/A N/A N/A N/A Yes Yes Yes

Prop. D.3
- 2 norm

N/A N/A N/A N/A N/A N/A N/A Yes Yes Yes

Prop. D.3
- ∞ norm

N/A N/A N/A N/A N/A N/A N/A Yes Yes Yes

λ(m) −0.111 0.036 −0.080 −0.332 −0.529 −0.789 −1.049 −1.420 −1.702 −1.947
Prop. D.4
- 1 norm

N/A N/A N/A N/A N/A N/A Yes Yes Yes Yes

Prop. D.4
- 2 norm

N/A N/A N/A N/A N/A N/A Yes Yes Yes Yes

Prop. D.4
- ∞ norm

N/A N/A N/A N/A N/A N/A Yes Yes Yes Yes

Table D.1 Analysis of the problem in (D.13) with p1 = p2 = 1
2
, a = 7

10
. Each column shows

results for a different value of the switching period m and each row depicts predictions of the
top mean-square and sample path Lyapunov exponents, along with the claims about stability
from the proposed sufficient conditions. “N/A” indicates that the sufficient condition is not
applicable, while “Yes” means that asymptotic stability can be inferred from the sufficient
condition.

Figure D.2 Trajectories of the switching system (D.1) with state matrices H(1) and H(2) as
in (D.13) with parameter a = 7

10
for switching periods m = 1 (left) and m = 2 (right). The

switching system converges to the fixed point at the origin when switching is fast (left) and
diverges to infinity for intermediate switching periods (right).
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radius of the following 4× 4 matrix:

1

2
(H(1)⊗H(1) +H(2)⊗H(2)) = a2m


1 1

2
m
a

1
2
m
a

1
2
m2

a2

−1
2
m
a

1 0 1
2
m
a

−1
2
m
a

0 1 1
2
m
a

1
2
m2

a2 −1
2
m
a
−1

2
m
a

1


(D.14)

Through simple algebra, we can calculate the four eigenvalues of this matrix and determine

a general form for the spectral radius, such that the top mean-square Lyapunov exponent is

g(m, 2) = log

[
a2m

(
1 +

1

2

m2

a2

)]
(D.15)

For m = 1, the spectral radius of the matrix is simply a2 + 1
2
, which indicates the possi-

bility of attaining unstable mean-square dynamics for a > 1√
2
, albeit each of the individual

matrices is asymptotically stable. For very large values of m the matrix approaches the zero

matrix, such that the large switching periods will lead to mean-square asymptotic stability.

For intermediate values of m, depending on the value of a, the system may be stable or

unstable. More specifically, from the analysis of the function, we discover that for a > 1√
2
,

the system is unstable for m ranging from 1 to a given value m (determined by searching for

nonzero roots of (D.15)) and asymptotically stable for larger values ofm. On the other hand,

for a < 1√
2
, we have a richer landscape, whereby: for a < 0.642, the system is asymptotically

stable for every choice of m; for 0.642 < a < 0.670, the system is asymptotically stable for

every value of m except for m = 2; for 0.670 < a < 0.700, the system is asymptotically

stable for every value of m except for m = 2 and 3; and for 0.700 < a < 1√
2
, the system

is asymptotically stable for every value of m except for m = 2, 3, and 4 (see Fig. D.2). In

Tab. D.1, we report the numerical values of the top mean-square Lyapunov exponent for

a = 7
10
, for which we have a window of opportunity equal to Wms = Z+/{2, 3}.

Next, we evaluate the top sample path Lyapunov exponent for the same two-dimensional

system (Fig. D.3). The computation is performed numerically by drawing
⌊

5000
m

⌋
realizations
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Figure D.3 Probability that the sample path Lyapunov exponent, λ, is negative as a function
of the parameter a and switching period m. Probability is based on 1000 trials, with light
yellow indicating a probability of stability (negative Lyapunov exponent) of 1 and pink
indicating a probability of 0. The dashed black curve gives the boundary for which the
Lyapunov exponent for mean square stability changes sign. Each realization is 500 iterates
long.
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of the state matrix, taking their product, and evaluating the Lyapunov exponent through

(D.7) using the Euclidean norm. We average the last 10% of the samples to mitigate the effect

of the initial transient. For a = 7
10
, we find that the system is almost sure asymptotically

stable for every value of m, except of m = 2 when it loses stability, as shown in Tab. D.1,

such that Was = Z+/{2}. This finding is in agreement with Proposition D.2, in that almost

sure stability is a less conservative criterion than mean square stability. While the form of

the matrices considered herein is similar to [149], their bounds are only applicable to the

case a < 1
2
, which does not seem to lead to interesting landscape for almost sure stability.

In our example, the system switches between two stable degenerate nodes with a re-

peated eigenvalue a and one linearly independent eigenvector. As a result, the trajectories of

either system determined by H(1) or H(2) are tangent to the eigenvector and curve around

to the opposite direction (see Fig. D.1). Therefore, each trajectory can increase its relative

distance from the origin before reaching the turning point where it starts approaching the

stable fixed point. This property suggests a mechanism for the trajectory of the switching

system to escape to infinity, provided that the switching frequency lies within the window of

opportunity. More specifically, when switching is slow, the trajectories converge to the fixed

point along the paths of either of the state matrices. When switching is fast, the trajectories

converge along the path of the average system (obtained by replacing the switching state

matrices with their expectation), see Fig. D.2 (left). Lastly, when switching is intermediate,

the trajectories tend to evolve along the paths in either state that move away from the fixed

point, by virtue of the single eigenvector in the system. This enables the system to spiral

away from the origin toward infinity, see Fig. D.2 (right). A similar phenomenon was ob-

served in a switching continuous-time linear system in a different setting where the system

switches at exponential times between a collection of different matrices [91].

In general, it is difficult to provide necessary and sufficient conditions for stochastic

stability of higher dimensional systems due to the complexity of evaluating the spectrum

of a large matrix associated with mean-square stability or the application of the law of

large numbers for almost sure stability. A trivial result is obtained if all the individual
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state matrices are Schur-stable. In this case, for sufficiently large values of m, each of the

summands in (D.6) will asymptotically approach zero and the spectral radius of the matrix

will tend to zero accordingly. As a consequence, the system will be mean-square stable

for large switching periods m. In general, stability may also be possible for unstable state

matrices and a number of sufficient conditions might be established from the application of

classical spectral bounding techniques.

For example, a sufficient condition for mean square stability can be derived by bounding

the spectral radius of the matrix in (D.6) using classical norm bounds. More specifically, for

a p-norm, we have that ρ(A) ≤‖ A ‖ for any matrix A ∈ Rn×n. By applying the triangular

inequality and recalling that the norm of the Kronecker product of two matrices is equal to

the product of the norms, we establish the following result.

Proposition D.3 The jump linear system in (D.8) is mean-square asymptotically stable

if for some p-norm, the following inequality holds

N∑
j=1

pj ‖ Hm(j) ‖2< 1 (D.16)

Note that for m = 1 and the Euclidean norm, this is equivalent to the second statement in

Theorem 2.5 of [56]. Also, the power m could be brought out of the norm leading to a more

conservative bound, which is, however, simpler to implement.

For almost sure asymptotic stability, we can directly apply Theorem 2.2 of [56], which

for the case at hand will read as follows.

Proposition D.4 The jump linear system in (D.8) is almost sure asymptotically stable

if for some matrix norm, satisfying the submultiplicative property, the following inequality

holds
N∏
j=1

‖ Hm(j) ‖pj< 1 (D.17)

The Theorem is a direct application of Young’s inequality to the right hand side of (D.7).

Tab. D.1 illustrates the application of these conservative bounds for our exemplary

problem, for which all of these bounds take a compact form that is easy to check for different
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values of m. In this example, varying the norm does not influence the tightness of the

lower bound, whereby for the three considered norms, we find that mean-square asymptotic

stability is attained for m larger than 7, while almost sure asymptotic stability is reached

for m larger than 6. While these predictions are on the same order of magnitude of exact

computations, they do not assist in identifying the instability region for lower values of m,

thereby challenging the identification of disjoint windows of opportunity.

D.4 Conclusions

In this appendix, we have studied the stochastic stability of a class of jump linear system,

where the state matrix retains the same value for m consecutive time steps, before switching

according to a finite-state i.i.d. process. Through a detailed analytical treatment of the

problem, we have demonstrated a complex dependence of stochastic stability on the switching

period m. Changing the dimension of the system and the lens through which stability is

examined has a remarkable effect on the existence, extent, and topology of windows of

opportunity for the stability of the stability of the system.

The causes for the rich dependence of stochastic stability on the switching period are yet

to be fully understood. Particularly elusive and intriguing is the effect of the switching period

on almost sure asymptotic stability. Our intuition suggests that increasing the switching

period would automatically enhance almost sure stability, by reducing the range of matrix

products on which we should enforce the top Lyapunov exponent to be negative. In other

words, one may expect that if the system is almost sure asymptotically stable for a given m,

then it should remain almost sure asymptotically stable for any larger, multiple, value of m.

However, this is not the case of higher-dimensional systems, where we have shown

that a system may be asymptotically stable for m = 1 but not for m = 2 and again be

asymptotically stable for any larger switching period. While we have offered a qualitative

explanation of this phenomenon, its rigorous, quantitative justification remains a subject

of future study. It is likely that this phenomenon is grounded in the same rationale that

underlies the almost sure stability of a jump system switching between matrices that may
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not be stable. Specifically, in our two-dimensional example, it is tenable to hypothesize that

for m larger than 2, the repetitive occurrence of multiple product of the same state matrices

will cause a stabilizing countereffect, against the destabilizing effect elicited by the second

order powers of the state matrices.

To further exacerbate the complexity of the problem, we have found that for scalar

systems almost sure asymptotically stability is independent of the switching period, suggest-

ing that windows of opportunity do not exist in an almost sure sense for scalar systems.

An equivalent claim could be formulated for higher-dimensional systems with a commuting

structure, suggesting that the existence of windows of opportunity in an almost sure sense

is associated with switching between different modes of the system.

Beyond the need for further research to illuminate the causes of windows of opportunity,

especially in an almost sure sense, we envision future work along two main thrusts. On the

one hand, we should seek to expand on the theoretical framework to expand on its practical

significance toward the analysis and design of switched systems. For example, it is viable to

incorporate memory effects through a Markovian switching process, contemplate the possi-

bility of time-varying dynamics, and include stochastic perturbations. On the other hand,

future endeavor may attempt at refining the mathematical basis of the present appendix, by

extending the bounds for the top Lyapunov exponent of [149] to non-hyperbolic matrices and

establishing tight bounds that can be used for the determination of windows of opportunity

for arbitrary jump linear systems.


	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 4-30-2018

	The Stability and Control of Stochastically Switching Dynamical Systems
	Russell C. Jeter
	Recommended Citation


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Dynamical Systems
	The Paradigm of Complex Networks
	Network Structure and Node Dynamics
	Network Properties and Types of Networks
	Collective Behavior

	Network Control
	Evolving Dynamical Networks
	Stochastically Switching Dynamical Systems
	Statement of the General Problem
	Existing Methods for Continuous-Time Dynamical Systems
	Existing Methods for Discrete-Time Dynamical Systems
	Jump Linear Systems
	Stochastic Synchronization for Coupled Maps


	Dissertation Outline

	Multistable Randomly Switching Oscillators: The Odds of Meeting a Ghost
	Introduction
	Multistable Switching Oscillator: The Model
	Preliminary Analysis: The Lyapunov Function and Its Bounds
	The main result: the odds of converging near the ghost attractor
	Chapter Summary

	Synchronization in On-Off Stochastic Networks: Windows of Opportunity
	The Stochastic Network Model
	Fast Switching: Lorenz Oscillators
	Rigorous Bounds
	Numerical Results

	Beyond Fast Switching: Windows of Opportunity
	x-Coupled Rössler Oscillators
	Duffing Network

	Chapter Summary

	Synchrony in Metapopulations with Sporadic Dispersal
	Introduction
	The Model and Problem Statement
	Individual Patch Model
	The Stochastic Network

	Fast Switching 
	Comparing the Switching and Averaged Networks
	Synchronization in the Averaged Network
	Absorbing Domain
	Stochastic Network: Rigorous Bounds
	Numerics

	Non-Fast Switching
	Chapter Summary

	Windows of Opportunity for Synchronization in Stochastically Coupled Maps
	Introduction
	Linear Stability of Synchronization Under Stochastic Switching
	Problem Statement
	Mean Square Stability of Synchronization

	Main Results
	Preliminary Claims
	Necessary Condition for Mean Square Synchronization
	The Case of Fixed Points
	The Case of Chaotic Dynamics

	The Paradigm of the Coupled Sigmoid Maps
	Statically Coupled Maps
	Stochastically Coupled Maps

	Chapter Summary

	Network Synchronization Through Stochastic Broadcasting
	Introduction
	Problem Formulation
	Master Stability Function
	Application to Chaotic Tent Maps
	Master Stability Function
	Comparing the Static and Stochastic Systems
	Role of Network Topology

	Chapter Summary

	Conclusions
	REFERENCES
	APPENDICES
	Appendix for Chapter 2
	Derivation of the bound from Theorem 4.2
	The Sigmoid Map and the Lyapunov Exponent for Stochastically Coupled Sigmoid Maps
	Sigmoid map
	Lyapunov exponent for stochastically coupled tent maps

	Windows of opportunity for the stability of jump linear systems: almost sure versus moment convergence
	Introduction
	Mathematical preliminaries
	Windows of opportunity
	Scalar systems
	Higher-dimensional systems

	Conclusions


