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ABSTRACT 

Polymicrobial biofilms contain multiple microbial species encased in an extracellular 

polymeric matrix. Synergistic interactions within polymicrobial biofilms contribute to elevated 

antibiotic resistance and chronic infections; furthermore, prevention and treatment is still an 

unresolved issue. The yeast Candida albicans and the Gram positive bacterium Streptococcus 

mutans are biofilm-forming oral pathogens that interact mutualistically, and were investigated in 

this work. Crystal violet-based biofilm formation assays were used to measure the effect of extracts 

from Rhamnus prinoides (gesho), an East African plant used in traditional medicine, on biofilm 

formation. The biomass of dual species biofilms was 70% greater than single-species biofilms, 

indicating a synergistic interaction. Treatment with gesho extracts reduced both single-species and 



polymicrobial biofilm biomass by more than 90% relative to controls. Imaging by epifluorescence 

microscopy supported the findings of the biofilm formation assays. In conclusion, gesho exhibited 

significant potential for use as an anti-biofilm agent and warrants further investigation. 
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1 BACKGROUND AND SIGNIFICANCE 

1.1 Biofilms 

Biofilms are complex microbial communities (Stacy, McNally, Darch, Brown, & 

Whiteley, 2016). They are microbial cells encased in an extracellular polymeric matrix 

composed of proteins, carbohydrates and extracellular DNA. Biofilms are found to be 

different from planktonic cells in their different regulation of some of their genes as well as 

their slow growth rates. The matrix-stabilized environment within biofilms is beneficial for 

organisms to communicate with each other through quorum sensing as well as transfer of 

genetic material. Biofilms are most commonly found attached to surfaces to which they 

cannot easily detach, such as medical devices and pipes in water systems (Donlan, 2002). 

Biofilms can be beneficial or detrimental, depending on where they form and their 

inhabitants. For example, environmental biofilms are essential in the operation of wastewater 

treatment facilities. On the other hand, medical biofilms are the major cause of infections and 

persistent diseases (Bjarnsholt, 2013).  

Biofilm communities are how bacteria survive in different environments (Høiby et 

al., 2011), their ability to overcome stressful conditions increased their persistence and made 

them a major cause of nosocomial infections, 50 % of  nosocomial infections are related to 

indwelling devices such as catheters, dentures and heart valves (Roy, Tiwari, Donelli, & 

Tiwari, 2017). Biofilms comprised of pathogens can cause chronic infections. Cystic fibrosis 

pneumonia, device associated infections and chronic wound infections are the most common 

disease caused by biofilms that can lead to several deaths cases. The severity of infections 

caused by biofilms and their ability to be chronic is due to their high resistance to antibiotics 

and their ability to resist and evade the immune system (Bjarnsholt, 2013). 



2 

Biofilm treatment has been very difficult and the most effective method is removal of 

infected area such as the implant or the organ if possible, but in cases where that is not 

possible the main approaches are by combined antibiotic intake before the biofilm formation 

or by chronic intake of antibiotics in case the biofilm has already been formed (Bjarnsholt, 

2013). 

1.2 Polymicrobial Biofilms   

 Biofilms are often comprised of multiple species and are referred to as polymicrobial 

biofilms and can include both prokaryotic and eukaryotic microorganisms (Peters, Jabra-rizk, 

Costerton, & Shirtliff, 2012).   The human body being complex, harboring the human 

microbiota including bacteria, fungi and archaea lead to the presence of polymicrobial 

biofilms that has become the more common feature of pathogenic biofilms. Polymicrobial 

biofilms display a complex environment that can be altered by various changes of host such 

as immunity. Therefore, the study of pathogenic biofilm should be expanded to have a more 

in-depth view of the polymicrobial biofilms (Nobile & Johnson, 2016). 

  Polymicrobial communities help biofilms become more antibiotic resistant through 

passive mechanisms; for example, where one organism uses the other’s resistance 

capabilities to protect itself, a concept referred to as indirect pathogenicity (O’Connell et al., 

2006)

. 

Moreover, members of polymicrobial biofilms enhance their quorum sensing 

communication as well as increase their metabolic products and  the genetic pool where they 

will have access to wider variety and more diverse resources (Wolcott, Costerton, Raoult, & 

Cutler, 2013). It has been demonstrated that polymicrobial biofilms were not only formed 

from multiple bacterial species, but eukaryotic pathogens were involved as well. This 
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emphasizes the importance and necessity for increasing attention towards these biofilms and 

focus on their essential role in chronic infections (Harriott & Noverr, 2011) 

1.3 Antibiotic resistance of biofilms 

Several features of polymicrobial biofilms contribute to their enhanced antibiotic 

resistance. One important factor is the polymeric matrix surrounding the microorganisms, which 

acts as a protective shield against both the immune system of the host and antimicrobial 

medications. Prolonged treatment with various antibiotics can cause resistance through exposure 

to selective pressure , in addition it allows biofilm bacteria to adapt and acquire resistance 

through horizontal gene transfer (Fux, Costerton, Stewart, & Stoodley, 2005). Other mechanisms 

have been suggested for biofilm antimicrobial tolerance such as the phenotypic heterogenicity of 

cells within the biofilm which is directly related to unequal susceptibility to antimicrobial effects 

(Fux et al., 2005).  

Stewart and Costerton (2001) hypothesized three mechanisms whereby biofilms are 

resistant to antibiotic treatments. Their first hypothesis was the inability of antibiotic molecules 

to diffuse through the biofilm matrix to deep layers of bacteria, they added that while some 

antibiotics can penetrate through the biofilm, the pace of penetration is highly limited when the 

antibiotics are deactivated by bacterial cells in the surface layers of the biofilm. On the other 

hand, the development of anaerobic layers with high pH differences between the biofilm layers 

due to oxygen consumption in surface layers and metabolic waste product accumulation can 

contribute to deactivation to antibiotic activity. The last hypothesis is the formation of a resistant 

spore like phenotype by a subpopulation of bacterial cells in the biofilm (Stewart & William 

Costerton, 2001). The significance of biofilms in chronic infections and antibiotic infections has 

lead to more research focus on prevention and treatment of biofilm communities.  
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1.4  Novel approaches for treating biofilms 

Several methods have been under trials in effort to develop biofilm treatments. Among 

those methods are coating devices with antimicrobial agents to prevent the attachment of 

organisms to their surfaces and hinder their growth into biofilms. Other methods include quorum 

sensing inhibitors, bacteriophage therapy, oral drug combinations and new antimicrobial agents. 

Quorum sensing inhibitors proved to have significant antibiofilm effects but the need for further 

research on their safety as well as the debate on their inability to kill cells and only inhibiting 

their virulence has stood in the way of their emergence. Bacteriophage therapy concentrate on 

targeting bacteriophage to bacterial biofilms and thus removing the biofilm. Bacteriophage 

therapy is one of the recently studied mechanisms due to their safety and cost-effective 

production. Oral drug combination including quorum sensing inhibitors, enzymes, antifungals, 

herbs and antimicrobial agents have been investigated but the safety of such treatment is yet to 

be confirmed. Finally development of antimicrobial such as tigecycline have been under study 

for their biocidal effects on biofilm associated bacteria with promising effects (Savini et al., 

2010).  

1.5 Streptococcus mutans biofilms 

Streptococcus mutans is a primary cause of dental carries, due to its ability to form 

biofilms in the oral cavity tissue. S. mutans produces adhesins that helps it to bind to the tooth 

surface as well as other proteins that help in its biofilm formation S. mutans biofilm formation 

mechanisms can be sucrose dependent or independent (Sug Joon Ahn, Ahn, Wen, Brady, & 

Burne, 2008). The ability of S. mutans to form robust biofilms lies in the secretion of an 

exoenzyme called glucosyltransferase. Through this exoenzyme, S. mutans utilizes sucrose 
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supplied from food to produce EPS. Moreover, S. mutans has the ability to overcome stressful 

and highly acidic environments, enabling it to survive and form biofilms leading to dental carries 

(He et al., 2017). 

1.6 Candida albicans biofilms 

              Candida albicans represent the most common human fungal pathogen that can form 

biofilms. According to in vitro studies Candida forms biofilms in several stages. It starts with an 

early phase, where it goes through morphogenesis after adhering to a suitable surface. Formation 

of hyphae at this stage is essential for Candida to form biofilms.  The second stage is the 

intermediate stage where hyphae continue their growth with the production of the extracellular 

matrix. Finally, the third stage is maturation where the yeast forms are present at the base with 

the hyphae at the surface of the biofilm and embedded in the polysaccharide matrix. Candida 

infection can be fatal, and studies are focused on their formation on abiotic and biotic surfaces, 

for example catheters and oral cavity (Harriott & Noverr, 2011). 

             Candida species were found to be the main pathogen causing infection for denture users 

leading to denture stomatitis. Candida albicans were found to be the most common among the 

Candida species. C. albicans can grow in different morphological forms as yeast or 

pseudohyphae or true hyphae. The elongated hyphae form has been observed to help the yeast 

penetrate into tissue by escaping from phagocytic cells. The ability of C. albicans to form 

biofilms through interaction with surfaces and formation of extracellular matrix is dependent on 

its ability to form hyphae (Pereira-Cenci et al., 2008). 
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1.7 S. mutans and C. albicans polymicrobial biofilms 

Fungal and bacterial cooperation in biofilm formation synergizes biofilm activity and 

growth. They collaborate with each other to exchange metabolites or growth factors. For 

example, S. mutans metabolizes sucrose to glucose and fructose which can be a benefit for C. 

albicans (Kim et al., 2017). 

 Candida albicans or Candida species were found to be the main pathogen causing 

infection for denture users leading to denture stomatitis, bacteria were also found to be a factor in 

biofilm formation in dentures. Another example of fungal- bacterial association in biofilms is in 

the early-childhood caries ECC. Streptococcus mutans is a main bacterial pathogen for dental 

caries, especially in early-childhood caries (ECC). It was found that S. mutans is not solely 

present but Candida albicans were common in cases of highly infected plaque biofilms with S. 

mutans in children with ECC. S. mutans and C. albicans biofilms are enhanced by increase of 

exopolysaccarides by C. albicans and hence increasing the biomass. When animals were 

coinfected, biofilm virulence was synergized. In vitro studies shows that glucosyltransferase EPS  

derived was a main mediator in development of the dual specious biofilms and that C. albicans 

enhance the virulence genes expression in S. mutans (Falsetta et al., 2014). 

1.8 Rhamnus prinoides (Gesho)   

Rhamnus prinoidis is a plant that belongs family rhamnaceae. R. prinoides known as 

Gesho was found in Ethiopia and has been widely cultivated. 

It was also found in Africa in the south countries like Kenya. The plant has an edible fruit 

and has been used for many medicinal treatments such as infectious diseases. It is known for its 

ethnomedicinal uses and its parts were used to treat nose, ear and throat infections in kenya while 

the leaves are used for tonsillitis in Ethiopia. In addition, gesho has been used in different case of 

https://www.esciencecentral.org/journals/evaluation-of-phytochemical-chemical-composition-antioxidant-andantimicrobial-screening-parameters-of-rhamnus-prinoides-geshoavail-2329-6836-1000198.php?aid=66000
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scabies, dandruff and hepatitis. Its decoction was used to treat stomach pain and was used in 

rheumatism and pneumonia as well. It’s root extract was used for rheumatism and gonorrhea. 

Gesho has been studied for its antimicrobial activities and showed positive results that 

encouraged its study against diseases (Amabye, 2016; Molla, Nedi, Tadesse, Alemayehu, & 

Shibeshi, 2016) 

 

2 RATIONALE 

Rhamnus prinoides or gesho is a traditional plant used in East Africa for the treatment of 

a variety of infections. Gesho has been found to have a biocidal effect on planktonic cells of 

Gram- positive and Gram-negative bacteria, with the more potent effect on Gram positive 

species (Molla et al.2016). Our laboratory has found that gesho successfully prevented 

Staphylococcus aureus and Bacillus subtilis biofilm formation (unpublished data). Through 

preliminary research it was found that gesho has similar inhibitory effects on Streptococcus 

mutans biofilm formation. These findings led to the development of the research question that is 

the basis of this thesis: “what is gesho’s effect on fungal and bacterial polymicrobial biofilms?”.  

Polymicrobial biofilms of S.mutans and Candida albicans demonstrated enhanced biofilms with 

increased biomass compared to biofilms of single species (Falsetta et al .2014).The association 

of C. albicans with S. mutans in the human oral cavity biofilms and their co-presence that plays a 

role in dental carries and denture infections makes them an economically significant model for 

the study of gesho on polymicrobial biofilms.  
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2.1 Hypothesis 

It is hypothesized that gesho extracts can prevent the formation of polymicrobial biofilms 

by S. mutans and C. albicans. 

2.2 Aim 

The aim of this study is to quantitatively test the effect of Rhamnus prinoides extracts on 

polymicrobial biofilms comprised of C. albicans and S.mutans. This will be achieved through 

testing the activity of Rhamnus prinoides toward the following:  

1- S. mutans biofilms.  

2- C. albicans biofilms.  

3- Polymicrobial biofilms of C. albicans and S.mutans grown together. 

The gesho extracts to be tested are gesho stem ethanol extract (GSE), gesho leaf ethanol 

extract (GSE), gesho stem water (GSW) and gesho leaf water (GLW). Each extract will be tested 

at several concentrations ranging from 0.25 mg/ml to 7 mg/ml.  

 

3 METHODS  

3.1 Biofilm formation assays: 

3.1.1 S. mutans biofilms 

Formation of in vitro biofilms was done in a 96- well microtiter plate, using 0.5% sucrose 

to assist S. mutans in biofilm formation (Kunze et al., 2010). Biofilms were grown overnight at 

37 ⁰C aerobically on shaker (Sang Joon Ahn & Burne, 2007). The biofilm assay was done using 

BHI broth media for growth of S. mutans. S. mutans were cultured from -80 ⁰C stocks in BHI 

broth and culture was grown overnight at 37 ⁰C. The following day, the culture concentration 

was measured at OD 600 and adjusted to 0.01 to be used in biofilm assay. BHI- sucrose media 
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was used for biofilm assay, the BHI-sucrose was filter sterilized before adding S. mutans and 

proceeding with the assay. Gesho extracts were prepared at assigned concentrations and added to 

96-well (100 µL per well) and the plate was set for overnight incubation at 37 ⁰C on shaker. The 

next day, the 96-well plates were washed and stained by crystal violet. Than using 95% ethanol, 

biofilms were de-stained to measure absorbance using MD plate reader at an optical density 

(OD) of 595 nm (O’Toole, 2011). The experiment was repeated at least three times 

independently. 

3.1.2 C. albicans biofilms 

C. albicans were grown on a 96-well plate according to Pierce et al (2015) with slight 

difference, using 1x10⁷ cells instead of 1x10⁶ cells by using hemocytometer cell counting and 

calculation. When using hemocytometer, C. albicans was stained by 0.1% v/v methylene blue. 

C. albicans was cultured on yeast peptone dextrose (YPD) agar plate overnight at 37 ⁰C form -80 

stock. Then a loopful of colonies were cultured in 25 ml of YPD broth for 14-16 hours at 30⁰C 

were C. albicans grows as budding yeast. Then C. albicans cells were centrifuged and washed 

twice with PBS and adjusted to 1x10⁷ cells using hemocytometer. For biofilm formation in 96-

well plates, cells were added to RPMI buffered with 165mM morpholinepropanesulfonic acid 

(MOPS) (Pierce et al., 2015). The RPMI-MOPS were filter sterilized before C. albicans addition. 

Once C. albicans was added to RPMI-MOPS, gesho extracts were prepared at different 

concentration of 7,5,3,1,0.5 and 0.25 mg/ml to test its biofilm inhibition effect on C. albicans 

biofilms. Only GSE and GLE were tested with C. albicans. Biofilms were stained by crystal 

violet after washing the plates than measure absorbance by MD plate reader at OD 595 (O’Toole, 

2011). 
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3.1.3 Dual species biofilm 

The in-vitro growth of the polymicrobial biofilms were done similar to (de Oliveira et al, 

2017) but with some changes. Biofilms of S. mutans and C. albicans will be grown using the 

same growth media used before for each. BHI/sucrose for S. mutans and RPMI-MOPS for C. 

albicans using equal volumes of each media (100 µL) with the same initial concentration used 

for each organism (0.01 OD for S. mutans and 1x 107 for C. albicans). Gesho ethanol extracts 

were tested at 3 mg/ml. The polymicrobial assay 96-well plate design included S. mutans, C. 

albicans and their dual species biofilms untreated compared to their treated counterparts at 3 

mg/ml. The plates were washed and stained for reading as done previously. The biofilm biomass 

for the nontreated biofilms and the synergistic effect of adding the organisms together surpassed 

the MD plate reader reading limit, therefore a 1:10 dilution of the nontreated biofilms were done 

before reading and then multiplied by the dilution factor 10 before plotting the data into graphs.  

3.2 Viability assays 

These assays were done for each extraction after each biofilm assay, the aim is to test the 

effect of gesho on the planktonic cells in the suspensions of each well for each fraction. This is 

done as part of the effort for understanding the plants’ mechanism for biofilm formation 

inhibition. Supernatant of cells from control nontreated cells as well as the 7,5 and 3 mg/ml were 

extracted from wells to be tested. Each fraction was diluted 1:10 dilutions from 10-1 to 10-⁷. 

Using petri dishes divided into 8 quadrants for the dilutions, each quadrant inoculated with two 

drops of 10 µL each. Plates were incubated at 37⁰C overnight. Dilutions showing the least 

number of colonies were counted and the data plotted on excel sheet to calculate log reductions 

in comparison to the control plate.  
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3.3 Polymicrobial Biofilms images 

3.3.1 Flow cell biofilm growth system 

 To view and image the biofilms they were grown via flow cell system. The flow cell was 

done according to (Niu et al., 2013) but with few changes to fit our work. The main parts of the 

flow cell consist of the flow cell slide covered with glass cover slips which are glued using 

silicon, forming chambers to allow flow of media. The flow cell slide has two adjacent channels 

through which the media is pumped from the reservoir bottles and circulated for 24 hours at a 

rate of 0.9 ml/min at 37 ⁰C. The coverslips serve as surface for biofilm attachment. The entire 

system is pre-sterilized through autoclaving and bleaching. Two media reservoirs were prepared. 

First one for control with no gesho extracts was prepared with 25 ml of Sucrose/BHI broth with 

S. mutans at 0.01 OD as initial concentration, added to 25 ml of RPMI/ MOPs with C. albicans 

to reach a total of 50 ml. The second reservoir bottle was prepared like the first one with addition 

of GSE extract at a 3 mg/ml concentration. Each bottle was connected to a separate flow cell 

slide and they were incubated simultaneously for 24 hours at the same flow rate.  

3.3.2 Epifluorescent microscope  

C. albicans and S. mutans polymicrobial biofilms 2D images were taken using calcofluor 

white as a fluorescent dye for Candida and SYTO 9 for nucleic acid staining producing blue 

fluorescence under microscope for C. albicans and green for both C. albicans and    S. muatns. 

The effect of gesho extracts tested on dual species biofilms will be examined by these images 

that will help primarily in viewing its effect on the biofilms in 2D dimensions. 

3.3.3 Cell size of C. albicans and S. mutans by image analysis 

AmScope 3.7 for digital camera (United states) software, was used to estimate the size of 

S. mutans and C. albicans. Epifluorescent or light microscopy images of biofilms collected as 
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described above were analyzed. Pixels were converted to µm using the following equation: 

[(Length in pixels) * (10000 µm/ cm)]/ [(resolution in pixels/cm) * (magnification)]. 

Representative images were selected and cell dimensions from a minimum of three images were 

evaluated for gesho-treated and non-treated biofilms.   

 

3.4 Molecular analysis 

3.4.1 RNA purification and extraction 

The expression of the S. mutans glycosyltransferase genes (gtfB, gtfC) was measured 

using the protocol of Falsetta (Falsetta et al., 2014) with some modifications. Four biofilm 

cultures were prepared for RNA extraction: S. mutans cultivated alone with and without gesho 

extract, and dual species biofilms of S. mutans and C. albicans with and without gesho extract. 

RNA extraction and purification were done using a Direct-Zol TM RNA MiniPrep kit (Zymo 

research, USA). RNA was collected for both planktonic and biofilm cells. After DNase 

treatment, the RNA samples were measured for concentration and purity using a NanoDrop 

spectrophotometer (Thermo scientific, NanoDrop 2000), then stored at -80 °C. PCR reactions 

were performed on RNA samples to ensure the absence of DNA contamination. Genomic S. 

mutans DNA was extracted using a ZR Fungal/Bacterial DNA MicroPrep kit (Zymo research, 

USA). Genomic S. mutans DNA was used to confirm the primer annealing temperature in PCR 

reaction protocol, and to serve as a positive control in cDNA PCR gel electrophoresis. S. 

mutans16s rDNA primers were used in the PCR reaction to identify if any DNA was still present 

after DNase treatment and S. mutans genomic DNA was used as a positive control. While for 

annealing temperature confirmation and cDNA controls, the gtfB, gtfC primers were used for 

PCR reactions.  
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3.4.2  RT-qPCR 

GtfB,C genes primers were ordered according to the primer sequence used by Klein 

(Klein et al., 2012). The Super Script III First-Strand synthesis system for RT-PCR (Invitrogen) 

was used to convert RNA samples to cDNA. PCR was used to confirm cDNA formation. 

Standards will be prepared by adding specific gtfB, gtfC primers to cDNA. SYBR green will be 

used for RT-qPCR. Samples concentrations will be measured using qPCR.  

 

3.5 Statistical analysis 

Non-parametric (Kuskal-Wallis Test and Median Test) analyses were performed. Cell size 

analysis were done using T-Test. Comparisons were done between control (non-treated) and gesho 

treated samples. Differences with a p-value < 0.05 were considered statistically significant and are 

noted with asterisk (*). 
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4 RESULTS 

4.1 Effects of gesho extracts on S. mutans biofilm formation  

Significant inhibition of biofilm formation for the GLE fraction with gradual increase in 

biofilm formation with the decrease in extract concentration. The most significant decrease in 

biofilms were at the 3, 5, and 7 mg/ml concentrations. The GLE 7mg/ml showed 90% biofilm 

reduction, 5mg/ml showed 80% biofilm reduction and 55 % reduction for 3mg/ml concentration. 

GSE assay resulted in similar effects as GLE with an average 90 % biofilm reduction for the 3, 5 

and 7 mg/ml concentrations. While for the GSW 50 %, 25 % and 10 % reductions were shown 

for the 3, 5 and 7 mg/ml respectively. GLW had minor inhibitory effects with 10 % and 5 % 

reductions for the 5 and 7 mg/ml concentrations respectively. Each assay was repeated 3 times 

on independent occasions, results were consistent for each fraction concentrations and the 

average of the three assays were plotted as percent of control (Fig 1, Fig 2) 

 

Figure 1 Percent of control average results of Gesho Ethanol leaf and stem extract effects on S. mutans,  
(*) indicates significant difference (p < 0.05) between treated samples and the untreated control. 
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Figure 2 percent of control average of Gesho water leaf and stem extracts on S. mutans biofilms 
(*) indicates significant difference (p < 0.05) between treated samples and the untreated control  

 

4.2 S. mutans viability assays  

Viability assays for the S. mutans were carried on the 3,5 and 7 mg/ml concentrations 

since they represent the concentrations with the most significant effects. When compared to 

control; GLE showed average 2 log reductions for the 7mg/ml concentration, 2 log reductions for 

5mg/ml and 1.5 log reduction for 3mg/ml. GSE showed an average 3 log reduction for the 

7mg/ml compared to its control, 2.5 log reduction for 5mg/ml and 4 log reductions for 3mg/ml. 

GSW and GLW showed minor insignificant log reductions for viability assays with the GSW 

showing lower reduction than the GLW. Each assay was repeated three times and an average was 

plotted revealing the stated results (Figures 3 and 4). 

 

Figure 3 Viability assay showing log reductions of S. mutans with gesho ethanol extracts.  
(*) indicates significant difference (p < 0.05) between treated samples and the untreated control 
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Figure 4 Viability assay showing log reductions of S. mutans with gesho water extracts 

 

4.3 Effects of gesho ethanol extracts on C. albicans biofilm formation 

Since the goal of our study is determination of gesho extract effects on polymicrobial 

biofilms we opted to work with the most effective extracts. From the S. mutans results gesho 

ethanol extracts had the significant effects. Hence, we chose to conduct the biofilm formation 

assay for C.albicans only on the ethanol extracts of gesho. Results showed significant inhibition 

of biofilm formation for the GSE fraction with more consistent results than GLE. The decrease in 

biofilms was similar through most of the tested concentrations 0.5,1,3,5 and 7 mg/ml. The GSE 

biofilm reduction ranged from 75-65% among those concentrations. GLE assay resulted in 

similar effects as GSE with an average 50% biofilm reduction for all concentrations, 

0.25,0.5,1,3,5 and 7 mg/ml. Each assay was repeated 3 times on independent occasions and the 

average of the three assays were plotted as percent of control (Fig 5 and Fig 6). 
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            Figure 5 Gesho leaf ethanol extract effect on C. albicans biofilms, (*) indicates significant 

difference (p < 0.05) between treated samples and the untreated control 

  

          Figure 6 Gesho stem ethanol extract effect on C. albicans biofilm, (*) indicates significant 

difference (p < 0.05) between treated samples and the untreated control 

 

4.4 C. albicans Viability assays  
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Figure 7 Viability assay showing C. albicans Log Cfu/ml increase. 

 

4.5 Effects of GSE on C. albicans and S. mutans polymicrobial biofilms.  

Gesho stem extract was chosen due to its more consistent results with C. albicans. GSE 

had similar inhibitory effects among most concentrations with C. albicans biofilms, while GSE 3 

mg/ml was the lowest concentration with highest effect on S. mutans (Figure 8). Therefore, GSE 

3 mg/ml was selected to proceed with performing gesho biofilm assays on polymicrobial 

biofilms. The design of this assay was performed to compare between polymicrobial biofilms of 

C. albicans and S. mutans and their monomicrobial biofilm biomass. Figure 9 shows the 

synergism that occurs in polymicrobial biofilms with more than double increase in biofilm 

biomass, almost 75%, compared to each organism alone. On the other hand, GSE treatment 

result showed significant decrease in biofilm formation when tested on the polymicrobial biofilm 

with even more inhibitory effects than each organism alone. 
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Figure 8 Effect of GSE on both S. mutans and C. albicans showing 3mg/ml with highest   effect on 

S.mutans. 

 

Figure 9 Effect of GSE 3mg/ml on S.mutans and C.albicans polymicrobial biofilms, each two 

similar letters represent a significant difference between each other, p<0.05 
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cells of C. albicans and S. mutans (Figure 10). The images for untreated biofilms show dense 

biofilms with thick layers of C. albicans and S. mutans (Figure 11).  

 

 

Figure 10 Images of treated Dual Species biofilms of C. albicans and S. mutans, white 

arrows pointes at S. mutans cells. 

 

   

 

Figure 11 Images of untreated polymicrobial biofilms of C. albicans and S. mutans 

showing dense biofilms.   

 

 

4.7 Cell size measurements results 

For each image the size of C. albicans yeast cells, the C. albicans hyphae and S. mutans 

sizes were measured. Each image 3-4 measurement were taken, and an average of measurements 

was calculated and plotted into graph (Figure 12). We compared non-treated polymicrobial 

biofilms to GSE 3 mg/ml treated polymicrobial biofilms. We can see a difference in size 

measurements especially with C. albicans hyphae size, which can be an indication that gesho 
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might be affecting hyphae formation in C. albicans. And further investigation is required to 

confirm this observation.  

 
 

Figure 12 Size measurment of nontreated Vs. treated polymicroibial biofilms 

, (*) indicates significant difference (p < 0.05) between treated samples and the untreated control 
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5 DISCUSSION  

5.1 Gesho inhibits S. mutans and C. albicans polymicrobial biofilm formation 

In previous studies, gesho leaf extracts demonstrated antibacterial activity specifically 

against Gram positive bacteria (Molla et al., 2016). In our laboratory research, gesho also 

successfully caused inhibitory effects on Gram positive bacterial biofilms (unpublished data). In 

this study, gesho inhibited C. albicans biofilms and polymicrobial biofilms comprised of both C. 

albicans and S. mutans. To test the hypothesis, we investigated the effect of gesho extracts on 

each organism alone. Through our results we confirm that gesho can inhibit the biofilm 

formation of each organism alone. GSE extracts were the most potent in inhibiting the biofilms 

of S. mutans, while for C. albicans, GSE and GLE had similar inhibitory effects, although they 

were more consistent with GSE. C. albicans biofilm formation inhibition percentages were 

similar for GSE at different concentrations, while for S. mutans GSE showed the highest 

inhibition with 3 mg/ml. Therefore, when testing polymicrobial biofilms we opted to work with 

GSE at 3 mg/ml concentration. 

We compared the biomass of the untreated dual species biofilms to the biomass of C. 

albican and S. mutans single species biofilms. The results demonstrated a synergism that resulted 

in a 70 % biomass increase for the C. albicans and S. mutans dual species biofilm. These data 

confirm the previous study results by Falsetta (Falsetta et al., 2014). In their study, they 

presented a model which argues that C. albicans enhances the production of glycosyltransferase 

enzymes in S. mutans.  Glycosyltransferase enzymes transfer sucrose to glucans, a major 

component of the EPS, strengthening the S. mutans component of the dual species biofilm and 

hence the overall biomass. Gesho stem extracts displayed significant inhibition of C. albicans 

and S. mutans dual species biofilm with GSE 3 mg/ml, even with the synergism gained with the 
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association of the two organisms together. Unlike previous studies (Amabye, 2016; Molla et al., 

2016), our study started by testing the leaf and stem extracts separately. The stem extracts had a 

strong inhibitory effect. Moreover, we focused on using gesho as a natural remedy for 

polymicrobial biofilms formation. Few studies focused on natural treatments for polymicrobial 

biofilms, one similar study examined the antimicrobial effects of rosemary, a Mediterranean 

woody plant, for inhibiting polymicrobial biofilms (de Oliveira et al., 2017).  

5.2 GSE extracts: potential mechanisms 

S. mutans being a prokaryote and C. albicans a eukaryote, the mechanism by which 

gesho extracts inhibit biofilm formation for each organism is assumed to be different. Our 

viability assay results for S. mutans revealed significant log reductions compared to untreated 

controls, suggesting that gesho ethanol extracts possess biocidal effects, inhibiting biofilm 

formation. On the other hand, C. albicans viability assays showed an increase in C. albicans 

growth. We observed an increase or no notable change of CFU/ mL in the treated samples versus 

untreated samples. We hypothesize that gesho ethanol extracts do not kill C. albicans cells, but 

they can be quorum sensing inhibitors, inhibiting biofilm formation. 

Images of C. albicans and S. mutans dual species biofilms assisted in exploring the 

mechanism by which gesho ethanol extract act. Based on our finding that GSE effected S. 

mutans biofilms by 90% compared to 70% for C. albicans, our initial hypothesis was that our 

images will display a lower S. mutans biofilms biomass compared to C. albicans biofilm 

biomass. Contradictory to our hypothesis, the images displayed a proportionate reduction in 

number for both organisms, with no significant reduction of one organism over the other. Our 

second hypothesis was related to the previous study model mentioned earlier (Falsetta et al., 

2014). According to this model, gesho bactericidal effects on S. mutans can compromise its 
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ability to produce glucans for EPS formation and hence C. albicans biofilm formation is affected 

as well. Our images show a significant decrease in the EPS of the dual species biofilms, which 

indicates that gesho can be acting on the exopolysaccharide matrix formation. The mechanism of 

action by which gesho inhibits biofilms is still under question and requires further investigation.  

5.3 Molecular analysis and future directions 

5.3.1 S. mutans molecular analysis 

Molecular analysis for genes involved in biofilm formation will enhance our knowledge 

on how gesho works. Each organism has its own genes involved in the biofilm construction 

process. In polymicrobial biofilms one organism can influence the gene expression of another. 

According to the Falsetta model (Falsetta et al., 2014), C. albicans increases the expression of 

glycosyltransferase genes (gtfB, gtfC), enhancing the EPS matrix formation. This model plus 

previous work by (Mattos-Graner, Napimoga, Duncan, Smith, & Fukushima, 2004) emphasize 

the essential role of the gtf genes in biofilm formation for S. mutans. Image analysis indicated a 

significant reduction in polysaccharide matrix formation in the treated polymicrobial biofilms. 

This observation is in agreement with our hypothesis that gtf expression is reduced by gesho 

extract. This hypothesis will be tested in future work. To this end, RNA extraction and 

preparation has been started in the laboratory; to date, cDNA has been synthesized. 

5.3.2 C. albicans molecular analysis 

 Further insight into the mechanism of gesho can also be gained by studying other genes 

involved in C. albicans biofilm formation. Some studies are focused on such genes (Blankenship 

& Mitchell, 2006), which can be potential targets for our future studies, including bcr1 and efg1 

(Falsetta et al., 2014). Through our biofilm assays, we confirm that gesho ethanol extracts have 

the ability to inhibit biofilm formation for the dual species biofilms of C. albicans and S. mutans 
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as well as their corresponding single species biofilms. Through our images, we know that both 

organism’s ability to form biofilms is similarly compromised and the EPS biomass is 

significantly reduced. Molecular analysis to compare genetic expression with and without gesho 

will help understand the mechanism through which it works.  

5.3.3 Applications 

According to the National Center for Health Statistics, 37 % of children between ages 2-4 

in the United States and 2.4 billion people around the world have dental carries. Dental disease 

can be difficult to treat and if stay untreated can cause further systemic complications as diabetes 

,pneumonia and heart disease (Fernandes, Bhavsar, Sawarkar, & D’souza, 2018). Dental carries 

are caused by pathogenic bacteria forming oral biofilms. They have the ability to metabolize 

carbohydrates, producing acidic environment and building the EPS matrix that helps binding the 

bacteria to each other (Liu, Ren, Hwang, & Koo, 2018). While various methods have been 

studied for disruption or prevention of oral biofilms, antibiotic therapy was not one of the 

successful methods for biofilm treatment. The EPS matrix forms a barrier against penetration of 

antimicrobials, while decreasing antibiotic activity against oral biofilms (Liu et al., 2018). 

Numerous novel methods have been investigated for oral biofilm treatment. 

Nanoparticles, phage therapy and photodynamic therapy are just to name a few. In spite of the 

variety of investigated new techniques, they still lack in vivo studies and their application and 

safety is still under question (Fernandes et al., 2018; Liu et al., 2018).  

 Natural products and plant extracts were proven to exhibit antimicrobial, anti-adhesive 

and anti-biofilm activities against oral pathogens (Karygianni et al., 2016). Plants represent a rich 

source of novel compounds and chemicals that can be used in pharmaceutical products. An 

estimated 500,000 species are present around the world with only 1% studied for their 
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phytochemical activity (Palombo, 2011). Herbs, in contrast to synthetic chemical compounds are 

a safe source of treatment. Many of which have been used traditionally for medicinal purposes, 

one of which is for oral health. Many herbal products are used as antimicrobials, anti-

inflammatory and analgesics in dentistry (Kumar, Jalaluddin, Rout, Mohanty, & Dileep, 2013). 

The increased resistance to antibiotics as well as their adverse side effects in dentistry raised the 

need for other treatment options, natural products represented a promising and safe treatment 

alternative (Palombo, 2011). Gesho, an African plant, exhibited antimicrobial, anti-biofilm 

activity not only against Gram positive bacterial but also against two of the most common oral 

pathogens, C. albicans biofilms and S. mutans biofilms. Gesho represents an addition of a 

promising herbal treatment against the oral biofilms. It can be a source of natural anti-biofilm 

prevention source than can be used in many applications as mouthwashes or tooth pastes.  

5.4 Conclusion  

The enhanced resistance of biofilms to antimicrobials helps make them major source of 

chronic infection. The existence of polymicrobial biofilms increases their strength and their 

resistance. Gesho ethanol extracts were found to exhibit biofilm formation inhibitory effect. Its 

effect has been demonstrated on both S. mutans and C. albicans as well as their polymicrobial 

biofilms. The mechanism by which it prevents their biofilm formation is still not resolved, but 

some hypothesis include 1) it exhibits biocidal effects on S. mutans, 2) it has anti-quorum 

sensing effects on C. albicans or 3) it has the ability to inhibit formation of the EPS through 

different mechanisms. 

 In our study we show for the first time that gesho stem extracts possess inhibitory anti-

biofilm effects. We also focus on polymicrobial biofilms that are formed of dual species of yeast 

and bacteria. And as part of our study we showed that gesho inhibits yeast biofilm formation as 
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well as Gram positive bacteria. Gesho’s traditional use makes its future use in antibiofilm 

products applicable, for example toothpaste or mouthwash. Gesho anti-biofilm results make it a 

promising antibiofilm agent.  
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