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ABSTRACT 

The implications of temperature effects on photochemical processes when it comes to 

near-infrared DNA photosensitizing agents are discussed in addition to the unique spectroscopic 

features of a sulfur meso-substituted heptamethine cyanine dye relative to oxygen and nitrogen 

analogues. Specifically, reactive oxygen scavenger experiments, preliminary kinetic data, and 

absorption spectra are considered in this continued investigation. Additionally, binding and 

stability studies indicate that the general structure of the cyanine dye can be further optimized to 

potentially improve DNA photocleavage yields at physiological temperatures while employing 

the exceptional properties of sulfur-incorporated polymethine dyes.  
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1 INTRODUCTION  

1.1 Cyanine Dyes 

Ever since the synthesis of the first cyanine dye by Greville Williams in 1856, and later the 

elucidation of the structure in 20th century, there has been a considerable amount of applications 

realized through the seemingly limitless customization of the compound’s general structure. 

Cyanine dyes (CD) were not utilized in dyeing fabrics because of their innate instability in the 

presence of light, however, they were later found to be valuable in photographic sensitization by 

affording sensitivity to silver halide emulsions in other parts of the visible spectrum.1 Recently, 

these synthetic dyes have been implemented in various liquid crystal displays and even more 

modern organic light-emitting diode displays as hi-tech applications have come to fruition.2 For 

the past few decades, these cyanine dyes have been utilized extensively in structural biology and 

biochemistry as fluorescent probes and in medicine as diagnostic tools for cancer.2-3 

The advantage of cyanine dyes in biology and medicine as fluorophores is evident in their 

remarkable extinction coefficients and high fluorescence quantum yields. This has fostered 

recent research efforts focused on expanding upon these properties by shifting the absorption 

spectra towards the near-infrared (NIR) region accordingly. By extending the polymethine bridge 

and by adding certain functional groups or atoms, the dyes’ spectra can be red-shifted, therein 

improving upon their applications in therapeutics, and as probes and diagnostic agents. This is 

noteworthy because light penetration in tissue increases with longer wavelengths affording a 

more effective means of treatment and/or diagnostics.4   

1.1.1 General Structure and Modifications  

The core structure of cyanine dyes consists of two nitrogen centers, often within heterocyclic 

rings, connected by a conjugated polymethine bridge with an odd number of carbons. One of the 
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nitrogen atoms is positively charged, inducing what is known as a “push-pull” mechanism of 

resonance within the polymethine system of the chromophore between the quaternary nitrogen 

and the donating nitrogen atom. This conjugated system is the underpinning moiety of the 

chromophore, generating the characteristic cyanine ππ* transition which can be extended into the 

NIR region by approximately 100 nm for every additional vinyl group in the polymethine bridge. 

A general structure of symmetrical heterocyclic cyanine dyes can be seen in Figure 1-1 below. 

 

 

Figure 1-1: General structure of symmetrical cyanine dyes. 

 

Heptamethine cyanine dyes have a polymethine bridge consisting of 7 carbons and have 

strongly influenced the fields of fluorescence microscopy and diagnostics with novel compounds 

such as indocyanine green, Cy5.5, and IRDye800-C.3 Unfortunately, the length of the 

polymethine bridge reduces stability and rigidity with every additional vinyl group. However, it 

has been shown that including a cyclohexenyl ring at the center of the bridge increases rigidity 

and stability while also improving upon the fluorescence quantum yield. It was determined that a 

nonamethine cyanine without stabilizing cyclohexenyl rings degraded 70% within 45 min 

whereas a bridged nonamethine cyanine with cyclohexenyl rings showed 5% decomposition 

after 24 h.5 Additionally, various heterocyclic ring structures have been shown to influence dye 

aggregation and degradation in various solvents as well as in the presence of certain 

biomolecules.  
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Several ring systems including pyridine, quinoline, indolium, benzothiole, and benoxazole 

have been incorporated into cyanine dyes and can contribute to the resonance delocalization 

afforded by the methine linker.6 One focus of current synthetic efforts in regards to developing 

better fluorophores and photosensitizers has been to improve photostability by increasing 

rigidity. An additional effect of rigidity is to limit internal conversion (IC), a competing energy 

pathway which decreases the fluorescence and triplet state quantum yields.5 In this thesis, the 

heptamethine cyanine dyes below are spectroscopically compared with Dye 1 (containing a 

meso-substituted captamine) being further investigated. Dyes 1-3, seen in Figure 1-2 below, are 

symmetrical with indolium ring systems on both sides of the polymethine bridge. By only 

changing the central electron donating group, this provides an elegant spectroscopic comparison 

in regards to developing efficient NIR photosensitizers.  

 

 

Figure 1-2: The structures of the cyanine dyes that are compared and investigated in this paper. 

Dyes 1 and 3 were synthesized by Xiaozhong Ma and Dye 2 was synthesized by Andy Levitz, 

under the direction of Dr. Maged Henary. 
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1.1.2 Aggregation 

Certain aggregation states or nanoclusters can strongly affect the luminescent properties of 

cyanine dyes. Various arrangements can occur based on the polarity of the solvent, temperature, 

concentration, pH, and ionic strength. Due to their highly conjugated structures, cyanine dyes 

self-aggregate via van der Waals-induced π-π stacking. This stacking phenomenon can result in 

J-aggregation or H-aggregation producing a bathochromic or hypsochromic shift in the spectra, 

respectively. The aggregation state is determined by the angle of slippage between consecutive 

dyes with J-aggregates forming due to a larger angle and H-aggregates forming due to a smaller 

angle.6-7 At low concentrations, certain monomeric cyanine dyes tend to bind readily to DNA. 

However, as the concentration of dye is increased, cyanines can begin to bind to DNA as 

aggregates.7 

1.1.3 DNA Binding and Interaction 

Cyanine dyes have been shown to interact with DNA in various ways that have been 

attributed to their aromatic ring systems, delocalized positive charge, and aggregating 

properties.8 Intercalation between the base pairs occurs if a sufficient heterocyclic ring system 

can participate in π-π stacking interactions facilitated by resonance within the aromatic rings. 

This mode of binding has been particularly advantageous in developing cyanine dyes that 

fluoresce at high intensities upon intercalation.9 Certain bent-shaped symmetrical cyanine dyes 

have been shown to exhibit sequence-specific DNA recognition through minor groove binding.10 

While hydrophobic interactions have been shown to elicit minor groove binding electrostatic 

interactions between the negatively charged phosphodiester groups and the delocalized positive 

charge on the polymethine bridge has been shown to be an alternative mode of interaction.11  
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1.2 Photosensitizers 

Photosensitizers (PS) are molecules that absorb light and can be transitioned to the excited 

triplet state via intersystem crossing (ISC) from the excited singlet state. Upon absorbance of a 

photon of a particular energy, an ideal photosensitizer will exhibit ISC by inversion of an 

electron spin, allowing for a longer excited energy lifetime in the triplet state. The longer lifetime 

of the triplet state provides more time for sufficient interaction with triplet ground state oxygen 

resulting in one or two types of photochemical pathways. A Type I reaction occurs if an electron 

is transferred directly to ground state triplet oxygen from the PS which can result in the 

formation of reactive oxygen species through Fenton-like chemistry. Type II energy transfer 

occurs if the PS transfers energy directly to molecular oxygen through a collision resulting in a 

singlet ground state PS and a highly reactive singlet oxygen.4, 12-15 An efficient PS will be 

characterized by low fluorescence quantum yields, higher rates of ISC, and high triplet state 

quantum yields and lifetimes. Additionally, limiting internal conversion through improved 

molecular rigidity is typical of an ideal PS.5 The general overview of the various photochemical 

processes that can occur once a PS absorbs light can be seen in Figure 3-3 below. 
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Figure 1-3: This illustrates the Jablonski diagram in relation to generating reactive oxygen 

species through Type I and Type II energy transfer pathways. Nonradiative pathways 

(intersystem crossing and internal conversion) are also shown.   

 

Tetrapyrroles are currently the most common structures found in photosensitizers in 

regards to cancer treatment and are ubiquitous in many relevant biomolecules (e.g. chlorophyll, 

haem, bacteriochlorophyll).4 One example of an FDA approved PS that utilizes the tetrapyrrole 

moiety is Photofrin® which can be used to treat reoccurring breast cancer on the chest wall.16 

Recent research efforts have been made in developing synthetic dyes as photosensitizers with 

applications in photodynamic therapy (PDT). Towards this end, cyanine dyes and squaraine dyes 

exhibit remarkable molar absorptivity and can be easily purified. Synthetic dyes show potential 

in addressing current limitations in photodynamic therapy such as issues with internalization, 

specificity, and absorbing light within the therapeutic window.3-4 Certain fluorescent 

heptamethine cyanine dyes have shown preferential tumor uptake while also absorbing near-

infrared light.17 This indicates that an auspicious prospect may exist in developing ideal PSs by 

adjusting cyanine dye fluorophores with preferential tumor internalization to act instead as 

photosensitizing agents.  

Internal
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Figure 1-4: The structure of profimer sodium (Photofrin®), a current FDA approved 

photosensitizer that absorbs red light.  

 

1.2.1 Photodynamic Therapy 

Photodynamic therapy consists of administering a non-toxic PS through systematic 

means or directly into the area that needs treatment. After equilibration and incubation, the PS is 

selectively activated with light of an appropriate wavelength using lasers, fiber optics, or medical 

lamps. PDT represents a promising form of cancer treatment as it seeks to address specificity and 

selectivity between healthy and cancerous tissues. As mentioned previously, a current limitation 

on PDT is poor tissue penetration by UV and visible light, therefore, recent research efforts have 

concentrated on developing NIR absorbing agents within the “therapeutic window”, the region of 

the electromagnetic spectrum between 700 and 900 nm with optimal light penetration between 

800 and 900 nm.11-16 
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Figure 1-5: The box illustrates the absorption region that represents the PDT therapeutic 

window. This is located between absorption by ubiquitous biomolecules (UV/visible region) and 

water, which absorbs in the infrared region.14 

 

1.2.2 Reactive Oxygen Species 

Oxygen is a necessary component of PDT for the vast majority of photosensitizing agents. 

The reactive oxygen species (ROS), hydroxyl radicals, hydrogen peroxide, singlet oxygen, and 

superoxide anion radicals, are directly and indirectly responsible for the biomolecular cleavages 

which result in disruption of cellular functions and ultimately lead to cell death through apoptosis 

or necrosis. The diffusion differences of the most powerful ROS, hydroxyl radicals and singlet 

oxygen, are highly limited due to their instability and presence of cellular antioxidants, therefore, 

PSs with a particular binding affinity for vital biomolecules and organelles are favorable and can 

increase specificity.4, 12-16 
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1.2.3 Advantages of Sulfur-substituted Photosensitizers 

1.2.3.1 Increased Intersystem Crossing Rate 

Recently, Peceli et al. showed that sulfur-substituted polymethine dyes (PDs) when 

compared to oxygen-substituted analogues dramatically enhanced intersystem crossing rates. 

This was particularly attributed to the transposition of the lowest energy ππ* transition relative to 

the nπ* state which leads to a diminished energy gap between the singlet and triplet states. This 

inversion has three effective augmentations on the spin-orbital coupling Hamiltonian (HSOC), 

ergo decreasing the inhibitive singlet-triplet energy gap that prevents triplet state formation.18-19 

In their paper, the authors describe the increased efficacy of the spin-orbit coupling as being 

caused by the integration of singlet and triplet states belonging to different molecular orbital 

configurations as expressed by the El-Sayed rule.18, 20 Specifically, this rule characterizes 

increased intersystem crossing rates, attributing enhancements to the conversion of molecular 

orbitals of different types in the radiationless transition. Experimentally, El-Sayed found an 

increase in kST of up to 1000 times that of transitions between two states of the same electronic 

basis such as ππ* to ππ* transitions.20  

The inversion also induces a reduced energy gap between the singlet and triplet states 

facilitating the transition process. Additionally, the dark electronic singlet state (n,π*) has a 

prolonged radiative lifetime, resulting in a directed nonradiative transition via intersystem 

crossing. Peceli et al. also showed that when compared to the enhancement in intersystem 

crossing exhibited by the sulfur-substituted PDs, the dyes designed to employ the heavy-atom 

effect had insignificant triplet quantum yields.18 The results suggest that incorporating sulfur 

containing substituents may be the superior way to increasing the triplet state yield through 

uniform radiationless intersystem crossing. 
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1.2.3.2 Sulfur Radicals and Tumor Hypoxia 

Tumor hypoxia, or the lack of oxygen in certain cancers, was suspected for decades and 

confirmed in the 1990s with the advent of oxygen electrodes allowing for precise measurements 

of oxygen levels. Results indicated that oxygen levels in solid tumors were vastly heterogeneous 

with cells farther away from blood vessels receiving less oxygen. Since oxygen is a requisite in 

many forms of cancer treatment such as radiotherapy, evidence reveals that oxygen-dependent 

cancer treatments decrease in efficacy in oxygen-starved areas of tumors.21 Additionally, 

analyses show that hypoxia is a contributing feature of tumor progression with an increase in cell 

division observed in higher levels of hypoxia.22 As a result, a rise in research efforts is occurring 

aimed at addressing this limitation in current therapeutics and the development of synthetic 

compounds that can be used in photodynamic therapy in both aerobic and anaerobic tumor 

environments.23-24 An illustration of the necessary higher doses of radiation for hypoxic cells can 

be seen below in Figure 1-6. 

 

Figure 1-6: This graph shows the cell-survival curves for both hypoxic and aerobic cells 

receiving radiosensitizer doses that result in the same fraction of surviving cells. Higher doses 

are needed for hypoxic cells due to the lack of available oxygen.21 The SI unit Gy (Gray) is 

equivalent to the absorption of one joule of radiation energy per kg. 
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In addition to ROS and reactive nitrogen species (RNS), there is evidence that reactive sulfur 

species (RSS) play a role in physiochemical processes, specifically in the neutralization of 

antioxidant radicals containing thiols such as glutathione.25 Sulfur-centered radical cations have 

garnered attention in organic synthesis as dialkyl sulfur radicals and aromatic sulfides in aqueous 

solutions sensitized by pulse radiolysis in the presence of oxidizing species.26-27 Wauchope et al. 

showed that sulfur-incorporated dibenzothiophene S-oxide can photocleave DNA under 

anaerobic conditions, providing further evidence that sulfur organic compounds can potentially 

participate in light-induced radical cleavage mechanisms without the involvement of oxygen.24 

Furthermore, certain metal-containing photosensitizers have been shown to photocleave DNA in 

argon-purged solutions representing a significant stride in developing oxygen-independent photo 

therapeutics.23 Given the inherent issues regarding tumor hypoxia and oxygen-dependent 

therapeutics, sulfur-based agents that participate in oxygen-independent photo-induced DNA 

cleavage present a promising path forward in the development of photosensitizing agents in 

PDT.  

 

1.3 Low-Temperature Effects 

From the excited singlet state, there are several general outcomes when energy is absorbed in 

the form of light by a molecule: the energy is emitted in the form of fluorescence at a longer 

wavelength, translated to heat via vibrational relaxation, or a spin-forbidden transition to the 

triplet state can occur which can result in phosphorescence or triplet state energy transfer. 28 The 

effects of temperature on photochemical reactions has been investigated and conjectured for 

decades with nuances between nonradiative transitions and radiative transitions being probed by 

numerous experiments. Radiative transitions rates (i.e. fluorescence or phosphorescence) have 
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been shown to be largely unaffected by temperature, however, quantum yields and state lifetimes 

have been shown to vary with temperature in certain instances. This implies that radiationless 

processes may be influenced by temperature if higher vibrational levels in the exited state result 

in different photochemistry when compared to v = 0.19 In Figure 1-7, the competitive nature of 

potential photochemical reactions at various vibrational states is illustrated with respect to 

nonradiative relaxation and fluorescence from the lowest energy vibrational state. 

 

Figure 1-7: This form of the Jablonski diagram illustrates the competitive pathway of vibrational 

relaxation through internal conversion in regards to other photochemical processes. 

Abbreviations: kV stands for the vibrational relaxation or internal conversion rate constant, kPC 

stands for the photochemistry rate constant. 29 

 

1.3.1 Temperature Effects on Nonradiative Processes 

As mentioned previously, internal and external conversions (IC and EC) are inhibiting 

pathways when fluorophores or photosensitizers are excited to higher energy states. Internal 

conversion proceeds when electronic energy is translated into vibrational energy and rotational 

energy whereas external conversion concerns the loss of electronic energy through solvent and 

solute collisions. Internal conversion in the form of S1 to S0 deactivation is poorly understood, 

however, the rate of internal conversion from Sn to S1 is approximately 106 greater than that of 
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the S1 to S0 deactivation for a series of aromatic hydrocarbons. When compared to much higher 

rate constants of radiative deactivation, the contribution of internal conversion to excited state 

depopulation is considerably negligible.19 However, vibronic deactivation in the form of internal 

and external conversion is propelled by thermal processes, therefore, lowering the temperature of 

photochemical processes can inhibit these pathways from competing with radiative processes or 

intersystem crossing.28-29  

Intersystem crossing has been shown to be temperature dependent for certain molecular 

species with an increase in kST (intersystem crossing rate) as temperature is decreased, however, 

the reasoning behind the enhancement has been largely studied in the context of solid matrices 

and solvent effects.30 Meyer et al showed that the increased kST for SO2 in a low-temperature 

solid solution with limited solvent interactions was notable when compared to kF or kIC, 

suggesting a robust temperature correlation. Conversely, Song and Fayer determined a thermally 

activated kST for rubrene in a solid state solution where no intersystem crossing is oberserved at 

room temperature.31 An important distinction is the absorption of another photon in the excited 

triplet state which is above the reported range associated with the T1 state, indicating an S1 or T1 

to Tn > 1 transition.31 This implies that intersystem crossing to higher energy, dark triplet states 

can be thermally activated whereas phosphorescence upon a S1 to T1 transition can be amplified 

at lower temperatures.  

A temperature effect has also been shown to exist for phosphorescence lifetimes of different 

aromatic hydrocarbons.32-33 Additionally, Kellogg and Schwenker showed that the triplet state 

lifetimes for a series of aromatic hydrocarbons were increased at lower temperatures, however, 

this was minimal with an increase in the triplet state lifetime by a factor of less than two from 

300 K to 4 K.19, 33 The temperature range used in the procedures presented in this thesis range 
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from 298 K to 201 K, indicating little to no temperature effect on the triplet state lifetime of Dye 

1 should be observed. 

1.3.2 Temperature Effects on Photobleaching 

Photobleaching has been studied extensively in the field of fluorescence microscopy as well 

as in developing more stable photosensitizers, however, research efforts to reduce 

photobleaching and understand the pathways involved have remained a vital component in 

developing better therapeutics and diagnostics. Photobleaching, also known as photofading or 

dye photolysis, involves photochemical changes (e.g. photooxidation, intramolecular reactions, 

photoisomerization, or reactions between adjacent compounds) to the dye which permanently 

inhibits its function.34 Photostability, oxygen levels, light intensity, excitation time, and other 

factors play a role in photobleaching pathways.34 Although lowering the molecular oxygen levels 

in samples and increasing photostability of fluorophores has assisted in improving fluorescence 

microscopy and imaging, photosensitizers have been largely restricted to improvements on 

photostability because of the necessity of oxygen in most photosensitizing processes.  

Although photooxidation significantly contributes to the overall bleaching effect at room 

temperature, the diffusion constant and permeability of a solid matrix in regards to solubility of 

oxygen may play a role at lower temperatures.35 The solvent and temperature dependent mobility 

of oxygen and molecules in general is associated with the rotational and translational energy of 

the solvent. Temperature effects on photobleaching have been attributed to differences in 

activation energy barriers of photochemical reactions which implies that lower temperatures can 

decrease photobleaching phenomena for certain molecular species.36-37 Furthermore, the 

restricted diffusion of water and other reactive species such as ROS may contribute to a decrease 

in photobleaching at lower temperatures.35 It has been observed that photobleaching of 
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Rhodamine 6G in a poly(vinyl alcohol) matrix was drastically reduced when the temperature was 

decreased from 295 to 200 K. Additionally, when water is present it has been shown to increase 

oxygen dissemination in the PVA matrix also affecting the overall rigidity of the molecule. This 

was in agreement with previous indications that water is involved in the photobleaching process, 

however, Zondervan et al. observed photobleaching at 10 K demonstrating that some photolysis 

mechanisms persist with little to no energy barrier.35 

1.4 Summary of Research 

The purpose for the research described in this thesis is to explain two phenomena: the 

remarkable enhancement in photocleavage of pUC19 DNA by a sulfur-based cyanine dye when 

the temperature is lowered and the advantageous properties of sulfur incorporation into 

photosensitizing agents. The cyanines synthesized by Dr. Maged Henary’s lab at Georgia State 

University allowed for a facile comparison of the spectroscopic effects attributed to sulfur via 

UV-visible and fluorescence spectroscopies. The stability of the DNA-dye complex was then 

confirmed and CD spectroscopy was employed to provide further evidence for DNA-dye 

interaction. Through obtained UV-visible spectra, it was determined that GaAlAs semiconductor 

lasers (780 nm irradiation) were the most suitable to conduct the photocleavage experiments. 

Scavenger assays were carried out to identify the reactive oxygen species involved in the DNA 

photocleavage. Additionally, elevated DNA cleavage yields obtained upon purging with argon 

indicated an alternative oxygen-independent cleavage mechanism might exist for certain sulfur-

substituted photosensitizers.  
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2 EXPERIMENT 

2.1 Materials and Instrumentation 

Cyanine Dyes 1 and 3 were synthesized and purified by Xiaozhong Ma and Dye 2 was 

synthesized and purified by Andy Levitz in Dr. Maged Henary’s Lab (Georgia State University). 

All dyes were dissolved in dimethyl sulfoxide (DMSO) purchased from Sigma-Aldrich (St. 

Louis, MO). UltraPure™ Calf thymus DNA was obtained from Invitrogen (Cat. No. 15633019, 

Lot No. 780948) and quantitated using a PerkinElmer Lambda 35 UV/VIS spectrophotometer. 

All pUC19 DNA was kept in sodium phosphate buffer (pH 7.0) and prepared by transfecting E. 

coli via artificial competence by heat shock (Stratagene, XL-1 blue). The transfected cells were 

cloned in bacterial cultures and purified using the QIAfilter Plasmid Mega Kit (Qiagen™, Cat 

no. 12263). Agarose was purchased from either BioRad (Herclues, CA), Fischer Scientific 

(Fairlawn, NJ), or Research Products International (Mt. Prospect, IL). Ethidium bromide (EtBr) 

and methanol (≥99.8%) were from Sigma-Aldrich (St. Louis, MO). For binding mode studies, 

methyl green was purchased from GTI Laboratories Supplies (Houston, TX) and pentamidine 

isethionate salt was purchased from Sigma-Aldrich (St. Louis, MO). 

Water was deionized using an AQUA SOLUTIONS® Type 1 DI System (Jasper, GA) and 

all experiments utilized sodium phosphate buffer (pH 7.0) prepared from monobasic and dibasic 

sodium phosphate from Fischer Scientific (Fairlawn, NJ). The prepared tris base, acetic acid, and 

EDTA buffer (TAE buffer) was prepared using ethylenediaminetetraacetic acid disodium salt 

(EDTA) purchased from IBI Scientific (Peosta, IA) and tris(hydroxymethyl)aminomethane from 

Research Product International (Mt. Prospect, IL). Scavenger experiments were done using D2O 

(99%) and sodium benzoate (99%) purchased from Sigma-Aldrich (St. Louis, MO) as well as 
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EDTA purchased from IBI Scientific (Peosta, IA). Ultra-high purity argon gas was distributed by 

NexAir (Memphis, TN).  

Dye 1 was irradiated with GaAlAs semiconductor lasers (maximum optical output at 780 nm 

between 69 to 83 mW) which were purchased from Laser Land Company. The UV-Visible 

spectra were recorded using the PerkinElmer Lambda 35 UV/VIS and all fluorescence spectra 

were acquired using an RF-1501 spectrofluorometer from Shimadzu Scientific Instruments. The 

circular dichroism (CD) and induced circular dichroism (ICD) spectra were obtained using a 

Jasco J-810 spectropolarimeter. Gel Electrophoresis was done using a Wide Mini-Sub Cell® 

BioRad Gel Box with an applied constant voltage of approximately 100 V. A GIBCO BRL 

power supply unit from Life Technologies was used to apply an electric field. All gels were 

visualized using the VWR Scientific LM-20E transilluminator (302 nm) and photographed with 

a UVP PhotoDoc-It™ imaging system. Gel quantitation was done using ImageQuant version 5.2 

program and Microsoft Excel. Temperatures were recorded using a Toluene-based Ultra Low 

Liquid-in-Glass Thermometer from DURAC® Plus™ (Trappe, PA).  

 

2.2 Methods  

2.2.1 UV-Visible Spectrophotometry  

All absorbance spectra were recorded from the IR region (1100 nm) through the UV region 

(200 nm) to determine aggregation and stability of the dyes over time. The time courses were 

done in increments of five min for a total time span of 30 min resulting in 7 separate spectra. The 

absorbance spectra were recorded in DMSO at a concentration of 10 µM for each dye. 

Absorbance spectra for Dyes 1 and 3 were also acquired in a 10 mM aqueous sodium phosphate 

buffer solution at pH 7.0 to determine stability in the absence of DNA. Absorbance spectra for 
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Dyes 1 and 3 were then recorded in the presence of 150 µM bp CT-DNA in10 mM aqueous 

sodium phosphate buffer (pH 7.0). The Dye-DNA complex spectra were then used to determine 

the optimum irradiation wavelength for photocleavage experiments and to determine stability of 

the dyes in the presence of DNA. Dye 2 was only recorded in DMSO so that spectroscopic 

features could be compared with Dye 1 based on the sulfur and oxygen substitution. 

2.2.1.1 DNA Titration  

A CT-DNA titration was done to determine the optimum concentration for observing induced 

CD signals (ICD). A 10 µM initial concentration of Dye 1 in 10 mM phosphate buffer was 

recorded before 1 µL increments of 1.49 x 103 µM bp CT-DNA were added directly to the quartz 

cuvette. A spectrum was then acquired after each addition of CT-DNA and the titration was 

carried out until the dye was completely saturated with no observed difference between 

consecutive spectra. An additional titration was done using a 20 µM concentration of Dye 1 after 

observing an improved ICD signal after doubling the dye concentration. It was then determined 

that a 20 µM concentration of Dye with 60 µM bp CT-DNA was optimal for observing an ICD 

signal around 700 nm.  

2.2.1.2 Temperature Effects on Aggregation  

Since dye aggregation can affect the propensity for photocleavage, temperature effects on 

aggregation were considered. A 4.2 mL solution of 10 mM phosphate buffer, 60 µM bp CT-

DNA, and 5 µM of Dye 1 was separated out into 600 µL aliquots for a total of three aliquots at 

room temperature and four aliquots at 2 ºC. The spectra at room temperature (24 °C) were 

immediately and consecutively obtained by adding 500 µL of each sample to the quartz cuvette. 

The other four samples were subjected to colder temperatures using metal blocks surrounded 

either in ice with sodium chloride (4 samples at 2 °C) for at least 10 min. The spectra of the 
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colder solutions in saline/ice conditions were then immediately and consecutively obtained after 

the allotted 10 min by adding 500 µL of each sample to the quartz cuvette.   

 

2.2.1.3 Temperature Effects on Photobleaching 

A 1 mL working stock containing 10 mM phosphate buffer, 150 µM bp CT-DNA, and 10 

µM of Dye 1 was separated into 60 µL aliquots. Initial spectra were immediately taken by 

adding 50 µL of the samples into 450 µL of dH2O in a quartz cuvette. Two aliquots were then 

subjected to dry ice conditions (-72 ˚C) for 5 min before being irradiated using an 83 mW 780 

nm laser. Both samples were irradiated for 3 min and then slowly brought to room temperature 

before transferring 50 µL into a cuvette containing 450 µL of dH2O. Two more aliquots were 

irradiated as previously described but at 24 ˚C and then likewise diluted into a cuvette. The 

spectra of the dark controls for each temperature were then recorded so that any change in 

absorption spectra were attributed to irradiation. 

 

2.2.2 Circular Dichroism 

Circular Dichroism (CD) is often employed to study interactions between achiral ligands 

and DNA. Since DNA is chiral, an achiral dye induced CD (ICD) signal can be observed in the 

CD spectrum if interactions with DNA are present.38 As previously described, the optimized 

DNA and dye concentrations were determined by UV-visible spectrophotometry to evaluate the 

apparent binding mode. The samples were prepared in a 3 mL quartz cuvette with a 1 cm path 

length as described by Garbett et al. for the analysis of weak ICD signals.38  

First, a 1.5 mL phosphate buffer solution pH 7.0 at a concentration of 10 mM was 

prepared and the spectrum was recorded. The spectrum was then used to subtract any potential 
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absorbance contributions made by the buffer. Two separate 1.5 mL samples containing 10 µM 

Dye 1 in a 10 mM phosphate buffer solution and a 100 µM bp CT-DNA and 10 mM phosphate 

buffer solution were prepared and their spectra recorded. A final solution containing 20 µM of 

Dye 1, 100 µM bp CT-DNA, and 10 mM phosphate buffer was left to equilibrate for 1 min and a 

spectrum was then recorded. All data were obtained over 12 accumulations using the following 

paramters: 0.5 nm pitch, 1 nm bandwidth, and a 2 s response time with a scanning speed of 200 

nm/min. Additionally, for all samples the sensitivity of the detector was set to 100 mdeg and 

spectra were recorded from 900 to 200 nm. 

2.2.3 Fluorescence Spectroscopy 

Cyanine dyes have been known to exhibit fluorescence in the presence and absence of 

DNA.3, 8, 17 Although Peceli et al. have shown that various sulfur PD analogs exhibit poor 

fluorescence due to fast intersystem crossing rates, fluorescence spectra of Dye 1 in DMSO as 

well as in the presence and absence of DNA were obtained. A 400 nM concentration of Dye 1 in 

a total 3 mL DMSO solution was prepared in a quartz cuvette. The excitation wavelength was set 

at 770 nm and the emission spectrum was recorded from 785 nm to 900 nm. In a quartz cuvette, 

a 2.5 mL solution of 10 mM phosphate buffer and 10 mM EDTA was prepared with 500 nM of 

Dye 1. The initial concentration of CT-DNA was 0.5 µM bp and then raised in 0.5 µM bp 

increments to an end concentration of 2.5 µM bp. The excitation wavelength used was 715 nm 

and the emission spectrum was recored from 715 nm to 850 nm. 

2.2.4 Gel Electrophoresis 

All gel electrophoresis was done in 1.3-1.5% agarose gels by dissolving approximately 

1.5 g of agarose in a 100 mL TAE buffer (pH 7.0). The resulting agarose solution was boiled in a 

microwave oven until homogenous and then 10 µL of a 5 µg/mL EtBr was added before pouring 
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the agarose into a gel tray and letting it sit for one hr. To each sample, 3 µL of loading buffer 

(15.0% (w/v) ficoll and 0.025% (w/v) bromophenol blue) was added before briefly centrifuging 

in a benchtop mini-centrifuge for approximately 2 s and allowing to equilibrate for 2 min. 

Finally, 20 µL aliquots were added to each well of the cast gel and an electric field (100 V) was 

applied for one hr to induce separation based on size and shape of the different forms of plasmid.  

2.2.4.1 DNA Photocleavage Concentration Titration 

A titration assay was performed to determine the adequate dye concentrations for sufficient 

DNA photocleavage at different temperatures for every batch of plasmid that was made. 

Reactions were prepared as described above but with 25 µM, 50 µM, 75 µM, and 100 µM 

concentrations of Dye 1 as shown in Table 2.1. The solutions were equilibrated for 1 min at 

room temperature before being added to a -72 ˚C metal block surrounded with crushed dry ice. 

Each sample was separately irradiated in the block for 30 min using an 83 mW 780 nm laser 

after adjusting all samples to -72 ºC for 5 min. The different forms of plasmid were then 

electrophoresed on agarose gels.   

 

Table 2.1: Photocleavage concentration titration was prepared with the below concentrations of 

Dye 1. 

 

2.2.4.2 Photocleavage Time Course Assays 

Two separate photocleavage time course experiments were completed to gather 

preliminary kinetics data and to determine the appropriate irradiation times for subsequent 

scavenger experiments. The irradiation times were optimized over the course of several trials. 

The first trial consisted of preparing four samples containing 38 µM bp pUC19 and 10 mM 

pUC19 + + + + 

Dye (µM) 25 50 75 100 

Light + + + + 
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phosphate buffer with two of the samples containing 50 µM Dye 1 and the other two containing 

70 µM Dye (Table 2.2). The 70 µM concentration was used based on a previous photocleavage 

titration with this particular batch of plasmid. The two different concentrations of Dye 1 were 

irradiated for 30 min and 60 min to determine the necessary end time for kinetics experiments. 

For the second experiment, a total of 12 samples was aliquoted out from a 480 µL solution 

containing 38 µM bp pUC19, 10 mM phosphate buffer, and 70 µM Dye 1 as shown in Table 2.2. 

One aliquot was used as a dark control and two samples without Dye 1 were used as negative 

light and dark controls. All solutions were kept in a metal block surrounded in crushed dry ice 

while each sample was being individually irradiated using an 83 mW 780 nm LED laser. The 

samples were adjusted to -72 °C before irradiation and were left at 10 °C after irradiation while 

other samples were being processed. The different forms of plasmid were then separated out via 

gel electrophoresis.   

 

Table 2.2: The first experiment used to optimize concentration and irradiation times for the 

preliminary kinetics experiments. 

 

Table 2.3: The initial kinetics experiment was set up with the following times and controls. 

 

 

pUC19 + + + + 

Dye (µM) 50 50 70 70 

Time (min) 30 60 30 60 

Light + + + + 

	

pUC19 + + + + + + + + + + + + + 

Dye + + + + + + + + + + – + – 

Time (min) 1 2 3 4 6 8 10 15 20 30 30 30 30 

Light + + + + + + + + + + + – – 
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2.2.4.3 Photocleavage with Decreasing Temperature 

A total of four separate trials using three different temperatures (24 ˚C, 0 ˚C, and -72 ˚C) 

were used to evaluate DNA photocleavage by Dye 1. A total of 9 aliquots of 38 µM bp plasmid 

DNA, 50 µM of Dye 1, and 10 mM phosphate buffer were prepared for each trial as shown in 

Table 2.4. Three aliquots were used for the three available 780 nm lasers with different optical 

outputs (69 mW, 80 mW, and 83 mW) under the different temperatures. The total time of 

irradiation was 1 hr and 30 min because this experiment was done before irradiation times had 

been adjusted. A reference for each temperature without Dye 1 was used to measure any 

temperature-induced cleavage without irradiation that had occurred. A separate assay for darks 

controls was done using the same parameters and concentrations to show any cleavage that 

occurred was only done due to irradiation of Dye 1.  

Table 2.2:The setup for the four trials of the photocleavage with decreasing temperatures 

experiment using Dye 1 can be seen below. 

 

2.2.4.4 Scavenger Experiments 

ROS scavenger experiments are performed to identify the relevant reactive oxygen 

species involved in the DNA photocleavage mechanism. Samples were prepared with 10 mM 

phosphate buffer pH 7.0, 50 µM of Dye 1, and 38 µM bp of pUC19 plasmid DNA and the 

suitable final concentrations of scavengers. This includes 100 mM sodium azide, 100 mM 

EDTA, 100 mM sodium benzoate, and 75% D2O solutions. After Dye 1 was pre-equilibrated 

with pUC19 for 1 min in phosphate buffer solution, the scavenger was added and further 

equilibrated for another 10 min at room temperature. The other samples were kept refrigerated at 

pUC19 + + + + + + + + + + + + 

Dye – + + + – + + + – + + + 

Temperature (˚C) 24 24 24 24 0 0 0 0 -72  -72  -72  -72  

Output (mW) 69 69 80 83 69 69 80 83 69 69 80 83 
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10 ºC while each was irradiated with an 83 mW 780 nm LED laser at -72 ˚C. Before being 

irradiated, each sample was added to a metal block surrounded in crushed dry ice and adjusted to 

-72 ºC (approximately 5 min). Negative dark controls with and without Dye 1 were also prepared 

in addition to a negative light control without Dye 1. All samples were irradiated for 30 min and 

refrigerated thereafter at 10 ºC while other samples were processed. The different forms of 

plasmid were then separated out via gel electrophoresis. The KI and KCl experiment was done 

similarly except for 10 mM and 20 mM concentrations of the salts were incorporated. 

Table 2.3: For each scavenger experiment the various controls and samples were prepared as 

below. 

 

2.2.4.5 Argon Purging Photocleavage Experiment 

Since oxygen contributes to photobleaching and also plays a vital role in the photocleavage 

mechanisms, an argon purging assay was conducted to determine the effects oxygen might have 

on the photocleavage process by Dye 1. Four samples containing 10 mM phosphate buffer pH 

7.0, 50 µM of Dye 1, and 38 µM bp of pUC19 were prepared in addition to two reference of 10 

mM phosphate buffer and 38 µM bp of pUC19 with equal amounts of DMSO as the four 

samples (Table 2.6). Two samples were purged with air and two with argon for a total of 60 s 

and the tubes were immediately capped. After equilibrating for 5 min, one of each of the purged 

samples was subjected to dry ice conditions (-72 ˚C) or room temperature (24 ˚C). After 

adjusting to the respective temperatures, the samples were individually irradiated with the 780 

nm 83 mW laser. After 30 min, the samples were left at 10 ˚C and then the different forms of 

plasmid were separated out via gel electrophoresis. 

pUC19 + + + + + + + + 

Dye – + – + – + – + 

Scavenger + + + + – – – – 

Light – – + + – – + + 
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Table 2.4: The below setup for the argon purging experiment was used to determine the effects 

oxygen may have in the photocleavage mechanism. 

 

 

2.2.4.6 Binding Mode Investigation via Photocleavage Inhibition 

To further investigate particular binding modes for Dye 1, an inhibition assay based on 

compounds with known DNA binding modes provided information regarding the DNA 

interactions of Dye 1. The assay used equal concentrations of inhibitors methyl green (M), 

pentamidine (P), and ethidium bromide (E) with 70 µM Dye 1 in samples containing 38 µM bp 

pUC19 and 10 mM phosphate buffer pH 7.0. Three samples were pre-equilibrated with Dye 1 for 

5 min and three other samples were pre-equilibrated with the inhibitors for 5 min. The samples 

pre-equilibrated with inhibitors were then equilibrated with Dye 1 for 5 min and vice versa. 

Additionally, dark controls and a reference containing 38 µM bp pUC19, 10 mM phosphate 

buffer pH 7.0, and 70 µM Dye 1 were prepared. A negative control containing 38 µM bp pUC19, 

10 mM phosphate buffer pH 7.0, and equal amounts of DMSO was also included. The prepared 

samples were arranged as seen in Table 2.7. The samples were irradiated using the 780 nm 83 

mW laser for 30 min after adjusting the temperature of each sample to -72 ˚C. The different 

forms of plasmid were then separated out via gel electrophoresis.   

Table 2.5: The inhibitors consisted of methyl green (M), ethidium bromide (E), and 

pentamidine (P). Dye 1 (D) was equilibrated in rows 4-6 first and equilibrated in rows 7-9 last. 

 

Dye — + + 	 — + + 

Purging — Argon Air 	 — Argon Air 

Temp. (˚C) 24 24 24 	 -72 -72 -72 

	

Dye — + + + + + + +	 +	

Inhibitor — — — D	+	M D	+	E D	+	P M	+	D E	+	D	 P	+	D	

Light + + — + + + + +	 +	
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3 RESULTS 

3.1 UV/Visible Spectrophotometry  

In addition to determining the appropriate wavelength to irradiate individual dyes, UV-

visible spectroscopy can provide evidence of stability in particular media, whether a dye is 

sufficiently interacting with DNA, the type and degree of aggregation, as well as many other 

physical phenomena. Polar aprotic solvents, in this case DMSO, are particularly useful for 

dissolving and storing dyes because of their hydrophobic structures and polar delocalized charge. 

Therefore, it is essential to understand their stability and aggregation state at relevant 

concentrations. Additionally, comparing the UV-visible spectra of different dyes in DMSO can 

afford an expedient comparison of substituent effects on molar absorptivity and 

hypsochromic/bathochromic shifts in spectra. The three time courses for Dyes 1-3 can be seen in 

Figure 3-1 below. 

 

Figure 3-1: This figure shows the changes in aggregation over time in DMSO for 10 µM of Dyes 

1-3. Absorption spectra recorded in 5 min increments. 
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3.1.1 Absorbance Spectra in DMSO and Methanol 

Figure 3-1 shows the change in absorbance and relative stability over time for 10 µM 

concentrations of Dyes 1-3 in DMSO. It should be noted that besides the sulfur to oxygen 

substitution, the structures are also different in regards to the presence of a quaternary amine on 

the oxygen analog. However, λmax for Dye 1 (793 nm) is slightly red-shifted (15 nm shift from 

788 nm) which agrees with oxygen-sulfur substitutions in other polymethine dyes.18 An unusual 

increase in absorption between 400 and 500 nm is seen for Dyes 1 and 2 in the visible region 

with Dye 2 showing a more rapid increase in absorption over time. This cannot be considered a 

different aggregate form since the phenomenon is occurring much farther down (blue region) the 

absorption spectra. Since this was only observed with Dyes 1 and 2, absorption spectra were 

obtained in methanol using 5 µM concentrations to determine if this was a solvent-related effect. 

Figure 3-3 shows a more consistent comparison with similar oxygen and sulfur substituted 

heptamethine analogs showing similar absorption effects.  

When comparing the initial spectra at t = 0 min for Dyes 1-3 in Figure 3-2, the effects of 

the sulfur substitution can be seen not only in bathochromicity, but also in the increase in molar 

absorptivity at their respective absorption peaks. A better comparison can be seen in Figure 3-3, 

where no change in absorption was observed over time in methanol with lambda max of Dye 1 

and 2 below1.0 AU. Both oxygen and sulfur have similar valence shells, however, sulfur has 

additional p and s orbitals that can contribute to an expanded valence shell while oxygen is 

considerably more electronegative than sulfur. The effects sulfur has on the absorption spectrum 

of the cyanine dye is notable given the advantage of high molar absorptivity in photosensitizers. 

The decrease in molar absorptivity seen in Dye 3 when compared to Dye 1 is notable. This may 

be attributed to the centric-localized positive charge at the meso position of the polymethine 
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bridge on Dye 3 that is seen with many nitrogen-substituted cyanine dyes.39 This form is known 

as a bis-dipole and can limit the compound in terms of applications in photodynamic therapy 

within the therapeutic window.3, 39  

 

Figure 3-2: The absorption spectra of Dyes 1-3 in DMSO at t = 0 min (all dye concentrations 

were 10 µM). All molar extinction coefficients are rough estimates based on the above trials 

only. 

 
 

Figure 3-3: The absorption spectra of Dyes 1 and 2 in methanol at t = 0 min (both dye 

concentrations were 5 µM). Both molar extinction coefficients are rough estimates based on the 

above trials only.   
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3.1.2 Absorbance Spectra with CT-DNA 

Since Dye 1 showed strong absorption in DMSO and methanol at a λmax value near the 780 

nm output of GaAlAs diode lasers, the absorption spectra of Dye 1 in the presence and absence 

of CT-DNA in a 10 mM phosphate buffer pH 7.0 were obtained before continuing with 

photocleavage experiments (Figure 3-3). Although there is some degradation of the dye in the 

absence of DNA (Figure 3-3B), the increased stability of the Dye 1 in the presence of DNA is 

apparent over the 30 min time course (Figure 3-3C). The spectra indicate the evident interaction 

and induced stability the dye has in the presence of DNA with little decrease on the absorption 

and an observed slight red-shift upon DNA addition. This is typical of DNA-dye complex 

absorption spectra, providing further evidence that Dye 1 is sufficiently interacting with DNA.  

 

Figure 3-4: The absorption spectra of 10 µM Dye 1 in the presence and absence of CT-DNA 

(150 µM bp). There is a slight red-shift and hypochromicity in the Dye-DNA complex spectrum 

when compared to the dye absorption spectrum in 10 mM phosphate buffer pH 7.0. 
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Figure 3-5: The CT-DNA titration with Dye 1 in a 10 mM phosphate buffer pH 7.0 shows a 

sharp absorption decrease at slightly below 60 µM bp CT-DNA. All concentrations of CT-DNA 

were corrected for sample dilutions.  

 

In order to determine the concentration of DNA needed to completely bind Dye 1 and 

optimize the experimental parameters for binding mode studies via CD spectroscopy, a CT-DNA 

titration was performed using a 10 µM concentration of Dye 1. As seen in Figure 3-4, there is an 

almost immediate drop in absorption after the second addition of CT-DNA with a corrected 

concentration of 58.6 µM bp. After each subsequent addition of CT-DNA, slight changes in the 

DNA-dye complex absorption spectra occur with the absorption peak at 710 nm decreasing and 

the peak at 792 nm increasing in intensity. The titration was continued until there was no 

observable difference in three consecutive absorbance spectra. The concentrations of CT-DNA 

that provided the highest absorbance at 710 nm (100 µM bp and 120 µM bp) were then used in 

CD/ICD experiments for the two dye concentrations (10 µM and 20 µM) due to the reduced 

sensitivity of the CD detector above 750 nm.  
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3.1.3 Temperature Effects on Aggregation and Absorbance 

In order to determine whether or not differences in aggregation or increased absorbance are 

possibly contributing changes in photocleavage when lowering temperatures, it was necessary to 

record absorption spectra of Dye 1 after subjecting the DNA-dye complex to the different 

temperature conditions. The results in Figure 3-6 show changes in absorption spectra with a 

modest absorption decrease at low temperatures. Interestingly, no precipitation was observed 

within the cuvette for any of the samples. The results suggest that any potential changes in 

absorbance as temperatures decrease may influence to some extent the photocleavage observed. 

However, this does not account for the increase in photocleavage yields at lower temperatures.  

 

Figure 3-6: Temperature effects on absorbance and aggregation were determined to see if any 

difference could explain possible increases in photocleavage yields at low temperatures. Dye 1 

(5 µM) in the presence of 60 µM bp CT-DNA and 10 mM phosphate buffer pH 7.0 subjected to 2 

˚C and 24 ˚C for 10 min before spectra were immediately obtained. A total of four trials were 

done at 2 ˚C and three at 24 ˚C with consistent results between each trial. An obvious decrease 

in the DNA-dye complex absorption spectra is visible at 2 ˚C.  

Ice

Room

Temp.
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3.1.4 Photobleaching at Decreasing Temperature 

To determine if decreased dye photobleaching was occurring at lower temperatures, a 

simple UV-Visible spectrophotometric assay was performed. The results indicate that 

photobleaching is dramatically reduced at colder temperatures as seen in Figure 3-7. Within 3 

min of irradiation at 780 nm, the samples at room temperature were almost completely 

photobleached, signifying the instability of the sulfur-incorporated dye. Peceli et al. also 

indicated that although sulfur dyes maintain significantly higher triplet quantum yields through 

enhanced intersystem crossing, the PDs are also quite unstable when irradiated. This provides 

strong evidence that colder temperatures are directly affecting the apparent photocleavage by 

Dye 1 in the presence of DNA through decreased photobleaching.  

 

Figure 3-7: The absorption spectra before and after irradiation (780 nm with 83 mW for 3 min) 

at room temperature and dry ice conditions which show the degree of photobleaching under the 

different temperatures. All samples contained 60 µM bp CT-DNA, 10 mM phosphate buffer pH 

7.0, and 5 µM of Dye 1. Spectra for dark controls were obtained after the spectra of the 

irradiated samples were obtained. The initial spectrum was used as a reference for any 

degradation that may have taken place over the course of the entire experiment. 
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3.2 Fluorescence Spectroscopy 

As discussed in the paper presented by Peceli et al., sulfur-incorporated PDs tend to have 

very rapid intersystem crossing rates and therefore exhibit relatively negligible fluorescent 

quantum yields.18 In order to gain insight on intersystem crossing rates of Dye 1, it was essential 

to determine its propensity for fluorescence. As seen in Figure 3-9A below, Dye 1 in DMSO 

exhibited low levels of fluorescence when compared to a quinine reference of the same 

concentration (Figure 3-8). When small increments of CT-DNA were added to Dye 1 in the 

presence of 10 mM phosphate buffer and 10 mM EDTA, the compound showed no fluorescence 

(Figure 3-9B). This suggests that nonradiative intersystem crossing (or internal/external 

conversion) are the possible pathways for singlet excited state deactivation. Absorbance spectra 

were obtained using a spectrophotometer and are shown as reference in Figure 3-9. 

 

 

Figure 3-8: The fluorescence emission spectrum of 200 nM quinine in 500 mM sulfuric acid used 

as reference for Dye 1 fluorescence in the presence and absence of CT-DNA. 
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Figure 3-9: The above emission spectra were obtained using a fluorimeter and the absorbance 

spectra were obtained using a separate spectrophotometer. (A) Low fluorescence is observed for 

400 nM Dye 1 in DMSO when compared to 200 nM quinine reference in Figure 3-8. The 

absorbance spectrum shown as a reference consisted of 10 µM Dye 1 in DMSO.  

(B) Fluorescence of 400 nM Dye 1 in the presence and absence of 5 µM bp CT-DNA in 10 mM 

phosphate buffer pH 7.0 and 10 mM EDTA indicates no cyanine fluorescence is observed when 

in the presence or absence of DNA in a phosphate buffer solution. EDTA was used to chelate any 

trace metals that would otherwise diminish any potential fluorescence by Dye 1. The absorption 

spectrum shown as reference consisted of 10 µM Dye 1 with 150 µM bp CT-DNA in 10 mM 

phosphate buffer pH 7.0.  
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3.3 CD Spectroscopy 

Based on the CT-DNA titration using 20 µM of Dye 1 (Figure 3-5), it was determined 

that 60 µM bp to 100 µM bp of CT-DNA would serve as the optimal concentration range for 

showing the strongest induced CD signal to interpret DNA binding mode in the near-infrared 

range. Given the limits of the CD detector at longer wavelengths (as seen in the evident noise 

above 750 nm in Figure 3-10) these concentrations provided the strongest absorption of the 

DNA-dye complex at the 710 nm absorption maximum. A concentration of 100 µM bp of CT-

DNA gave the strongest induced CD signal from 700 to 710 nm in Figure 3-10. As seen in the 

accompanying absorbance spectrum, this correlates with the peak at 710 nm of the DNA-dye 

complex indicating interaction between Dye 1 and CT-DNA.  

As mentioned by Garbett et al. about binding mode determination and ligand affinity 

through CD spectroscopy, intercalators display small induced CD signals at absorption maxima 

when compared to groove binders (contingent on the oscillator strength of the ligand). However, 

signal strength varies according to the probable number of orientations of the ligand within a 

groove, therefore, major groove binders or intercalators that partially fit between base pairs show 

a variety of signals.38 In Figure 3-10, a weak, negative induced CD signal for Dye 1 can be seen 

suggesting that either intercalation or monomeric groove binding is occurring. However, based 

on the structure of Dye 1, it seems less likely that any intercalation is occurring due to the 

indolium ring system. A more robust aromatic system that integrates more than two rings on 

either side of the polymethine bridge would engage in more van der waals interactions within the 

base bases pairs of DNA similar to polycyclic aromatic hydrocarbons.8 Moreover, the indolium 

ring system incorporated into Dye 1 has two methyl groups which purposely inhibit intercalation 

through steric hindrances. Therefore, the compound should not be capable of proceeding through 
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this binding mode. In light of this, the CD spectroscopic results point to groove binding 

interactions.   

 

Figure 3-10: The CD and induced CD spectra of 20 µM Dye 1 in the presence of 10 mM 

phosphate buffer pH 7.0 and 100 µM bp CT-DNA. The absorbance spectrum sample contained 

20 µM Dye 1, 10 mM phosphate buffer pH 7.0, and 100 µM bp CT-DNA as well. 

 

3.4 Photocleavage Experiments 

3.4.1 Decreasing Temperature Effects 

Due to the possibility of thermally-induced DNA cleavage arising from heat from the lasers, 

most photocleavage experiments were done on ice. When dry ice was additionally employed in 

the original photocleavage experiments of Dye 1, the low temperature produced an unexpected 

and remarkable enhancement in photocleavage yields as seen in Figure 3-11 (See appendix for 

other three trials in Figures 0.1-0.3). Therefore, low-temperature effects were investigated in this 

thesis to determine or pinpoint the specific cause of these results. Interestingly, in Figure 3-12 a 

strong correlation between temperature and % nicked plasmid at 24 ˚C, 0 ˚C, and -72 ˚C was 

observed, indicating physical state (solid vs. liquid) could not account for the increase cleavage. 

700	nm
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It should be noted that the increase in cleavage was observed both in the lower temperature 

liquid (0 ˚C) and solid states (-72 ˚C). Dark controls were also included in a separate experiment 

and can be seen in the Appendix (Figure 0.4). 

 

Figure 3-11: As the temperature conditions are decreased an obvious increase in nicked and 

linear forms of plasmid DNA can be observed, indicating either an indirect or direct correlation 

between temperature and photocleavage exists. Samples contained 38 µM bp pUC 19, 10 mM 

phosphate buffer pH 7.0, and 50 µM of Dye 1 or equal amounts of DMSO (Lanes 1, 5 and 9). 

 

Figure 3-12: This graph shows a correlation between the three temperatures used in the 

photocleavage experiments with yields of nicked plasmid. These temperatures were chosen based 

on the different available cooling methods that provided consistent results. 
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3.4.2 Photocleavage Titration 

The photocleavage titration experiment was done in order to optimize concentrations of Dye 

1 for the different samples of plasmid that were prepared throughout the course of research. The 

titration seen in Figure 3-13 shows the typical correlation seen between pUC19 photocleavage 

and the concentration of Dye 1. The difference in % nicked is more prominent between 25 µM 

and 50 µM of dye and continues to increase between 50 µM and 100 µM. Most experiments 

were carried out at 50 µM of Dye 1 except for the preliminary kinetics experiment, argon 

purging, and the photocleavage inhibition assay which were carried out at 70 µM. This is 

because this yielded similar photocleavage yields between the various pUC19 stocks that were 

prepared. It should be noted that the linear form of the plasmid appears at concentrations higher 

than 50 µM despite the lack of diffusion of molecules at -72 ºC.  

 

 

Figure 3-13: This photocleavage titration was done to show the increase in photocleavage as a 

function of dye concentration. Samples contained different concentrations of Dye 1 (Lanes 2-5) 

with 10 mM phosphate buffer pH 7.0 and 38 µM bp pUC19 with a reference containing equal 

amounts of DMSO (Lane 1). Samples were irradiated at 780 nm with 83 mW laser for 30 min at -

72 ˚C. 

 

A preliminary kinetics experiment using 50 µM and 70 µM concentrations of Dye 1 at 30 

min and 60 min indicate little to no difference between the two allotted irradiation times (Figure 

Lane 1 2 3 4 5

Dye	1 — 25 µM 50 µM 75	µM 100	µM

%	Nicked 12 26 32 38 46
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3-14). Based on this information, the first successful kinetics experiment was performed using 70 

µM Dye 1 giving the % supercoiled observed in previous irradiation experiments. The 

differences in % supercoiled for the kinetics experiment seen in Figure 3-15 suggest that either 

the assay needs to be adjusted or multiple trials must be completed to obtain consistent data. Fu  

 

Figure 3-14: The initial photocleavage kinetics experiment to determine the sufficient end time 

for future kinetics experiments. Samples contained either 50 µM or 70 µM concentrations of Dye 

1 in the presence of 10 mM phosphate buffer 7.0 and 38 µM bp pUC19. Samples were irradiated 

using the 83 mW 780 nm laser for 30 or 60 min at -72 ˚C. 

 

Lane 1 2 3 4

Time	(min) 30 60 30 60

70	µM	Dye	1 - - + +

50	µM	Dye	1 + + - -

%	Nicked 39 38 40 42
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Figure 3-15: The kinetics photocleavage assay to determine the rate order of the photocleavage 

reaction. Samples contained 70 µM of Dye 1, 10 mM phosphate buffer pH 7.0, and 38 µM bp 

pUC19. Samples were irradiated with a 780 nm 83 mW laser at -72 ˚C for the times listed above. 

 

Inconsistencies in the % supercoiled after irradiation can be seen in the kinetic graphs in 

Figure 3-16, Figure 3-17, and Figure 3-18, which test for second, first, or zero order rate laws. 

Even when taking out outliers, the R2 values are too low to make definitive conclusions on 

reaction order. Further optimizing of this particular kinetics assay is necessary for more 

consistent results. The solid matrix employed may affect the reaction rate and rate law in a 

different manner than reactions carried out at higher temperatures. Since photocleavage yields 

were shown to be heavily affected by temperature this complicates designing an adequate 

experimental setup that would provide consistent results for determining the rate order.  

Lane 1 2 3 4 5 6 7 8 9 10 11 12 13

Time	(min) 1 2 3 4 6 8 10 15 20 30 30 — —

Dye	1 + + + + + + + + + + — + —

780	nm	(83	mW) + + + + + + + + + + + — —

%	Supercoiled 84 75 71 66 66 61 58 56 56 50 94 94 94



41 

 

Figure 3-16: This graph shows the % supercoiled vs. time as a test for zero order reaction 

kinetics. The reactions were carried out consistently at -72 ˚C. A 780 nm 83 mW laser was 

utilized for each sample. Two outliers (1 and 10 min) were removed and are not shown in the 

above plot. 

 

 

Figure 3-17: This graph shows the natural log of supercoiled concentration vs. time as a test for 

first order reaction kinetics. The reactions were carried out consistently at -72 ˚C. A 780 nm 83 

mW laser was utilized for each sample. Two outliers (1 and 10 min) were removed and are not 

shown in the above plot. 
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Figure 3-18: This graph shows the reciprocal plot of supercoiled concentration vs. time which 

tests for second order reaction kinetics. The reactions were carried out consistently at -72 ˚C. A 

780 nm 83 mW laser was utilized for each sample. Two outliers (1 and 10 min) have been 

remove to compare the most consistent cleavage yields. 

3.4.3 Scavenger Experiments and Argon Purging 

The scavenger experiments and argon purging provide evidence for the involvement of 

specific ROS and the requisite of oxygen in the photocleavage mechanism, respectively. Sodium 

benzoate and potassium iodide are known to react with hydroxyl radicals (∙OH) therefore any 

involvement of ∙OH within the overall photocleavage mechanism can be determined based the 

decrease in photocleavage yields. Likewise, sodium azide is known to react with singlet oxygen 

(1O2) and inversely D2O can increase the lifetime of 1O2. This provides evidence for whether or 

not a Type II energy transfer is occurring or if the Type I electron transfer is the foremost 

pathway for generating ROS. Additionally, EDTA is a well-known metal chelator which can 

scavenge trace redox-active metals that may contribute to ROS production via Fenton-like 

chemistry.  

By purging with argon gas, this decreases the amount of oxygen within the sample. Although 

oxygen is generally considered a necessary component in photocleavage mechanisms, enhanced 

photocleavage in anaerobic conditions can imply an oxygen-independent photocleavage 
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mechanism may be occurring. Additionally, ROS have been shown to cause photobleaching, 

therefore, reduced photobleaching may also contribute to an observed enhancement in 

photocleavage yields if an oxygen-independent mechanism exists.   

Based on the data shown in Figure 3-19, the average photocleavage inhibition indicates an 

aerobic-involved photocleavage mechanism in addition to the participation of trace 

concentrations of redox metals found in the solution.40  All the gels that were used to calculate % 

inhibition in the scavenger experiments can be seen in the Appendix (Figures 0.5-0.10). 

 

Figure 3-19: This chart consists of the averages over three trials and standard deviations of the 

ROS scavenger experiments (except for KI which was done in one trial) in addition to the argon 

purging experiments. The argon purging enhancement was calculated by the difference of % 

total nicked DNA between the samples purged with air and the samples purged with argon 

divided by the samples purged with air. Similar calculations were done for the other scavenger 

experiments with the difference of % total nicked DNA without scavenger and the % total nicked 

DNA with scavenger divided by % total nicked DNA without scavenger.   
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Figure 3-20: The photocleavage experiment using air and argon purging to determine the role 

molecular oxygen plays in the photocleavage mechanism. Samples were gently purged with 

argon or air for 1 min. Samples containing 70 µM Dye 1 or equal amounts of DMSO (Lane 1), 

10 mM phosphate buffer pH 7.0, and 38 µM bp pUC19 were irradiated using 780 nm 83 mW 

lasers for 30 min after adjusting to the appropriate temperature. 

 

Figure 3-20 shows the notable enhancement in photocleavage when samples purged with 

argon and compared to samples purged with air. The above photocleavage experiment shows a 

increased in % nicked form DNA by 5% which represents a 20% increase when compared to the 

sample purged with air. This experiment was repeated four times with similar results in three of 

the four trials (see Appendix Figures 0.9-0.10). Hypothetically this has great implications for 

cancer therapeutics in addition to photosensitizing agents given their reduced efficacy in tumors 

with low levels of oxygen. A sulfur-involved radical mechanism has been proposed and 

discussed previously in literature, however, extensive studies have yet to be performed.24   

Temp.	(°C) -72 -72 -72
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3.4.4 Binding Mode Investigation via Photocleavage Inhibition 

 

Figure 3-21: The photocleavage inhibition binding investigation consisted of using compounds 

with established DNA binding modes to inhibit photocleavage by Dye 1. The samples contained 

equal concentrations (70 µM) of either methyl green (M), ethidium bromide (E), or pentamidine 

(P) with 70 µM of Dye 1. The samples also contained 10 mM phosphate buffer pH 7.0 and 38 

µM bp pUC19. The samples were equilibrated for 5 min with Dye 1 first for 5 min (D + I) or 

with the inhibitor first for 5 min (I + D) and then vice versa. Samples were kept at -72 ˚C while 

each were individually irradiated using an 83 mW 780 nm laser for 30 min. The other trials can 

be seen in the Appendix Figures 0.11-0.12) 

 

The binding mode investigation through photocleavage inhibition was used to accommodate 

the UV-visible absorption and CD spectroscopy data. By using reagents with established binding 

modes, inhibition of photocleavage in solutions equilibrated with the reagents and Dye 1 

provides insight into the interactions of Dye 1 with DNA. Since these reagents do not absorb 

light in the presence and absence of DNA at 780 nm, the observed photocleavage can be only 

attributed to the absorbance of light by the DNA-dye complex (See Appendix Figure 0.13 for 

absorbance spectra). Most reagents showed inhibition of photocleavage by Dye 1 in every trial, 

especially when the reagents were equilibrated with pUC19 before adding Dye 1 (Figure 3-21). 

Although the most consistent inhibition was observed with methyl green (major groove binder), 

Lane 1 2 3 4 5 6 7 8 9

Inhibitor — — — D	+	M D +	E D	+	P M +	D E	+	D P	+	D

Dye1 — + + + + + + + +

Light + + — + + + + + +

%	Nicked 27 20 24 24 21 17 25



46 

the small relative amount of inhibition with the three reagents suggests that Dye 1 may have 

more than one binding mode.41 

 

Figure 3-22: This graph shows the percent inhibition of nicked DNA by compounds with known 

binding modes. These values represent averages over three trials with standard deviations 

shown through error bars. Order of equilibration of added compounds shown as either D + I or 

I + D. Abbreviations: Dye 1 (D), Inhibitor (I), methyl green (M), ethidium bromide (E), and 

pentamidine (P). 

 

Pentamidine is a known minor groove binder with a dissociation constant of 6.07 x 10-5 M. 

Little to no inhibition is observed with DNA pre-equilibrated with Dye 1 and relatively little 

inhibition is observed with DNA pre-equilibrated with pentamidine first (Figure 3-22). This 

suggests that the binding modes of Dye 1 do not likely include minor groove. Ethidium bromide 

is a well-known intercalator (dissociation constant of 1.00 x 10-7 M) and showed the most drastic 

difference in inhibition between the samples pre-equilibrated with Dye 1 and samples pre-

equilibrated with ethidium bromide.42-43 However, based on the structure of Dye 1 it is unlikely 

that the inhibition shown in Figure 3-22 is due to competitive binding between Dye 1 and 

ethidium bromide. Based on the binding studies in this thesis, it is likely that Dye 1 is binding 
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through different orientations within the major groove and possibly through electrostatic 

interactions with the negatively charge phosphate backbone of DNA. Groove binding is also 

supported through the induced CD spectrum shown in Figure 3-10.   

 

4 CONCLUSIONS 

The effects of substituting atoms within Group 6 of the periodic table (sulfur to oxygen) is 

dramatic as seen in the absorption spectra. The high molar absorptivity of the sulfur compound 

(Dye 1) and absence of a positively charged quaternary amine on the meso-substituted allowed 

for further photocleavage investigations. Furthermore, as discussed in full detail by Pascal et al. 

through density functional theory calculated BLA and 13C NMR chemical shifts, by substituting 

nitrogen (Dye 3) this creates a bis-dipole cyanine form with the positive charge being more 

localized at the meso position of the bridge.39 This effectively shifts the absorption spectrum into 

the blue range and lowers the molar absorptivity of the dye and DNA-dye complex. The of low 

temperatures were shown to have little to no effect on the DNA-dye absorption spectra, 

indicating that changes in aggregation did not occur and could not account for the increase in 

photocleavage yields.  

Fluorescence and internal conversion are considered competitive pathways to the 

nonradiative intersystem crossing pathway. Therefore, fluorescence emission spectra in the 

absence and presence of DNA were obtained. Minimal fluorescence in DMSO and no observed 

fluorescence with increasing amounts of DNA indicated that Dye 1 is a poor fluorophore. Based 

on the unique absorption spectrum and the lack of fluorescence, Dye 1 should be a relatively 

efficient photosensitizer. This is also supported by nonlinear and linear optical properties of 

sulfur-incorporated squaraine dyes investigated by Peceli et al. through femto- and picosecond 
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pulsed lasers via single and double-pump probes and Z-scan techniques. This allowed for 

different quantum yield state populations to be calculated such as ISC yields and lifetimes of the 

triplet/singlet excited states. When comparing PDs utilizing the heavy atom effect with sulfur 

and oxygen squaraine dye analogs, they found that the sulfur incorporated squaraine dyes 

provided the highest singlet oxygen production and the largest triplet quantum yields, 

approaching almost complete unity. This begged the question: why does this not translate into 

higher DNA photocleavage yields with Dye 1 at higher temperatures? 

Peceli et al. also considered the instability of sulfur dyes in their paper which may explain 

the low photocleavage yields at room temperature shown with Dye 1 are likely attributable to 

short photobleaching times (i.e. short triplet state lifetimes caused by rapid photobleaching). 

Through the photobleaching vs. temperature absorption assay, it was determined that 

photobleaching times are remarkably augmented at lower temperatures likely due to decreased 

internal conversion pathway as exhibited by low-temperature fluorescence experiments in 

literature. Fluorescence has been shown to increase at lower temperatures which has been 

discussed as being analogous to increasing the density of the solution for fluorophores, resulting 

in limited rotational and vibrational deactivation pathways.34 Ultimately, this could be viewed as 

akin to increased photocleavage yields at lower temperatures that are presented in this thesis. 

Therefore, increased photocleavage yields at low temperatures shows the potential of Dye 1 as 

an effective photosensitizing agent as long as the issues concerning photobleaching can be 

addressed through new, stable analogs.   

The scavenger experiments reveal the involvement of relevant reactive oxygen species in the 

photocleavage mechanism of the DNA when near-infrared light is used to irradiate samples. This 

is necessary to show that oxygen still plays a contributing role even at lower temperatures and 
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within solid aqueous solutions. The observed decrease in photobleaching in conjunction with the 

potential involvement of sulfur radicals by the Dye 1 also indicate potential contributions to the 

photocleavage yields.  

The binding mode studies (CD and photocleavage inhibition) indicate that more than one 

binding mode may be occurring for Dye 1. To refine the specificity of binding interaction, an 

asymmetrical cyanine dye that incorporates sulfur is proposed and could be a possible path 

forward in improving photocleavage yields. By including a ring system that is prone to 

intercalation on one side of the cyanine dye, this could reduce any probable groove binding and 

aggregation phenomena. Moreover, this may result in higher anaerobic cleavage yields at higher 

temperatures by reducing oxygen interaction which is known to contribute to photobleaching.34 

Since it has been shown herein that sulfur radicals may be contributing to the photocleavage 

mechanism in the absence of oxygen, a precise intercalating mode could afford a photo-induced 

sulfur radical mechanism to dominate. This could have a potentially big impact given that many 

therapeutic agents in the treatment of cancer lack efficacy in oxygen-starved areas of tumors.   

In summary, the reduced photobleaching observed at low temperatures combined with 

the unique nonradiative pathways exhibited by many sulfur-incorporated polymethines dyes may 

have resulted in increased photocleavage yields at low temperatures. At these temperatures, 

reduced photobleaching could also likely be accompanied by a decrease in vibronic relaxation, a 

known competitive pathway that depopulates the excited singlet and triplet states. These findings 

as well as increased photocleavage yields under hypoxic conditions represent a promising path 

forward in developing better dyes for applications in photodynamic therapy.  
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APPENDIX  

 

Figure 0.1: Trial #1 -- As the temperature conditions are decreased, an obvious increase in 

nicked and linear forms of plasmid DNA can be overserved, indicating that either an indirect or 

direct correlation between temperature and photocleavage exists. Samples contained 38 µM bp 

pUC 19, 10 mM phosphate buffer pH 7.0, and 50 µM of Dye 1 or equal amounts of DMSO 

(Lanes 1, 5 and 9). 

 

Figure 0.2: Trial #3 -- As the temperature conditions are decreased, an obvious increase in 

nicked and linear forms of plasmid DNA can be overserved, indicating that either an indirect or 

direct correlation between temperature and photocleavage exists. Samples contained 38 µM bp 

Lane 1 2 3 4 5 6 7 8 9 10 11 12

Dye	1 — + + + — + + + — + + +

Wattage	(mW) 69 69 80 83 69 69 80 83 69 69 80 83

Temperature	
(°C)

24 24 24 24 0 0 0 0 -72	 -72	 -72	 -72	

%	Supercoiled 85 88 85 78 77 81 63 64 67

Lane 1 2 3 4 5 6 7 8 9 10 11 12

Dye	1 — + + + — + + + — + + +

Wattage	(mW) 69 69 80 83 69 69 80 83 69 69 80 83

Temperature	
(°C)

24 24 24 24 0 0 0 0 -72	 -72	 -72	 -72	

%	Supercoiled 86 84 85 81 80 80 62 64 63
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pUC 19, 10 mM phosphate buffer pH 7.0, and 50 µM of Dye 1 or equal amounts of DMSO 

(Lanes 1, 5 and 9). 

 

 

Figure 0.3: Trial #4 -- As the temperature conditions are decreased, an obvious increase in 

nicked and linear forms of plasmid DNA can be overserved, indicating either an indirect or 

direct correlation between temperature and photocleavage exists. Samples contained 38 µM bp 

pUC19, 10 mM phosphate buffer pH 7.0, and 50 µM of Dye 1 or equal amounts of DMSO (Lanes 

1, 5 and 9). 

 

Figure 0.4: A dark control experiment over the three temperatures was done to show that only 

light within the Dye-DNA absorption spectrum contributed to the observed DNA cleavage. The 

samples consisted of 50 µM Dye 1, 10 mM phosphate buffer pH 7.0, and 38 µM bp pUC19. The 

references that did not contain Dye 1 had equal amounts of DMSO. Positive controls were 

incorporated as a reference.  

 

Lane 1 2 3 4 5 6 7 8 9 10 11 12

Dye	1 — + + + — + + + — + + +

Wattage	(mW) 69 69 80 83 69 69 80 83 69 69 80 83

Temperature	
(°C)

24 24 24 24 0 0 0 0 -72	 -72	 -72	 -72	

%	Supercoiled 76 81 76 71 67 70 61 56 72

Lane 1 2 3 4 5 6 7 8 9

Temperature	(˚C) 24 24 0 0 -72 -72 24 0 -72

Dye1 — + — + — + + + +

Light — — — — — — + + +
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Figure 0.5: These three trials consisted Dye 1 (50 µM) and/or EDTA (100 mM) in a 10 mM 

phosphate buffer pH 7.0 with 38 µM bp pUC19. Two samples containing the inhibitor and two 

samples containing Dye 1 were irradiated using an 83 mW 780 nm laser for 30 min at -72 ˚C. 

Dark controls were also kept at -72 ˚C for 30 min.  

 

 

Figure 0.6: These three trials consisted of Dye 1 (50 µM) and/or sodium benzoate (100 mM) in a 

10 mM phosphate buffer pH 7.0 with 38 µM bp pUC19. Two samples containing the inhibitor 

and two samples containing Dye 1 were irradiated using an 83 mW 780 nm laser for 30 min at -

72 ˚C. Dark controls were also kept at -72 ˚C for 30 min. 

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

EDTA + + + + — — — —

Light — — + + — — + +

%	Nicked 6 - 31

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

EDTA + + + + — — — —

Light — — + + — — + +

%	Nicked 3 - 24

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

EDTA + + + + — — — —

Light — — + + — — + +

%	Nicked 5 - 32

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

NaBz + + + + — — — —

Light — — + + — — + +

%	Nicked 6 - 27

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

NaBz + + + + — — — —

Light — — + + — — + +

%	Nicked 10 - 22

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

NaBz + + + + — — — —

Light — — + + — — + +

%	Nicked 10 - 27
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Figure 0.7: These three trials consisted of either 76% D2O or dH2O in a 10 mM phosphate buffer 

pH 7.0 with 38 µM bp pUC19 and 50 µM of Dye 1. Two samples containing D2O with Dye 1 and 

two samples containing dH2O with Dye 1 were irradiated using an 83 mW 780 nm laser for 30 

min at -72 ˚C. Dark controls were also kept at -72 ˚C for 30 min. 

 

 

Figure 0.8: This single trial consisted of Dye 1 (70 µM) and/or potassium iodide or potassium 

chloride (10 mM and 20 mM) in a 10 mM phosphate buffer pH 7.0 with 38 µM bp pUC19. All 

samples were irradiated using an 83 mW 780 nm laser for 30 min at -72 ˚C. 

 

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

D2O + + + + — — — —

Light — — + + — — + +

%	Nicked 29 - 29

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

D2O + + + + — — — —

Light — — + + — — + +

%	Nicked 31 - 29

Lane 1 2 3 4 5 6 7 8

Dye1 — + — + — + — +

D2O + + + + — — — —

Light — — + + — — + +

%	Nicked 25 - 25

Lane 1 2 3 4 5

Temperature	(˚C) -72 -72 -72 -72 -72

Dye1 + + + + +

KI	(mM) — — — 10 20

KCl (mM) — 10 20 — —

%	Nicked 37 40 35 27 23
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Figure 0.9: Trial #2 -- The photocleavage experiment using air and argon purging to purged 

with argon or air for 1 min. Samples containing 70 µM Dye 1 or equal amounts of DMSO (Lanes 

1 and 5), 10 mM phosphate buffer pH 7.0, and 38 µM bp pUC19 were irradiated using 780 nm 

83 mW lasers for 30 min after adjusting to the appropriate temperature. 

 

 

 

Figure 0.10: Trials 3,4, and 5 -- The photocleavage experiment using air and argon purging to 

determine the role molecular oxygen plays in the photocleavage mechanism. Samples were 

gently purged with argon or air for 1 min. Samples containing 70 µM Dye 1, 10 mM phosphate 

buffer pH 7.0, and 38 µM bp pUC19 were irradiated using 780 nm 83 mW lasers for 30 min 

after adjusting to the appropriate temperature. These three trials were only done at -72 ˚C. 

 

Temp.	(°C) 24 24 24 24 -72 -72 -72 -72

Dye1 --— + + + — + + +

Purge --— — Argon Air — — Argon Air

%	Nicked 18 14 - 28 24

Temp.	(°C) -72 -72 -72 -72 -72 -72

Dye1 + + + + + +

Purge Argon Air Argon Air Argon Air

%	Nicked 30 37 35 30 33 26
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Figure 0.11: Trial 2 -- The photocleavage experiment using air and argon purging to determine 

the role molecular oxygen plays in the photocleavage mechanism. Samples were gently purged 

with argon or air for 1 min. Samples containing 70 µM Dye 1 or equal amounts of DMSO (Lanes 

1 and 4), 10 mM phosphate buffer pH 7.0, and 38 µM bp pUC19 were irradiated using 780 nm 

83 mW lasers for 30 min after adjusting to the appropriate temperature. 

 

 

 

Figure 0.12: Trial 3 -- The photocleavage experiment using air and argon purging to determine 

the role molecular oxygen plays in the photocleavage mechanism. Samples were gently purged 

with argon or air for 1 min. Samples containing 70 µM Dye 1 or equal amounts of DMSO (Lanes 

1 and 4), 10 mM phosphate buffer pH 7.0, and 38 µM bp pUC19 were irradiated using 780 nm 

83 mW lasers for 30 min after adjusting to the appropriate temperature. 

 

 

Lane 1 2 3 4 5 6 7 8 9

Inhibitor — — — D	+	M D +	E D	+	P M +	D E	+	D P	+	D

Dye1 — + + + + + + + +

Light + + — + + + + + +

%	Nicked 29 24 29 32 19 21 26

Lane 1 2 3 4 5 6 7 8 9

Inhibitor — — — D	+	M D +	E D	+	P M +	D E	+	D P	+	D

Dye1 — + + + + + + + +

Light + + — + + + + + +

%	Nicked 27 20 24 24 21 17 25
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Figure 0.13: Absorption spectra of the inhibitor reagents used in the photocleavage binding 

assay in the presence and absence of 100 µM bp CT-DNA in 10 mM phosphate buffer pH 7.0. 

The concentration of each inhibitor is 50 µM (All spectra recorded by Kanchan Basnet.) 
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