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 MANUAL AND AUTOMATIC TRANSLATION FROM SEQUENTIAL TO PARALLEL 

PROGRAMMING ON CLOUD SYSTEMS 

 

by 

 

 

BING LI 

 

Under the Direction of Yi Pan, PhD 

 

 

ABSTRACT 

Cloud computing has gradually evolved into an infrastructural tool for a variety of 

scientific research and computing applications. It has become a trend for many institutions and 

organizations to migrate their products from local servers to the cloud. One of the current 

challenges in cloud computing is running software efficiently on cloud platforms since many 

legacy codes cannot be executed in parallel in cloud contexts, which is a waste of the cloud’s 

computing power. To solve this problem, we have researched ways to translate code from 

sequential to parallel cloud computing using three categories of translation methods: manual, 

automatic, and semi-automatic.  

 

The performance of manual translation result is better than the other two types of 

translation’s. However, it is costly to manually redesign and convert current sequential codes 



into cloud codes. Thus, the automatic translation of sequential codes to parallel cloud 

applications is one approach that could be taken to resolve the problem of code migration to a 

cloud infrastructure. During this research, two automatic code translators, Java to MapReduce 

(J2M) and Java to Spark (J2S), are developed to translate code automatically from sequential 

Java to MapReduce and Spark applications. A semi-automatic translation method is proposed, 

which is the combination of manual and automatic translation and performs well on large 

amounts of data with small fragment sizes. 

 

This dissertation provides details about our sequential to parallel cloud code translation 

research in last four years. The experimental results not only indicate that translators can 

precisely translate a sequential Java program into parallel cloud applications but also show that it 

can speed up performance. We expect that an almost linear rate of speedup is possible when 

processing large datasets. However, some constraints still need to be overcome so more features 

can be implemented in future work. It is believed that our translators are the ideal models for 

code migration and will play an important role in the transition era of cloud computing.  

 

 

 

 

INDEX WORDS: Java, Hadoop, Spark, MapReduce, Cloud Computing, Code Migration, 

Algorithm, Bioinformatics  
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1 INTRODUCTION  

Cloud computing is a new architectural model that provides sufficient computing 

resources (hardware and software) to users economically. It has proven very successful in big 

data applications such as database applications and search engines. The fundamental step is to 

move jobs from conventional servers to shared cloud servers. Cloud servers provide superior 

services to users than those provided by personal computers or small servers [1]. The two major 

advantages of cloud computing are scalability and efficiency. They bring more powerful and 

economical computing models to users because of their large scale and resource sharing. Users 

only need to pay for the time and the assigned computing resources rather than purchasing 

expensive hardware equipment.  

All users can benefit from deploying their applications on cloud server because of the 

cheaper costs of computing and storage resources. At the same time, the applications 

implementing parallel computing techniques or consuming large data storage can take full 

advantage of the scalability of cloud computing. Therefore, more institutions and organizations 

have transferred their work to cloud servers, which has led to an increasing demand for software 

engineers who are skilled in cloud computing [2]. Expanding the horizon of cloud computing 

systems so more applications can be executed in the cloud has become a major challenge. 

Although parallel programming models have been studied on many different platforms, 

research on programming models on cloud systems is still in its infancy. Implementing parallel 

programs on a cloud server efficiently has always been an issue [3]. Programs developed for 

conventional platforms lack the parallel capability of cloud platforms. Three feasible solutions 

for the transition to cloud computing are mirror copying, de novo development, and automatic 

translation.  
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Mirror copying is a simple method to deploy local applications to a cloud system. 

Apparently, its migration cost is low, but its performance can barely be improved because it does 

not take advantage of the parallel architecture. Many companies and institutions have moved 

their systems from small private computer clusters to public cloud servers using the mirror 

copying method, which is the easiest way, by taking simple migration steps to reduce labor 

consumption. However, one significant benefit of migrating from one small private server to a 

larger public cloud server is more hardware resources can be allocated. The pay-as-you-go 

payment method of cloud services improves processing ability without the need for maintaining 

large, complicated equipment. However, the mirror copying method limits program scalability 

because these programs still work in the original mode, which is the single thread or non-scalable 

parallel mode.  

De novo development, or the manual translation method, can effectively overcome the 

limitation of the mirror copying approach but is the most expensive in labor costs. It is the 

opposite of the mirror copying method and has high resource utilization and migration costs. 

Developers must refactor or even redesign original programs, and there is almost no quick way 

to do so, such as keeping the top program architecture and merely replacing the bottom code 

libraries, because of the differences between sequential and parallel modes. Therefore, besides 

labor consumption, the cost of training currently-employed developers is also enormous.  

Automatically translating the targeted code to the desired cloud computing model is a 

feasible method of code migration which can simultaneously reduce migration costs and avoid 

resource utilization limitations. It is a middle point between mirror copying and the de novo 

method. Considering the huge demand for cloud computing, many institutions move their 

products from local equipment to cloud servers. Whether choosing to hire new engineers or 
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retrain current employees, employers will spend a lot to transform their current products so they 

will be compatible with cloud computing. Apparently, if a new way is invented to automatically 

convert existing local programs to cloud programs, it would be well received in the cloud 

computing community.  

This research focuses on sequential to parallel cloud computing code translation, 

especially in three categories: manual translation (de novo), automatic translation, and semi-

automatic. The motivation of this research is to find the efficient and economical ways of code 

migration from sequential to parallel computing on the cloud system. Two automatic code 

translators, Java to MapReduce (J2M) and Java to Spark (J2S) translators, are the major 

contributions in this paper. There is no code translator offering sequential to parallel cloud 

computing code translation service. The J2M and J2S translators are the prototypes of this type 

of translator and have excellent performance results in evaluation experiments. The details of my 

research will be described in following chapters.  

Our research started from a manual translation application that is a bioinformatics 

research project which includes a bioinformatics researcher as a collaborator. The detail of this 

project is demonstrated in chapter two. Inspired by this manual translation project, two automatic 

translators, Java to MapReduce and Java to Spark, were developed to reduce the costs of code 

migration. They are introduced in chapters three and four, respectively. Finally, a semi-automatic 

translation method is proposed in chapter five to improve the capabilities of these two 

translators. 
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2   MANUAL TRANSLATION 

Cloud computing techniques can efficiently improve the efficiency of researching data- 

and computation-intensive problems. However, many researchers do not have the necessary 

programming skills to develop a cloud-based application. One possible way to implement cloud 

computing techniques in research projects is to collaborate with other skilled researchers. In the 

past several years, I have cooperated with many researchers who have no skills to help them 

apply cloud computing tools. This chapter demonstrates the CGI investigation project [4] as an 

example and describes how we can use cloud computing techniques to improve performance.  

 

2.1 Problem 

Since sequencing costs have decreased significantly, billions of human genomes could be 

sequenced in the next decade [5]. The enormous volume of genome sequencing data increases 

the difficulty of biological analysis because conventional computing resources are not suitable 

for handling large amounts of biological data. However, emerging cloud computing platforms 

such as Apache Spark provide efficient and economical ways for researchers to analyze large 

amounts of data. Recently, many computational biology researchers have benefited from 

implementing cloud computing tools in big data analytics [6] [7]. In this study, a cloud-assisted 

solution based on the Apache Spark framework has been applied to redefine and investigate CpG 

islands, which are essential epigenetic markers for biological processes in DNA genome 

sequences. 
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2.1.1 CpG Island  

CpG islands are important structures in DNA genomes, and they are densely contained in 

specific genome regions. A CpG site refers to the area where nucleic acids cytosine (C) and 

guanine (G) occur together along a DNA sequence in the 5' to 3' direction, and p is a phosphate 

molecule located between dinucleotides. Compared with fifteen other combinations, CpG 

content is the lowest in DNA genomes, which is typically only around 1% [8]. Scientists have 

found that many biological processes appear closely related to a high density of CpG contents. In 

vertebrates, DNA methylation usually occurs in CpG islands, and adding methyl to cytosine can 

hinder transcription and silence genes. This operation can further trigger gene regulatory 

differentiation and epigenetic issues. In mammalian genomes, CpG islands are crucial markers 

when identifying biological elements and processes which play essential roles in gene regulation, 

gene mutation, DNA methylation, chromosome inactivation, epigenetic inheritance, and 

nucleosome retention [9]. The computational method for investigating CpG islands is 

fundamental and must be efficient in many biological studies because conventional bisulfite 

modification-based methods and some new whole-genome sequencing techniques are time-

consuming [10] [11]. 

The definition of CpG islands is required to constrain the computing procedure in the 

computational detection of CpG islands. Generally, CpG islands are termed CpG-rich regions 

where epigenetic processes are closely related to the methylation status. The definition of CpG 

islands has three widely accepted criteria: (1) the general length of a CpG island is larger than 

200 nucleotides, (2) the ratio of the observed and expected CpG content is ≥ 0.6 [12], and (3) 

%G+C content is ≥ 50%. 
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These threshold-based criteria are fundamental for most existing computational CpG 

island prediction methods, but they have also caused CpG islands deviation in many experiments 

[10] [13]. Experiments verified that these criteria are violated in many cases, such as when the 

length of a CpG island is between eight and a few thousand nucleotides, and the percentage of 

G+C can be less than 50% [14]. Thus, the present threshold-based definition of a CpG island 

must be modified, and the detection of CpG islands is not merely a statistical task. The 

redefinition should comprehensively consider these existing problems since many unrevealed 

rules could be hidden in the CpG-enriched regions. 

Since the location of genome-wide CpG islands is relevant to the chromatin structure of 

nucleosomes H3K4me3 and H3K27me3, a CpG island’s structure could play a fundamental role 

in establishing chromatin structures in the pluripotent genome [15]. Thus, a CpG island’s 

structure may contain some specific patterns that are hidden in numerous genome sequences and, 

therefore, are not visible. Since a CpG island is defined using coarse granularity, it is necessary 

to re-examine and investigate a new definition. Therefore, to take advantage of biological big 

data techniques, the Markov model and CpG box are introduced in our examination and 

investigation. 

Theoretically, if the length of a genome sequence is n, the total number of possible 

structures is 4# because each location in the genome sequence has four possible nucleotides. Due 

to the limitations of current computing techniques, thoroughly exploring such an enormous 

number of genome sequence structures is an impossible mission. Therefore, applying computing 

algorithms to reduce computing space is a feasible approach when studying the structure of a 

large genome sequence. 



7 

A CpG box means that a sequence which starts and ends with CpGs, as well as a CpG 

island, can be viewed as a set of CpG boxes. Therefore, a CpG island’s structure can be 

measured by investigating CpG boxes. This research was inspired by analyzing the distance 

between CpGs [14] [16] [17]. Since a distance analysis outlines the properties of DNA’s primary 

structures and appearance, and the CpG box also includes the features of the primary structure, it 

is easy to apply the Markov chain model to the re-examination and investigation of CpG islands. 

 

2.1.2 Spark 

The Apache Spark platform is an extremely fast cluster computing platform which 

supports multiple programming languages including Scala, Java, Python, and R. Compared with 

Hadoop, it has more powerful functionality and provides an efficient and robust platform for 

developers. Moreover, Spark is a complete processing system for large-scale parallel distributed 

computing integrated with multiple functionalities such as job scheduling, fault recovery, and 

memory management. Implementing proposed computing models on Spark can reduce the 

complexity of the system design and benefit from its efficiency. 

The resilient distributed dataset (RDD) is the core of the Spark platform, and it is a 

distributed, immutable, and fault-tolerant data set. RDD is an all-purpose data container that 

supports any data type. It can be generated from loading an external dataset or distributing a 

collection from the Spark driver. Two types of operations can be handled on the RDD: 

transformations and actions. Transformation operations are functions processed on the RDD such 

as mapping, folding, and filtering. As a result, this type operation will generate a new RDD. Due 

to the lazy mechanism of Spark, the transformation operation is passive, so instead of being 

processed immediately, transformation operations only pre-configure processes. An action 
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operation such as count, collect, and first is a signal to execute all pre-configured processes and 

retrieves results from the Spark server. 

Unlike other computing platforms, Spark provides the in-memory mode that caches all 

intermediate data in the memory space. This mechanism significantly improves Spark’s 

processing performance primarily when the intermediate data set will be reused, such as the 

proposed CpG project. However, as a trade-off, Spark consumes the server’s memory resources. 

Therefore, a developer should analyze memory consumption before implementing the Spark 

platform. 

In this project, a Scala-based Spark pipeline was developed for epigenetic analysis. The 

following parts of this chapter provide the details and evaluation of this project. 

 

2.2 Method 

 

Figure 1 A simple example to illustrate the definition of a CpG box. 

 

2.2.1 CpG Box 

A CpG box is the area between two neighboring CpGs, and all nucleotides within the 

CpG dinucleotides are encapsulated in this black box. Figure 1 is an illustration of the definition 

of a CpG box. Because of the high mutation and maximum enthalpy [18] rate in CpG islands, a 

CpG box contains some biological information from the biochemical perspective. The CpG 
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distance proposed in [14] is a property of a CpG box, which is about the length of a CpG box, 

while a CpG box is an object used to analyze the features of a CpG island. Therefore, we decided 

to study CpG boxes from the statistics of CpG distances in the human genome. In this project, 

large genome sequences were split into many small CpG boxes to reduce time and complexity. 

The distance-based methods from [14] [16] study the sequence properties of the primary 

structure between any two neighboring CpG islands, which introduced a new way to understand 

the phenomena of CpG islands. Inspired by their results, CpG boxes are proposed in the project 

as a measure for CpG island investigation. 

 

2.2.2 Assumption and Notation 

CpG boxes can be analyzed as a stochastic sequence by applying the Markov property. 

The state of any nucleotide depends solely on the state of the previous one. It can be described in 

Equation 1. 

 

P(𝑋# = 𝑥#|𝑋#*+ = 𝑥#*+, 𝑋#*- = 𝑥#*-, … , 𝑋+ = 𝑥+) = P(𝑋# = 𝑥#|𝑋#*+ = 𝑥#*+) 

Equation 1 

  

Where 𝑥# is the nucleotide at position n, and 𝑋# is the stochastic process of position n. 

The stochastic process always starts from a CpG dinucleotide and stops at another one in a 

CpG box, and no additional CpGs occur in the same box. Therefore, in a CpG box with length n, 

𝑥+, 𝑥-, 𝑥#*+, and 𝑥# are fixed to nucleotide C or G. Thus, if the probability of a CpG box’s state 

is P and the length of this box is n, 𝑃(𝑋+, 𝑋-,… , 𝑋#) = 𝑃(𝑋-,… , 𝑋#*+) because 𝑥1 and 𝑥#*- are 

related to 𝑥- and 𝑥#*+. According to this property, we redefined 𝑋+to the position of nucleotide 
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G of the starting CpG site and 𝑋# to the position of nucleotide C of the ending CpG site for 

computing convenience.   

Each dinucleotide can be determined by its neighbors because they have common 

nucleotides, and from the energy analysis viewpoint, neighboring nucleotides constitute the 

structure of a CpG box [19]. Therefore, dinucleotides can be studied in the chain model. 

 

2.2.3 Markov Chain Model 

Equation 2 represents the Markov chain model. 

 

𝑃(𝑋# = 𝑥#, 𝑋#*+ = 𝑥#*+, … , 𝑋+ = 𝑥+) = 

𝑃(𝑋# = 𝑥#|𝑋#*+ = 𝑥#*+, 𝑋#*- = 𝑥#*-,… , 𝑋+ = 𝑥+)	 

× 	𝑃(𝑋#*+ = 𝑥#*+, 𝑋#*- = 𝑥#*-,… , 𝑋+ = 𝑥+) 

Equation 2 

 

Equation 3 is the result of applying Equation 1 to Equation 2. 

 

𝑃(𝑋# = 𝑥#,𝑋#*+ = 𝑥#*+,… , 𝑋+ = 𝑥+)

= 𝑃(𝑋# = 	𝑥#|𝑋#*+ = 𝑥#*+) 	× 	𝑃(𝑋#*+ = 𝑥#*+, 𝑋#*- = 𝑥#*-,… , 𝑋+ = 𝑥+)

= 𝑃(𝑋+ = 𝑥+)4𝑃(𝑋5 = 𝑥5|𝑋5*+ = 𝑥5*+)
#

56-

 

Equation 3 

 

Since the nucleotide is fixed, 𝑃(𝑋+ = 𝑥+) = 1. According to the Bayesian equation, 

Equation 3 can be further induced to Equation 4.  
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𝑃(𝑋# = 𝑥#, 𝑋#*+ = 𝑥#*+, … , 𝑋+ = 𝑥+) =4
𝑃(𝑋5 = 𝑥5, 𝑋5*+ = 𝑥5*+)

𝑃(𝑋5*+ = 𝑥5*+)

#

56-

 

Equation 4 

 

Since 𝑋5 and 𝑋5*+ , 𝑖 ∈ {2,… , 𝑛} are neighbors, the dinucleotide 𝐷5*+is introduced to 

replace 𝑋5 and 𝑋5*+. Equation 5 is the result of this simplification.  

 

𝑃(𝑋# = 𝑥#, 𝑋#*+ = 𝑥#*+, 𝑋#*- = 𝑥#*-,… , 𝑋+ = 𝑥+) =4
𝑃(𝐷5*+)

𝑃(𝑋5*+ = 𝑥5*+)

#

56-

 

Equation 5 

 

CpG boxes fit the Markov chain model well for two reasons. First, it constrains the 

stochastic walk. The length of each CpG box is in a specific range that is not too large. Second, 

the length of a CpG box varies depending on its biochemical structures. This means a CpG box 

contains some biochemical meaning and is not random. Therefore, the length of each CpG box is 

related to the length of its neighbors. The probability of length variation in neighboring CpG 

boxes is discussed in the following section. 

 

2.2.4 Maximum Likelihood 

Regarding Equation 5, for all CpG boxes inside CpG islands, the probabilities of each 

dinucleotide located at a specific position can be acquired, and the probabilities of dinucleotides 

in each type of CpG box can also be obtained for the CpG boxes outside of the CpG islands.  
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θ is the estimation parameter, θ ∈ Θ, Θ is the set of {𝜃BC5, 𝜃#D#BC5}, simplified as {𝜃E, 𝜃F}. 

𝐿(𝜃;	𝑋#, 𝑋#*+,… , 𝑋+) denotes the likelihood of an estimator with observations 𝑋#, 𝑋#*+, … , 𝑋+ 

and a parameter θ. Equation 6 is the result of applying the Bayesian theorem. 

 

𝑃(𝜃|𝑋#, 𝑋#*+, … , 𝑋+) =
𝑃(𝑋#, 𝑋#*+, … , 𝑋+|𝜃)𝑃(𝜃)

𝑃(𝑋#, 𝑋#*+,… , 𝑋+)
 

Equation 6 

 

When the parameter 𝜃 is under the uniform prior distribution, the maximum likelihood 

estimator is the same as the most probable Bayesian estimator. Specifically, 𝑃(𝜃) in Equation 6 

is under uniform distribution, and 𝑃(𝑋#, 𝑋#*+, … , 𝑋+) and 𝜃 are independent. Therefore, 

Equation 6 can be induced to Equation7. 

 

𝐿(𝜃; 𝑋#, 𝑋#*+, … , 𝑋+) ≡ 𝑃(𝜃|𝑋#, 𝑋#*+,… , 𝑋+) ∝ 𝑃(𝑋#, 𝑋#*+, … , 𝑋+|𝜃)𝑃(𝜃)

∝ 𝑃(𝑋#, 𝑋#*+, … , 𝑋+|𝜃) 

Equation 7 

 

2.2.5 Neighboring CpG Boxes 

Examining neighboring CpG boxes is a necessary procedure when investigating CpG 

islands because they consist of sequential CpG boxes. Equation 8 states the likelihood of 

estimator θ for 𝐵5 → 𝐵5M+. Like Equation 7, the maximum likelihood estimator is equal to the 

most probable Bayesian estimator when the parameter θ is under uniform prior distribution. 

Since there is no estimator probability detected for non-CGI or CGI, the probability of estimator 

θ is assumed to be under uniform distribution, and 𝑃(𝐵5 → 𝐵5M+) and 𝜃 are independent.  
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𝐿(𝜃; 𝐵5 → 𝐵5M+) ≡ 𝑃(𝜃|𝐵5 → 𝐵5M+) 

=
𝑃(𝐵5 → 𝐵5M+|𝜃)
𝑃(𝐵5 → 𝐵5M+)

 

∝ 𝑃(𝐵5 → 𝐵5M+|𝜃)𝑃(𝜃) 

∝ 𝑃(𝐵5 → 𝐵5M+|𝜃) 

Equation 8 

 

2.3 Design and Implementation 

From the computer science perspective, this project is a traditional data-intensive 

statistical problem. Since the size of all sample genome sequences is larger than two gigabytes in 

this experiment, the total data size is enormous. Thus, the hardware needs an extensive memory 

capacity and a considerable amount of time will be required. To reduce time and equipment 

costs, parallel and cloud computing techniques are implemented in this project.  

This problem can be easily converted to a data independent model because the 

dependency only appears between neighboring CpG boxes. For example, when calculating 

𝑃(𝐵5 → 𝐵5M+), both 𝐵5 and 𝐵5M+ are used at the same time. However, this problem can be 

converted to an independent model by duplicating common CpG boxes, which is shown in 

Figure 2. 
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Figure 2 Dependence removed by duplicating CpG boxes  

 

By using this mechanism, the task can be easily processed in parallel in the following steps. 

 

2.3.1 Sequence Division 

First, the original sequence needs to be trimmed and split by the CG makers. The input 

data format determines the process model selection, either sequential or parallel. In this 

experiment, the sample data files contain raw genome information, which is the entire genome 

sequence without any spaces, line breaks, or other additional information. In this case, files can 

be processed in parallel, but in each file, the data must be handled by a single process thread. 

In Figure 3, a new CpG box list is generated by splitting the input sequence. Since this 

research only studied the length of each CpG box, the letter sequences can be replaced by their 

length number. This method can naturally reduce data size and improve process performance in 

future procedures. 

 

CGTAGACTCGAATTCCATTACGTTCACTAACG

CGTAGACTCGAATTCCATTACG

CGAATTCCATTACGTTCACTAACG
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Figure 3 Sequence Division 

 

 

 The code above is the Spark implementation, which is developed in the Scala 

programming language. There are two tasks in the sequence division step. First, since each file 

may contain multiple DNA sequences, the program should split these sequences using a 

delimiter. In this example code, the delimiter is a line break. Second, each DNA sequence should 

be further split by CGs to retrieve the CG boxes. 

 

2.3.2 Data Preparation 

The procedure following sequence division is converting length number sequences to 

neighboring CpG box couples. Figure 4 shows three steps to accomplish this task. The sequence 

leng is duplicated, shifted, and combined in this procedure. This procedure completes all 

necessary preparation and generates a length pair list for the probability calculations. 

CGTAGACTCGAATTCCATTACGTTCACTAACG

GTAGACTC
GAATTCCATTAC
GTTCACTAAC

8,12,10

    //load DNA file 
    val source =  
      spark.sparkContext.textFile(file_path) 
        .flatMap(_.split("\n")) 
 
    //CG boxes 
    val cgBoxes = source.flatMap(_.split("CG")) 
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Figure 4 Data Preparation 

 

 

 This piece of code is responsible for counting the size of each CG box and grouping all 

neighboring sizes in DNA sequences. Like the design described previously, it will duplicate the 

entire sequence and group neighboring numbers.  

 

8,12,10

8,12,10

8,12,10

8,12,10
8,12,10

[8->12],[12->10]

 
    //count sizes 
    val sizes = cgBoxes.map(_.length) 
 
    //CG jumps 
    val list1 = sizes.zipWithIndex().map{ 
      case (v,i) => (i, v) 
    } 
    val list2 = sizes.zipWithIndex().map{ 
      case (v, i) => (i-1, v) 
    } 
    val jumps =  
      list1.leftOuterJoin(list2).flatMap{ 
      case (i, (a, b)) => b.map(a -> _) 
    } 
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2.3.3 Probability Calculation 

The last procedure is the most straightforward step because functions from the standard 

Spark application interface (API) can handle these simple statistical tasks. In probability 

calculations, the objective is to obtain the distribution of CpG boxes of different lengths. 

Therefore, all length pairs need to be grouped by their length. For instance, to calculate P(3 →

5), we need to count the total sample size and how many (3 → 5) is in the length pair list. After 

scoring all necessary factors, the target probabilities can be calculated using simple mathematical 

calculations. 

 

The piece of code described above is the last step of the Spark implementation. It counts the 

number of time each unique number pair repeats in the DNA sequence and uses these numbers to 

calculate the probabilities of each length variation. 

2.4 Evaluation 

In this project, the proposed parallel process method was used on mouse and human 

DNA sequences, which has 21 and 24 chromosomes, respectively. This evaluation examined 

three aspects of the proposed method: unit computing costs, time costs of large-scale data, and 

speedup on multiple cores. 

 

    //total size 
    val totalSize = jumps.count() 
 
    //probability of each type of jumps 
    val result = jumps.groupBy(_).map{ 
      case(k, v:Seq[(Int, Int)]) =>  
        (k, v.size.toDouble/ totalSize) 
    } 
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2.4.1 System Configuration 

The proposed method was examined on a small computer cluster that has five computer 

nodes. Each computer node has a dual Intel Xeon E5-2650 CPU and 64GB of DDR3(1866MHZ) 

memory. The Apache Spark platform’s configuration is listed below. 

• Total executor memory: 50GB 

• Total number of executor cores: 50 

 

2.4.2 Chromosome Test 

The first experiment tested the performance of the proposed method on two different 

datasets, human and mouse DNA sequences. Figure 5 and Figure 6 describe the result of these 

two test cases. When the length of chromosomes increases, the processing time also increases. 

However, Figure 5c and 6c show that the time/length ratio decreased when processing the larger 

dataset. Specifically, the proposed method can handle large-scale datasets more efficiently than 

smaller ones. Note that the results shown in these two figures are not entirely linear because 

some datasets such as extremely large CpG boxes may increase time consumption.  
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Figure 5 Running time and length of human chromosomes 

 



20 

  
Figure 6 Running time and length of mouse chromosomes  
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2.4.3 Whole-Genome Test and Speedup Analysis 

The second experiment evaluated the performance of the proposed method on a large-

scale dataset because the first test proved that it could handle larger datasets more efficiently. 

The sizes of whole human and mouse genome sequences are 3 gigabytes and 2.7 gigabytes, 

respectively. The time consumption of these test cases is described in Figure 7. 

 

 

Figure 7 The correlation between running time and the number of cores using whole 

genomes of human and mouse DNA as an illustration. 
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Figure 8 Speedup ratios of human and mouse genomes  

 

Figure 8 shows the speedup rate based on the result of the whole genome test. The 

speedup rate increases when implemented on more processing cores, and it can be 6–7 times 

faster when using 10 cores. However, as the number of cores increase, there is a decrease in the 

speedup rate. It can be expected that the speedup rate will decrease when implementing on too 

many processing cores due to the overhead cost of the parallel computing technique. Therefore, 

users should analyze the input dataset and configure the number of cores to obtain optimal 

performance.  

 

2.5 Conclusion  

The CpG island project is a typical application of parallel computing and cloud 

computing techniques. In this project, developers can easily apply parallel computing techniques 
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and deploy their programs on a cloud server because of the consistent data structure. Each CpG 

box pair can be processed individually, and the result can be obtained by combining all 

individual results from previous procedures. For developers experienced in parallel 

programming, it only takes a few minutes to design this system. However, the problem is that 

some researchers do not have the necessary skills. 

Unlike some existing analysis software, users only need to input some configurations, 

and the software can handle all remaining tasks, while deploying projects on cloud computing 

platforms such as Apache Spark requires programming skills. It is a significant challenge to 

researchers without a programming background. Therefore, an interesting problem was identified 

during this project, which is how to reduce the complexity of developing parallel cloud 

computing programs.  
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3 JAVA TO MAPREDUCE TRANSLATION 

Researchers want to benefit from cloud computing techniques without spending too much 

time and money on programming. Requesting help from experienced developers is not a good 

solution because it is also expensive. Besides the monetary expenses, they need to spend a lot of 

time helping developers understand their project’s background. A misunderstanding may result 

in problems during the program’s development. Therefore, it is difficult to cooperate with 

developers without a corresponding background. To solve this problem, it might be more 

efficient if researchers write programs themselves. However, it seems that the problem goes back 

to the origin, that most researchers do not know how to write programs.  

How can researchers learn to program on cloud systems by themselves? The proposed 

solution is using automatic program translation tools. Java to MapReduce translator (J2M) [20] is 

a code migration tool that can automatically translate Java for-loops to the MapReduce program. 

When using this translator, users don't need to have any parallel or cloud computing experience. 

They just write the program in the regular for-loop format, and the translator will translate these 

loops to MapReduce functions that can be executed on the Hadoop platform. This translator can 

significantly reduce the programming difficulty of cloud applications. Thus, the researchers can 

program by themselves without any additional help from others.  

 

3.1 Background 

Among the many emerging programming models for cloud platforms, MapReduce has 

become one of the most popular for big data analysis in cloud systems due to its simplicity in 

implementing data parallel applications [21] such as Apache Hadoop [22], Phoenix [23], Mars 

[24], Twister [25], and Granules [26]. 
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• Apache Hadoop [22] was developed for data-intensive distributed applications. 

• Phoenix [23], a shared-memory implementation of MapReduce for data-intensive 

processing tasks, can be used to program shared-memory multiprocessors as well 

as multi-core chips. 

• Mars [24], a GPU implementation of MapReduce, provides a generic framework 

for developers to implement data and computation-intensive tasks correctly, 

efficiently, and easily on graphics processors (GPUs). It hides the programming 

complexity of the GPU behind the simple and familiar MapReduce interface. 

Hence, developers can program on GPUs without any knowledge of the GPU’s 

architecture or the graphics’ APIs. 

• Twister [25], an implementation of the iterative MapReduce model, is lightweight 

at runtime. It provides a feature for cacheable MapReduce tasks and allows 

programmers to develop iterative applications without spending much time 

reading and writing large amounts of data in each iteration. Twister4Azure [27], a 

version for Windows Azure, has also been released. 

• Granules [26] is a lightweight, streaming runtime for cloud computing with 

support for MapReduce. 

As the need to analyze vast amounts of data stored in diverse locations increases, Hadoop 

grows more popular. Hadoop provides a great platform for logistics and coordination such as 

task failures, loading inputs, splitting inputs, and task coordination. It makes the programming 

job easy. Each job we encounter in MapReduce presents an applicable way to resolve the 

problem with the amount of data increasing significantly. However, it is not easy to learn how to 

program in MapReduce because its paradigm is low-level and rigid. To develop applications 
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with these runtime systems, developers should be proficient in the following three domains: the 

MapReduce model, runtime systems, and the system-specific programming language. Although 

many applications can be parallelized using this method, developers still need to be trained 

intensively in the three domains. Thus, the transition to cloud programming for developers can 

be torturous. It will be desirable if there is an alternative way to utilize the Hadoop platform 

without learning MapReduce programming. 

 

3.2 Related Work 

Manually converting sequential code to cloud code is a time-consuming and error-prone 

way to build a cloud application because the data flowing in and out of the MapReduce code 

must be carefully and precisely coordinated with other sequential sections of the code [28]. For 

example, a Hadoop programmer must write very verbose codes based on MapReduce. Through 

the code translator, the sequential codes can be translated to cloud codes automatically. Many X-

to-MapReduce (X is a programming language) translators and relevant systems have emerged. 

Several SQL-like declarative languages and their code translators have been built and integrated 

with MapReduce to support these languages. It includes Pig Latin/Pig [29] [30], SCOPE [31], 

Hive/HiveQL [32], YSmart [33], YSmart-S, Jqal [34], Tenzing [35], HadoopDB [36] [37], SQL-

to MangoDB, and others. In the following section, we will review some representative works. 

 

3.2.1 Hive/HiveQL 

Hive [32] was initially created by Facebook in 2007 as their data warehouse software to 

manage large-scale datasets in distributed systems. Based on Apache Hadoop, Hive provides a 

mechanism to extract, transform, and load data in different data storage systems such as Apache 
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HDFS and Apache HBase. The semantics of Hive is a SQL-like language, which has been called 

HiveQL for a relatively short time and performs MapReduce analysis not only with its built-in 

library but also with its extendable capability. By extending and overwriting the built-in 

functions, Hive can be used in more sophisticated analyses. On Facebook’s servers, more than 

700TB of data and tens of thousands of tables are stored in the Hive warehouse, which is utilized 

by over 200 users each month. 

 

3.2.2 HadoopDB 

HadoopDB [36] is a hybrid system of MapReduce and DBMS technologies. There are 

four main design features of HadoopDB; it is designed to run on a shared-nothing cluster of 

commodity machines or in the cloud, as an attempt to fill the gap in the market for a free and 

open source parallel DBMS, for greater scalability than currently available parallel database 

systems and DBMS/MapReduce hybrid systems, and to be as scalable as Hadoop while 

achieving superior performance in structured data analysis. 

HadoopDB extends the Hadoop framework, which is the core of HadoopDB, by 

providing the following four components: 

• Database connector  

This is the interface between TaskTracker and independent database systems 

residing on nodes in the cluster. It allows Hadoop jobs to access multiple database 

systems by executing SQL queries. 

• Catalog  
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This maintains meta-information about the database. It contains both meta-data 

about the location of database chunks stored in the cluster and statistics about the 

data. 

• Data loader 

This hash-partition splits data into smaller chunks and coordinates their parallel 

load into the database system. 

• Query interface  

This allows queries to be submitted via a SQL/MapReduce API. 

 The SQL to MapReduce to SQL (SMS) planner has extended two areas of Hive: (I) 

updating the MetaStore with references to our database tables before any query execution and 

(II) performing two passes over the physical plans between the physical query plan generation 

and the MapReduce job execution. The prototype was built using PostgreSQL as the underlying 

DBMS layer in HadoopDB. It may leverage any JDBC-compliant database system due to its 

design. Based on HadoopDB, a new solution is given. It can transform a single-node DBMS into 

a highly-scalable parallel data analytics platform that can handle very large datasets and provide 

automatic fault tolerance and load balancing [37]. 

 

3.2.3 YSmart: SQL-to-MapReduce Translator 

YSmart [33] is a SQL-to-MapReduce translator which provides a way to minimize the 

number of MapReduce jobs, particularly for multiple correlated operations in complex queries. 

Compared with other existing translators, YSmart reduces redundant computations, I/O 

operations, and network overhead. Some results have demonstrated that YSmart outperforms 

Hive and Pig on correlated queries execution. 
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The claimed contribution of YSmart is building a correlation-aware SQL-to-MapReduce 

translator to improve complex query performance without modifying the underlying Hadoop 

MapReduce system. MapReduce has limited functionality for complex queries. For instance, 

local disk copies of intermediate results are needed for node failure, and temporary results must 

be uploaded to the global file system. Both processes will create redundant overhead. Moreover, 

there is no mechanism to reuse the intermediate data between concurrent jobs. YSmart is 

designed to remove these limitations by detecting the correlation of complexities within queries, 

translating the queries into efficient MapReduce programs, and reducing the overhead in 

MapReduce processes. Specifically, YSmart defines four types of operations for MapReduce 

jobs: selection-projection (SP), aggregation(AGG), join, and sort. With these defined jobs, 

YSmart translates one operator to one job from the original complex queries to MapReduce 

programs. Significant optimization is implemented via YSmart job merging. YSmart recognizes 

the intra-query correlation and provides a set of rules for multiple job merging. These rules are 

defined to handle different cases. The details can be found in [33]. Since YSmart presents a 

generic mechanism to translate and optimize SQL-like language to MapReduce jobs, Hive has 

recently adopted YSmart as a patch. 

All above three projects are SQL-to-MapReduce applications and limited to SQL query 

translation. The following two projects are the implementation of computational statement 

translation. 

 

3.2.4 M2M Translator 

The previously discussed languages and translators inspired Zhang et. al. to develop the 

M2M translator [38] in 2013; it can translate Matlab codes to MapReduce codes. Matlab is a 
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popular programming language in scientific research and was developed by MathWorks. As a 

calculation tool, Matlab has a complete and powerful function library. Therefore, it can be easily 

learned and requires less programming knowledge. Moreover, users do not need to spend much 

time on programming. For example, users can call functions from the standard Matlab library 

directly when they need to operate matrices like cross products and dot products. Specifically, 

the main part of the Matlab program is a combination of standard functions. Therefore, the 

Matlab program’s major calculation jobs are processed in standard library functions. 

The basic idea of the M2M translator is to build a new function library implemented on 

cloud servers instead of the standard application programming interface. When users translate a 

Matlab source file, the translator can use the new functions to replace the standard API functions. 

This pre-translations model is effective but restricted, which means users cannot translate their 

own functions.  

 

3.2.5 OpenMP 

OpenMP is a collection of famous industry-level APIs for C/C++ and Fortran 

programming [39]. It has already become a standard for most C/C++ and Fortran compilers. 

When users implement OpenMP in the source code, the compiler can convert targeted portions 

of the code highlighted by users to multi-threads models. OpenMP was developed in 1997 before 

cloud computing was invented, so it cannot be applied to cloud computing program translation. 

Therefore, a new sequential program for cloud program translation (J2M) is proposed in this 

paper. It implements partial features of OpenMP and is effective at cloud program translation. 
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3.3 J2M Translator 

The objective of the proposed translator is to translate one loop marked by users in a Java 

source file to a MapReduce function. This translator is similar to a typical compiler, but the J2M 

translator only translates partial code and the target loop while the remaining code are 

unchanged. Since both the source codes and the translation results are Java code, the translator 

does not parse the entire source file but only extracts necessary information from the source file 

and then generates the result.  

 

 

Figure 9 J2M translator structure 

 

The structure of the proposed translator is shown Figure 9. The translator has four major 

components: a scanner, a parser, an extractor, and a generator. Each is responsible for a 

translation procedure, namely tokenization, parsing, extraction, and generation. It also has a 
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minor component termed the name database, which can help the parser and the extractor record 

the variable names.  

 

 

Figure 10 Translation procedures 

 

When the translator translates a Java source file, the scanner tokenizes the entire source 

file, generates a token list, and then sends this list to the parser. The parser analyzes this token 

list and generates a new objects list, packs them, and passes this package to the generator. In the 

final step, the generator combines one MapReduce template with the information package 

received from the extractor and then generates the translation result. These procedures are shown 

in Figure 10. 

Unlike a typical compiler, which has only two stages (i.e. tokenization and parsing), the 

J2M translator translates Java source files in four stages: tokenization, parsing, extraction, and 

generation. Next section provides details of each stage in the translation process, followed by a 

translation example used to illustrate each stage. 
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3.3.1 Tokenization 

In the tokenization stage, the scanner scans the entire input Java source file and generates 

a token list by splitting the code into tokens. This token list is not a typical token list in a 

compiler where all tokens are represented by strings. Instead, in the proposed token list, it not 

only records all token values by string objects but also records the types of tokens, which is an 

additional job of tokenization.  

 

# Token Types 

1 Identifier 

2 Value 

3 Operator 

4 Directive 

5 EOF 

Table 1 Token List 

 

The proposed translator has five types of tokens as represented in Table 1. In this stage, 

all names that represent variables, classes, methods, packages, and reserved words are 

categorized as an identifier. It is the largest family of tokens in the tokenization stage and is 

subsequently split into a few subgroups in the next stage for parsing. 

The value token is a set of string values and seven Java primitive values: float, double, 

int, byte, long, char, and short. Another Java primitive type is Boolean. In this stage, the Boolean 

value will be categorized as an identifier and converted to a value in the parsing stage. It is not 
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necessary to separate these values into different groups because all input Java source files should 

be checked by a Java compiler without compiling errors. Therefore, the translator skips the 

syntax check for this input source file. Another reason is the proposed translator is not 

responsible for analyzing values passed to the result file. 

Operator tokens represent all symbols that are not only Java operators but also other 

syntax symbols such as a semicolon, comma, and period. Like value tokens, the proposed 

translator does not parse these symbols, which may help the translator analyze identifiers in the 

parsing stage. 

The directive is a mark to highlight the target loop for the J2M translator. There are only 

two types of directives, //J2MSTART and //J2MEND, for start and end, respectively. Since 

directives use the comment format, it is not effective when this source file is compiled by a Java 

compiler. In the tokenization stage, all Java comments that start with //, /*, and */ are to be 

eliminated except directives.  

Only one end of file (EOF) token appears at the end of the token list. It is not extracted 

from the input Java source file but automatically generated by the scanner. It indicates that the 

token list is terminated.  

 For a real-world example, the following sequential Java code will be translated: 
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 At the end of tokenization stage, the token list should be as follows: 

 

Token List: 

… 

//J2MSTART : Directive 

for         : Identifier 

(           : Operator  

int         : Identifier  

i           : Identifier  

=          : Operator  

0          : Value  

… 

EOF       : EOF 

 

        //Original Loop 
 
        //J2MSTART 
        for(int i = 0;i < 10;i++){ 
 
            a[i] += num; 
             
            a[i+1] += i; 
        } 
        //J2MEND 
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3.3.2 Parsing 

The parsing stage is the core of translation procedures, which converts simple string 

tokens into more meaningful objects. For instance, in the parsing stage, the variable token is 

converted into the variable object that not only represents the name of a variable but also records 

the type information. Unlike the parsing stage in a regular compiler, analyzing the entire code or 

entire instructions is unnecessary. The proposed translator analyzes only the single token.  

 

# Objects 

1 ClassName 

2 Directive 

3 EOF 

4 Imports 

5 MethodName 

6 Operator 

7 PackageName 

8 Types 

9 Value 

10 Variable 

11 ArrayVariable 

Table 2 Object List 
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Compared to the scanner, the parser converts all tokens into 11 objects represented in 

Table 2. Value, EOF, and directive objects are the same as those in the tokenization stage. The 

parser simply converts them from string tokens to objects without any additional features. 

Operator objects combine operators and reserved words in Java together because these 

two kinds of tokens have similar properties. In the parsing stage, the parser converts all operator 

tokens and reserved word tokens into Operator objects. The J2M translator records all Java 

reserved words in a list. When the parser analyzes identifier tokens retrieved from the 

tokenization stage, it collects all reserved words and replaces them with operator objects.  

Type objects are extracted from identifier tokens, which contain two parts. One includes 

the eight Java primitive types: bytes, int, short, long, Boolean, float, double, and char. The other 

part is defined as the object type. The parser analyzes all object types in declaration instructions, 

the variable declaration and method declaration, and then converts them into type objects.  

The variable object is the successor of the identifier token. It is declared in the 

declaration instruction and then used anywhere afterward. The parser needs to analyze the types 

of all variables, which contains two cases; one is inside the variable declaration and the other is 

outside of it. It is easy to extract the type of variables inside the declaration instructions because 

the type object is beside the variable object. However, it is different when it is outside of the 

declaration. To realize this feature, the J2M translator creates a variable stack in the parsing 

stage. Each time it meets a variable outside of a declaration, it searches in the variable stack to 

retrieve the types of that variable. 

One special variable case is an array variable. In the J2M translator, the ArrayVariable 

object represents the array variable. There are two phases of an array variable: one is the array 

reference, identified in Java as array_name; the other one is the element reference, identified as 



38 

array_name[index]. Normally, the user does not create a new array in a loop. Thus, the J2M 

translator does not currently support creating new arrays in the target loop. The translator 

transforms the loop to MapReduce function, and then the loop is split into many small pieces. To 

reduce the cost of data transmission, the translator only transports partial elements of the array 

used in the mapper function. Therefore, the translator converts these array elements to a new 

individual variable. For instance, array_name[1] can be translated as array_name_1.  

ClassName and MethodName objects work together because they are both special 

variables. In our translation result, the method name always contains its class name. To achieve 

this feature, each time the parser detects a method declaration, it searches for the nearest class 

name in the variable stack. Once it finds the target, it sets a reference to this ClassName object 

corresponding to the MethodName object.  

PackageName and import objects are also very important parts of codes. They contain the 

package name of the target class and all dependent classes. Since the translation result works in 

the original package, it copies these two parts to the result directly when the J2M translator 

generates the translation result. At the end of this stage, an example of a token list provided in 

the last stage is shown in the following object list: 

 

Object List: 

… 

//J2MSTART : Directive 

for         : Operator 

(           : Operator 

int         : Types 
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i           : Variable, type = int 

=          : Operator 

0          : Value  

… 

EOF       : EOF  

 

3.3.3 Extraction 

To generate the translation result, the J2M translator implements a MapReduce function 

template. More details about this process are described in the next section, the generation stage. 

In this template, four blank areas needed to be filled: 

• Package name 

• Import classes 

• Variable declaration 

• Function body 

The required information is extracted from the input source code. The objective of the extractor 

is to prepare all necessary information for generating the final translation results.  

 The package name and import classes are copied from PackageName and imports objects 

directly. The variable declaration and function body are both extracted from the target loop in the 

source code file. There are three types of variable operations in the template. The first type is the 

declaration. The extractor scans the target loop and collects all variable information. Next, it 

simultaneously creates the declaration list and converts array variables into regular variables. It is 

unnecessary to declare array variables in the translation result. 
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 The last two stages of the process are data import and export. The translation result 

should be executed on a Hadoop cluster, which requires that all variables are loaded from a 

Hadoop File System (HDFS). Therefore, in the result, variables are loaded from files after 

declaration and then exported at the end of this program. 

 Apart from variable operations, the target loop can be transformed into MapReduce 

functions. The transformation contains two steps: convert array variables into regular variables 

declared during variable declaration and move everything from the target loop to the result 

function. 

 Following the example object list in the last stage, the information can be extracted as 

shown below. 

 

Package Name : 

… 

Import Classes : 

… 

Variable Declaration : 

int i ; 

int array_a_0 ; 

int num ; 

int array_a_1 ; 

Function body : 

array_a_0 += num ; 

array_a_1 += i; 
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Note that the array elements in the original Java code, a[i] and a[i+1], were transformed into 

regular variables, array_a_0 and array_a_1, in the parsing stage. 

 

3.3.4 Generation 

The generation stage is simpler than the previous three stages. The Generator combines 

the results of the extraction stage and the template to generate a final translation result code. The 

most important aspect is the design of MapReduce function template. The following is our 

template design. Due to the length limitation, the design of the template is a simplified version of 

the real and complicated one. 

 

 

 

Compared to OpenMP, which can convert some dependent loops to independent loops, 

the J2M translator currently only supports independent loops. Although the first generation of the 

  /*Package Name*/ 
 

        /*Import Classes*/ 
 
        public static class Map{ 
 
            public void map(){ 
                 
                /*Variables Declaration*/ 
                while(/*Some Conditions*/){ 
 
                    /* Body, including data import and export */ 
 
                } 
            } 
        } 
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J2M translator is still in its trial period, more practical features will be added to make it more 

sophisticated in the future. The J2M translator’s constraints will be introduced in the results and 

performance section. 

 The J2M translator only implements the mapper function since the reducer function is not 

necessary for the loop translation. The mapper function executes each step of the original loop 

using a new while-loop. Each mapper function can execute multiple steps of the original loop. 

The total number of mapper functions depends on the environment variable. If the total steps of 

the original loop are M and the total number of mappers is N, the steps in each mapper function 

should be P
F

. In this template, there are four p areas: package name, import classes, variable 

declaration, and body. In the generation stage, these four areas can be filled by information 

retrieved from the extractor.  The result of the example code is as follows: 
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  package ... 
 
        import ... 
 
        ... class and method headers ... 
 
        int i; 
        int array_a_0; 
        int num; 
        int array_1_1; 
 
        while(tokenizer.hasMoreTokens()){ 
 
          … 
          i =  
            Integer.valueOf(tokenizer.nextToken( )); 
 
          array_a_0 =  
            Integer.valueOf(tokenizer.nextToken( )); 
 
          num =  
            Integer.valueOf(tokenizer.nextToken( )); 
 
          array_a_1 =  
            Integer.valueOf(tokenizer.nextToken( )); 
          … 
 
          array_a_0 += num ; 
          array_a_1 += i ; 
          output.collect( 
               … , 
                new Text(“ ” + i + “ ” 
                 + array_a_0 + “ ” + num 
                  + “ ” + array_a_0 )); 
          …     
 

        } 
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3.4 Evaluation and Assessment 

After a Java file is translated using the J2M translator, two facts are of concern to the 

user: computing correctness and performance speedup. One of the most important features of the 

translation result is performance, especially the execution speed. If the translation result’s 

execution speed is slower than the original Java program, the proposed translator is useless. To 

test the performance of the J2M translator, experiments based on these two concerns were 

created. The experimental results not only indicate that the translator can precisely translate 

sequential Java into cloud codes but also show that it can increase performance speed, and we 

expect that an almost linear speedup rate is possible if a large enough data set is processed. Due 

to memory limitations, larger datasets cannot be processed on our current facility. This section 

provided the details of these experiments.  

 

3.4.1 Constraints 

It is impossible to translate all types of Java code, even a for-loop, to a MapReduce 

function. For the prototype version of the J2M translator, many features cannot be realized. The 

constraints of the current translator are described as follows: 

• Currently, the J2M translator can only work on Java for loops and only translates 

one loop each time. 

• The target loop should be highlighted using J2M directives by users. 

• The target loop should be located in a static method instead of an object method. 

• No nested loop is available in the translator’s current version. 

• The target loop should be an independent loop. 
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• Users cannot declare an array inside the target loop. However, they can declare 

them elsewhere and use them inside the loop. 

 

3.4.2 Sequential Java Program versus MapReduce Program 

We use cloud servers instead of local machines for two reasons. The first reason is 

limitations in computing resources. For example, local computers may not have sufficient 

memory or the hard drive capacity to handle big data problems. Since users cannot load terabytes 

of data into computer memory, they must use a cloud computing technique even though a local 

computer might be faster than any single node of a server. Normally, if the data’s size is not 

large enough, the programs executed on local computers can be faster than on cloud servers 

because the communication and preheating costs of cloud computing techniques may be 

expensive. Therefore, the experiments are designed to evaluate non-data-intensive cases. The 

second reason cloud servers are preferable is they can be faster than a local computer when 

executing compute-intensive programs. For example, if a user executes a program on a N nodes 

cloud server, it is N times faster than local computers in extreme cases. However, it cannot be 

processed due to the intercommunication cost.  

This experiment measures the performance of the translation result in a huge number of 

floating point calculations, in which the total accumulated time is increased by five times and 

five billion for each time, on a five-node cloud server. The time curves of two programs are 

represented in Figure 11, where the cloud program is faster than the local program. 
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Figure 11 Performance result 

 

Calculation times (Billion) MapReduce execution time 
(s) 

Local loop execution 
time(s) 

5 20 22 

10 24 45 

15 31 66 

20 37 88 

25 40 111 

Table 3 Test Result 



47 

 

Table 3 represents the time costs of five test cases. On a cloud server, the warming-up 

cost is the reason the time cost increment is less than the total time cost in the first test phase. To 

test the performance of cloud programs, the warming-up cost should be ignored because it varies 

for different servers. Therefore, the analysis should focus on the increment of time cost only. 

The average time cost increment of the cloud program is 5.0 s while the average time cost 

increment of the local program is 22.25 s. Therefore, the time increment of the cloud program is 

4.45 times faster than the local program, which is close to five times faster in extreme cases. 

 

3.4.3 Performance on Different Calculation Sizes 

When comparing a sequential Java program and a MapReduce program, the major 

disadvantage of a MapReduce algorithm, especially on a cloud server, is the MapReduce 

program spends more time on communication. It is why sequential programs are faster than 

parallel programs on small-size calculations. In the previous experiment, the MapReduce 

program was faster than the local program in all test cases because the calculation size was large 

enough. However, what is the performance of the translation results when different calculation 

sizes are involved, especially small-sized computations? The following experiment tests the 

performance on four different calculation sizes. 

Before the experiment, a factor named speed up (SU) needs to be declared. It represents 

how the MapReduce program is faster than a sequential Java program. The formula for SU is as 

follows: 

 

𝑆𝑈 =
𝑇𝑖𝑚𝑒	𝐶𝑜𝑠𝑡	𝑜𝑓	𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝐽𝑎𝑣𝑎	𝑃𝑟𝑜𝑔𝑟𝑎𝑚
𝑇𝑖𝑚𝑒	𝐶𝑜𝑠𝑡	𝑜𝑓	𝑀𝑎𝑝𝑅𝑒𝑑𝑢𝑐𝑒	𝑃𝑟𝑜𝑔𝑟𝑎𝑚  
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If SU is smaller than 1.0, the execution speed of the MapReduce program is slower than that of 

the sequential Java program. Otherwise, the MapReduce program’s speed is faster. 

 

Figure 12 Performance on different calculation sizes 

 

In this experiment, the test cases used four different calculation sizes: one billion, ten 

billion, twenty billion, and one hundred billion. The MapReduce program used one to five nodes 

on the cloud server in each of the five cases. The results are shown in Figure 12. The gray dashed 

line represents the sequential Java program, which is always 1.0. The blue and green lines are 

below 1.0, which means in these two test cases, the MapReduce programs are slower than 
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sequential Java programs. The yellow line is above all the other lines. The red line is somewhere 

between the yellow and the green lines. 

Compared to the blue line, the green line speeds up once the number of nodes increases. 

Conversely, there is no obvious change in the blue line. The reason is when the calculation size 

is small enough, the time cost of communication is equal to or greater than the speedup benefits 

in which the number of cloud server nodes increases. The other evidence is that the increments 

of red and green lines decrease to almost zero in the end. The increment can be negative when 

the number of cluster nodes is big enough. 

The other problem is that all MapReduce programs are slower than sequential Java 

programs when there is one cloud server node. Besides the communication cost, there is a 

warming-up time cost. Cloud computing platforms like Hadoop need a certain amount of time to 

start up, initialize the environment, and load data. It is an variable factor that affects the 

execution time of cloud programs. 

This experiment verifies that the performance of the translation result is better than the 

original sequential program when the calculation size is large enough. However, it is difficult to 

predict the exact size because it depends on the cloud server’s specific computing environment, 

such as CPU frequency, hard-disk access speed, and network transmission speed. 

 

3.5 Conclusion 

Cloud computing provides many benefits but also introduces many new challenges. One 

challenge is that one cannot run a Java code directly on a cloud platform effectively unless it is 

adapted to a cloud computing platform. In this paper, a translator for Java code with simple loops 

to MapReduce codes is proposed and implemented. It achieves automatic translation. Of course, 
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the users should clearly understand their code to guarantee that there is no data dependency 

between loops. Our translator reduces the learning costs of users and hence also dramatically 

reduces the production cost. The experiments discussed in the previous section also demonstrate 

that the performance of the translated codes is accurate and efficient. In our current version, 

some features are not fully realized, and many restrictions are necessary for the translator to 

work correctly. In the future, more constraints can be overcome, and more loop cases will be 

studied. We hope that the proposed translator provides an initial step towards the automatic 

translation of traditional codes into cloud codes and a new framework in this exciting area. 
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4 JAVA TO SPARK TRANSLATION 

Since the output program of the J2M translator is a MapReduce application running on a 

Hadoop platform, the source program’s intermediate data must be uploaded to and downloaded 

from a Hadoop File System (HDFS). Therefore, the source program will be split into three 

stages: before loop, loop program, and after loop. Before the loop, the program prepares all 

necessary data and generates a text file that contains all data. Next, this file must be uploaded to 

the HDFS manually to be used for the loop program. The loop program is a MapReduce 

application that can be executed on the Hadoop platform, which will read data from the uploaded 

file and output result data to a new file on the HDFS. Afterward, users need to manually 

download the result file from the HDFS and execute the program after the loop that will read the 

result data from the downloaded file and continue the remaining tasks 

This method is inconvenient because it requires developer participation. The HDFS 

operations also increase the time consumption of MapReduce programs, especially when the 

source program contains multiple loops that need to be translated. These problems are difficult to 

solve because, in the Hadoop framework, all applications communicate through HDFS [40]. If 

the intermediate data is large enough, the performance of the translation result may be worse 

than the source program. To avoid this problem, executing the resulting programs on an in-

memory cloud computing platform is a possible solution. 

A Java to Spark (J2S) translator is proposed in this chapter; it is built on the J2M 

translator's framework. [41] Compared to the J2M translator, the J2S translator generates a Spark 

program instead of a Hadoop program, and it can translate three types of source code: for-loop, 

task, and hybrid loop and task. Benefiting from Spark's in-memory model [42], the J2S translator 
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can communicate with a Spark platform directly without generating intermediate files. 

Furthermore, since no file operations are required in the translation procedures, the resulting 

program is not split into three pieces, and no human participation is required while the program 

is running.  

However, the in-memory model requires more memory space than the HDFS model. 

Therefore, the translation capability of the J2S depends on the working environment’s memory 

capacity, the computing cluster where the resulting program is deployed. Specifically, this 

system does not work if the intermediate data size is larger than the memory capacity. 

Meanwhile, the in-memory model also increases hardware costs because large memory systems 

are more expensive. [43] All of these are trade-offs of implementing the in-memory model. 

Developers should analyze their use cases before using the J2S translator. 

The primary technical challenges in code translators are tokenization, syntax analysis, 

and the resulting program template design and code generation unique to Spark. Since the J2S 

translator is the successor of the J2M translator, tokenization, and syntax analysis have been 

solved in the current version. Therefore, the major challenge for the J2S translator is determining 

how to design the templates and generate codes to implement more functionalities and perform 

more efficiently. The following sections demonstrate the details of template design for three use 

cases. 

The following sections describe the design and evaluation of for-loop parallelization, task 

parallelization, and for-loop-in-task parallelization, respectively. The last section discusses future 

work and the conclusion of the J2S project.  
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4.1 For-Loop Parallelization 

Like the Headbutt platform, Spark also provides a map function. The translation 

mechanism of J2M can also be applied to Java for-loop to Spark code translation. The difference 

between the two translation types is the in-memory working mode of Spark programs. Therefore, 

the Spark program always contains all three process stages (i.e. data preparation, processing, and 

output) in one program instead of generating three individual programs.  

 

 

Figure 13 The structure of the for-loop translation resulting program 

 

Figure 13 describes the program structure of a translation resulting program containing 

two major parts, which are the main program and a data container. All three data processing 
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stages are performed in the main program. In the data preparation stage, all intermediate data are 

packaged and submitted to Spark resilient distributed datasets (RDD) [44]. In the next two steps, 

the data are processed on the Spark platform, and the output is collected from Spark RDD. In 

addition to the main program, a data container class is designed to contain all intermediate data 

for communication between local memory and the Spark RDD. 

 

4.1.1 Data Container 

In Java to Spark translation, one data container class is designed to contain all 

intermediate data when communicating with Spark RDD. Spark RDD is a distributed data 

container, and each RDD entity can hold only one data object. However, intermediate data may 

have a significant number of variables, so these variables need to be packaged into one object. 

 

 
 
Code 1 A Source Program Example 

 

 

 

    public void test(int time) { 
        for (int i = 0; i < 10; i++) { 
            num[i] = i; 
        } 
 
        //start 
        for (int i = 0; i < 10; i++) { 
            num[i] += calculation(i,time); 
        } 
        //end 
 
        for (int i = 0; i < 10; i++) { 
            System.out.println(num[i]); 
        } 
    } 

class LoopData implements Serializable{ 
    public int i = 0; 
    public int num_0 = 0; 
    public int time = 0; 
 
} 
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Code 2 A Data Container Example 

 

Code 1 is an example of a Java program that can be translated by the J2S translator. The 

for-loop in this program, which is marked by two directives start and end, is being translated. 

The Java class LoopData in Code 2 is the data container in the translation resulting program. The 

class will be used to create data objects that are later inserted into one Spark RDD container. 

There are three variables in the targeted for-loop: i, num[i], and time. Three 

corresponding variables, i, num_0, and time, are declared in the LoopData class to handle all 

variables in the targeted for-loop. The num[i] variable is one element in the num array. Since 

only one element is processed in each iteration of the for-loop, it is not necessary to transmit the 

entire array into each Spark RDD element. Thus, the num_0 variable is declared to replace the 

num[i] variable in the data container class. 

 

4.1.2 Data Preparation 

 

Code 3 A Data Preparation Program Example 

 

        //RDD initialization 
        List<LoopData> ld = new LinkedList<LoopData>(); 
 
        for (int i = 0; i < 10; i++) { 
            LoopData lde = new LoopData(); 
            lde.i = i; 
            lde.num_0 = num[i]; 
            lde.time = time; 
            ld.add(lde); 
        } 
 
        //Spark setup 
        SparkConf conf = new SparkConf().setAppName("Template"); 
        JavaSparkContext sc = new JavaSparkContext(conf); 
        JavaRDD<LoopData> loopData = sc.parallelize(ld).cache(); 
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Data Preparation is the first step of processing data on Spark platform. The portion of 

code in Code 3 is the data preparation stage translated from the example Java program in Code 1. 

RDD initialization and Spark configuration occur during this stage.  

A data container list is declared during RDD initialization. In a data container, the values 

of variables in each loop iteration are assigned to the corresponding variables in the original java 

program. The loop iterator can be useless if it only controls the number of iterations but does not 

participate in data processing. However, to simplify translation, the proposed translator is not 

designed to detect whether the iterator is useless, and it always transmits the loop iterator 

variable to Spark RDD. 

The Spark configuration part is responsible for initializing the Spark platform and 

transmitting the data container list to the Spark RDD system. If the source Java program contains 

more than one for-loops that need to be translated, the Spark configuration code should be at the 

top of all targeted for-loops, and it is shared among all Spark tasks rather than configured 

separately. 

 

4.1.3 Data Processing 

 

  
JavaRDD<LoopData> sparkResult = loopData.map(new Function<LoopData, LoopData>() { 
    public LoopData call(LoopData loopData) throws Exception { 
        //loop data 
        int i = loopData.i; 
        int num_0 = loopData.num_0; 
        int time = loopData.time; 
        //loop 
        num_0 += calculation(i,time); 
        //output 
        LoopData lde = new LoopData(); 
        lde.i = i; 
        lde.num_0 = num_0; 
        lde.time = time; 
        return lde; 
}}); 
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Code 4 A Data Process Program Example 

 

The data processing stage is the main procedure in the translation resulting program. 

Code 4 is an example of the data process stage in the translation result. The Spark map function 

in this stage is implemented by migrating instructions in the original for-loop. It is then 

processed on the Spark cluster. Specifically, the original for-loop is implemented as distributed 

processes in this stage.  

There are three steps in the map function: data loading, processing, and storing. In the 

first step, data loading, data are loaded from the Spark RDD, and all variables are stored in the 

data container. Temporary variables i, num_0, and time are created to hold the corresponding 

values. Next, these data are processed in a statement that is migrated from the original for-loop. 

This migration is no more than a simple copy-and-paste, leaving array variables as the only 

variable needing modification, such as the num_0 variable in Code 4. Since only partial elements 

of an array are required to be processed in an iteration, they are converted to non-array variables.  

Finally, the data in the Spark RDD must be updated. This step simply assigns the values 

of all temporary variables to the data container, which is the opposite of the loading step in the 

Spark map function. To simplify this procedure, all variables are updated without a modification 

check. Regardless of whether the variable is modified, the update procedure is always carried 

out. 
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4.1.4 Data Output 

 

Code 5 An Output Program Example 

 

Data Output is the last stage in the resulting program, and it is the opposite of the data 

preparation stage. It first collects the processing result from the Spark RDD and then updates all 

values in local memory. Since the loop iterator is assigned inside of the loop, it is crucial to 

ensure that all variables in the updated procedure remain in the same order when they are 

uploaded.  

 

4.1.5 Evaluation 

To evaluate the performance of the translation results, all tests are executed on a 

computer cluster consisting of five computing nodes with an Intel Xeon E5-2650 CPU and 64GB 

of memory. In this experiment, a sequential Java for-loop processes 100 billion floating-point 

calculations. The Spark program, translated from Java code using the proposed translator, is 

executed five times with a varying number of cores. The following table and figure describe the 

results of this experiment.  

 

ld = sparkResult.collect(); 
for (int i = 0; i < 10; i++) { 
    LoopData lde = ld.get(i); 
    i = lde.i; 
    num[i] = lde.num_0; 
    time = lde.time; 
} 
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Figure 14 Time consumption versus the number of cores 

 

 

Core # 1 2 3 4 5 

Sequential(s) 510.725 - - - - 

Parallel (s) 511.727 271.76 205.502 150.872 119.921 

Speed-Up 0.998 1.879 2.485 3.385 4.259 

Table 4 Time Consumption Versus the Number of Cores 

 

Figure 14 shows that the time cost of the parallel program decreases as the number of 

cores increases. The last row in Table 4 demonstrates the speedup rate of the Spark program, 

whose values are calculated by dividing the time cost of the sequential program over that of the 

parallel program. Theoretically, the optimal speedup rate should be equal to the number of 

computing cores used in the experiment. However, in practice, it is impossible to reach the 
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maximum value due to overhead costs. The speedup values in Table 4 are quite reasonable 

because they are close to the optimal values.  

  

4.2 Task Parallelization 

 

Code 6 A Source Program Example 

 

Another problem is multi-task parallelization. A simple example is displayed in Code 6. 

Two variables, a and b, store the returned values from two functions and they are then accessed 

in the following statement. These two variables are independent and will not be used until 

statement 4. Therefore, before the program accesses the two variables, these two instructions can 

be processed in parallel. 

Since it is processed on the Spark platform, this problem can be more complicated than 

the loop-parallelization problem because the platform is not designed for this purpose. Two 

problems should be solved in this type of translation. The first problem is converting the 

synchronous program to asynchronous, and the second problem is processing the task on the 

Spark platform. 

 

public void process() { 
    int a = 10000, b = 10000;      (1) 
    a = f1(a);                     (2)   
    b = f2(b);                     (3) 
    int c = a + b;                 (4) 
} 
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Figure 15 The structure of the translation resulting program 

 

The proposed design of this type of translation is represented in Figure 15. Compared 

with the loop-parallelization problem, the task-parallelization problem has an additional 

intermediate layer between the main program and the Spark platform. The targeted instructions 

are processed in individual threads, and then the Spark tasks are implemented in each thread. 

Each thread controls only one Spark task; thus, they can be processed concurrently. 

 

4.2.1 Synchronous to Asynchronous 

In the synchronous mode, the execution of an instruction should wait until the previous 

instruction is terminated in a regular Java program. Although this mode is easily controlled and 

understood, there is a problem. For instance, in Code 6, statement 3 will wait until the end of 
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statement 2, although these two instructions can be processed at the same time due to their 

independence.  

In the asynchronous mode, the original function can be processed in individual threads. It 

is only blocked by statements like statement 4 in Code 6. This instruction needs to access 

variables a and b, so it should wait until the results of statements 2 and 3 are returned. Statements 

2 and 3 can be processed under the asynchronous mode, and no blocker is required until 

statement 4. 

 

 

Code 7 A Translation Resulting Program Example 

 

The code in Code 7 is the translation result of the program in Code 6. Each source 

instruction in Code 7 is translated into three statements. These statements are divided into two 

int a = 10000, b = 10000; 
//thread configuration 
ExecutorService executorService = Executors.newFixedThreadPool(2); 
 
//group 1 
//statement 2 
final int a_tmp = a; 
Future<Integer> future1 = executorService.submit(()->f1(a_tmp)); 
 
//statement 3 
final int b_tmp = b; 
Future<Integer> future2 = executorService.submit(()->f2(b_tmp)); 
 
 
//group 2 
//statement 2 locker  
try {a=future1.get().intValue();}  
catch (Exception e) {e.printStackTrace();} 
 
//statement 3 locker  
try {b=future2.get().intValue();}  
catch (Exception e) {e.printStackTrace();} 
 
//statement 4  
int c = a + b; 
 
//thread configuration 
executorService.shutdown(); 
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groups and located in two different places. One group is at the original location in the source 

code, and the other is placed before statement 4 in the translation result. 

The first group has two types of statements, the temporary variable declaration, and the 

thread statement. In the proposed design, the Java executor service function is used to handle 

multi-thread operations. Since all variables in the executor service function should be constant, 

temporary variables are required to store them. Afterward, the original function is simply placed 

in a new thread with the constant parameters. 

The second group is the thread locker, which is in the previous line before the instruction 

for accessing the result values, such as statement 4 in Code 7. If this instruction requests more 

than one variable, all thread lockers should be placed before it. For example, in Code 7, both 

lockers are on the top of statement 4. 

In addition to these statements, a thread configuration and a thread closure are placed at 

the top and the bottom of this function, respectively. To maximize performance, the thread 

pool’s size is set to be the same as the demanded number of targeted instructions. 

 

 

Code 8 A Directive Example 

 

public void process() { 
int a = 10000, b = 10000;      
 
��	2�_���
�1 
a = �1(a); 
 
��	������
��                       
b = �2(b);  
 
��	������
����
��	������
�����������������������

    int c = a + b;                 
} 
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Like the loop-parallelization function, directives are also required to mark the targeted 

instructions and the locations of the blockers. Users are responsible for determining which 

instructions are to be translated and the places to insert blockers. However, two types of 

directives are used in the task-parallelization function, which are j2s_task and j2s_locker. A 

number is listed after these keywords to identify the threads. It should be noted that these two 

types of directives work in pairs. In the proposed design, the size of the thread pool is set 

automatically according to the number of targeted instructions.   

 

4.2.2 Process Single Function on Spark 

The second step in task-parallelization translation is processing these instructions on the 

Spark platform. The major problem in this step is the Spark platform is not designed for single 

function processing. Generally, the RDD contains a large amount of data, and it processes them 

in parallel; in this specific task, there is only one function to be processed. 

The proposed solution is to create a small RDD that contains only one pseudo data and 

then uses it to load a single function task. The following code piece is an example of the 

translation result. 

 

 

Code 9 An Asynchronous Spark Program Example 

 

The statements in Code 9 describe how to process a single function on the Spark 

platform. It replaces the thread instructions in Code 7. This function creates an array consisting 

Future<Integer> future1 = executorService.submit(()->{ 
    List<String> rdd_data = Arrays.asList("a"); 
    JavaRDD<String> rdd = sc.parallelize(rdd_data); 
    return rdd.map(s->f1(a_tmp)).collect().get(0); 
}); 
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only one string, "a.” This is pseudo data; it is only used to create an entry for the Spark 

application and can be changed to any other value. The following statements in this function 

convert the pseudo data array to RDD, and then they launch the Spark function. Each targeted 

instruction leads to an individual Spark task so the original functions can be processed on the 

Spark platform. 

 

4.2.3 Evaluation 

To evaluate the performance of the task-parallelization translation, the next experiment 

uses the same computer cluster as the one in the loop-parallelization chapter. Unlike the previous 

one, in the Task-parallelization translation, only a few functions need to be parallelized because 

in normal cases, a small number of asynchronous functions is adequate for a single program. 

Since the program does not benefit from increasing the number of computing cores, the 

configuration of Spark is fixed to 5 execution cores. 

Instead of manipulating the number of computing cores, this experiment focuses on the 

number of calculations. There are five asynchronous functions, and each performs a different 

number of floating-point calculations from 1 billion to 5 billion. Table 5 and Figure 16 describe 

the time consumption of all tests. 
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Figure 16 Time consumption versus calculation size 

 

 

Size of 

Calculation 

(billion) 

1 2 3 4 5 

Synchronous(s) 20.239 39.557 62.828 79.248 105.112 

Asynchronous 

and Spark (s) 

8.822 12.977 17.438 21.282 25.833 

Speed-Up 2.294 3.048 3.603 3.724 4.069 

Table 5 Time Consumption Versus Calculation Size 
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In Figure 16, the blue and orange lines represent the execution times of the synchronous 

function and the asynchronous Spark function, respectively. The blue line has a much greater 

growth rate, which indicates that the Spark functions benefit more from the larger data size. 

Compared with the loop-parallelization translation, this type of translation has more 

overhead costs because it adds one more logical layer. The two overhead costs, one from the 

Java thread pool and the other from the Spark platform, are almost constant if the size of the 

thread is fixed. In conclusion, the rate at which the speed increases can be greater with larger 

datasets. 

 

4.3 For-Loop in Task Parallelization 

Generally, functions with iteration or recursion consume most of the resources in a single 

program. Also, major cloud computing platforms are typically not designed for recursion, and 

parallelization is difficult due to data dependency. However, iteration is much easier to 

parallelize if there is no data dependency, such as in loop-parallelization translation. 

During the translation research, a new question arose: can the loop-parallelization and 

task-parallelization problems be combined? If asynchronous functions in the task-parallelization 

translation contain larger iterations, can the time consumption be reduced by parallelizing these 

iterations? To solve this problem, a combination translation is discussed in this chapter. 
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Figure 17 The Structure of Translation Resulting Program 

 

Figure 17 describes the design of the loop-in-task translation. In short, this type of 

translation combines the two previous types. Loop-parallelization statements are included in the 

asynchronous functions of task-parallelization translation. It is similar to implementing the loop-

parallelization translation method in each function and parallelizing the functions in the 

asynchronous mode. Therefore, compared with task-parallelization translation, in the new 

design, for-loops are processed on the Spark platform instead of the asynchronous functions.  

Since the Spark platform does not allow an RDD function to be embedded within another 

function, only the for-loop part of the asynchronous function, not the entire function, can be 

processed on the Spark platform. In fact, as mentioned previously, this type of translation 

focuses on the functions that consume the most resources during iteration. Processing for-loops 

in parallel on the Spark platform can significantly reduce the time cost of such a program. If the 
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program being translated does not contain a large loop, using the task-parallelization method is a 

more efficient solution. 

 

 

Code 10 A Source Program Example 

 

Code 10 describes an example source code of this type of translation. Its main function is 

the same as that in the Task-parallelization translation example shown in Code 6. However, each 

of the f1 and f2 functions in this example contains a large for-loop. Inside of the main function, 

the f1 and f2 are called and must be processed in asynchronous mode. 

Two parts in this program need to be translated in this type of translation. First, in the 

main thread, translated from the synchronous mode to the asynchronous mode, the targeted 

instructions generate the result codes, which are the same as the codes described in the first step 

of the task-parallelization translation in Code 7. The second part is the side functions, which are 

f1 and f2 in this example. Their result codes are similar to the codes in the loop-parallelization 

translation. However, the Spark configuration should be moved to the main function of this 

program because all side functions share the same configuration. 

 

public int f1(int n) { 
… 
for (…) {…} 

    … 
} 
public int f2(int n) { 

… 
for (…) {…} 

    … 
} 
public void process() { 
    int a = 10000, b = 10000; 
    a = f1(a); 
    b = f2(b); 
    int c = a + b; 
    System.out.println(c); 
} 
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Code 11 A Spark Configuration Example 

 

When Spark configuration statements are inserted, these statements need to be placed inside 

of the main function. Otherwise, the Spark cluster cannot initialize the Spark tasks. The proposed 

solution declares the configuration statements in the main function, and it adds a new reference 

argument in the functions containing the target for-loops, such as the example described in Code 

11. A new reference parameter sc is added to the func function's reference. 

Container classes are also required for the translation of loop-parallelization. Each for-loop 

needs a specific container class to hold all loop data. Furthermore, if this program contains N 

targeted loops in total, the resulting program should also have N corresponding container classes. 

 

4.3.1 Evaluation 

The evaluation method for the loop-in-task translation is more complicated than that of 

the previous two chapters. The performance of the program resulting from the translation with 

two configurable variables, the number of cores and the size of the floating-point calculation, 

should be tested. The translation method used in this chapter is the combination of the two 

previous approaches. This experiment is also implemented on the same computer cluster as the 

previous experiments. 

 

public void process(int n) { 
    … 
    SparkConf conf = new SparkConf().setAppName("Test"); 
    JavaSparkContext sc = new JavaSparkContext(conf); 
    ExecutorService executorService = Executors.newFixedThreadPool(5); 
 
    final int a_tmp = a; 
    Future<Integer> future1 = executorService.submit(()->func(a_tmp,sc)); 
    … 
} 
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Size of 

Calculation 

(billion) 

1 2 3 4 5 

Sequential(s) 19.18 38.129 57.258 76.387 95.856 

Spark (s) 8.9 12.627 16.887 21.736 25.548 

Speed-Up 2.155 3.02 3.39 3.514 3.752 

Table 6 Time Consumption versus Calculation Size 

 

 

Figure 18 Time consumption versus calculation size 

 

The first experiment compares the performance of the original program and the resulting 

program on different calculation sizes. The experiment’s results are described in Figure 18 and 

Table 6. This test is similar to the one in the task-parallelization chapter. However, as shown in 
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Table 6, the speedup increment is smaller than in the task-parallelization chapter because the 

overhead cost of the loop-in-task translation is greater. 

The maximum speedup in this configuration is five, which is the same as the number of 

cores. Also, the speedup rate will get closer to five as the size of the calculation grows. This 

conclusion is based on a comparison of results from the first test in Table 7 and all the results in 

Table 6. The speedup in the first test in Table 7 is larger than all of those in Table 6 when the 

calculation size in the former is 10 billion, which was the largest tested. 

 

Cores # 1 2 3 4 5 

Sequential(s) 190.903 - - - - 

Spark (s) 46.195 24.496 19.881 17.041 13.351 

Speed-Up 4.133 7.793 9.6 11.202 14.299 

Table 7 Time Consumption Versus the Number of Cores 
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Figure 19 Time consumption versus the number of cores 

 

The second test is to fix the calculation size to 10 billion and manipulate the number of 

computing cores. Figure 19 shows that the Spark program benefits from the increased number of 

cores in all five tests. Meanwhile, the speedup increment decreases as the number of cores 

increases, as shown in Table 7, because the calculation size is not large enough. When 

processing time is limited, the overhead cost takes more proportion. Since the overhead cost is 

practically fixed, it will use a greater proportion of the total time consumption when the latter is 

lower. Furthermore, the increment of speedups can be negative if the data size is small enough. 

In this case, the time cost will increase if the number of cores keeps increasing. 

 

4.3.2 Conclusion 

The J2S translator is a new generation of the J2M translator. These two translators have 

the same framework design, but the J2S translator has more functionality such as the ability to 
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translate more types of source programs and is built on the in-memory model. Evaluations with 

the three types of translation demonstrate that all of three translation results work well in their 

domains. Meanwhile, the J2S translator is more productive because it doesn't require human 

participation while the procedure is running. 

In the current version, the J2S translator still has some disadvantages. For example, it 

packages all intermediate data, including useless ones, and sends them to the cloud platform. It 

will also transmit redundant data. The performance of the resulting program can be significantly 

improved if these problems are solved. Also, the J2S translator can only translate Java programs 

currently. However, besides Java, there are many popular programming languages for processing 

big data. Implementing the automatic translation of code written in these languages can create 

powerful and efficient tools for data engineers. The J2S translator only provides preliminary 

ideas for automatic translation from sequential to parallel programs on a cloud platform, and we 

hope related projects in the future will gain inspiration from ours. 
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5 SEMI-AUTOMATIC TRANSLATION 

The two previous chapters demonstrate two Java code translators that can automatically 

translate sequential Java programs to parallel cloud computing applications. They are simple and 

powerful, especially the Java to Spark translator. Due to Spark's in-memory working mode, 

human participation is not required when loading and unloading data. These two chapters also 

provide some proof that these two translators work well in their designed working domains, but 

how well do they perform in other scenarios?  

When a data fragment is very small (e.g., the size of an integer number or even a single 

character), the overhead cost of communication between each computing unit is sometimes 

larger than the benefits of the parallel processing model. This problem is more serious on the 

cloud computing platform. However, when processing these data in a sequential loop normally, 

the overhead is minimal. Therefore, when processing tiny data fragments, using loops is a 

common method. 

Is there any data dependency in this coding pattern? Not necessarily, it depends on other 

conditions. Thus, if there is no data-dependency issue, logically, the program could be translated 

by automatic translators. The problem is the performance could be very poor. The new question 

is how the translators can be used to translate this type of source code.  

Semi-automatic translation is the solution proposed to handle this type of translation. The 

translators can translate loops but cannot control the data size. Furthermore, if developers do not 

want to deal with developing a cloud computing application but still need to deploy their 

program on a cloud platform, they can handle the data-size problem by themselves and then use 

the translator to migrate their program to a cloud platform. This situation involves semi-

automatic translation. This chapter uses an example, the translation of a tensor multiplication 

program, to demonstrate semi-automatic translation.  
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5.1 Tensor 

Tensor is a geometric term representing linear relationships between geometric objects 

such as a scalar or a vector. [45] It is the superset of a scalar, vector, and matrix. A scalar is a 0th-

order tensor, a vector is a 1st-order tensor, and a matrix is a 2nd-order tensor. There are 3rd-, 4th-, 

and even nth-order tensors. [46] The complexity of the tensor increases as the order gets larger. 

 

S 

Equation 9 A Scalar, 0th-order Tensor 

 

|𝑉+	𝑉- …	𝑉h| 

Equation 10 A Vector, 1st-order Tensor 

 

ii

𝑀+,+	𝑀+,- …	𝑀+,h
𝑀-,+	𝑀-,- …	𝑀-,h

⋮					⋮		⋱		⋮	
𝑀l,+	𝑀l,- …	𝑀l,h

ii 

Equation 11 A Matrix, 2nd-order Tensor 

 

ii

𝑇+,+,+	𝑇+,+,- …	𝑇+,+,h
𝑇+,-,+	𝑇+,-,- …	𝑇+,-,h

⋮					⋮		⋱		⋮	
𝑇+,l,+	𝑇+,l,- …	𝑇+,l,h

,

𝑇-,+,+	𝑇-,+,- …	𝑇-,+,h
𝑇-,-,+	𝑇-,-,- …	𝑇-,-,h

⋮					⋮		⋱		⋮	
𝑇-,l,+	𝑇-,l,- …	𝑇-,l,h

, … ,

𝑇m,+,+	𝑇m,+,- …	𝑇m,+,h
𝑇m,-,+	𝑇m,-,- …	𝑇m,-,h

⋮					⋮		⋱		⋮	
𝑇m,l,+	𝑇m,l,- …	𝑇m,l,h

ii 

Equation 12 A 3rd-order Tensor 

 

Tensors are widely used in many scientific areas such as mathematics, physics, and 

computer science. Many mathematic operations can be applied to tensors, such as a cross product 
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and a dot product. Depending on the size and order, the time complexity of these mathematic 

calculations can be very large. Thus, improving the performance of tensor operations is 

fundamental research and can significantly reduce the processing time of many mathematic 

applications. A 3rd-order tensor multiplies by a matrix and is selected as an example of semi-

automatic application translation. 

 

5.2 Tensor Multiplication  

A 3rd-order tensor times a matrix is similar to a vector times a scalar. In the vector 

multiplication, the scalar will be multiplied with each element in the vector respectively [47]. 

The resulting vector is the original vector scaled by the scalar.  

 

𝑠 × n

𝑣+
𝑣-
…
𝑣#

o = n

𝑠𝑣+
𝑠𝑣-
…
𝑠𝑣#

o 

Equation 13 Vector multiply Scalar 

 

In the multiplication between the 3rd-order tensor and matrix, the 3rd-order tensor is a 

vector of matrices, and each element in this vector is a matrix [48]. The matrix in this calculation 

is also a scalar. Therefore, the multiplication can be split into two steps. The first step is applying 

the matrix to each element in the 3rd-order tensor. The second step is calculating the matrix 

multiplication. 
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o 

 

𝑐5,z = { 𝑎5|𝑏|z
q

|6+
	 , (i = 1…n, j = 1…p) 

Equation 14 Matrix Multiplication 

 

For example, a 3rd-order tensor has s matrices, and each matrix has n rows and m 

columns. Let this tensor multiply a matrix that has m rows and p columns. The result is a new 

3rd-order tensor that has s matrices according to Equation 13, and each matrix has n rows and p 

columns according to Equation 14. 

 

5.3 Program Design 

 

Code 12 Tensor Multiplication 

 

for(int i = 0; i < s; i++){ 
    for(int j = 0; j < n; j++){ 
        for(int k = 0; k < p; k++){ 
            result[i][j][k] = 0; 
            for(int l = 0; l < m; l++){ 
                result[i][j][k] += tensor[i][j][l] * matrix[l][k]; 
            } 
        } 
    } 
} 
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Code 12 is a simple Java program that processes the tensor multiplication example stated 

at the end of the previous section. The code is short but complicated because it has four for-

loops. The time complexity is not 𝑜(𝑛}) and therefore difficult to determine because of the 

loops. Since s, n, p, and m are varied and may not be the same, the accurate time complexity is 

𝑜(s ∗ p ∗ n ∗ m). 

This program can be translated by our translators because each iteration of the outer three 

for-loops is independent. However, the resulting program’s performance may be very poor if it is 

translated directly because the partition in the Spark RDD is very small. This program also 

contains four nested loops which make the translation more complicated and unstable. To solve 

the problems stated above, a manual operation on this program is required to resize the loop and 

simplify the code.   

 

 
 

 

//Step one 
tensor_fragment = split_tensor(tensor); 
 
//Step two 
for (int i = 0; i < tensor_fragment.length; i++) { 
    result[i] = tensor_multiplication(tensor_fragment[i], matrix); 
} 
 
//Step Three 
tensor = combine_result(result); 
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public static Tensor[] split_tensor(Tensor tensor){ 
 
    //number of fragments 
    int size = 5; 
    int fragment_length = tensor.value.length/size; 
 
    Tensor[] result = new Tensor[size]; 
 
    for (int i = 0; i < size-1; i++) { 
        result[i] = new Tensor(); 
        result[i].value = 
                Arrays.copyOfRange(tensor.value, 
                        i*fragment_length, 
                        (i+1)*fragment_length); 
    } 
         
    result[size-1].value = 
            Arrays.copyOfRange(tensor.value, 
            (size-1)*fragment_length, 
            tensor.value.length); 
 
    return result; 
} 
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public static Tensor tensor_multiplication(Tensor tensor, Matrix maxtrix){ 
 
    int s = tensor.value.length; 
    int x = tensor.value[0].length; 
    int y = tensor.value[0][0].length; 
    int z = maxtrix.value[0].length; 
 
    Tensor result = new Tensor(); 
    result.value = new int[s][x][z]; 
 
    for (int i = 0; i < s; i++) { 
        for (int j = 0; j < x; j++) { 
            for (int k = 0; k < z; k++) { 
                result.value[s][x][z] = 0; 
                for (int l = 0; l < y; l++) { 
                    result.value[i][j][k] +=  
                            tensor.value[i][j][l] * maxtrix.value[l][k]; 
                } 
            } 
        } 
    } 
 
    return result; 
} 
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Code 13 Modified Code 

  

Code 13 is a modified version of Code 12. It has three steps: splitting the original tensor 

into smaller fragments, calculating tensor multiplications, and combining the calculation result 

into one tensor. In the new version, the original tensor is split into smaller fragments. The 

public static Tensor combine_result(Tensor[] tensors){ 
         
    int x = 0; 
    for (int i = 0; i < tensors.length; i++) { 
        x += tensors[i].value.length; 
    } 
         
    int y = tensors[0].value[0].length; 
    int z = tensors[0].value[0][0].length; 
         
    Tensor result = new Tensor(); 
    result.value = new int[x][y][z]; 
         
    int index = 0; 
    for (int i = 0; i < tensors.length; i++) { 
        for (int j = 0; j < tensors[i].value.length; j++) { 
            result.value[index] = tensors[i].value[j]; 
            index++; 
        } 
    } 
         
    return result; 
         
} 
 

class Tensor{ 
    public int[][][] value = null; 
} 
 

class Matrix{ 
    public int[][] value = null; 
} 
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number of fragments can be modified according to the number of spark executors. Thus, the size 

of spark RDD partitions can be limited to a reasonable number that is not too large and can 

benefit from the computing cluster’s full performance. The internal for-loops are also 

encapsulated in the additional function. It simplifies the content of the for-loop being translated 

to avoid unnecessary conflicts and makes the resulting program more stable.  

For developers who design using this program, this type of modification is very simple 

and can make programs more readable. They still do not need to learn the various parallel cloud 

computing platforms but can deploy their programs on the cloud by using the code translators. It 

is not difficult but is useful to improve the performance of the resulting program by refactor.  
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Code 14 Manual Translation 

 

Code 14 is the manual translation result. Compared with Code 13, the size of the 

statements in Code 14 is much smaller than Code 13’s because of Spark’s functional language 

//load data 
JavaRDD<int[][]> rdd = loadTensor(); 
 
int[][] matrix = loadMatrix(); 
 
//processing 
JavaRDD<int[][]> resultRDD = 
    rdd.map(m->{ 
      int[][] result = new int[m.length][matrix[0].length]; 
 
      for (int i = 0; i < m.length; i++) 
      { 
        for (int j = 0; j < matrix[0].length; j++) 
        { 
          result[i][j] = 0; 
 
          for (int k = 0; k < m[0].length; k++) 
          { 
            result[i][j] += m[i][k] * matrix[k][j]; 
          } 
        } 
      } 
 
      return result; 
    }); 
 
//retrieve result 
int[][][] resultTensor =  new int[tensor.length][][]; 
 
List<int[][]> t = resultRDD.collect(); 
 
for (int i = 0; i < tensor.length; i++) 
{ 
  resultTensor[i] = t.get(i); 
} 
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programming style. However, it takes a few days to learn this programming language style and 

Spark development. When performing manual translation, developers do not need to worry about 

the partition problem because (1) Spark automatically allocates the partition number, and (2) the 

manual translation code doesn’t contain unnecessary variables. There is only one matrix variable 

shared overall computing nodes.  

 

5.4 Evaluation 

Experiments were deployed on a computing cluster on Amazon Web Service (AWS), 

where each computing node had 8GB memory and 1 process core. Experiments were conducted 

on five datasets which have a n*100*1000 tensor and a 1000*1000 matrix and where n is 100, 

200, 300, 400, and 500. The test results of four programs (i.e. sequential loop, automatic 

translation, semi-automatic translation, and manual translation) are described in the following 

tables and figures.  

 

 

N 100 200 300 400 500 

Sequential(s) 44.818 84.807 123.684 162.955 203.322 

Automatic(s) 20.61 35.772 49.912 65.485 79.349 

Semi-Automatic(s) 12.345 21.238 31.494 40.083 49.51 

Manual(s) 10.156 19.894 28.1 36.667 43.741 

Table 8 Time Consumptions of All Translation Results 
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Figure 20 Time consumptions of all translation results 

 

N 100 200 300 400 500 

Automatic 2.175 2.371 2.383 2.488 2.562 

Semi-automatic 3.63 3.993 3.927 4.065 4.107 

Manual 4.413 4.263 4.402 4.444 4.648 

Table 9 Speedups of all Translation Results 
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Figure 21 Speedups of all Translation Results 

 

The sequential loop program is the original program without any translation and stated in 

Code 12. Since the value of n is linear, the time consumption of the sequential program is also 

linear. In this experiment, all three types of Java to Spark translation are employed, and the 

speedups of translation results compared to the original sequential program are described in 

Table 9 and Figure 21. 

 The first translation result was obtained using automatic translation, meaning it was 

translated directly by the J2S translator without any modification. The performance is poor since 

the overhead cost is very large. In the J2S translator, all variables in each iteration of the target 

loop are encapsulated in an object before the spark process and unloaded from the result object 

when the process is finished. This design increases the intermediate data size and is significantly 

costly if the process time of each loop iteration is small enough.  
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For example, in this test case, the matrix can be shared over all multiplications. It is not 

necessary to guarantee that each element of a tensor has an individual copy. In Spark 

applications, an RDD has many partitions, and one partition will not be processed in multiple 

computing nodes. Specifically, each computing node can process more than one RDD partition, 

but one partition cannot be split and parallel processed. According to this mechanism, variables 

can be shared in the RDD partition. Therefore, in the manual translation version, the matrix was 

only duplicated a few times, which is dependent on the number of partitions. However, in the 

automatic translation version, it was duplicated N times, where N is the number of matrices in the 

tensor. It almost doubled memory consumption and the data transmission time.  

Compared with automatic translation, semi-automatic translation requires modifying the 

original loop for iteration size reduction. This modification manually creates data partitions to 

minimize intermediate-sized data. The original tensor is split into five fragments in this 

experiment. This operation can significantly reduce the processing time of loading and unloading 

data. Thus, the resulting program’s performance is much faster than the automatic translation 

result.  

The last program is the manual translation result. The performance of the program 

resulting from manual translation is the benchmark of this application. Compared with automatic 

and semi-automatic translation, it has two advantages. First, the data can be loaded from the file 

system or memory directly without encapsulation. Thus, the intermediate data size is smaller 

than the translated program and can be loaded from the distributed file system. Therefore, 

loading and unloading data in the manually translated program is significantly faster than 

programs resulting from the other two translation methods. Second, since no data encapsulation 

is required, a large number of small-sized partitions can be processed without penalties. 
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Meanwhile, processing a large number of partitions on the Spark platform is faster than 

processing a small number of partitions because of the pipeline mechanism. The transmission 

speed of small data fragments is faster than larger fragments, and the Spark platform can process 

these fragments without waiting for the whole dataset to finish transmitting. Therefore, the Spark 

platform can process datasets with small fragments more quickly than those with larger 

fragments. 

Splitting larger data sizes into an appropriate number of partitions can result in better 

performance. Smaller numbers will increase the overhead and larger numbers will reduce 

process efficiency. Besides the reasons described above, the number of partitions also impacts 

the Spark’s fault tolerance. If the computing node fails when processing one partition, Spark will 

retry this partition on the same node or assign a new computing node. Therefore, a larger 

partition size will increase Spark’s recovery cost. 

 

5.5 Conclusion 

When all three types of speedups in this scenario are compared, converting a program 

using semi-automatic translation is faster than using automatic translation but somewhat slower 

than using manual translation. It shows that automatic translation is not suitable for a large 

number of small data fragments due to the translation mechanism. However, after some minor 

modifications of the source code, this type of source code can still benefit from the code 

translator. This type of modification improves the capability of translators. 

This chapter demonstrates a way to improve the performance of a translation program. It 

is perhaps not the best solution but shows the direction of semi-automatic translation. Since the 

test tensor in this application only has 100 matrices, it is acceptable to simply split it into n 
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pieces, where n is the number of processing cores in the computing cluster. However, differences 

between the semi-automatic translation’s performance and the benchmarks show that more data 

fragments can also improve performance in this scenario. Therefore, the preferred method is to 

balance the number of partitions and the size of each data fragment.   
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6 CONCLUSION 

Over the past several years, I have worked on designing a parallel cloud computing 

program and existing code migration. I saw that the demand for cloud computing was increasing 

rapidly. Many researchers or applications must implement cloud computing techniques to handle 

huge amounts of data. These tasks were mostly impossible to complete previously because of 

inadequate computing capability. 

From these experiences, I was aware that there is a common way to migrate independent 

iteration statements such as for-loops to parallel cloud applications. Therefore, I designed and 

developed an automatic Java to MapReduce code translator. It is a prototype of a sequential to 

parallel computing code translator. There was no translator before the J2M which could directly 

translate a for-loop statement in a program to a parallel cloud platform application. The J2M 

translator works but the performance is very limited because the working mechanism of the 

Hadoop platform is very different from a traditional program.  

After some research, I found the Spark platform. Unlike the Hadoop platform, loading 

files from the file system is not required in the Spark platform. Because of its in-memory mode, 

it can load and unload data from or to memory. To overcome the J2M translator’s constraints, the 

Java to Spark (J2S) translator was designed and developed. Results of the J2S translator 

evaluation show that the performance of a program converted using the J2S translator is almost 

linear in its designed working domain. However, it has its own constraints due to the J2S 

translator’s working mechanism. 

Logically speaking, all independent iteration statements can process in parallel. However, 

due to the working mechanism of the J2S translator, a large number of data partitions can 

significantly increase the resulting program’s overhead cost. Therefore, the semi-automatic 

translation method was introduced in the last part of my research. It is a way to improve the 
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resulting program’s performance by making minor adjustments in the source code. The method 

is easy but effective. It enhances the capability of the J2S translator in this type of translation. 

From the experience of developing these two translators, I found that there is no way to 

obtain the benchmark performance for automatic translation using the current translator’s design. 

The overhead cost is the tradeoff of automatic translation. I hope we can find better solutions in 

the future to improve the translators or design some new cloud platforms that can automatically 

process independent iteration statements in the parallel mode.  
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