
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Theses Department of Mathematics and Statistics

5-2-2018

Influence Function-Based Empirical Likelihood
And Generalized Confidence Intervals For Lorenz
Curve
Yuyin Shi

Follow this and additional works at: https://scholarworks.gsu.edu/math_theses

This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
Shi, Yuyin, "Influence Function-Based Empirical Likelihood And Generalized Confidence Intervals For Lorenz Curve." Thesis,
Georgia State University, 2018.
https://scholarworks.gsu.edu/math_theses/160

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/215175018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


INFLUENCE FUNCTION-BASED EMPIRICAL LIKELIHOOD AND GENERALIZED

CONFIDENCE INTERVALS FOR LORENZ CURVE

by

YUYIN SHI

Under the Direction of Gengsheng Qin, PhD

ABSTRACT

This thesis aims to solve confidence interval estimation problems for Lorenz curve. First,

we propose new nonparametric confidence intervals with influence function-based empirical

likelihood method. It is shown that the limiting distributions of log-empirical likelihood

ratios are standard Chi-square distributions. Then the “exact” parametric intervals based on

generalized pivotal quantities for Lorenz ordinates are also developed. Extensive simulation

studies are conducted to evaluate the finite sample performance of the proposed methods.

Finally, our methods are applied on real income data sets.
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CHAPTER 1

INTRODUCTION

Much attention has been given to the rising income polarization in the U.S. and across

the world, thus the estimation accuracy of the increasing income inequality is crucially

important when government makes economic policy decisions. One widely used tool to

measure the income distribution and income inequality is the Lorenz curve, which shows

the percentage of the total income that the bottom (100 ∗ t)% (t ∈ [0, 1]) of households

have. The Lorenz curve is illustrated in Figure 1, the line at the 45◦ angle shows perfect

equality of income through all the households, while the Lorenz curve describes the inequality.

The further away the Lorenz curve is from the diagonal, the more unequal is the income

distribution.

Figure 1.1. Lorenz Curve

Let X be a non-negative random variable with a cumulative distribution function F (x),
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i.e., F (x) represents the proportion of the population whose income is less than or equal to

x. Assuming that F (x) is differentiable, Gastwirth (1971)[14] provided a definition of Lorenz

curve as below:

η(t) =
1

µ

∫ ξt

0

xdF (x), t ∈ [0, 1], (1.1)

where µ =
∫∞
0
xdF (x) is the mean of F , and ξt = F−1(t) = inf{x : F (x) ≥ t} is the t-th

quantile of F . For a fixed t ∈ [0, 1], the Lorenz ordinate η(t) is the ratio of, the mean income

of the lowest t-th fraction of households, and, the mean income of total households.

Lorenz curve has been primarily utilized in economics and social sciences. Atkinson

(1970) [1] provided a theorem related to the social welfare function and the Lorenz curve,

Doiron (1996) [9] used Lorenz dominance to analyze income and earning inequality. Be-

sides economics, Lorenz curve is also widely used in other disciplines including medical and

health research (Chang and Halfon 1997 [4]), industrial concentration (Smith 1947 [25]) and

reliability (Gail and Gastwirth 1978 [13]).

Since income distribution F (x) is rarely known in practice, the Lorenz curve has to be

estimated from the income data. Let X1, X2, . . . , Xn be a simple random sample drawn from

the population X, the empirical estimate for η(t) is defined as

η̂(t) =
1

µ̂

∫ ξ̂t

0

xdF̂n(x), t ∈ [0, 1], (1.2)

where F̂n(x) is the empirical distribution function of X1, X2, . . . , Xn, µ̂ is the sample mean,

and ξ̂t is the t-th sample quantile. One approach to make inferences on Lorenz curve is the

normal approximation (NA) method (Beach and Davidson 1983 [2], Beach and Richmond

1985 [3], Csörgö and Zitikis 1996b [7]). However, the NA-based confidence intervals may

have poor performances due to the skewness of the real income data. Bootstrap, introduced

by Efron (1981[10], 1982a[11]), is another powerful statistical method to construct confidence

intervals (Diciccio and Efron 1996[8]). There are still some limitations: 1) bootstrap method

can be time consuming; 2) the sampling method used in generating bootstrap sample would

also contribute to the sampling bias, according to Haukoos and Lewis (2005) [16].
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Empirical likelihood (EL), introduced by Owen (1988) [20], has been shown to have di-

verse advantages over the normal approximation and bootstrap method (Hall and La Scala

1990 [15]). For example, we can use EL method to construct a confidence interval without

choosing an underlying distribution; the EL-based method is also able to construct confi-

dence interval without variance estimation. As mentioned by Wood et al.(1996)[30], the

EL ratio statistic, under mild conditions, converges in distribution to a chi-square distribu-

tion. Thus, EL-based method may have advantages in developing statistical inferences with

skewed data. EL has been widely used in many fields, such as survey sampling (Chen and

Qin 1993 [5]), health care (Zhou et al. 2006[31]) and medical diagnostics (Qin and Zhou 2006

[23]). Recently, Qin, Yang and Belinga (2013) [22] developed a plug-in EL method to make

inferences for the Lorenz curve. However, the limiting distribution of their EL ratio statistic

is a scaled chi-square distribution, which requires heavy computation of the scale constant.

Moreover the performances of their EL intervals are not stable due to the plug-in estimate

of the scale constant. In order to alleviate the computational burden and obtain more con-

sistent confidence intervals, we propose a new influence function-based empirical likelihood

(IFEL) method to make inferences for the Lorenz curve. At the same time, the influence

function-based Jackknife empirical likelihood (IFJEL) is implemented to be compared with

IFEL method. Jackknife empirical likelihood (JEL) method was proposed by Jing, Yuan and

Zhou (2009)[17] and the general idea of the JEL is to construct a jackknife pseudo-sample

which is assumed to be asymptotically independent. Through simulation studies, we found

that the proposed IFEL and IFJEL have good coverage probabilities in most cases except

for those when t is large. Thus, it motivated us to propose the “exact” parametric inter-

vals based on generalized pivotal quantities (GPQ), which has good performances in all the

cases. In the GPQ method, we introduce two distributions which are the most commonly

used parametric distributions for modeling income data: the Pareto distribution and the

Lognormal distribution. The Pareto law for income distributions was developed and had

been verified to hold universally by Pareto in 1897. The Pareto distribution fits the data

fairly well toward the right tail of income and wealth distributions[29]. If we consider the
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entire range of income, there is evidence that the income of 97%− 99% of the population is

distributed log-normally in economics studies[6]. Therefore, the fit may be better from the

Lognormal distribution. Our GPQ-based approach is built on the concepts of generalized

inferential procedures (Shafiei, Saboori and Doostparast, 2016 [24]) when the underlying

income distribution is a Pareto distribution or a Lognormal distribution.

The rest of the thesis is organized as follows. In Chapter 2, we review the profile

empirical likelihood (PEL) for Lorenz ordinate and propose the influence function-based

empirical likelihood (IFEL) for Lorenz curve. Moreover, we implement the influence function-

based Jackknife empirical likelihood (IFJEL) method. In Chapter 3, we briefly explain the

methodology of generalized confidence interval (GCI) and the construction of confidence

intervals for the Lorenz curve under Pareto and Lognormal distributions. In Chapter 4,

we present various confidence intervals including normal approximation-based intervals and

bootstrap-based intervals. Simulation studies are conducted to compare the performances

of these proposed intervals. In Chapter 5, we use the income data from the Panel Study

of Income Dynamics and median income data of twenty occupations in the U.S. in 1950 to

illustrate the proposed intervals. In Chapter 6, there are some discussions and conclusions.

The proof of the main theorem for the Lorenz curve is given in the Appendix.
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CHAPTER 2

EMPIRICAL LIKELIHOOD-BASED METHODS

2.1 Influence Function-based Empirical Likelihood for the Lorenz Curve

Consider {X1, X2, · · · , Xn} as a simple random sample from the population of X with

c.d.f. F . For a fixed t ∈ (0, 1), the Lorenz ordinate η(t) must satisfies E[X(I(X ≤ ξt) −

η(t))] = 0. Thus, we can define the empirical likelihood for η(t) as follows:

L̃1(η(t)) = sup
p

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

piDi(t) = 0

}
, (2.1)

where p = (p1, p2, · · · , pn) is a probability vector, Di(t) = Xi[I(Xi ≤ ξt) − η(t)], i =

1, 2, · · · , n. Since the population quantile is unknown, we use the [nt]-th ordered value of

Xi’s to represent ξt, let’s say ξ̂t = X[nt], we get the profile empirical likelihood (PEL) for

η(t):

L1(η(t)) = sup
p

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

piD̂i(t) = 0

}
, (2.2)

where D̂i(t) = Xi[I(Xi ≤ ξ̂t)− η(t)], i = 1, · · · , n.

A unique maximum for p in (2.2) exists if η(t) is inside the convex hull of {X1[I(X1 ≤

ξ̂t) − η(t)], ..., Xn[I(Xn ≤ ξ̂t) − η(t)]}. By Lagrange multiplier method, the supremum

occurs at pi = 1
n

{
1 + ν(t)D̂i(t)

}−1
, i = 1, · · · , n, where ν(t) is the solution to

1

n

n∑
i=1

D̂i(t)

1 + ν(t)D̂i(t)
= 0. (2.3)

Note that
∏n

i=1 pi, subject to
∑n

i=1 pi = 1, pi ≥ 0, i = 1, 2, ..., n, attains its maximum



6

n−n at pi = n−1. So, the profile empirical likelihood ratio for η(t) can be defined as

R1(η(t)) =
n∏
i=1

(npi) =
n∏
i=1

{1 + ν(t)D̂i(t)}−1 .

The corresponding profile empirical log-likelihood ratio for η(t) is:

l1(η(t)) = −2 logR1(η(t)) = 2
n∑
i=1

log{1 + ν(t)D̂i(t)} . (2.4)

The EL interval for η(t) is:

{η(t) : rl1(η(t)) ≤ χ2
1,1−α}, (2.5)

where r is the scale constant and r = s2p(t)/s
2
d(t) with s2p(t) =

∫∞
0
{x[I(x ≤ ξt)−η(t)]}2dF (x),

s2d(t) =
∫∞
0

[(x− ξt)I(x ≤ ξt)− xη(t)]2dF (x)− (tξt)
2.

Based on the theories in Qin et al. (2013) [22], we can derive:

1√
n

∑n
i=1 D̂i(t) = 1√

n

∑n
i=1(Xi[I(X ≤ ξ̂t)− η(t)])

=
√
n{ 1

n

∑n
i=1[(Xi − ξt)I(Xi ≤ ξt) + t0ξt −Xiη(t)]}+ op(1)

=
√
n{ 1

n

∑n
i=1 g(Xi, η(t))}+ op(1)

where g(Xi, η(t)) is called the influence function.

Next, we define the empirical likelihood based on influence function for η(t) as:

LIF (η(t)) = sup
p

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i−1

piĝ(Xi, η(t)) = 0

}
. (2.6)

where ĝ(Xi, η(t)) = (Xi − ξ̂t)I(Xi ≤ ξ̂t) + tξ̂t −Xiη(t).

And the EL ratio based on the estimated influence function can be defined as:

RIF (η(t)) =
n∏
i=1

(npi) =
n∏
i=1

{1 + νIF (t)ĝ(Xi, η(t))}−1, (2.7)
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where νIF is the solution to:

1

n

n∑
i=1

ĝ(Xi, η(t))

1 + νIF (t)ĝ(Xi, η(t))
= 0. (2.8)

The corresponding influence function-based empirical log-likelihood ratio for η(t) is:

lIF (η(t)) = −2logRIF (η(t)) = 2
n∑
i=1

log{1 + νIF (t)ĝ(Xi, η(t))}, (2.9)

Then the following result gives the limiting distribution of the empirical likelihood based

on influence function.

Theorem 1. If E(X2) < ∞ and η(t0) = E[XI(X ≤ ξt0)]/E(X) for a given t = t0 ∈

(0, 1), then the limiting distribution of lIF (η(t0)) is a standard chi-square distribution, i.e.,

lIF (η(t0))→ χ2
1 as n→∞.

This theorem makes it much easier to construct confidence intervals for the Lorenz

ordinates compared with the PEL method. Based on Theorem 1, a (1−α) level asymptotic

confidence interval for Lorenz ordinate η(t) can be constructed as RIF = {η(t) : lIF (η(t)) ≤

χ2
1,1−α}.

2.2 Influence Function-based Jackknife Empirical Likelihood for the Lorenz

Curve

Furthermore, we implement the influence function-based Jackknife empirical likelihood

(IFJEL) method. Recall the influence function g(Xi, η(t0)) has been defined in Section 2.1.

Let

V̂−i =
1

n− 1

n∑
j=1,j 6=i

ĝ−i(Xj, η(t0)), i = 1, 2, · · · , n, j = 1, 2, · · · , n. (2.10)

where ĝ−i(Xj, η(t0)) = (Xj − ξ̂t,−i)I(Xj ≤ ξ̂t,−i) + tξ̂t,−i − Xjη(t), ξ̂t,−i is the ξ̂t based on

{X1, · · · , Xi−1, Xi+1, · · · , Xn}.
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Ŵi =
n∑
j=1

ĝ(Xj, η(t0))− (n− 1)V̂−i, i = 1, 2, · · · , n, j = 1, 2, · · · , n. (2.11)

Here we use Ŵi to substitute ĝ(Xi, η(t0)) in (2.6) (2.7), (2.8) and (2.9), which gives the log

influence function-based jackknife empirical likelihood ratio as

lIFJEL(η(t0)) = −2logRIFJEL(η(t0)) = 2
n∑
i=1

log{1 + νIFJEL(t)Ŵi}, (2.12)

lIFJEL(η(t0)) can be proved to follow a standard chi-square distribution based on Jing, Yuan

and Zhou’s paper (2009)[17]. Similar to the procedure in Section 2.1, we can construct the

(1− α)% IFJEL confidence interval by RIFJEL = {η(t) : lIFJEL(η(t)) ≤ χ2
1,1−α}.
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CHAPTER 3

GENERALIZED INFERENTIAL PROCEDURES FOR LORENZ CURVE

UNDER PARETO AND LOGNORMAL DISTRIBUTIONS

Tsui and Weerahandi (1989)[26] introduced the concept of generalized p values and gen-

eralized test variables, which are useful for developing hypothesis tests in situations involving

nuisance parameters. Subsequently, the concept of a generalized pivotal quantity (GPQ) was

introduced by Weerahandi (1993) [28]. In order to define a GPQ, let X be a random sample

whose distribution depends on a parameter of interest θ, and a nuisance parameter δ. Let

x denote the observed value of X, then Q(X;x, θ, δ) is called a generalized pivotal quantity

(GPQ) for θ, given the following two conditions:

(i) Given the observed value x, the distribution of Q(X; x, θ, δ) is free of any unknown

parameter;

(ii) The observed value of Q(X; x, θ, δ) at X = x, i.e., Q(x; x, θ, δ), is equal to θ.

From this definition, the percentiles of Q(X; x, θ, δ) are considered as the GCIs for θ.

It’s easy to see that (Qα
2
(X; x, θ, δ), Q1−α

2
(X; x, θ, δ)) is the equi-tail two-sided 100(1−α)%

confidence interval for θ.

3.1 Lorenz Curve under Pareto Distribution

The Pareto distribution in the shape-scale form is defined as

F (x; β, λ) = P (X ≤ x) = 1− (
β

x
)

1
λ , x ≥ β, (3.1)

where λ and β are the shape and the scale parameters, respectively. Moreover, Malik (1970)

[18] derived distributions of the maximum likelihood estimators (MLEs) of the parameters

in the Pareto distribution based on a random sample of size n. Let X = {X1, · · · , Xn} be a

random sample from the Pareto distribution with the CDF (3.1). Then the MLEs of β and
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λ are given by

β̂ = β̂(X) = X(1) and λ̂ = λ̂(X) =
1

n

n∑
i=1

ln(
Xi

X(1)

), (3.2)

where X(1) denotes the first order statistic among X1, · · · , Xn. Let

Z1 =
1

λ
ln(

β̂

β
) and Z2 =

λ̂

λ
. (3.3)

Z1 and Z2 are independent random variables and 2nZ1 follows Chi-square distribution with

2 degrees of freedom, 2nZ2 follows Chi-square distribution with 2(n− 1) degrees of freedom.

When the income distribution is a Pareto distribution, the Lorenz curve is

η(t;λ, β) =


1− (1− t)1−λ if 0 < λ < 1, 0 < t < 1,

1 if 0 < λ < 1, t = 1.

(3.4)

Let

Q∗λ =
λ̂0
Z2

, (3.5)

where Z2 is defined by (3.3) and λ̂0 denotes the observed value of λ̂. It is easy to see that

the distribution of Q∗λ is free of the unknown parameter λ, and 2nZ2 ∼ χ2
2(n−1). Moreover,

the observed value of Q∗λ is λ. Therefore Q∗λ is a GPQ for λ, and a GPQ for η(t;λ, β) is

Q
′

η(X; x, t, β) =


1− (1− t)1−Q∗λ if 0 < Q∗λ < 1, 0 < t < 1,

1 if 0 < Q∗λ < 1, t = 1.

(3.6)

Since the CDF of Q
′
η(X; x, t, β) does not have a closed form, the following Monte Carlo

method is needed to find GPQ-based CIs for η(t;λ, β).

We summarize the procedure in the following steps:

For a given random sample {x1, x2, ... , xn} from a pareto distribution, compute the

value of λ̂0.
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1. Generate a random value of 2nZ2 from χ2
2(n−1), compute Q∗λ = 2nλ̂0

2nZ2
, and then plug

Q∗λ in (3.6) to obtain Q
′
η.

2. Repeat step 1 for m (m is recommended to be 5000 or bigger) times, so we can get

m copies of Q
′
η.

3. Sort the m copies of Q
′
η in ascending order, and denote the ordered values as Q

′
η[1],

Q
′
η[2],· · · , Q′η[m], where [a] means the greatest integer less than or equal to a.

Therefore the 100(1−α)% generalized confidence interval (GCI) for η(t;λ, β) is [Q
′
η[m∗

α/2], Q
′
η[m ∗ (1− α/2)]].

3.2 Lorenz Curve under Lognormal Distribution

A random variable X has a Lognormal distribution if its logarithm log(X) has a normal

distribution, i.e. Y = log(X) ∼ N(µ, σ2), and the MLE of µ and σ2 is given by

µ̂ = Ȳ =

∑n
i=1 Yi
n

and σ̂2 = S2 =

∑n
i=1(Yi − Ȳ )2

n− 1
, (3.7)

where Yi = log(Xi), µ̂ and σ̂2 are independent. And U2 = (n−1)S2

σ2 ∼ χ2
n−1.

When the underlying distribution is a Lognormal distribution, the Lorenz curve is

η(t;µ, σ) = φ(φ−1(t)− σ) if 0 < t < 1, (3.8)

where φ denotes the probability density of the standard normal distribution.

Let

Q∗σ2 =
s2(n− 1)

U2
, (3.9)

where s2 denotes the observed value of S2 = 1
n−1

∑n
i=1(Yi − Ȳ )2 and U2 = (n−1)S2

σ2 ∼ χ2
n−1.

The distribution of Q∗σ2 is free of unknown parameter σ2 and the observed value of Q∗σ2 is

σ2. Therefore, Q∗σ2 is a GPQ for σ2 and the GPQ for η(t;µ, σ) is

Q∗η(X; x, t, σ) = φ(φ−1(t)−
√
Q∗σ2) if 0 < t < 1, (3.10)



12

Similar to the case of Pareto distribution, we have the following steps to find GPQ-based

CIs for η(t;µ, σ).

For a given random sample {x1, x2, ... , xn} from a Lognormal distribution, compute

the value of s2.

1. Generate a random value of U2 from χ2
n−1, compute Q∗σ2 = s2(n−1)

U2 , and then plug

Q∗σ2 in (3.10) to obtain Q∗η.

2. Repeat step 1 for m times, so we can get m copies {Q∗η,1, Q∗η,2, · · · , Q∗η,m} of Q∗η.

3. Sort the m copies of Q∗η in ascending order, and denote the ordered values as Q∗η[1],

Q∗η[2],· · · , Q∗η[m].

The 100(1 − α)% generalized confidence interval (GCI) for η(t;µ, σ) is [Q∗η[m ∗

α/2], Q∗η[m ∗ (1− α/2)]].
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CHAPTER 4

SIMULATION STUDIES

In this part, intensive simulation studies are conducted to evaluate finite sample per-

formance of the proposed methods.

4.1 Influence Function-based Empirical Likelihood Intervals

Based on Theorem 1, the 100(1 − α)% confidence interval is defined as RIF = {η(t) :

lIF (η(t)) ≤ χ2
1,1−α}. By the influence function-based empirical likelihood (IFEL) approach,

the coverage probability is calculated using the following procedures:

1. Generate {x1, x2, · · · , xn} from an underlying distribution.

2. Calculate η(t0) for fixed t0, solve equation (2.8) for νIF (t0) and get the value of

log-likelihood lIF (η(t0)) = −2logRIF (η(t0)) = 2
∑n

i=1 log{1 + νIF (t)ĝ(Xi, η(t0))}.

3. Set the initial value of (η(t), νIF (t)) as (η(t0) − 0.1, 0). Then obtain the solution η1

for η(t) by solving the nonlinear equations (2.8) and

lIF (η(t))− χ2
1,1−α = 0 (4.1)

where lIF (η(t)) = 2
∑n

i=1 log{1 + νIF (t)ĝ(Xi, η(t))}. Set (η(t0) + 0.1, 0) as the initial value

of (η(t), νIF (t)) and solve the nonlinear equations again, get solution η2. The interval length

is calculated by η2 − η1.

4. Repeat 1-3 for B (a large number, e.g. B=5000) times, then calculate the coverage

probability of the IFEL interval:

1

B

B∑
b=1

I(lIF,b(η(t0)) ≤ χ2
1,1−α), (4.2)



14

and the average length of the confidence interval is

1

B

B∑
b=1

(η2,b − η1,b), (4.3)

where lIF,b(η(t0)), η1,b and η2,b are the values of lIF (η(t0)), η1 and η2 based on b-th simulated

sample, respectively.

Similarly, we can calculate the coverage probability and average length of IFJEL interval.

4.2 Asymptotic Confidence Intervals

One of the most popular methods to construct a confidence interval for an unknown

parameter is the normal approximation. Since the MLE’s (λ̂, β̂) of Lorenz curve under Pareto

distributions is invariant. Under the proper regularity assumptions, as n→∞, we have the

following asymptotical result,

√
n(η(t; λ̂, β̂)− η(t;λ, β))

d−→ N(0, (Oη(t;λ, β))ᵀI(Θ)−1(Oη(t;λ, β))), as n→∞, (4.4)

where Θ̂ = (λ̂, β̂)
ᵀ

has an asymptotic bivariate normal distribution with mean Θ = (λ, β)ᵀ

and the covariance matrix determined by the Fisher information matrix I(Θ), Oη is the first

derivative of η(t;λ, β).

There is a consistent estimator for Fisher information matrix I(Θ), which is proposed

by Meilijson (1989) [19]. Let li(xi,Θ) represent the single observation log-likelihood function

and

si(xi,Θ) =
∂li(xi,Θ)

∂Θ
(4.5)

be the score function. Then the empirical Fisher information matrix H(x,Θ) can be defined

as,

H(x,Θ) =
1

n

n∑
i=1

si(xi,Θ)si(xi,Θ)ᵀ − 1

n2
S(x,Θ)S(x,Θ)ᵀ (4.6)

where S(x,Θ) =
∑n

i=1 si(xi,Θ). To construct CI for a Lorenz ordinate, In(Θ) = nI(Θ) needs
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to be estimated by În(Θ) = nH(x, Θ̂). Therefore, an asymptotic 100(1 − α)% confidence

interval (ACI) for η(t;λ, β) is

ACI = (η(t; λ̂, β̂)− z1−α/2σ̂, η(t; λ̂, β̂) + z1−α/2σ̂) (4.7)

where σ̂ = ((Oη(t; λ̂, β̂))ᵀ(nH(x, Θ̂))
−1

(Oη(t; λ̂, β̂)))1/2, Oη(t; λ̂, β̂) is the matrix gradient of

η(t;λ, β) at Θ = Θ̂ and zα is the α-th quantile of the standard normal distribution. When

the underlying income distribution is a Lognormal distribution, we use the same way to find

the ACI for η(t;µ, σ).

4.3 Bootstrap Confidence Intervals

The empirical bootstrap is a statistical technique popularized by Efron (1993)[12]. The

key idea is to perform computations on the data itself to estimate the specific statistics from

the same data. The bootstrap setup is as follows:

1. Generate {x1, x2, · · · , xn} from a Pareto distribution with parameters λ and β,

compute the MLE’s λ̂ and β̂.

2. Generate bootstrap sample x∗ = {x∗1, x∗2, · · · , x∗n} from {x1, x2, · · · , xn}, compute the

bootstrap copies λ̂∗ and β̂∗ of λ̂ and β̂ based on the bootstrap sample, then plug them in

the Lorenz curve η̂∗ = η∗(t, λ̂∗, β̂∗).

3. Repeat steps 1-2 for B (a large number, e.g. B=5000) times and get B bootstrap

copies of η̂∗. Let η̂∗1, η̂
∗
2, · · · , η̂∗B denote the bootstrap copies in ascending order, the (1−α)-th

percentile bootstrap confidence interval (BCI) for Lorenz ordinate η(t) is given by

BCI = (η̂∗[Bα/2], η̂
∗
[B(1−α/2)]) (4.8)

where η̂∗[Bα] is the [Bα]-th value in the ordered list of the B replications of η̂∗.

When the underlying distribution is a Lognormal distribution, we use the same algo-

rithm to construct the confidence interval for Lorenz curve.
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4.4 Simulation results

When generating samples, we should notice that most income distributions are positively

skewed, so the choice of underlying distribution F should be a positively skewed distribution.

In this part, we choose Pareto distribution with the shape parameter 1
λ

= 1
15

and the scale

parameter β = 0.9, and Lognormal distribution with mean µ = 0.05 and standard deviation

σ = 0.5. The sample size n is chosen to be 100, 200, 300 and 400. B and m are set as 5000.

Let t0 = 0.1 + 0.05k, k = 0, 1, · · · , 16, we calculate the coverage probabilities and average

interval lengths of 95% level confidence intervals for η(t0).

Figures 4.1 − 4.8 show the simulation results. First, we observe that the coverage

probabilities of the GCIs are very close to the nominal level in all the cases, and GCIs

perform much better than ACIs and BCIs when sample size is small. IFEL and IFJEL also

have good performances except for cases when t0 falls in the upper tail of Lorenz curve,

and they both outperform EL with better coverage probabilities. As sample size increases,

the coverage probabilities of IFEL and IFJEL confidence intervals are in better agreement

with the nominal level. Second, when we look at the average lengths of all the confidence

intervals, GCIs and BCIs have similar average lengths and they are the shortest among all

the confidence intervals. We also observe that IFEL and IFJEL confidence intervals have

comparable average lengths, while EL confidence intervals has the longest average lengths.

Overall, we recommend the GCI for the Lorenz curve when underlying distribution is a Pareto

distribution or a Lognormal distribution, and recommend the IFEL confidence interval and

IFJEL confidence interval for Lorenz curve when underlying distribution is unknown.
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Figure 4.1. Coverage probabilities of the 95% confidence intervals for the Lorenz curve
under Pareto distribution(n=100,200)



18

Figure 4.2. Coverage probabilities of the 95% confidence intervals for the Lorenz curve
under Pareto distribution(n=300,400)
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Figure 4.3. Coverage probabilities of the 95% confidence intervals for the Lorenz curve
under Lognormal distribution(n=100,200)



20

Figure 4.4. Coverage probabilities of the 95% confidence intervals for the Lorenz curve
under Lognormal distribution(n=300,400)
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Figure 4.5. Average lengths of 95% confidence intervals for the Lorenz curve under Pareto
distribution(n=100,200)(Note: IFEL almost overlaps IFJEL as their average lengths are very
close, same for the GPQ and Boostrap.)
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Figure 4.6. Average lengths of 95% confidence intervals for the Lorenz curve under Pareto
distribution(n=300,400)(Note: IFEL almost overlaps IFJEL as their average lengths are very
close, same for the GPQ and Boostrap.)
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Figure 4.7. Average lengths of 95% confidence intervals for the Lorenz curve under Lognormal
distribution(n=100,200)(Note: IFEL almost overlaps IFJEL as their average lengths are very
close, same for the GPQ, Boostrap and NA.)
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Figure 4.8. Average lengths of 95% confidence intervals for the Lorenz curve under Lognormal
distribution(n=300,400)(Note: IFEL almost overlaps IFJEL as their average lengths are very
close, same for the GPQ, Boostrap and NA.)
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CHAPTER 5

REAL DATA EXAMPLES

5.1 Public Income Data from the Panel Study of Income Dynamics

In this section, we apply the proposed methods to make inferences for Lorenz curve with

a real income dataset. Income inequality is a significant economic problem all over the world

and the United States have the highest rising of income inequality among most developed

countries (Weeks 2007 [27]). By constructing confidence intervals for Lorenz ordinates at

different t, we can discuss how the income inequality is in the United States and have a

general view of the inequality.

This income dataset is obtained from the database - The Panel Study of Income Dynam-

ics (PSID) - from the University of Michigan (PSID 2017 [21]). It is part of the 2015 PSID

Main Family Data, and it contains three variables: ER60001 - Release Number, ER60002

- 2015 Family Interview (ID) Number and ER65349 - Total Family Income-2014. The in-

come reported here was collected in 2015 for tax year 2014. Please note that this variable

can contain negative values. Negative value indicates a net loss, which in waves prior to

1994. These losses occur as a result of business or farm loss. Positive values mean actual

income amounts and zero means there is no family income in 2014. There are in total 9048

households in this dataset.

A brief summary of this income data is shown in Table 5.1:

Table 5.1. Summary of 2015 PSID Family Data - Income
Min. 1st Qu. Median Mean 3rd Qu. Max.

-22000 24000 49310 69540 90210 5250000

The histogram (Figure 5.1) shows that this income data is severely positively skewed.
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Figure 5.1. Histogram of Income Data

Here we utilize the Pareto distribution and Lognormal distribution to fit this income data.

In order to test the goodness-of-fit, the popular goodness-of-fit index named Kolmogorov-

Smirnov (K-S) statistic is used. We consider the null hypothesis H0 : X ∼ Pareto(β, λ) and

H0 : X ∼ Lognormal(µ, σ2), the p-values for Pareto distribution and Lognormal distribution

are both far less than 0.05. These p-values indicate that the income data does not follow

a Pareto distribution nor a Lognormal distribution. So we can only use nonparametric

methods, i.e. IFEL, IFJEL and EL methods to construct confidence intervals for Lorenz

curve.

The non-parametric estimates for the Lorenz ordinates with their 95% confidence inter-

vals are presented in Table 5.2. We can see that IFEL and IFJEL intervals are very similar

in most cases. Based on our simulation results, we suggest to use IFEL and IFJEL intervals.

For example, when t = 0.9, the 95% IFEL confidence interval for Lorenz curve is (0.6456;

0.6654), it means the ratio of the mean income of the lowest 90% households and the mean

income of total households is greater than 0.6456, but smaller than 0.6654.
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Table 5.2. 95% level confidence intervals for Lorenz ordinates
IFEL IFJEL EL

t Confidence interval Confidence interval Confidence interval
0.10 (0.0032,0.0110) (0.0002,0.0080) (0.0043,0.0116)
0.20 (0.0270,0.0306) (0.0240,0.0276) (0.0339,0.0392)
0.30 (0.0588,0.0652) (0.0558,0.0622) (0.0739,0.0850)
0.40 (0.1065,0.1146) (0.1035,0.1116) (0.1334,0.1439)
0.50 (0.1640,0.1776) (0.1610,0.1746) (0.2080,0.2194)
0.60 (0.2458,0.2582) (0.2428,0.2552) (0.2958,0.3147)
0.70 (0.3477,0.3597) (0.3447,0.3567) (0.4186,0.4313)
0.80 (0.4750,0.4900) (0.4720,0.4870) (0.5551,0.5705)
0.90 (0.6456,0.6654) (0.6426,0.6624) (0.7207,0.7391)

5.2 Median Income Data of Twenty Occupations in the U. S. in 1950

The second data set is about the median income of the twenty occupations in the

United States Census of Population, 1950, Occupational Characteristics (Special Report,P-

E No. 1B)(Shafiei, Saboori and Doostparast, 2016 [24]). The data set is presented in Table

5.3. The p-value of K-S test for Pareto distribution with parameters β and λ is 0.9905, the

p-value of K-S test for Lognormal distribution with parameters µ and σ2 is far less than

0.05. These p-values suggest that the median income data follows a Pareto distribution, so

we use the Pareto distribution to model the median income data.

We recommend to use GCI for Lorenz curve as it has best performances in our simulation

studies. Figure 5.2 shows the coverage probabilities of the 95% GCIs for the Lorenz curve

under Pareto distribution when sample size is 20, which is the same size as the median income

data. We can observe that the coverage probabilities are all very close to the nominal level

0.95. Table 5.4 displays various 95% level confidence intervals for Lorenz curve. For example,

when t = 0.1, the 95% GCI for Lorenz curve is (0.0485, 0.0799), it means the ratio of the

mean income of the lowest 10% occupations and the mean income of total occupations is

greater than 0.0485, but smaller than 0.0799.
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Table 5.3. Median income (by 1949 in dollars) of 20 occupations in the United States.

Occupation Income Occupation Income
Accountants and auditors 3977 Mail-carriers 3480
Architects 5509 Plumbers and pipe fitters 3353
Authors, editors, and reporters 4303 Motormen, street, subway, and ele-

vated rai1way
3424

Chemists 4091 Teachers (n.e.c.) 3456
Dentists 6448 Insurance agents and brokers 3771
Engineers, civil 4590 Electricians 3447
Lawyers and judges 6284 Locomotive engineers 4648
Physicians and surgeons 8302 Machinists and job setters, metal 3303
College presidents, professors, and in-
structors (n.e.c.)

4366 Managers, officials, and proprietors
(n.e.c.) - self-employed - wholesale and
retail trade

3806

Managers, officials, and proprietors
(n.e.c.) - self-employed - manufactur-
ing

4700

Figure 5.2. Coverage probabilities of the 95% GCIs for the Lorenz curve under Pareto
distribution(n=20)
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Table 5.4. Length of 95% CI for median income data of 20 occupations in the United States

t Method Confidence interval t Method Confidence interval

0.1

GCI (0.0485,0.0799)

0.7

GCI (0.4360,0.6145)
ACI (0.0566,0.0864) ACI (0.4930,0.6500)
BCI (0.0589,0.0837) BCI (0.5019,0.6319)
IFEL (0.0620,0.0800) IFEL (0.5364,0.6330)
IFJEL (0.0499,0.0499) IFJEL (0.5376,0.6334)

EL (0.0319,0.0397) EL (0.5458,0.6419)

0.3

GCI (0.1604,0.2458)

0.9

GCI (0.6669,0.8381)
ACI (0.1798,0.2642) ACI (0.7330,0.8715)
BCI (0.1852,0.2572) BCI (0.7387,0.8530)
IFEL (0.1979,0.2518) IFEL (0.7915,0.8563)
IFJEL (0.1978,0.2524) IFJEL (0.7943,0.8587)

EL (0.1811,0.1836) EL (0.8000,0.8634)

0.5

GCI (0.2831,0.4218)
ACI (0.3214,0.4508)
BCI (0.3298,0.4375)
IFEL (0.3486,0.4303)
IFJEL (0.3374,0.3818)

EL (0.3498,0.3569)
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CHAPTER 6

CONCLUSIONS

In this thesis, an empirical likelihood method based on influence function is proposed

and used to construct confidence intervals for the Lorenz ordinates. The Jackknife empirical

likelihood method based on influence function is carried out. At the same time, we develop

the generalized confidence intervals for Lorenz ordinates under Pareto and Lognormal dis-

tributions. Since Pareto and the lognormal distributions play a central role as probabilistic

models for the distributions of various phenomena in different fields, the confidence intervals

derived in this thesis should be of practical interest.

Simulation results show good coverage probabilities of influence function-based empiri-

cal likelihood confidence intervals and influence function-based Jackknife empirical likelihood

confidence intervals in the lower tails when the sample size is large. Moreover, the coverage

probabilities of the generalized confidence intervals are in good agreement with the nominal

level for all the cases considered. They have pretty good performances even for the small

samples, compared with the bootstrap confidence intervals and asymptotic confidence inter-

vals. The real data examples show the confidence intervals for Lorenz ordinates at different

t’s, which gives us a general view of the income inequality and how severe it is in the United

States. It also gives us an idea when to use our proposed methods. In sum, if the underlying

income distribution is a Pareto distribution or a Lognormal distribution, generalized confi-

dence interval could give us a better way to make inferences on Lorenz curve. If it is hard

to know the underlying distribution or to fit a Pareto or a Lognormal distribution to the

data, influence function-based empirical likelihood and influence function-based Jackknife

empirical likelihood methods will be very useful in constructing confidence intervals for the

Lorenz Curve.
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Appendix A

PROOF OF THEOREMS

Lemma 1. Under the conditions in Theorem 1, we have

1

n

n∑
i=1

(ĝ(Xi, η(t0))− g(Xi, η(t0)))
2 = op(1)

Proof of Lemma 1.

For a given t0, let g(Xi, η(t0)) = (Xi − ξt0)I(Xi ≤ ξt0) + t0ξt0 −Xiη(t0). The difference

between ĝ(Xi, η(t0)) and g(Xi, η(t0)) can be expressed as

ĝ(Xi, η(t0))− g(Xi, η(t0)) = Ai +Bi

where

Ai = (Xi − ξ̂t0)I(Xi ≤ ξ̂t0)− (Xi − ξt0)I(Xi ≤ ξt0)

Bi = t0(ξ̂t0 − ξt0)

Applying the inequality (a+ b)2 ≤ 2(a2 + b2), we obtain that

1

n

n∑
i=1

(ĝ(Xi, η(t0))− g(Xi, η(t0)))
2 =

1

n

n∑
i=1

(Ai +Bi)
2 ≤ 2

n

n∑
i=1

A2
i +

2

n

n∑
i=1

B2
i

Therefore, we only need to prove that the sample means of A2
i and B2

i converge to zero in

probability. The proofs will be presented in (A) and (B) below.

(A) 1
n

∑n
i=1A

2
i = op(1)
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1

n

n∑
i=1

A2
i =

1

n

n∑
i=1

[(Xi − ξ̂t0)I(Xi ≤ ξ̂t0)− (Xi − ξt0)I(Xi ≤ ξt0)]
2 =

1

n

n∑
i=1

[X2
i I(Xi ≤ ξ̂t0)(I(Xi ≤ ξ̂t0)− I(Xi ≤ ξt0))− 2Xiξ̂t0I(Xi ≤ ξ̂t0)(I(Xi ≤ ξ̂t0)

− I(Xi ≤ ξt0)) + ξ̂t0I
2(Xi ≤ ξ̂t0)(ξ̂t0I(Xi ≤ ξ̂t0)− ξt0I(Xi ≤ ξt0)

+ 2Xiξt0I(Xi ≤ ξt0)(I(Xi ≤ ξ̂t0)− I(Xi ≤ ξt0))−X2
i I(Xi ≤ ξt0)(I(Xi ≤ ξ̂t0)

− I(Xi ≤ ξt0))− ξt0I(Xi ≤ ξt0)(ξ̂t0I(Xi ≤ ξ̂t0)− ξt0I(Xi ≤ ξt0))]

By the strong consistency of the sample quantile ξ̂t0 , we obtain that |I(Xi ≤ ξ̂t0) −

I(Xi ≤ ξt0)|
p−→ 0 , |ξ̂t0I(Xi ≤ ξ̂t0) − ξt0I(Xi ≤ ξt0)|

p−→ 0 , for i = 1, 2, · · · , n . From

1
n

∑n
i=1 |Xi|2 → E(X2) <∞ a.s., it follows that

1

n

n∑
i=1

A2
i = op(1)

(B) 1
n

∑n
i=1B

2
i = op(1)

It’s obvious that |ξ̂t0 − ξt0|
p−→ 0, thus 1

n

∑n
i=1B

2
i = op(1). �

Lemma 2.

(i) maxi |ĝ(Xi, η(t0))| = op(
√
n).

(ii) 1
n

∑n
i=1 ĝ

2(Xi, η(t0)) = σ2 + op(1).

(iii) 1√
n

∑n
i=1 ĝ(Xi, η(t0))

d−→ N(0, σ2).

Proof of Lemma 2.

(i) Since g(Xi, η(t0)) are i.i.d. random variables with zero mean and finite variance σ2,

maxi |g(Xi, η(t0))| = op(
√
n). We obtain that

max
i
|ĝ(Xi, η(t0))| ≤ max

i
|ĝ(Xi, η(t0))− g(Xi, η(t0))|+ max

i
|g(Xi, η(t0))| = op(

√
n)
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(ii) Similar to proof of Lemma 1, we can prove that

1

n

n∑
i=1

g(Xi, η(t0))(ĝ(Xi, η(t0))− g(Xi, η(t0))) = op(1). (A.1)

Then from Lemma 1, (A.1), (A.2) and 1
n

∑n
i=1 g

2(Xi, η(t0)) = σ2, we have that

1

n

n∑
i=1

ĝ2(Xi, η(t0)) =
1

n

n∑
i=1

(ĝ(Xi, η(t0))− g(Xi, η(t0)))
2 +

1

n

n∑
i=1

g(Xi, η(t0))
2

+
2

n

n∑
i=1

g(Xi, η(t0))(ĝ(Xi, η(t0))− g(Xi, η(t0))) = σ2 + op(1).

(A.2)

Lemma 2(ii) is proved.

(iii) Similar to proof of Lemma 1, we can obtain that

1√
n

n∑
i=1

(ĝ(Xi, η(t0))− g(Xi, η(t0))) = op(1). (A.3)

Then we have

1√
n

n∑
i=1

ĝ(Xi, η(t0)) =
1√
n

n∑
i=1

(ĝ(Xi, η(t0))− g(Xi, η(t0))) +
1√
n

n∑
i=1

g(Xi, η(t0))

=
1√
n

n∑
i=1

g(Xi, η(t0)) + op(1)

(A.4)

From 1√
n

∑n
i=1 g(Xi, η(t0))

d−→ N(0, σ2), Lemma 2(iii) is proved. �

Proof of Theorem 1.

Using Lemma 2 and Lemmas in Owen (1990), we have |νIF | = Op(n
− 1

2 ). Applying

Taylor expansion to (2.9), we can obtain

lIF (η(t0)) = 2
n∑
i=1

log{1 + νIF (t0)ĝ(Xi, η(t0))}

= 2
n∑
i=1

(νIF (t0)ĝ(Xi, η(t0))− 12(νIF (t0)ĝ(Xi, η(t0))
2) + r1n
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with |r1n| ≤ C
∑n

i=1 |νIF (t0)ĝ(Xi, η(t0))|3 ≤ C|νIF (t0)|3 maxi |ĝ(Xi, η(t0))|
∑n

i=1 ĝ
2(Xi, η(t0)) =

op(1). From (2.8),

n∑
i=1

ĝ(Xi, η(t0))

1 + νIF (t0)ĝ(Xi, η(t0))
=

n∑
i=1

ĝ(Xi, η(t0))[1− νIF (t0)ĝ(Xi, η(t0)) +
(νIF (t0)ĝ(Xi, η(t0)))

2

1 + νIF (t0)ĝ(Xi, η(t0))
] =

n∑
i=1

ĝ(Xi, η(t0))− νIF (t0)
n∑
i=1

ĝ2(Xi, η(t0))+

n∑
i=1

ĝ(Xi, η(t0))(νIF (t0)ĝ(Xi, η(t0)))
2

1 + νIF (t0)ĝ(Xi, η(t0))
= 0,

it follows that νIF (t0) =
∑n
i=1 ĝ(Xi,η(t0))∑n
i=1 ĝ

2(Xi,η(t0))
+op(n

− 1
2 ). Further, we have that

∑n
i=1 νIF (t0)ĝ(Xi, η(t0)) =∑n

i=1(νIF (t0)ĝ(Xi, η(t0)))
2 + op(1).

Therefore, by Lemma 1, we obtain that

lIF (η(t0)) =
n∑
i=1

(νIF (t0)ĝ(Xi, η(t0)))
2 + op(1)

=
( 1√

n

∑n
i=1 ĝ(Xi, η(t0)))

2

1
n

∑n
i=1 ĝ

2(Xi, η(t0))
+ op(1) = χ2

1 + op(1). �
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