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ABSTRACT 

Neuroimaging techniques have been used to investigate the neurobiological mechanisms 

of cognitive deficits in survivors of childhood brain tumors. Graph theory is a quantitative 

method that characterizes brains as a complex system. By modeling brain regions as ‘nodes’ and 

white matter tracts between each brain region pair as ‘edges,’ graph theory provides metrics that 

quantify the topological properties of networks. Given that brain tumor survivorship is associated 

with focal and diffuse impairments, a network analysis can provide complementary information 

to previous neuroimaging studies in this clinical group. This study used diffusion-weighted 

imaging and deterministic tractography to examine the properties of the structural networks in 38 

adult survivors of pediatric brain tumors (Mean age=22.5, 55% female, mean years post 

diagnosis=14.1 (6.2), Range post diagnosis = 4.5-30 years). Results of this study suggest that 

long term survivorship is associated with altered structural networks with respect to measures of 

integration, segregation, and centrality. Further, properties of the network mediate differences in 



cognitive flexibility performance between survivors and healthy peers, and mediate the 

relationship between cumulative neurological risk and cognitive flexibility performance. 

 

 

INDEX WORDS: Diffusion-weighted imaging, Deterministic tractography, Graph theory, 

Executive functioning, Long-term outcomes, Brain tumor survivorship, Cognitive 
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1 INTRODUCTION  

1.1 Brain Tumor Survivorship 

Cancers of the brain and central nervous system are the second most prevalent type of 

cancers in children. In the United States alone, an estimated 4820 children will be diagnosed 

with a brain tumor in 2017 (Ostrom et al., 2016). Medical and technological advances in cancer 

treatments have resulted in improved survival rates for children with brain tumors (Porter, 

McCarthy, Freels, Kim, & Davis, 2010). For instance, 5 year survival rates for medulloblastoma, 

which is the most common malignant brain tumor in children, have risen from 29% to 70% over 

the past several decades (Smoll, 2012). Research has shifted to emphasize the quality of survival 

as increasing numbers of these survivors reach adulthood. Hence, a body of research has 

emerged to identify psychosocial and neurobiological factors that predict poor outcomes, identify 

protective factors that promote resilience, and develop effective treatments and interventions to 

address the problems that arise in survivors as they age (Lassaletta, Bouffet, Mabbott, & 

Kulkarni, 2015; Mulhern, Merchant, Gajjar, Reddick, & Kun, 2004; Murdaugh, King, & 

O'Toole, 2017).  

Research on long-term outcomes of adult survivors of pediatric brain tumors has 

demonstrated late effects even decades after initial diagnosis and treatment. Several studies of 

large cohorts of adult survivors have utilized self- and proxy-reports to investigate health-related 

quality of life (HRQOL). Survivors who are at least five years post diagnosis and their caregivers 

frequently report significant physical, social, emotional and cognitive effects due to brain tumor 

and associated treatments (Barakat et al., 2015; Crom et al., 2014). Furthermore, a longitudinal 

study of the same cohort of adult survivors over the course of a decade indicated progressive 
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declines in HRQOL, suggesting that survivors experience increased difficulties as they age 

(Duckworth et al., 2015).  

There are substantial physical late effects that are common in pediatric brain tumor 

survivors. These include higher incidence of cardiovascular risk factors, endocrine complications 

(e.g., reduced growth, hypothyroidism, pubertal disorders, gonadal dysfunction), sensory 

changes such as decreased vision and hearing, fatigue, as well as higher risk of developing new 

cancers (Bereket, 2015; Ehrstedt et al., 2016; Felicetti et al., 2015; Geenen et al., 2007; Gunnes 

et al., 2016; Hummel et al., 2015; Inskip et al., 2016; Turner, Rey-Casserly, Liptak, & Chordas, 

2009). Pain is also a common complaint in this group, with an increase in prevalence and 

severity noted across a sample of survivors in a 10 year longitudinal study (Nayiager et al., 

2015).  

Research also suggests that adult survivors of pediatric brain tumors face significant 

functional limitations. Survivors use more special education services in school, have lower 

educational attainment, lower rates of school graduation and lower levels of employment relative 

to the overall population and other cancer survivors that do not involve the central nervous 

system (Edelstein et al., 2011; Ellenberg et al., 2009; Kelaghan et al., 1988; Robison et al., 2005; 

Seaver et al., 1994; Ullrich & Embry, 2012).  

Survivors who are more than five years past their diagnosis also report more subjective 

changes in cognition when compared to their healthy siblings, as well as other childhood cancer 

survivors (Crom et al., 2014; McClellan et al., 2013; Nayiager et al., 2015). A qualitative study 

examining the narratives surrounding physical, emotional, cognitive, and social quality of life in 

adolescent and young adult survivors at least 5 years post diagnosis suggested that cognitive 
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limitations were the most salient for them amidst all domains of functioning (Hobbie et al., 

2016).   

Early performance studies of cognitive functioning in survivors were completed using 

broad intellectual functioning measures. Survivors have lower full scale intelligence quotients 

(IQ) than their healthy peers (Gragert & Ris, 2011), and, moreover, exhibit declines in their full 

scale IQ by a mean level of 2.55 points every year past their age at diagnosis (Palmer et al., 

2001; Spiegler, Bouffet, 2004). This continued decline is attributed to the inability of adult 

survivors to acquire new skills and information at a rate comparable to their healthy same-age 

peers, rather than a loss of previously acquired information (Palmer et al., 2001; Saury & 

Emanuelson, 2011). A meta-analysis of 29 studies comparing IQs in pediatric brain tumor 

survivors to age-matched controls or population based norms found large effect sizes for full 

scale IQ score differences (d=-0.79, large effect), with a larger effect on perceptual-based 

reasoning skills (d=-.90, large effect) when compared to verbal-based reasoning skills (d=-.54, 

medium effect) (de Ruiter, van Mourik, Schouten-van Meeteren, Grootenhuis, & Oosterlaan, 

2013). It should be acknowledged that some research studies, primarily in samples investigating 

survivors of low-risk brain tumors, do not show significant differences in average IQ between 

survivors and healthy controls; however, when evaluating the percentage of survivors who meet 

cutoff scores for clinical impairment, these studies generally find that survivors fall into the 

clinically impaired range at higher rates compared to controls (Turner et al., 2009).  

Although these early studies have established the existence of significant differences in 

distal outcomes (i.e., academic achievement, vocational achievement, broad IQ) between adult 

survivors of pediatric brain tumors and their same-aged peers, global measures lack the 

sensitivity to identify specific neurocognitive domains that are impacted in survivors. Thus, 
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recent research studies have utilized more comprehensive neuropsychological batteries to 

investigate specific neurocognitive domains that underlie the gap in functional outcomes 

between survivors and healthy same-aged peers. 

A quantitative review of 39 studies that examined neurocognitive domains in child brain 

tumor survivors who were 11 years old on average, and an average of 4.2 years posttreatment, 

found significant effects to global cognitive domains (i.e., global IQ, verbal IQ, nonverbal IQ), 

academic domains (i.e., spelling, math, reading), and specific neurocognitive domains (i.e., 

attention, verbal memory, visual-spatial skill, psychomotor skill, and language) as a result of 

brain tumor diagnosis and treatment (Robinson et al., 2010). There was a large mean effect size 

when averaging across all domains (Hedge’s g = -0.91).  

Another quantitative review of 38 studies examining neurocognitive domains in survivors 

of brain tumors of the posterior fossa suggested that there were diffuse effects to cognitive 

functioning even though tumors were constrained to the posterior fossa (Robinson, Fraley, 

Pearson, Kuttesch, & Compas, 2013). The participants in these studies were also primarily 

children or young adults (mean age = 11.6 years) and were on average 4 years posttreatment. The 

study found large effect sizes for the domains of attention, executive functions, psychomotor 

skill, processing speed, verbal memory and visual-spatial skill. Medium effect sizes were present 

for the domains of language and visual memory. Survivor performance on many domains were at 

least 1 standard deviation below their same-age peers. The study also found that age at diagnosis 

and radiation therapy were significant moderators; individuals who were younger when they 

were diagnosed or had radiation therapy treatment had worse cognitive outcomes. 

A qualitative review of studies examining more long-term outcomes in adult survivors of 

pediatric brain tumors also suggested diffuse effects to neurocognitive functioning. The authors 
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also noted that there is no specific profile associated with brain tumor survivors. However, there 

appeared to be higher risks to the domains of attention, working memory, processing speed, new 

learning, visuospatial skills, visuomotor skills and executive functioning as a result of brain 

tumors and treatments (Gragert & Ris, 2011). A recently empirically tested model suggested that 

deficits in attention, working memory, and processing speed skills contribute negatively to 

intellectual and academic long term outcomes in adult survivors of pediatric brain tumors (King, 

Ailion, Fox, & Hufstetler, 2017).  

It is important to note that there is large variability in the outcomes of survivors, which 

warrants investigation into the factors that predict those who are at risk for poor outcomes. Prior 

research has converged on demographic factors (gender, age at diagnosis, years since diagnosis), 

brain tumor factors (tumor type, tumor location, presence of hydrocephalus, presence of 

seizures), and treatment factors (presence and dosage of radiation, chemotherapeutic agents) that 

vary between patients and contribute differentially to outcomes (de Ruiter et al., 2013; Edelstein 

et al., 2011; Gragert & Ris, 2011; Ris & Noll, 1994). 

1.2 Neurotoxic Effects of Brain Tumor and Treatments in Survivors 

It is difficult to parse apart the individual contributions of each risk factor because 

survivors receive a combination of treatments and vary with respect to demographic factors as 

well as brain tumor type and location. Neurobiological research investigating the mechanisms of 

each treatment type has shed light on how these risk factors contribute to changes in the brain 

and ultimately affect functional outcomes. Neuroimaging techniques, which provide in vivo brain 

structure and function information, have been invaluable in helping test the theories regarding 

mechanisms of treatment-induced brain injury. For instance, diffusion-weighted imaging 

measures the rate and direction of water diffusion. These measurements have been used as 
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indirect metrics to describe microstructural properties of various brain structures, including white 

matter tracts. Further, tractography methods are used to reconstruct 3D maps of white matter 

pathways in the brain based on mathematical algorithms. Methods like these can quantify 

changes occurring at the microstructural level and describe the types of changes that occur to the 

brain due to brain tumors and associated treatments.  

The presence and dosage of radiation is widely considered to have the most detrimental 

impact on outcomes in survivors (Saury & Emanuelson, 2011). Radiation therapy is used to treat 

malignant brain tumors to halt cancer growth and promote tumor cell death (Lin, Jackson, & 

Vujaskovic, 2016). However, as radiation therapy does not discriminate between healthy and 

cancerous cells, radiation therapy can result in diffuse negative effects to functioning. A meta-

analysis evaluating the cognitive sequelae in adults diagnosed and treated with medulloblastomas 

as children concluded that survivors treated with radiotherapy had lower IQ scores than brain 

tumor survivors who were treated with other types of treatments (de Ruiter et al., 2013). In 

addition, higher dosages of radiation were associated with poorer performance in many 

neurocognitive domains, lower health-related quality of life, and more adverse physical, 

cognitive and emotional effects (Gragert & Ris, 2011; van Dijk et al., 2013).  

Contemporary models for radiation-induced brain injury contend that there are dynamic 

interactions that occur among many different types of cells that result in acute, early delayed, and 

late delayed brain injury (Greene-Schloesser et al., 2012). Neuroradiological imaging in clinical 

settings have observed transient demyelination within the first six months after radiation, which 

typically resolve on their own. The late delayed phase of radiation, however, is associated with 

irreversible progression of vascular abnormalities, demyelination and necrosis (Zhang, Yang, & 

Tian, 2015). The causes of these changes are likely multifactorial and include damage to 
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endothelial cells, loss of oligodendrocyte type-2 astrocytes, sustained microglial activation and 

astrocytic proliferation which contribute to a chronic inflammatory state and oxidative stress to 

the brain, and changes in neuronal synaptic efficiency, cellular activity, and gene expression 

(Greene-Schloesser, Moore, & Robbins, 2013).  

A longitudinal study used diffusion-weighted imaging techniques to examine effects of 

radiation dosage to white matter in adults with high grade gliomas over the course of one year 

(Connor et al., 2016). The study found a linear relationship between the dosage of radiation and 

levels of white matter damage. Further, longer periods of time since treatment resulted in 

progressive white matter damage, which was thought to be due to progressive demyelination. 

This progression of white matter damage is consistent with findings from longitudinal cognitive 

studies of adult survivors who have received radiation treatment. Specifically, worse outcomes 

were associated with a longer time since radiation therapy, with continued declines in IQ, 

executive functions, attention and working memory many years post diagnosis and treatment 

(Briere, Scott, McNall-Knapp, & Adams, 2008; Edelstein et al., 2011; Spiegler, Bouffet, 

Greenberg, Rutka, & Mabbott, 2004).  

Other modes of treatments are associated with increased risk for poorer outcomes. 

Although chemotherapy is widely accepted to be less neurotoxic than radiation, it nevertheless 

has subtle effects on cognitive outcomes (Moleski, 2000). A review of adult survivors of various 

types of pediatric cancers treated with chemotherapy (but not radiation) concluded that the 

domains of attention, executive functioning, visual processing, and visual-motor skills were 

negatively affected years after treatment (Anderson & Kunin-Batson, 2009). Hypothesized 

biomolecular mechanisms also suggest multi-factorial causes including increased inflammatory 

response in the brain, higher oxidative stress, and less effective neuronal repair (Ahles & Saykin, 
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2007; Moleski, 2000). Neuroimaging studies have found reduced volumes of white matter, gray 

matter, and the hippocampus, as well as cortical atrophy, leukoencephalopathy and 

microangiopathy as a result of chemotherapy treatment (Ren, St Clair, & Butterfield, 2017).  

Hydrocephalus is also a common neurological condition that occurs in brain tumor 

survivors. The brain tumor obstructs the flow of cerebrospinal fluid, causing fluid buildup in the 

ventricles of the brain. This results in increased intraventricular pressure, lower perfusion and 

edema of periventricular tissue and subsequent damage to periventricular white matter 

(Krishnamurthy & Li, 2014). When compared to adult survivors without shunts (a device used to 

treat hydrocephalus by relieving pressure from fluid buildup), survivors with shunts had lower 

IQs and achievement scores, as well as greater impairments in visual-motor functioning (Hardy, 

Bonner, Willard, Watral, & Gururangan, 2008).  

Lastly, the presence of the tumor and subsequent resection via neurosurgery also have 

long-term effects. Studies of low-risk brain tumor survivors who were only treated with surgery 

suggest that there is a high level of variability in adaptive skills and outcomes, and that these 

survivors are at risk for subtle long-term cognitive effects (Ris & Beebe, 2008). Resection of the 

brain tumor results in a loss of brain tissue and possible axonal degeneration in areas of the brain 

that are in the same neural pathway but distal to the site of the lesion. Several clinical studies 

have used tractography in adult patients to model changes that occur to white matter pathways 

due to the brain tumor. Slow-growing tumors which do not infiltrate into nearby healthy tissue 

resulted in displacement of white matter tracts, while fast-growing tumors resulted in 

displacement, infiltration and disruption of white matter tracts (Nilsson, Rutka, Snead, Raybaud, 

& Widjaja, 2008; Wei, Guo, & Mikulis, 2014). Studies employing a longitudinal approach have 

shown that white matter tracts returned to normal position and normal anatomy following 
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resection, and that this return to normal position correlated with improvement in motor 

functioning. However, there were also persistent effects after surgery, including thinning, 

interruptions, and reductions in tract size (Lazar, Alexander, Thottakara, Badie, & Field, 2005).  

It is important to note that many studies lack the power to examine these risk factors 

individually in their studies with multivariate modeling approaches due to limited sample sizes 

and heterogeneity in their sample. As such, several studies have employed the Neurological 

Predictor Scale, a measure that incorporates type of tumor treatments and other neurological risk 

factors into on cumulative score, to examine how the cumulative nature of these risk factors 

affect outcomes (Micklewright, King, Morris, & Krawiecki, 2008). Research suggests that higher 

neurological and treatment risk is associated with poorer intelligence and adaptive functioning 

child survivors of pediatric brain tumor (McCurdy, Rane, Daly, & Jacobson, 2016; Micklewright 

et al., 2008; Papazoglou, King, Morris, & Krawiecki, 2008). Further, this measure is 

significantly correlated with intelligence, adaptive functioning, processing speed, working 

memory and attention outcomes over and above each individual risk factor in adult survivors of 

pediatric brain tumors (King & Na, 2016; Taiwo, Na, & King, 2017).  

1.3 Structural Neuroimaging Studies in Brain Tumor Survivors 

Neuroimaging studies conducted in brain tumor survivors have indicated that changes 

occur on macrostructural and microstructural levels of the brain. Anatomical changes, such as 

cortical and cerebellar atrophy and leukoencephalopathy can occur as late effects of brain tumors 

(Riva et al., 2002). However, research has suggested that these visible anatomic changes 

correlate poorly with measures of behavior and function (Rueckriegel et al., 2010). As such, 

quantifiable metrics of macrostructural and microstructural properties are commonly used to 

investigate brain-behavior relationships. 



10 

 

On the macrostructural level, studies have found that total brain volumes and overall 

white matter volumes are significantly lower in survivors compared to age-matched controls 

(Jayakar, King, Morris, & Na, 2015; Reddick et al., 2005; Riggs et al., 2014). With respect to 

gray matter, a study of long-term adult survivors of low-grade cerebellar tumor in childhood 

suggested atypical grey matter development; results showed increased grey matter density in the 

bilateral cingulum, left orbitofrontal cortex and left hippocampus. In survivors, higher density in 

these regions was correlated with decreased processing speed and executive functioning. 

Secondary analyses suggested that hydrocephalus may account for some of these brain changes, 

as ventricle volume correlated significantly with gray matter density (Moberget et al., 2015). 

Given recent literature regarding the hippocampus as a site of adult neurogenesis and 

synaptic plasticity, several studies have conducted investigations on hippocampal volume in 

survivors of pediatric brain tumor. Studies of both child and adult survivors of brain tumors 

indicate reduced volumes of subcortical structures such as the hippocampus and putamen 

(Jayakar et al., 2015; Riggs et al., 2014). These studies also reported that hippocampal volumes 

are associated with memory performance. A longitudinal study investigating child survivors of 

medulloblastoma up to 5 years post radiation and chemotherapy found progressive decreases in 

left and right hippocampal volume for two to three years post treatment before returning to 

normal growth patterns (Nagel et al., 2004).  

Overall, neuroimaging studies evaluating macrostructural properties of the brain and 

hippocampal volumes suggest reduced whole brain volumes, reduced white matter volumes, 

increased gray matter densities, and reduced hippocampal volumes. Moreover, these findings 

extend to more than a decade past initial diagnosis and highlight long-lasting effects of 

neurotoxic treatments such as radiation. 
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Neuroimaging studies in survivors have also evaluated the microstructural properties of 

white matter by using diffusion-weighted imaging. As mentioned previously, this method 

provides an index of white matter integrity; it is hypothesized that brain tumor and adjuvant 

treatments such as radiation result in demyelination and therefore lower white matter integrity in 

survivors. Studies have found that average white matter integrity in the brain is reduced in child 

survivors and long-term adult survivors compared to controls (Aukema et al., 2009; Mabbott, 

Noseworthy, Bouffet, Laughlin, & Rockel, 2006; Moberget et al., 2015; Reddick et al., 2014). 

Moreover, the level of changes in overall white matter integrity is significantly correlated with 

broad intellectual outcomes in child survivors of brain tumor (Khong et al., 2006; Mabbott, 

Noseworthy, Bouffet, Rockel, & Laughlin, 2006; Rueckriegel, Bruhn, Thomale, & Hernaiz 

Driever, 2015), as well as adult survivors of brain tumor more than a decade postdiagnosis 

(King, Wang, & Mao, 2015).  

Studies using diffusion-weighted imaging have also identified specific regions and tracts 

that are affected in the brain. One of the earliest neuroimaging studies of child medulloblastoma 

survivors treated with radiation found significant and diffuse white matter reductions in the 

cerebellar hemispheres, pons, medulla oblongata, frontal and parietal periventricular white 

matter, and corona radiata. Moreover, the authors found that despite there being higher levels of 

radiation in the posterior fossa, there was significantly more reduction in supratentorial white 

matter compared to the posterior fossa; the authors posited that supratentorial white matter may 

be more susceptible to radiation damage (Khong et al., 2003). Accordingly, a follow-up study of 

child medulloblastoma survivors further tested whether the frontal lobe was more susceptible 

than other supratentorial regions (i.e., parietal lobe). The authors found that there were more 

reductions in white matter integrity of the frontal lobe compared to the parietal lobe even though 
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both regions received same the same radiation dosage, and suggested that frontal regions are 

more vulnerable in brain tumor survivors (Qiu, Kwong, Chan, Leung, & Khong, 2007). 

Alternatively, it is possible that their findings were reflective of motion artifacts rather than 

differences in susceptibility to radiation; due to the biomechanics of the human neck, the frontal 

lobe is more susceptible to motion compared to the parietal or occipital lobes. Higher levels of 

motion in the frontal lobe could account for larger levels of differences. This potential confound, 

however, was not addressed in these research studies. 

Studies of child survivors of pediatric brain tumors also have found lower white matter 

integrity in specific tracts compared to healthy controls. Tracts that have been commonly 

implicated in these studies include the corpus callosum, anterior and posterior limbs of the 

internal capsule, inferior frontal white matter, high frontal white matter, inferior fronto-occipital 

fasciculus and uncinate fasciculus (Aukema et al., 2009; Mabbott, Noseworthy, Bouffet, Rockel, 

et al., 2006; Palmer et al., 2012; Riggs et al., 2014; Rueckriegel et al., 2010).  

Moreover, the integrity and volume of specific tracts is associated with performance on 

neurocognitive measures in child survivors of brain tumors. For instance, the integrity of the 

splenium, as well as the white matter integrity of the entire corpus callosum was correlated 

positively with processing speed measures, while the integrity of the right inferior fronto-

occipital fasciculus was correlated with motor speed measures (Aukema et al., 2009). Regions in 

the corpus callosum, post-thalamic radiation and external callosum differentially related to 

processing speed measures in survivors versus age, sex and race matched controls (Palmer et al., 

2012). Frontocerebellar tract volumes were correlated with full scale IQ and measures of fine 

motor dysfunction in adolescent medulloblastoma and juvenile pilocytic astrocytoma survivors 

(Rueckriegel et al., 2015). Poorer white matter integrity of the cerebello-thalamo-cerebral tract 
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was associated with poorer performance on working memory measures (Law et al., 2011). The 

level of damage to the uncinate fasciculus was correlated with a general memory index in 

children (Riggs et al., 2014). 

Several studies have also collected data on very long term outcomes of adult survivors of 

childhood brain tumors to investigate the continued effects of survivorship. An exploratory study 

of 20 survivors of medulloblastoma who were on average 29 years old at evaluation and 18 years 

postdiagnosis examined whether white matter integrity in the left and right frontal, parietal, and 

temporal regions were related to performance measures of executive function (Brinkman et al., 

2012). The study found that fractional anisotropy in the parietal lobe was positively associated 

with working memory, radial diffusivity in both parietal lobes was negatively correlated with 

shifting attention, radial diffusivity in the temporal lobe was negatively correlated with shifting 

attention and cognitive flexibility, and fractional anisotropy in the temporal lobes was associated 

with measures of cognitive fluency. However, this study had several limitations. For instance, 

the authors did not correct for multiple comparisons even though they conducted correlations on 

all of their measures of white matter integrity in multiple regions of the brain with all of their 

neurocognitive measures. Second, they did not employ a control group; as such, the study could 

not conclude whether there were reductions in white matter integrity in their survivor sample. 

Further, given the large regions of interest that were employed, there was little specificity to their 

findings.  

Two other studies have evaluated microstructural properties of white matter in very long-

term survivors of pediatric brain tumors compared to a healthy control group. These studies 

extended the neuroimaging findings of childhood brain tumor studies to suggest that reductions 

in white matter integrity persist in survivors who are at least one decade past their diagnosis and 
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treatment. A study of 27 adult pediatric brain tumor survivors who were an average of 22.7 years 

old when evaluated and 13.7 years postdiagnosis found diffuse regions where the relationships 

between broad intellectual functioning and white matter integrity were significantly different 

between survivors and healthy same-age peers. These regions included the corpus callosum, 

bilateral frontal medial regions, frontal pole, middle temporal, left superior frontal, right inferior 

frontal, right frontal orbital regions (King, Wang, et al., 2015).  

Another study of an overlapping sample of adult pediatric brain tumor survivors found 

reductions in the white matter integrity of the arcuate fasciculus compared to controls. The study 

also found that the white matter integrity of the parietotemporal-occipitotemporal and the inferior 

fronto-ocicipital fasciculus tract tracts correlated with measures of word reading in survivors. 

Further, the study showed that the relationship between white matter integrity of these two tracts 

and measures of word reading were mediated by processing speed in survivors (Smith, King, 

Jayakar, & Morris, 2014). 

Notably, the same risk factors identified in neuropsychological studies that are associated 

with poorer functional outcomes also are related to lower overall white matter integrity and 

lower white matter integrity in specific tracts. These risk factors include younger age at 

treatment, longer time since treatment and higher radiation treatment intensity (King, Wang, et 

al., 2015; Law et al., 2011; Reddick et al., 2014). Despite the preponderance of findings suggest 

the neurotoxic effects of radiation, it should be noted that several studies have established white 

matter disruptions in survivors with low-risk brain tumors who only underwent tumor resection. 

These studies found that survivors with low-risk tumors and few neurological risk factors still 

share similar distributions of effects to white matter tracts but with a lower level of change when 



15 

 

compared to survivors who underwent more significant neurotoxic treatments (King, Wang, et 

al., 2015; Rueckriegel et al., 2010).  

Taken together, these structural neuroimaging studies have provided valuable insights 

onto the effects that occur in the brain due to a brain tumor, adjuvant treatments, and other 

neurological risk factors. Overall, there are global effects to the brain with respect to overall 

brain volumes and white matter volumes; survivors exhibit lower volumes compared to healthy 

controls. There is also evidence of effects to specific areas and tracts. Furthermore, these changes 

in neurobiology correlate with broad measures of intellectual functioning as well as specific 

neurocognitive domains such as processing speed, working memory, memory, word reading, and 

executive functioning.  

1.4 Network Approaches to Understanding the Brain 

Structural neuroimaging studies in survivors of brain tumors so far primarily have used a 

univariate framework to identify specific regions of the brain that differ between survivors and 

age-matched controls, based on the assumption that discrete regions of the brain are responsible 

for specific functions. However, newer emerging frameworks emphasize connectivity between 

brain regions as a way of investigating how distal brain regions work together as a concerted 

system. This new framework, called graph theory (or network analysis), marries two different 

perspectives: segregation (i.e., local regions are responsible for certain functions) and integration 

(i.e., the brain works as a system). Specific regions of the brain are considered to have localized 

functions, but graph theory approaches emphasize how each brain region is connected to other 

brain regions in a system (Rubinov & Sporns, 2010). Graph theory approaches can answer 

questions about how ensembles of brain regions work together in a unified network. This 

systems level approach can provide complementary information to traditional neuroimaging 
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techniques especially when examining higher-order behaviors that depend on the integration of 

information from spatially distributed regions in the brain (Figure 1). Given the relatively new 

contributions of this literature, a short primer is provided. 

 Description  

Univariate 

In univariate approaches, the researcher 

measures a certain brain property (e.g., 

average level of functional activation over 

time, magnitude of white matter integrity) 

in discrete regions of interest. 

Measurements from each of these brain 

regions are typically averaged and 

compared to another group with t-tests. 

 

 

 

 

 

 

Bivariate 

Bivariate approaches are used to measure 

the extent to which the measurement (e.g., 

electrical signal over time) from one region 

of interest is related to the measurement 

from a second region. These approaches 

include Pearson correlations and partial 

correlations to calculate connectivity. 

 

 

 

 

 

 

 

 

 

 

 

Multivariate 

In multivariate approaches, many regions 

of the brain (defined as nodes) are selected 

and analyzed at once. The connectivity 

between all region pairs (defined as edges) 

are calculated to yield a complex network. 

Graph analysis is used to provide 

quantitative measurements of local and 

global properties of the overall network.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Statistical approaches to understanding brain structure and function 

Graph analysis methodology has been developed within the last decade to describe the 

large-scale macroscopic relationships that arise as a result of complex interactions of brain 

regions (Sporns, 2012). Graph theory is a branch of mathematics that provides quantitative 
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metrics to describe properties of complex graphs. When applied to the brain, graph analysis 

methodology provides metrics to describe properties of 1) brain regions, 2) the connections 

between each brain region pair, and 3) the emergent properties of all of these interactions 

together in a network. Thus, graph theory is a method used to describe local and global network 

properties of the brain and is particularly apt when studying clinical populations where 

impairments result from diffuse injury (He & Evans, 2010). Studies utilizing graph analysis for 

various neurological disorders including multiple sclerosis, epilepsy, stroke, and Alzheimer’s 

Disease (AD) have shown that the clinical presentation and the magnitude of impairment is 

related to the integrity of these brain networks (Bullmore & Sporns, 2009).  
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Figure 2 provides a short explanation of basic components of graphs and prominently 

used metrics in studies. In short, all graphs are composed of nodes and edges; in neuroimaging 

studies, each node refers to a specific region of the brain and can be either structurally or 

functionally defined. Edges refer to the existence or strength of the connections between each 

node to every other node in that graph. For example, edges may be defined as the existence of 

white matter tracts between nodes or the degree of functional connectivity (i.e., the level to 

which the signal in one region is correlated to the signal in another region) between each pair of 

brain regions. Once nodes are defined and edges are calculated for all node pairs, these values 

are represented in the form of a matrix, and graph analysis metrics are calculated from the matrix 

to describe the properties of the network.  

Although a variety of graph analysis metrics can be used to describe network properties, 

they can be divided into the following categories: measures of segregation (i.e., the extent to 

which information is processed locally within a small region), measures of integration (i.e., the 

extent to which information is processed across spatially distributed regions), and measures of 

centrality (i.e., properties of nodes that describes its importance within the network). 

1.5 Graph Theory Studies in Healthy Brains 

Research studies examining brain networks have demonstrated the existence of two 

properties in healthy human brains: small-world topology (Figure 3) and the existence of hubs. 

Small-worldness is a network structure defined by the existence of predominantly short-distance 

connections and a few long-distance connections. Small-world networks are considered to strike 

the optimal balance of segregation and integration, where transfer of information between 

regions can be completed efficiently with relatively low wiring costs. Wiring cost refers to the 

metabolic cost of maintaining connections; in the context of a human brain, the maintenance of 
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white matter tracts requires biological resources (e.g., energy/glucose, proteins). Long distance 

white matter tracts are more biologically costly to maintain than short white matter tracts; as 

such, there are upper limits to the number of long distance that can exist in the system. Loss of 

small-world network structure is commonly reported in network studies of clinical groups 

including AD and schizophrenia (Bullmore & Sporns, 2009).  
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Figure 2. Definitions and examples of graph analysis metrics.  
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 Ordered/Regular Network Small World Network Random Network 

Characteristics 
All connections are local; each 

node is connected only to its 

nearest neighbors. No long 

distance connections. 

Most connections are local, with a 

few long distance connections. Strikes 

the optimal balance of segregation and 

integration, with high global 

information processing efficiency 

despite low wiring costs 

Connections between nodes are 

random with equally probable 

local and long-distance 

connections 

Average Path 

Length High path length. 

Ex: A large number of steps are 

required to travel to distal nodes. 

Short path length. 

Ex: A short number of steps are 

required to travel to distal nodes.  Long 

distance connections are used as 

‘shortcuts’. 

Short path length. 

Ex: A short number of steps are 

required to travel to distal nodes. 

Clustering 

Coefficient 
High clustering coefficient; only 

local, repetitive connections exist. 

High clustering coefficient, as the vast 

majority of connections are local 

Low clustering coefficient, as 

nodes are connected randomly 

Wiring cost 
Very low wiring costs; the cost to 

maintain local connections is low. 

Low; given that most connections are 

local (with only a few long distance 

connections) wiring cost is kept 

relatively low 

High wiring costs; maintaining all 

of these long distance connections 

in the network is costly 

Global 

efficiency° Low; information transfer to 

distant nodes is slow/inefficient 

High; information can transfer to 

distant nodes with ease due to given 

the existence of several long-distance 

‘shortcuts’ 

Very high; information can 

transfer to distant nodes with ease 

  

 

  

 

Figure 3. Descriptions of three different types of networks. 

Nodes are represented with black circles and edges are represented with black lines. °High 

characteristic path length is inversely proportional to global efficiency. High path length suggests 

low global efficiency, while low path length suggests high global efficiency. 

 

Research has also demonstrated the existence of hubs (van den Heuvel & Sporns, 2011; 

van Straaten & Stam, 2013). Human brains exhibit a power law distribution of nodes; the vast 

majority of nodes in a network have a low number of connections to other nodes, but several 

nodes have an exceptionally high number of connections to other nodes and are integral for 

integrative processing. These highly connected nodes are defined as hubs. A network that 

follows a power law distribution of nodes ensures resilience to “random attacks”, as random 
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attacks to the network will most likely affect nodes with low degree that are less important for 

network functioning. Studies using computational models of networks show that deleting a node 

with low degree results in networks that can continue to function and maintain its global 

processing efficiency. However, when hubs are targeted deliberately and deleted from the 

network, the network exhibits drastic decreases in levels of global efficiency.  

Although there is some variability across the literature regarding regions that are hubs in 

the human brain due to methodological variation across studies, cortical regions such as the 

bilateral precuneus, superior frontal gyrus, insular cortex, superior frontal gyrus, superior parietal 

cortex, medial parietal cortex, and isthmus of the cingulate cortex are commonly implicated as 

regions of strong importance to the network. Subcortical structures such as the hippocampus, 

putamen, and thalamus are also suggested to be hubs (Hagmann et al., 2008; Li et al., 2013; van 

den Heuvel & Sporns, 2011). Overactivity and underactivity of these hubs have been 

demonstrated in network studies of clinical populations (Crossley et al., 2014a) and may 

represent a final common pathway in the disease process of all neurological disorders (van den 

Heuvel & Sporns, 2013). 

Studies of graph theory in healthy individuals in relation to neuropsychological testing has 

shown that more efficient large-scale networks are correlated with higher IQ scores (van den 

Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) even after controlling for age and gender (Li et al., 

2009). 

1.6 Graph Theory in Clinical Populations 

Research studies of other clinical populations have demonstrated the utility of graph 

theory when evaluating brain networks. Studies of patients with stroke, schizophrenia, 

Alzheimer’s Disease, traumatic brain injury (TBI), epilepsy, and multiple sclerosis have shown 
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disruptions in measures of segregation, integration, centrality, and small-world properties of 

networks when compared to healthy adults (Aerts, Fias, Caeyenberghs, & Marinazzo, 2016; 

Bullmore & Sporns, 2009). 

Neurological insults, both focal and diffuse, are associated with significant changes to the 

topological structure of the network. A study of patients with stroke found reduced levels of 

communicability structural networks indicated decreased communicability in regions around the 

lesioned area, as well as regions in the healthy contralesional hemisphere, suggesting more 

difficulties in information transfer through the network (Crofts et al., 2011). Lower measures of 

integration were found in two separate studies that evaluated structural networks of patients with 

cerebral amyloid angiopathy and patients with silent lacunar infarcts in the basal ganglia territory 

(Reijmer et al., 2015; Tang et al., 2015). Multiple studies examining structural networks of 

patients with chronic TBI (which is associated with both focal and diffuse damage to the brain) 

consistently have shown decreases in measures of integration, decreases in measures of 

segregation, and decreases in measures of centrality compared to healthy structural networks 

(Aerts et al., 2016). 

Studies have also shown that topological properties of the structural network are related 

to the degree of impairment. For instance, studies of patients with TBI have shown that lower 

global efficiency is related to lower executive functioning (Caeyenberghs et al., 2014; Yuan, 

Wade, & Babcock, 2015). Another study of adolescents with congenital heart disease showed 

that global network properties mediated the neurocognitive differences between the patient and 

control groups and measures of IQ, academic achievement, memory, executive functioning and 

visual-spatial functioning (Panigrahy et al., 2015). These studies suggest that graph theory 
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metrics are sensitive to brain network differences in several clinical populations, and, 

furthermore, are significantly correlated with behavioral measures. 

Hubs also appear to be a very important feature of many clinical diseases and may 

represent a common pathway for all diseases. Hubs are disproportionately and consistently 

affected across different clinical populations due to their purported importance in the overall 

network; in chronic stages of the injury, these regions often show significant decreases in 

measures of centrality (Crossley et al., 2014b). A meta-analysis of graph theory studies across 26 

different brain disorders found that abnormalities were most likely to be located in the hubs of 

the human connectome. Although the identity and location of the specific hubs themselves varied 

across different disorders (e.g., hubs affected in schizophrenia were located in the frontal and 

parietal lobes, while hubs affected in Alzheimer’s were located in the temporal lobe), studies 

overwhelmingly found that hubs were implicated in these disorders. Studies of patients with TBI 

also have demonstrated that properties of these hub regions, particularly the superior frontal gyri 

and superior parietal gyri, are related to behavioral outcomes (Caeyenberghs et al., 2012; 

Fagerholm, Hellyer, Scott, Leech, & Sharp, 2015; Kim et al., 2014; Yuan et al., 2015). As such, 

it appears that hub disruption is common in many clinical disorders regardless of pathogenesis, 

and that the level of disruption in hub regions relate to behavioral outcomes.  

Overall, studies investigating structural network properties of clinical groups who have 

experienced a neurological insult (e.g., TBI, stroke) suggests that there are topological 

disruptions to the structural network in the shape of suboptimal integration and decreased 

segregation in clinical groups when compared to healthy controls. Further, clinical studies 

consistently identify hub regions of the structural connectome to be affected regardless of the 

disorder, with decreases in the measures of centrality in hub regions. Finally, metrics that 
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describe the integrity of the network correlate significantly with behavioral measures. Taken 

together, these results suggest that graph theory metrics are sensitive to structural changes that 

occur as a result of neurological insult, and that they demonstrate concurrent validity with 

behavioral measures of functioning.  

Graph theory methods, however, have yet to be used to examine brain network properties 

of survivors of childhood brain tumors. Given that there are a multitude of factors that result in 

white matter disruption (i.e., the tumor itself, surgical resection, hydrocephalus, radiation and 

chemotherapy), and that these white matter disruptions are hypothesized to underpin cognitive 

and functional impairments, a network analysis framework is particularly apt when studying this 

clinical group, as the effects of the tumor resection and the degree of white matter disruption can 

be modeled as changes in edge values. 

1.7 Specific Aims and Hypotheses 

Accordingly, the aims of this study were to provide a complementary approach to 

previous neuroimaging studies on the nature of brain-behavior relationships in adult survivors of 

childhood brain tumors. This was achieved by employing diffusion-weighted imaging and 

deterministic tractography methods to model white matter tracts in the brain in adult survivors of 

pediatric tumors at least 4.5 years past their diagnosis. Graph theory approaches were used to 

determine the topological properties of the network.   

To establish that this method had clinical utility in this sample, it was important to 

demonstrate that metrics derived from the structural network relate to behavior. For the purposes 

of this study, measures of executive functioning were used as the outcome variable for several 

reasons. First, survivors of pediatric brain tumors experience significant late effects to executive 

functioning skills. Survivors report more problems with task efficiency, emotional regulation and 
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organization when compared to sibling controls and survivors of non-central nervous system 

malignancies (Ellenberg et al., 2009). Deficits on performance measures of executive functioning 

(i.e., cognitive flexibility, working memory) are common (Edelstein et al., 2011; Hocking, 

Hobbie, Deatrick, Hardie, & Barakat, 2015; McCurdy, Rane, et al., 2016; McCurdy, Turner, et 

al., 2016; Spiegler et al., 2004; Wolfe, Madan-Swain, & Kana, 2012). Studies have also found 

that deficits in working memory and visuospatial planning underlie deficits in social and 

adaptive functioning (King, Smith, & Ivanisevic, 2015; Wolfe et al., 2013). Further, explicit 

training on metacognitive strategies significantly improved performance on measures of attention 

and concentration in pediatric brain tumor survivors (Butler & Copeland, 2002). Clearly, 

executive functioning is often impacted in adult survivors of pediatric brain tumors, and underlie 

functioning in other domains. This vulnerability in executive functioning is likely due to the fact 

that myelination of frontal regions that support executive functioning continues through the 

second decade of life (Best & Miller, 2010). As such, neurological insults and neurotoxic 

treatments during childhood and adolescence could contribute to poorer executive functioning. 

Second, research supports that executive functioning relies on frontal-subcortical 

systems, rather than any one region. Its reliance on the integrity of the system makes using graph 

theory approaches particularly relevant. Graph theory studies in other clinical populations such 

as traumatic brain injury and congenital heart disease have shown that performance measures of 

executive functioning are related to topological properties of the structural network, where lower 

levels of global efficiency correlated with poorer executive functioning performance 

(Caeyenberghs et al., 2014; Panigrahy et al., 2015).  

It is important to note that executive functioning is not a unitary construct (Stuss & 

Alexander, 2000; Testa, Bennett, & Ponsford, 2012). Structural equation modeling studies 
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investigating the factor structure of executive functioning support that it consists of a set of skills 

that are used for “independent, purposive and goal-directed behavior” (Busch, McBride, Curtiss, 

& Vanderploeg, 2005). Survivor and graph theory studies commonly use measures of cognitive 

flexibility as their measure of executive functioning. To stay consistent with previous studies, 

this study also used measures of cognitive flexibility as the behavioral outcome measure.  

It is also important to note that neuropsychological tasks designed to measure the 

construct of cognitive flexibility all require other more basic skills. For instance, good 

performance on the Letter-Number Sequencing trial of the Trail Making Test requires basic 

skills such as visual scanning, graphomotor speed, number sequencing and letter sequencing; 

difficulties in any of these basic domains can contribute to poor performance on this task that 

may not reflect deficits in cognitive flexibility skill (Chapman et al., 1995; Savla et al., 2012). As 

such, a simple correlation between performance on any task purported to measure cognitive 

flexibility with graph theory metrics lacks specificity; it is difficult to conclude whether 

cognitive flexibility skill is driving the correlation, or whether some other basic cognitive skill 

may be contributing. To identify whether cognitive flexibility precisely is associated with 

structural network integrity, principal component analyses were used on several other measures 

that are purported to measure cognitive flexibility to isolate the variance that is associated with 

this domain; these will be discussed in greater detail in the methods section. Two aims were 

proposed to examine structural network properties of adult survivors of pediatric brain tumors. 

These aims and a priori hypotheses are detailed below: 

1.7.1 Aim 1 

The purpose of the first aim was to establish that features of the structural network are 

altered in adult survivors compared to healthy controls. 
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Hypothesis a: Measures of integration (i.e., global efficiency) would be lower in 

survivors when compared to controls. 

Hypothesis b: Given that survivors are in the chronic stage of injury, measures of 

segregation (i.e., average clustering coefficient, modularity) would be lower in survivors when 

compared to controls.  

Hypothesis c: There would be significant disruption in hub nodes such that hubs are 

reduced in their measures of centrality. Furthermore, hubs would be preferentially impacted as 

compared to other nodes in the network that do not hold high importance to the network. 

Hypothesis d: Known risk factors, such as younger age at diagnosis, longer time since 

diagnosis, and higher levels of neurological and treatment risk factors (e.g., radiation, 

chemotherapy) would be associated with more changes to measures of integration, segregation 

and hub centrality.  

1.7.2 Aim 2 

The purpose of the second aim was to establish the utility of graph metrics in predicting 

measures of cognitive flexibility in both groups, to determine whether characteristics of the 

structural network underlie differences in cognitive flexibility between the two groups, and to 

determine whether characteristics of the structural network underpin the relationship between 

cumulative neurological risk factors and behavioral measures of cognitive flexibility.  

Hypothesis a: Measures of integration (i.e., global efficiency), segregation (i.e., 

modularity, clustering coefficient) and the level of overall hub disruption (i.e., hub disruption 

index) would significantly correlate with measures of cognitive flexibility such that lower levels 

of integration, lower levels of segregation, and higher levels of hub disruption would correlate 

with worse cognitive flexibility. 
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Hypothesis b: Brain network differences would underlie differences in cognitive 

flexibility between the survivor and control groups. As such, the differences in cognitive 

functioning between survivors and controls on measures of cognitive flexibility would be 

mediated by network metrics.  

Hypothesis c: The relationship between cumulative neurological risk factors as measured 

by the Neurological Predictor Scale (Micklewright et al., 2008) and cognitive flexibility would 

be mediated by properties of the structural network.   

2 METHODS 

2.1 Parent Study and Procedures 

Participants for this study were recruited and data was collected as part of a larger parent 

study investigating long-term outcomes in adult survivors of pediatric brain tumors. The parent 

study was reviewed and approved by the local institutional review board, and all participants 

provided informed consent. Participants were originally recruited through opt-in letters, which 

were mailed to survivors who had been treated for a pediatric brain tumor through the Children’s 

Healthcare of Atlanta. Letters were also mailed to survivors who had participated in a previous 

longitudinal study, in which they had participated as children. In all, 676 adult survivors were 

sent mailings. Of these, 127 survivors responded and called to set up an appointment, while 88 

letters were returned. Participants were screened over the phone to ensure they were over the age 

of 17 and at least 4.5 years after their initial diagnosis to assess effects of long-term survivorship 

in adult survivors. Participants were also screened and excluded if English was not their first 

language, if they met criteria for pervasive developmental disorders, if they indicated a diagnosis 

of neurofibromatosis, or if they had experienced any other significant neurological insult (e.g., 
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traumatic brain injury). Out of the 127 survivors who expressed interest, 88 total survivors met 

initial criteria for the study and were invited to take part in the study.  

On the first day, participants arrived on site with a family member and they were 

interviewed to obtain medical history information. Written and signed permission was also 

obtained from every participant to access their medical records from Children’s Healthcare of 

Atlanta to corroborate their diagnosis and course of treatment. Participants then underwent a 

comprehensive neuropsychological evaluation, a structured interview for psychological disorders 

(SCID-II; First, Spitzer, Gibbon, & Williams, 1997), and filled out several self-informant 

questionnaires. Family members filled out informant measures in a separate room. Participants 

were provided periodic breaks throughout the day to minimize fatigue. Finally, survivors were 

screened for safety to enter the MRI to determine whether they could safely participate in the 

imaging part of the study on a different day. Of the 88 survivors who participated in the 

neuropsychological portion of the study, 51 individuals participated in the imaging portion. The 

other 37 survivors either could not participate due to MRI safety exclusions, indicated that they 

were not interested in the imaging part of the study, or were lost to follow-up.  

The participants arrived at the imaging center on a different day for an approximately 

one-hour long scan. Of the 51 survivors who were included in the imaging part of the study, 

qualitative and quantitative assessment revealed that 38 people had good quality imaging data for 

the entire diffusion scan. These 38 survivors made up the sample for this dissertation project.  

Healthy adults were also recruited to serve as the comparison group for analyses. The 

control sample was recruited through Georgia State University’s psychology department research 

pool, as well as fliers and advertisements in the Atlanta, GA community. All control participants 

completed an extensive screening for MRI safety over the phone. The control sample was 
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matched for age, gender and handedness with the survivor sample, and were administered the 

SCID-II (First et al., 1997) to ensure that they did not currently meet criteria for current 

psychological or substance abuse disorders. Additionally, all controls had no history of a 

neurological illness. These steps were to ensure that the control sample truly was representative 

of a healthy control sample, and that the imaging results would not be unduly influenced by 

neurological or psychological disorders. Control participants followed the same procedure as 

survivors; they were administered the same comprehensive neuropsychological battery and the 

SCID-II on the first visit, and completed the one-hour long imaging portion of the study on a 

different day. Participants were asked to provide the phone number of an informant that knew 

them well (if participants selected their roommate as an informant, they were required to have 

lived together for at least six months). These informants were called by the research team and 

administered the informant measures over the phone after obtaining oral consent.  

Survivors were paid $100 for the time and travel associated with partaking in the 

neuropsychological and imaging part of the study. Community participants were also paid the 

same amount, while participants recruited from the psychology department pool received class 

credit for their participation on the neuropsychological testing part of the study and $50 for the 

imaging part of the study. 

2.2 Participants 

Characteristics of the survivor sample (including brain tumor type, location, and 

treatment regimen) and control sample are described below in Table 1. 

Independent 2-sample t-tests were conducted on continuous demographic variables, while 

Chi-square analyses were conducted on discrete demographic variables to test whether the 

survivor and control groups differed significantly on these demographic factors. Mean age, 
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gender, and socioeconomic status were not significantly different between the two groups (p > 

0.05). However, the control group had a higher level of education t(72) = 2.03, p = 0.046, d = 

0.48 and higher IQs t(72) = 3.79, p < 0.01, d = 0.89 when compared to the survivor group. In 

addition, the control group was more ethnically diverse than the survivor sample χ2 (2, N = 74) = 

10.18, p < 0.01.  

Table 1 Demographic, diagnostic and treatment characteristics  
 

Characteristics of control and survivor samples in imaging analyses 

 

 Sample for Imaging Analysis 

 Controls 

n=38 

Survivors 

n=38 

Demographic Information   

Number of Females (%) 21 (55%) 21 (55%) 

Ethnicity 

34% Caucasian, 37% 

African-American, 11% 

Latino/a, 13% Asian, 5% 

Mixed 

76% Caucasian, 11% 

African-American, 5% 

Latino/a, 3% Asian, 5% 

Mixed 

Socioeconomic Status^   

    High 21 (55%) 28 (74%) 

    Middle/Low 17 (45%) 9 (24%) 

Mean age at examination (SD) 22.5 (4.8) 23.1 (5.0) 

Mean years of education (SD) 

 

14.5 (2.0) 13.4 (2.4) 

IQ Scaled Score (SD) 111 (9) 98 (18) 

Vocabulary Z-score (SD) .63 (.74) -.27 (1.2) 

   

Diagnostic Information   

Mean Age at Diagnosis (SD)  9.2 (5.0) 

Mean Years Since Diagnosis (SD)  14.1 (6.2) 

    Range (years)  4.5-30 

Tumor Type (n, %)   

   Medulloblastoma  12 (32%) 

   Low-grade Astrocytoma  13 (34%) 

   High-grade Astrocytoma  1 (3%) 

   Craniopharyngioma  2 (5%) 

   Ganglioglioma  3 (8%) 

   Ependymoma  2 (5%) 

   Other  5 (13%)° 

Tumor Location (n, %)   

   Posterior Fossa  26 (68%) 

   Temporal Lobe  4 (11%) 
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   Occipital Lobe  1 (3%) 

   Fronto-Parietal Lobe  2 (5%) 

   Temporal-Parietal Lobe  1 (3%) 

   Hypothalamus  1 (3%) 

   Medulla  1 (3%) 

   Third ventricle/sellar/suprasellar  2 (5%) 

   

Treatment Information   

Hydrocephalus (n, %)  25 (66%) 

Radiation Treatment (n, %)  20 (53%) 

Chemotherapy (n, %)  15 (40%) 

Endocrine Disorder (n, %)  20 (53%) 

Neurosurgery (n, %)  37 (97%) 

  Total Resection  26 (68%) 

  Subtotal Resection  11 (29%) 

Seizure medications  3 (8%) 
Note. Intelligence was measured by the Wechsler Abbreviated Scale of Intelligence (Wechsler, 

1999). Seizure medications refers to individuals who were still currently on medications at the type of 

testing. ^SES = Current socioeconomic status was calculated using the Hollingshead Four factor Index of 

Social Status (Hollingshead, 1975). Family SES was used in instances where the individual reported 

being financially dependent on their family. High SES consisted of scores 1 and 2 on the scale, while 

Middle/Low SES consisted of scores 3, 4, and 5 on the scale. °1 Oligodendroglioma, 1 choroid plexus 

papilloma, 2 PNET Not Otherwise Specified, 1 Mixed astrocytoma/ganglioglioma  

 

2.3 Cognitive Measures 

Participants underwent a comprehensive neuropsychological battery during their first 

study visit. The measures that are relevant for this study are detailed below. 

Measures of Cognitive Flexibility: 

DKEFS Color Word Interference Test: The Color Word Interference Test consists of 

four different trials that differentiates between word reading, color naming, inhibitory control 

and cognitive flexibility (Delis, Kaplan, & Kramer, 2001). The participants were asked to name 

the colors of square blocks on a page (Trial 1, Color Naming), read words that are printed in 

black (Trial 2, Word Reading), name the color of the ink that the word is printed in while 

ignoring the word itself (Trial 3, Inhibition), and to switch between naming the color of the ink 

that the word is printed in and read the actual word based on a rule (Trial 4, 
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Inhibition/Switching). Each trial was preceded by a sample to ensure that the examinee 

understood the instructions. Trial 4 is considered a measure of cognitive flexibility, as the 

examinee is required to switch between inhibitory and non-inhibitory responses. The amount of 

time that it took to complete the task was age-normed and transformed into z-scores based on 

normative data. Internal consistency is moderate to high across age groups, and test-retest 

correlations are in the moderate to high range for most subtests (r=0.65 for the 

inhibition/switching condition). 

Delis-Kaplan Executive Function System (DKEFS) Trail Making Test: The Trail 

Making Test consists of five different trials that differentiates between deficits in visual 

scanning, psychomotor speed, number sequencing, letter sequencing and cognitive flexibility 

(Delis et al., 2001). In each trial, examinees were presented with a large piece of paper with 

individual numbers and letters each encased in a circle. The participants were asked to find and 

cross out all threes on the page (Trial 1, visual scanning), draw a line from number to number in 

sequential order (Trial 2, number sequencing), draw a line from letter to letter in alphabetical 

order (Trial 3, letter sequencing), draw a line while switching between sequencing numbers and 

letters (Trial 4, number letter sequencing), and draw over a dotted line (Trial 5, motor speed) as 

quickly as they could. Mistakes were immediately pointed out by the examiner and the 

participant returned to their last correct item and continued with the measure. Each trial was 

preceded by a sample trial to ensure that the examinee understood the directions of the trial. Trial 

4 of the Trail Making Test is considered a measure of cognitive flexibility. The amount of time 

that it took to complete this trial was age-normed and transformed into z-scores based on 

normative data. Internal consistency of this measure ranges from moderate to high across age 
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groups, with good total score reliability. Test-retest reliability of this measure is moderate overall 

but lowest for the switching condition (r=0.38).  

DKEFS Verbal Fluency Test: The Verbal Fluency Test consists of three different trials 

and measures generative fluencies in response to phonemic (Trial 1) and semantic cues (Trial 2) 

(Delis et al., 2001). The third trial of this test required the participant to switch between two 

semantic categories. The third trial is considered a measure of flexibility as the examinee is 

required to switch between generating items in two semantic categories. The total number of 

accurate switches between semantic categories in the span of 60 seconds was measured, age-

normed and transformed into z-scores based on normative data. Internal consistency is in the 

moderate to high range across age groups. Test-retest correlations are highest for the letter and 

category fluency conditions and lower for the category switching condition (r=0.36). 

Measure of Psychomotor speed: Condition 5 from the DKEFS Trail Making Test (described 

above) was used as a measure of psychomotor speed.  

Measure of Cumulative Treatment and Neurological Risk Factors: The Neurological 

Predictor Scale (NPS) is a measure that incorporates tumor treatment (i.e., radiotherapy, 

chemotherapy, neurosurgery) and other related neurological risk factors (i.e., endocrine 

dysfunction, hydrocephalus, seizure medications) into one cumulative score that ranges from 0 

(no neurological/treatment risk factors) to 11 (highest level of risk) (Micklewright et al., 2008). 

Studies have documented the reliability and concurrent validity in childhood survivors 

(Micklewright et al., 2008; Papazoglou et al., 2008). Further, this measure is significantly 

associated with intelligence, adaptive functioning, processing speed, working memory and 

attention outcomes over and above each individual risk factor (King & Na, 2016; Taiwo et al., 

2017).  



37 

 

2.4 Neuroimaging Parameters 

Imaging data was acquired using a 3T Siemens trio MRI scanner. Participants’ head 

movements were restricted using cushioning around the head, as well as a forehead strap. 

Participants were outfitted with protective earplugs to reduce scanner noise. Diffusion weighted 

data was acquired during a 30 gradient direction single-shot spin echo planar imaging (EPI) 

sequence with 60 contiguous axial slices with the following specifications: repetition time (TR) 

= 7700 ms; echo time (TE) = 90 ms; b = 1000 s/mm2; voxel size = 2.0 x 2.0 x 2.0 mm; 

acquisition matrix = 204 x 204; sequence time = 8 min 22 secs. The diffusion encoding 

directions were sampled on the whole sphere. We also acquired high-resolution T1-weighted 

structural images for anatomical registration by collecting 176 contiguous (i.e., no gap and 

sharing a common border) sagittal slices. A three-dimensional magnetization prepared rapid 

gradient echo imaging (3D MPRAGE) sequence was used with the following parameters: 

acquisition matrix = 256 x 256; repetition time (TR) = 2250 ms; echo time (TE) = 3.98 ms; voxel 

size = 1.0 x 1.0 x 1.0 mm; field of view (FOV) = 256 mm; slice thickness = 1.0mm; flip angle = 

9 degrees. We also acquired a field map with a Gradient Echo sequence to measure field 

inhomogeneities and compensate for geometrical distortions that result from standard EPI 

sequences: repetition time (TR) = 488 ms; echo time 1 (TE 1) = 4.92 ms; echo time 2 (TE 2) = 

7.38 ms; voxel size = 3.0 x 3.0 x 3.0 mm; field of view (FOV) = 204 mm; slice thickness = 

3.0mm; 40 slices; flip angle = 60 degrees. This field map was acquired prior to a task-based 

functional neuroimaging sequence approximately 20-30 minutes before the diffusion sequence. 

Participants remained in the scanner between the field map and diffusion sequence.   
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2.5 Processing steps 

The processing pipeline for modelling white matter fibers in the brain, calculating network 

properties, and analyzing these properties through statistical analyses is represented in Figure 4. 

Preprocessing and analysis of diffusion-imaging data was completed through PANDA, a toolbox 

that combines modules from several existing programs, automates processing of diffusion 

datasets, and constructs a matrix based on tractography data (Cui, Zhong, Xu, He, & Gong, 

2013). For this study, whole brain white matter pathways were modelled based on the diffusion 

data acquired from the scanner using the FMRIB Software Library (Jenkinson, Beckmann, 

Behrens, Woolrich, & Smith, 2012; Smith et al., 2004; Woolrich et al., 2009) and the Diffusion 

Toolkit (Wang, Benner, Sorensen, & Wedeen, 2007). Edge values in the networks were the 

average FA values of the streamlines with two end-points located in the masks of each node pair. 

All edge values were organized into a weighted adjacency matrix. Network properties were 

calculated from this matrix using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). 

The values representing properties of the network were used in group statistical analyses for each 

aim. Details regarding the programs and specific measures used for each step are discussed in 

greater detail in the following sections.     
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Figure 4 Processing pipeline  
1. Quality assurance, preprocessing (eddy-current distortion correction), and skull-stripping of diffusion images. 2. Diffusion tensors are 

calculated and FA maps were generated using FSL’s dtifit tool. 3. A transformation matrix was created that can be applied to go from standard 

space to diffusion native space by combining and inversing the matrices to transform from diffusion space to native T1 space, and from native T1 
space to standard MNI space. 4. The transformation matrix from step 3 was applied to the Automated Anatomical Labeling Atlas to yield a 

parcellation scheme in native space. 5. Deterministic tractography was conducted using the Diffusion Toolkit software program to reconstruct 

white matter pathways throughout the brain. The AAL in native space was used as the nodes to construct a matrix that indicates the level of white 
matter connections between each node pair. 6. A weighted adjacency matrix was created for each participant which models edge values for each 

node pair in the network. 7.  The Brain Connectivity Toolbox was used to determine the topological properties of the network; these numerical 

values was used in SPSS for all subsequent group-level analyses.   

Numerical values 

representing the topological 

properties of the network 

AAL (Native Space) 

Tractography (Native Space) Adjacency Matrix 

Diffusion (Native Space) 

Diffusion (Native Space) 

MNI152 (Standard Space) 

AAL (Standard Space) 

T1 (Native Space) 
Diffusion (Native Space) 

Transformation Matrix from 

Standard space to Diffusion 

native space 

3 1 

2 

4 

5 

6 7 
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2.5.1 Preprocessing 

Before imaging data was processed, each person’s diffusion-weighted images underwent 

visual and quantitative inspection for quality assurance. First, visual inspection was conducted 

using the FSLview filmstrip to check for distortion, artifact, or clear movement that may render 

the image unusable for analysis.  

The images that passed inspection underwent correction for eddy current distortion and 

subject movement using the “eddy” tool from FSL (Andersson & Sotiropoulos, 2016) and skull-

stripped using the Brain Extraction Tool (Smith, 2002) to yield a skull-stripped diffusion 

weighted image. Further, the estimated translational and rotational displacement for each frame 

(compared to the frame that immediately preceded it) was quantified in the x, y, and z axes and 

summarized into one motion metric for each individual. Consistent with the approach outlined in 

Power, Barnes, Snyder, Schlaggar, and Petersen (2012), framewise displacement (i.e., motion) 

was calculated for each frame with the following empirical formula: 𝐹𝐷𝑖 =  |∆𝑑𝑖𝑥| + |∆𝑑𝑖𝑦| +

|∆𝑑𝑖𝑧| +  |∆𝛼𝑖| +  |∆𝛽𝑖| +  |∆𝛾𝑖|, where ∆𝑑𝑖𝑥 = 𝑑(𝑖−1)𝑥 − 𝑑𝑖𝑥 (i.e., the level of translational 

displacement from one frame to the previous frame in the x-axis) and so on for each of the other 

parameters (translation displacement for y and z axes, as well as the rotational displacements in 

the x, y, and z axes). Because the output for rotational displacements were in radians, rotational 

displacements were converted to millimeters to be consistent with the units for translational 

space. This was accomplished by calculating the displacement on the surface of a sphere of 

radius of 50 mm, the approximate mean distance from the cerebral cortex to the center of the 

head.  

Given that the level of motion could have a systematic impact on results, motion was 

compared between both groups using an independent-samples t-test, and correlations between 
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the level of motion and all variables were tested to determine whether motion could represent a 

confound. It was determined a priori to use motion as a covariate for analyses that compared 

between the two groups if the level of motion differed significantly between groups and 

correlated significantly with an outcome measure.  

The final preprocessing step involved calculating diffusion tensors and generating FA 

maps using FSL’s dtifit tool. 

2.5.2 Tractography and Network Construction 

A single file with non-overlapping nodes in native diffusion space is required to filter the 

whole brain file to only include streamlines that pass through each region of interest (i.e., nodes). 

For this study, the Automated Anatomical Labeling Atlas (Tzourio-Mazoyer et al., 2002) was 

used as the parcellation scheme to indicate nodes of interest for this study. This atlas, which is in 

standard MNI space, divides the brain into 120 distinct cortical and subcortical regions (listed in 

Table 2); there are 47 anatomical cortical volumes of interest in each hemisphere and 26 

subcortical volumes. Each of these regions defined a node in the network analyses, while average 

fractional anisotropy between each node pair represented edges in the network analysis.  

Table 2 ID #s and regions in the Automated Anatomical Labeling atlas 

 
ID 

# 
Brain region name 

ID 

# 
Brain region name 

ID 

# 
Brain region name 

1 Left precentral gyrus 41 Left hippocampus 81 Left thalamus 

2 Right precentral gyrus 42 Right hippocampus 82 Right thalamus 

3 Left superior frontal gyrus, 

dorsolateral part 

43 Left parahippocampal gyrus 83 Left transverse temporal gyri 

4 Right superior frontal gyrus, 

dorsolateral part 

44 Right parahippocampal 

gyrus 
84 Right transverse temporal gyri 

5 Left middle frontal gyrus 45 Left amygdala 85 Left superior temporal gyrus 

6 Right middle frontal gyrus 46 Right amygdala 86 Right superior temporal gyrus 

7 Left opercular part of inferior 

frontal gyrus 

47 Left calcarine sulcus 87 Left superior temporal pole 

8 Right opercular part of inferior 

frontal gyrus 

48 Right calcarine sulcus 88 Right superior temporal pole 

9 Left area triangularis 49 Left cuneus 89 Left middle temporal gyrus 

10 Right area triangularis 50 Right cuneus 90 Right middle temporal gyrus 

http://neuro.compute.dtu.dk/services/brededatabase/WOROI_144.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_107.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_111.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_145.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_108.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_112.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_146.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_131.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_264.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_147.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_132.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_132.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_265.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_98.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_129.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_99.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_130.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_670.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_670.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_162.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_269.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_671.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_671.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_163.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_270.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_678.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_164.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_266.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_679.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_165.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_267.html
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11 Left orbital part of inferior frontal 

gyrus 

51 Left lingual gyrus 91 Left middle temporal pole 

12 Right orbital part of inferior frontal 

gyrus 

52 Right lingual gyrus 92 Right middle temporal pole 

13 Left rolandic operculum 53 Left superior occipital 93 Left inferior temporal gyrus 

14 Right rolandic operculum 54 Right superior occipital 94 Right inferior temporal gyrus 

15 Left supplementary motor area 55 Left middle occipital 95 Left crus I of cerebellar 

hemisphere 

16 Right supplementary motor area 56 Right middle occipital 96 Right crus I of cerebellar 

hemisphere 

17 Left olfactory cortex 57 Left inferior occipital 97 Left crus II of cerebellar 

hemisphere 

18 Right olfactory cortex 58 Right inferior occipital 98 Right crus II of cerebellar 

hemisphere 

19 Left superior frontal gyrus, medial 

part 

59 Left fusiform gyrus 99 Left Lobule III of cerebellar 

hemisphere 

20 Right superior frontal gyrus, 

medial part 

60 Right fusiform gyrus 100 Right Lobule III of cerebellar 

hemisphere 

21 Left superior frontal gyrus, medial 

orbital part 

61 Left postcentral gyrus 101 Left lobule IV, V of cerebellar 

hemisphere 

22 Right superior frontal gyrus, 

medial orbital part 

62 Right postcentral gyrus 102 Right lobule IV, V of cerebellar 

hemisphere 

23 Left gyrus rectus 63 Left superior parietal lobule 103 Left Lobule VI of cerebellar 

hemisphere 

24 Right gyrus rectus 64 Right superior parietal 

lobule 

104 Right Lobule VI of cerebellar 

hemisphere 

25 Left medial orbital gyrus 65 Left inferior parietal lobule 105 Left lobule VIIB of cerebellar 

hemisphere 

26 Right medial orbital gyrus 66 Right inferior parietal lobule 106 Right lobule VIIB of cerebellar 

hemisphere 

27 Left anterior orbital gyrus 67 Left supramarginal gyrus 107 Left lobule VIII of cerebellar 

hemisphere 

28 Right anterior orbital gyrus 68 Right supramarginal gyrus 108 Right lobule VIII of cerebellar 

hemisphere 

29 Left posterior orbital gyrus 69 Left angular gyrus 109 Left lobule IX of cerebellar 

hemisphere 

30 Right posterior orbital gyrus 70 Right angular gyrus 110 Right lobule IX of cerebellar 

hemisphere 

31 Left lateral orbital gyrus 71 Left precuneus 111 Left lobule X of cerebellar 

hemisphere (flocculus) 

32 Right lateral orbital gyrus 72 Right precuneus 112 Right lobule X of cerebellar 

hemisphere (flocculus) 

33 Left insula 73 Left paracentral lobule 113 Lobule I, II of vermis 

34 Right insula 74 Right paracentral lobule 114 Lobule III of vermis 

35 Left anterior cingulate gyrus 75 Left caudate nucleus 115 Lobule IV, V of vermis 

36 Right anterior cingulate gyrus 76 Right caudate nucleus 116 Lobule VI of vermis 

37 Left middle cingulate 77 Left putamen 117 Lobule VII of vermis 

38 Right middle cingulate 78 Right putamen 118 Lobule VIII of vermis 

39 Left posterior cingulate gyrus 79 Left globus pallidus 119 Lobule IX of vermis 

40 Right posterior cingulate gyrus 80 Right globus pallidus 120 Lobule X of vermis (nodulus) 

 

http://neuro.compute.dtu.dk/services/brededatabase/WOROI_681.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_681.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_166.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_271.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_682.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_682.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_167.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_272.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_675.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_174.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_152.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_676.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_175.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_153.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_199.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_176.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_730.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_730.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_200.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_177.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_731.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_731.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_687.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_179.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_733.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_733.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_688.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_180.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_734.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_734.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_701.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_701.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_133.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_721.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_721.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_702.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_702.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_134.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_722.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_722.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_693.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_693.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_184.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_724.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_724.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_694.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_694.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_185.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_725.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_725.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_156.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_186.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_727.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_727.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_157.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_187.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_187.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_728.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_728.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_188.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_736.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_736.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_189.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_737.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_737.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_190.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_739.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_739.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_191.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_740.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_740.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_192.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_742.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_742.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_193.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_743.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_743.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_194.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_745.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_745.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_195.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_746.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_746.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_120.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_197.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_712.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_121.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_198.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_713.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_94.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_118.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_714.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_95.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_119.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_715.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_158.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_116.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_716.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_159.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_117.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_717.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_6.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_114.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_718.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_7.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_115.html
http://neuro.compute.dtu.dk/services/brededatabase/WOROI_719.html
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The AAL’s parcellation scheme was chosen for several reasons. First, this atlas is 

commonly used in other papers utilizing graph theory to study structural network properties in 

other clinical populations. Using the same atlas consistently allows for more direct comparisons 

of results (especially related to measures of global integration) across different studies. This atlas 

also includes both subcortical and cortical regions as nodes. Given that subcortical structures are 

included as hub regions and that they have important roles in the systems required for executive 

functioning, inclusion of an atlas that has both subcortical and cortical regions is essential. 

Finally, research has shown that graph theory measures are more reliable when there is a high 

number of nodes; several methodological researchers have suggested that there should be at least 

100 nodes to obtain reliable results (van Straaten & Stam, 2013). The AAL, with its 120 regions, 

fits this requirement.  

To use the AAL (which is in high resolution standard space) in native diffusion space, 

images from native diffusion space were co-registered to each person’s whole-brain T1 image 

using a linear transformation. The epi_reg tool was used to register diffusion images to T1-

weighted images while correcting for EPI distortions using the fieldmap acquired with a 

gradient-echo sequence and processed using the Fsl_prepare_fieldmap tool in FSL (Jenkinson, 

Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001). The epi_reg tool registered the 

field map to the structural image and used the registered field map image to correct for 

distortions while simultaneously registering the diffusion image to the structural image using 

linear registration methods.  

This co-registered image was then registered to a high resolution standard space using a 

combination of linear and nonlinear transformations. These matrices were inversed and 
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combined to yield a matrix that could be applied to the standard space AAL image to warp all 

nodes into each person’s native diffusion space.  

Next, deterministic tractography was performed using the Diffusion Toolkit option in the 

PANDA program on the preprocessed data to construct all possible fibers within the brain in 

native diffusion space (Wang et al., 2007). This whole brain tractography file was constructed by 

placing a seed in all white matter voxels and linearly propagating lines from each seed based on 

the principal direction of the vector in that voxel. Each line was propagated by 0.25mm to the 

next ‘point’ in space, at which point the process was repeated. Each of these streamlines was 

terminated when certain criterion were reached (i.e., FA < 0.15 or when the angles of the paths 

were greater than 55 degrees).  All possible streamlines were constructed from each seed region 

for a whole brain tractography file. The FA threshold of 0.15 was used as one of the termination 

criterion as prior research has shown that survivors have overall lower white matter integrity 

when compared to age-matched controls. The cingulum in the cingulate gyrus part was 

visualized for several participants using Trackvis based on ROI protocols from prior research 

(Wakana et al., 2007) to ensure that the whole brain tractography could follow the trajectory of a 

long distance white matter tract (Appendix).  

The transformed AAL image was used to filter the whole brain file to only include 

streamlines that passed through each node pair. Specifically, streamlines with two end-points 

within the masks of each given node pair were considered to link the two nodes. The average FA 

of all the voxels along streamlines linking two nodes were considered the edge weight value for 

that node pair.   
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2.5.3 Network Properties 

An adjacency matrix was constructed, where each node was represented in rows and 

columns and edge values were entered into cells of the intersecting row and column of the 

corresponding node pair. The Brain Connectivity Toolbox was then used to calculate the 

topological properties of each participant’s matrix. Measures of properties of nodes (i.e., 

betweenness centrality) and properties of the overall network (i.e., density, global efficiency, 

average clustering coefficient, modularity) were identified for each person. A short description of 
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the relevant metrics is provided below and in 
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Figure 2 in the introduction. More detailed information about the mathematical 

definitions of network measures is provided in Rubinov and Sporns (2010).  

Basic Properties of the Network: 

Density: Density is a basic characteristic of the network and describes how many 

existing edges there are in the network out of the number of total possible edges. Methodological 

studies have demonstrated that other network metrics change as a result of density rather than the 

properties of the local or global network (van Straaten & Stam, 2013). As such, density was kept 

equal for both groups when constructing the adjacency matrices for both survivors and controls 

to account for differences in network densities before further comparison analyses. The average 

density for the entire sample (i.e., survivors and controls) was calculated and used as the 

threshold for each participant’s network matrices to preserve the same proportion of the strongest 

weights across all individuals.   

Measures of Integration: 

Global efficiency: Global efficiency reflects a characteristic of the overall network. It is 

calculated as the inverse of the path length (the average of the fewest number of edges between 

all node pairs in the network). A network with a high global efficiency suggests high capacity for 

parallel processing and thus higher levels of global processing.  

Measures of Segregation: 

Clustering coefficient: The clustering coefficient is a measure of segregation and 

represents the probability that the neighbors of a node are also connected to each other in the 

form of a triangle. A node with high clustering coefficient suggests high levels of local 

processing in that node. The clustering coefficient across all nodes are averaged for an overall 

measure of segregation in the structural network. 
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Modularity: Modularity is also a measure of segregation. It is defined as the existence of 

communities that have more connections with one another (i.e., high number of within-group 

links) than is expected in a random model. High modularity values suggest the existence of 

communities of nodes that have specialized functions.   

Measures of Centrality: 

Betweenness Centrality: Betweenness centrality is a measure of centrality and is 

calculated as the number of shortest paths that must pass through that node. A node with a high 

betweenness centrality suggests that the node is important in the overall network and has a large 

influence on the transfer of information throughout the overall network. Nodes with the highest 

betweenness centrality and node degree values are often deemed hubs.  

Hub Disruption Index (HDI): The hub disruption index is calculated using other 

measures of centrality (see Figure 5). In this project, betweenness centrality was used to calculate 

the hub disruption index. A plot was created where the x axis represents the average betweenness 

centrality for each node in the healthy control group, and the y axis represents the difference 

between the betweenness centrality for each node between the survivor vs. the average healthy 

group. The slope of the best-fit line through this data is the hub disruption index. A high 

(negative) slope that passes through the x-axis suggests significant and preferential damage to 

the hubs when compared to a healthy structural connectome. In contrast, if there are random 

changes to nodes (i.e., non-preferential damage to hubs) with respect to these measures of 
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centrality, the slope of this line would not be significantly different from zero (Termenon, 

Achard, Jaillard, & Delon-Martin, 2016).   

 

Figure 5 Hub disruption index calculation from betweenness centrality values 

2.6 Statistical Analyses 

Statistical analyses are detailed in the following sections, each corresponding to the three 

aims of the study. Given that there is a high number of statistical comparisons and tests being 

conducted, adjustments were made for multiple comparisons to reduce the potential for Type I 

error. Since there were four graph theory metrics that were analyzed for each hypothesis, results 

were considered significant at a p-level equal to or below 0.0125 (i.e., p ≤ 0.05/4).  
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2.6.1 Aim 1 

The purpose of the first aim was to characterize structural network properties in adult 

survivors as compared to healthy controls.  

A series of independent two-sample t-tests were conducted on the following metrics: 

global efficiency, average clustering coefficient, and modularity. Rather than compare measures 

of centrality for each individual node between groups (which increases the chance for Type I 

error), the hub disruption index was used as a measure of preferential damage to hub nodes. This 

index was calculated for each survivor based on the betweenness centrality metric for every node 

in the network, and a one-sample t-test was conducted on the average hub disruption values 

among the survivor sample to test whether this index was significantly different from zero.  

Lastly, bivariate Pearson correlations were conducted to test whether risk factors 

identified in previous literature were associated with disruptions to the structural connectome. 

Specifically, younger age at diagnosis, longer time since diagnosis and higher NPS scores were 

expected to be significantly related to lower levels of global efficiency, lower clustering 

coefficient, lower modularity, and a higher hub disruption index.  

2.6.2 Aim 2 

The purpose of the second aim was to establish the utility of these graph metrics in 

predicting cognitive flexibility in both groups. To statistically test this aim, metrics from the 

network described in Aim 1 were correlated with age-normed z-scores from the 

Inhibition/Switching Trial of the Color-Word Interference Test. This task was chosen to 

represent the main measure of cognitive flexibility because it had the best psychometric 

properties out of all three cognitive flexibility measures based on the data provided in the 

DKEFS manual. It was hypothesized that lower levels of global efficiency, lower clustering 
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coefficient, lower modularity, and a higher hub disruption index would be significantly 

correlated with worse scores on this task. Based on previous studies that global efficiency is most 

robustly related to cognitive measures in structural network studies in both healthy individuals 

and in clinical groups it was hypothesized that global network efficiency would have the highest 

correlations with measures of cognitive flexibility when compared to other metrics 

(Caeyenberghs et al., 2012; Rubinov & Sporns, 2010; Wen, He, & Sachdev, 2011). 

To determine whether cognitive flexibility truly drove the correlation between 

performance on the inhibition/switching trial and graph theory metrics, a principal component 

analysis was conducted on three different cognitive flexibility measures in the DKEFS to extract 

the latent cognitive flexibility construct underlying the performance on all three cognitive 

flexibility measures (i.e., Inhibition/Switching trial of the Color Word Interference Test, Letter 

Number Sequencing trial of the Trail Making Test, and the Category Switching trial of the 

Verbal Fluency test). Bivariate correlations were conducted on the factor score (i.e., the 

participant’s performance on the speeded cognitive flexibility dimension) and the metrics of the 

network. Given that cognitive flexibility skill requires the integrity of frontal-subcortical brain 

systems, it was hypothesized that the factor scores would correlate significantly with properties 

of the structural network. However, since the inhibition/switching trial of the Color-World 

Interference Test requires basic functions that involve other areas of the brain as well (e.g., visual 

scanning, speeded reading, color naming), it was hypothesized that the correlations between 

performance on this measure and graph theory metrics would be higher than the correlations 

between the factor scores and the properties of the structural network.  

Further, it is important to note that each of the three DKEFS measures were completed 

under a time limit. Thus, it is possible that the speeded cognitive flexibility dimension extracted 
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from the principal components analysis of all three measures may reflect shared method 

variance. To test that cognitive flexibility is associated with metrics from the structural network 

outside of the demands of simple speed, partial correlations were conducted between the factor 

scores and the properties of the structural network after removing the variance associated with 

simple graphomotor speed (i.e., score on Trial 5 of the Trail Making Test). A significant partial 

correlation would provide more support for the hypothesis that the properties of the connectome 

are associated specifically with cognitive flexibility.  

The second hypothesis of aim 2 was that the differences in brain network properties 

would underlie the cognitive differences between survivor and control groups. The graph theory 

metric that most highly correlated with scores from the Inhibition/Switching Trial of the Color-

Word Interference Test was used as the mediator between group membership (i.e., survivors vs. 

controls) and cognitive flexibility.  

The SPSS “indirect” script was used to test the mediation model with group membership 

(survivors vs. controls) as the independent variable, the Inhibition/Switching Trial performance 

as the dependent variable, and graph theory metrics as the hypothesized mediator. Given the 

relatively small sample size and the concerns of the Baron and Kenny (1986) model and Sobel 

test for detecting effect sizes in small samples, bootstrapping was employed with 10,000 samples 

(Preacher & Hayes, 2004). Bootstrapping can estimate effect sizes accurately with small samples 

and skewed distributions by resampling with replacement. An effect is deemed significant if the 

resulting 95% confidence interval of the indirect effect of the independent variable on the 

dependent variable does not include zero. Given that this approach can increase the likelihood of 

Type I error, a Test of Joint Significance was also conducted; if the paths of the regression 

between the independent variable and the hypothesized mediator (path ‘a’), as well as the 
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regression between the hypothesized mediator and the dependent variable (path ‘b’) were 

significant, then the indirect effect was also considered statistically significant. If the structural 

network metric emerged as a significant mediator in this model, this would suggest that 

structural network properties underlie cognitive flexibility differences between groups.  

The third hypothesis was that the relationships between treatment severity and cognitive 

outcomes would be mediated by properties of the structural network. The same bootstrapping 

and Test of Joint Significance methods used in the prior hypothesis step was utilized to test the 

mediation model for this aim. The network metric most significantly related to performance on 

the Inhibition/Switching trial of the Color-Word Interference Test was used as the mediator in 

the model. Scores on the NPS served as the independent variable, while performance on the 

inhibition/switching trial of the Color-Word Interference Test served as the dependent variable in 

this model. If the structural network metric emerged as a significant mediator in this model, this 

would suggest that treatment factors are related to cognitive flexibility performance through 

structural network properties.   

3 RESULTS 

3.1 Motion 

Mean average displacement for each frame was 0.60 mm (SD = 0.16) for controls and 

0.65 mm (SD = 0.16) for survivors. Average framewise displacement did not differ significantly 

between the two groups, t(74) = 1.25, p = 0.22, d = 0.29. Motion did not correlate significantly 

with any of the graph theory metrics or performance on any of the cognitive flexibility measures 

(p > 0.05). Given that motion did not vary between the two groups and did not relate to the 
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dependent variables in the study, motion was not considered a confound and thus was not used as 

a covariate for proposed analyses testing each aim.  

3.2 Density 

Weighted matrices were derived based on the results of the whole brain tractography and 

density was assessed to determine whether this characteristic differed between the two groups. 

Average density in the healthy controls (M = 0.29, SD = 0.03) was significantly higher than the 

average density in survivors (M = 0.27, SD = 0.03), t(74) = 2.44, p = 0.02, d = 0.7. Given that 

differences in density can drive differences in graph theory metrics that may not reflect real 

differences in structural topology, each person’s adjacency matrix was thresholded using the 

average density across the entire sample (0.279). Graph theory metrics explored in both aims 

were derived from these thresholded matrices.  

3.3 Aim 1 Results 

The purpose of the first aim was to test whether measures of integration, segregation, and 

centrality of the structural network were different between adult survivors and healthy controls. 

These results are presented in Table 3.  

Table 3 Graph Theory Metrics in Survivors and Healthy Controls 

 

Measure 

Controls (n=38) Survivors (n=38)  

df 

 

t 

 

p Cohen’s d M SD M SD 

Global Efficiency .31 .014 .29 .019 74 3.67 .000 1.20 

Avg. Clustering 

Coefficient 
.27 .013 .26 .015 74 2.82 .006 0.71 

Modularity .25 .04 .26 .05 74 -0.30 .762 0.22 

Hub Disruption Index   -.07 .14 37 -3.18 .003 0.50 

 

 Consistent with hypotheses, global efficiency and average clustering coefficient were 

higher in controls compared to survivors. The hub disruption index, which was calculated from 
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the betweenness centrality values for every node in the network, was significantly different from 

zero, which was also consistent with hypotheses. However, modularity did not differ 

significantly between the two groups.  

Bivariate Pearson correlations were conducted to test whether younger age at diagnosis, 

longer time since diagnosis and higher NPS scores were significantly correlated with more 

disruptions to the structural topology. These results are presented in Table 4; scatterplots of the 

significant correlations in survivors are presented in Figure 6. Higher scores on the NPS (i.e., 

higher levels of cumulative tumor- and treatment-related risk factors) were associated with lower 

global efficiency and lower average clustering coefficient. These relationships were significant 

after correcting for multiple comparisons.  

 

Table 4 Correlations between risk factors and graph theory metrics (n=38) 

 
Graph Theory Metric 

Measure 

Global 

Efficiency 

Avg. Clustering 

Coefficient Modularity 

Hub 

Disruption 

Index 

Age of survivor at diagnosis -0.029 .06 .11 .12 

Time between diagnosis and 

exam 
-.22 -.27 .008 -.13 

Neurological Predictor Scale 

Score 
-.61** -.65** .23 -.08 

Note. *p<0.05, **p<0.0125 (significant after corrections for multiple comparisons).   
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Figure 6 Scatterplots of correlations between NPS Score and graph theory metrics in survivors 

 

3.4 Aim 2 Results 

The purpose of the second aim was to establish whether graph theory metrics 

significantly related to performance measures of cognitive flexibility. Bivariate correlations were 

conducted to test whether the four graph theory metrics would be significantly correlated with 

age-normed z-scores from the Inhibition/Switching Trial of the Color-Word Interference Test as 

well as the latent “cognitive flexibility” factor derived from a principal component analysis on 

three different cognitive flexibility measures. Partial correlations were also conducted between 

the factor scores and the four graph theory metrics after removing the variance associated with 

simple graphomotor speed. This step was to ensure that the relationship between the cognitive 

flexibility dimension and properties of the structural network were not due to shared method 

variance in the three tasks used in the principal components analysis.  

Principal components analysis was deemed appropriate for the three cognitive flexibility 

measures based on several checks to assumptions. First, Pearson correlation coefficients among 

all measures were all above 0.3, suggesting sufficient linear relationships (see Table 5). Second, 

the Kaiser-Meyer-Olkin Measure of Sampling Adequacy was 0.647 and over the recommended 
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minimum value of 0.6, indicating that the minimum cutoff was met for sample size. Last, 

Bartlett’s test of sphericity was significant, which suggested that the data was suitable for data 

reduction, χ2 (3) = 51.95, p < .05.  

The first factor obtained from the principal components analysis explained 66.2% of the 

variance, with an eigenvalue of 1.99; this factor was labeled “speeded cognitive flexibility”. 

Factor scores were computed for each subject to estimate each participant’s placement on the 

speeded cognitive flexibility factor. Factor loadings, which represent the relationship of each 

measure to the underlying factor, are presented in Table 6. 

Notably, two survivors were missing data from the Letter Number Sequencing Trial of 

the Trail Making Test and the Category Switching Trial of the Verbal Fluency test of the 

DKEFS. These individuals were excluded from the principal components analysis. As such, all 

bivariate correlations which included the speeded cognitive flexibility factor scores were 

conducted on the subsample of individuals who had data for all three cognitive flexibility 

measures (i.e., all 38 controls and 36 survivors). Similarly, analyses involving the hub disruption 

index and the speeded cognitive flexibility factor scores were conducted on the 36 survivors who 

had complete behavioral data on all three cognitive flexibility measures.  

Table 5 Correlation matrix of cognitive flexibility measures 

 

Measure 1.  2.  3. 

1. Color Word Inhibition/Switching Z-score - - - 

2. Trails Letter-Number Sequencing Z-score .57 - - 

3. Verbal Fluency Category Switching 

Accuracy Z-score 

.37 .52 - 

 

 

Table 6 Factor loadings from principal components analysis 

 

Measure Speeded Cognitive Flexibility Loadings 

Letter-Number Sequencing Z-score .87 

Color Word Inhibition/Switching Z-score .80 
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Category Switching Accuracy Z-score .77 

 

 The bivariate Pearson correlations between graph theory metrics and cognitive flexibility 

performance are presented in Table 7. After correcting for multiple comparisons, global 

efficiency was significantly correlated with performance on the Inhibition/Switching trial of the 

Color Word Interference Test, as well as the speeded cognitive flexibility factor derived from the 

principal components analysis. Global efficiency was also correlated with the speeded cognitive 

flexibility factor after removing the variance associated with simple motor speed. However, this 

relationship was not significant after correcting for multiple comparisons. Average clustering 

coefficient was significantly associated with performance on the inhibition/switching trial and 

the speeded cognitive flexibility factor. This metric was also significantly associated with the 

speeded cognitive flexibility factor after removing the variance associated with simple motor 

speed. All three of the correlations between average clustering coefficient and cognitive 

flexibility performance were significant after corrections for multiple comparisons.  

Table 7 Correlation matrix of cognitive flexibility and graph theory metrics 

 

 Graph Theory Metrics 

Measure 

Global 

Efficiency 

Avg. Clustering 

Coefficient Modularity 

Hub Disruption 

Index 

Color-Word 

Inhibition/Switching Z-Score  
.40** .35** -.12 -.15 

Speeded Cognitive 

Flexibility Factor 
.31** .32** -.003 -.04 

Speeded Cognitive 

Flexibility after controlling 

for simple Motor Speed 

.25* .30** -.026 .06 

Note. *p<0.05, **p<0.0125 (significant after corrections for multiple comparisons).  

The second hypothesis of aim 2 was that the differences in brain network properties 

would mediate the cognitive differences between survivor and control groups. Given that global 

efficiency was most highly correlated with scores on the Inhibition/Switching Trial of the Color-
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Word Interference Test and had the highest effect sizes for group differences, global efficiency 

was used as the mediator between group membership (i.e., survivors vs. controls) and cognitive 

flexibility performance. Results of the mediation model are presented in Figure 7.  

Notably, the direct effect of the independent variable group membership on cognitive 

flexibility was not statistically significant. Although traditional approaches to mediation analyses 

require a significant direct relationship to test for mediation, more modern statistical perspectives 

posit that significant indirect effects through mediators do not depend on the presence of 

statistically significant direct effects, especially within the context of a theoretically meaningful 

model (Hayes, 2009).  

The confidence interval for the indirect path (path c’) did not include 0, and both paths a 

and b in the model were significant, indicating that global efficiency mediated the differences in 

cognitive flexibility performance between the two groups.  

Figure 7 Global efficiency mediates cognitive flexibility differences between groups 

 

The third hypothesis was that the relationship between treatment severity and cognitive 

outcomes would be mediated by properties of the structural network. Global efficiency was also 

chosen as the mediator because it was most highly correlated with scores on the 

Inhibition/Switching Trial of the Color-Word Interference Test. Statistics for the mediation 

Global Efficiency 

Survivors vs. Controls 

Color-Word 

Inhibition/Switching Z-

score 

Path a: 

b = -.04, p = .0004 

Path b: 

b = 27.2, p = .0023 

Direct effect, path c: 

b = -.57, p = .06  

Indirect effect, path c’: 

b = -.38 , 95% CI [ -.80, -.10] 
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model are presented in Figure 8. The confidence interval for the indirect effect of NPS score on 

cognitive flexibility (path c’) did not include zero, and both paths and b of the model were 

statistically significant. These results suggest that the association between cumulative 

neurological risk and cognitive performance was explained by the global efficiency of the 

structural network.  

    

Figure 8 Global efficiency mediates the relationship between NPS and cognitive flexibility in 

survivors 

3.5 Post-hoc Analyses 

Several post-hoc analyses were conducted to test whether other variables that were 

potentially different between the survivor and control groups influenced the results. 

3.5.1 Mood 

One variable that may explain the differences in graph theory metrics between the two 

groups is the presence of depression or mood symptoms. Notably, research studies in adult 

survivors of pediatric brain tumors are mixed as to whether survivors experience higher levels of 

psychological distress compared to the general population. Some research in long-term survivors 

suggest minimal impact of childhood cancer on psychological well-being (Crom et al., 2014; 

Willard et al., 2017) while others report increased incidence of psychiatric disorders in adult 

survivors especially among those treated with radiation (Shah et al., 2015; Turner et al., 2009). 

Global Efficiency 

NPS Score 
Color-Word 

Inhibition/Switching Z-score 

Path a: 

b = -.005, p = .0001  
Path b: 

b = 30.3, p = .03 

Direct effect, path c: 

b = -.35, p = .0006 

Indirect effect, path c’: 

b = -.20, 95% CI [ -.33, -.04] 
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Independent samples t-tests were conducted on the number of current major depressive episode 

symptoms that were endorsed by participants on the SCID-II. Both groups endorsed very low 

levels of depressive symptomatology on average (Controls mean=0.06, SD = .34, Survivors 

mean = 0.22, SD = .72). The number of depressive symptoms endorsed did not differ 

significantly between the two groups, t(69)=-1.23, p = 0.22. Further, bivariate Pearson 

correlations revealed that the number of symptoms did not correlate with any of the graph theory 

metrics (p > 0.05). These analyses suggest that depressive mood symptoms are unlikely to 

explain group differences in structural network properties.  

3.5.2 Education 

There were significant differences between the two groups with regard to formal years of 

education completed. Prior research has established robust relationships between the 

level/quality of education and performance on neuropsychological measures in healthy 

individuals and clinical populations (Manly, Byrd, & Touradji, 2004; Manly, Jacobs, Touradji, 

Small, & Stern, 2002). Post-hoc analyses were conducted to test the potential impact of differing 

levels of education on the findings in this study.  

Although years of education was correlated with performance on the DKEFS Color-

Word Inhibition/Switching task, r(74) = 0.23, p < 0.05, formal years of education was not 

significantly correlated with the speeded cognitive flexibility factor score or any of the graph 

theory metrics. The lack of significant relationships suggests that differing levels of education 

between the two groups are unlikely to explain differences in structural topology.  

3.5.3 IQ differences 

Consistent with prior studies, estimates of IQ were correlated with features of the 

structural network including global efficiency, r(74) = 0.40, p < 0.01, and average clustering 
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coefficient, r(74) = .39, p < 0.01. Given that the control group had significantly higher IQs 

compared to controls, subsamples of the two groups were created with matched IQs to determine 

whether differences in graph theory metrics were still significant after accounting for these IQ 

differences; these results are presented in Table 8. These subsamples consisted of 31 survivors 

and 31 controls who were matched by IQ, age, gender, socioeconomic status and handedness. 

Independent sample t-tests confirmed that global efficiency remained significantly different 

between the two groups. A one-sample t-test also indicated that the hub disruption index was 

significantly lower than 0. However, average clustering coefficient was no longer statistically 

different between the two groups. The overall effect sizes from these statistical analyses were 

reduced compared to the effect sizes obtained from the full sample. 

Table 8 Graph theory metrics differences in subsamples with matched IQ 

Measure Controls (n=31) Survivors (n=31)   

df 

  

t 

  

p 

 

Cohen’s d M SD M SD 

Density .29 .03 .27 .03 60 1.65 .10 0.43 

Global Efficiency .31 .01 .30 .02 60 2.5 .01 0.65 

Avg. Clustering Coefficient .27 .01 .26 .01 60 1.74 .09 0.45 

Modularity .25 .04 .26 .05 60 -.33 .74 .09 

Hub Disruption Index   -.07 .15 30 -2.8 .008 0.5 

 

Although these analyses suggest that the topological differences between the two groups 

are not fully explained by differences in IQ, it is important to note that the practice of removing 

the variance associated with IQ by using subsamples or by using IQ as a covariate has been 

criticized on logical, statistical, and methodological grounds. Dennis et al. (2010) presents a 

series of arguments to state that using IQ as a covariate or as a variable to match groups is 

“meaningless and generally unjustified.” The authors argue that IQ has often used as a covariate 

in studies of other neurodevelopmental conditions because it is assumed to be a meaningful static 

construct that represents an innate and latent potential that causes individual and group 
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differences, but that this perspective on IQ is unfounded. For instance, research in individuals 

with learning disabilities do not support the notion that IQ represents a measure of potential or 

capacity.  

In addition, the purpose of using covariates or matching procedures is to correct for 

selection bias. It is an established method to minimize differences that occur in two groups by 

chance, as even experimental conditions with random assignment procedures may result in 

preexisting group differences that causally affect the dependent variable. However, when 

studying outcomes of individuals with neurodevelopmental conditions or acquired childhood 

brain insults where IQ was measured after the insult, it is impossible to separate the construct of 

IQ from the condition meaningfully, as changes in IQ occur as a direct result of the condition. 

Differences in IQ that occur between the clinical sample and the healthy comparison group are 

not a result of a selection bias but instead represent true nonrandom preexisting population 

differences. Comparing outcomes in samples after matching the clinical and healthy comparison 

groups by IQ may result in comparing groups that are not representative of the population, as 

matching procedures usually remove the individuals in the clinical group who are performing 

more poorly. As such, matching groups by IQ removes important variance related to the very 

features and effects of the brain tumor and associated treatments that we are attempting to study. 

The finding that the effect sizes of all differences in graph theory metrics were reduced after 

matching the groups by IQ is unsurprising and these post-hoc analyses should be interpreted with 

the caveat that the subsamples may be unrepresentative samples from the populations of interest.  
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4 DISCUSSION 

Consistent with hypotheses, the results of this study indicated that global efficiency and 

average clustering coefficient of structural networks were reduced in survivors compared to 

healthy peers matched by age, gender, handedness, and socioeconomic status. There was also 

evidence for preferential impact to hub regions. Further, lower global efficiency and lower 

average clustering coefficient were associated with higher cumulative neurological risk and 

poorer performance on behavioral measures of cognitive flexibility. Indeed, global efficiency 

mediated differences in cognitive flexibility performance between survivors and healthy peers. 

Global efficiency also mediated the relationship between cumulative neurological risk and 

cognitive flexibility performance. These results suggest that structural networks are altered in 

adult survivors of pediatric brain tumors and that features of these networks explain differences 

in cognitive flexibility performance. Post-hoc analyses suggested that these results are not due to 

motion artifact or to differences in education between groups. These results are highly consistent 

with findings from studies conducted in other clinical groups such as TBI, stroke, epilepsy, and 

congenital heart disease, which have shown disruptions in measures of segregation, integration, 

and centrality when compared to healthy adults. Prior studies also have consistently shown that 

metrics describing the integrity of the network significantly relate to behaviors and the degree of 

impairment.  

 Global efficiency, a measure of global integration, is thought to reflect the capacity of 

structural networks to allow efficient processing of information from distributed regions of the 

brain. The clustering coefficient is a measure of segregation that represents high levels of local 

processing. Brain networks of healthy individuals are associated with a balance of local and 

global processing in the brain so that information can be efficiently transferred across the 
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network while still maintaining low wiring and biological costs. Studies of healthy developing 

brains indicate that brain networks undergo highly dynamic changes from infanthood to late 

adolescence; these networks change from relatively random configurations to networks that 

optimize the balance between information segregation and integration. These changes support 

cognitive and behavioral developments (Baum et al., 2017; Cao, Huang, & He, 2017; Chen, Liu, 

Gross, & Beaulieu, 2013). The rapid changes occurring in structural and functional brain 

networks during development also render the brain more vulnerable to neurological insults. 

Survivors of pediatric brain tumors experience disruptions during these critical timeframes when 

structural and functional networks are actively being optimized for efficiency. The results of this 

study suggest that these network alterations persist even when survivors have grown into 

adulthood, as measures of both integration and segregation were reduced when compared to 

neurologically healthy adults of the same age. These alterations also have important 

consequences for behavioral outcomes, as reduced global efficiency and reduced average 

clustering coefficients in the network are both associated with poorer cognitive flexibility 

performance.  

Inconsistent with hypotheses, modularity of the structural networks was not significantly 

different between groups, and there were no significant relationships between this metric and 

measures of cognitive flexibility. Lack of expected findings may be due to the parcellation 

scheme. The modularity metric identifies communities of nodes that are more interconnected 

with each other than is expected in a random model. If the nodes within a network are too large 

and each contain heterogeneous subregions that are highly interconnected and function as a 

module, then the parcellation does not have the spatial resolution to sensitively measure 

differences in modularity. Although the Automated Anatomical Labeling atlas has been used 
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frequently in other graph theory studies of clinical groups, its nodes are defined by anatomical 

boundaries and it is entirely possible that nodes contain subregions that are heterogeneous with 

regard to function and architecture.  

Alternatively, it is possible that recovery prioritizes modularity of structural networks. 

Computational modeling studies that incorporate plasticity into their network recovery models 

have reported that modularity recovers over time after a lesion in the network (Stam, Hillebrand, 

Wang, & Van Mieghem, 2010). The cross-sectional design of this study precludes examining 

how modularity changes over time on an individual level. As such, longitudinal designs in future 

studies will be crucial to establish whether the acute and subacute stages of injury are associated 

with changes in modularity and whether this feature recovers as a function of time.  

It is also possible that differences in modularity might exist in functional networks even 

during the chronic phase of injury. Other studies have identified modularity differences between 

patients with TBI and healthy controls when examining functional networks using resting state 

fMRI and EEG data (Han et al., 2014; Messe et al., 2013). Further, modularity in functional 

networks appear to relate meaningfully to changes in behavior. Specifically, one study showed 

that modularity of functional brain networks prior to a cognitive intervention program predicted 

the level of improvement in attention and executive functioning in patients with a brain injury 

(Arnemann et al., 2015). Modularity can also flexibly change in functional networks in response 

to a rapidly changing environment; a recent study in healthy adults demonstrated that modularity 

in functional networks significantly changed as individuals completed a harder working memory 

task when compared to a simpler vigilance task (Finc et al., 2017). The dynamic nature of 

functional networks may make it more suitable for understanding behavioral variation. Future 

studies should employ network-level analyses of functional networks such as resting state fMRI 
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and task-based fMRI in adult survivors of pediatric survivors to complement the findings from 

this study.   

Further, although the present study did not find any relationships between modularity and 

behavioral outcomes on the group level, this does not preclude the possibility that intra-

individual changes in modularity may predict outcomes. For instance, working memory capacity 

can be predicted by within-individual differences in functional brain network modularity in 

healthy adults (Stevens, Tappon, Garg, & Fair, 2012). Again, longitudinal methods could 

determine whether there are intra-individual changes in modularity metrics over time and 

whether the level of change predicts cognitive and behavioral outcomes on the individual levels.   

The hub disruption index, a global measure of preferential damage to hubs based on the 

betweenness centrality values for each node in the network, was hypothesized to be significantly 

different from zero and to relate significantly to measures of cognitive flexibility. This 

hypothesis was partially supported. Although there was evidence that hubs were preferentially 

impacted compared to the other nodes in the network, the hub disruption index was unrelated to 

risk factor variables or any behavioral measures of cognitive flexibility. This may be due to the 

fact that the hub disruption index is a composite measure based on the slope of the difference 

scores of betweenness centrality in all of the nodes in the network and may thus be too general. 

Although research supports that hubs are disproportionately and consistently affected across 

different clinical population, the identity of these hubs does differ across different disorders. For 

instance, patients with schizophrenia exhibit more disruption to hubs in the frontal and parietal 

lobes, while patients with Alzheimer’s exhibit more disruption to hubs in the temporal lobe. 

Although other research studies have identified significant correlations between properties of 

certain hubs and cognitive performance, these results rarely survive corrections for multiple 
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comparisons. Due to this issue, this study used one index of hub disruption to avoid running 

numerous statistical tests simultaneously on the betweenness centrality values for every single 

node in the network. However, the hub disruption index may have been too general to relate to 

behavior. As such, research studies which select a small number of hubs a priori based on theory 

and previous research may be better able to identify significant relationships between behavioral 

outcomes and local properties of these hubs. Other research studies that have used the hub 

disruption index have demonstrated the measure to be sensitive to differences between clinical 

groups and healthy peers, but did not investigate whether the hub disruption index was related to 

behavioral outcomes (Ridley et al., 2015; Termenon et al., 2016).  

Although cumulative neurological risk was related to graph theory metrics in the survivor 

group, the other risk factors such as age at diagnosis and years since diagnosis did not relate 

significantly to any of the graph theory metrics. This does not preclude the possibility that these 

diagnostic variables relate to structural topology. Instead, it may be that these variables interact 

with other treatment variables such as presence and type of radiation. For instance, a research 

paper from our research lab (with an overlapping sample) indicated that age at diagnosis and 

radiation interacted to predict processing speed performance. Among those who had received 

radiation treatment, younger age at diagnosis predicted poorer processing speed. In contrast, 

there was no significant relationship between younger age at diagnosis and processing speed in 

those who had not received radiation treatment (King et al., 2017). Review of neuroimaging 

studies in survivors of pediatric brain tumor that have related age at diagnosis with 

characteristics of brain structure largely were in samples comprised solely of survivors who have 

experienced cranial radiation (Butler et al., 2013; Khong et al., 2003; Reddick et al., 2005; 

Reddick et al., 2014). Older age at diagnosis and treatment was unrelated to FA in a survivor 
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sample that had only experienced surgery (Law et al., 2011). As such, more complex models that 

incorporate interactions of age at diagnosis and time since diagnosis with treatment factors are 

needed to understand the nature of these risk factors on structural topology. It will also be 

important to incorporate variables that affect recovery, such as rehabilitation or level of family 

support, for a more complete model of long term survivorship (Murdaugh et al., 2017). 

It is worth questioning whether graph theory metrics have specificity, as global efficiency 

was significantly related to multiple behavioral outcomes (e.g., IQ and cognitive flexibility). 

Based on the fact that many neuropsychological tasks require an integrated system to complete 

any given task (e.g., sensory input, process, planning and executing motor output), it is perhaps 

unsurprising that a measure of global integration incorporating the features of every node in the 

network is related to different measures of behavior. Studies of structural network properties of 

other clinical populations such as congenital heart disease, TBI, and stroke (among others) also 

have related global efficiency to a wide variety of outcomes, including postconcussive 

symptoms, executive functions, memory, IQ, and visual-motor integration (Caeyenberghs et al., 

2014; Panigrahy et al., 2015; Reijmer et al., 2015; Yuan et al., 2015). Studies that are interested 

in identifying specific features of the network to dissociate between different outcomes may be 

more successful if they utilize metrics that describe the local properties of specific nodes/regions 

of interest in the network. For instance, a resting state fMRI study of 392 middle-aged and older 

adults found that apathy was associated with decreased measures of local properties of the 

anterior cingulate cortex, while depression was associated with increased measures of local 

properties of the anterior cingulate cortex. This study used the local network properties of one 

node in the network to dissociate apathy and depression in their sample (Onoda & Yamaguchi, 

2015). Further, characteristics of functional networks may be better suited for understanding the 
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neurobiological bases of specific behaviors. Although functional networks are constrained to a 

certain extent by underlying structural architecture, functional networks also exhibit more 

flexibility and can adapt more quickly to environmental demands by reorganizing, coordinating 

and mobilizing different regions across the brain for various cognitive tasks (Fischer, Wolf, 

Scheurich, & Fellgiebel, 2014). This flexibility also raises the possibility that functional 

networks can attempt to compensate for some structural network deterioration. Multi-modal 

network approaches will be especially helpful in understanding how the brain responds and 

recovers over time and how these factors relate to behavioral outcomes in adult survivors of 

pediatric brain tumors.  

The findings from this study should be considered within the context of the limitations. 

First, both survivor and control groups were self-selected. In the case of the survivor group, it is 

possible that the sample was biased towards higher functioning individuals who had the time to 

devote to the study and the means to transport themselves to the study site. It is also equally 

possible that survivors with more cognitive concerns were more likely to participate in the study. 

This selection process may have skewed the sample to include either higher or lower functioning 

survivors. Due to these factors, selection bias may limit the generalizability of the conclusions. It 

is also possible that survivors who were excluded from the imaging due to artifact, motion, or 

MRI-incompatible devices may have been lower functioning. To test this possibility, post hoc 

analyses were conducted to test whether survivors who were included in the current study had 

higher IQs, cognitive flexibility scores, or had experienced higher levels of cumulative 

neurological risks when compared to the survivors who were excluded due to various reasons 

(e.g., motion artifact, MRI incompatibility, disinterest). Two sample t-tests indicated that there 

were no differences in IQ performance, cognitive flexibility performance, or NPS scores between 
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the two groups (p > 0.05). As such, the survivors included in this neuroimaging study do not 

appear to be biased towards the higher functioning survivors within the larger sample of 

survivors who completed neuropsychological testing for the parent study.  

This study was also cross sectional and thus could not provide information about 

causation, or about changes that occur over time; longitudinal and prospective studies will be 

crucial to establish time frames and causes of change. For instance, to demonstrate that structural 

network topology truly plays a causative role in explaining cognitive flexibility behavior, it will 

be important to establish that structural network changes precede behavioral changes.  

Related to neuroimaging methodology, there are established limitations with the diffusion 

weighted imaging parameters and deterministic tractography methods used in this study. 

Although previous research has established some construct validity for streamline tractography 

methods by demonstrating that these methods agree with prominent white matter tracts found in 

postmortem studies, false positive and false negative streamlines can occur due to signal noise, 

partial volume effects and complex fiber architecture within voxels (Jbabdi, Sotiropoulos, Haber, 

Van Essen, & Behrens, 2015). The deterministic tractography methods used in this study assign 

one direction per voxel under the assumption that the direction of maximum diffusivity is an 

estimate of major fiber orientation. Given that there are potentially tens of thousands of axons in 

each voxel, assigning one direction assumes that all axons are coherently aligned in the same 

direction in that voxel, which is clearly inadequate especially in regions of the brain where fiber 

bundles cross. These approaches lead to bias in FA estimates especially in long white matter 

tracts (Oouchi et al., 2007). Future studies will need to employ more advanced diffusion imaging 

models, such as high angular resolution diffusion imaging (HARDI) or diffusion spectrum 

magnetic resonance imaging (DSI) to more accurately track complex fiber architecture in these 



73 

 

crossing fiber regions. Probabilistic tractography methods can also enhance our understanding of 

distributed connectivity by using algorithms to model the distribution of orientations and 

estimate levels of uncertainty in each voxel. It is important to note that all diffusion weighted 

imaging techniques are ultimately inferential methods that attempt to model white matter based 

on measurements of water diffusion. Even a model that perfectly measures and describes water 

diffusion within each voxel is unlikely to completely explain the microstructural properties of 

white matter tracts.  

In addition, graph theory approaches to study the brain are still in development and the 

biological significance of these metrics is still under investigation (He & Evans, 2010). For 

example, research on the topological features of brains in healthy and clinical groups have 

largely assumed that “stronger connections are better” and have concentrated their efforts on 

understanding the nature of these strongest connections. Methodologically, this assumption has 

resulted in thresholding procedures across many different studies that preserve the strongest 

connections and remove the weakest connections when examining networks. However, recent 

research has recognized the importance of these weaker connections in explaining individual 

variability and symptom presentation in clinical disorders (Bassett, Nelson, Mueller, Camchong, 

& Lim, 2012; Santarnecchi, Galli, Polizzotto, Rossi, & Rossi, 2014). Further, there is no ‘gold 

standard’ for processing or conducting analyses in clinical populations which have potential 

implications for findings, as methodological choices made by the researcher on parcellation 

schemes, edge definitions and thresholding procedures can significantly impact the network 

metrics under investigation (van Wijk, Stam, & Daffertshofer, 2010). Given the lack of a gold 

standard, this study used similar methods and parcellation schemes as research studies 
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investigating structural network properties in other clinical populations. However, it is important 

to interpret the findings of this study within the context of the methods used.  

For instance, the nodes for this study were based on the AAL parcellation which uses 

anatomical features to define regions of interest (Tzourio-Mazoyer et al., 2002). Although this 

scheme may capture important neurobiologically meaningful areas, one node may include 

multiple regions with heterogeneous functions. The anterior cingulate cortex, for example, 

exhibits a great deal of heterogeneity in both structural and functional connectivity studies but 

the entire region is treated as one node in the AAL (Arslan et al., 2017). Newer parcellation 

schemes such as the one proposed by Glasser et al. (2016) use multiple modalities to generate 

highly reproducible and individualized parcellations based on other features of the brain such as 

function, connectivity, and cortical architecture. This parcellation scheme has the added 

advantage of being able to automatically account for slight anatomical differences between 

individuals through machine-learning approaches. Although promising, this parcellation has yet 

to be validated or reproduced in healthy younger children or older adults, much less clinical 

groups whose anatomy may be altered significantly as a result of surgery and other treatments. A 

recent review of 10 subject level and 24 group level parcellations tested these parcellation 

schemes with respect to reproducibility, fidelity to underlying connectivity, agreement with task 

activation, myelin maps, cytoarchitectural areas, and network analysis. The review suggested 

that there was no clearly optimal parcellation method (Arslan et al., 2017). On a positive note, 

each of the tested parcellation schemes yielded graph theory metrics that performed successfully 

on a simple gender classification task. The authors interpreted this finding to mean that the 

choice of the parcellation scheme has limited impact on network analysis metrics but 
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acknowledged that the task was extremely simple and that future studies should examine the 

potential impact of different parcellation techniques on network metrics in clinical populations.  

This study also used the average FA between nodes as the edge metric to extend prior 

research that has established that survivors of pediatric brain tumors have lower FA overall and 

in specific white matter tracts when compared to healthy controls. It is important to note that 

research studies in other clinical populations use different edge metrics such as number of 

streamlines and the density of streamlines as edge measures, and that differing definitions of 

edges can lead to variability in results. In addition, although research has shown that FA is a 

sensitive measure to white matter integrity, FA is a summary measure that lacks specificity to 

types of change. Other metrics such as mean diffusivity, radial diffusivity and axial diffusivity 

may be more sensitive to specific biological processes such as edema, necrosis, axonal damage, 

and myelin degeneration (Askins & Moore, 2008). Given that there are multiple potential 

mechanisms that interact to explain the late delayed effects of radiation, chemotherapy, 

hydrocephalus, and other brain tumor associated treatments on the brain, future studies could use 

metrics other than FA as edge values to explore pathology with more specificity. 

Another aspect to consider is the choice to use proportional thresholding schemes to 

account for density differences between groups. Research has shown that graphs with different 

densities (i.e., the proportion of the number of existing edges out of the total possible number of 

edges) are difficult to compare directly because density differences in networks can result in 

significant differences in graph theory metrics even when networks share the same topological 

organization. This makes it challenging to compare networks between clinical groups and 

healthy same-aged peers when density may naturally change as the function of the disorder itself. 

There are different methods that have been proposed to deal with comparing networks of 
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different densities but there is no one satisfactory way to control for this issue completely, due to 

the fact that modeling the exact impact of density on different graph theory metrics depends on 

knowing the underlying topology a priori, which is not possible in empirical studies of clinical 

populations (van Wijk et al., 2010). For instance, some studies use density as a covariate to test 

whether graph theory metrics remain different between groups after removing the variance 

associated with density. This approach, however, does not fully control for the issue when 

density does not share linear relationships with graph theory metrics (Caeyenberghs et al., 2012). 

Proportional thresholding, which was the method used in this study, uses a cutoff such that the 

same percentage of edges are enforced for everyone’s networks. This method, however, may 

lead to modifications of the network by ignoring significant connections in controls or by 

enforcing weaker connections in the clinical group (Drakesmith et al., 2015). In addition, given 

that controls had higher densities, using any cutoff automatically affects the control group more 

than the survivor group. To test whether proportional thresholding may have unduly affected the 

results, the same analyses were run on networks without any thresholding. The results were very 

similar; global efficiency and clustering coefficients remained lower in survivors compared to 

controls, were significantly correlated with cognitive flexibility and cumulative risk, and 

mediated the difference in cognitive flexibility performance between the two groups. These 

additional analyses suggest that the results of this study are not fully attributable to densities of 

networks.  

Another methodological limitation in this study was the field map used to undistort the 

diffusion images when registering them to the T1 MPRAGE image. In the parent study, the field 

map was acquired before the task-based functional sequence. As the field map is based on the 

specific location of the head within the scanner, significant head motion between the time that 
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the field map is acquired and the diffusion imaging sequence can yield a field map image that 

does not perfectly represent the field inhomogenetities even after using linear registration 

techniques on the field map image to align it to the structural image. Qualitative inspections of 

the diffusion images after incorporating the field map did result in less distortion (see  

Figure 9). Future studies, however, should collect field maps immediately before the 

diffusion scan or obtain several B0 images in opposite directions to better reduce spatial 

distortion when acquiring imaging with Echo Planar Imaging sequences (Andersson, Skare, & 

Ashburner, 2003).  

 



78 

 

Figure 9 Axial and sagittal slice (a) before and (b) after field map correction 

  Despite these limitations, there also several strengths that are worthy of note. Like 

research studies of other clinical populations, the sample studied in this group is heterogeneous 

with regard to tumor type, tumor location, types of treatments and level of neurological risk. This 

heterogeneity allowed for increased variance to explore the relationship between important 

variables of interest and functional outcomes. There is also a respectable sample size of an 
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understudied population. The use of an age- and gender-matched control group allowed for 

comparisons between the clinical group and healthy same aged peers and to determine whether 

structural topology was altered in the survivor group and underpinned differences in cognitive 

performance between groups.  

This study also explicitly considered the impact of motion on the findings. Research has 

suggested that differences in head motion between two groups lead to spurious but systematic 

differences in structural and functional neuroimaging results even when utilizing methods that 

attempt to compensate for motion during preprocessing steps such as spatial registration or 

regression of motion estimates from data (Power et al., 2012; Yendiki, Koldewyn, Kakunoori, 

Kanwisher, & Fischl, 2014). Using a quantitative metric of translational and rotational motion, 

comparing the metric between groups, and identifying whether motion related to any of the 

findings provides more confidence that results from this study reflect true differences between 

groups rather than differences in subject head motion.   

Further, this is the first study to use graph theory to explore the topological properties of 

the structural network in survivors of brain tumors. Understanding structural topology lays the 

groundwork for exploring functional network organization, as functional networks are shaped 

and constrained to a certain extent by the underlying structure (Cao et al., 2017). Understanding 

the flexibility and diversity of functional network organizations within the constraints of 

anatomical connectivity can provide important insights into the nature of brain repair, recovery, 

and function following a neurological insult. Graph theory has the added benefit of being able to 

use dynamic modeling in a cohesive framework to understand how the features of structural and 

functional brain networks change over time (Hart, Ypma, Romero-Garcia, Price, & Suckling, 

2016; Meyer-Base et al., 2017). Metrics derived from structural and functional brain networks 
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have been used as a biomarker in clinical groups such as patients with temporal lobe epilepsy to 

predict patients who will have better outcomes after surgery (Bonilha et al., 2015; Ji et al., 2015). 

Studies of this kind suggest that graph theory may even have some utility in clinical settings to 

guide neurosurgical planning to avoid neurological deficit, predict the efficacy of treatments, and 

identify patients who are at risk for poor outcomes (Castellanos, Di Martino, Craddock, Mehta, 

& Milham, 2013; Petrella, 2011). Although more longitudinal work is necessary in larger 

samples to establish that graph theory metrics have clinical value in survivors, the findings from 

this study suggest the potential clinical relevance of understanding structural network level 

properties of the brain.   

5 SUMMARY 

Neuroimaging techniques have been used to investigate the neurobiological 

underpinnings of cognitive deficits in adult survivors of childhood brain tumors. Graph theory is 

a quantitative method that characterizes brains as a complex system. By modeling cortical and 

subcortical brain regions as nodes and white matter connections between each brain region pair 

as edges, graph theory provides metrics that quantify the topological properties of brain 

networks. Given that brain tumors and medical treatments for brain tumors are known to result in 

disruptions to both brain regions and white matter connections and that these disruptions are 

hypothesized to underlie impairments in cognitive and functional outcomes, a network analysis 

approach was used to explore the network properties of the structural brain network. This study 

used diffusion-weighted imaging and deterministic tractography techniques to model structural 

brain networks in 38 adult survivors of pediatric brain tumors at least 4.5 years past their 

diagnosis (mean age=22.5 years, 54% female, mean 14.1 years post diagnosis). Nodes were 
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defined using the Automated Labeling Atlas parcellation scheme, and edges were defined as the 

mean FA of streamlines that connected each node pair. Results indicated that global efficiency 

and average clustering coefficient was reduced in survivors compared to healthy peers matched 

by age, gender, handedness, and socioeconomic status. There was also evidence for preferential 

impact to hub regions. Global efficiency and average clustering coefficient was significantly 

correlated with measures of cognitive flexibility and cumulative neurological risk. Further, 

global efficiency mediated differences in cognitive flexibility performance between survivors 

and healthy peers, as well as the relationship between cumulative neurological risk and cognitive 

flexibility performance. These results suggest that graph analytical metrics are sensitive in this 

clinical group and that differences in cognitive flexibility performance can be directly explained 

by properties of the structural network. Future directions include using graph theory metrics in 

longitudinal studies to investigate how properties of structural networks change in the acute and 

chronic stages of injury, exploring how structural networks repair and recover with time or as a 

function of pharmacological or cognitive interventions, and using graph analysis methods on the 

functional connectome to complement our understanding of brain-behavior relationships in adult 

survivors of pediatric brain tumor.    
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