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ABSTRACT 

Random, unpredictable, unstructured stimuli are an everyday part of life. Yet despite this 

breadth of experience and sophisticated statistical learning mechanisms, humans report 

patterning even in stimuli that are paradigmatically random. In two experiments, participants 

evaluated structured and random environments presented in a common statistical learning 

paradigm, the Serial Reaction Time task.  I presented random and specifically nonrandom 

sequences to humans (Experiments 1 and 2) and rhesus macaques (Macaca mulatta, Experiment 

2) to explore the seemingly antagonistic relationship between explicit, intuitive beliefs about 

these sequences and implicit statistical learning of sequence properties. Sequence predictability 

and experience with a given sequence type significantly predicted reaction times only weakly 



and inconsistently across the two experiments. Accordingly, participant choices scarcely 

deviated from chance, and in those rare cases they deviated from chance largely without 

directionality, and were not significantly predicted by either sequence predictability or 

experience with a given sequence type.  
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1 INTRODUCTION  

 Human animals (hereafter, humans) and nonhuman animals (hereafter, animals) process 

sequential information in a variety of contexts. Videos and songs are the compilation of 

sequences of individual images or sounds that combine to form meaningful, distinct wholes. 

Spatial navigation, whether through maze, metropolitan street, or vast foraging environment, is 

the concatenation of a sequence of decisions made at choice points (Tolman, 1938). Language is 

made up of only a noisy stream of speech sounds from which humans, from infancy, 

nevertheless acquire a functional understanding. 

 Humans and animals are also exposed to a subset of sequences that have no inherent 

structure. Such stimuli will be described here as random or unstructured. The concept of 

randomness is notoriously difficult to define and, following Nickerson (2002) and others, the 

term will be used here to describe stimuli produced by a process with specific properties. First, 

the process must produce each potential output with equal probability. A process that outputs 

according to chance, but is not equally likely to output each possible alternative, would be 

probabilistic, but not truly random. Second, each output must be independent of all previous and 

future outputs. Combined, these properties ensure that any given sequence of outputs generated 

by such a process is as likely as any other sequence of outputs generated by this process.  

 Fair coin flips, dice rolls, roulette wheel spins, and lottery drawings are examples of 

processes that approximate the described properties. But examples of paradigmatically random 

processes are not limited to the outputs of games of chance. The typical determination of human 

biological sex is very nearly a random process, with female and male sexes equally likely to be 

conceived and each person’s biological sex independent of that of any other person (Nickerson, 

2002; Scheibehenne, Todd, & Wilke, 2011). Protean predator-prey interactions are often given as 



2 

another, more ecological, example of unstructured patterns of behavior (Neuringer & Jensen, 

2013; Sanabria & Thrailkill, 2009). Consider a hungry shark chasing a seal in the open ocean. 

This chase creates a dynamic in which the optimal response of the seal is to be as unpredictable 

in its zig-zags as possible and, ideally, be perfectly random, to elude the sharp teeth that gnash 

behind it. The shark’s optimal response is to match the proportion of zigs and zags emitted by the 

seal without becoming predictable. Any deviations from randomness in the responses of either 

animal will be exploited, and thus each must be prepared both to discriminate any degree of 

nonrandomness and to produce a random series of outputs. 

 Any sophisticated sequence processing comes first from the detection that meaningful 

relations between stimuli exist. For example, language learning is possible given exposure to 

natural language at a critical developmental period, but will never be facilitated by 

ungrammatical auditory stimuli. The constant challenge to the observer is to infer the properties 

of sequences, and of the sequence-generating process, on the basis of very limited information. 

This challenge has long been of interest to psychologists. 

1.1 Studying Random Events  

Because of the various connotations of the word ‘random,’ two distinctions should be 

made. First, random does not necessarily connote uniqueness. A sequence of outputs from a 

process with the aforementioned properties need not be unusual or unique, so long as this 

sequence was as likely to be generated as any other. A random sequence can appear highly 

structured, and indeed any sequence of sufficient length is extremely likely to appear structured 

for some subset of the sequence (Nickerson, 2002). Similarly, no absolute judgment of 

randomness may be made on the basis of analysis of the outputs alone. There is no proof that a 

sequence of events is random. Even highly unlikely outputs will be produced by a truly random 
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process, and unlikely events never occurring would be a highly salient marker for 

nonrandomness (Paulos, 1989).  

No single, standardized method for assessing the degree to which humans can produce or 

discriminate a random process has been firmly established (for a review, see Bar-Hillel & 

Wagenaar, 1991). Nevertheless, some general types can be identified. One methodology uses 

versions of economic games with mixed strategy equilibria (for examples, see Mookherjee & 

Sopher, 1994; Rapoport & Budescu, 1992; Sanabria & Thrailkill, 2009). Such games are well-

suited for use with both humans and animals, and the apocryphal predator-prey dynamic outlined 

above can be thought of as a naturalistic version of the game Matching Pennies (MP). In such a 

game, two players repeatedly compete in a head-to-head, winner-take-all game. One player wins 

a round by matching the responses of the second player (i.e., the shark bites where the seal is 

predicted to be), while the second player wins by preventing this from happening (i.e., the seal 

eludes the shark).  

Another methodology, discrimination experiments, required participants to determine 

whether a sequence was the result of a random process (e.g., Lopes & Oden, 1987).  For 

example, participants were given 100-item sets of heads and tails outcomes and asked to 

determine whether the set was generated by a random or nonrandom process. In a third, but 

complementary, methodology, production experiments present participants with a set of possible 

stimuli (for example, lefts and rights, heads and tails, ones and zeroes, X’s and O’s, letters of the 

alphabet, etc.; hereafter ‘items’) that they are instructed to produce a random sequence (for an 

example, see Chapanis, 1953).  In such an experiment, a participant might be asked to simulate 

the outcomes of flipping a fair coin 100 times (e.g., Heads-Heads-Tails-Heads-Tails-Tails-

Tails…). Experimenters can then use the objective properties of the sequences that participants 
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discriminated or produced – the relative frequencies of each item, any serial dependencies across 

items - to determine their understanding of randomness (for an example, see Lopes & Oden, 

1987).  

Though there is no test of randomness, experimenters can explore the conditions in which 

participants make the judgment that a sequence is random and probe the participants’ responses 

for evidence that they are not truly approximating the likely outputs of a random sequence. Serial 

dependencies, in which a given item is more or less likely based on the items that come before or 

after it, are often used for this purpose (for an example, see Neuringer, 1986). The relative 

frequencies of each of the alternative stimuli are used as another measure, as are the relative 

frequencies of series of two or more items. 

1.2 Humans and Random Events  

A few conclusions may be drawn from the experimental frameworks outlined above. 

Humans, especially outside of the competitive environment of the MP tasks, are repeatedly 

found to emit a common set of faulty intuitions about random sequences. One such intuition is 

that random sequences will be less likely to repeat the same item than to alternate to another 

item. This is termed the overalternation bias or negative recency effect. Participants are 

consistently found to judge sequences that alternate from one item to other items approximately 

60% to 70% of the time as most random (for example, Bar-Hillel & Wagenaar, 1991; Falk & 

Konold, 1997; Scholl & Greifeneder, 2011; Zhao, Hahn, & Osherson, 2014). Sequences that 

alternate at this rate are frequently reported as more random than are even paradigmatically 

random sequences. And this report does not change when the sequences are presented in 

alternate ways, as in the randomly and nonrandomly generated pixel arrays and clocklike motion 



5 

of the stimuli of Zhao and colleagues (2014) or the checkerboard grids of Falk (1975, 

unpublished dissertation cited in Falk & Konold, 1997).  

The overalternation bias is a more general version of the gambler’s fallacy, the mistaken 

intuition that random sequences are self-correcting with regard to item frequency or other 

qualities (Lyons, Weeks, & Elliott, 2013). For example, a typical expression of the gambler’s 

fallacy states that after a string of coin flips turn up heads, humans will often judge that the 

subsequent flip is more likely than not to be tails. Furthermore, the number of repetitions dictates 

the strength of the bias. For example, a random sequence that produces Tails-Tails-Tails-Tails-

Tails will make a subsequent Heads outcome seem more likely than would a sequence that 

produces Tails-Tails.  

A byproduct of this tendency to alternate is that occasions in which many of the same 

items appear in a sequence consecutively (hereafter ‘runs’) are less frequent, and less extreme, 

than should be expected in a random sequence. The length, frequency, and timing of these runs 

make a unique contribution to judgments of randomness (Sun & Wang, 2010). Run lengths and 

the frequency of alternation between stimuli are correlated, but not perfectly so. Scholl and 

Greifeneder (2011) used participant ratings of the randomness of sequences to determine which 

of the properties was more responsible for participants’ judgments of the randomness of 

sequences. They found that the sequences rated as most random overalternated, but that this 

effect was weaker as the length of any individual run increased. In effect, the ratings suggested 

that overalternation was viewed as evidence of randomness and long runs of a single item were 

viewed as evidence for structure. Combined, the two properties do much to describe the 

characteristics that participants used to judge sequences as random or nonrandom. 
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Explaining the mechanism(s) for why such a bias would exist has proven more 

challenging. One line of inquiry seeks to use the qualities of the individuals who performed the 

randomness perception and production experiments to help explain their outputs. The statistical 

education and training of the participants would seem, at face, to have a large effect on their 

functional understandings of the concept of randomness. However, experiments that have 

compared statistically naïve participants and those with extensive experience with mathematics, 

probability theory, or statistics do not find large differences between the groups (Chapanis, 1995; 

Lopes & Oden, 1987; Nickerson & Butler, 2012). The cognitive capacities and 

psychopathologies of participants are of greater importance. The attention and working memory 

that participants apply to perception and production of random events play a critical role, as 

evidenced by attentional biases towards regularities (Zhao, Al-Aidroos, & Turk-Browne, 2013) 

and the ways participants detect patterns in sequences stored in working memory (Kareev, 

1995a, 1995b, 2000; Kareev, Lieberman, & Lev, 1997). Nonrandom, but not necessarily 

overalternating, sequences are generated by autistic and intellectually disabled participants 

(Williams, Moss, Bradshaw, & Rinehart, 2002), participants with closed-head injuries (Azouvi, 

Jokic, Van Der Linden, Marlier, & Bussel, 1996), and participants afflicted by Parkinson’s 

disease (Brown, Soliveri, & Jahanshahi, 1998), Alzheimer’s disease (Brugger, Monsch, Salmon, 

& Butters, 1996), hemispatial neglect (Loetscher & Brugger, 2009) or alcohol dependency 

(Rosenberg, Weber, Crocq, Duval, & Macher, 1990), and schizophrenia (Rosenberg et al., 1990).  

A classic review of this literature compiled by Tune (1964), and later updated by Brugger 

(1997), listed the numerous factors  that contribute to human randomness perception and 

production and concluded that working memory limitations are the principal determinant of 

participant behavior with random sequences. When working memory was disadvantaged by 
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asking participants to produce random sequences rapidly (Baddeley, 1966) or by increasing the 

weight of task load that participants bear by imposing a concurrent serial recall, semantic 

category generation, digit generation, or fluid intelligence task (Baddeley, Emslie, Kolodny, & 

Duncan, 1998), the sequences that participants produced were less random. On this view, a 

random sequence is one that does not fail the participants’ tests of randomness within the stretch 

of items stored in their working memories (Diener, 1985). These tests are not the formal tests 

described earlier, and largely seem to test that the frequencies of individual items in working 

memory are consistent with what the item frequencies should be for the sequence as a whole. 

The overalternation bias is therefore a specific version of the representativeness heuristic of 

Tversky and Kahneman (1974). Though a sequence that alternates more often than by chance 

and goes on fewer, shorter runs is nonrandom when considered as a whole, the shorter 

subsequences that participants evaluate in working memory are representative in that they are 

very likely to contain equal proportions of the different items and are unlikely to contain any 

long run that would indicate nonrandomness. Interesting supporting evidence comes from 

demonstrations that the “seven-plus-or-minus-two” capacity for short-term memory is in fact a 

sweet spot for the early detection, or lack thereof, of meaningful relationships (Kareev, 1995a, 

1995b, 2000; Kareev et al., 1997). That is, Kareev and colleagues argued on a statistical basis 

that sampling 5 to 9 items is ideal (enough, but not excessive) for swift detection of strong 

correlations in sequences. 

However, participants have the same erroneous beliefs about randomness when 

sequences are perceived in their entirety and working memory need not be engaged to the same 

degree in order to compile the sequence (Falk, 1975; Zhao et al., 2014). A second theoretical 

account of the overalternation bias thus focuses instead on the prospect of encoding sequences 
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into long-term memory. This encoding hypothesis posits that judgments of randomness are made 

when participants are unable to meaningfully encode a sequence into long-term memory (Falk & 

Konold, 1997). Falk and Konold demonstrated that both participants’ subjective ratings of how 

difficult a sequence will be to encode and also their objective memorization performance better 

predicted judgments of randomness than did the objective properties of the sequence. The 

relationship between long-term memory and randomness judgments works in the opposite 

direction as well: Olivola and Oppenheimer (2008) demonstrated that when participants believed 

that a sequence was random, they later remembered it as having fewer runs and greater 

alternation. In synergy with the availability heuristic of Tversky and Kahneman (1974), runs of 

single items are easily chunked together and recalled from memory and therefore their presence 

or absence is disproportionately emphasized in judgments of randomness. Groups of items that 

are more difficult to encode (like those that frequently alternate) are less easily recalled, harder to 

describe, and more likely to be perceived as random. 

Finally, Brugger (1997) offered a cheeky observation as a counterpoint to memory-based 

accounts of randomness understanding: coins and dice have no memory at all, and they are used 

to produce perfectly random stimuli. An alternative, or perhaps supplemental, hypothesis is that 

the overalternation bias is not only an issue of executive control or working memory limitations, 

but also reveals weaknesses in participants’ beliefs about the properties of random events. This 

faulty concept hypothesis is exemplified by individuals’ explicit adherence to the gambler’s 

fallacy, and is part of a much larger family of mistakes that humans make in probabilistic 

scenarios (Falk, 2014; Nickerson, 2004; Tversky & Kahneman, 1974). The word “random” is 

poorly defined, used in a variety of contexts, and highly loaded, such that the mere inclusion of 

the term is enough to influence participants’ memories and perceptions (Nickerson, 2002; 
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Olivola & Oppenheimer, 2008). In all of these tasks, participants were asked, either implicitly or 

explicitly, to express their idea of the concept of randomness. Their failures to be truly random 

may thus reveal less about inadequacies of memory or executive pattern detection and more 

about how poorly they understood what it means for an event to be random in the first place. 

1.3 Randomness Failures in Broader Context 

The specificity of the overalternation bias is curious in light of evidence from animals 

and a growing body of research on statistical learning. 

1.3.1  Animal literature  

 Animals interact with structured sequences of information in many of the same ways as 

humans do (Conway & Christiansen, 2001). From repeated and prolonged experiences in an 

environment, they learn about the relationships between events, including relationships of a 

probabilistic nature. Animals must also deal with unstructured information. If the description of 

protean behaviors described earlier is accurate, animals reckon with sequences that are as close 

to random as can be approximated by other animals (Neuringer & Jensen, 2012; Sanabria & 

Thrailkill, 2009). Indeed, it is not difficult to position many ecological decisions as analogous to 

the choice presented to humans in the discrimination experiments presented earlier (e.g., was the 

process that generated these events random?). An animal that puts itself in a position to learn 

underlying relationships of a structured environment will reap the rewards of this learning. 

Animals in environments with more arcane structure, or no structure at all, will not have access 

to this reward. 

Experimental evidence from the MP design described earlier has demonstrated that 

animals can at least match the variability of their behavior to the level of variability in their 

environments. This involves two processes: ascertainment of the level of variability in the 
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environment and generation of responses that are sufficient to exploit the environment. To 

explore these capabilities, Barraclough, Conroy, and Lee (2004) analyzed the performance of 

rhesus macaques (Macaca mulatta) on an oculomotor MP task. The monkeys’ “competitors” in 

this task were computer-simulated opponents with different properties. One simulation produced 

responses randomly. Another analyzed the animals’ choice histories (from the last 0 to 4 trials), 

tested for sequential dependencies in this subset of trials, and weighted responses accordingly. 

For example, if a significant bias was found in the monkeys’ choices (for example, 80 percent of 

responses were to the right) the simulation chose the opposite option at the same rate to exploit 

this tendency. The final simulation analyzed both the choice history and reward history of the 

animals. Contrary to human performance in MP games, in which the overalternation bias is 

muted but still present (for example, in Rapoport & Budescu, 1992), the monkeys’ responses 

were very nearly optimal for all three simulations. The monkeys’ sequences of responses were 

not random, as an inclination to win-stay, lose-shift was present throughout and only exploited 

by the third simulated opponent. But as the simulations increased in complexity, animals 

matched this variability in kind to remain at the Nash equilibrium for the game. 

Sanabria and Thrailkill (2009) used a MP game with pigeons (Columba livia) in direct 

competition with other pigeons. Each animal in a competitive pair was placed in an operant 

chamber with two response options. Each day, a pigeon was rewarded for either matching the 

responses of the opponent or for choosing the opposite response. Unlike humans and rhesus 

macaques, pigeons demonstrated the opposite bias towards response perseveration. Indeed, this 

bias towards perseveration was to such robust degree that it was included as a parameter of 

models of pigeon MP performance. With regard only to the capacity to generate random 

behaviors, however, pigeons can be exceedingly variable. Experimental environments that 
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systematically reward animals for generating sequences that have not been generated within the 

last n trials can shape pigeons’ responses into a form indistinguishable from the output of a 

random Bernoulli process (for a review, see Neuringer, 2002).  

The capacity to produce highly variable, highly unstructured sequences is latent within 

these animals, and perhaps in humans as well (Neuringer, 1986). At issue is why baseline human 

performance would be so markedly different from that of other species tested on similar tasks 

with regard to the specific overalternation bias. Whereas pigeon and rhesus monkey 

performances on MP tasks were different, the species both do not have an overalternation bias 

and could not be argued to be expressing their erroneous idea of a higher-order concept (as in the 

faulty concept hypothesis of human foibles with random stimuli). At face, the faulty concept 

hypothesis is supported, yet other explanations exist. Perhaps, through difference in mechanism 

or sheer number of trials, the animals received a much more robust opportunity to learn the 

structure (or lack thereof) of their environments than did humans. 

1.3.2  Statistical learning 

Humans, and likely many animal species, implicitly internalize the embedded structures 

of their environments via the mechanism of statistical learning. From repeated exposures to 

sequences that have an embedded structure, these species learn about the regularities present in 

their environments and use this learning adaptively. These regularities can take a number of 

forms. In humans, statistical learning is prominent as a mechanism by which children acquire the 

phonetic and syntactic regularities of their native languages (Kidd, 2012; Saffran, Aslin, & 

Newport, 1996). But it need not only be a mechanism for human language learning. Other 

species – rhesus macaques (Heimbauer, Conway, Christiansen, Beran, & Owren, 2012b), cotton-

top tamarins (Saguinus oedipus, Locurto, Dillon, Collins, Conway, & Cunningham, 2013; 
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Locurto, Fox, & Mazzella, 2015; Locurto, Gagne, & Nutile, 2010), pigeons (Locurto et al., 

2015), and rats (Toro & Trobalón, 2005) – have demonstrated substantive levels of statistical 

learning as well. Furthermore, stimuli presented in other modalities are subject to statistical 

learning (Conway & Christiansen, 2005, 2006). Statistical learning is a general mechanism by 

which humans and nonhumans learn the meaningful structure of events and objects in their 

environments. 

The statistical learning literature reveals a robust ability for humans to learn the 

regularities and patterns of auditory and visual stimuli to which they are repeatedly exposed. 

Critically, these exposures do not require conscious attention nor explicit reward. When 

participants were given no explicit instruction other than to look at a screen, they nevertheless 

implicitly learned the underlying regularities of the stimuli presented onscreen and reported its 

familiarity (Fiser & Aslin, 2002). Moreover, participants learned statistical structure that was 

embedded in background noise even as they concurrently completed a primary task (Saffran, 

Newport, Aslin, Tunick, & Barrueco, 1997). In a series of experiments, Turk-Browne, Jungé, 

and Scholl (2005) demonstrated that statistical learning both is and is not automatic: Some level 

of selective attention is required, but the process is still largely unconscious, passive, and 

implicit. This finding is bolstered by fMRI evidence that suggests that statistical learning occurs 

even without explicit awareness (Turk-Browne, Scholl, Chun, & Johnson, 2009). Parallel 

research with nonhuman primates reveals a similar pattern of results. Locurto and colleagues 

demonstrated statistical learning in cotton-top tamarins even when the animals’ responses were 

divorced from pellet rewards (Locurto et al., 2013) and specific motoric behaviors (Locurto et 

al., 2010). 
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1.4 Randomness and Structure 

Randomness is, in many ways, a very difficult concept for people to comprehend. They 

have pervasive biases about what the properties of randomness are and are not, and maintain 

these biases despite a lifetime of evidence that stimuli like coin flips or dice rolls are exactly as 

paradigmatically random as they are purported to be. In some ways this is unsurprising. Though 

the costs of holding mistaken beliefs about randomness are difficult to quantify, they are unlikely 

to be especially severe (Kac, 1983). Indeed, they may actually be adaptive, and allow for useful, 

early pattern detection in noisy sequences (Kareev, 1995a, 1995b, 2000; Kareev et al., 1997). 

Finally, probability theory is a high-level branch of mathematics and few people, even in 

university samples, would be expected to have a substantive level of exposure to it. Individuals 

are not described as ‘biased’ or even ‘irrational’ for failures to understand other high-level 

concepts in mathematics, so it perhaps makes little sense to fault people for their weak 

understandings of probability theory and randomness (Goldman, 1986). 

But the discrimination that must be made is between structure and a lack of structure in 

the environment, and a review of the statistical learning and randomness literatures reveals 

striking inconsistencies. Though humans and animals have a robust ability to learn exceedingly 

subtle properties of sequences implicitly in statistical learning tasks, they stubbornly maintain 

faulty intuitions about the properties of random sequences when asked to discriminate or produce 

random stimuli. Statistical learning methodologies give participants much greater exposure to 

sequences, and perhaps this explains the difference. Were random stimuli to be presented in this 

mode, with this number of exposures, participants may adaptively use a more correct 

understanding of random sequences.  
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In this pair of experiments, I presented different types of sequences – some that were 

paradigmatically random, some with consistent structure, and some with those properties that 

participants typically report as random (e.g., overalternation, few long runs) – in a common 

statistical learning paradigm. Participants had the ability to choose the type of sequence that they 

would work on for each block of trials. This methodology allowed me to explore humans and 

nonhumans’ ability to find and learn the underlying structures of their environments, and to 

analyze how this learning affects what sequences they chose to exploit. This methodology, and 

its use with both humans and animals, also has implications for the encoding and faulty concept 

hypotheses of randomness failures. 

Wilke and colleagues have used a similar methodology with undergraduate participants, 

community participants with problem or pathological gambling traits, and rhesus macaques 

(Blanchard, Wilke, & Hayden, 2014; Scheibehenne et al., 2011; Wilke, Scheibehenne, 

Gaissmaier, McCanney, & Barrett, 2014). In these studies, participants were given a series of 

choices among simulated slot machines that either produced random outcomes, sequences that 

alternated between outcomes more often than by chance, or sequences that were less likely to 

alternate between outcomes and more likely to go on streaks of a single outcome. In each 

population, participants exhibited a preference for the slot machine that alternated least and 

streaked most. In addition, participants made little distinction between a random slot machine 

and one that alternated more than chance, and in some cases even chose the random machine at a 

higher rate than the overalternating machine. 

The unique contribution of the following experiment was simultaneously to assess 

participant discrimination between random and structured sequences and implicit learning of 

underlying statistical structure in sequences. Unlike in the experiments of Wilke and colleagues, 
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participants received a great deal of experience with all sequence types and responses were 

divorced from specific rewards. Participant learning of the underlying sequence properties was 

assessed on the basis of decreasing response times with experience with structured sequence 

variants. Participant choice behavior was therefore determined by two factors: (1) a subjective 

judgment on the part of the participant of the structure, patterning, ease of responding, or 

predictability of the presented sequences, and/or (2) implicit, statistical learning of the 

underlying sequence properties. This experiment was designed to serve as a novel probe of how 

these two factors interact (see Table 1 for Research Questions and Hypotheses). 

2     EXPERIMENT 1 

2.1 Methods 

2.1.1 Participants and Apparatus 

Thirty-four Georgia State University undergraduate psychology students were invited to 

participate in the study for course credit. Completion of the task took 30 minutes to an hour. This 

research was approved by Georgia State University’s Institutional Review Board. Testing took 

place in laboratory space on the Georgia State University campus. The computer monitor was 

positioned approximately 46 cm from the participant, with the joystick positioned on a table 

immediately in front of the participant. 

2.1.2 Serial Reaction Time task 

The Serial Reaction Time (SRT) task is a relatively simple task that has long been used in 

sequence learning and statistical learning experiments (Hale, 1969; Nissen & Bullemer, 1987). 

Targets appear on a computer screen in multiple locations in succession, and participants must 

rapidly respond to the location of the target. When an underlying structure dictates the locations 

of the targets, participants can learn this structure and respond more quickly to correctly-
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Table 1 Research Questions and Hypotheses 

 Research Question Hypothesis Implication 

1 RQ1: Do participants 

learn the structure of 

sequences presented in 

the mode of SRT tasks? 

H1: Exposure to the task will significantly predict reduced 

reaction times for structured sequence variants relative to those 

of the random sequence. RTs for nonrandom stimuli that do not 

decrease over time relative to RTs for random stimuli will be 

interpreted as evidence that the participants failed to learn the 

sequence, and thwart interpretation of SELECT choice 

behaviors dependent on sequence learning. 

Participants learn the properties of binary 

sequences they experience in SRT tasks, and 

perhaps in other modes of binary sequence 

presentation (e.g., the perception and production 

experiments reviewed above). 

2 RQ2: Do participants act 

on the basis of 

experience in the task by 

distinguishing and 

preferentially choosing 

an explicitly observable 

structure? 

H2: Exposure to the task will significantly predict choices of 

the sequence that is the same each time over a sequence that is 

random. Failure to do so may indicate a lack of preference, or 

lack of motivation to act on preference. 

That organisms would selectively sample from 

more structured stimuli would be a novel 

finding, indicating a preference for structure, 

information content, or predictability of 

sequences. 

3 RQ3: What are the 

relative contributions of  

intuitions about random 

sequences and statistical 

learning of sequence 

properties on human’s 

choices? 

H3: Exposure to the task will significantly predict human 

participants’ choices of the the random sequence over the 

sequence with a statistically embedded, but not explicitly 

observable, structure. Failure to do so may indicate a lack of 

preference, lack of motivation to act on preference, or, in the 

case of preference for the statistically structured sequence, 

indication that implicit statistical learning contributes to explicit 

choice behavior. 

This pattern of responses would indicate that 

sequence choices conform to subjective reports 

of what seem like random sequences despite 

demonstrable learning of the underlying 

structure the nonrandom sequence (H1). 

4 RQ4: Do monkeys share 

humans’ intuitions about 

sequence structure? 

H4: Exposure to the task will significantly predict macaques’ 

preferentially chosing structured sequence types over a random 

sequence. Failure to do so may indicate a lack of preference, 

lack of motivation to act on preference, or, in the case of 

preference for the random sequence, indication that intuitions 

about random sequences contribute even to monkey choice 

behaviors. 

In conformation with the faulty concept 

hypothesis, monkeys’ choices will be made 

strictly according to learning of sequence 

properties, and they will be indifferent to the 

overalternation and lack of runs of the 

statistically structured sequence.  
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predicted targets. Reaction times can be used as an index of the degree to which participants 

have learned the properties of the sequence of targets and of their ability to predict any given 

target. This methodology was employed for its simplicity, its visual and nonverbal nature, and its 

previous application to nonhuman primates (e.g., Heimbauer et al., 2012a). This experiment used 

an SRT task with two possible target locations, consistent with the frequent use of binary 

response options in the randomness literature (for examples, see Nickerson & Butler, 2012; 

Scholl & Greifeneder, 2011; Zhao et al., 2014). Targets appeared on either the left or right of the 

screen according to one of three algorithms: 

1. A random algorithm that dictated target locations pseudorandomly using the 

random.choice() function from the random module of python 2.7. The output is 

considered pseudorandom for its use of the Mersenne Twister as the generator, but can be 

considered random to the human and monkey observers of this experiment (Python 

Software Foundation, n.d.). 

2. A fixed algorithm that dictated target locations absolutely. On each selection of this 

algorithm, the same sequence is presented. This sequence was produced by the author 

using the ‘Coin Flipper’ utility of random.org. 

3. An overalternating algorithm that has specified properties, and thus is structured, but 

that has those properties that humans commonly report of random stimuli. Targets 

generated by this algorithm alternated 65% of the time and were disproportionately 

unlikely to go on runs of more than a few items (for a detailed explanation of this 

algorithm, see Appendix A). 

Participants made joystick deflections in the direction of the target within 2 seconds of 

target onset. To discourage holding the joystick in a single direction (thereby simplifying the 
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task), targets did not appear on the screen so long as the joystick remained depressed in a single 

direction. Deflections of the joystick in the opposite direction of the target did not end the trial, 

but negated joystick responses for 1.5 seconds (and thus sharply decreased the amount of time in 

which a correct deflection could occur). The total trial duration was twice the sequence length, in 

seconds (42 seconds). Failure to deflect the joystick properly within the 2 second response 

window resulted in a blank screen that persisted for the remainder of the trial duration. For 

example, if a participant received a blank screen after 8 seconds of a 21-item sequence, they 

waited 34 seconds before starting a new trial. 

2.1.3 SELECT task 

The SELECT task was originally developed to offer nonhuman primates the opportunity 

to choose the order in which they complete a series of tasks (Perdue, Evans, Washburn, 

Rumbaugh, & Beran, 2014; Washburn, Hopkins, & Rumbaugh, 1991). In this experiment, 

humans were offered a choice among the different algorithms of the SRT task. The SELECT 

menu appeared with two of three symbols signifying the three algorithms— the alchemical 

symbol for sulfur for random sequences, the alchemical symbol for mercury for fixed sequences, 

and the astrological symbol for Jupiter for overalternating sequences (see Figure 1) - in 

counterbalanced locations. Choice of one of three symbols resulted in presentation of SRT 

targets, presented visually as the same symbol that was chosen on the SELECT screen. After the 

completion of this preferred 21 item sequence, the menu reappeared with another selection of 

symbols. To distinguish the choice of the SELECT menu from the iterative responding required 

of the SRT task, presentation of the menu was accompanied by a change in background color of 

the task (see Figure 2). To ensure that even less-preferred algorithms were experienced, the 

SELECT screen also offered a forced choice of only one of the algorithms on 20% of trials. 
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Stimulus           Description 

  

Alchemical symbol for sulfur; 

 

Used in selections and presentations of random sequences. 

 

Alchemical symbol for Mercury; 

 

Used in selections and presentations of fixed sequences. 

 

Astrological symbol for Jupiter; 

 

Used in selections and presentations of overalternating sequences. 

Figure 1. Task Stimuli 

 

 
 

Figure 2. Task appearance. The top image is an example of a SELECT screen with options to 

choose either the fixed (left) or overalternating (right) sequence. The bottom set of images 

illustrates the way the first five stimuli of a fixed sequence would appear onscreen  
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2.2 Results 

In this SRT design, experience may be defined as the number of successful deflections a 

participant had prior to the current exposure or as the total exposures to stimuli a participant's 

program provided. The difference between the two measures is in whether the participant's 

behavior is observed or assumed. A successful deflection constitutes a record that the participant 

observed the stimulus, whereas the count of stimulus transitions also credits the participant with 

gaining information from stimuli to which they did not deflect. The former definition is more 

conservative, and is used for all analyses. 

Increased exposures to the different sequence types did not change participant reaction 

times in meaningfully different ways (see Figure 3). The characteristic shape of the RT curve is 

visible for all three sequence types in the upper plot of Figure 3, with RTs that are relatively high 

in earliest trials yet rapidly asymptote at a lower mean RT. The grand means of participants’ 

mean RTs for the different sequence types were nearly identical overall (fixed = 381 ms, 

overalternating = 383 ms, random = 386 ms). When comparing RTs to stimuli appearing before 

and after the participant's 175th exposure to a sequence type (an approximation of the midpoint of 

the session), participant mean RTs decreased on average by 10 ms for fixed stimuli (SD = 55), 

decreased by 3 ms for overalternating stimuli (SD = 43), and increased by 2 ms for random 

stimuli (SD = 55). These differences represent a negligible change in RT with experience in the 

task. 

Choice behaviors in the SELECT task also did not change in the predicted directions. 

Visualizations of the change in proportion of sequence types chosen at different blocks of 42 

relevant stimulus exposures is presented in Figure 4. In this figure, exposures to both sequences 

presented on a given SELECT screen (for example, both experience with both fixed and random 
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Figure 3. Mean RTs aggregated across participants. The lower plot aggregates sequence exposures into blocks of 42 and includes 

Standard Error bars. Note that due to participant control over how many sequence exposures they received, not all participants are 

included in each aggregation. 
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 Fixed  Random  Overalternating 

 
Figure 4. Aggregated participant choices in different SELECT menus across different levels of 

relevant experience with the task. Blocks are the size of two completed trials (42 stimulus 

exposures). Note that due to participant control over how many sequence exposures they received, 

not all participants are included in each aggregation. 
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sequences) are blocked. Predominance of the fixed sequence (dark blue bar) over alternatives, an 

assertion of Hypothesis 2 and important bellwether for viability of interpretations of Hypothesis 

3, was not observed. To clarify the effect that experience with the different sequence types had 

on choice behaviors and reaction times, mixed-effects models were used. 

2.2.1 SRT modeled 

SRT data were analyzed by fitting a linear mixed-effects model to predict natural log-

transformed reaction times (hereafter, log(RT/ms)) for a trial from the trial's sequence type and 

how much experience a participant previously had with that sequence type. Arbitrary names that 

identified participants were included as random effects in the model to control for predictable 

individual differences of each participant. Mixed-effects modeling techniques are  relatively 

tolerant of discrepancies of numbers of observations, and thus were used to account for the 

disparate numbers of trials for each sequence type that participants completed (given that 

participants had agency over the number and types of trials they experienced). Models were fit 

using the Statsmodels (Seabold & Perktold, 2010) and Pandas (McKinney, 2010) packages for 

Python 2.7 (Python Software Foundation, n. d.).  

The results of the linear mixed-effects model (AIC = 9644.96, df = 16) fit for SRT are 

presented in Table 2. The fixed effects of the fixed sequence type (β = -.006, SE = .007, p = 

.402), the overalternating sequence type (β = .004, SE = .007, p = .609), and the interaction term 

representing the effect of increasing experience with the fixed sequence (β = -.00004, SE = 

.00003, p =.140) were not significant. The effect of greater experience with sequences (β = -

.0002, SE = .00008, p = .008), and the interaction representing the effect of increasing experience 

with the overalternating sequence type (β = -.00006, SE = .00003, p = .020) were significant.  

The coefficient of the significant interaction term of experience in the overalternating  



24 

Table 2. Linear Mixed-Effects Model Fit 

Parameter Β SE p 

Intercept 5.914 .024 <.001 

Experience -.0002 .00008 .008* 

Fixed -.006 .007 .402 

Overalternating .004 .007 .609 

Fixed x Experience -.00004 -.00004 .140 

Overalternating x Experience -.00006 -.00006 .020* 

Notes.*p < .05. The intercept is the grand mean for log(RT/ms) across sequence types. The p 

values are computed from Wald z-tests testing whether the model coeffeicient is significantly 

different from zero. 

 

sequence (bottom plot of Figure 5) can be interpreted to mean that 100 trials of experience with 

the overalternating sequence constitutes a .6% decrease in log(RT/ms). For reference, a .6% 

decrease in the grand mean log(RT/ms) in these data, 5.914 (an RT of approximately 370 ms), 

would constitute a 23 ms decrease in RT. The effect of the nonsignificant interaction term of 

experience in fixed sequences (top plot of Figure 5) would constitute a .4% decrease in 

log(RT/ms) for 100 trials of experience in the fixed sequence, a difference from the grand mean 

of approximately 9 ms. The interaction term of experience in random sequences (middle plot of 

Figure 5) would constitute 1% increase in log(RT/ms) for 100 trials of experience in the random 

sequence, a difference from the grand mean of approximately 22 ms. Figure 6 illustrates the 

overall fit of the estimations of model to the data. The relatively normal distribution of the 

deviations of predicted values from observed around zero indicates a relatively clean fit of model 

to data. The discrepancy between model and data at higher numbers of sequence exposures (see  
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Figure 5. Averaged observed log(RT/ms) for humans across increasing blocks of experience with 

the fixed sequence (top), random sequence (middle), and overalternating sequence (bottom). Each 

block was equal to two full sequences, 42 stimulus exposures. 
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Figure 6 Visualization of model fit: histograms of frequency of deviations of predicted log(RT/ms) 

from observed at different levels of sequence experience in the the fixed sequence (top), random 

sequence (middle), and overalternating sequence (bottom). Positive values indicate that predicted 

values were higher than observed values. 
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the right side of plots of Figure 5) are likely the result of only a subset of participants 

experiencing these trials, and of the modeling procedure assigning greater weight to earlier trials 

with higher participant numbers. Visualizations of aggregations of the estimated random effects 

parameters are presented in Figure 7. These histograms illustrate the degree to which 

individualized parameter estimates for each participant improved model fit. The seemingly 

bimodal distribution around zero for the estimated random effect of experience (second plot from 

top) illustrates that one subset of participants’ RTs increased with experience, while another 

subset of participants’ RTs decreased with experience. This parameter estimate might capture a 

conflict between learning of sequence properties and boredom due to extensive time working on 

the task, an idea that will be considered further in the General Discussion. 

2.2.2 SELECT modeled 

SELECT data were analyzed by fitting a generalized linear mixed-effects model to 

predict binomial participant choices of the more structured option from the options available on 

the menu and the amount of experience the participant had with the options available on that 

SELECT menu. For example, a participant choosing the structured option (say, the fixed 

sequence) was modeled by what the less structured alternative was (say, the random sequence), 

and the total number of successful deflections the participant had with fixed and random 

sequences. As with the SRT data, arbitrary participant identifiers were included as random 

effects in the model to control for any individual differences across participants. The coefficients 

of greatest interest, the interactions effect of greater experience that is relevant to a SELECT 

menu on choices in that menu, were not significant (fixed v random menu x experience: β = 

.0004, SE = .0004, p = .335; fixed v overalternating menu x experience: β = .0002, SE = .0004, p 

= .626). No variable significantly predicted the log odds of choosing the structured or  
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Figure 7. Histograms of individual participants’ parameter estimations for the grand mean 

log(RT/ms) (top), the effect of increasing experience with the different conditions (second from top), 

the effect of the sequence being fixed (second from bottom), and the effect of the sequence 

overalternating (bottom). 
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unstructured option on the SELECT menu. 

2.3 Discussion 

Participants did not show any evidence of change in sequence choice behaviors across 

experience in the task, even as reaction times subtly decreased with greater experience in the 

overalternating sequence and increased with greater experience in the random sequence. This 

result may suggest an indifference on the part of the participants to the differences in relative 

information content, statistical regularities, and potential completion speed across the different 

sequence types. 

Some considerations burden this interpretation. A statistically observable decrease in 

reaction time to stimuli from the fixed sequence, a sequence that is identical every time, was an 

assumption of task design that was not evidenced in these data. The statistically significant effect 

that was observed, of decrease in time to complete the overalternating sequence, was slight. 

3     EXPERIMENT 2 

 In an effort to make the features of the fixed sequence more explicit, a new sample of 

human participants were recruited for a second experiment. In this experiment, the sequences 

were shortened from 21 to 9 (with the trial duration shortened from 42 sec to 18 sec, 

accordingly). Shortening the sequences yielded several advantages. The working memory load to 

encode the sequence properties was much less substantial, with greater proportions of the 

sequences able to be tracked at once and more frequent breaks (through more frequent intertrial 

intervals (ITIs) and SELECT menu presentations). Participants could make far more choices on 

the SELECT menus, a relevant dimension if choice preferences are the result of mapping choices 

to sequence outcomes rather than associative experience to stimuli. More SELECT menu choices 

also yielded more data, and more opportunities for changes in choice behavior to emerge and be 
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observed. Finally, 9 item sequences were a more appropriate sequence length for completion by 

the rhesus monkeys. 

3.1 Methods 

3.1.1 Participants 

Twenty-nine Georgia State University undergraduate psychology students participated in 

the study for course credit. Ethical considerations and apparatus were identical to those of 

Experiment 1.  

In addition, five rhesus macaques were tested in their home enclosures at the Language 

Research Center of Georgia State University. The monkeys used a version of the Language 

Research Center – Computerized Testing Apparatus to make responses (Richardson, Washburn, 

Hopkins, Savage-Rumbaugh, & Rumbaugh, 1990). Stimuli were presented on a computer 

monitor in front of the animals’ home enclosures and responses were made using joysticks 

mounted to the front of the animals’ home enclosures. Food rewards of 45 mg banana-flavored 

fruit pellets were dispensed by a pellet dispenser. This population of animals had extensive 

experience with use of this apparatus to complete a variety of different computer tasks including 

serialized economic games (e.g., Parrish, Brosnan, Wilson, & Beran, 2014), a computerized 

Monty Hall problem (Klein, Evans, Schultz, & Beran, 2012), numerical judgments (e.g., Harris, 

Gulledge, Beran, & Washburn, 2010), and, of particular note, a Serial Reaction Time task 

(Heimbauer et al., 2012a and Heimbauer et al., 2012b). In the work by Heimbauer and 

colleagues, a subset of this population of animals demonstrated the ability to complete familiar 

sequences up to 8 items long more quickly than random sequences, and to complete grammatical 

4, 6, and 8 item sequences more quickly than control sequences. 
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3.1.2 Training 

Because the monkeys were less accustomed to tasks in which many responses are 

required before reinforcement, only some animals had previously experienced an SRT task, and 

those animals that had previous experience with an SRT task had not seen the task in several 

years, all monkeys were first presented with a training version of the task. In this version of the 

task, the random algorithm was used to generate one item sequences. If seven out of an animal’s 

previous ten trials were successfully completed, the sequence length increased to three. Each 

subsequent time that this criterion was met, the sequence length increased by three, up to a 

maximum of 21. Once an animal successfully completed 15 trials of this length in total, it was 

transitioned to the full version of the task. If seven out of an animal's previous ten trials were not 

successfully completed, the sequence length decreased by three. After 15 repetitions of the 

sequence length incrementing to a number, then decrementing from it, the animal was considered 

to be at asymptote and was transitioned to the full version of the task at the highest number of 

deflections to reward at which it established proficiency. This criterion was established in order 

to limit any exposure to the task above and beyond what was necessary for training, and prevent 

overtraining with an exclusively random version of the task. 

Completion of a sequence through consecutive, timely deflections rewarded monkeys 

with a number of 45 mg pellet rewards commensurate with the length of the sequence completed 

(sequence lengths of 1 and 3 yield 1 pellet; lengths of 6 and 9 yield 2 pellets; lengths of 12 and 

15 yield 3 pellets; lengths 18 and 21 yield 4 pellets), and an ITI equal to the difference between 

the maximum sequence length-times-two and the time it took to finish the sequence. For 

example, completing a 21-item sequence in 35 seconds would yield 4 pellets and an ITI of 7 

seconds. 
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3.1.3 Training results 

This criterion for establishing asymptotic performance for the monkeys was excessively 

strict. No monkey was able to pass criteria above a sequence length of one before being judged 

as asymptotic. For this reason, the cap for asymptote was quadrupled, to 60 repetitions of the the 

animal incrementing to a new sequence length, then decrementing from it. To continue to limit 

excessive experience with the training version of the task, monkeys were automatically moved to 

the full version of the task once proficiency was established with sequences of length six. Three 

pellets were awarded for completing six item sequences, two pellets for three item sequences, 

and one pellet for one item sequences. Some descriptive information on each monkey's training 

history is presented in Table 3 and in Appendix B. All monkeys passed these new training 

criteria, and completed tens of thousands of joystick deflections in the task. 

3.2 Results 

Human RTs decreased in a similar way as in Experiment 1, with high RTs on initial trials 

sharply decreasing to asymptote (see the upper plot of Figure 8). Grand means of individual 

participants’ mean RTs for fixed, overalternating, and random sequences were nearly identical 

(413 ms, 409 ms, and 416 ms, respectively). The change in mean RTs to fixed stimuli from first 

half of sequence exposures (100 sequence exposures was the approximate midpoint in this 

dataset) to the second half doubled from Experiment 1, to a 20 ms decrease (SD = 49). Changes 

in mean RTs across the two halve s of the experiment for overalternating stimuli (mean increase 

of 1 ms, SD = 51) and random stimuli (mean  increase of 7 ms, SD = 35 ms) were similar to 

those of Experiment 1. 

Unlike the RTs of human participants in Experiments 1 and 2, monkey RTs were volatile, 

even when aggregated across 1000 or more stimulus exposures. Figure 9 shows the five  
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Table 3. Training Summary 

Monkey Training 

Sessions 

Experimental Stimulus Exposures 

Fixed Overalternating Random Total 

Hank 25  18708 13888 29089 61685 

Murph 8 31856 28204 16640 76700 

Lou 6 22300 22886 24462 69648 

Chewie 9 31573 34342 33903 99818 

Obi 7 24106 20439 20088 64633 
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Figure 8. Mean RTs aggregated across human participants. The lower plot aggregates sequence exposures into blocks of 27 and includes 

Standard Error bars. Note that due to participant agency over how many sequence exposures they received, not all participants are 

included in each aggregation. 
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Figure 9. Mean RTs to stimuli from fixed (top), random (middle), and overalternating (bottom) 

sequence types for each monkey. The lower plot aggregates sequence exposures into blocks of 1000 

stimulus exposures. 
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monkeys’ mean RTs aggregated across 1000-trial exposures to stimuli from the fixed sequence 

(top plot), random sequence (middle plot), and overalternating sequence (bottom plot). From one 

block of 1000 stimulus exposures to another, monkeys’ mean RTs were observed to change by as 

much as 100 ms. Surprisingly, monkeys’ RTs were also much slower than those of human 

participants. With the exception of the monkey Chewie, the monkeys’ RTs to the stimuli were 

nearly 200 ms slower than those of human participants, on average. Like those of human 

participants, the monkeys’ RTs were relatively unaffected by the embedded structures of the 

fixed and overalternating sequences (Figure 10). Instead, RTs for the stimuli of the different 

sequences can largely be understood as deviations around the mean RT of an individual animal 

(for example, the relatively stable RT of approximately 450 ms of Chewie in the uppermost 

plot). 

Figures 11 through 16 capture the choice behaviors of the human participants and 

individual monkeys in the SELECT task of Experiment 2. As in Experiment 1, stable sequence 

preferences were not observed in aggregated human data. Three out of five monkeys also did not 

exhibit stable changes in choice behavior. Monkey Hank (Figure 12) reliably chose the random 

sequence. Monkey Murph (Figure 13) chose the fixed sequence over the random sequence, the 

fixed sequence over the overalternating sequence, and the overalternating sequence over the 

random sequence.  

3.2.1 SRT modeled.  

The overall analysis plan remained the same as in Experiment 1. Two additional potential 

predictors were included in the linear mixed-effects model for SRT data. One was species, 

included as a fixed effect in the model. The other was a measure of overall experience with the 

task, as the monkeys' high trial numbers made such a predictor more informative. The results  
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Figure 10. The mean RT plots from Figure 9, rearranged to capture effect of sequence type on RT 

for each monkey. From top: Hank, Murph, Lou, Chewie, Obi 
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 Fixed  Random  Overalternating 

 
Figure 11. Aggregated human participant choices in different SELECT menus across different 

levels of relevant experience with the task. Blocks are of 27 stimulus exposures. 
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 Fixed  Random  Overalternating 

 
Figure 12. Aggregated choices in different SELECT menus across different levels of relevant 

experience with the task for monkey Hank. Blocks are of 1000 stimulus exposures. 
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 Fixed  Random  Overalternating 

 
Figure 13. Aggregated choices in different SELECT menus across different levels of relevant 

experience with the task for monkey Murph. Blocks are of 1000 stimulus exposures. 
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 Fixed  Random  Overalternating 

 
Figure 14. Aggregated choices in different SELECT menus across different levels of relevant 

experience with the task for monkey Lou. Blocks are of 1000 stimulus exposures. 
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 Fixed  Random  Overalternating 

 
Figure 15. Aggregated choices in different SELECT menus across different levels of relevant 

experience with the task for monkey Chewie. Blocks are of 1000 stimulus exposures. 
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 Fixed  Random  Overalternating 

 
Figure 16. Aggregated choices in different SELECT menus across different levels of relevant 

experience with the task for monkey Obi. Blocks are of 1000 stimulus exposures. 
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of the linear mixed-effects model (AIC = 81790.641, df = 29) fit for the SRT data are presented 

in Table 4. The fixed effect of species was significant (β = -.18, SE = .030, p < .001), such that 

humans' log(RT/ms) were approximately 18% faster than monkeys (a difference of 

approximately 102 ms). The three-way interaction between species, the fixed trial type, and 

experience with the fixed trial type was significant (β = -.00009, SE = .00002, p = .005) such that 

human reaction times decreased in the fixed sequence with experience in the task whereas 

monkeys’ did not (see Figures 17 and 18).  In general, the model underestimated human RTs and 

overestimated monkey RTs. This is likely due to both the large imbalance in the number of trials 

monkeys completed relative to human participants and the difference in mean RTs for humans 

and monkeys. To better capture the joint effects of species and individual differences, 

aggregations of the estimated random effects parameters are presented in Figures 19 and 20. 

Certain parameters had a disproportionate effect on the RT of certain individuals (for example, 

the RTs of monkey Lou on the bottom plot of Figure 20 were best predicted by lower estimates 

for the coefficient of the effect of experience in the task).  But in both species, individual 

parameter estimates were distributed around zero such that the coefficient of a predictor, for 

example, experience in the task, might be positive for one participant and negative for another. 

As in Experiment 1, genuine experimental effects may be obscured by conflict between learning 

and deleterious experience effects. 

3.2.2 SELECT modeled.  

 The human and monkey data were modeled separately due to constraints associated with 

the great difference in experience with the menus for the monkeys and humans. Human choice 

behavior did not significantly change in any menu in interaction with increased experience 

relevant to that menu (fixed v random menu x experience: B = .0007, SE = .0005, p =.176; fixed  
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Table 4. Linear Mixed-Effects Model Fit 

Parameter β SE p 

Intercept 6.138 .041 >.001* 

Sequence Experience -.001 .027 .970 

Overall Experience -.0002 .025 .992 

Fixed .013 .032 .693 

Overalternating -.001 .033 .965 

Human -.180 .041 <.001* 

Fixed x Sequence Experience -.0001 .00003 <.001* 

Overalternating x Sequence 

Experience 

-.00003 .00003 .210 

Human x Sequence Experience -.001 .027 .970 

Fixed x Sequence Experience 

for Humans 

-.0001 .00003 <.001* 

Overalternating x Sequence 

Experience for Humans 

-.00003 .00003 .213 

Notes.*p < .05. The intercept is the grand mean for log(RT/ms) across sequence types. The p 

values are computed from Wald z-tests testing whether the model coefficient is significantly 

different from zero. 
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Figure 17. Averaged observed log(RT/ms) for humans across increasing blocks of experience with 

the fixed sequence (top), random sequence (middle), and overalternating sequence (bottom). Each 

block was equal to two full sequences, 18 stimulus exposures. 
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Figure 18. Averaged observed log(RT/ms) for monkeys across increasing blocks of experience with 

the fixed sequence (top), random sequence (middle), and overalternating sequence (bottom). Each 

block was equal to 50 full sequences, 300 stimulus exposures. 
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Figure 19. Histograms of frequency of deviations of individual human participants’ parameter 

estimations from overall fixed effect parameter estimation for the grand mean log(RT/ms) (top-

left), the effect of increasing experience with the different conditions (top-right), the effect of the 

sequence being fixed (middle-left), the effect of the sequence overalternating (middle-right), and the 

effect of increasing experience in the task across conditions (bottom). 
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Figure 20. Individual monkeys’ parameter estimations for the grand mean log(RT/ms) (top-left), the effect of increasing experience with 

the different conditions (top-right), the effect of the sequence being fixed (middle-left), the effect of the sequence overalternating (middle-

right), and the effect of increasing experience in the task across conditions (bottom). 
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v overalternating menu x experience: B = -.0008, SE = .0005, p = .092). Monkey choice 

behavior significantly changed in the fixed v random menu (B = -.00004, SE = .000008, p < 

.001) but not in the fixed v overalternating menu (B = -.000003, SE = .000008, p = .668).  

3.3 Discussion 

As in Experiment 1, the data revealed few meaningful effects of learning in the SRT task 

or choice behavior in the SELECT task with increasing task experience. The monkeys, with 

hundreds of times the task experience of the human participants, failed to demonstrate either a 

meaningful shift in choice behaviors or mastery of the structured sequences of the SRT task. The 

methodological changes from Experiment 1 to Experiment 2 were effective in concentrating 

human participant’s learning of the fixed sequence. Human participants RTs to fixed stimuli 

decreased across exposures to these stimuli. Yet choice behaviors were not observed to change in 

concert with decreasing RTs, and Experiment 2 failed to replicate the decrease in RTs for 

overalternating stimuli that was observed in Experiment 1. 

4 GENERAL DISCUSSION 

 Across two experiments and two species, the changes in RTs to structured stimuli that 

were predicted in Hypothesis 1 were observed only inconsistently. Experiment 1 demonstrated a 

change in RT to overalternating stimuli only, whereas Experiment 2 demonstrated a change in 

RT to fixed stimuli only, and only in humans. This null result for Hypothesis 1 thwarts 

interpretations of the choice behaviors of the humans and monkeys that are relevant to 

Hypotheses 2, 3, and 4.  

 The inconsistency of significant change in RT to fixed or overalternating stimuli can be 

understood as a consequence of aspects of the experimental design. In order to maximize ability 

to interpret a change in choice behavior as a specific response to sequence properties, trial 
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durations were constant within sessions. This means that for human participants, task 

performance, whether in terms of time to complete a trial or in trial success or failure, was not 

incentivized. The fairly monotonous rhythm of the SRT task perhaps compounded motivational 

issues by making participants more keenly aware of the lack of incentives for participating 

actively. In order to preserve comparisons with a literature on randomness perception that has 

long focused on binary outcomes, a binary version of SRT task was used. But this use of only 

two responses might have made learning fixed and overalternating sequences more difficult for 

humans by burdening short-term and working memory systems with many associations linked to 

only two response items (i.e., a network of associative interference from the constant acquisition 

of more transitions associated with, say, the left response). 

 Observable effects of these variations to task parameters and incentive structure are 

perhaps evidenced in comparisons between the different experiments and species of this 

manuscript, and in comparisons with previous research. In Experiment 1, participants completed 

21 item sequences approximately 62% of the time. In Experiment 2, participants completed 9 

item sequences approximately 72% of the time. Non-completion of sequences should not have 

made a meaningful difference to data analyses, but may have contributed to participant’s lack of 

learning of the transitional probabilities embedded in the sequences. For example, a participant 

who saw an average of three items in each sequence responded to a very different corpus of 

stimulus regularities than did a participant who responded to the full breadth of each sequence. 

Moreover, a lack of motivation to complete the task as designed may have incentivized exploring 

the task parameters in unknown ways. One observed example of this might be the unusual 

propensity of participants to “select” the blank space of the SELECT screen on forced trials. 
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 Monkeys, however, received pellet rewards for successful task completion and were thus 

suitably incentivized on at least this dimension of task performance. With this incentive in place, 

the animals completed 88% of their 6-item sequences overall. However, the monkeys’ mean RT 

of 572 ms was substantially slower than that of humans in both Experiment 1 (mean RT: 387 ms) 

and Experiment 2 (mean RT: 404 ms). Were the trial durations to be unlocked so that faster 

sequence completions increased the overall rate of reward, the animals might be suitably 

incentivized to demonstrate the effect of learning that is typically observed in SRT and statistical 

learning designs (e.g., Heimbauer et al., 2012a). Unlocking trial durations would at least allow 

for interpretation of Hypothesis 1, even if trends in the SELECT data would be much less 

valuable because they may be the result of task parameters other than the properties of the 

sequence (overall reward rate, latency between choice behavior and reward, etc.).  

 In the previous work of Heimbauer and colleagues (2012a), two of the monkeys from 

Experiment 2 (Obi and Lou) and one additional animal (Luke) demonstrated faster responding 

for sequences that were the same each time (as in the fixed sequences of this experiment) than 

for random sequences. The difference in results of those experiments and Experiment 2 of this 

manuscript is notable for a few reasons (see Figures 16, 17, and 18). In the Heimbauer et al. 

(2012a) experiments, ITIs were constant and did not titrate up and down in order to keep trial 

duration constant. This methodological difference, embedded in a largely equivalent SRT 

procedure with the same population of monkeys, acts as experimental evidence that the locked 

trial duration of the experiments presented here negated some part of the predicted effect of 

sequence learning. The mean RTs of the individual animals are also noteworthy. Despite these 

animals receiving fewer pellets for sequence completion and responding to stimuli in four 

directions (up, down, left, right) rather than the two directions (left, right) of this manuscript,  
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Figure 21. Mean RTs for two monkeys from this manuscript in a previous SRT task by Heimbauer et al. (2012a). Animals completed 8 

item sequences of fixed (repeating) significantly more quickly than random (randomized) stimuli at each of the 8 stimulus positions. This 

effect was present in both the animals' final 10 sessions and in the experiment overall 

  



54 

  

  

 

 

: Fixed Sequence 

 

: Random Sequence 

Figure 22. Mean RTs to different sequence positions for the monkeys from Experiment 2 in their final 5 sessions. Clockwise from top-left: 

Obi, Lou, Chewie, Hank, Murph 
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: Fixed Sequence 

 

: Random Sequence 

Figure 23. Mean RTs to different sequence positions for the monkeys from Experiment 2 across all sessions. Clockwise from top-left: Obi, 

Lou, Chewie, Hank, Murph 
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their mean RTs within each session were, without exception, below the mean RT for monkeys in 

Experiment 2.  

In the works of Wilke and colleagues (2014) reviewed previously, human participants’ 

and rhesus macaques’ choice behaviors changed in response to experience with sequences. 

Specifically, participants preferentially chose sequences that alternated least and streaked most. 

The absence of this effect in both Experiments 1 and 2 is unexpected, and perhaps another 

byproduct from these experiments' constant trial durations. Without set trial durations 

participants could seek to maximize rewards through strategic decision-making on the SELECT 

task, and the choice behaviors observed by Wilke and colleagues would likely re-emerge. 

Nevertheless, a unique contribution of Experiments 1 and 2 is to nuance one potential conclusion 

of the work of Wilke and colleagues. One way of understanding the findings of those researchers 

is to conclude that specific sequence properties elicit specific decision behaviors. For example, 

mere observation of overalternating (clumpy) probabilistic environments elicit behaviors that 

seek more of such environments. But observation alone, without differential feedback or reward 

structures, was not sufficient to change choice behaviors of the participants of Experiments 1 and 

2. Other associative cues and other learning is probably required for the previously reported 

shifts in choice behaviors. 

Previous research has done much to explore the ways in which humans and animals 

interact with probabilistic information, make choices in probabilistic environments, and make 

explicit and implicit judgments about the probabilistic structures with which their environments 

are laden. The present pair of experiments was designed to try to unify two separate bodies of 

this research: that of how humans come to make judgments about the relative randomness and 

nonrandomness of sequences and that of the powerful statistical learning mechanism through 
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which sequence properties are implicitly learned. To make that unification, however, design 

elements were required that cannibalized the well-established effects that were to be paired. Most 

notably, the decision to make trial duration constant probably did much to limit any 

demonstration of learning or development of change in choice behaviors. Without constant trial 

durations, the stated interpretations of Hypotheses 2, 3, and 4 become fraught with alternative 

explanations. However, with constant trial durations, Hypotheses 2, 3, and 4 are evidently 

uninterpretable from the outset.  

 A parallel design could unlock trial durations, and reward humans for sequence 

completions with small monetary compensation. This could provide evidence for sequence 

learning in sequences of binary stimuli, a goal of Hypothesis 1. This design would also be akin to 

a replication and extension of the work of Wilke and colleagues, in that a correlation between 

sequence properties and choice behavior could be established (with the added component of 

having a measure of learning of sequence properties to accompany the correlation) (Blanchard, 

Wilke, & Hayden, 2014; Scheibehenne et al., 2011; Wilke et al., 2014). This design, perhaps 

with a sequence entropy measure to synthesize the information content a participant received 

more minutely, might offer a way forward for answering this theoretically interesting question of 

human and animal cognition. 
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APPENDICES  

Appendix A: Sequence generation procedure for overalternating sequences 

The overalternating sequences were designed to have a specified set of properties that 

serve both to fulfill previously-documented expectations that humans have of random sequences 

and to have a consistent internal structure: 

 

1. The first item in any sequence is [pseudo]randomly generated. 

2. All four-item tuples are tested for three kinds of apparent serial dependencies: 

a. All four items are identical. In this case, the next item generated will always be 

different from the previous four. 

b. Each item of the four is different from both the one preceding and succeeding it. 

In this case, this apparent symmetry will be corrected by appending a fifth item that is 

identical to the fourth. 

c. The four items are the concatenation of two runs of the same item twice. In this 

case, the next item appended to the sequence will be the same as the fourth item of 

the tuple. 

3. Any item that is not the first, and not following one of the corrected serial dependencies, 

alternates from the identity of the previous item 83% of the time. This number is used to 

preserve the global 65% alternation rate of the algorithm. 
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Appendix B: Training progress for each Rhesus macaque 

Plots are for Hank, Murph, Lou, Chewie, and Obi, respectively. Completion rates are the 

rates at which monkeys completed sequences that were 1 item long (blue bar), 3 items long 

(orange bar), 6 items long (green bar), or 9 items long (red bar).  
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