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Nonproteolytic Roles of 19S ATPases in Transcription of
CIITApIV Genes
Nagini Maganti1, Tomika D. Moody1, Agnieszka D. Truax1, Meghna Thakkar1, Alexander M. Spring2,

Markus W. Germann2, Susanna F. Greer1*

1Graduate Program in Cell Biology and Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America, 2Department of

Chemistry, Georgia State University, Atlanta, Georgia, United States of America

Abstract

Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have
demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones,
and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome
influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities.
Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1,
S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to
induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with
elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the
generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA
mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene
expression and indicate roles for these ATPases in promoting transcription processes.
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Introduction

Each stage in gene expression involves many proteins that must

assemble and disassemble at the right time and place and in the

correct order and abundance. While the mechanisms by which

cells regulate the location, timing, and amount of proteins involved

in gene expression remain unclear, recent observations have linked

the 26S proteasome, an essential regulator of protein degradation,

to several stages of gene expression. The 26S proteasome in

mammalian cells is a 2.5 MDa multi-protein complex comprised

of a 19S regulatory particle (RP) and a 20S proteolytic core [1]

each of which exists independently in both the nucleus and

cytoplasm [2]. The 19S RP is further divided into two parts: a lid

and a base. The lid is composed of eight non-ATPase subunits that

are required for protein degradation [1,3,4]. The base of the 19S

contains six ATPases, representing three heterodimeric pairs (Sug1

and S6b, S7 and S4, and S6a and S10b), which belong to the

ATPases associated with a variety of cellular activities (AAA)

family. The base also contains four non-ATPase subunits: S2, S1,

S5a, and S5b [3,5–9]. The 20S catalytic core of the proteasome is

a 700 kDa cylinder that consists of four stacked rings, with each

ring containing seven a and b subunits [3,4]. The base ATPases

contain a C-terminal hydrophobic tyrosine X motif that docks into

the pockets of the a rings of the 20S [10]. In the presence of ATP,

the 19S regulatory particle associates with the 20S catalytic core

on both sides to form the 26S proteasome, allowing for the

recognition of polyubiquitinated substrates marked for degrada-

tion [4,11]. The 19S regulatory particle recognizes the ubiquitin

chains on targeted proteins, cleaves the chains, unfolds the protein,

and directs the unfolded protein to the 20S core for degradation

[4,12] (Figure 1). Accumulating evidence suggests the 19S

proteasome not only recognizes ubiquitinated substrates for

proteolysis, but also is linked to gene transcription in numerous

different contexts, including mRNA elongation in yeast and

mammalian cells [13–15].

We detail here non-proteolytic involvement of the 19S ATPases

in regulating gene expression from an immunologically important

mammalian promoter, the Class II Transactivator (CIITA) which

is the master regulator of Major Histocompatibility class II (MHC

II) genes [16]. CIITA is expressed constitutively on antigen

presenting cells, and is inducibly expressed on all nucleated cells

upon stimulation with the inflammatory cytokine interferon

gamma (IFN-c) [17,18]. CIITA-driven MHC II molecules play

critical roles in activating adaptive immune responses by binding

and presenting exogenously derived antigenic peptides to CD4+ T

lymphocytes [16]. MHC II deficiencies lead to the development of

Bare Lymphocyte Syndrome (BLS) [19] and Severe Combined

Immune Deficiency (SCID) [20] while overexpression of MHC II

is associated with the development of autoimmune disease [21].

The presentation of tumor cell antigens by MHC II molecules is

critical in the detection of newly formed tumors [22,23]. Because

MHC II molecules play these critical roles in the activation of

adaptive immune responses, and since deregulation of MHC II
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has such dire consequences, MHC II expression is tightly

regulated, primarily at the level of transcription by CIITA [24].

Expression of CIITA is regulated in a cell specific manner by

four distinct promoters: pI, pII, pIII, and pIV [25]. CIITA

expression is induced at pIV when IFN-c binds to the INF-c
surface receptor [26–28]. In addition to promoting the binding of

transcription factors to pIV, IFN-c also induces acetylation of

histones, which loosens the chromatin structure and increases the

accessibility of CIITApIV [29,30]. Following IFN-c stimulation, a

large, ubiquitously expressed multi-protein enhanceosome com-

plex, consisting of Regulatory Factor X (RFX), Nuclear Factor Y

(NF-Y), and cAMP Response Element Binding (CREB) [31] binds

the MHC II proximal promoter and recruits newly expressed

CIITA [16,19]. Once bound to the MHC II enhanceosome,

CIITA stabilizes the enhanceosome complex and recruits basal

transcription components and RNA Polymerase II (Pol II) [25,32–

34].

We recently identified novel roles of the 19S ATPases in

regulating acetylation and methylation of histones H3 and H4 at

CIITApIV and the MHC II promoter [35–38]. Following IFN-c
stimulation, the 19S ATPases bind to the MHC II and CIITApIV

promoters. Diminished expression of 19S ATPases inhibits MHC

II and CIITApIV promoter histone acetylation and co-factor

binding [36,37], enhances suppressive histone H3 lysine 27

trimethylation [36], and results in repression of transcription

[38]. Following chromatin activation by histone modifying

enzymes, activator and activator complexes must be recruited to

the promoter regions of target genes. To this end, in the absence of

19S ATPases, transcription factor recruitment to CIITApIV and

to the MHC II promoter is also dramatically reduced [7,35–37].

Despite growing understanding of the importance of the

proteasome in mammalian gene expression, roles for the

proteasome in the various stages of transcription remain unclear.

We demonstrate here the 19S ATPases have critical, non-

proteolytic roles in the regulation of early and intermediate stages

of transcription at CIITApIV. The 19S ATPases associate with the

CIITApIV proximal promoter, participate in RNA Pol II

recruitment, and move into coding regions where they may

regulate elongation by their interaction with both inactive and

active forms of elongation factor PTEF-b. Depletion of 19S

ATPases Sug1, S7, or S6a by siRNA abrogates CIITApIV

transcription, with increasing impact on longer transcripts. The

19S ATPases also associate with Ser5p-RNA pol II and their

knockdown negatively impacts the recruitment of RNA pol II to

CIITA pIV. Together, our studies suggest the 19S ATPases are

intimately involved in transcription of the critical adaptive

immune gene CIITA.

Materials and Methods

Cell Culture
HeLa cells (human epithelial) from ATCC (Manassas, VA) were

cultured using high-glucose Dulbecco modified Eagle (DMEM)

medium (Mediatech Inc., Herndon, VA) supplemented with 10%

fetal bovine serum, 5 mM penicillin-streptomycin, and 5 mM L-

glutamine. The cells were maintained at 37uC with 5% CO2.

Figure 1. The 26S proteasome is composed of a 20S proteolytic core capped on one or both ends by 19S regulatory particle. The 20S
core is a hollow cylindrical structure composed of two heptameric rings of a-subunits and two heptameric rings of b-subunits. The 19S regulatory
particle is composed of a base and lid component. The lid component consists of nine non-ATPase subunits and the base is composed of six ATPases
(S7, S4, S6a, S10b, Sug1 and S6b) and three non-ATPases (S1, S2, and S5b). Polyubiquitinated proteins are recognized, deubiquitinated, and unfolded
by the 19S regulatory particle and the unfolded proteins are translocated to the 20S core where proteins are degraded into small peptides.
doi:10.1371/journal.pone.0091200.g001

Role of 19S ATPases in CIITA Transcription
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Antibodies
Sug1 antibody was obtained from Novus Biologicals (Littleton,

CO). S6a antibody was obtained from Biomol International LP

(Plymouth meeting, PA). Mouse IgG control antibody was

obtained from Millipore (Lake Placid, NY). RNA Pol II, Ser5p

RNA Pol II and Ser2p RNA Pol II and S7 antibodies were

obtained from Abcam (Cambridge, MA), CDK9, Hexim and TBP

antibodies were obtained from Santa Cruz Biotechnology Inc

(Dallas, TX). Horseradish peroxidase (HRP) conjugated mouse

antibody was obtained from Promega (Madison, WI), and (HRP)-

conjugated rabbit antibody was obtained from Pierce (Rockland,

IL). (HRP)-conjugated rabbit IgG veriblot antibody was obtained

from Abcam (Cambridge, MA). Anti-Myc and Flag-HRP conju-

gated antibodies and Anti-mouse HA antibody were obtained

from Sigma (St. Louis, MO).

Plasmids
pBluescript (pBS) S7 and S6a plasmids were generous gifts from

Dr. Martin Rochesteiner [39,40]. These two genes were subcloned

into Myc tagged pCMV-3 using the EcoR1 restriction site. Myc-

Sug1 was kindly provided by Dr. A. Wani and has been previously

described [37]. Flag-Hexim1 plasmid was kindly provided by the

Price Lab [41], and HA-CDK9 was kindly provided by the Zhou

Lab [42].

siRNA Constructs and Transfections
Short interfering RNA (siRNA) duplexes were used for transient

knockdown of 19S ATPases Sug1, S7, and S6a. The siRNA

sequences of Sug1 and S7 siRNA used were 59-AAGGTA-

CATCCTGAAGGTAAA-39 and 59-AACTGCGAGAAG-

TAGTTGAAA-39 respectively (Qiagen, Valencia, CA) [7,37].

The S6a siRNA sequence was a predesigned siRNA directed

against PSMC3 [35]. A scrambled siRNA sequence was used as a

negative control (Qiagen, Valencia, CA). HeLa cells were

transfected with scrambled sequence control siRNA or with

ATPase-specific siRNA using HiPerfect transfection reagent

(Qiagen) according to the manufacturer’s instructions and were

then treated with IFN-c (500 U/ml) as indicated. Cells were lysed

in Nonidet P-40 lysis buffer (NP-40:1 M Tris pH 8.0, 1 M KCl,

10% NP-40, 0.5 M EDTA, 5 M NaCl, 1 M DTT, dH2O),

supplemented with complete EDTA-free protease inhibitors

(Roche, Florence, SC), and knockdown specificity and efficiency

was assessed by Western blotting using anti-Sug1, S7, or S6a

primary antibodies at 1:2000 concentration overnight at 4uC.
Mouse-HRP conjugated secondary antibody was used at concen-

tration of 1:20,000 for 1 h at room temperature.

RNA Expression
HeLa cells were plated at a density of 86105 in 10 cm tissue

culture plates and 24 h later were transfected with control or

ATPase specific siRNA. Forty-eight hours following siRNA

transfection, cells were stimulated with IFN-c (500 U/ml) for

18 h. Six hours prior to harvest, cells were treated with 10 mM of

the proteasome inhibitor MG132 (EMD Biosciences) or with

10 mM of the proteasome inhibitor Lactacystin from Biomol

International LP (Plymouth meeting, PA). Cells were harvested,

washed with cold PBS, centrifuged at 3000 rpm at 4uC for 5

minutes, and total RNA was prepared with 1 ml of Trizol reagent

(Invitrogen, Carlsbad, CA) in accordance with the manufacturer’s

instructions. The Omniscript Reverse Transcription Kit (Qiagen)

was used to generate cDNA from extracted RNA. Gene specific

antisense primers (Sigma, Saint Louis, MO) were used for reverse

transcription. PCR conditions for all Q-PCR reactions included an

initial 10 minute incubation step at 65uC followed by a 60 minute

incubation step at 37uC in accordance with the manufacturer’s

instructions (Qiagen). The cDNA for CIITA mRNA short (exon

IV), CIITA mRNA long (exon VII), and for GAPDH mRNA was

amplified using the following reverse primers: 59-GCTCCAGG-

TAGCCACCTTCT-39; 59-AGCAGTCGCT-

CACTGGTCTCA-39; 59-TAGACGGCAGGTCAGGTCCA-39.

Real-time PCR reactions were carried out on an ABI Prism 7900

(Applied Biosystems, Foster City, CA). Probes for CIITA promoter

IV (CIITApIV) and CIITA exon IV and exon VII were 59 labeled

with 6-carboxyfluorescein (FAM) reporter dye and 39 with

N,N,N,N-tetramethyl-6-carboxyrhodamine (TAMRA) quencher

dye. Isolated DNA was analyzed by real-time PCR using primers

and probes spanning:

N CIITApIV mRNA short(exon IV)–sense sequence 59-GGGA-

GAGGCCACCAGCAG-39 , antisense sequence 59-

GCTCCAGGTAGCCACCTTCT-39, probe sequence 59-

FAM-CTGTGAGCTGCCGCTGTTCCC-39TAM.

N CIITApIV mRNA long(exonVII)–sense sequence 59-AACA-

CAGCCCACTTCCTCACA-39, antisense sequence, 59-AG-

CAGTCGCTCACTGGTCTCA-39, probe sequence 59FAM-

ACTGTGGTGACTGGCAG-39TAM)

N GAPDH mRNA – sense sequence 59-GGAAGCTCACTGG-

CATGGC-39, antisense sequence 59-TAGACGGCAGGT-

CAGGTCCA-39, probe sequence 59-FAM-CCCCACTGC-

CAACGTGTCAGTG-39TAM)

N 18S rRNA mRNA – sense sequence 59-GCTGCTGGCAC-

CAGACTT-39, antisense sequence 59-CGGCTACCACATC-

CAAGG-39, probe sequence 59-FAM-CAAATTACC-

CACTCCCGACCCG-39TAM

Values from real-time PCR reactions were calculated and

graphed based on standard curves generated and were normalized

to GAPDH message levels. Samples were run in triplicate

reactions and were analyzed using the SDS 2.0 program (Applied

Biosystems, Foster City, CA). Graphed values represent the

percentage difference in the mRNA molecules with respect to

ATPase specific siRNA treated and non-treated cells. The highest

value is considered 100% and other values were graphed in terms

of percentage.

RNA Expression with ATPase Knockdowns
HeLa cells were plated at a density of 86105 in 10 cm tissue

culture plates and 24 h later were transfected with Sug1, S7, or

S6a siRNA. Forty-eight hours following siRNA transfection, cells

were stimulated with IFN-c (500 U/ml) for 18 h. Six hours before

harvest, cells were treated with 10 mM MG132 or with 10 mM
Lactacystin proteasome inhibitor. Cells were harvested and 10%

of the cells were lysed with 1% Nonidet P-40 buffer with protease

inhibitors and were analyzed by Western blotting for ATPase

knockdown efficiency. The remaining fraction of cell volume was

subjected to RNA extraction as above.

Heat Shock Assay with S6a ATPase Knockdown
HeLa cells were plated at a density of 65,000 cells in a 48 well

plate, after 24 hrs the cells were transfected with the indicated

plasmids Heat Shock Element promoter tagged with Luciferase

(HSE) and with either control siRNA or S6a siRNA using

Attractene (Cignal heat shock reporter assay kit, Qiagen, Valencia,

CA) according to manufacturer’s instructions. Cells were treated

with proteasome inhibitor (MG132) 4 hrs prior to harvest. After

48 hrs, the cells were harvested, washed with cold PBS, and lysed

using 16cell lysis reagent (Promega, Madison, WI). The lysed cell

Role of 19S ATPases in CIITA Transcription
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suspension was centrifuged for 2 minutes at 12,000 rpm (Thermo

electron 851, Thermo INC, Needham Heights, MA) at 4uC and a

Luciferase assay (Promega) was performed according to the

manufacturer’s instructions. Ten percent of the cell lysates were

normalized for protein concentration by Bradford assay (Bio-Rad),

separated by SDS-PAGE, transferred to nitrocellulose and

immunoblotted with monoclonal antibody to S6a and secondary

goat anti-mouse horseradish peroxidase conjugated antibody. The

negative control is a mixture of non-inducible reporter construct

and constitutively expressing Renilla luciferase construct provided

in the kit. Positive control is an inducible transcription factor-

responsive construct expressing firefly luciferase, and a constitu-

tively expressing Renilla luciferase construct; both are provided in

the kit.

Co-immunoprecipitation
For over expression co-immunoprecipitation experiments,

HeLa cells were plated at a density of 86105 in 10 cm tissue

culture plates and transfected with 5 mg of Myc-Sug1, Myc-S7, or

Myc-S6a and 5 mg of pcDNA, HA-CDK9, or Flag-Hexim

plasmids using Fugene 6 (Roche, Indianapolis, IN) according to

manufacturer’s instruction. After 24 h, cells were harvested and

lysed using RIPA lysis buffer (1 M Tris pH 8.0, 5 M NaCl, 10%

NP-40, 5% DOC, 10% SDS, 1 M DTT, dH2O) supplemented

with complete EDTA-free protease inhibitor (Roche, Indianapolis,

IN). Cell lysates were centrifuged, normalized for protein

concentration, and pre-cleared with 50 ml mouse IgG (Sigma,

Saint Louis, MO) and were immunoprecipitated overnight with

10 mg antibody against Sug1, S7, or S6a. Negative control samples

were immunoprecipitated overnight with 10 mg of mouse IgG.

Immune complexes were isolated with Myc beads (for 19S

ATPases) (Sigma), Flag beads (for Flag-Hexim 1) (Sigma) or HA

beads (for HA-CDK9) (Sigma) on a rotator at 4uC and complexes

were denatured with Leammli buffer (Bio-Rad), boiled, and

separated by SDS-PAGE gel electrophoresis. Gels were trans-

ferred to nitrocellulose and co-immunoprecipitated complexes

were detected by immunoblotting using mouse anti-Myc-HRP to

detect Myc-tagged ATPases, mouse anti-Flag-HRP to detect Flag-

Hexim 1, and mouse anti-HA antibody to detect HA-CDK9.

HRP conjugates were detected with the HyGlo Chemiluminiscent

reagent kit (Denville). Equal loading was determined in non-

immunoprecipitated lysates by immunoblotting of total protein.

For endogenous co-immunoprecipitation experiments, 76106

HeLa cells were lysed in NP-40 lysis buffer with protease inhibitors

for 30 minutes on ice. Lysates were centrifuged, normalized for

protein concentration, precleared with 50 ml mouse IgG (Sigma-

Aldrich) and were immunoprecipitated with 5 mg of antibody

against Sug1, S7, or S6a respectively. Positive control samples

were immunoprecipitated with 5 mg of Hexim, CDK9 or Ser5p

RNA pol II antibody and negative control samples were

immunoprecipitated with 5 mg of mouse IgG. Isolated immune

complexes were denatured with Leammli buffer, boiled and

separated by SDS-PAGE gel electrophoresis. Gels were trans-

ferred to nitrocellulose and were individually immunoblotted for

endogenous Hexim, CDK9 or Ser5p RNA pol II. Equal loading

was determined in non-immunoprecipitated lysates by immuno-

blot of total protein.

Chromatin Immunoprecipitation (ChIP)
HeLa cells were plated at a density of 2.56106 in 15 cm-tissue

culture plates and were treated with IFN-c (500 U/ml) for 0.5, 2,

3, 4, or 18 hrs. Following IFN-c stimulation, cells were crosslinked

with 1% formaldehyde for 8 minutes at room temperature;

crosslinking was stopped by the addition of 0.125 M glycine for 5

minutes at room temperature. Cell nuclei were isolated and

concentrated by lysing in cell lysis buffer (5 mM PIPES pH 8,

85 mM KCl, 1% igepal) and protease inhibitors for 15 minutes on

ice. The cell lysate was centrifuged at 2100 rpm for 5 minutes at

4uC. The supernatant was discarded and the pellet was

resuspended in SDS lysis buffer (1% SDS, 10 mM EDTA,

50 mM Tris pH 8.0, dH2O) and protease inhibitors for 25 minutes

on ice followed by flash freezing in liquid nitrogen. Lysed nuclei

were sonicated using a Bioruptor water bath sonicator for 30 sec

‘‘On’’ and 30 sec ‘‘Off’’ 3 times to generate an average of 500 bp

of sheared DNA. The sonicated lysates were pre-cleared with

salmon-sperm coated agarose beads (Upstate) and lysates were

divided equally. One half of the lysate was immunoprecipitated

with 5 mg of antibody to Sug1, S7, S6a, or RNA Pol II overnight

at 4uC. The other half of the lysate was immunoprecipitated with

control antibody. Immunoprecipitated proteins were isolated

during 2 h incubation with 60 ml of salmon-sperm coated agarose

beads. Immunoprecipitated samples were washed for 3 minutes at

4uC with the following buffers: low salt buffer (0.1% SDS, 1%

Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0, 150 mM

NaCl, dH2O), high salt buffer (0.1% SDS, 1% Triton X-100,

2 mM EDTA, 20 mM Tris pH 8.0, 500 mM NaCl, dH2O), LiCl

buffer (0.25 M LiCl, 1% NP40, 1% DOC, 1 mM EDTA, 10 mM

Tris pH 8.0, dH2O) and 1X TE buffer; DNA was then eluted with

SDS elution buffer (1% SDS, 0.1 M NaHCO3, dH2O). After

DNA elution, crosslinks were reversed overnight with 5 M NaCl at

65uC followed by treatment with proteinase K for 1 hr at 45uC
and immunoprecipitated DNA was isolated using a phenol:chlor-

oform:isopropanol mix (Invitrogen) as per the manufacturer’s

instructions. Real-time PCR reactions were carried out on an ABI

prism 7900 (Applied Biosystems, Foster City, CA). CIITA

promoter IV, CIITA exon IV, and CIITA exon VII were labeled

59 with FAM reporter dye and 39 with TAMRA quencher dye.

Isolated DNA was analyzed by real-time PCR using primers

spanning:

N CIITApIV promoter (Sense sequence, 59-CAGTTGG-

GATGCCACTTCTGA-39; Antisense sequence, 59-TGGAG-

CAACCAAGCACCTACT-39; Probe sequence, 59-6 FAM-

AAGCACGTGGTGGCC-39TAM),

N CIITApIV exon IV(Sense sequence 59-TGCCCTAA-

TACCTGACGACCAT-39, Antisense sequence 59-AAGCC-

CAAGGTGAGTCTCTATTGT-39, Probe sequence 59-6

FAM-CAGTCAGACCCCTCTCCCCAAGGTG-39TAM),

N CIITApIV exon VII region (Sense sequence 59-AACA-

CAGCCCACTTCCTCACA-39, Antisense sequence 59-AG-

CAGTCGCTCACTGGTCTCA-39, Probe sequence 59-6

FAM-ACTGTGGTGACTGGCAG-39 TAM)

N CD4 (Sense sequence, 59-CACAGGAATGTGCTCTGC-39,

Antisense sequence 59-CAGTCTCTGACCTCTGGAAG-39,

P r o b e s e q u e n c e 5 9 - 6 FAM-ACAGCTCTGGC -

CACCTTCTCTTGCA-39 TAM)

Values from real-time PCR reactions were calculated and

graphed based on standard curves generated, were run in triplicate

reactions, and were analyzed using the SDS 2.0 program.

Chromatin Immunoprecipitation with ATPase
Knockdown
HeLa cells were plated at a density of 2.56106 in 10-cm tissue

culture plates and were transfected with control siRNA or with

ATPase-specific siRNA (Qiagen). Cells were stimulated with IFN-

c (500 U/ml) as indicated and 10% of the total cell volume was

lysed with 1% Nonidet P-40 buffer with protease inhibitors and

Role of 19S ATPases in CIITA Transcription
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cell lysates were analyzed by Western blotting for ATPase

knockdown specificity and efficiency. The remaining fraction of

cell volume was subjected to ChIP assay as described above.

Results

The Proteasomal 19S ATPases Sug1, S7, and S6a are
Recruited to the CIITApIV Proximal Promoter
We have previously shown that Sug1 associates with the MHC

II promoter, regulates recruitment of CIITA and histone

modifying enzymes to the promoter, and subsequently plays

important roles in MHC II gene expression [7]. It has previously

been demonstrated that yeast Rpt6 (Human Sug1) is required for

efficient transcription elongation of RNA Pol II [43]. To analyze

the role of the mammalian 19S ATPases in transcription

elongation of additional genes, we evaluated whether Sug1 and

other 19S ATPases influence transcription of inducible CIITA-

pIV. ChIP assays were performed to determine whether ATPases

Sug1, S7, or S6a directly bind to CIITApIV proximal promoters.

HeLa cells were stimulated with IFN-c, immunoprecipitated with

antibodies to endogenous Sug1, S7, or S6a, and analyzed by real-

time PCR with primers and probes spanning the CIITApIV

promoter. Sug1, S7, and S6a associate with the CIITApIV

promoter within 30 minutes of IFN-c stimulation and their

binding is significant following two hours of stimulation (Figure 2A,

C, E). These results indicate Sug1, S7, and S6a are inducibly

recruited to the CIITApIV promoter.

CIITA Long Transcripts are Significantly Decreased in the
Absence of 19S ATPases
The 19S regulatory subunit of the 26S proteasome consists of

six paired ATPases (Sug1 and S6b; S7 and S4; and S6a and S10b),

which recognize, unfold, and direct polyubiquitinated proteins

towards the 20S proteolytic core for degradation. We have

previously shown that 19S ATPases (Sug1, S7, and S6a) co-

immunoprecipitate with CIITA, regulate the binding of CIITA to

the MHC II promoter, and promote transcription initiation of

MHC-II genes [7]. To further understand the functions of these

ATPases in the transcription of CIITApIV genes, CIITApIV

mRNA was extracted from HeLa (human epithelial) cells which

had been transfected with Sug1, S6a, or S7 siRNA duplexes in the

presence and absence of IFN-c stimulation. cDNA was prepared

from the extracted mRNA using reverse primers specific for the

CIITApIV exons IV and VII which correlate to short and long

transcripts respectively; mRNA yields from specific samples were

then quantified using real-time PCR. In cells transfected with Sug1

siRNA, the generation of both CIITApIV mRNA short and long

transcripts is significantly reduced as compared to control siRNA

treated cells (Figure 3A & 3B). Similarly, cells transfected with

either S7 or S6a siRNA exhibit a reduced generation of short and

long transcripts. In each instance the generation of CIITApIV

long transcripts is significantly more impacted than is the

generation of short transcripts indicating the impact of ATPase

deficiency increases as transcription proceeds (compare Figure 3A

& 3B; 3C & 3D; 3E & 3F). siRNA knockdown efficiency of the

ATPases is shown in Figure S1A, S1B, and S1C.

Effect of Proteasome Inhibition on CIITApIV Transcription
We previously demonstrated treatment of cells with S6a siRNA

and Sug1 siRNA moderately reduces 26S-mediated proteolysis

[35,37]. In the present work, the 26S proteasome inhibitors

MG132 and Lactacystin were used to determine whether the

negative effect of 19S ATPase knockdown on CIITApIV

transcription is a result of inhibition of the proteolytic function

of the proteasome. HeLa cells were stimulated with IFN-c and

were treated with MG132 (10 mM) 4 hrs prior to harvesting.

CIITA mRNA was extracted, and cDNA was generated using

CIITApIV Exon IV, VII and 18S rRNA reverse primers; mRNA

yields for exons IV, VII and 18S rRNA were then quantified by

real-time PCR. Treatment of cells with MG132 increases the

number of both short (Figure 4A) and long (Figure 4B) CIITA

mRNA transcripts, but there was no significant change in 18S

rRNA transcripts in control and MG132 treated samples

(Figure 4C). Similarly, Lactacystin (10 mM) treatment of HeLa

cells shows a similar increase in CIITA mRNA transcript levels

(Figure 4D & 4E). These results indicate the role of 19S ATPases

in the generation of CIITApIV mRNA transcripts is independent

of the proteolytic function of the 26S proteasome.

S6a siRNA does not Activate Heat Shock Response
Knockdown of 19S ATPases could also indirectly affect

transcription by altering steady state protein levels and activating

a heat shock response [44]. To determine if 19S ATPase siRNA

activates the heat shock response, HeLa cells were transfected with

the Heat Shock Element (HSE) promoter tagged with Luciferase

and with either control siRNA or S6a siRNA, or were treated with

proteasome inhibitor MG132. Cells were harvested after 48 hrs

incubation. The results shown in Figure 5 indicate a robust heat

shock response in cells treated with MG132 and in cells transfected

with the positive control, but no significant heat shock response in

cells treated with S6a siRNA. Together these findings indicate that

the effect of 19S ATPase siRNA in mediating reductions in

CIITApIV mRNA transcripts is due to non-proteolytic roles of the

19S ATPases.

The 19S ATPases Sug1, S7, S6a Bind within the Coding
Region of CIITApIV Gene
To evaluate whether 19S ATPases move from promoters into

actively transcribing mammalian genes, we investigated the

binding of 19S ATPases to CIITApIV coding sequences using

ChIP assays. We designed primers and probe sets spanning exons

IV and VII of CIITApIV and performed ChIP assays in HeLa

cells for Sug1, S7 and S6a. Cells were stimulated with IFN-c (0–

2 hrs) as indicated and crosslinked and sonicated lysates were

subjected to immunoprecipitation (IP) with antibodies against

endogenous Sug1, S7, or S6a. Following IP, associated DNA was

isolated and analyzed by realtime PCR using primers spanning

CIITA exon IV and exon VII. Binding of Sug1 to CIITApIV

exons IV and VII was observed over a time-course of IFN-c
stimulation with significant binding at 2 hr and 0.5 hr respectively

(Figure 6A & B). Similarly, 19S ATPases S7 and S6a bind to

CIITApIV exon IV and exon VII over IFN-c stimulation with

significant binding at 2 hr (Figure 6D, E & 6G, H). To probe for

potential direct interactions between the 19S ATPases and DNA,

gel mobility shift assays were conducted in which purified Myc

tagged Sug1 was added to a 90 nucleotide single-stranded DNA

oligonucleotide. As shown in Fig. 6J, lanes in which Sug1 is added

to single stranded DNA exhibit a precipitant in the wells indicating

an interaction with Sug1. Of note, similar assays with small

double-stranded DNA oligonucleotides did not exhibit a similar

precipitation (data not shown). Together these data indicate that

the 19S ATPases bind to CIITA coding regions, supporting

potential roles in RNA Pol II processivity.

Role of 19S ATPases in CIITA Transcription
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Figure 2. 19S ATPases associate with the CIITA pIV proximal promoter. (A, C,E) ChIP assays were carried out in HeLa cells stimulated with
IFN-c for 0–2 hrs. Cell lysates were immunoprecipitated (IP’d) with control antibody or with antibody to endogenous 19S ATPase S6a, Sug1, or S7 and
associated DNA was isolated and analyzed by real-time PCR using primers and probe spanning the CIITApIV proximal promoter. Real time PCR values
were normalized to the total amount of DNA in the reaction (Input). IP values are represented as ATPase binding to CIITApIV promoter DNA relative
to unstimulated samples. (B,D,F) ChIP signal at the inactive gene CD4. The control IgG values were 0.00460.001. Values for control IgG and either
Sug1 IP, S7 IP or S6a IP represent the mean 6 SEM of three biologically independent experiments * p,0.05.
doi:10.1371/journal.pone.0091200.g002
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The 19S ATPases Sug1, S7, S6a Associate with
Components of the Elongation Factor PTEFb Complex
(Hexim and CDK9)
It was previously reported that the 19S ATPases associate with

transcription factors and promote active transcription in yeast

[43]. As the 19S ATPases bind to the CIITApIV proximal

promoter, co-immunoprecipitation (co-IP) assays were used to

determine whether the 19S ATPases also associate with transcrip-

tion factors Hexim and CDK9 which are required for productive

elongation. Protein-protein interactions were initially determined

using over expression co-IP assays in which HeLa cells were

transfected with Myc-tagged ATPases, with Flag-Hexim or HA-

CDK9 and, following IP for either Flag-Hexim or HA-CDK9,

were then immunoblotted (IB) for Myc. The IP blot shown in

Figure 7A indicates association of Hexim (lane 3) and CDK9 (lane

4) with Sug1. Similarly, the IP blots shown in Fig. 7B & 7C

indicate the association of S7 and S6a ATPases with Hexim (lanes

3) and CDK9 (lanes 4). The efficiency of transfections and equal

loading of cell lysates was confirmed by IB of Myc, HA, and Flag-

tagged proteins. Co-immunoprecipitation experiments were next

performed with endogenous proteins to determine if endogenous

19S ATPases (S6a, S7, Sug1) interact with endogenous Hexim and

CDK9. Each of the endogenous 19S ATPases associate with

Hexim (Figure 7D) while only endogenous S7 demonstrated

pronounced interaction with CDK9 (Figure 7E). Together these

results demonstrate the 19S ATPases are in complexes with the

Hexim1 and CDK9 components of PTEFb complex, which in

turn regulates transcription elongation of CIITA genes.

Figure 3. Reduced expression of 19S ATPases via siRNA negatively impacts the generation of long transcripts from CIITA pIV. (A–B,
D–E, G–H) Cells were transfected with siRNA, and mRNA was quantitated using CIITA mRNA primers and probes specific for transcripts from CIITA
exon IV and exon VII. CIITA mRNA generated was normalized to GAPDH. Data shown represent the mean 6 SEM of three biologically independent
experiments. (C, F, I) Expression of Sug1, S7, and S6a was specifically decreased using ATPase specific siRNA (Figure S1A, S1B, and S1C). Blots shown
are representative of three biologically independent experiments.
doi:10.1371/journal.pone.0091200.g003
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The 19S ATPases Associate with Ser5 Phosphorylated-
RNA pol II
Transcription in eukaryotes is initiated by the recruitment of

RNA Pol II to promoter regions. RNA Pol II initiates synthesis of

mRNA upon association with basal transcription factors and

phosphorylation of its C terminal domain (CTD). Once preinitia-

tion complexes form, RNA Pol II is phosphorylated on Serine 5

(Ser5p) by CDK7 of TFIIH and mRNA synthesis begins [45]. A

co-IP assay was performed to determine if 19S ATPases associate

with Ser5p-RNA Pol II. HeLa cells were transfected with Myc-

Figure 4. Effects of 19S ATPase knockdown on CIITApIV transcription are independent of effects on degradation. (A–B, D–E) HeLa
cells were stimulated with IFN-c as indicated and were harvested four hrs post treatment with 10 mM MG132 or 10 mM Lactacystin. mRNA was
extracted and cDNA was generated using indicated reverse primers followed by amplification via real-time PCR. CIITA mRNA transcripts were
obtained using primers and probes specific for CIITA exon IV and exon VII were normalized to GAPDH. (C) 18S rRNA transcripts for control and MG132
treated cells were obtained using primers and probe specific for 18S rRNA and were normalized to GAPDH. The 18 hr control sample was set to 100%.
Data shown represents the mean 6 SEM of three biologically independent experiments.
doi:10.1371/journal.pone.0091200.g004
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tagged ATPases, IP’d with Ser5p-RNA Pol II antibody, and IB’d

for Myc. The IP blot shown in Figure 8 indicates association of

expressed S6a, S7 and Sug1 ATPases with Ser5p-RNA Pol II

(lanes 3, 6, 9). The efficiency of transfections and equal loading of

cell lysates was confirmed by IB of Myc tagged proteins and of

Ser5p-RNA Pol II. Analysis of co-IP of endogenous proteins also

indicate association of each of the 19S ATPases with Ser5p-RNA

Pol II (Figure 8B). Additional co-IP experiments with Ser2p-RNA

pol II indicated only weak interactions (faint bands) between

expressed S6a, S7, and Sug1 ATPases and Ser2p-RNA pol II (data

not shown). Analysis of co-IP of endogenous proteins indicates

strong association of 19S ATPases with Ser5p-RNA Pol II

(Figure 8B).

Knockdown of 19S ATPases Decreases RNA Pol II
Phosphorylation but does not Impact Degradation
Eukaryotic RNA Pol II consists of a C terminal domain

composed of a series of heptad repeats [46]. The phosphorylation

pattern of the CTD changes during transcription and serves as a

flexible scaffold for binding nuclear factors required for specific

transcription stages [45,47]. To understand if 19S ATPases affect

the regulation of RNA Pol II phosphorylation, we next determined

the effect of 19S ATPase knockdown on levels of non-phosphor-

ylated RNA pol II and on levels of phosphorylated RNA pol II

(Ser2p-RNA Pol II and Ser5p-RNA Pol II). HeLa cells were

transfected with control siRNA or with ATPase specific siRNA

and 48 hrs later cell lysates were IB’d using RNA Pol II, Ser2p-

RNA Pol II, or Ser5p-RNA Pol II antibodies. The IB shown in

Figure 9 (bottom panel) indicates there is no change in non-

phosphorylated RNA pol II levels in 19S ATPase specific siRNA

treated samples versus control siRNA treated samples and MB132

treated samples. In comparison, there is a decrease in levels of

Ser5p-RNA Pol II and, to a lesser extent Ser2p-RNA Pol II (top

and middle panels), in 19S ATPase siRNA treated samples versus

control siRNA treated samples and MG132 treated samples. The

knockdown efficiency and specificity of the 19S ATPase specific

siRNA constructs is shown in Figure S2A and S2B.

Knockdown of 19S ATPases Sug1, S7, or S6a Decreases
RNA Pol II and TBP Recruitment to CIITApIV Proximal
Promoter
Regulation of protein coding genes is mediated by RNA Pol II

and multiple transcription factors at various steps of the

transcription process. Transcription initiation is accomplished by

the recruitment of RNA Pol II to promoter sites and the formation

of a pre-initiation complex with basal transcription factors [48].

To assess whether the 19S ATPases aid in the recruitment of RNA

Pol II to CIITApIV proximal promoters, ChIP assays (using

antibody specific for RNA Pol II and primers and probe specific

for the CIITApIV promoter region) were performed with cells

treated with either control siRNA or with ATPase specific siRNA.

As shown in Figure 10A, in cells treated with control siRNA, RNA

Pol II inducibly binds to the CIITApIV proximal promoter over a

time course of IFN-c stimulation. Cells transfected with Sug1

siRNA exhibit significantly decreased binding of RNA Pol II to the

CIITApIV proximal promoter as compared to control siRNA

treated samples. A similar trend was observed with S7 and S6a

siRNA treated cells (Figure 10B, 10C). Efficiency of the

knockdown of ATPase using siRNA is shown in Figure S3A,

S3B, and S3C. Among the general transcription factors, TFIID

factor is a complex composed of TATA binding protein (TBP) and

TBP-associated factors (TAFIIS) and is required for transcription

machinery. To assess whether the 19S ATPases aid in the

recruitment of TBP to CIITApIV promoter, ChIP assays (using

antibody specific for TBP and primers and probe specific for the

CIITApIV promoter region) were performed with cells treated

with either control siRNA or with ATPase specific siRNA. As

shown in Figure 11A, in cells treated with control siRNA, TBP

inducibly binds to the CIITApIV promoter over the time course of

IFN-c treatment. Cells transfected with Sug1siRNA exhibit

significant decrease in binding of TBP to the CIITApIV promoter

as compared to control siRNA treated cells. A similar trend was

observed with S7 and S6a siRNA treated cells (Figure 11B, 11C).

Efficiency of the knockdown of ATPase using specific siRNA is

shown in Figure S4A, S4B and S4C. These studies indicate the

19S ATPases play critical roles in RNA Pol II and TBP

recruitment at CIITA genes.

Discussion

Proteasomal proteins are crucial regulators of transcriptional

activities both dependent on, and independent of, protein

degradation. While the stage is set for novel developments in

our understanding of gene expression, the roles of individual

proteasome components in transcription remain to be determined.

The 19S ATPases were initially found to associate with actively

transcribed genes and to facilitate recruitment of transcription

factors to active genes in yeast where 19S ATPases play important,

but undefined, roles in RNA Pol II dependent elongation [43]. We

have previously demonstrated that binding of 19S ATPases at the

mammalian MHCII promoter mediates transcription initiation by

stabilizing the binding of activating histone modifying enzymes

and transcription factors [7,35]. We show now that representatives

of each of the 19S ATPase heterodimers are inducibly recruited to

another mammalian gene, the CIITApIV promoter (Figure 2)

Figure 5. Knockdown of 19S ATPases does not activate the
heat shock response. HeLa cells were transfected with HSE-
Luciferase reporter, control siRNA, or S6a siRNA and were treated with
MG132 six hrs prior to harvest. Cells were harvested following 48 hrs of
incubation, lysed in cell lysis buffer, and analyzed by Luciferase assay.
Luciferase readings obtained were normalized by Bradford assay. Data
shown represents values obtained from three independent experi-
ments. The negative control is a mixture of non-inducible reporter
construct and constitutively expressing Renilla luciferase construct. The
positive control is an inducible transcription factor-responsive construct
expressing firefly luciferase, and a constitutively expressing Renilla
luciferase construct.
doi:10.1371/journal.pone.0091200.g005
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and, that upon activation of transcription, 19S ATPases move into

CIITApIV exons (Figure 6).

Since chromatin structure was recognized as repeating units of

histones and DNA in nucleosome cores, it has been proposed that

Figure 6. 19S ATPases bind CIITA pIV within the coding region. (A–I) ChIP assays were carried out in HeLa cells stimulated with IFN-c for 0–
2 hrs. Cell lysates were IP’d with control antibody or with antibody to endogenous Sug1 (A and B), S7 (D and E), or S6a (G and H) and associated DNA
was isolated and analyzed by real-time PCR using primers and probes spanning CIITApIV exon IV (A, C, E) and exon VII (B, D, F). Real time PCR IP values
were normalized to the total amount of DNA (input); IP values are represented as ATPase binding to CIITApIV exon IV or exon VII DNA relative to
unstimulated samples. (C,F,I) ChIP signal at the inactive gene CD4. The control IgG values were 0.00560.001. Values for control and IP represent mean
6 SEM of three biologically independent experiments. *p,0.05, **p,0.005. G. Mobility shift assay of Sug1 with a 90 nucleotide single stranded DNA
on a native 8% polyacrylamide gel with a tris-borate magnesium running buffer; 0.7 mM DNA, 0.85 mM sug1, and 500 mM ATP. DNA was visualized
with SYBER Green II dye.
doi:10.1371/journal.pone.0091200.g006

Figure 7. 19S ATPases associate with elongation factors Hexim and CDK9. (A–C) HeLa cells were co-transfected with Myc tagged S6a, S7, or
Sug1 and Flag tagged Hexim or HA tagged CDK9 as indicated. Cells were lysed and IP’d with Myc beads (lane 1) as a positive control, mouse isotype
IgG (lane 2) as a negative control, flag beads (lane 3), and HA beads (lane 4). IP samples (top panel) and lysates (bottom panel) were IB’d for Myc, Flag,
and HA as indicated. (D–E) HeLa cells were lysed and IP’d with either Hexim or CDK9 (lane 1) as a positive control, mouse isotype IgG (lane 2) as a
negative control, or with S6a (lane 3), S7 (lane 4), and Sug1 (lane 5). IP samples (top panel) and lysates (bottom panel) were IB’d for Hexim or CDK9 as
indicated. Results shown are indicative of data from three biologically independent experiments.
doi:10.1371/journal.pone.0091200.g007
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the function of chromatin is to regulate transcription [49].

Chromatin regulators transiently remodel chromatin in response

to cellular signals in order to change the accessibility of DNA to

transcription factors and polymerases [50]. As the 19S ATPases

bind throughout CIITApIV genes, our initial focus was to

determine the impact of the ATPases on the generation of

transcripts from CIITApIV. Depletion of the 19S ATPases Sug1,

S7, or S6a decreases IFN-c induced transcription of CIITApIV

with significant impact on the generation of longer CIITApIV

transcripts (Figure 3). These observations indicate the 19S

ATPases are involved in regulating chromatin: in the absence of

19S ATPases, the further the polymerase has to move, the more

difficult the journey ahead.

Depleting 19S ATPases might lead to the malfunction of the

proteasome and therefore impair degradative processes. To

address this concern, we previously demonstrated that degradation

continues in cells in which 19S ATPases have been knocked down

[37]. These data support recent findings of the existence of cellular

Figure 8. 19S ATPases associate with Ser5 phosphorylated RNA pol II (Ser5p-RNA pol II). (A) HeLa cells were transfected with myc tagged
S6a, S7 or Sug1 as indicated. Cells were lysed and IP’d with myc beads (first lane, top panels) as a positive control, with mouse isotype IgG (second
lane, top panels) as a negative control, and with Ser5p-RNA Pol II antibody (third lane, top panels). IP’d samples (top panels) and lysates (middle and
bottom panels) were IB for myc ATPases or for Ser5p-RNA pol II as indicated. (B) HeLa cells were lysed and IP’d with Ser5p-RNA Pol II (lane 1) as a
positive control, mouse isotype IgG (lane 2) as a negative control, or with S6a (lane 3), S7 (lane 4), or Sug1 (lane 5). IP samples (top panel) and lysates
(bottom panel) were IB’d Ser5p-RNA Pol II as indicated. Results shown are indicative of data from three biologically independent experiments.
doi:10.1371/journal.pone.0091200.g008

Figure 9. Reduced expression of 19S ATPases decreases phosphorylated forms of RNA Pol II. A. HeLa cells were transfected with siRNA or
were treated with proteasome inhibitors as indicated. Cells were harvested following 48hrs of siRNA incubation. Cell lysates were IB’d with Ser2p-RNA
pol II antibody (top panels), Ser5p-RNA pol II (middle panels), or with RNA pol II antibody (bottom panels). Cells treated with proteasome inhibitors
serve as a positive control for degradation dependent effects. Results shown are indicative of data from three biologically independent experiments.
Sug1, S7, and S6a protein expression was effectively decreased using specific siRNA. Actin blots demonstrate loading and siRNA specificity controls
(Figure S2A and S2B).
doi:10.1371/journal.pone.0091200.g009
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pools of 19S ATPases and also support our hypothesis that 19S

ATPases have non-proteolytic roles in regulating transcription. We

extend these observations here by demonstrating that while 19S

ATPase knockdown inhibits CIITApIV transcription, inhibition of

proteasome activity significantly increases CIITApIV transcription

(Figure 4). These data further indicate the 19S ATPases have

functions that are independent of proteasome activity but which

are essential in the regulation of transcription. Our current

Figure 10. Reduced expression of 19S ATPases decreases RNA pol II recruitment to the CIITApIV proximal promoter. (A,C,E) ChIP
assays were carried out in HeLa cells transfected with ATPase specific or with control siRNA and stimulated with IFN-c for 0–2 hrs. Cell lysates were
crosslinked, sonicated, lysed, and IP’d with either antibody against endogenous RNA pol II or with control antibody (IgG). Associated DNA was
analyzed via real-time PCR using primers and probe specific for the CIITApIV proximal promoter. Real time PCR IP values were normalized to total
amount of reaction DNA (Input). The values for control IP and RNA Pol II IP represent the mean of three biologically independent experiments *p,
0.05, **p,0.005, ***p,0.0005 versus control siRNA. (B, D, F) ChIP signal at the inactive gene CD4. Sug1, S7, and S6a protein expression was effectively
decreased using ATPase specific siRNA (Figure S3A, S3B, and S3C).
doi:10.1371/journal.pone.0091200.g010
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Figure 11. Reduced expression of 19S ATPases decreases TBP recruitment to the CIITApIV proximal promoter. (A, C, E) ChIP assays
were carried out in HeLa cells transfected with ATPase specific or with control siRNA and stimulated with IFN-c for 0–2 hrs. Cell lysates were
crosslinked, sonicated, lysed, and IP’d with either antibody against endogenous TBP or with control antibody (IgG). Associated DNA was analyzed via
real-time PCR using primers and probe specific for the CIITApIV proximal promoter. Real time PCR IP values were normalized to total amount of
reaction DNA (Input). The values for control IP and TBP IP are representative data *p,0.05, **p,0.005, ***p,0.0005 versus control siRNA. (B, D, F)
ChIP signal at the inactive gene CD4. Sug1, S7, and S6a protein expression was effectively decreased using ATPase specific siRNA (Figure S4A, S4B,
and S4C).
doi:10.1371/journal.pone.0091200.g011
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findings also support our previous observations that unlike ATPase

knockdown, proteasome inhibition does not affect the regulation of

acetylation and methylation of histones H3 and H4 [7,35–38].

Finally, very efficient knockdown of 19S ATPases could lead to

the accumulation of mis-folded and partially degraded proteins,

and the activation of a heat shock response, similar to that caused

by temperature induced protein mis-folding [51]. We observe here

however that siRNA mediated knockdown of the 19S ATPases

does not activate a heat shock response (Figure 5). Together these

data also indicate the effects of 19S ATPase knockdown on

transcription of CIITApIV are direct, are due to nondegradative

roles for 19S ATPases, and are not the result of dysregulated

proteolysis.

The expression of protein coding genes is carried out by RNA

Pol II and various transcription factors [52] and is controlled at

multiple levels [53,54]. RNA Pol II escape from promoter regions

and the transition of RNA Pol II to an elongating complex is

highly regulated and specific phosphorylation events of the RNA

Pol II CTD (C-terminal domain) are required for transcription

initiation and elongation [55,56]. RNA Pol II Ser 5 phosphory-

lation is required for the transition from initiation to elongation

whereas Ser 2 phosphorylation is required for elongation [56].

These phosphorylation events are mediated by kinase TFIIH

(CDK7), the mediator complex, and the kinase PTEF-b (CDK9).

As the 19S ATPases are required for transcription from

CIITApIV, we next determined if these ATPases associate with

transcription elongation factors and with the phosphorylated forms

of RNA Pol II.

We first showed that the 19S ATPase Sug1 interacts with DNA

(Figure 6G) and that both tagged and endogenous proteins

(ATPases Sug1, S7, and S6a) interact with components of PTEFb

and with Ser5p-RNA Pol II (Figure 7 & 8). Variation in the

intensity of interactions seen in co-IP experiments is evidence of

the independent functions of 19S ATPases in regulating

transcription [57]. PTEF-b exists in two forms, active and inactive,

where the inactive form of PTEF-b is bound to Hexim1 and 7SK

RNA. Upon cytokine stimulation, PTEF-b is dissociated from the

inactive complex bound by Hexim-1 and 7SK RNA and is

recruited to actively transcribing genes [37–39]. Association of 19S

ATPases with factors and complexes associated with transcription

elongation was not surprising as the ATPases were found

distributed throughout CIITApIV exons. It is noteworthy that

Ser2p of RNA Pol II is required for maintaining both global and

gene associated levels of H2B monoubiquitination as previous

work by Ezhkova and Tansey has shown that H2B K123

ubiquitination is required to recruit 19S ATPases [58]. There is

also evidence indicating that the 19S regulatory particle base is

required for SAGA recruitment and that particularly the 19S

ATPase Sug1 interacts with the SAGA complex and aids in

transcription [59]. Together, these data suggest the 19S ATPases

are recruited to promote chromatin reconfiguration and binding of

histone modifiers to actively transcribing genes. The 19S ATPase

S7 was strongly associated with endogenous Ser5 phosphorylated-

RNA Pol II (Figure 8). While 19S ATPase knockdown had no

impact on global RNA Pol II levels, there was a specific decrease

in levels of Ser5p-RNA Pol II in lysates from each of the ATPase

knock down cells (Figure 9). Together these data suggest variable

roles for the 19S ATPases in transcription initiation or in the

transition of RNA Pol II to a productive elongation phase.

It has been proposed that the 19S ATPases participate in

nucleosome eviction and chromatin remodeling necessary to

release paused RNA Pol II [15,43]. As the 19S ATPases associate

with DNA, with elongation factors and with the promoter region

of CIITApIV, we determined whether the 19S ATPases are

involved in the recruitment of RNA Pol II to the CIITApIV

promoter for phosphorylation and subsequent elongation. RNA

Pol II and TBP binding to CIITApIV was significantly reduced in

the absence of 19S ATPases (Figure 10) while mRNA levels were

less impacted by 19S ATPase knockdown (Figure 3). The relative

difference in impact on RNA Pol II recruitment versus mRNA

expression suggests that low level recruitment of RNA Pol II to

CIITApIV drives modest transcription of CIITA, albeit with

greater difficulty the further down the CIITApIV gene the

polymerase must transcribe. RNA Pol II overcomes nucleosome

barriers with closely spaced transcribing RNA Pol II displacing

core histones and promoting transcription. While the density of

RNA Pol II molecules bound to CIITApIV affects rates of

transcription, impaired transcription persists in the absence of 19S

ATPases. Together, these studies indicate the 19S ATPases play

roles in recruitment and/or processivity of RNA Pol II at

CIITApIV genes. Indeed, recent studies of the holo RNA Pol II

complex indicate the mediator complex contains the 19S ATPase

Sug1 [60]; together with our findings, these data indicate multiple

roles for the 19S ATPases in the regulation of transcription

elongation.

Further delineation of the specific mechanisms by which

individual 19S ATPases influence transcription will provide

information about the complex role of the ATPases in the stages

of transcription. As a part of the 26S proteasome complex, only

the S6a ATPase binds the polyubiquitinated chains of substrates

targeted for proteasome mediated degradation [61] and S6a alone

binds the coding region of the human immunodeficiency virus

type 1 gene in the presence of the transcription factor Tat [62].

During protein degradation, yeast 19S ATPases Rpt1, Rpt2, and

Rpt6 (human S7, S4, and Sug1, respectively) provide the pulling

force by which substrates unfold and are pulled inwards toward

the 20S core while the remaining 19S ATPases, Rpt3, Rpt4, and

Rpt5, (human S6b, S10b, S6a, respectively) stabilize the substrate

and translocate it towards the 20S core for degradation [57]. Our

data now indicates the S7 ATPase interacts strongly with CDK9

and with Ser5p RNApol II. Thus the possibility remains that

despite the similar impact of knockdown of Sug1, S7, and S6a on

transcription at CIITApIV, the 19S ATPases may have indepen-

dent functions in transcription. In fact, only the 19S ATPase S6a

has previously been shown to contain bona fide ATPase activity

[63]; and it is the S6a ATPase motif, but not the S6a helicase

motif, which is necessary to enhance transactivation of inducible

genes [64]. It remains to be determined if a similar ATP driven

unwindase activity, and potentially some unique activity of S6a

and/or other 19S ATPases, is utilized to drive requisite

conformational changes in histones, in transcription factors,

and/or in coactivators to regulate their interactions with

promoters and coding sequences and to allow transcription

processes to occur.

Supporting Information

Figure S1 (A, B, C) siRNA Efficiency. Expression of Sug1,

S7 and S6a was specifically decreased using ATPase specific

siRNA. Blots shown are indicative of data from three biologically

independent experiments.

(TIFF)

Figure S2 (A, B) siRNA Efficiency. Sug1, S7, and S6a

protein expression was effectively decreased using specific siRNA.

Actin blots demonstrate loading and siRNA specificity controls.

Blots shown are indicative of data from three biologically

independent experiments.

(TIFF)
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Figure S3 (A, B, C) siRNA Efficiency. Sug1, S7, and S6a

protein expression was effectively decreased using ATPase specific

siRNA. Blots shown are indicative of data from three biologically

independent experiments.

(TIFF)

Figure S4 (A, B, C) siRNA Efficiency. Sug1, S7, and S6a

protein expression was effectively decreased using ATPase specific

siRNA. Blots shown are indicative of data from three biologically

independent experiments.

(TIFF)
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