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Crystallographic and spectroscopic snapshots
reveal a dehydrogenase in action
Lu Huo1,2,*,w, Ian Davis1,2,*, Fange Liu1,w, Babak Andi3, Shingo Esaki1,2, Hiroaki Iwaki4, Yoshie Hasegawa4,

Allen M. Orville3,5 & Aimin Liu1,2

Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can

often make them quite unstable. There are several aldehydic intermediates in the metabolic

pathway for tryptophan degradation that can decay into neuroactive compounds that have

been associated with numerous neurological diseases. An enzyme of this pathway,

2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final

aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme

in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a

covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral,

thiohemiacetal intermediate, a thioacyl intermediate and an NADþ -bound complex from an

active site mutant. These covalent intermediates are characterized by single-crystal and

solution-state electronic absorption spectroscopy. The crystal structures reveal that the

substrate undergoes an E/Z isomerization at the enzyme active site before an sp3-to-sp2

transition during enzyme-mediated oxidation.
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T
he dominant route of tryptophan catabolism, the kynur-
enine pathway, has recently garnered increased attention
given its apparent association with numerous inflamma-

tory and neurological conditions, for example, gastrointestinal
disorders, depression, Parkinson’s disease, Alzheimer’s disease,
Huntington’s disease and AIDS dementia complex1–6. Though
the precise mechanism by which the kynurenine pathway
influences these diseases has not yet been fully elucidated, it has
been determined that several metabolites of this pathway are
neuroactive. Notably, the concentration of quinolinic acid, a non-
enzymatically derived decay product of an intermediate of the
kynurenine pathway used for NADþ biosynthesis, is elevated
over 20-fold in patients’ cerebrospinal fluid with AIDS dementia
complex, aseptic meningitis, opportunistic infections or
neoplasms7, and more than 300-fold in the brain of human
immunodeficiency virus-infected patients8. This NADþ

precursor has also been shown to be an agonist of N-methyl-D-
aspartate receptors, and an increase of its concentration may lead
to over-excitation and death of neuronal cells9,10.

The apparent medical potential of the kynurenine pathway
warrants detailed study and characterization of its component
enzymes and their regulation. One enzyme in particular,
2-aminomuconate-6-semialdehyde dehydrogenase (AMSDH), is
responsible for oxidizing the unstable metabolic intermediate
2-aminomuconate-6-semialdehyde (2-AMS) to 2-aminomuco-
nate (2-AM) (Fig. 1a). On the basis of sequence alignment,
AMSDH is a member of the hydroxymuconic-semialdehyde
dehydrogenase (HMSDH) family under the aldehyde dehydro-
genase (ALDH) superfamily11. ALDHs are prevalent in both
prokaryotic and eukaryotic organisms and are responsible for
oxidizing aldehydes to their corresponding carboxylic acids. They
use NAD(P)þ as a hydride acceptor to harvest energy from their
primary substrate and generate NAD(P)H, which provides the
major reducing power to maintain cellular redox balance12,13. In
addition to being commonly occurring metabolic intermediates,
aldehydes are reactive electrophiles, making many of them toxic.
Enzymes of the ALDH superfamily are typically promiscuous
with regards to their substrates; however, in recent years, this
superfamily has had several new members identified with greater
substrate fidelity, especially when the substrate is identified as a
semialdehyde14.

The putative native substrate of AMSDH, 2-AMS, is a
proposed metabolic intermediate in both the 2-nitrobenzoic acid
degradation pathway of Pseudomonas fluorescens KU-7 (ref. 15)
and the kynurenine pathway for L-tryptophan catabolism in
mammals9,10,16. In the presence of NADþ and AMSDH, 2-AMS
is oxidized to 2-AM (Fig. 1a); however, it can also spontaneously
decay to picolinic acid and water with a half-life of 35 s at neutral
pH17. Due to its instability, 2-AMS has not yet been isolated,
leaving its identity as the substrate of AMSDH an inference
based on decay products and further metabolic reactions.
There are several reasons for the poor understanding of this
pathway: it is complex with many branches, some of the
intermediates are unstable and difficult to characterize, and
several enzymes of the pathway, including AMSDH, are not well
understood. Hence, the structure of AMSDH will help to address
questions such as what contributes to substrate specificity for the
semialdehyde dehydrogenase and how 2-AMS is bound and
activated during catalysis.

In the present study, we have cloned AMSDH from
Pseudomonas fluorescens, generated an E. coli overexpression
system and purified the target protein for molecular study. We
also constructed several mutant expression systems to character-
ize the role of specific active site residues. Enzymatic assays were
performed for all forms of the enzyme, and crystal structures were
solved for the wild type and one mutant. We were able to capture

several catalytic intermediates in crystallo by soaking protein
crystals in mother liquor containing either the primary organic
substrate or a substrate analogue and discovered that in addition
to dehydrogenation, the substrate undergoes isomerization at the
active site.

Results
Catalytic activity of wild-type AMSDH. Due to the unstable
nature of its substrate, 2-AMS, the activity of AMSDH was
detected using a coupled-enzyme assay that employed its upstream
partner, a-amino b-carboxymuconate e-semialdehyde decarbox-
ylase (ACMSD), to generate 2-AMS in situ. ACMSD transforms
a-amino b-carboxymuconate e-semialdehyde (ACMS) (lmax at
360 nm) to 2-AMS (lmax at 380 nm)16,17. As seen in Fig. 1b, in an
assay that uses only ACMSD, the absorbance peak of its substrate,
ACMS, red-shifts to 380 nm as 2-AMS is formed. The absorbance
at 380 nm then quickly decreases as 2-AMS decays to picolinic
acid, a compound with no absorbance features above 200 nm. In a
coupled-enzyme assay, ACMSD, AMSDH and NADþ are
included in the reaction system. As shown in Fig. 1c, ACMS
is still consumed; however, there is no red shift observed because
2-AMS is enzymatically converted to 2-AM (lmax at 325 nm)
rather than accumulating and decaying to picolinic acid. The
production of 2-AM requires that an equimolar amount of NADþ

be reduced to NADH (lmax at 339 nm). A stable alternative
substrate, 2-hydroxymuconate-6-semialdehyde (2-HMS), was
used to pursue kinetic parameters (Fig. 1d), when using
saturating NADþ concentrations (Z1 mM), the kcat and Km of
AMSDH for 2-HMS were 1.30±0.01 s� 1 and 10.4±0.2mM,
respectively (Fig. 1e).

Structural snapshots of the dehydrogenase catalytic cycle. We
solved five crystal structures of wild-type AMSDH, including the
ligand-free (2.20 Å resolution), NADþ -bound binary complex
(2.00 Å), ternary complex with NADþ and substrate 2-AMS
(2.00 Å) or 2-HMS (2.20 Å) and a thioacyl intermediate (1.95 Å).
All five structures belong to space group P212121. Data collection
and refinement statistics are listed in Supplementary Table 1. The
complete AMSDH model includes four polypeptides per asym-
metric unit describing one homotetramer (Supplementary
Fig. 1a). Each monomer of AMSDH contains three domains: a
subunit interaction domain, a catalytic domain and an NADþ

binding domain (Supplementary Fig. 1b). For details of the sec-
ondary structure, see Supplementary Discussion.

In the structure of the co-crystallized binary complex, an
NADþ molecule is present in an extended, anti-conformation in
the amino-terminal, co-substrate-binding domain of each mono-
mer (Fig. 2a). The electron density map of NADþ is well defined,
and the interactions between the protein and NADþ are
equivalent in all four subunits as shown in Fig. 2e. The NADþ -
bound AMSDH structure is similar to the ligand-free structure
with an aligned r.m.s.d. of 0.239 Å. Residues that belong to the
NADþ -binding pocket are also well aligned with the exception of
Cys302, Arg108 and Leu116 (Supplementary Fig. 2). On binding
NADþ , the thiol moiety of Cys302 rotates so that the sulfur is
2.3 Å closer to the substrate-binding pocket and away from the
nicotinamide head of NADþ .

Crystal structures of enzyme–substrate ternary complexes.
Structures of AMSDH in ternary complex with co-substrate
NADþ and its primary substrates were obtained by soaking co-
crystallized AMSDH-NADþ crystals with 2-AMS and 2-HMS,
respectively. Extra density that fits with the corresponding sub-
strate molecule was observed in the active site of each subunit.
The co-substrate NADþ in the ternary complex structures is
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bound in the same manner as in the binary complex. Binding of
the primary substrates introduced minimal change to the protein
structure; the r.m.s.d. for the superimposed structures of sub-
strate-free with 2-AMS- and 2-HMS-bound ternary complex
structures are 0.170 and 0.276 Å, respectively. These two primary
substrates bind to AMSDH in an identical fashion, with two
arginine residues, Arg120 and Arg464, playing an important role
in stabilizing the substrate by forming two sets of bifurcated
hydrogen bonds with one of the carboxyl oxygens and the
2-amino or hydroxyl group of 2-AMS (Fig. 2b) or 2-HMS
(Fig. 2c), respectively. The observation of two hydrogen bonds
being donated by the active site arginines to the 2-amino group of
2-AMS indicates that in the substrate-bound form, 2-AMS may
be in its 2-imine rather than 2-enamine tautomer, as an amino
group unlikely to accept two hydrogen bonds. Mutation of
Arg120 to alanine causes a moderate decrease of the kcat to
0.7±0.2 s� 1 from 1.30±0.01 s� 1 and a dramatic increase of
the Km with a lower bound of 446.3±195.9 mM (an accurate
determination of the Km is hindered by insufficient 2-HMS
concentrations) compared with 10.4±0.2 mM in the wild type
(Supplementary Fig. 3a). Mutation of Arg464 to alanine
decreased the kcat to B0.3 s� 1, and not only increased the Km to
B170mM, but also leads to a significant substrate inhibition
effect with a Ki of B6 mM (Supplementary Fig. 3b). This substrate
inhibition is likely caused by the unproductive binding of a sec-
ond substrate molecule in the space created by the deletion of

Arg464 or by a failure of the enzyme to properly bind and sta-
bilize the imine form of the substrate.

Catalytic intermediates trapped after ternary complex formation.
Enzyme–NADþ binary complex crystals were soaked in mother
liquor containing 2-HMS for a range of time points
from 5 min to more than 3 h before flash cooling in liquid
nitrogen. In a crystal that was soaked for 40 min, an
intermediate was trapped and refined to a resolution of 1.95 Å
(Fig. 2d). Crystals soaked for longer time points gave a similar
intermediate with poorer resolution. In this structure, 2-HMS is
observed in the 2Z, 4E isomer rather than the 2E, 4E isomer
as seen in the substrate-bound ternary structure. Also, the
substrate interacts with Arg120 and Arg464 with both of its
carboxyl oxygens rather than one carboxyl oxygen and the
2-hydroxy oxygen as shown in the 2-HMS ternary complex
structure. Fitting this density with the 2E, 4E conformation
resulted in unsatisfactory 2Fo� Fc and Fo� Fc density maps
as shown in Supplementary Fig. 4a. Likewise, attempting to fit
the 2Z, 4E isomer to the ternary complex structure did
not produce satisfactory results (Supplementary Fig. 4b).
On E to Z isomerization, the carbon chain of the substrate
extends, and the distance between its sixth carbon and Cys302’s
sulfur is now at 1.8 Å, which is within covalent bond distance for
a carbon–sulfur bond. Also, the continuous electron density
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between Cys302-SG and 2-HMS-C6 indicates the presence of a
covalent bond (Fig. 2f). Another feature of this intermediate is
that the nicotinamide ring of NADþ has moved 4.6 Å away
from the active site and adopted a bent conformation (Fig. 2d)
compared with the position in the binary or ternary complex
structures (Fig. 2a–c). The structural changes of NADþ asso-
ciated with reduction has been observed and well docu-
mented18,19. In the oxidized state, NAD(P)þ lies in the
Rossmann fold in an extended conformation, allowing for
hydride transfer from the substrate to its nicotinamide carbon
during the first half of the reaction. Reduced NAD(P)H then
adopts a bent conformation in which the nicotinamide head
moves back towards the protein surface. This movement
provides more space in the active site for the second half of
the reaction, acyl-enzyme adduct hydrolysis, to take place. Thus,
the coenzyme in this intermediate structure is likely to have been
reduced to NADH and, as such, the structure is assigned as a
thioacyl-enzyme–substrate adduct. The single-crystal electronic
absorption spectrum of the sample has an absorbance maximum
at 394 nm (Fig. 2g). The same absorbance band was observed in
crystals soaked with 2-HMS from 30 min to 2 h (Supplementary
Fig. 5a). However, this long-lived intermediate in the crystal was
not observed in solution with millisecond-to-second time
resolution in stopped-flow experiments (Supplementary
Fig. 6a). Thus, it is either present in an earlier time domain

(sub-milliseconds), or alternatively, it may not accumulate in
solution because NADH can readily dissociate in solution,
whereas it may be trapped in the active site when in the
crystalline state.

Another notable change in the intermediate structure is the
movement of the side chain of Glu268, which rotates 73� towards
the active site (Fig. 2c,d). To probe the function of Glu268, we
constructed an alanine mutant and found that it exhibited no
detectable activity in steady-state kinetic assays. Interestingly,
E268A exhibits completely different pre-steady state activity than
the wild-type enzyme. As shown in Supplementary Fig. 6b, an
absorbance band at 422 nm was formed concomitant with the
decay of the 2-HMS peak within 1 s of the reaction. This new
species is generated stoichiometrically on titration of 2-HMS with
E268A (Fig. 3d). The moiety that gives rise to this new
absorbance band is stable for minutes at room temperature and
cannot be separated from the protein by membrane filtration-
based methods20, suggesting that it is covalently bound to the
protein. The formation of an enzyme–substrate adduct in the
E268A mutant was investigated by mass spectrometry. For the as-
isolated E268A, the resultant multiply charged states
(Supplementary Fig. 7) were deconvoluted to obtain a
molecular weight (MW) of 56,252 Da (Fig. 4a). This value is in
good agreement with the predicted MW of E268A AMSDH plus
an amino-terminal His-tag and linking residues, 56,251 Da. The
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second largest peak in the deconvoluted spectrum has a MW
177 Da greater than that of the most abundant signal. This is
likely due to post-translational modification of the His-tag; a-N-
Gluconoylation of His-tags has been observed in E. coli-expressed
proteins, which cause 178 Da extra mass21. The mutant protein
was then treated with the alternate substrate, 2-HMS, and the
mass spectrum shows a new major peak at 56,390 Da (Fig. 4b),
138 Da heavier than the as-isolated mutant. Similarly, the second
most abundant peak corresponds to a His-tag modified mutant
plus 139 Da. In this spectrum, the peaks arising from the as-
isolated mutant are substantially reduced, indicating that 2-HMS,
141 Da, is bound to the E268A mutant enzyme.

We determined the crystal structure of E268A co-crystallized
with NADþ and refined it to 2.00 Å resolution (Fig. 3a). The

overall structure aligns very well with the wild-type binary
complex structure with an r.m.s.d. of 0.139 Å. The active site of
E268A also resembles the native AMSDH structure
(Supplementary Fig. 8). The nature of the absorbing species at
422 nm was further investigated by soaking co-crystallized
E268A-NADþ crystals in mother liquor containing 2-HMS. By
doing so, two temporally, structurally and spectroscopically
distinct intermediates were identified.

When E268A-NADþ crystals are soaked with 2-HMS for
40 min or less, their single-crystal electronic absorption spectra
show an absorbance maximum at 422 nm (Supplementary
Fig. 5b), as was observed in the solution-state titration and the
stopped-flow assays. An individual electronic absorption spec-
trum for an E268A-NADþ crystal soaked with 2-HMS for
15 min can be found in Fig. 3e (top). The structure of E268A-
NADþ soaked with 2-HMS for 30 min before flash cooling was
solved and refined to 2.15 Å resolution (Fig. 3b). In this structure,
a continuous electron density between Cys302-SG and 2-HMS-
C6 is observed, similar to the thioacyl intermediate observed in
the wild-type enzyme. However, in contrast to the thioacyl
intermediate, the density around C6 is less flat, indicating an
sp3- rather than sp2-hybridized carbon (Fig. 5a). The angle
between the plane of the carbon backbone of the substrate and
the formerly aldehydic oxygen is 55±9�, compared with the
angle of the wild-type thioacyl intermediate at 26±4�
(Supplementary Table 2). More importantly, the C6 of 2-HMS
and the C4N of NADþ are very close (2.4–2.8 Å), making
it unlikely that the hydride has been transferred from the
substrate. Taken together, these data allow us to assign this
intermediate to a thiohemiacetal enzyme adduct (Fig. 3b).
A similar intermediate has only been trapped once previously
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in a crystal that contains no co-substrate22. Hence, this is the
first time for this intermediate to be trapped in the presence
of NADþ .

If the E268A-NADþ crystals are soaked with 2-HMS for
longer than 1 h, their single-crystal electronic absorption
spectra begin to resemble that of the wild-type, thioacyl
intermediate with a corresponding absorbance maximum at
394 nm (Supplementary Fig. 5b), as seen in wild-type, thioacyl
intermediate crystals. An individual electronic absorption spec-
trum for an E268A-NADþ crystal soaked with 2-HMS for
120 min can be found in Fig. 3e (bottom). The structure of an
E268A-NADþ crystal soaked with 2-HMS for 180 min was
solved and refined to 2.20 Å (Fig. 3c). The structure of this
intermediate is also similar to the wild-type, thioacyl-enzyme
adduct with NADH, rather than NADþ found at the active site.
The distance between the C4N of NADH and C6 of 2-HMS is
longer than 6.1 Å (Fig. 3c). The electron density around C6 is
flatter (Fig. 5b) compared with the thiohemiacetal intermediate
and similar to the thioacyl intermediate trapped in the wild-type
AMSDH structure (Fig. 2f), and the angle between the plane of
the carbon backbone of the substrate and the carbonyl oxygen is
20±5�, which is statistically indistinguishable from that of the
wild-type, thioacyl intermediate, 26±4� (Supplementary
Table 2). On the basis of the similarities in their absorbance
and structures, we conclude that this latter intermediate is
equivalent to the wild-type, thioacyl intermediate. It is also worth
noting that the strictly conserved asparagine 169 (Fig. 5) is seen to
stabilize both the thiohemiacetal and thioacyl intermediates
through hydrogen-bonding interactions.

Investigation of isomerization by computational modelling.
The isomerization of 2-AMS from the 2E to 2Z isomer implied by
the solved crystal structures was probed with density functional
theory calculations. The free energy profiles obtained were used
to help illuminate the nature of 2-AMS and gain insight into how
the active site of AMSDH may facilitate the isomerization. The
total energies of different isomers and rotamers of 2-AMS in its
enamine/aldehyde and imine/eneol tautomers and the rotational
barriers about their respective 2–3 bond were compared. For the
imine/eneol tautomer, additional computations were performed
with the side groups from Arg120 and Arg464 to investigate what
effect, if any, they will have on the free energy profile for rotation
about the 2–3 bond of 2-AMS.

First, 2-AMS was constructed and optimized in its 2-enamine,
6-aldehyde, 2E isomer with a negatively charged 2-carboxylate
group (Fig. 6a). To estimate the energy barrier for an uncatalysed

R120 N169

C302

A268
A268

C302

N169R120

R464R464

Figure 5 | Crystal structures of two distinct catalytic intermediates. (a) Electron density map of the thiohemiacetal intermediate obtained from E268A-

NADþ crystal soaked with 2-HMS for 30 min. (b) Electron density map of the thioacyl intermediate obtained from E268A-NADþ crystal soaked with

2-HMS for 180 min. The 2Fo� Fc electron density map for ligands and Cys302 is contoured to 1.0 s and shown as a blue mesh. The omit map for ligands

and Cys302 is contoured to 2.0 s and shown as a gray mesh.
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isomerization from the 2E to the 2Z isomer, the 2–3 double bond
was then restrained at 10� intervals from 180 to 0�, and the
structure was optimized at each point. On the basis of the free
energy profile (Fig. 6a), the uncatalysed isomerization barrier is
31.9 kcal mol� 1. The profile also shows that the 2Z isomer, as
might be expected, is lower in energy than the 2E isomer by
4.2 kcal mol� 1. Next, the rotational barrier about the 2–3 bond of
2-AMS when in its 2-imine, 6-enol tautomer, as is suggested by
the ternary complex structure, was calculated in the same
manner. The barrier was found to be 9.2 kcal mol� 1, and
opposite to the enamine tautomer, the ‘2Z-like’ rotamer is higher
in energy than the ‘2E-like’ rotamer by 1.7 kcal mol� 1 (Fig. 6b).
Unsurprisingly, the rotational barrier about the 2–3 bond is much
lower in the imine tautomer; however, the ‘2Z-like’ rotamer of the
imine tautomer is 21.8 kcal mol� 1 higher in energy than the 2Z
isomer of the enamine tautomer.

Possible influences of the two active site arginines on the free
energy profile for rotation were also considered. To mimic the
conditions of the enzyme active site, similar calculations as those
above were performed, which included the guanidinium heads of
Arg120 and Arg464. The starting model was built using the active
site geometry of the ternary complex crystal structure (PDB entry:
4I25), and on inspection, it is immediately apparent that with two
arginines in such close proximity to the substrate, there is
insufficient space for two hydrogen atoms on the nitrogen at the
2-position of 2-AMS, and attempts to optimize an enamine
tautomer with the hydrogen-bonding pattern of the ternary
complex produced structures within which the entire 2-AMS
molecule rotates so that only the carboxylate group interacts with
the guanidinium moieties. The absolute positions of the
guanidinium groups were fixed and the structure of 2-AMS in
the imine tautomer was optimized. The dihedral angle of the 2–3
bond of 2-AMS was then increased in 45� increments and the
structure optimized while restraining the position of the
guanidinium groups and the 2–3 bond to build a rough free
energy profile to estimate the rotational barrier. In the presence of
the active site arginines, the barrier about the 2–3 bond of 2-AMS
is further reduced to 8.5 kcal mol� 1 (Supplementary Table 3).
Another interesting finding is that in the presence of the
guanidinium groups, the ‘2E-like’ and ‘2Z-like’ rotamers of
2-AMS are nearly isoenergetic, with a free energy difference
of 0.2 kcal mol� 1 (Supplementary Table 3).

Discussion
The substrate of AMSDH, 2-AMS, contains an unstable aldehyde
in conjugation with an enamine and can decay to picolinic acid
and water, presumably through an electrocyclization reaction
similar to its metabolic precursor, ACMS23. To assay the
enzymatic activity, the upstream enzyme was utilized in the
reaction mixture to generate substrate, and it was shown that
AMSDH is catalytically active. Unfortunately, no kinetic
parameters can be reliably determined because the
concentration of 2-AMS is not well defined in the coupled-
enzyme assay. To circumvent this issue, a previously-identified,
stable alternative substrate, 2-HMS24,25, in which a hydroxyl
group replaces the amino group in 2-AMS to prevent cyclization,
was used to characterize the activity of AMSDH and to examine
the activity of the mutants.

Substrate-bound, ternary complex structures were obtained by
soaking co-crystallized protein and NADþ with 2-AMS or
2-HMS. 2-AMS is an unstable compound which decays with a t1/2

of about 9 s at pH 7.5 and 37 �C or 35 s at pH 7.0 and 20 �C.
Notably, this is its first reported structure. It appears to be
stabilized in the enzyme active site in its imine tautomer by
forming two sets of bifurcated hydrogen bonds with Arg120 and

Arg464 so that the electrocyclization reaction cannot occur. Both
arginine residues are close to the protein surface and in good
positions to serve as gatekeepers, bringing the substrate into the
active site. As a residue residing on a loop, Arg464 should be
relatively flexible. The electron density for the side chain of
Arg120 is partially missing in the binary complex structure but
very well resolved in both ternary complex structures. This
observation indicates that the presence of substrate can stabilize
what may be a flexible residue. It becomes evident from the
coordinates that Arg120 and Arg464 play an important role in
substrate recognition, stabilization and possibly product release.
Two arginine residues are rarely observed in such close proximity,
stabilizing one end of the same molecule with multiple hydrogen
bonds. With the exception of the hydrogen bonds provided by
Arg120 and 464, the substrate-binding pocket is mostly
composed of hydrophobic residues. On the basis of sequence
alignment (Supplementary Fig. 9), these two arginine residues are
strictly conserved throughout the HMSDH family but are not
found in other members of the ALDH superfamily. We propose
that these dual arginines combined with the size restrictions
provided by the hydrophobic pocket endow this enzyme with its
specificity towards small a-substituted carboxylic acids with an
aldehyde moiety, such as 2-AMS and 2-HMS. Furthermore, our
computational work suggests that these arginines are crucial for
stabilizing the imine tautomer of 2-AMS to allow for rotation
about its 2–3 bond.

Two strictly conserved catalytic residues, Cys302 and Glu268,
are present at the interior of the substrate-binding pocket.
General features regarding these residues in the ALDH super-
family are (1) that the cysteine serves as a catalytic nucleophile,
which is anticipated to form a covalent-adduct intermediate with
the substrate by a nucleophilic addition during catalysis26–28 and
(2) that the glutamate serves as a base to activate water for
hydrolysis of the thioacyl-enzyme adduct29–32. Previous studies
indicate that the catalytic cysteine can adopt two conformations,
resting and attacking19. In the ligand-free structure, Cys302 is far
from where the carbonyl carbon of the substrate should be and is
in the resting state. In the ternary complex structures, Cys302 is
located at an ideal position to initiate catalysis, which is the
attacking state. It is proposed to attack the aldehydic carbon (C6)
of the substrate. In the two ternary complex structures, the
distance between the sulfur of Cys302 and the C6 of the substrate
is B3.3 Å. Cys302 and the aldehydic carbon form a covalent
bond in both thioacyl and thiohemiacetal intermediates.
Mutation of Cys302 to serine led to enzyme with no detectable
dehydrogenase activity, further confirming its catalytic
significance.

Examining the wild-type AMSDH structures shows that in the
NADþ -bound binary complex, Glu268 adopts a ‘passive’
conformation, pointing away from the substrate-binding pocket,
and forms hydrogen bonds with both NE of Trp177 (3.2 Å
distance) and the backbone oxygen of Phe470 (3.6 Å) to leave
space for the reduction of NADþ . Its electron density is very well
resolved and the side chain B-factor is close to average: 28.2 Å2/
28.5 Å2. The thiol moiety of Cys302 is 7.14 Å from Glu268 and is
unlikely to form interactions. Interestingly, in both substrate-
bound structures, Glu268 becomes more flexible and exhibits
much weaker electron density and increased side chain B-factors
compared with average protein B-factors: 37.8 Å2/28.5 Å2 and
66.37 Å2/39.7 Å2. In the thioacyl intermediate structure, the
electron density of Glu268 becomes very well defined again, but
its side chain rotates 73� towards the bound substrate and seems to
be in an ‘active’ position to abstract a proton from a deacylating
water (Fig. 2d). At this point in the reaction cycle, the NADH
molecule needs to leave the active site to make room for the
catalytic water molecule. Movement of the nicotinamide ring of
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NADþ coupled with the rotation of an active site glutamate has
previously been observed in other ALDHs during catalysis30–32.

Mutation of Glu268 to alanine led to the accumulation of the
thiohemiacetal intermediate in both solution and crystalline
states. The strictly conserved glutamate residue in the active site
of ALDH enzymes has been proposed to play up to three possible
roles during catalysis. It is strictly required to activate the
deacylating water that allows for product release, it is in a ‘passive’
conformation during NAD(P)þ reduction, and in some cases, it
may serve to activate cysteine for nucleophilic attack33. On the
basis of these roles, mutation to alanine would be expected to
decrease the rate of hydrolysis of the thioacyl adduct, have no
effect on the rate of reduction of NADH and possibly decrease the
rate of nucleophilic attack by cysteine. With this understanding,
deletion of the active site glutamate should cause an accumulation
of the thioacyl intermediate. However, in this work, the E268A
mutant is shown to accumulate the preceding thiohemiacetal
intermediate both in crystal and in solution. This finding suggests
an additional catalytic role for this residue: rotation of Glu268
towards the active site facilitates the hydride transfer from the
tetrahedral thiohemiacetal adduct to NADþ . The rapid
formation of the intermediate in solution indicates that Glu268
of AMSDH does not play a role in activating cysteine. However, it
does appear necessary to complete hydride transfer from the
substrate to NADþ , and its removal turns the native, primary
substrate into a suicide inhibitor.

On the basis of previous studies of the ALDH mechanism, the
eight high-resolution crystal structures solved (Supplementary
Table 1) as well as our biochemical and computational studies, we
propose a catalytic mechanism for AMSDH. As shown in Fig. 7,
NADþ binds to the enzyme, 1, to form an NADþ -bound
AMSDH complex, 2. The substrate, 2-AMS, is then recognized by
Arg120 and Arg464 through multiple hydrogen-bonding inter-
actions, and its imine tautomer is stabilized in the active site, 3. At
this point, the order of the rotation, tautomerization and
nucleophilic attack by C302 on the aldehydic carbon to produce

the tetrahedral, thiohemiacetal intermediate, 4, is not yet clear.
The isomerization and nucleophilic attack drive a translation of
the substrate away from Arg120 and Arg464 so that they are only
able to interact with the carboxylate group of the substrate. Next,
NADþ is reduced to NADH by abstraction of a hydride from 4,
forming a thioacyl intermediate, 5, a process which involves an
sp3-to-sp2 transition during oxidation of the organic substrate by
NADþ . On reduction, the nicotinamide portion of NADH
moves away from the substrate as Glu268 rotates into position to
activate a water molecule to perform a nucleophilic attack on the
same carbon that was previously attacked by Cys302, forming a
second tetrahedral intermediate, 6. Finally, the second tetrahedral
intermediate collapses, breaking the C–S bond and releasing the
final products, 2-AM and NADH. Species 1–5 are spectro-
scopically and structurally characterized, while intermediate 6
was not seen to accumulate.

In this work, five catalytically relevant structures of the wild-
type AMSDH and three mutant structures yield a comprehensive
understanding of the protein’s overall structure, co-substrate-
binding mode and elucidate the primary residues responsible for
substrate specificity among the HMSDH family of the ALDH
superfamily. The structural and spectroscopic snapshots capture
the crystal structure of an unstable kynurenine metabolite,
2-AMS, and two catalytic intermediates, including stabilizing a
tetrahedral intermediate in a mutant protein, which was further
verified by mass spectrometry. Capture of a thiohemiacetal
intermediate upon deletion of E268 also points to a new role for
this well-established active site base in hydride transfer from
the substrate to NADþ . Another interesting finding revealed
through solving the ternary complex and intermediate crystal
structures and supported by computational studies is that an E to
Z isomerization of the substrate occurs in this dehydrogenase
before hydride transfer. To the best of our knowledge, this is the
first piece of structural evidence illustrating an ALDH
that proceeds via an E/Z isomerization of its substrate during
catalysis.
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aminomuconate-thiohemiacetal adduct (4). AMSDH-mediated oxidation of 4 concomitant with reduction of NADþ to NADH follows, generating a

thioacyl-enzyme intermediate (5). Both 4 and 5 are the catalytic intermediates covalently attached to the enzyme. Hydrolysis of 5 then allows the release

of the products 2-AM and NADH, restoring the ligand-free enzyme for the next catalytic cycle.
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Methods
General methods. The cloning, expression, purification and site-directed muta-
genesis of AMSDH are described in the Supplementary Methods.

Preparation of ACMS and 2-HMS. ACMS was generated by catalysing the
insertion of molecular oxygen to 3-hydroxyanthranilic acid by purified, Fe2þ

reconstituted 3-hydroxyanthranilate 3,4-dioxygenase as described previously16,20.
2-HMS is generated non-enzymatically from ACMS following a previously
established method24. The pH of solutions containing ACMS was adjusted to B2 by
the addition of hydrochloric acid. 2-HMS formation was monitored on an Agilent
8453 diode-array spectrophotometer at 315 nm. The solutions were then neutralized
with sodium hydroxide once the absorbance at 315 nm stopped increasing. 2-HMS
at neutral pH has a maximum absorbance at 375 nm (ref. 24).

Enzyme activity assay using 2-HMS as substrate. Steady-state kinetics analyses
were carried out at room temperature on an Agilent 8453 diode-array spectro-
photometer. Reaction buffer contains 25 mM HEPES and 1 mM NADþ , pH 7.5.
Consumption of 2-HMS by 200 nM AMSDH was detected by monitoring the
decrease of its absorbance at 375 nm with a molar extinction coefficient of
43,000 M� 1cm� 1 (ref. 24) for 15 s with a 0.5 s integration time. For mutants,
700 nM protein and a wavelength of 420 nm, e420 11,180 M� 1cm� 1, was used.
Absorbance at 375 nm decreased and blue shifted to 295 nm, the maximum
ultraviolet absorbance for the product, 2-hydroxymuconic acid. This is consistent
with previous reports in which the ending compound was purified and verified as
the correct product24. The pre-steady state spectra were obtained with an Applied
Photophysics Stopped-Flow Spectrometer SX20 (UK) with the mixing unit hosted
inside an anaerobic chamber made by Coy Laboratory Products (MI, USA). Pre-
steady state activity used the same reaction buffer but with 23 mM AMSDH or
E268A and 25 mM 2-HMS and were carried out at 10 �C. The change in absorbance
was monitored for 1.0 s.

X-ray crystallographic data collection and refinement. Purified AMSDH sam-
ples at a final concentration of 10 mg ml� 1 containing no NADþ or 10 equiv. of
NADþ were used to set up sitting-drop vapour diffusion crystal screening trays in
Art Robbins 96-well Intelli-Plates using an ARI Gryphon crystallization robot. The
initial crystallization conditions were obtained from PEG-Ion 1/2 (Hampton
Research) screening kits at room temperature. The screened conditions were opti-
mized by increasing protein concentration to 40 mg ml� 1 and lowering crystal-
lization temperature to 18 �C. NADþ -bound AMSDH crystals were obtained from
drops assembled with 1.5ml of protein (preincubated for 10 min with 10 equiv. of
NADþ ) mixed with 1.5ml of a reservoir solution containing 20% polyethylene glycol
3350 and 0.2 M sodium phosphate dibasic monohydrate, pH 9.1, by hanging drop
diffusion in VDX plates (Hampton Research). Pyramid shaped crystals that diffract
up to B1.9 Å appeared overnight. The reservoir solution for crystallizing the
cofactor-free AMSDH crystals contains 12% polyethylene glycol 3350, 0.1 M sodium
formate, pH 7.0. Crystals belonging to the same space group formed within 2–3 days
with an irregular plate shape and diffracted up to B2.2 Å. NADþ -AMSDH crystals
were used for substrate-soaking experiments. Crystals were transferred to mother
liquor solution containing B1 mM 2-HMS and incubated for 10–180 min before
flash cooling in liquid nitrogen. Soaking 2-AMS as a substrate is more complicated
because of its instability. Crystallization solution containing B1.5 mM ACMS were
used for soaking. After transferring several crystals to the soaking solution (8ml), 2ml
of 1 mM purified ACMSD was included to catalyse the conversion of ACMS to
2-AMS. Crystals were flash frozen after a 5 min-incubation. Crystallization solution
containing 20% glycerol or ethylene glycol was used as cryoprotectant. X-ray
diffraction data were collected on SER-CAT beamline 22-ID or 22-BM of the
Advanced Photon Source, Argonne National Laboratory.

Ligand refinement and molecular modelling. The first AMSDH structure, the
cofactor NADþ bound structure, was solved by the molecular replacement method
with the Advanced Molecular Replacement coupled with Auto Model Building
programs from the PHENIX software using 5-carboxymethyl-2-hydroxymuconate
semialdehyde dehydrogenase (PDB: 2D4E) as a search model, which shares 39% of
amino-acid sequence identity with P. fluorescens AMSDH. The ligand-free, mutant
and ternary complex structures were solved by molecular replacement using the
refined NADþ -AMSDH as the search model. Refinement was conducted using
PHENIX software34. The program Coot was used for electron density map analysis
and model building35. NADþ /NADH, substrates 2-AMS and 2-HMS and Cys-
substrate covalent-adduct intermediate were well defined and added to the model
based on the 2Fo� Fc and Fo� Fc electron density maps. Refinement was assessed
as complete when the Fo� Fc electron density contained only noise. The structural
figures were generated using PyMOL software (http://www.pymol.org/).

Single-crystal spectroscopy. Electronic absorption spectra from single crystals
held at 100 K were collected at beamline X26-C of the National Synchrotron Light
Source (NSLS)36. The electronic absorption data were typically obtained between
200 and 1,000 nm with a Hamamatsu (Bridgewater, N.J.) L10290 high-power
ultraviolet–visible light source. The lamp was connected to one of several 3-m long

solarization-resistant optical fibres with an internal diameter of 115, 230, 400 or
600 mm (Ocean Optics, Dunedin, FL). The other end was connected to a 40-mm
diameter, 35 mm working distance 4� , Schwardchild design reflective microscope
objective (Optique Peter, Lentilly France). The spectroscopy spot size is a
convolution of the optical fibre diameter and the magnification of the objective,
which in this case produced 28, 50, 100 or 150mm diameter spots, respectively.
Photons that passed through the crystal were collected with a second, aligned
objective that was connected to a similar optical fibre or one with a slightly
larger internal diameter. The spectrum was then recorded with either an Ocean
Optics USB4000 or QE65000 spectrometer. Anisotropic spectra and an image of
the crystal/loop were collected as a function of rotation angle in 5� increments.
These were analysed by XREC37 to determine the flat face and optimum
orientation.

Mass spectrometry. To prepare samples for ESI mass spectrometry, as-isolated
E268A AMSDH was buffer-exchanged to 10 mM Tris (pH 8.0) by running through
a desalting column (GE Healthcare). Intermediate bound E268A was obtained
by mixing E268A with 3 equiv. of 2-HMS. Excess 2-HMS was removed by
desalting chromatography using the same buffer. Desalted proteins were con-
centrated to a final concentration of 20 mM. Freshly prepared samples were rinsed
by acetonitrile and 0.1% formic acid (1:1 ratio) before injection. Mass spectrometry
experiments were conducted using a Waters (Milford, MA) Micromass Q-TOF
micro (ESI-Q-TOF) instrument operating in positive mode. The capillary
voltage was set to 3,500 V, the sample cone voltage to 35 V and the extraction cone
voltage to 2 V. The source block temperature and the desolvation temperature were
set to 100 and 120 �C, respectively. The samples were introduced into the ion
source by direct injection at a flow rate of 5 ml min� 1. The raw data containing
multiple positively charged protein peaks were deconvoluted and smoothed using
MassLynx 4.1.

Computational studies. All ground-state density functional theory calculations
were performed with Gaussian 03 Revision-E.01 at the B3LYP/6-31G*þ level of
theory38. The chemical structures were optimized using the ternary complex crystal
structure (PDB entry: 4I25) as a starting model. To calculate the isomerization
barrier, the dihedral angle about the 2–3 bond was restrained and the rest of the
molecule was optimized. For the calculations that included the guanidinium heads
of Arg120 and Arg464, the geometry was obtained from the crystal structure, and
their positions were fixed while the substrate was optimized.
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19. Muñoz-Clares, R. A., González-Segura, L. & Dı́az-Sánchez, A. G.
Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde
dehydrogenases. Implications for the deacylation step of the catalyzed reaction.
Chem. Biol. Interact. 191, 137–146 (2011).

20. Huo, L., Davis, I., Chen, L. & Liu, A. The power of two: arginine 51
and arginine 239* from a neighboring subunit are essential for catalysis in
a-amino-b-carboxymuconate-e-semialdehyde decarboxylase. J. Biol. Chem.
288, 30862–30871 (2013).

21. Geoghegan, K. F. et al. Spontaneous a-N-6-phosphogluconoylation of a ‘His
tag’ in Escherichia coli: the cause of extra mass of 258 or 178 Da in fusion
proteins. Anal. Biochem. 267, 169–184 (1999).

22. Blanco, J., Moore, R. A. & Viola, R. E. Capture of an intermediate in the
catalytic cycle of L-aspartate-b-semialdehyde dehydrogenase. Proc. Natl Acad.
Sci. USA 100, 12613–12617 (2003).

23. Colabroy, K. L. & Begley, T. P. The pyridine ring of NAD is formed by a
nonenzymatic pericyclic reaction. J. Am. Chem. Soc. 127, 840–841 (2005).

24. Ichiyama, A. et al. Studies on the metabolism of the benzene ring of
tryptophan in mammalian tissues. II. Enzymic formation of a-aminomuconic
acid from 3-hydroxyanthranilic acid. J. Biol. Chem. 240, 740–749 (1965).

25. He, Z., Davis, J. K. & Spain, J. C. Purification, characterization, and sequence
analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas
pseudoalcaligenes JS45. J. Bacteriol. 180, 4591–4595 (1998).

26. Abriola, D. P., Fields, R., Stein, S., MacKerell, Jr. A. D. & Pietruszko, R. Active site
of human liver aldehyde dehydrogenase. Biochemistry 26, 5679–5684 (1987).

27. Kitson, T. M., Hill, J. P. & Midwinter, G. G. Identification of a catalytically
essential nucleophilic residue in sheep liver cytoplasmic aldehyde
dehydrogenase. Biochem. J. 275, 207–210 (1991).

28. Farres, J., Wang, T. T., Cunningham, S. J. & Weiner, H. Investigation
of the active site cysteine residue of rat liver mitochondrial aldehyde
dehydrogenase by site-directed mutagenesis. Biochemistry 34, 2592–2598
(1995).

29. Steinmetz, C. G., Xie, P., Weiner, H. & Hurley, T. D. Structure of mitochondrial
aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure
5, 701–711 (1997).

30. Moore, S. A. et al. Sheep liver cytosolic aldehyde dehydrogenase: the structure
reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases.
Structure 6, 1541–1551 (1998).

31. D’Ambrosio, K. et al. The first crystal structure of a thioacylenzyme
intermediate in the ALDH family: new coenzyme conformation and relevance
to catalysis. Biochemistry 45, 2978–2986 (2006).

32. Park, J. & Rhee, S. Structural basis for a cofactor-dependent oxidation
protection and catalysis of cyanobacterial succinic semialdehyde
dehydrogenase. J. Biol. Chem. 288, 15760–15770 (2013).

33. Wang, X. & Weiner, H. Involvement of glutamate 268 in the active site of
human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-
directed mutagenesis. Biochemistry 34, 237–243 (1995).

34. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for
macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66,
213–221 (2010).

35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics.
Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

36. Orville, A. M. et al. Correlated single-crystal electronic absorption spectroscopy
and X-ray crystallography at NSLS beamline X26-C. J. Synchrotron Radiat. 18,
358–366 (2011).

37. Pothineni, S. B., Strutz, T. & Lamzin, V. S. Automated detection and centring of
cryocooled protein crystals. Acta Crystallogr. D Biol. Crystallogr. 62, 1358–1368
(2006).

38. Frisch, M. J. et al. Gaussian 03, Revision E.01 (Gaussian, Inc., 2004).

Acknowledgements
This work was supported, in whole or in part, by the National Science Foundation grant
CHE-0843537, National Institutes of Health grants GM108988 and GM107529 and
Georgia Research Alliance Distinguished Scientist Program (A.L.), Molecular Basis of
Disease Area of Focus graduate fellowship (L.H., I.D. and S.E.), Center for Diagnostics
and Therapeutics (F.L.), Georgia State University Dissertation Award (L.H.) and funds
from Mext Haiteku (Y.H.), Offices of Biological and Environmental Research award
FWP BO-70 of the U.S. Department of Energy and NIH grant P41GM103473 (B.A. &
A.M.O.). We thank Dr. Siming Wang for assistance with the mass spectrometry analysis
and Dr. Donald Hamelberg for valuable discussions. X-ray data were collected at the
Southeast Regional Collaborative Access Team (SER-CAT) 22-ID and 22-BM beamlines
at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced
Photon Source was supported by the U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. Single-crystal spec-
troscopy data were obtained at beamline X26-C of the National Synchrotron Light
Source (NSLS), Brookhaven National Laboratory with the support of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-98CH10886.

Author contributions
A.L. conceived of and led the study. H.I. and Y.H constructed the initial expression
system. F.L. optimized the expression and established protein isolation and activation
procedures. I.D. solved the apo-AMSDH structure. L.H. solved all complex and inter-
mediate structures. L.H. and I.D. performed the kinetic assays. L.H. performed the mass
spectrometry experiment. S.E. constructed the mutant expression systems. B.A. and
A.M.O. collected the single-crystal electronic absorption spectra. I.D. performed the
quantum chemical calculations. The manuscript was written by L.H. I.D. and A.L.
All authors approved the final submitted manuscript.

Additional information
Accession codes: Coordinates and structure factors for apo-AMSDH, NADþ -bound
AMSDH, NADþ - and 2-AMS-bound AMSDH, NADþ - and 2-HMS-bound AMSDH,
thioacyl intermediate AMSDH, E268A AMSDH, E268A thiohemiacetal intermediate,
and E268A thioacyl intermediate have been deposited in the RCSB Protein Data Bank
under accession codes 4I26, 4I1W, 4I25, 4I2R, 4NPI, 4OE2, 4OU2, and 4OUB,
respectively.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Huo, L. et al. Crystallographic and spectroscopic snapshots
reveal a dehydrogenase in action. Nat. Commun. 6:5935 doi: 10.1038/ncomms6935
(2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6935

10 NATURE COMMUNICATIONS | 6:5935 | DOI: 10.1038/ncomms6935 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Georgia State University
	ScholarWorks @ Georgia State University
	1-2015

	Crystallographic and Spectroscopic Snapshots Reveal a Dehydrogenase in Action
	Lu Huo
	Ian Davis
	Fange Liu
	Babak Andi
	Shingo Esaki
	See next page for additional authors
	Recommended Citation
	Authors


	title_link
	Results
	Catalytic activity of wild-type AMSDH
	Structural snapshots of the dehydrogenase catalytic cycle
	Crystal structures of enzyme-substrate ternary complexes
	Catalytic intermediates trapped after ternary complex formation

	Figure™1Activity of AMSDH.(a) Reaction scheme showing the enzymatic generation of 2-AMS, the reaction catalysed by AMSDH, and the competing non-enzymatic decay of 2-AMS to picolinic acid. (b) Representative assay showing the ACMSD (1thinspmgrM)-catalysed 
	Figure™2Crystal structures of wild-type AMSDH and single-crystal electronic absorption spectrum of a catalytic intermediate.AMSDH was co-crystallized with NAD+ to give AMSDH-NAD+ binary complex crystals that were used for soaking experiments. (a) Active s
	Figure™3Crystal structures of the E268A mutant and its solution and single-crystal electronic absorption spectra.(a) Structure of the active site of the co-crystallized E268A-NAD+ binary complex, (b) a thiohemiacetal intermediate obtained by soaking the E
	Figure™4Deconvoluted positive-mode electrospray ionization mass spectra of as-isolated E268A (a) and 2-HMS treated-E268A (b).The two major components are labelled with their respective molecular weights
	Investigation of isomerization by computational modelling

	Figure™5Crystal structures of two distinct catalytic intermediates.(a) Electron density map of the thiohemiacetal intermediate obtained from E268A-NAD+ crystal soaked with 2-HMS for 30thinspmin. (b) Electron density map of the thioacyl intermediate obtain
	Figure™6Free energy profiles for the rotation about the 2-3 bond of 2-AMS in its (a) enamine and (b) imine form, respectively.DFT calculations were performed at the B3LYPsol6-31Gast+ level of theory. The dihedral angle about the 2-3 bond was restrained in
	Discussion
	Figure™7Proposed catalytic mechanism for the oxidation of 2-AMS by AMSDH.The primary substrate (2E, 4E)-2-aminomuconate-semialdehyde binds to the enzyme in its imine tautomer to form the ternary complex (3). An isomerization and attack by cysteine on the 
	Methods
	General methods
	Preparation of ACMS and 2-HMS
	Enzyme activity assay using 2-HMS as substrate
	X-ray crystallographic data collection and refinement
	Ligand refinement and molecular modelling
	Single-crystal spectroscopy
	Mass spectrometry
	Computational studies

	KeszthelyiD.TroostF. J.MascleeA. A.Understanding the role of tryptophan and serotonin metabolism in gastrointestinal functionNeurogastroenterol. Motil.21123912492009MyintA. M.Kynurenine pathway in major depression: evidence of impaired neuroprotectionJ. A
	This work was supported, in whole or in part, by the National Science Foundation grant CHE-0843537, National Institutes of Health grants GM108988 and GM107529 and Georgia Research Alliance Distinguished Scientist Program (A.L.), Molecular Basis of Disease
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information


