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ABSTRACT 

Text classification, the task of metadata to documents, needs a person to take significant 

time and effort. Since online-generated contents are explosively growing, it becomes a challenge 

for manually annotating with large scale and unstructured data. Recently, various state-or-art text 

mining methods have been applied to classification process based on the keywords extraction. 

However, when using these keywords as features in the classification task, it is common that the 

number of feature dimensions is large. In addition, how to select keywords from documents as 

features in the classification task is a big challenge. Especially, when using traditional machine 

learning algorithms in big data, the computation time is very long. On the other hand, about 80% 

of real data is unstructured and non-labeled in the real world. The conventional supervised 



 

 

feature selection methods cannot be directly used in selecting entities from massive data. Usually, 

statistical strategies are utilized to extract features from unlabeled data for classification tasks 

according to their importance scores. We propose a novel method to extract key features 

effectively before feeding them into the classification assignment. Another challenge in the text 

classification is the multi-label problem, the assignment of multiple non-exclusive labels to 

documents. This problem makes text classification more complicated compared with a single 

label classification. For the above issues, we develop a framework for extracting data and 

reducing data dimension to solve the multi-label problem on labeled and unlabeled datasets. In 

order to reduce data dimension, we develop a hybrid feature selection method that extracts 

meaningful features according to the importance of each feature. The Word2Vec is applied to 

represent each document by a feature vector for the document categorization for the big dataset. 

The unsupervised approach is used to extract features from real online-generated data for text 

classification. Our unsupervised feature selection method is applied to extract depression 

symptoms from social media such as Twitter. In the future, these depression symptoms will be 

used for depression self-screening and diagnosis. 
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                  Natural Language Processing, Depression Symptoms, Social Media 
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1 INTRODUCTION 

1.1 Background 

Text classification [2] is a task of assigning classes or labels to a public text document. It 

provides a view of document collections and has many real applications. For example, each news 

can be annotated with distinct categories, such as political issues, sports, business, and so on. The 

text classification or annotation gives business companies insights for them to make reliable 

business decisions. On the other hand, searching the text categories online provides a convenient 

way for people to choose their interests. Another interesting application of text classification is 

spam detection, which classifies emails into two categories (spam and normal emails). The text 

mining and text classification promise huge economic and research benefits.  

Our new framework focuses on the textual data classification. Many text mining methods 

normally extract keywords from a text corpus and use them for proceeding mining tasks [22, 24]. 

However, there is not a general vocabulary that indicates which words in the corpus are 

important, and which are not. In fact, a few specific words are useful in a document but 

meaningless to another document. A naïve but general method that is used in the text mining 

preprocessing step is to remove stop words and punctuations. In this case, we assume that stop 

words and punctuations are not important to text mining. While, there is not even a common stop 

word list for all text mining tasks. A method of only removing the stop words and punctuations 

may generate a massive number of features for the text classification. This issue may affect the 

classification performance if the number of training instances is relatively small.  

In the text annotation, single-label classification is a common and simple problem to 

learn from a set of examples, each associated with a class label or category. The multi-class 

classification method assigns one category to each instance or data sample for each class label. 



 

 

Nowadays, multi-label classification approaches are increasingly required by real applications, 

such as gene classification and article annotation. People explore many algorithms to improve 

multi-label classification. A common method is to convert a multi-label problem into single label 

tasks without considering the relationship between labels [12].  

As machine learning has been widely used in a variety of fields, text mining is mostly 

related to machine learning applications. Many well-known machine learning algorithms, such as 

Logistic Regression, Support Vector Machines (SVM) [28,29], K-Nearest Neighbors [80], 

Artificial Neural Networks (ANN), and many others, are used for text mining applications. 

Comparing with the fact that many new machine learning algorithms have been developed for 

text classification, there is a trend that data processing and transformation become more and 

more important. Even in many cases, the need for good quality of data is more than the need for 

building a strong machine learning algorithm. Such a case is very common in the data mining 

research.  

Data can be any forms including textual data, digital data, streaming data and so forth. 

Many of these kinds of data are public, but others are not. The source of public data, e.g. social 

media, which produces billions of data every day. They are public, free and innumerous, yet 

mining underlying knowledge of public data is difficult because of these data, in general, are 

complex and unstructured. The private data source is able to provide good quality of data, e.g. 

clinical data, which are more valuable and meaningful. However, these data are definitely more 

expensive and inaccessible than the public data. An interesting research topic in the data science 

field is the data properties. To utilize any types of data in our text mining framework, we not 

only focus on the labeled data for evaluating text classification performance, but unsupervised 

text mining algorithm is explored and developed. A few unsupervised or semi-supervised 



 

 

algorithms are used in the specific tasks, such as K-means [49]. The other difficulty in unlabeled 

data mining is the feature selection. Some supervised learning algorithm, like Random Forest 

(RF) [34-36], can be used individually to select important features, but it is a challenge to define 

which features are key features from the large-scale of unlabeled data. In this case, we cannot 

select features based on supervised learning; therefore, we develop an ensemble method to 

discover key features.  

Text mining and machine learning require big enough data for information retrieval and 

classifier training. Recently, the big data has attracted more and more attention in many fields, 

such as scientific research and economical applications. The big data [45] even changes the way 

people working and thinking, and constructs a world in which business and computer science put 

their efforts to realize the value of data. In business, a company can find customers’ actual 

interests through integrating and analyzing the big data. In the Artificial Intelligence (AI), the 

powerful machine learning and data mining algorithms are beneficial from a large dataset.  Big 

data is a huge dataset with complex structures that are generated from many fields such as 

biology, medicine, social networks, and so forth. In fact, many data intelligence applications 

have highly competitive performance when training model from a large amount of data. 

However, that approach makes building a machine learning model more expensive. Training a 

machine learning system using large-scale data is a time-consuming task, it usually takes a 

couple of hours, even a few days to build a machine learning model. After the model has been 

built, the classifier also needs to be re-trained again in a specific period. Thus, it is not easy to 

process a big dataset using traditional data processing tools.  

Considering the computation cost in mining the big data, we will use the machine 

learning and statistical learning strategies together to reduce the cost. Another method to 



 

 

decrease the computing cost of big data is to apply the parallel computing tools to process the big 

data. Currently, Hadoop [54] and Sparks [55] are open source big data computing frameworks 

that are adopted by many enterprises, such as Yahoo, Baidu. Spark provides a framework that is 

used for cluster computing [60] for many kinds of data type and file format. In addition, it 

supports HDFS which is a Hadoop stored filed type. By parallel computing, the driver node 

assigns tasks into cluster manager that user defines, the cluster master then divides the whole 

tasks into several partitions and spreads them out to worker machines. In this way, the computing 

cost will be decreased but keeping the computing performance stable. 

1.2 Challenges for Multi-label Text Classification Framework 

 In order to properly classify the published documents or even a short text, it is essential to 

have automated categorization systems that can clearly label published articles. It is more 

convenient for researchers to search or ask relevant questions on this kind automatic 

classification system. Currently, such labeling or categorization requires the time and effort of 

professional experts who have strong background and experience. Manually annotating articles is 

a time-consuming work, and the annotation accuracy cannot be guaranteed either. Therefore, it 

clearly requires being automated given the rate of publication of research papers. 

 Another challenge in the text mining is the quantity of data. It is true that data is 

everywhere, you can find many kinds of data online. However, there are many other data which 

has good qualities but less quantity. In one of our project [27], we only have 247 article abstracts 

that were labeled by an expert annotator [1]. The amount of data that we can use in the text 

classification is relatively small. In order to build a classifier, we extracted 3,606 features from 

these 247 article abstracts. In this case, it is an example of an 𝑛 ≪ 𝑝 (n much less than p) 

problem: where the number of training instances (𝑛) is much less than the number of features (𝑝) 



 

 

[5]. In fact, many types of high-quality data suffer from this 𝑛 ≪ 𝑝 problem; however, most 

methods in text mining have been developed for situations where there is a plenty of low-quality 

data, rather than a limited high-quality data [27].  

 Our research is not limited to build a supervised learning classifier by the golden-

standard labeled data, the proposed framework can be used to process the real and unlabeled data. 

To collect data for specific text mining tasks, cleaning and formatting data are challenges in the 

preprocessing step. Besides, extracting key features and discovering the hidden information are 

other interesting topics. It is not easy to do unsupervised feature selection, but we can use the 

statistical methods to discover the important features. Because there is not a golden-standard 

vocabulary to evaluate selected features, it is another challenge in our framework. 

The last challenge is the multi-label classification framework, each label in the training 

represents a different classification task, but the tasks are somehow related. Therefore, it includes 

cases that allow a collection of labels to be assigned to an instance. For instance, an article in a 

newspaper or wire service may be assigned to the different categories. Currently, the major 

approach to improve the multi-label classification performance is to transform the multi-label 

classification task into multiple single label tasks [39-41]. However, there are two existing issues 

need to be solved if using this problem transformation strategy. The first issue is that the feature 

space is large, and the other one is that how to keep the relationship among different labels on 

training.  

1.3 Problem Statement 

For text classification, the problem is two-fold [61]: (1) there is no pre-existing and 

reliable vocabulary to utilize in the sciences that guarantees that important ideas are always 

expressed in the same terms. In addition, (2) underlying ideas in research are rarely easily 



 

 

expressed in simple “keyword” terms; they are concepts that require multi-word explanations 

that contain multiple underlying concepts. Our challenge is to mine the scientific documents for 

the words that indicate the underlying concepts and then assign labels that make these concepts 

express explicitly [27]. In general, there is not a standard keyword collection to be used for all 

text classification tasks. For example, some keywords appear in a computer science paper do not 

play an important role in the biology article. Simply searching for a fixed list of keywords is not 

be sufficient for a complex text structure. In this situation, we can only remove the stop words 

and punctuations. However, this leaves a collection of features that are too large to use 

effectively as a starting point for applying standard text mining algorithms; most of the 

algorithms work better with lower feature dimensions [61]. The relative big feature space 

problem is particularly critical when the number of training examples is very small, as often 

happens in the case of expertly labeled documents used for supervised learning classification 

problems. In particular, many types of high-quality data suffer from this 𝑛 ≪ 𝑝 phenomenon [5], 

while most methods in data mining are proposed for situations where there is an abundance of 

relatively crude data. Thus, it is better to apply a feature reduction or feature selection technique 

in training data when feature space is relatively large [61].  

Big data [45] can tell us more information, while it can also bring us the computing 

problem. Considering the situation when mining underlying information on a big dataset, it is 

needed to reduce the data dimension to make computation cost more efficiently, even effectively 

improves the classification performance. Because our previous works [27,61] showed the feature 

reduction and feature selection were helpful in the text classification, we would use the similar 

feature reduction techniques to process the other training dataset. Generally, feature selection 

methods are mainly based on the supervised statistical learning, such as model performance. 



 

 

However, most data are not labeled, which are unstructured and complex, traditional supervised 

learning approaches are not useful for selecting features. To discover the key features of big data 

is also a challenge.  

Our framework is used to implement the multi-label classification [2]. This is a type of 

problem where each instance can be labeled with, in principle, any combination of the labels is 

used in the task. In other work [3], we solved this problem by using a Multi-Instance Multi-Label 

(MIML) algorithm [4]. Then we used principal component analysis (PCA) [21] and stemming to 

pre-process the data before classification. PCA [21] and word stemming are utilized to reduce 

the feature dimension because we have a relatively larger number of features than that of the data 

instances. The experiments showed that the PCA components, used as features, allowed a 

dramatic reduction in feature space dimension. As reported in the paper [27], the PCA was a 

powerful technique for reducing the size of the feature space, while the performance was slightly 

improved.  

1.4 Organization  

The rest of paper is organized as follows. Chapter 2 provides a literature review of related 

work. Chapter 3 presents an overview of the framework. Chapter 4 presents the hybrid feature 

selection methods. Chapter 5 shows how to use the Word2vec to lower the feature dimension for 

huge training dataset. Chapter 6 illustrates a method to extract key features from massive 

unstructured data. Finally, Chapter 7 concludes the research work and points out the future work. 

  



 

 

2 RELATED WORK 

2.1 Multi-label Classification 

In our previous collaboration project [27], we implemented the Multi-Instance Multi-

Label (MIML) algorithm for the multi-label classification. MIML is proven to perform better for 

complex data with a large number of features than the general multi-label classification 

approaches [10]. Figure 2.1 [10] introduces the existing instance-label classification structures. 

Multi-instance learning and Multi-label learning are the N-1 and 1-N model; they are also used in 

text/image classification. The key in the MIML is to discover and keep the relationship between 

each label and corresponding instances. Zhou et al. propose the MIML algorithm for a successful 

image classification [8-10]. In their framework, the MIML problem is transformed into two tasks. 

The first solution is using multi-instance as the bridge, the goal is to learn a function 𝑓%&':	2+ 	×

	𝑦	 → {−1, 1}. In this sign function, 𝑓%&'4𝑋6,𝑦7 = 	+1 if 𝑦	 ∈ 𝑌6	,	and 𝑓%&'4𝑋6,𝑦7 = 	−1 otherwise. 

Different from the first solution, the second solution is utilizing multi-label learning as the bridge. 

To learn a function 𝑓%'': 𝑍 → 2=. 𝐹𝑜𝑟	𝑎𝑛𝑦		𝑍6	 ∈ 𝑍, 𝑓%''(𝑍6	) 	= 	 𝑓%&%'(𝑋6	)  if 𝑍6	 = 	∅(𝑋6) , 

∅:	2+ → 	𝑍  [8-10]. Based on the two solutions, Zhou et al. propose the MIMLBoost and 

MIMLSVM algorithms for supervised learning [10]. Their algorithms perform well both in 

multi-label training and single label (multi-class) training. We extend the MIMLfast algorithm 

designed by Zhou et al. [10] by providing the new bagging schemes [27], which are designed by 

the label combination and resampling with replacement. However, the classification performance 

is not improved well due to the limited dataset [27].  

 

 



 

 

 

Figure 2.1 Four Different Learning Framework [10] 

2.2 Reduce Feature Dimension 

In machine learning, feature engineering is a popular area. The quality and quantity of 

features substantially influence the performance of machine learning methods. Noisy features 

negatively affect the performance of machine learning algorithms, while important useful 

features can improve the performance of supervised learning and unsupervised learning 

algorithms. There are a lot of features extracted from the articles or corpus, both feature 

reduction and feature selection methods can be utilized for feature dimensionality reduction. The 

primary goal is to select a subset from the original feature set. The advantage of reducing feature 

dimension includes: (1) reduce the computing time and storage space in training; (2) it is easier 

to implement the data visualization when feature dimension is reduced into 2D or 3D.  



 

 

2.2.1 Feature Reduction  

 Feature reduction usually can be viewed as the feature extraction strategy. The 

transformation can be a linear mapping or non-linear projection. There are many supervised and 

unsupervised approaches to reduce the original feature dimension, such as the Principle 

Component Analysis (PCA) [21] and Singular Value Decomposition (SVD) [59]. Through 

projecting the initial feature dimension into a lower dimension, new features can be a good 

representative of the original feature set.  

Data clustering is another a feasible method to reduce the feature dimensionality through 

grouping the similar data instances and select a few most important ones to represent each group. 

We assume that the data instances belonging to the same cluster are similar to each other, such 

an assumption can also be applied to feature clustering. In this approach, we can use a collection 

of features to represent the similar features.  

2.2.2 Feature Selection 

 The straightforward way in a feature selection method is selecting the most important 

features from the original feature set, but the challenge is how to define the term “important”. In 

many text mining applications, we simply count the word frequency and choose the most 

frequent words as features in text mining. However, the frequent words usually are not important 

words according to their contributions to text classification task. Thus, we make the pre-existing 

feature selection approaches which are proven useful and reliable in the mathematics and statistic 

fields. 

Recursive Feature Elimination (RFE) is usually used with the SVM classifier to 

recursively eliminate features according to each feature’s importance [30, 44]. Feature usefulness 

is defined in the RFE as the features’ weights in the SVM algorithm. Feature importance is 



 

 

determined by sequentially re-training an SVM classifier and, in each iteration, the least useful 

features are discarded [61]. RFE proceeds until the target number of features are left after 

discarding most of the least useful features. In addition, we can eliminate a fixed percentage of 

least important features rather than only one feature in each step.  

Select K Best (SKB) is a procedure that constructs the 𝜒G (chi-square) statistic between 

each element of the feature space and the labels to determine which features are correlated with 

which labels [31]. Compute chi-squared stats between each non-negative feature and class, this 

score can be used to select the n features with the highest values for the test chi-squared statistic 

from 𝜒. More specifically in the feature selection, we use it to test whether the occurrence of a 

special term and the occurrence of a specific class are independent. Thus, we estimate the 

following quantity for each term and then rank them by their scores. High scores on 𝜒G indicate 

that the null hypothesis (𝐻I) of independence should be rejected and thus that the occurrence of 

the term and class are dependent. If they are dependent, then we select the feature for the text 

classification. Thus, it rejects features with the smallest 𝜒G statistics [32,33]. 

Many ensemble learning methods for classification or regression can be used as a feature 

ranking method if a relevant importance score can be defined. Random Forests (RF) [34-36] is a 

classifier that includes two methods: bagging and a random subspace. Suppose we have n 

number of trees in a forest, then we create n datasets created from randomly resampled data in an 

original dataset with replacement. In order to build a tree, we randomly select subsets of features. 

There are a lot of methods to calculate the feature importance, for example, we can calculate the 

entropy for each node. The averages of these scores for features are used to order them by 

importance. 



 

 

 Combinations of methods of individual feature selection strategies were proposed by 

researchers. Li et al. introduced an approach of combining multiple feature selection techniques 

by using the Combinational Fusion Analysis (CFA) [37]. Li et al. [37] showed that a 

combination method could outperform an individual feature selection method if each one had 

scoring function [61]. In another paper, Neumayer et al. [38] also presented the results of a 

combination of individual feature selection methods. Due to these combinations of methods 

performed better than a single feature selection method, we will evaluate whether combinations 

of our feature selection methods can improve performance compared with a single method [61]. 

We used RFE and SKB individually and sequentially, also in different orders. The first 

method in a sequence selects a subset of the original features, and then the second selects a 

smaller subset from the selected subset. We used Random Forest as a filter to select feature 

subsets with the procedure described above. Because RF generates random subspaces and a 

random number of features are selected, it was not used as the first method for feature selection 

[34]. This is due principally to the random (with replacement) missing features from the original 

feature space. However, RF can be successfully used after either RFE or SKB [61]. 

Above feature selection methods are based on the supervised learning strategy, however, 

we are usually required to select features from millions of unstructured and unlabeled data. Such 

task is a big challenge if people do not have domain knowledge or professional working 

experience in selecting “keywords”. In fact, a limited number of NLP techniques are used to 

identify the important entities, because they are very limited to specific uses. Kim et al. [68] 

proposed an evolutionary local selection algorithm (ELSA) for large-scale feature selection with 

unsupervised learning. Under the K-means guidance, Kim et al. [68] use ELSA to search all 

possible combinations of features and numbers of clusters. 



 

 

2.3 Artificial Neural Network 

 Artificial Neural Network (ANN) [81] is a popular machine learning algorithm for many 

applications. ANN processes information in a similar way the human brain does. The network is 

composed of several or many of highly interconnected neurons working in parallel to solve a 

specific problem. The neural network allows complex nonlinear relationships between the 

response variable and its predictors. Normally, ANN consists of two or three hidden layers, but 

the deep neural network usually contains a large number of hidden layers and each layer consists 

of a number of neurons [81]. The type of neural network can be viewed as deep multi-layers if 

the number of layers is larger than five. In the recent decade, more advanced neural network 

structures have been developed for specific tasks. A deep neural network is not a simple neural 

network structure with multiple hidden layers, but a powerful framework. Recurrent Neural 

Network (RNN) [57] and Convolutional Neural Network (CNN) [56] have outstanding 

performance on various machine learning tasks compared with other machine learning 

algorithms. Furthermore, RNN and CNN are used in the advanced artificial intelligence project, 

such as the self-driven car and Robert.  

The ANN [81] is not only used for machine learning tasks, but also used for the natural 

language process. Bengio et. al [69] proposed the terminology “word embedding” and used 

training data to build an artificial neural network model. The feedforward neural network takes 

the words from the corpus as inputs and converts them into a lower dimension space. Through 

back-propagation with a fine tune, the word embedding is generated. The neural network 

language model (NNLM) can learn a probability distribution over words in the corpus. The 

NNLM is trained to produce the vector representations of a word to capture the semantic 

information. Through iterating over the whole document, every word is learned and represented 



 

 

by a vector with a fixed length. Figure 2.2 illustrates the structure of the Bengio’s NNLM, 

NNLM is similar to the regular ANN but an addition projection layer is included. The softmax 

[82] activation function is used in the output layer; thus, the major computing cost of NNLM is 

between the projection layer and the output layer.  

 

Figure 2.2 Structure of NNLM [69] 

Word2Vec [46-48] similar to the NNLM can also be used to learn vector representations 

of words, which is known as word embedding. The most straightforward but powerful way to 

represent words in articles is to transform words into word vectors, then they can be used to train 

the statistical model to calculate the relationship among words from a mathematical point of 

view. Especially in the neural network, the input data are the word vectors. There are two 

common learning models in neural network training, the Continues Bag of Words (CBOW) and 



 

 

Skip-gram [47]. In the NNLM model, input word vectors are concatenated into the projection 

layer, so the word vector size in the projection layer is 𝑁	 × 	𝑀, N is the number of words 

surrounded by the word w; M means vector size for every input word. However, the CBOW in 

the Word2Vec only sums and averages the input vectors into the projection layer instead. The 

Skip-gram is different from the N-gram [66] model in the NLP, the former one predicts word w 

by the surrounding words; while, the N-gram predicts word w only calculate previous N words. 

Thus, the Skip-gram is able to capture the relationship in the surrounding words, but the word 

order is ignored. 

2.4 Depression Diagnosis System 

In our research, we build an AI-based depression diagnosis system by developing an 

algorithm to extract and summarize the uncommon but potentially helpful depressive symptoms 

from the social media data. We explore Twitter and Web Blogs to collect depression-related 

data. Although the online data is innumerous, the social media data is complex and unstructured, 

data processing and data analysis are not easy. To clean the data collected from the social media, 

we apply the NLP tools to eliminate the noisy data. For data analysis, categorizing data can help 

us discover the underlying relationships of depression symptoms. Thus, the extracted depression 

symptoms through our framework are used as references when recognizing the clinical 

depression. Earlier works for extracting depression symptoms on literature help people learn the 

knowledge of depression detection. Wang et.al [70] applied the Latent Dirichlet Allocation 

(LDA) [71] as the topic categorizing tool to many of texts on adolescent substance use. Through 

separating the collections of articles into distinct themes by LDA [17], the known depressive 

facts were captured. Their work demonstrated that the topic modeling could be a useful approach 

to learn knowledge of depression prediction on the structured documents. In contrast to Wang’s 



 

 

work [71], our challenge is to collect and process the unstructured and more complicated social 

media data. Mitigating the negative effect of the noisy data is an important task. To extract the 

depression symptoms from the social media data, we use a hybrid method like the one [7]. The 

Word2Vec [46,47] is used to convert each word in the corpus to a corresponding vector. 

Moreover, their framework has an ability to group words that share semantic similarities by 

using a clustering method, K-means. We apply a similar but more advanced approach to extract 

the facts of depression in our research. The relationship of these depression symptoms can also 

be found from the data. Another research that conducted by the Wang et al. [13] is to discover 

depression symptoms by mining depression related publications. Wang et al. propose a hybrid 

machine learning method first eliminating the outlier publication which is not relevant to the 

depression symptoms extraction. Utilizing the document summarization and topic learning by 

LDA, more accurate depression symptoms that relevant to corresponding publications can be 

located. 

Nowadays, machine learning is being used in bioinformatics and health care [84-86]; the 

machine learning algorithms can help a doctor do depression diagnosis. Doctors confirm patients’ 

depression by inputting the symptoms into a medical machine, the results will tell the doctor if 

this patient is in the risk of depression or even classify the patient into a digressional patient 

category. A classification method was used in the social media mining [72]. Authors used the 

wider variety of features, such as bag-of-words. An approach was developed for depression 

diagnosis by analyzing the records of user’s activities in Twitter [73]. The features were 

extracted from the history activities of users, such as depressive tweets’ frequency. The data 

were collected from Twitter users who report that they were truly diagnosed with clinical Major 



 

 

Depressive Disorder (MDD)1 [74]. The classifier was built to predict if a person was vulnerable 

to depression. This paper [72] focuses on selecting the reliable depression symptoms for building 

an intelligent depression diagnosis system for medical doctors and a convenient depression self-

screening system for ordinary people.  
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3 MULTI-LABEL TEXT CLASSIFICATION FRAMEWORK 

3.1 Introduction 

The great motivation for building a multi-label text classification framework is that text 

mining is becoming popular and useful in our real lives. For example, the online query or some 

artificial intelligent Q&A systems. The object of text mining is a short phrase or even a corpus. 

Originally, most of the documents are classified manually by the experts with diverse knowledge. 

However, this work is limited by the large scale of textual data and shortness of human 

knowledge. Considering the time consuming and expensive labor, relevant machine learning 

algorithms and natural language processing tools can be applied to text classification tasks. 

Through training a classifier by the dataset under a supervisor, the classifier is built by the 

machine learning and statistics learning. Therefore, given a new and unknown document, the 

classifier can assign a corresponding category to each article or discover the underlying 

knowledge from the dataset. Many machine learning algorithms such as Random Forest, and 

SVM perform well on data mining, where the data type is not limited to the textual data; image 

data and digital data can also be used by machine learning algorithms. Especially, the neural 

network and its dependencies attract more and more attention because they are successfully 

utilized in many commercial applications and scientific research. Additionally, deep learning 

structures [63] have been very popular since they were developed. Many real projects use deep 

learning structures, such as RNN [57] and CNN [56] in image and text classification tasks. 

Machine learning algorithms push the current world into an artificial intelligence era.  

Although a machine learning algorithm plays an important role in the many text mining 

tasks, training data quality is even more important to text classification and annotation. The “data 

quality” itself is a vague term, it is not simple to define what dataset has good quality or not. In 



 

 

the text classification task, we build a classifier that divides all documents into different 

categories. On the other hand, in the document clustering problem, the aim is to group the similar 

documents. Another challenge for text classification is the document quantity. In a real situation, 

we have good quality and gold-standard training data, however, the number of data instances are 

far less than that of features extracted from the original dataset. To avoid the overfitting risk and 

improve the classification performance, we design a method to reduce the feature dimension. 

Data dimensionality reduction can be fulfilled by feature selection or feature reduction strategies. 

We develop a new hybrid method of feature selection to reduce the feature space when it is used 

in the big textual dataset; Besides, our framework can select features by supervised and 

unsupervised approaches for text classification task. 

3.2 Overview of Framework 

In this paper, we introduce a multi-label text classification framework that is used for the 

different types of text data. Our multi-label classification framework includes two major 

components. One is used to deal with labeled data with feature reduction, the other one discusses 

a method to extract features from unlabeled online-generated data. To implement the multi-label 

text classification, we develop new approaches to make our framework powerful when the data 

size is large. The section 1 to 5 present new techniques to reduce the feature dimension in 

training data. To evaluate the proposed framework, we apply the 10-fold cross-validation and the 

F1-micro score to test framework’s performance on the large-scale textual dataset. The sixth 

section introduces a method to extract key features from social media and then use these features 

to future text classification or prediction tasks. Figure 3.1 shows the primary components of the 

proposed framework.  



 

 

 

Figure 3.1 Overview of Proposed Framework 
 

The main purpose of our framework is to annotate a document, such as an article, a tweet 

or a web blog. The left part of the framework is to reduce the training data dimension by 

employing the entity extraction and hybrid of feature selection under unsupervised and 

supervised learning guidance. Another highly competitive way to reduce the feature dimension is 

that we combine the Word2Vec [45] with a clustering algorithm, K-means, to achieve this goal. 

This semi-supervised learning approach uses a novel way to project each document into a new 

lower dimension. 

To deal with the multi-label classification task, we built new bagging schemes in the 

MIMLfast algorithm for training [27]. Apart from the traditional binary label classification task, 
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the new MIMLfast algorithm keeps the correlations among the multiple labels. The proposed 

bagging schemes are constructed based on the multiple different label combinations [27]. 

Besides, we applied the feature reduction (PCA) to reduce its feature dimension. This work was 

done in our previous project, we obtained the valuable results and proved that this approach was 

feasible though the performance was not improved significantly. In addition, we used Binary 

Reverence (BR) [16] and One-vs-all [11] together to be fitted into the LinearSVC [32] algorithm 

to implement the multi-label classification. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4 HYBRID FEATURE SELECTION 

Our previous work [27] utilized the PCA to reduce the original feature dimension to a 

lower feature space. Unfortunately, the performance was not improved substantially compared 

with the old results in the paper [1]. Because this project [27] was suffered from the n ≪ p 

problem and there are some research works show the combination of the method of single 

feature selection approaches perform better than the individual feature selection method, we 

propose a new hybrid feature selection method to improve the multi-label classification. 

4.1 Introduction 

The reason we use the feature selection in the text classification is that we can make 

training more effectively through eliminating the noisy and less useful features. This approach is 

able to reduce the dimensionality of the training data. In this project [61], we applied a hybrid 

feature selection method to process the dataset used in the previous projects [1, 27]. The training 

data in this research are the abstracts of 247 published human neuroimaging journal articles and 

their corresponding metadata labels. The text of the abstracts was obtained from the PubMed 

publication database system (www.ncbi.nlm.nih.gov/pubmed) [1, 25]. These metadata labels 

were created as part of the BrainMap database (www.brainmap.org) and were annotated using 

the standard set of Cognitive Paradigm labels (www.cogpo.org) [61]. These labels were 

originally added to the BrainMap database by trained expert annotators, based on their readings 

of the entire text of each journal article [1, 27].  

In this research, there are eight label dimensions, each dimension has multiple labels 

represented in our dataset, such as Behavior Domain Labels (BDL, 40 labels), Stimulus Type 

Labels (STL, 17 labels), Instruction Type Labels (ITL, 14 labels) and others [27, 61]. Because 

this is a multi-label classification task, each training instance may have more than one labels. 



 

 

Our classification task is difficult, because (1) the training data (247 article abstracts) is really 

small, but the feature dimension (2,317 words for training) is much more than the data instances; 

and (2) the number of labels in most label dimensions is large. We proposed a new multi-label 

classification algorithm, but performance was not improved well [27]; thus, in this project, we 

applied a hybrid of feature selection methods to increase the classification accuracy. 

4.2 Data Preparation 

At first, the stop words and punctuations were removed from the 247 article abstracts by 

using the Natural Language Tool Kit stop list (www.nltk.org) stop words list [20]. After 

removing them, there are 3,606 words remaining. We use these 3,606 words to build a 

vocabulary. Each abstract is then represented by a bag-of-words vector through the one-hot 

encoding: for each article, we index words from the article in the vocabulary and then simply 

count the occurrences of each word. Because most abstracts are lengths from 100-300 words so 

these vectors are sparse; each vector has less than 10% non-zero elements in the vector 

representation [61]. Before forming the word counts, we reduce the number of words by using 

word stemming as a preprocessing step; this procedure maps morphological variants onto their 

stems. For instance, the words “argue”, “argued”, and “arguing” all have the same root “argu-”. 

Even though “argu-” is not a real word, we consider it the stem of all those words, and it 

represents the general underlying meaning in all the variants [61]. The software we used for 

word stemming and lemmatizing is a Natural Language Toolkit (NLTK) text mining library [20]. 

We used the Porter Stemmer and WordNet Lemmatizer, both of them are built in the NLTK 

Stem package [20]. Besides, we are only interested in the words at least more than length 2. 

Through above data preprocessing, the vocabulary size was decreased from 3,606 to 2,317. At 

this step, the original feature dimension is already reduced significantly. This results in a final 



 

 

data matrix with 2,317 rows (one per word) and 247 columns (one per abstract; these are the 

count vectors) and with the counts of words present in each abstract populating the body of the 

matrix. This matrix is the input on the following steps. 

4.3 Multi-Label Classification 

In our previous project [27], we utilized the MIMLfast algorithm [10] to implement the 

multi-label classification. However, the MIMLfast algorithm did not perform well on our dataset 

because it was developed for a large dataset; we then used other multi-label classification 

approaches [14, 15]. One of these methods, Binary Relevance (BR) decomposes multi-label 

problems with n labels into n independent binary classification tasks [16, 41]. In the BR, labels 

are predicted independently and label correlations are not considered. In order to use a binary 

relevance method, we implement One-versus-the-Rest (OvR) multi-label strategy on our training 

data. In this approach, the classifier predicts multiple labels by fitting training instances with 

labels against all instances without the label [61]. BR is a meta-method that requires an 

underlying binary classifier. We used the LinearSVC (Linear Support Vector Classifier) 

implemented in Scikit-Learn [32]. This classifier is based on LIBLINEAR [43]. 

4.4 Feature Selection Methods 

In this section, we apply three individual feature selection methods to our training data, 

Recursive Feature Elimination (RFE), Select K Best (SKB) and Random Forest (RF). However, 

we used RFE and SKB individually and in different orders. The first method in a sequence 

selects a subset of the original 2,317 words, and then the second method selects a subset from the 

selected subset [61]. Because RF generates random subspaces, it was not used as the first method 

for feature selection [34]. It is due primarily to the random (with replacement) missing features 

from the original feature space. However, RF can efficiently be used after either of the other 



 

 

methods. The purpose for using the hybrid feature selection method is that we can hierarchically 

select the important features in the sequence; besides, we build a voting system that can select 

majority features from features selected by different feature selection methods. 

• RFE – The RFE method is used as the only feature selection method. It was run five 

times, selecting 50, 100, 150, 200, and 250 features and these were used as inputs for the 

BR Linear SVC classifier. 

• SKB – The SKB method is used only as the feature selection method. The details are as 

for the RFE method above. 

• RFE (300) → SKB– First, the RFE method selects the 300 most important features; then 

from these 300 features, SKB selected the 50, 100, 150, 200, and 250 most important 

ones.  These five final feature sets are used for the classification as above. 

• SKB (300) → RFE – The same as the previous procedure, but in the other order.  

• RFE (50-250) → RF – In this condition, RFE first selects a fixed size subset of the 

original features; then RF is applied to this subset. Because of the randomness of RF, the 

final size of the feature subsets it selects are undefined; the nominal sizes (those produced 

by the RFE step) are reported. Note that the actual final feature sets were all much 

smaller, ranging from 14 to 73 features after the RF step; varying by dimensions.  

• SKB (50-250) → RF – This is the same as the previous procedure, except with SKB as 

the first feature selector. Here the actual number of features produced by the RF step 

ranged from 7 to 68; these also varied by label dimensions. 

 Figure 4.1 [61] shows classification performance on all eight label dimensions using the 

above six feature selection methods and combinations. The results presented are 10-fold cross-

validated F1-Micro scores. The F1-micro score is calculated by the precision and recall [42] and 



 

 

its score in the range of 0 and 1, with scores closer to 1 being better. Micro averaging the F1 

scores, across instances, for better comparisons across datasets; however, more complex datasets 

intrinsically have lower F1 scores [61]. 

 

Figure 4.1 Feature Selection Methods on Eight Label Dimensions [61] 

The results in Figure 4.1 [61] illustrate there is no distinguishable difference among the 

feature selection methods when applied to our training data. RFE and SKB (300) → RFE do 

better overall than the other methods, but most methods show some improvements over the same 

classification performance with the entire original feature space as an input [61]. (See Table 4.4 

and the discussion of overall results in the section below.) 

The last two conditions for SKB (50-250) → RF and RFE (50-250) → RF are shown in 

Figure 4.2 [61] in terms of nominal (input) numbers of features [61].  For comparison, Figure 4.2 

[61] shows the same results plotted in terms of actual numbers of features. The main discovery is 

that the actual number of features in use in either of these conditions is always less than 75. 



 

 

 

Figure 4.2 Feature Selection Methods Using RF [61] 

4.5 Common Features Selected by Multiple Methods 

 Because feature selection methods choose features by different feature ranking methods, 

such as statistical tests or classification performance, the selected features are different. In this 

project, we considered two different combinations of this type: 

• Common Features (RFE&SKB) – we first selected 50, 100, 150, 200, and 250 features 

using RFE and corresponding numbers from SKB and then paired up the corresponding 

sets. We obtained the intersection of the sets, and the features falling into the intersection 

were used as features for training the LinearSVC classifier. 

• Common Features (RFE&SKB&RF) – Same as the previous method, but also with the 

top-ranked 50, 100, 150, 200, 250 features from RF and a three-way set intersection.  



 

 

Table 4.1 [61] shows the number of common features that are selected from the 

combination of RFE and SKB. The first row in Table 4.1 is the top K selected features 

through RFE and SKB methods [61]. For example, we apply the RFE and SKB individually 

to select 50 features in DL, 14 common features are generated by RFE and SKB.  

Table 4.1 The Number of Features Selected by Combination of RFE, SKB [61] 

RFE & SKB 50 100 150 200 250 

BDL 13 35 53 75 96 

DL 14 36 53 82 115 

ITL 12 31 51 75 101 

PCL 10 31 56 75 99 

RML 8 30 45 65 94 

RTL 3 22 35 42 58 

SML 12 39 65 85 117 

STL 7 19 44 66 91 

 

Table 4.2 [61] lists the common features that are selected from the combination of 

SKB, RFE, and RF. Because the RF selects features randomly, thus the number of common 

features in the combination of RFE, SKB and RF is usually less than that of the combination 

of RFE and SKB. In the experiment, we use these features for multi-label text classification 

task [61].  



 

 

Table 4.2 The Number of Features Selected by Combination of RFE, SKB and RF [61] 

RFE & SKB & 
RF 50 100 150 200 250 

BDL 6 15 38 41 51 

DL 6 13 18 25 34 

ITL 9 17 28 34 47 

PCL 7 20 26 38 49 

RML 4 14 24 25 41 

RTL 2 8 16 24 29 

SML 10 18 24 25 34 

STL 4 13 26 29 50 

 

 In Figure 4.3 [61], the X-axis is the number of features that are selected and used in 

classification, Y-axis is the F1-Micro score calculated by the classifier using the common feature 

sets that described above. The left-hand side shows the common features in five feature sets (50-

250) that are selected only by RFE and SKB; while, the right-hand side shows the common 

features selected from the three feature selection methods, RFE, SKB, and RF.  

In general, the performance improves as the number of features increase. Figure 4.3 [61] 

is plotted based on the actual number of features used for the classifier, not in the nominal 50-

250 range. It is important to notice that the number of features in these conditions is much 

smaller than that in most other conditions presented here; the left the maximum number of 

common features is 117, and the right it is 51. Performance at the largest number of features in 

Figure 4.3 [61] is in the general range of performance in the previous figures, but there is no 



 

 

improvement, for the most part. On only one label dimension (Paradigm Class Labels, PCL) did 

this collection of methods achieve better performance than that in other conditions. 48 labels 

generated by PCL is a conceptually complex dimension compared with some of the other 

methods.  

 

Figure 4.3 Common Features Among Eight Label Dimensions [61] 

4.6 Overall Performance 

 Table 4.3 [61] displays all the results that performed by feature selection methods on the 

eight label dimensions. The number of selected features start from 50 through 250 as same as the 

above experiments.  

 

 

 



 

 

Table 4.3 Feature Selection Performance on Eight Label Dimension 

Methods BDL DL ITL PCL RML RTL SML STL 

RFE 

0.4904 0.9292 0.5440 0.4518 0.7924 0.7630 0.8788 0.5412 

0.5108 0.9277 0.6060 0.4683 0.8917 0.8265 0.9107 0.6234 

0.5003 0.9235 0.6374 0.4397 0.8881 0.8395 0.9044 0.6228 

0.4989 0.9188 0.6371 0.4543 0.8936 0.8291 0.8907 0.5951 

0.4878 0.9127 0.6043 0.4467 0.8639 0.8081 0.8678 0.5635 

 

SKB 

0.4204 0.9156 0.4804 0.2251 0.7008 0.6155 0.7925 0.2377 

0.5013 0.9036 0.5113 0.4657 0.7644 0.6852 0.7897 0.4637 

0.4878 0.9025 0.5045 0.4596 0.7515 0.6660 0.7892 0.4314 

0.4935 0.9000 0.5249 0.4585 0.7458 0.6717 0.7870 0.4563 

0.5038 0.8952 0.5189 0.4715 0.7402 0.6840 0.7905 0.4658 

 

RFE (300) -> SKB 

0.4956 0.8750 0.5005 0.4815 0.8059 0.7072 0.8055 0.4492 

0.4825 0.8917 0.5442 0.4764 0.7605 0.7318 0.7992 0.4695 

0.5062 0.8960 0.5587 0.4732 0.7956 0.7107 0.8259 0.4616 

0.4977 0.8975 0.5413 0.4468 0.7982 0.7151 0.8185 0.4955 

0.4889 0.8992 0.5839 0.4261 0.8126 0.7386 0.8391 0.5118 

 

SKB (300) -> RFE 

0.5134 0.9349 0.5421 0.4838 0.8044 0.7218 0.8675 0.4950 

0.5340 0.9177 0.5881 0.4974 0.8241 0.7621 0.8564 0.5251 

0.5023 0.9133 0.5449 0.4744 0.7933 0.7183 0.8411 0.4944 

0.4944 0.9035 0.5402 0.4753 0.7614 0.6987 0.8137 0.4358 

0.4935 0.8999 0.5352 0.4753 0.7347 0.6896 0.7937 0.4322 

 

SKB (50-250)->RF 
0.3584 0.8994 0.4260 0.1877 0.7129 0.6379 0.8004 0.2357 

0.4785 0.9159 0.5215 0.4437 0.7825 0.7040 0.8247 0.4278 



 

 

0.4978 0.9158 0.5229 0.4839 0.7894 0.6828 0.8048 0.4132 

0.4837 0.9034 0.5371 0.4780 0.7584 0.6883 0.8096 0.4427 

0.4603 0.9107 0.5425 0.4788 0.7665 0.7107 0.8127 0.4485 

 

RFE (50-250)->RF 

0.4048 0.9037 0.4342 0.4287 0.7472 0.6955 0.8180 0.3859 

0.4810 0.9084 0.5383 0.4582 0.7803 0.7413 0.8228 0.4856 

0.4556 0.9153 0.5342 0.4705 0.7883 0.7102 0.8163 0.4709 

0.4437 0.9149 0.5379 0.4264 0.7809 0.7204 0.8251 0.4442 

0.4510 0.9168 0.4876 0.4452 0.7684 0.7131 0.7989 0.4574 

 

Common(RFE&SKB) 

0.2190 0.9055 0.2386 0.0800 0.6568 0.5164 0.7728 0.2055 

0.4479 0.9059 0.4294 0.4393 0.7870 0.7079 0.8229 0.3208 

0.4793 0.9143 0.5262 0.5044 0.7965 0.7177 0.8203 0.4222 

0.4956 0.8995 0.5404 0.4730 0.7845 0.7273 0.8137 0.4673 

0.4951 0.9000 0.5375 0.5010 0.7884 0.7269 0.7794 0.4932 

 

Common(Three) 

0.2138 0.9062 0.2314 0.0753 0.6568 0.6243 0.7635 0.2078 

0.4108 0.9137 0.3651 0.4386 0.7676 0.7072 0.8076 0.3139 

0.4786 0.9135 0.4824 0.4953 0.7834 0.7325 0.8241 0.3816 

0.5063 0.8928 0.5475 0.5040 0.7896 0.7441 0.8142 0.4532 

0.4980 0.9030 0.5291 0.4709 0.7890 0.7274 0.7962 0.4699 

  

Table 4.4 [61] summarizes the overall results of the study, feature selection improves the 

classification performance in general. In Table 4.4 [61], the first row shows the F1-Micro score 

computed by the classifier when applied to the entire feature space of all 2,317 words without 

any feature selection methods. The second row shows the best F1-Micro score obtained across 

all methods that are described previously [61]. In every case, at least one feature reduction 

strategy performs better than all the features used without selection, and it is even a dramatic 



 

 

improvement. The smallest improvement is just over 0.05 F1-Micro units, and the largest is 

almost 0.18 [61]. 

Table 4.4 F1-Micro Scores with Wining Methods [61] 

 
Label Dimensions 

BDL DL ITL PCL RML RTL SML STL 

F1-Micro 
Score 
(All 

Features) 

0.4294 0.8830 0.4746 0.3672 0.7187 0.6808 0.7418 0.3983 

Best F1-
Micro 
Score 

0.5340 0.9349 0.6374 0.5044 0.8936 0.8395 0.9107 0.6234 

Method SKB(300) 
→RFE 

SKB(300) 
→RFE RFE Common 

(RFE&SKB) RFE RFE RFE RFE 

Number 
of 

Selected 
Features 

100 50 150 56 200 150 100 100 

  

The last two rows show the winning method and the number of features that used to reach 

that score. In general, RFE alone and RFE proceeded by SKB achieved the best results and less 

than 200 features were used. The RFE is the wining method in most of the cases, but an 

interesting discovery in Table 4.3 [61] is that the combination of feature selection methods has 

better performance than individual feature selection one when the number of the label is large. 

Both BDL and PCL have more than 40 labels, and the winning feature selection method is the 

combination method.  

4.7 Artificial Data Evaluation 

We evaluated the proposed hybrid feature selection methods on the small dataset, which 

had 247 labeled article abstracts and 2,317 features. We showed these ensemble methods 



 

 

performed well in multi-label text classification, where the number of the instances is less than 

the number of features. In the next step, we will evaluate our hybrid feature selection methods on 

an artificial dataset, Genbase [58], to prove that the proposed feature selection method also 

performs well in this dataset. 

The Genbase dataset contains 662 data instances and 1,186 features [58], the number of 

the labels is 27. Each data instance in the Genebase data is assigned by one or more labels, it is 

also the n ≪ p problem in the multi-label classification. Therefore, we applied the ensemble 

feature selections for the Genebase dataset to evaluate their performances. Table 4.5 shows the 

part of the overall performance on Genbase data classification. The second row is the F1-Micro 

score without using any feature selection methods. Because the data itself has good quality, the 

improvement is not substantial, but it proves that the ensemble feature selection can be used to 

solve the n ≪ p problem in the multi-label classification tasks. 

Table 4.5 Multi-label Classification on Genbase Dataset 

Methods F1-Mirco 

ALL (No feature selection) 0.9711055 

RFE (100) 0.987105505 

Random Forest 0.985112082 

SKB (100) 0.987105505 

RF-> RFE (100) 0.988674132 

RFE (100) ->RF 0.970608959 

SKB (100)-> RF 0.970608959 

SKB (200)->RFE (100) 0.987105505 

RFE (200)->SKB (100) 0.987105505 

 



 

 

Figure 4.4 displays all the feature selection performance on Genbase dataset [58]. 

Although the improvement is not huge, the proposed hybrid feature selection methods can be 

utilized in many kinds of datasets.  

 

Figure 4.4 Multi-label with Feature Selection Performance on Genbase Dataset 

4.8 Conclusion 

This chapter presents an approach to feature reduction in complex textual feature spaces 

using standard methods both alone and in combination. The principal results are surprising, i.e., 

chaining together multiple methods does not necessarily produce an improvement. However, the 

results obtained do suggest that more work needs to be done in this area [61].  

In this project, we mainly focus on the n ≪ p problem, the problem of classifying small 

quantities of high-quality data. The data may have an imbalance between n and p, that is, there 



 

 

are more features than training instances. Performance of the classification algorithm on the raw 

feature space is not convincing, but several combinations of feature selection methods can 

improve the performance dramatically. Besides, the proposed hybrid feature selection methods 

improved performance in another dataset, Genebase [58].  

  Currently, text classification takes a lot of time and effort by the limited number of 

experts with the requisite knowledge. This is a very expensive work, manually annotating 

documents becomes more difficult due to more documents are generated every day. People have 

to learn more and more knowledge on machine learning and text mining fields [61]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 WORD2VEC PROCESS BIG DATA 

Word2Vec [45, 46] is used in many applications, especially in the natural language 

understanding, such as machine translation and sentiment analysis. Most applications generate 

word vectors by the Word2Vec. Here, we use the Word2Vec to reduce the feature dimension in a 

relatively big dataset. 

5.1       Overview of Framework  

 Figure 5.1 [62] shows a structure using Word2Vec to process a big text dataset, this is 

another method we proposed to reduce the feature dimension in the text classification. The 

general process of this framework: (1) the whole documents are used as input examples for 

Word2Vec to generate word vectors; (2) created word vectors are merged into different groups 

by calculating their distances; And (3) all documents vectors are transformed into a new lower 

feature dimension for text classification.  

 
Figure 5.1Working Process [62] 
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5.2 Word2Vec Structure 

Word2vec [45, 46] is not a single algorithm, but a three-layer neural network that 

processes the textual data. In fact, Word2vec contains two different learning models (CBOW and 

Skip-gram). Compared with the neural network language model, its output layer uses either the 

hierarchical softmax or negative sampling instead of the softmax activation function [45, 46]. 

Given a word, the skip-gram model predicts the neighboring words according to the given word. 

In contrast, the CBOW model predicts the current word if given the neighboring words in the 

surrounding window. Figure 5.2 illustrates the structure of Word2Vec. In the CBOW learning 

model, for example, the inputs are initialized word vectors, then they are summed and averaged 

as Context(w) into the project layer. In the output layer, Word2Vec originally builds a Hoffman 

tree based on the word frequency. Each leaf in the tree has a unique path from the tree root to it. 

Because the Hoffman tree is a binary tree, thus, there is a binary classification through passing a 

node to its children. The node w, Word2Vec calculates w’s probability of P(w|Context(w)) 

according to the Maximum Log likelihood ℒ = ∑ logp4𝑤[𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑤)7`∈a  and combine this 

with binary classification (like sigmoid). In order to increase the probability of 

P4w[Context(w)7,	Word2Vec uses the Scholastic Gradient Ascend (SGD) [83] to update the 

weights. Next, each word vector is updated based on its contribution to construct the vector of 

Context(w).	At last, each word in the article is updated to produce the new vector. Therefore, the 

purpose of Word2Vec is to obtain a better representation for each word under two learning 

methods, CBOW and Skip-gram. After training all the words in the article, each word has a 

distinct vector with a defined length. We use the generated word vectors to calculate the word 

similarities between two words; thus, the underlying relationship among words can be 

discovered.  



 

 

 

Figure 5.2 Structures of CBOW and Skip-gram [45, 46] 

5.3 Word Similarity 

 The training data is the 20 Newsgroups dataset [50], which was originally collected by 

Ken Lang. The data is organized and split into 20 categories (newsgroup), and each category 

represents the distinct news domain, such as, sci.med and rec.autos. In our project, we only used 

a subset of the entire dataset, 11,314 training data.  Although the training data size is not too big, 

it should be a good example to evaluate our method. In the future, we will apply our approach in 

the entire 20 Newsgroup dataset. Before inputting the training data to Word2Vec, we only 

removed punctuations for each training instance. Stop words remain in this project because we 

assume that they are useful to a piece of news. We apply the gensim [51], which is a python 

library to help us implement the Word2Vec model. We first build a vocabulary from the entire 



 

 

training data. To generate the word vectors, we employ the Skip-gram model because it has a 

better learning ability than CBOW if we do not take computing speed into account, see [46] for 

some details. After training, each word has attached a vector with a fixed length. Next, we 

construct a high dimensional matrix, where each row represents a specific word and the columns 

are the generated word vectors. As a result, the word has multiple degrees of similarity, it can be 

computed via a linear calculation. For example, vector (“Beijing”) – vector (“China”) + vector 

(“America”) produces a vector that represents the word “Washington”. Besides, the vector 

arithmetic can be represented as the format: vector (“Beijing”) – vector (“China”) = vector 

(“America”) - vector(“Washington”). Thus, Word2Vec calculates the similarity between words 

by the following.  

 
argmax

e∗
(cos(𝑏∗, 𝑏 − 𝑎 + 𝑎∗)) = 

argmax
e∗
(cos(𝑏∗, 𝑏) − cos(𝑏∗, 𝑎) + cos(𝑏∗, 𝑎∗)) 

 
Word2Vec generates two numerical vectors X and Y for two different words, the cosine 

similarity [65] between the two words is defined as the normalized dot product of X and Y: 

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 	 cos(𝜃) =	
𝑋 ∙ 𝑌

||𝑋||G	||𝑌||G	
 

 
(2) 

 
To test the word similarity, we have a few examples in Table 5.1 [62], and we only list 

the two most similar words and their cosine distances. For example, given a word “computer”, 

we obtain the two similar words “evaluation” and “algorithm” with their distances to “computer”.  

Although there is not a gold-standard vocabulary to evaluate the quality of word vector in NLP, 

the results of our experiment show that the Word2Vec finds the semantically related words 

successfully.  



 

 

Table 5.1 Similar Words and Cosine Distance [62] 

Words 
Words Similarity 

1st Word Cosine Distance 2nd Word Cosine Distance 

computer evaluation 0.9325 algorithm 0.9292 

president property 0.9306 population 0.9123 

American Churches 0.9438 Greece 0.9365 

bank finance 0.9502 interests 0.9473 

football team 0.931 Champion 0.9061 

 

5.4 Word Clustering 

 In the natural language, a word or a combination of words usually express the meanings 

that are not difficult to understand for humans. However, a computer cannot understand the 

meaning a word very easily. Therefore, we should train the computer to understand our natural 

language in the mathematics perspective. A word can be represented by a vector for specific use 

in the computer, e.g. text mining.  

Word2Vec [45, 46] produces the good quality of word vectors after training a whole 

document and can capture the semantic relationship between words by the arithmetic operation 

on word vectors. In mathematics, statistics, and physics, a vector presents a geometric object that 

has direction and length [53]. Because each word has multiple degrees of similarity and it can be 

computed by a linear calculation, we use Word2Vec for text mining.  



 

 

Similar words tend to be close to each other, to group semantic similar words, we use the 

K-means [49, 75] to partition the N objects into K (K << N) clusters depending on their 

geometric locations. Initially, K-means algorithm randomly generates K seed points as the 

centers of K clusters, each object is calculated by the Euclidean distance between its location and 

the K seed points. Then assigning the object to one cluster whose distance from the center of the 

cluster is the minimum of all the seed points. Next, recalculate the new cluster centers via the 

formula: 

𝑣6 =
1
𝑆6
r𝑥s

tu

svw

 
(3) 

where 𝑠6 is the number of objects in the 𝑖xy cluster [75]. After new cluster centers are found, 

compute the distance between each object and the new centers again. Above iteration is 

operating until there is no object is reassigned to a new cluster.  

In NLP [51], semantic similar words are grouped together [52] for a collection of these 

words. The word clustering helps discover the relationship between words. Given different K 

values, we have K different number of clusters. Therefore, all words are grouped into K clusters 

and each word attaches its index to the cluster.  

Table 5.2 [62] shows a few examples of contents of clusters when K equals to 500. 

Although there is not a general vocabulary about the categories for each word, we can find the 

similar words that are almost correctly grouped into corresponding clusters as shown in Table 

5.2. 

 



 

 

Table 5.2 Cluster Contents [62] 

Cluster Index Cluster Contents 

1 my, has, is, in, the, had, for… 

2 components, speed, trigger, applications, stage, developers, 
manufacturers … 

3 Medical, cigarettes, usma, smoked, food, Laboratory, chewing… 

4 population, federal, laws, treasure, crime, organizations, Pope… 

5 bank, financial, interests, client, card, credit … 

 

5.5 Bag of Concept (BoC)  

In Figure 5.3, we show that the original Bag of Words (BoW) problem is transformed to 

the Bag of Concepts (BoC). Each document in the text classification is represented by the fixed 

length vector. In fact, the number of instances (11,314) is much less than the number of original 

features (61,189). Thus, we apply the feature reduction method to reduce feature dimension by 

converting the BoW to BoC. The primary purpose of this approach is using some topics to 

represent a document with a small number of words in the vocabulary [62].  

This transformation is implemented by grouping original words into K clusters, each 

cluster can be viewed as one topic. The contents (words) of every cluster are the semantic similar 

words. At last, the original feature dimension (61,189) is projected into a new and lower 

dimension (K). As a result, the reduced feature dimension is 11,314 * K (K << 61,189). In this 

case, each document is represented by several topics. Next, we use the dimension-reduced matrix 

in multi-class classification, where values of K are 500, 1000, 1500, and 2000. 



 

 

 

Figure 5.3. BoW is Transformed into BoC 

5.6 Multi-class Classification 

    In order to evaluate our model’s performance, we use the data for multi-class classification 

as well. First, we convert the multiclass classification into multiple binary classifications. Here, 

we apply One-vs-Rest technique [11] to train a single classifier for each class. The instance of 

one class is viewed as a positive class; the others are considered as negative. We then apply the 

LinearSVC (Linear Support Vector Classifier) as a classifier based on LIBLINEAR [43].  

To evaluate classification performance, we calculated the F1-micro score for each 

training experiment and recorded the running time. In addition, we implemented the 10-fold 

cross-validation in the training. Table 5.3 [62] shows the performance of multi-class 

classification on dimension-reduced datasets. The first row shows the F1-micro score and time 

consumption without applying our method. The rest rows present the dimension-reduced data 

classification performance. We can find that the performance results using selected features are 



 

 

slightly better than that using the original features, but the time cost has a relatively big 

improvement.  

Table 5.3 Multi-label Text Classification Performance 

Data Dimension 
Classification Performance 

F1-Micro Score Time Cost (s) 

11,314 * 61,189 0.7524 5 * 10^3 

11,314 * 2000 0.774 8 *10^2 

11,314 * 1500 0.7619 6 * 10^2 

11,314 * 1000 0.753 4 * 10^2 

11,314 * 500 0.7506 3 * 10^2 

 

5.7 Conclusion 

In our work, we apply the Word2Vec technique to the big data processing. Considering 

the huge data dimension issue when dealing with large-scale training data, Word2Vec provides a 

way to cluster the similar words. This strategy can be used to reduce the feature dimension.  

On one hand, training data are processed by Word2Vec to generate the word vectors. 

Through applying the linear calculation on word vectors, we can find semantically related words. 

On the other hand, we group similar words together using K-means algorithm. By giving values 

to K, we can construct K clusters. Thus, instead of creating word vectors via vocabulary, we 

make word vectors based on contents in clusters. This strategy decreases the feature dimension 

and speeds up the multi-class classification. The new feature dimension reduces the time cost 



 

 

without affecting learning ability from the training data, or even improving classification 

performance. In the future, we will use the whole dataset and try the different values of K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6 AI-BASED DEPRESSION DIAGNOSIS SYSTEM 

Mental illness is prevalent in the world, and depression is one of the most common 

psychological problems. Untreated depression increases the chance of dangerous behaviors. 

Studying the depression report2, one in four of those who suffered from the depression or 

receiving any kind of treatments. Such a higher rate attracts more studies on detecting and curing 

depression. Accurate depression diagnosis is a very complex long-term research problem. 

For clinic depression diagnosis, doctors may evaluate a patient via the depression test, 

such as a physical exam or a lab. Even a communication between doctors and a patient is used to 

detect his or her depression. On one hand, the current depression diagnosis methods are not 

accurate due to no gold standard with officially approved symptoms. Thus, it is necessary to 

discover useful depression features (symptoms) for an accurate depression diagnosis. On the 

other hand, the significant challenge of detecting depression is the recognition that depressive 

symptoms may differ from patients’ behavior and personalities [76] such as age, sex, 

environment, and countries. Unfortunately, there is not a general gold standard to help doctors 

make a decision for a patient’s depression. Since it is extremely difficult to have private clinical 

data from a hospital for our research, we collect public social media data for further depression 

feature selection.  

Public data is being generated every day, countless data are free and huge. Especially, the 

social media produce big data. Moreover, people discuss all kinds of topics and knowledge on 

social media. It is beneficial to extract useful information via text mining tools on social media 

[77], such as Twitter, Facebook, Weibo, and Instagram.  

 

                                                
2 http://cep.lse.ac.uk/pubs/download/special/depressionreport.pdf 



 

 

To build an AI-based depression diagnosis system, we focus on two major steps. In the 

first step, we develop an approach to select specific features under the unsupervised learning 

guidance. Next, we apply selected features from the first step to construct a depression diagnosis 

system. Therefore, the final step is a text classification or prediction process, which fits our 

framework [19].  

6.1 Data Integration 

6.1.1 Data Collection 

Social media provides real and massive data; it is an essential public resource for 

precision medicine research. In our research, we gather data from two public social media 

platforms: Twitter and Web Blogs to extract new depression symptoms. 

• Tweets (TW) 

Twitter rapidly has become one of the most popular social media since it launched. Its 

short 140-character messages that are posted by a smartphone or a personal computer are known 

as “tweets”, which can be shared by the entire community. Twitter advises 313 million active 

users who produce 6,000 tweets on Twitter every second as June 20163. Because of this 

tremendous volume of data, our research is beneficial for it. We kept monitoring each streaming 

tweet that includes the word “depression” for almost two weeks in an entire Twitter community. 

Totally, we roughly gathered 54 millions of tweets that discussed depression. These data are 

original raw data that transmitted by users, and they are biased and noisy [78]. 

 

 

 

                                                
3 https://about.twitter.com/company 



 

 

• Professional Twitter Accounts (PTA) 

Although we have collected the depression data from the general Twitter users, another 

extension of Twitter data collection is that we can gather tweets that are posted by professional 

mental health accounts. The purpose of collecting these specific tweets is that PTAs are 

knowledgeable and professional in a mental health field. Starting to web scraping the initial 

webpage4, thousands of professional mental health tweets were accumulated at the end. We 

found that many of these tweets discussed the depressive behaviors and their treatments. 

Therefore, mining tweets given by the professional twitter account is useful. 

• Depression Blog (DB) 

Other than collecting data from the professional Twitter accounts and active Twitter 

users, another data resource comes from the depression web blogs. Similarly, web scraping 

begins at the specific webpage5 to gather relevant data. These blogs and their deep links are 

almost referred to the depressive symptoms and relative treatments. This set of data excels both 

in quality and quantity. Investigating the blog data is another appropriate method to discover the 

hidden insights of the depression symptoms. 

6.1.2 Data Preprocessing 

Because the data collected from the tweets and web blogs are too biased and noisy, they 

need to be cleaned in the first step. Considering the complexity of data format, we combine 

several tools and techniques to make data as clean as possible. Table 6.1 shows the example of 

noisy data and preprocessing tools we have used. 

 

 

                                                
4 http://treat-depression.com/top-mental-health-accounts-to-follow-on-twitter 
5 http://www.healthline.com/health/depression/best-blogs-of-the-year 



 

 

Table 6.1 Data Preprocessing 

Noisy Data Data Example Techniques 

Specific Characters @RT, http:// Regular Expression 

Punctuations Comma, colon Regular Expression 

Stop words is, the NLTK Toolkit 

Non-Words lmao, hrt NLTK Toolkit 

non-Nouns eat, wonderful NLTK Toolkit 

 

Generally, the special characters, such as retweet tag “@RT: xxx”, and link address 

“http://www.”, contain less information, so they are removed at the beginning. In the next step, 

stop words and punctuations are filtered by a stop word list that is aggregated by us. Although 

stop words exhibit high word frequency, they may not contain useful information. Non-words 

are very common in social media data due to any typos or acronyms, for instance, “hrt”, and 

“lmao”. These words are removed by checking the English dictionary that is pre-built in the 

NLTK toolkit [20]. The last step of data preprocessing is to clean the non-Nouns, such as verbs 

and proposition words. Through employing the Part-of-Speech (PoS) tagging [20] tool on each 

word, nouns are extracted. At last, we have cleaned data. Table 6.2 shows the number of left 

words after each step of data preprocessing procedure.  

 

 

 



 

 

Table 6.2 Word Counts 

Steps TW PTA DB 

Raw data 54M 18M 46M 

Non-words removal 7M 2.6M 8M 

Stop words removal 3M 1.2M 3.4M 

Nouns 0.72M 0.2M 0.74M 

 

6.2      Entity Extraction 

The most difficult task in our research is to extract meaningful entities related to 

depression from unstructured data because the data itself contains tedious and useless 

information. Machine learning algorithms and statistical learning methods are used to select the 

important features according to the model performance or correlation between each entity and 

target class. Since there are no any labels and classes for the collected depression oriented 

tweets, we use the unsupervised strategy to select entities. We create a new hybrid algorithm 

integrating the statistical analysis and the NLP strategy to select major depression symptoms. 

Our ensemble method can find out the common depression symptoms for the clinical depression 

detection, and also discover other unfamiliar but useful depression symptoms.  

6.2.1 Entity Co-occurrence 

The co-occurrence distribution displays the importance of a term in text data. If the 

probability distribution of co-occurrence between a specific term and the frequent terms is biased 

to a subset of the frequent terms, then this specific term is likely to be a keyword. Because we 



 

 

have collected all tweets that contain the term “depression”, counting the co-occurrence 

frequency of each entity that associates with the term “depression” is used to find the distribution 

of them. This approach is able to discover which entities are common with the term 

“depression”.  

To discover the most frequent entities that co-occur with the term “depression”, a co-

occurrence matrix is created. In Figure 6.1, the most frequent entities associated with the term 

“depression” are shown. For instance, one of the most common symptoms of depression is 

“anxiety”, it is prevalent in the collected tweets. Depression symptoms are selected by 

calculating the entities’ counts associated with the term “depression”. 

 

Figure 6.1 Entity Co-occurrence counts that associate with the term “depression” 
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6.2.2 Entity Similarity 

To analyze the relations between words in the documents, words are initially transformed 

into vectors. Currently, there are two common strategies to generate word vectors. One is one-

hot encoding, and the other one is the word embedding (e.g. Word2Vec). The essential idea of 

one-hot encoding [79] is to associate each word in the vocabulary with vector representation. 

Words are represented in a high and sparse dimension; each word corresponds to a point in the 

vector space. The produced word vectors have a higher feature dimension (vocabulary size N), so 

it is difficult to capture the “relationship” between words.  

Mikolov et al. [46, 47] extended Bengio’s NNLM [69] and developed Word2Vec to 

generate the word representations via different learning methods. The Word2Vec contains two 

distinct learning models: Continues Bag of Words (CBOW) and Skip-gram [46,47]. Figure 5.2 

shows the structures of them. The CBOW model predicts the current word when the neighboring 

words are given in the surrounding window. In the opposite of the CBOW model, the Skip-gram 

model learns the context words by giving a word in the input layer and predicts its surrounding 

words in the output layer.  

The reason for applying the word similarity as another factor when choosing the key 

entities is that the Word2Vec performs well on generating the good quality of word 

representations. Words can be represented by fixed length vectors. Calculating the cosine 

similarity between words’ vectors can be used to find the similar words of a target term. For 

example, Figure 6.2 shows the similar words and corresponding cosine similarities given a target 

word “depression”. This method may discover the key depression related entities from the 

natural language knowledge perspective. 



 

 

 

Figure 6.2 Similar words related to "depression" 

Another experiment on entity similarity in Figure 6.3 illustrates the hierarchical structure 

and relationships among the depression facts learned from the whole data. In this tree, we extract 

the four most frequent depression symptoms from whole data and they are shown in the second 

level. In the third layer, we show depression facts that are related to one of four common 

depression symptoms individually. These depression facts are calculated and accumulated by 

Word2Vec given one depression symptom. We believe that extracted depression facts are good 

references when recognizing the depressive behaviors. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Entities

Similar words of “depression”

suicide diease loneliness stress brain mental hate insomnia anxiety



 

 

 

Figure 6.3 Hierarchical Structure of Depression and its Symptoms 

6.2.3 Rapid Automatic Keyword Extraction Algorithm 

The Rapid Automatic Keyword Extraction (RAKE) algorithm is described [78]. 

Candidates are selected from the text by finding all possible strings that do not include stop 

words or phrase delimiters. The RAKE algorithm generates a list of candidate keywords and 

phrases. For each candidate, The RAKE algorithm calculates properties to identify the 

candidate’s importance. Firstly, compute the frequency of each word. Then, find the degree of 

every word. The degree of a word is the number of how many times a word is used by other 

candidate keywords. An individual word’s score is calculated by a formula: 

𝑇 + 𝐷
𝑇  

(3) 

where T is the word frequency, and D is the degree of a word. A score is calculated for each 

phrase that is the summation of the single word’s score. Therefore, the RAKE score can be used 

in our new approach as a factor to extract the key entities.  



 

 

Both long and short phrases reveal meaningful information for the information retrieval 

in NLP task, the RAKE algorithm calculates the scores for individual words. Table 6.3 shows the 

entity and its importance score calculated by the RAKE algorithm. Because the scores shown in 

Table 6.3 are close to each other, the AKEW algorithm assigns a relatively smaller weight to a 

RAKE score than other factors. 

Table 6.3 RAKE scores for single entity 

Entities RAKE Scores 

anxiety 1.0121 

insomnia 1.0018 

hate 1.0 

hunger 1.0 

brain 1.0009 

stress 1.0011 

loneliness 1.0004 

alcoholism 1.0 

 

6.3 Automatic Extract Keyword for Specific Terms 

We propose an ensemble method to extract depression symptoms from social media. The 

relationships between a key entity and its related entities are shown in a semantic graph. To 

extract important entities for the term “depression”, we develop an Automatic Extract Keyword 

for specific terms (AEKW) algorithm that combines the co-occurrence count between the term 



 

 

“depression” and other entities, Word2Vec, and RAKE. Thus, the AEKW integrates the 

statistical analysis and word embedding technique to select the key entity related to the term 

“depression”. The AEKW algorithm is given below. 

AEKW Algorithm 

Input: term  

Output: Semantic Graph G (V, E) 

𝑋6 =	 entity in Tweets 

𝑇6 = the co-occurrence counts between entity and the term 

𝑅6 =		the RAKE score for entity 

	𝑊6 =	the similarity between term and entities 

𝑆6 = the score for entities that relevant to term 

 G (V, E): V = entities, E = importance scores 

begin 

For entity in Tweets: 

    Calculate the T for 𝑋6: {(𝑋w, 𝑇w)}, {(𝑋G, 𝑇G)},…,{(𝑋~, 𝑇~)} 

    Calculate the R for 𝑋6:	{(𝑋w,𝑅w)}, {(𝑋G,𝑅G)},…,{(𝑋~, 𝑅~)} 

    Calculate the distance between term and 𝑋6,

{(𝑋w,𝑊w), {(𝑋G,𝑊G)},…,{(𝑋�,𝑊�)} 

𝑆6 = 	
1
2
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑇6) +

1
3
𝑅6 +

1
6
𝑊6 

   Calculate the S for X:	{(𝑋w, 𝑆w)}, {(𝑋G, 𝑆G)},…,{(𝑋~, 𝑆~)} 

   Sort the entity based on the value 𝑆6 , top k 

entities are extracted 

   K number of entities left: {(𝑋w, 𝑆w)} , 

{(𝑋G, 𝑆G)},…,{(𝑋�, 𝑆�)}, k < n 



 

 

   Build a graph G: 

   V = (term, 𝑋w, 𝑋G, … , 𝑋�) 

   E = {(𝑋w, 𝑡𝑒𝑟𝑚), 𝑆w}, {(𝑋G, 𝑡𝑒𝑟𝑚), 𝑆G},…,{(𝑋�, 𝑡𝑒𝑟𝑚), 𝑆�} 

end. 

 

The AKEW algorithm counts the co-occurrence of entities paired with the term 

“depression” and normalizes the co-occurrence counts into the range between 0 and 1. Next, it 

utilizes the Word2Vec to compute the cosine similarity between “depression” and each entity. 

The RAKE algorithm is used to calculate an individual entity and assign a score to it. Now, 

every entity has three scores that are calculated by the above methods. Based on the total score of 

the three scores for each entity, top K entities with the K highest scores are selected. Then, the 

AEKW algorithm can build a relevant semantic graph. In this semantic graph, the new 

depressive symptoms may be discovered. Moreover, the important entities related to depression 

will be used as features in the depression diagnosis and depression self-screening tasks. 

6.4 Depression Semantic Graph 

The AEKW algorithm calculates the importance score for each entity, then builds a 

semantic graph to display the relationships between a specific term and its correlated entities. 

This semantic graph uses the entity “depression” as the central word, the vertices are other 

relevant entities, and edges represent the importance scores between vertices. In the semantic 

graph, we may find important entities for depression specifically. Moreover, after expanding the 

semantic graph, we may discover more unfamiliar and useful depression symptoms. Figure 6.4 

displays a partial semantic graph for the central term “depression”. 



 

 

 

Figure 6.4 Semantic graph with the center vertex “depression” and the weights represented as 
the importance score between two vertices 

6.5 Conclusion 

Clinic depression is a serious mental illness which negatively affects human’s health. 

Unfortunately, in contrast to other mental disorder, the depression is persistent. Lots of 

researches contribute to depression detecting and treatment in diverse scientific fields. However, 

it is still a challenge to confirm human’s depression symptoms from their behaviors via clinic 

records and depression tests. As social media is growing rapidly, it provides a way of sharing any 

kinds of feelings and knowledge in the community.  

Because of clinical data privacy in hospitals, our new method extracts useful depression 

symptoms from public tweets generated by depression patients, medical doctors, and other users.  

Considering Twitter and Web Blog are valuable data resources; we gathered data large quantity 



 

 

of data from them. Although there are some studies on detecting the depression symptoms via 

the social networks or biomedical literature, our work uses the advanced strategies such as web 

scraping and word embedding, to process and analyze the social media data. To extract more 

useful depression symptoms, a new algorithm AEKW is designed by integrating the statistical 

analysis and the NLP technology. Depression symptoms extracted from the AEKW algorithm 

are used to construct a depression semantic graph that will be used for the further depression 

diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7 CONCLUSION 

We propose and develop a multi-label text classification framework with feature 

selection strategies for text mining and text annotation tasks. Because of a variety of big data, we 

investigate different approaches and strategies to analyze data and build a classifier. The main 

contribution of the proposed framework is to extract features and reduce the feature dimension 

for data mining and text annotation. 

For the good quality of labeled data, we designed bagging schemes in the MIMLfast 

algorithm [10] to perform the multi-label classification. Besides, we applied the feature reduction 

method such as PCA [21] and the count-based feature selection method to work with the 

MIMLfast algorithm, but the overall performance was not improved significantly as our 

expected. Thus, we developed a new hybrid feature selection method. Based on current feature 

selection techniques, we build the sequential and ensemble approaches to reduce the feature 

dimension. The experiment results showed that our methods could increase the accuracy in all 

label dimensions. To evaluate our method on another type of dataset, we collected the artificial 

data (GeneBase dataset [58]) to test our feature selection methods, the multi-label text 

classification performance was improved dramatically.  

The above ensemble feature selection methods performed well in the small dataset, even 

with the relatively large feature dimension. Then we proposed another feature reduction 

algorithm to process the big textual data by using the neural network language model called 

Word2Vec. Through transforming the document representation from Bag of Words (BoW) into 

Bag of Concepts (BoC), the classification performance was improved and the computing cost 

was decreased as well. In addition, our method could generate the good representation of 



 

 

documents, thus these document vectors can be used in document summarization and document 

clustering tasks [18].  

In the first two projects, feature reduction and feature selection could help the multi-label 

text classification on the labeled data. Moreover, we built a depression diagnosis system from the 

unsupervised perspective. Because the clinical data is extremely expensive and inaccessible, we 

collect data from public social media. The social media provide a public community where users 

can share their feelings and knowledge for public users, such as Facebook, Twitter, Weibo and 

Web Blogs. The biggest challenge so far is to discard the noisy data and discover the really 

important words that related to the depression. Therefore, we built the AEKW algorithm to 

define the importance of an entity and build a semantic graph to display the most important 

words related to depression. In this method, many of extracted depression symptoms were 

common symptoms that were already known; while, our approach could find many useful but 

unfamiliar depression symptoms which were very often being discussed in the social network. 

These depression symptoms are good references for a doctor to detect and confirm patients’ 

depression. 

Our present research goal is to build an AI-based depression diagnosis system. In the next, 

we will use the semantic graph to generate major depression symptoms from Twitter, and then 

apply the association rule mining [23] to find mutual relations among top symptoms without 

labeled data. These major strong association rules can be used for the early depression diagnosis.  

In the future, we will design a grammar-based approach to identifying the depressive users 

on Twitter. Through combining the depression symptoms and depression users’ tweets, a 

classifier will be built for an accurate depression diagnosis. An intelligent depression diagnosis 

system for medical doctors and a convenient depression self-screening software system for 



 

 

ordinary people will be developed. In addition, our framework is able to select different kinds of 

entities for the sentiment analysis [64, 67]. 
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