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a b s t r a c t

Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA)
protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity
to different strains of influenza. Since influenza A M2 proteins are highly conserved among different
strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-
like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine.
In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine (“Split”) alone,
influenza split vaccine supplemented with M2e5x VLP (“Split+M2e5x”), M2e5x VLP alone (“M2e5x”),
or mock immunized. Vaccine efficacy was measured serologically and by protection against a sero-
logically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and
conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the
immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence
of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as
inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addi-
tion, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups.
Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with
split vaccine alone induced no protective effects compared to mock-immunized ferrets. These stud-
ies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved
cross-protection than split vaccine alone.

Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Infection with influenza A virus is a significant cause of
morbidity and mortality worldwide [1–3]. Vaccination is the
most cost-effective measure to prevent influenza disease and its
mortality. Current influenza vaccines are based primarily on immu-
nity to the highly variable hemagglutinin antigen, and induce
strain-specific immunity. Consequently, influenza vaccine must be
updated frequently to match circulating viruses. In addition, novel
influenza A strains such as reassortants with avian or swine strains,
which occasionally enter the human population and represent a
potential pandemic threat, are not protected against by current

∗ Corresponding authors. Tel.: +1 4046397286.
E-mail addresses: ite1@cdc.gov (I.A. York), skang24@gsu.edu (S.-M. Kang).

vaccines. The emergence of the triple-reassortant 2009 pandemic
H1N1 virus (A(H1N1)pdm09) is an example of a new influenza
strain with distinct antigenic properties [4]. Although the hemag-
glutinin (HA) protein from this strain is of the H1 subtype, many
decades of separate evolution in swine versus humans led to this
strain becoming antigenically distinct from the seasonal A(H1N1)
which circulated in humans before 2010 [5]. Accordingly, standard
assays such as hemagglutination inhibition (HI) and virus neutral-
ization assays showed no cross-reactive immunity between these
strains, and the pandemic of 2009–2010 demonstrated that prior
exposure to seasonal H1N1 viruses or vaccines conferred little or
no protection against A(H1N1)pdm09 viruses. Therefore, influenza
vaccines capable of inducing broad, cross-protection against differ-
ent influenza variants or strains need to be developed.

The extracellular domain of the influenza A ion-channel protein
M2 is well conserved across influenza A subtypes [6,7] and is one
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potential target for a universal influenza A vaccine [8–11]. M2 has
a small size extracellular domain containing 23 amino acids (M2e)
and low immunogenicity even in a conjugate to carrier molecules
and in the presence of adjuvants [12]. We have previously shown
that influenza M2 full-length proteins incorporated into virus-like
particles (VLPs) conferred cross protection against antigenically
different influenza viruses but M2 immunogenicity was low [13].
To improve the efficacy of M2e-based VLP vaccines, we generated
five tandem repeats of M2e from human, swine, and avian origin
influenza A viruses in a membrane-anchored form to be expressed
on VLPs (M2e5x VLP), resulting in enhanced cross protection in
mice [14].

The ferret remains the most widely accepted small animal
model for influenza virus infection and vaccine protection studies
[15–18]. In this present study, we demonstrate that M2e5x VLP was
immunogenic in ferrets and supplementation of split vaccine with
M2e5x VLPs could further enhance cross-protective immunity.

2. Materials and methods

2.1. Viruses

A/Brisbane/59/2007 (BR/59), an A(H1N1) human sea-
sonal influenza virus, and A/California/08/2009 (CA/08), an
A(H1N1)pdm09 2009 pandemic H1N1 virus, were used in these
experiments. Although these viruses both are in the A(H1N1)
subtype, they are serologically distinct and conventional inactiv-
ated vaccines against one do not lead to cross-protection against
the other. Virus stocks were propagated in the allantoic cavity of
embryonated chicken eggs as previously described [19]. Stocks
were titered in a standard plaque assay using Madin-Darby Canine
Kidney cells as described [4] and expressed as plaque forming units
(pfu) [20]. CA/08 and BR/59 were used as antigens for serological
testing in hemagglutination inhibition (HI) assay.

2.2. Vaccines

The M2e5X VLP containing heterologous M2e tandem repeat
was constructed and produced using the recombinant baculovirus
(rBV) expression system as previously described [14]. Briefly, Sf9
insect cells were co-infected with recombinant baculoviruses co-
expressing influenza virus M1 matrix protein and a tandem repeat
of heterologous M2e (M2e5x). Culture supernatants containing
released M2e5x VLP were harvested, and M2e5x VLP vaccine was
purified using sucrose-gradient ultracentrifugation. Commercial
human A(H1N1)pdm09 split vaccine was derived from the 2009
pandemic strain of A/California/07/2009 virus (CA/07) and kindly
provided by Green Cross (South Korea). Potency of the split vaccine
was assessed by single radial immunodiffusion (SRID) with CA/07
reference serum and antigen obtained from the Center for Biologics
Evaluation and Research of the U.S. Food and Drug Administration
(Kensington, MD).

2.3. Ferret immunization and viral challenge

All animal experiments were performed under the guidance
of the Centers for Disease Control and Prevention’s Institutional
Animal Care and Use Committee and were conducted in an Associ-
ation for Assessment and Accreditation of Laboratory Animal Care
International-accredited animal facility. Male Fitch ferrets (Mustela
putorius furo), about 6 months of age (Triple F Farms, Sayre, PA),
serologically negative for currently circulating influenza viruses,
were used in this study.

Briefly, groups of five ferrets were immunized with M2e5X
VLPs alone; conventional monovalent split vaccine against
A(H1N1)pdm09; a combination of M2e5X VLP and split vaccine;

or mock immunized with PBS. Ferrets were injected intramuscu-
larly with immunogens (5 �g of HA or 100 �g of M2e5X VLP total
protein) diluted in a total of 0.25 ml sterile phosphate-buffered
saline (PBS). Immunizations with split vaccine were repeated so
that the split vaccine alone group elicited HI titers that were similar
and greater than 40 (see Fig. 1 for timing of immunizations). After
immunization, ferrets were challenged with the seasonal human
influenza strain BR59. Although CA/08 and BR/59 are both in the
A(H1N1) subgroup, these strains have diverged extensively and
conventional split vaccines do not confer cross-protection between
these strains [5]. After challenge, clinical signs of infection (changes
in body weight and temperature), concentration of virus shed in
nasal washes, and changes in peripheral blood leukocyte frequen-
cies were measured for 14 days.

2.4. Viral challenge

Fourteen days after the last immunization, all animals were
challenged intranasally with 0.5 ml PBS containing 1 × 106 PFU of
BR/59. Ferrets were monitored for changes in body weight and
temperature as well as clinical signs of illness (sneezing, lethargy,
nasal discharge, diarrhea and neurological dysfunction) on a daily
basis for two weeks. Body temperatures were measured using
an implantable subcutaneous temperature transponder (BioMedic
Data Systems, Inc., Seaford, DE). On days 0–7, 9, 11, and 13
post-challenge, animals were anesthetized and blood samples
of 200–250 �l taken from the cranial vena cava as previously
described [19]. Nasal washes were collected with 1 ml of PBS on
days 0–7, and 9 (Fig. 1). Virus titers were determined by a plaque
assay in MDCK cells and expressed as log10 PFU in 1 ml of nasal
washes. The limit of virus detection was 100 PFU per 1 ml of nasal
washes.

2.5. Serology

HI assays were performed as previously described [21]. HI titers
against CA/08, and BR/59 were assessed and expressed as the
reciprocal of the highest dilution of the samples inhibiting hemag-
glutination.

M2e-specific serum antibody responses were determined by
ELISA using synthetic human peptides (2 �g/ml) as a coat-
ing antigen as previously described [13,14]. Briefly, horseradish
peroxidase-conjugated goat anti-ferret IgG (KPL, Inc Gaithersburg,
Maryland USA) was used as the secondary antibody to determine
total IgG antibodies. The substrate TMB (eBioscience, San Diego, CA)
was used to develop color and 1 M H3PO4 was used to stop devel-
oping color reaction. The optical density at 450 nm was read using
an ELISA reader.

2.6. Antibodies, preparation of leukocytes and flow cytometry

Flow cytometry assays were performed as previously described
[19]. Briefly, peripheral blood was collected in tubes containing
EDTA and red blood cells lysed with erythrocyte lysing solution
(0.15 M NH4Cl, 10 mM KHCO3, and 1 mM EDTA pH 7.3). Cells were
stained with monoclonal antibodies recognizing CD4 (clone 02,
Sino Biological Inc., Beijing, China), CD8 (clone OKT8, eBioscience,
San Diego, CA) CD11b (clone M1/70, eBioscience), CD3 (clone
PC3/188A, Santa Cruz Biotechnology, Santa Cruz, CA), and CD79a
(clone HM47, eBioscience). Data were acquired on a FACSCanto II
flow cytometer (BD Bioscience, San Jose, CA), and analyzed using
FlowJo software (Tree Star, Ashland, OR).
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2.7. Statistical analysis

Statistical significance and 95% confidence intervals were cal-
culated using a linear mixed model with repeated measures,
implemented in the SAS program. Compound symmetry was used
for the covariance structure for flow cytometry values; unstruc-
tured covariance was used for the HI titers. Confidence intervals
were calculated using compound symmetry covariance to pool
variability between groups. A p value <0.05 was used as the cutoff
for statistical significance. The experiments were repeated twice.
Post-challenge data were analyzed both as separate experiments
and as merged data, with very similar results; figures shown here
are from merged data.

3. Results

3.1. Immunogenicity

Groups of ferrets were intramuscularly immunized with M2e5x
VLP alone (M2e5x), split vaccine alone (Split), or supplemented
split vaccine with M2e5x VLP (Split+M2e5x) as summarized in
Fig. 1. Ferrets showed detectable anti-M2e antibody responses
21 days even after a single immunization with M2e5x VLP, with
or without split vaccine (M2, Fig. 2A). Second and third immun-
izations with M2e5x VLP further at day 21 and 35 respectively
increased antibodies specific for M2e antigens (days 35 and 47,
M2e5x, Fig. 2A). After the 2nd boost immunization (day 35), there
was no more M2e5x VLP immunization. Although M2e antibody
titers dropped slightly in the 9 weeks (day 61, Fig. 2A), levels of
anti-M2 antibodies remained high and easily detectable at the time
of challenge.

Ferrets immunized with split vaccine alone showed moderate
levels of HI antibodies titers that ranged from <10 to 40 (geometric
mean titer [GMT] = 30) only after the 3rd immunization (Fig. 2B) and
were further boosted with a 4th immunization with split vaccine,
resulting in HI titers of 40 to 320 (GMT = 139).

Interestingly, ferrets that received supplemented split vaccina-
tion with M2e5x VLP induced significant levels of vaccine virus
specific antibody responses even after primary immunization,
reaching HI titers of 40 to 80 (GMT = 53, day 21, Split+M2e5x,

Fig. 2B). After two immunizations, the M2e5x VLP supplemented
ferret group reached high levels of HI titers, ranged from 160 to 320
(GMT = 184 day 35, Fig. 2B). These results suggest that M2e5x VLPs
appear to act as an adjuvant role in increasing HI titers of vaccine,
reaching higher levels at early time points. The adjuvant effect of
the M2e5x VLP was balanced by repeated administration of the split
vaccine alone (Fig. 1). As HA neutralizing antibody is the best estab-
lished correlate of protection for influenza, animals receiving split
vaccine only were immunized until CA/08 HI titers reached HI lev-
els comparable to those in animals receiving SplitM2e5x (Fig. 2B).
Prior to challenge, ferrets in both the split and Split+M2e5x groups
demonstrated CA/08 HI titers ranging from 80 to 320 with GMTs of
139 and 160, respectively, which is expected to confer protection
against homologous virus.

3.2. Clinical signs after viral challenge

The major focus of this study was to determine the efficacy of
M2e5x VLP and supplemented vaccination (Split+M2e5x) in confer-
ring cross protection. As expected, all naïve and vaccinated animals
were seronegative for the challenge virus BR/59 prior to challenge
(Fig. 2C), as well as to currently circulating B and H3 strains (not
shown). Clinical signs of lethargy, sneezing, and nasal discharge
were minor and did not differ between groups. All ferrets exhib-
ited a spike in body temperature one day post-challenge with
BR/59, followed by a reduction in temperature by day two (Fig. 3A).
Although body temperatures fluctuated throughout the course of
the experiment, as is typical of ferrets [22], no consistent trends
were observed after day one (Fig. 3A).

All treatment groups lost at least 5% of their body weight over
the first 2 days of infection. Beyond 2 days post-challenge, ferrets
immunized with supplemented Split+M2e5x demonstrated signif-
icantly less weight loss and more rapid recovery than all other
groups (Fig. 3B).

Virus replication in the upper respiratory tract was determined
by titrating nasal washes. Peak viral shedding was observed at day 1
post-challenge for all animals (Fig. 4). All groups shed similar titers
of virus during the first 3 days. However, from days 4 on, ferrets
immunized with Split+M2e5x had significantly lower viral nasal
wash titers than other groups (Fig. 4), and from day 5 on, ferrets

esahp egnellahC esahp noitazinummI
Days post-challenge -3 0 1 2 3 4 5 6 7 9 11 13 14

Days post-prime 0 21 35 47 50 61 64 65 66 67 68 69 70 71 73 75 77 78

Immunization

M2e5x √ √ √
Split √ √ √ √
Split+M2e5x √ √ M2e5x only
Naïve (PBS) √ √ √

Serology
ELISA √√√√√√√√
HI √√√√√√√√

Challenge BR/59 √

Clinical signs

Nasal wash √ √ √ √ √ √ √ √ √
PBL analysis √ √ √ √ √ √ √ √ √ √ √
Body weight Daily
Temp
Temperature Daily 

Fig. 1. Outline of experimental protocol. Male Fitch ferrets (N = 5 per group) were immunized with M2e5X-VLPs alone, conventional monovalent split vaccine against
H1N1pdm09, a combination of M2e5X and split vaccine, or mock immunized with PBS, and received booster immunizations as indicated. On day 64 after priming, all
animals were challenged with 106 PFU of influenza A/Brisbane/59/2007 (BR/59). Body weight and temperature was monitored as indicated. Blood samples were collected for
analysis of peripheral blood leukocytes (PBL) on days 0–7, 9, 11 and 13 relative to day of challenge. To assess antibody responses (HI and ELISA assays), serum were collected
at intervals as shown.
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immunized with M2e5x alone shed significantly lower viral titers
than did ferrets immunized with split vaccine alone or with PBS.
Of eight ferrets included in both experiments, only three immu-
nized with Split+M2e5x shed virus by day 6 post-challenge, and
all completely cleared virus by day 7 post-challenge. In the group
immunized with M2e5x alone, six ferrets shed virus by day 6, and
all ferrets were clear of virus by day 7 post-challenge. All ferrets
receiving PBS or split vaccine alone shed virus at day 6 post chal-
lenge, while one ferret immunized with split vaccine shed virus by

day 7 post-challenge and three ferrets receiving PBS still shed virus
at this time point (Fig. 4). All groups completely cleared the virus
by day 9 post-challenge.

3.3. Serological changes after challenge

Following challenge, animals immunized with vaccines con-
taining M2e5x increased M2e-specific antibody responses (M2e5x,
Split+M2e5x, Fig. 2A), while anti-M2e titers in animals vaccinated
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Fig. 2. Serological response to immunization. (A) The antibody response against to M2e peptide was measured by an ELISA using synthetic human peptides. (B) and (C)
Hemagglutination inhibition (HI) serum antibody titers were measured using (B) A/California/08/2009 (H1N1pdm), or (C) A/Brisbane/59/2007. “Naïve”, unvaccinated animals;
“M2e5x”, vaccinated animals with M2e5x VLPs alone; “Split”, vaccinated animals with monovalent 2009 H1N1 split inactivated virus vaccine alone; “Split+M2e5x”, vaccinated
animals with monovalent 2009 H1N1 split inactivated virus vaccine supplemented with M2e5x VLPs. A p value <0.05 was used as the cutoff for statistical significance (*
p ≤ 0.05; † p ≤ 0. 001). Error bars represent 95% confidence intervals, calculated using compound symmetry covariance to pool variability across groups. The dashed line in
panels B and C represents the limit of detection (HI titers = 10).
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Fig. 3. Clinical responses to infection. Ferrets were challenged with 106 PFU of BR/59 intranasally 64 days after the initial immunization. (A) Body temperature and (B) body
weight were recorded daily, including three days prior to challenge to establish baseline values. Data shown are normalized to the individual animals’ weight or temperature
on the day of challenge (day 0), and group averages are shown. “Naïve”, unvaccinated animals; “M2e5x”, vaccinated animals with M2e5x VLPs alone; “Split”, vaccinated
animals with monovalent 2009 H1N1 split inactivated virus vaccine alone; “Split+M2e5x”, vaccinated animals with monovalent 2009 H1N1 split inactivated virus vaccine
supplemented with M2e5x VLPs. Statistical significance is indicated above each time point (* p ≤ 0.05; † p ≤ 0.001): S+M2vM2, M2+Split compared to M2 alone; S+M2vS:
M2+Split compared to split alone; S+M2vN: M2+Split compared to unvaccinated animals; M2vS: M2 compared to split alone; M2vN: M2 compared to unvaccinated animals;
SvN: split alone compared to unvaccinated animals. Error bars represent 95% confidence intervals.

with split vaccine only, or mock immunized, showed little or no
serological response to M2 (Fig. 2A). HI antibody titers to BR/59 also
increased for all groups by days 7 and 14 post-challenge (Fig. 2C).
Ferrets that received vaccines containing the M2e5x VLP produced
significantly higher HI titers at days 7 and 14 post challenge than
the split alone group (Split + M2e5x, M2e5x, Fig. 2C). Ferrets receiv-
ing vaccines containing split CA/08 modestly increased HI titers to
CA/08 upon BR/59 challenge; in the other groups, anti-CA/08 titers
remained unchanged after challenge (Fig. 2B).

In addition, we tested all sera collected after the full immu-
nization regimen (challenge day 0) as well as on days 7 and 14

post-challenge for HI activity against a number of H3, H5 and
H7 subtype viruses (data not shown). As expected, neither the
combination of M2 and inactivated vaccine (challenge day 0), nor
exposure to challenge virus (days 7 and 14 post-challenge) induced
HI cross-reactivity with any of these distantly-related strains.

3.4. Changes in leukocyte subsets after challenge

A marked, transient lymphopenia and granulocytosis was
apparent in all treatment groups 1 and 2 days post-challenge
(Fig. 5A–D). Both groups receiving M2e5x VLPs exhibited an earlier
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Fig. 4. Virus shedding following infection. Virus titers in ferret nasal washes were determined on days 1–7 and 9 post-challenge. “Naïve”, unvaccinated animals; “M2e5x”,
vaccinated animals with M2e5x VLPs alone; “Split”, vaccinated animals with monovalent 2009 H1N1 split inactivated virus vaccine alone; “Split+M2e5x”, vaccinated animals
with monovalent 2009 H1N1 split inactivated virus vaccine supplemented with M2e5x VLPs. Statistical significance is indicated above each time point (* p ≤ 0.05; † p ≤ 0.
001): S+M2vM2, M2+Split compared to M2 alone; S+M2vS: M2+Split compared to split alone; S+M2vN: M2+Split compared to unvaccinated animals; M2vS: M2 compared
to split alone; M2vN: M2 compared to unvaccinated animals; SvN: split alone compared to unvaccinated animals. Error bars represent 95% confidence intervals. The limit of
detection (100 PFU per 1 ml) is indicated with a dashed line.

decline in peripheral CD4+ and CD8+ T cells, with their nadir occur-
ring one day post-infection rather than 2 days (Fig. 5B–C). Similarly,
these groups showed earlier granulocytosis (CD11b+ve; presum-
ably mainly neutrophils), with its peak on day 1 rather than day
2 (Fig. 5D). B cells (CD79A+) also showed moderate changes after
the challenge (data not shown). However, as described previously
[19], B cells showed significant fluctuation and variability through-
out the post-challenge period and did not demonstrate consistent
differences among the groups.

From day 7 on, vaccinated animals with M2e5x alone and
Split+M2e5x had a faster recovery of T cells (Fig. 5A). Significant
recovery in percentage of total counts was observed for both CD4
and CD8 T cells (Fig. 5B–C). We have previously shown that total
peripheral leukocyte counts remain approximately constant after
viral challenge, so that the granulocytosis and lymphopenia are
both relative and absolute changes in numbers [19].

4. Discussion

In 2009, a novel A(H1N1) influenza virus entered the human
population, after decades of circulating in swine. Extensive anti-
genic drift between this strain and human influenza viruses meant
that vaccines against contemporary human A(H1N1) strains did
not confer protection against the swine-origin virus, leading to
a global pandemic and the complete replacement of human sea-
sonal A(H1N1) viruses by the A(H1N1)pdm09 strain. Although
seasonal A(H1N1) strains no longer circulate in humans, viruses
that are antigenically related to these strains still circulate in North
American swine. There now exists a population of children, under
about 6 years of age, who have not been exposed to or vaccinated
against seasonal A(H1N1) strains, although they may be immune
to A(H1N1)pdm09 viruses, so that there is a growing possibility

of a new pandemic or pseudopandemic if swine A(H1N1) viruses
enter this susceptible population. Here we show that, while ferrets
immunized with conventional split vaccine against H1N1pdm09
had no protection against infection with seasonal H1N1, supple-
menting the split vaccine with M2e5x VLPs conferred significant
cross-protection against the seasonal virus.

Ferrets that were challenged with the seasonal A(H1N1)
strain BR/59 after immunization with a combination of split
A(H1N1)pdm09 vaccine and M2e5x VLPs had significantly less
weight loss than ferrets that received split vaccine alone, or naïve
ferrets. Similarly, immunization with M2e5x VLPs appeared to
reduce inflammation, as measured by changes in peripheral blood
leukocytes. Due to the normal variations in temperature in fer-
rets, alterations in leukocytes can provide a more detailed view of
the inflammatory impact of influenza virus infection and vaccine
protection than fever measurement. In particular, ferrets receiv-
ing M2e5x VLPs showed a more rapid and complete recovery of T
cells (both CD4 and CD8) following the initial period of lymphope-
nia. Interestingly, both groups that received M2e5x VLPs showed
a more rapid initial loss of peripheral lymphocytes, with the low-
est levels of peripheral T cells occurring on day 1 instead of day
2 in these groups. This peripheral loss may reflect rapid traffic-
king of primed influenza-specific T cells from the periphery to local
sites of infection, leading to earlier reduction of viral replication
through both humoral and cellular immune responses. Although
assessment of ferret cellular immunity is still in its infancy due
to a lack of ferret-reactive reagents, experiments are under way
to test the specific cellular immune response in vaccinated versus
unvaccinated ferrets.

We have previously shown significant efficacy of M2e vaccines
against influenza in mice, in which intramuscular vaccination with
M2e5x VLP induced M2e-specific humoral and cellular immune
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Fig. 5. Peripheral blood leukocyte subsets following infection. Ferrets were bled on days 0–7, 9, 11, and 13 relative to the day of viral challenge, and cells were stained and
analyzed by flow cytometry as described in the text. (A) T cells (CD3+), (B) TH cells (CD3+/CD4+), (C) cytotoxic T lymphocytes (CD3+/CD8+), and (D) granulocytes (predominately
neutrophils (CD11b+) cells were measured and expressed relative to the day 0 values as 100%. “Naïve”, unvaccinated animals; “M2e5x”, vaccinated animals with M2e5x VLPs
alone; “Split”, vaccinated animals with monovalent 2009 H1N1 split inactivated virus vaccine alone; “Split+M2e5x”, vaccinated animals with monovalent 2009 H1N1 split
inactivated virus vaccine supplemented with M2e5x VLPs. Statistical significance is indicated above each time point (* p ≤ 0.05; † p ≤ 0. 001): S+M2vM2, M2+Split compared
to M2 alone; S+M2vS: M2+Split compared to split alone; S+M2vN: M2+Split compared to unvaccinated animals; M2vS: M2 compared to split alone; M2vN: M2 compared to
unvaccinated animals; SvN: split alone compared to unvaccinated animals. Error bars represent 95% confidence intervals.

responses and conferred cross-protection as evidenced by lower
weight loss and higher survival rates [14]. Conventional split
inactivated vaccines confer protective immunity mainly through
virus-neutralizing antibodies targeting HA. In contrast, M2 immu-
nity does not induce virus-neutralizing antibodies and typically
permits infection, even when the severity of the disease and the
extent of virus shedding are reduced. As an alternative approach,
supplementing conventional vaccination with M2e5x VLPs showed
significantly improved cross-protection compared to either vaccine
alone in mice.

In previous experiments in BALB/c mice, M2e5x VLP addition
also demonstrated adjuvant effects in conjunction with split vac-
cine, increasing IgG antibody responses specific for split vaccine
virus by 2 to 4 fold compared to the split vaccine alone [23].
In those experiments, we observed that mice with M2e5x VLP-
supplemented split vaccination shifted the virus-specific immune
responses toward T helper type 1 (Th1) IgG2a isotype antibod-
ies, compared to the predominately Th2-associated IgG1 isotype

antibodies induced by split vaccine alone. In addition, M2e5x
VLP-supplemented split vaccination of mice induced Th1 type IFN-
� cytokine producing splenocytes and lung cells at significantly
higher levels in response to in vitro stimulation with M2e peptide
or virus, than split alone vaccination [23]. While this adjuvant effect
is a further potential benefit to the combined M2e5x VLP-split vac-
cine approach, in the present experiments we offset the adjuvant
effects of M2e5x VLP by repeated vaccination with the split vaccine
alone.

Although mice are a convenient animal model to demonstrate
cross-protection after influenza M2e-based vaccination, ferrets are
considered to be the best animal model for predicting influenza
pathogenesis and vaccine efficacy in humans, since the clinical
signs and immune response in these animals closely mimics those
in humans. Both seasonal A(H1N1) viruses, which circulated in
humans before 2010, and the pandemic variant of A(H1N1), which
is now prevalent in humans, infect ferrets without preadaptation
to this species, and it has been shown that in ferrets as in humans
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conventional split vaccines do not confer cross-protection between
these strains [24], due to the many decades of separate antigenic
evolution in humans versus swine these strains experienced. As
with mice, ferrets vaccinated with both split vaccine and M2e5x
VLPs showed significant cross-protection, recovering body weight
and clearing the virus from the upper respiratory tract significantly
faster than animals immunized with naïve and split vaccine alone.
The M2e5x VLP alone group also showed some protective effects
on lowering and clearing virus in the upper respiratory tracts com-
pared to split alone or naïve ferrets, but did not confer clinical
benefits in terms of fever, weight loss, or markers of systemic
inflammation. Interestingly, we found that inclusion of M2e5x
VLPs in the split vaccination resulted in significantly increasing the
immunogenicity of split vaccine in ferrets compared to split vaccine
alone, as measured by serological assays (HI assays). Based on the
effectiveness of M2e5x VLPs+ split vaccine against divergent H1N1
strains, further experiments are under way to test this combination
against more pathogenic and distantly-related influenza strains.
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