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Conserved from Bacteria to Human Cells
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Abstract

Acidocalcisomes are acidic organelles present in a diverse range of organisms from bacteria to human cells. In this study
acidocalcisomes were purified from the model organism Trypanosoma brucei, and their protein composition was
determined by mass spectrometry. The results, along with those that we previously reported, show that acidocalcisomes are
rich in pumps and transporters, involved in phosphate and cation homeostasis, and calcium signaling. We validated the
acidocalcisome localization of seven new, putative, acidocalcisome proteins (phosphate transporter, vacuolar H+-ATPase
subunits a and d, vacuolar iron transporter, zinc transporter, polyamine transporter, and acid phosphatase), confirmed the
presence of six previously characterized acidocalcisome proteins, and validated the localization of five novel proteins to
different subcellular compartments by expressing them fused to epitope tags in their endogenous loci or by
immunofluorescence microscopy with specific antibodies. Knockdown of several newly identified acidocalcisome proteins
by RNA interference (RNAi) revealed that they are essential for the survival of the parasites. These results provide a
comprehensive insight into the unique composition of acidocalcisomes of T. brucei, an important eukaryotic pathogen, and
direct evidence that acidocalcisomes are especially adapted for the accumulation of polyphosphate.
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Introduction

Acidocalcisomes were originally observed in bacteria and

unicellular eukaryotes and named metachromatic [1] or volutin

[2] granules. Later, when polymers of orthophosphate called

polyphosphate (polyP) were identified at high levels within these

organelles, acidocalcisomes were also called polyphosphate gran-

ules [3]. The length of polyP varies from as few as three to as many

as thousands of residues [4]. The discovery of a diverse array of

transporters established that acidocalcisomes are real organelles

present from bacteria to human cells [5]. Acidocalcisomes have

been well described in some species of bacteria [6,7], trypanoso-

matids [8–10], apicomplexan parasites [11–13], fungi [14,15],

algae [16,17], insect eggs [18,19], sea urchin eggs [20], and

chicken eggs [21]. Additionally, these organelles are also present in

mammalian cells such as human platelets [22] and mast cells and

basophils [23], where they belong to the group of organelles

known as lysosome-related organelles (LROs). However, the name

acidocalcisome was first used to describe these organelles in

trypanosomatids [8,9], and acidocalcisomes have been most

extensively studied in these organisms.

Trypanosoma brucei belongs to a group of organisms responsible

for human African trypanosomiasis (sleeping sickness), and

nagana, a cattle disease in Africa. The two best-studied life stages

of T. brucei are the procyclic forms (PCF), which grow in the

intestine of the tse tse fly vector, and the bloodstream forms (BSF),

which replicate in the blood of the mammalian host. Both stages

can be grown in the laboratory and possess acidocalcisomes,

although these are more abundant in the PCF [24]. Knowledge of

the protein composition of acidocalcisomes will facilitate under-

standing of the physiological roles of these organelles. Among the

proteins localized to acidocalcisomes of T. brucei so far is the

vacuolar proton pyrophosphatase (TbVP1), which has been used

as an acidocalcisome marker for subcellular fractionation studies

[24]. In this work, we used iodixanol gradient centrifugation to

obtain TbVP1-enriched fractions and examine the acidocalcisome

proteome. We validated localization and essentiality of a selected

group of proteins by in situ epitope tagging and immunofluores-

cence assays with specific antibodies, and RNA interference

(RNAi) experiments, respectively. The results support the impor-

tant role of these organelles in phosphate and cation homeostasis,

and calcium signaling.
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Results

We isolated acidocalcisomes by a modification of isolation

procedures described previously [17,25]. After grinding with

silicon carbide to break the cells, the lysates were fractionated by

differential centrifugation followed by density-gradient ultracen-

trifugation using high-density solutions of iodixanol that were

specially prepared by condensing the commercial iodixanol

solution [17] (S1A Figure). Fractions were collected from the

upper layers of the gradients. Composition of each fraction was

confirmed using enzymatic and western blot analyses for

organellar markers and microscopic observation.

We analyzed the proteome using acidocalcisomes obtained via

two different strategies. First, we utilized the pellet fraction from

the first iodixanol gradient containing acidocalcisomes [25] (S1A

Figure). Second, we used acidocalcisome samples obtained from

fraction 5 of the second ultracentrifugation step of our iodixanol

gradient protocol (Fig. 1A). Similar enzyme activity profiles were

obtained in more than three independent fractionations. Since the

vacuolar pyrophosphatase (TbVP1) activity (measured as amino-

methylenediphosphonate (AMDP)-sensitive pyrophosphatase ac-

tivity [24,26] was highly enriched in fraction 5 of the second

iodixanol gradient ultracentrifugation, we are reporting the

proteomic results of this purified fraction from two of the

experiments, although most acidocalcisome proteins described

here were also detected in the acidocalcisome pellet obtained after

the first iodixanol gradient centrifugation (results not shown).

Fig. 1 illustrates protein abundance (Fig. 1B) as well as

distribution of markers for acidocalcisomes (TbVP1) (Fig. 1C),

mitochondria (succinate cytochrome c reductase) (Fig. 1D),

glycosomes (hexokinase) (Fig. 1E), and lysosomes (a-mannosidase)

(Fig. 1F) as percentage of the total recovered activity from two to

three independent experiments using double iodixanol gradient

centrifugation of PCF lysates. Fractions 3 and 5 of PCF showed

the highest TbVP1 activity (Fig. 1C) and were less contaminated

with glycosome (Fig. 1E) or mitochondrial (Fig. 1D) markers than

the other fractions. Very similar results to the enzymatic activities

were obtained by western blot analyses of the different fractions

(F1–F7) (S2A–B Figure) using antibodies against proteins localized

to acidocalcisomes (TbVP1), mitochondria (voltage-dependent

anion channel, TbVDAC), glycosomes (pyruvate, phosphate

dikinase, TbPPDK), and lysosomes (Tbp67) (S2B Figure).

We also evaluated our purification method by comparing

marker enzymes and activities in the 15,0006g fraction applied to

the iodixanol gradient and the acidocalcisome fraction from the

first and second iodixanol gradients (S1A Figure and Table 1).

The pyrophosphatase yield was ,10 and ,5.0%, whereas the

yield of protein was only 0.14 and 0.05%, a 70 and 99-fold

purification, respectively. The only other organelles that were

enriched to any extent in the acidocalcisome preparation after the

first iodixanol gradient were glycosomes and lysosomes, as

evidenced by a 3- and 2-fold purification of hexokinase and a-

mannosidase, respectively. However, this purification was greatly

reduced with the second gradient isolation. Mitochondria (marked

by succinate cytochrome c reductase) were not enriched in these

fractions. The acidocalcisomes obtained after two iodixanol

gradients were therefore enriched by this technique .60-fold

more than these other cell compartments.

Electron microscopy of PCF acidocalcisome fraction (fraction 5)

(S1B Figure) showed round organelles of various sizes up to

200 nm in diameter, in some cases containing electron-dense

material (arrows and arrowheads) and with the same appearance

as acidocalcisomes isolated using Percoll gradients [24]. When

fixed, acidocalcisomes lose their electron-dense content to a

variable extent, resulting in a heterogeneous appearance. In

contrast to the purity of fraction 5, electron microscopy of the

15,0006g pellet used to load the first gradient showed the presence

of mitochondria, glycosomes, and flagella (S2C Figure), while that

of the pellet of the first gradient showed some contamination with

glycosomes (S2D Figure).

After SDS-PAGE of different pellets and gradient centrifugation

bands, and enzymatic digestion with trypsin, peptides were

analyzed by LC-MS/MS (see Materials and Methods). Fig. 1G

shows a typical Coomassie brilliant blue-stained gel of proteins

present in fraction 5 and the approximate positions in the gel that

some of the putative acidocalcisome proteins studied in this work

would have. A similar pattern of bands was obtained in three other

fractionations (S3 Figure). S3 Figure also shows western blot

analyses of these preparations with antibodies against known

acidocalcisome proteins, such as TbVP1 [24] (S3A Figure,

arrowheads), inositol-1,4,5-trisphosphate receptor (TbIP3R) [27]

(S3B Figure, arrowhead), and vacuolar soluble pyrophosphatase

(TbVSP) [28] (S3C Figure, arrow). Antibodies against TbVP1

reveal the presence of two bands as previously reported [29],

antibodies against T. cruzi VSP show extra cross-reacting bands,

and one of them (arrowhead) probably corresponds to the soluble

inorganic pyrophosphatase (Tb927.3.2840; MW 28.7 kDa). Anti-

bodies against TbIP3R show lower molecular mass bands that are

probably hydrolysis products of this very high molecular weight

protein.

Protein identification
We identified a total of 580 proteins (1% false discovery rate,

protein probabilities .0.95) from fraction 5 of the first (ACCS1)

and second (ACCS2) experiments. The ACCS1 and ACCS2

datasets included 520 and 340 protein identifications, respectively

(proteins are reported in S1 Table; peptides in S2 Table). When

variants of similar proteins are indistinguishable from peptide data,

the ProteinProphet [30] algorithm utilized by the ProteoIQ

software treats these identifications as a single protein (a protein

‘‘group’’). For example, two virtually identical isoforms

(Tb927.4.4380 and Tb927.8.7980) of vacuolar-H+-pyrophospha-

tase (TbVP1) are present in T. brucei and vary in only 6 of 826

residues. Peptides from these proteins were unequivocally identi-

fied in our acidocalcisome datasets, and we report them as a single

identification. In these instances, one or both of the proteins may

be present. Two hundred nineteen are annotated as ‘‘hypothet-

ical’’ in the T. brucei genome, and five were not represented in

proteomic data available in TriTrypDB.org (downloaded May 28,

2014). Of the five with no prior mass spectrometry evidence, three

were annotated as hypothetical. The remaining two proteins for

which we provide novel expression evidence are annotated as

Author Summary

Acidocalcisomes are acidic organelles conserved from
bacteria to human cells that are rich in polyphosphate, a
polymer of orthophosphate units linked by high-energy
phospho-anyhidride bonds. We found here that acidocal-
cisomes from Trypanosoma brucei, belonging to the group
of organisms that produces African sleeping sickness and
nagana, are rich in pumps, channels, and transporters
involved in phosphate and cation homeostasis, and
calcium signaling. Proteomic analysis of acidocalcisome
fractions and expression of genes with epitope tags
validated the presence of a number of novel transporters,
and RNA interference demonstrated the essentiality of
these organelles.

Acidocalcisome Proteome
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frame-shift pseudogenes for a retrotransposon hot spot protein and

a variant surface glycoprotein. Approximately 21% (120) of our

580 proteins have predicted transmembrane domains (S3 Table),

consistent with estimates of representation in other organisms [31].

Of 40 identifications (6.9% of total), with predicted signal peptides,

22 also possessed putative transmembrane domains.

Annotated proteins in our proteomic dataset span a broad range

of metabolic groups. Transport-related proteins accounted for

,15%. Among these were transporters and pumps, vacuolar-H+-

pyrophosphatase, an acidocalcisomal marker, was identified in our

dataset. Other well-represented metabolic groups in our dataset

were energy metabolism (,14%), protein, lipid, carbohydrate, and

nucleic acid metabolism (,36%), and cell structure and organi-

zation (,18%).

Subcellular localizations of each protein were predicted (S4

Table) using a series of algorithms (pTARGET, targetP, WoLF-

PSORT, and SLP-LOCAL). Both plant and non-plant-optimized

predictions were performed as a means of comparison, but we

report here non-plant, targeting predictions. Approximately 20%

of our identifications are nuclear, 17% are cytosolic, and ,9% are

mitochondrial. Plasma membrane and secretory predictions

represent ,5% and 1%, respectively. Table 2 shows proteins

with known localization to acidocalcisomes of T. brucei and those

established in this work (see below) and other proteins that we

selected for localization studies. Table 2 indicates which of these

markers were not present in our proteomic datasets (labeled with

asterisks). Of the proteins identified by proteomic analysis of the

subcellular fractions, we selected several proteins, some previously

Fig. 1. Distribution on iodixanol gradients of organellar markers from PCF trypanosomes. (A) Photograph showing bands obtained after
the second iodixanol gradient centrifugation. Fraction 5 corresponds to the purified acidocalcisomes. (B) Protein distribution. (C) TbVP1 activity
(measured as the AMDP-sensitive Pi release) is concentrated in fractions 3 and 5. (D) Mitochondrial marker distribution, succinate cytochrome c
reductase. (E) Glycosomal marker distribution, hexokinase. (F) Lysosomal marker distribution, a-mannosidase. In (B–F) the y-axis indicates relative
distribution; the x-axis indicates fraction number; bars show means 6 SD (as a percentage of the total recovered activity) from two or three
independent experiments. (G) SDS-PAGE of Fraction 5 from a representative acidocalcisome (ACCS) fractionation stained with Coomassie brilliant
blue. The relative intensities of the bands were obtained from a bitmap file of the gel image and is shown on the right. Background was subtracted.
The approximate localization of the acidocalcisome proteins identified in Table 2 is shown. BenchMark protein markers are shown at the left.
doi:10.1371/journal.ppat.1004555.g001

Table 1. Purification of acidocalcisomes on iodixanol step gradients.

Yield (%) Purification-fold

1st 2nd 1st 2nd

Protein (mg) 0.14 (3) 0.05 (3)

Pyrophosphatase* 9.81 (3) 4.96 (3) 70 99

Succinate cytochrome c reductase 0.12 (3) 0.02 (3) 1 0.2

Hexokinase 0.46 (3) 0 (3) 3 0

a-mannosidase 0.27 (3) 0.08 (3) 2 1.6

Yield values are percentages relative to the 15,0006g pellet fraction and represent averages from number of preparations in parentheses.
*Pyrophosphatase activities in the 15,000 g pellet, and the 1st and 2nd gradient acidocalcisome preparations were 0.2260.09, 15.663.2, and
22.662.1 mmol min21 mg21 protein, respectively (mean 6 SD).
doi:10.1371/journal.ppat.1004555.t001

Acidocalcisome Proteome

PLOS Pathogens | www.plospathogens.org 3 December 2014 | Volume 10 | Issue 12 | e1004555



T
a

b
le

2
.

Id
e

n
ti

fi
ca

ti
o

n
o

f
ac

id
o

ca
lc

is
o

m
e

p
ro

te
in

ca
n

d
id

at
e

s
in

T.
b

ru
ce

i,
sh

o
w

in
g

lo
ca

liz
at

io
n

an
d

e
ss

e
n

ti
al

it
y

in
B

SF
o

r
P

C
F.

T
ri

T
ry

p
D

B
G

e
n

e
ID

A
n

n
o

ta
ti

o
n

(p
ro

te
in

n
a

m
e

)
M

W
(k

D
a

)
T

M
D

L
o

ca
li

z
a

ti
o

n
R

e
q

u
ir

e
d

fo
r

g
ro

w
th

in
B

S
F

o
r

P
C

F
C

o
n

fi
d

e
n

ce
(p

e
p

ti
d

e
s)

R
e

f.

T
b

9
2

7
.4

.4
3

8
0

T
b

9
2

7
.8

.7
9

8
0

V
ac

u
o

la
r

H
+ -P

P
as

e
(T

b
V

P
1

)
8

6
1

4
A

c
B

SF
,

P
C

F
0

.9
9

(8
)

[2
9

]

T
b

9
2

7
.8

.1
1

8
0

V
ac

u
o

la
r-

C
a2

+ -A
T

P
as

e
(T

b
P

M
C

1
)

1
2

1
8

A
c

B
SF

,
P

C
F

0
.9

6
(8

)
[3

6
]

T
b

9
2

7
.8

.2
7

7
0

IP
3

re
ce

p
to

r
(T

b
IP

3
R

)
3

4
5

5
A

c
B

SF
,

P
C

F
1

(2
2

)
[2

7
]

th
is

st
u

d
y

T
b

9
2

7
.7

.3
9

0
0

V
ac

u
o

la
r

tr
an

sp
o

rt
e

r
ch

ap
e

ro
n

e
1

(T
b

V
tc

1
)*

2
0

3
A

c
P

C
F

-
[4

0
]

th
is

st
u

d
y

T
b

9
2

7
.1

1
.1

2
2

2
0

V
ac

u
o

la
r

tr
an

sp
o

rt
e

r
ch

ap
e

ro
n

e
4

(T
b

V
tc

4
)

9
1

3
A

c
B

SF
,

P
C

F
1

(8
)

[3
8

,3
9

]
th

is
st

u
d

y

T
b

9
2

7
.1

1
.7

0
6

0
T

b
9

2
7

.1
1

.7
0

8
0

V
ac

u
o

la
r

so
lu

b
le

P
P

as
e

(T
b

V
SP

)*
4

7
0

A
c

B
SF

,
P

C
F

-
[2

8
]

T
b

9
2

7
.1

1
.1

0
6

5
0

A
d

ap
to

r
p

ro
te

in
3

su
b

u
n

it
b

e
ta

(T
b

A
P

-3
b

)*
1

0
0

0
A

c,
G

o
lg

i,
En

d
o

so
m

e
s

B
SF

,
P

C
F

-
[6

3
]

T
b

9
2

7
.5

.3
6

1
0

A
d

ap
to

r
p

ro
te

in
3

su
b

u
n

it
d

e
lt

a
(T

b
A

P
-3
d

)*
1

2
5

1
A

c,
G

o
lg

i,
En

d
o

so
m

e
s

B
SF

,
P

C
F

-
[6

3
]

T
b

9
2

7
.5

.1
3

0
0

V
ac

u
o

la
r

H
+ -A

T
P

as
e

su
b

u
n

it
a

(T
b

V
A

a
)

8
9

6
A

c,
Ly

so
so

m
e

,
G

o
lg

i
B

SF
,

P
C

F
1

(5
)

T
h

is
st

u
d

y

T
b

9
2

7
.5

.5
5

0
V

ac
u

o
la

r
H

+ -A
T

P
as

e
su

b
u

n
it

d
(T

b
V

A
d

)
4

2
0

A
c,

Ly
so

so
m

e
,

G
o

lg
i

B
SF

,
P

C
F

1
(1

)
T

h
is

st
u

d
y

T
b

9
2

7
.3

.8
0

0
V

ac
u

o
la

r
ir

o
n

tr
an

sp
o

rt
e

r
(T

b
V

IT
1

)*
3

0
3

A
c

B
SF

,
P

C
F

-
T

h
is

st
u

d
y

T
b

9
2

7
.4

.4
9

6
0

Z
in

c
tr

an
sp

o
rt

e
r

(T
b

Z
n

T
)*

5
0

5
A

c
-

-
T

h
is

st
u

d
y

T
b

9
2

7
.1

1
.1

1
1

6
0

P
h

o
sp

h
at

e
tr

an
sp

o
rt

e
r

(T
b

P
h

o
9

1
)

8
1

1
0

A
c

-
1

(1
)

T
h

is
st

u
d

y

T
b

9
2

7
.1

0
.7

0
2

0
A

ci
d

p
h

o
sp

h
at

as
e

(T
b

A
P

)
4

9
0

A
c

-
1

(9
)

T
h

is
st

u
d

y

T
b

9
2

7
.9

.1
0

3
4

0
P

o
ly

am
in

e
tr

an
sp

o
rt

e
r

1
(T

b
P

O
T

1
)*

5
4

1
1

A
c,

Ly
so

so
m

e
,

En
d

o
so

m
e

-
-

T
h

is
st

u
d

y

T
b

9
2

7
.1

1
.6

6
8

0
P

o
ly

am
in

e
tr

an
sp

o
rt

e
r

2
(T

b
P

O
T

2
)*

5
6

1
0

Ly
so

so
m

e
-

-
T

h
is

st
u

d
y

T
b

9
2

7
.8

.1
8

7
0

G
o

lg
i/

ly
so

so
m

e
g

ly
co

p
ro

te
in

1
(T

b
G

LP
1

)
6

8
1

Ly
so

so
m

e
,

G
o

lg
i

-
1

(1
)

T
h

is
st

u
d

y

T
b

9
2

7
.1

1
.5

4
0

A
B

C
tr

an
sp

o
rt

e
r

(T
b

A
B

C
T

)
7

6
6

M
it

o
ch

o
n

d
ri

a
-

1
(1

)
T

h
is

st
u

d
y

T
b

9
2

7
.1

0
.3

6
4

0
N

u
cl

e
ar

p
ro

te
in

(T
b

N
P

)
3

1
6

N
u

cl
e

u
s

-
1

(1
)

T
h

is
st

u
d

y

T
b

9
2

7
.1

1
.8

4
0

.1
C

at
io

n
/p

ro
to

n
an

ti
p

o
rt

e
r

(T
b

FT
P

)
8

1
1

5
Fl

ag
e

lla
r

ti
p

-
-

T
h

is
st

u
d

y

M
W

,
m

o
le

cu
la

r
w

e
ig

h
t;

T
M

D
,

tr
an

sm
e

m
b

ra
n

e
d

o
m

ai
n

s;
A

c,
ac

id
o

ca
lc

is
o

m
e

;
IP

3
,

in
o

si
to

l
1

,4
,5

-t
ri

sp
h

o
sp

h
at

e
;

P
P

as
e

,
p

yr
o

p
h

o
sp

h
at

as
e

;
-,

n
o

t
te

st
e

d
.

*P
ro

te
in

s
fo

r
w

h
ic

h
p

e
p

ti
d

e
s

w
e

re
n

o
t

fo
u

n
d

in
th

e
ac

id
o

ca
lc

is
o

m
e

p
ro

te
o

m
e

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
p

at
.1

0
0

4
5

5
5

.t
0

0
2

Acidocalcisome Proteome

PLOS Pathogens | www.plospathogens.org 4 December 2014 | Volume 10 | Issue 12 | e1004555



tested, for further validation (Table 2). Additionally, we selected

other targets for validation based on properties that could justify

acidocalcisome localization (Table 2).

Proteins involved in Ca2+ signaling
The acidocalcisomes in trypanosomatids serve as large acidic

calcium stores [5,32], and a number of proteins in these organelles

can mediate Ca2+ signaling in the cell. The localization of the

inositol 1,4,5-trisphosphate receptor (IP3R) in trypanosomatids has

been controversial, but endogenous tagging of the IP3R of T.
brucei with a 36HA epitope tag demonstrated specific localization

to the acidocalcisomes in this species [27]. The IP3R-HA did not

co-localize with TbBiP, an ER marker [33] with a clear reticular

labeling. Proteomic analysis of acidocalcisome fractions (unpub-

lished) and contractile vacuole complex fractions [34] of T. cruzi
also supported the presence of IP3R in these organelles. These

results corroborate the punctate vacuolar localization in T. cruzi
reported for TcIP3R by other authors [35]. These authors

suggested an endoplasmic reticulum (ER) localization of TcIP3R,

but no clear co-localization with TbBiP antibodies was presented

[35]. To confirm the acidocalcisome localization of TbIP3R, we

generated an antibody against the IP3 binding region of TbIP3R.

Immunofluorescence analysis using this antibody confirmed the

acidocalcisome localization, as determined by co-localization with

antibodies against TbVP1 in T. brucei (Fig. 2A). Western blot

analysis confirmed specificity of these antibodies (Fig. 2B and S3B

Figure).

The acidocalcisome localization of the vacuolar Ca2+-ATPase

(TbPMC1, Tb927.8.1180) [36] was also confirmed in our

proteomic analysis (Table 2). Peptides from other Ca2+-ATPases

(Tb927.3.3400, annotated as sarcoplasmic-endoplasmic reticulum-

type Ca2+-ATPase; and Tb927.8.1160, annotated as vacuolar-type

Ca2+-ATPase) were also detected (S3 Table), although they

probably indicate similarity of peptides from different ATPases

or contamination with other subcellular membrane fractions.

Proteins involved in phosphate and polyP metabolism
The vacuolar transporter chaperone complex (VTC complex) is

involved in polyP synthesis in yeast [37] and trypanosomes [38,39].

Homologues of the yeast proteins (Vtc1p to Vtc4p) are present in

the genomes of trypanosomatids, apicomplexan, fungi, and algae

but absent in mammalian cells. GFP-tagged T. brucei vacuolar

transporter chaperone 1 (TbVtc1) localized to acidocalcisomes and

the ER, although ER localization was attributed to an artifact of

protein overexpression [40]. Although we did not detect

peptides for this protein in the acidocalcisome proteome, we

re-examined its localization and avoided pitfalls of overexpres-

sion and abnormal distribution by expressing 36 HA-tagged

TbVtc1 in its endogenous locus under wild-type regulation.

TbVtc1 perfectly co-localized with TbVP1 to acidocalcisomes

(Fig. 3A). TbVtc4, which was positively identified in the acido-

calcisome proteome (S1 Table), also co-localized to acidocalci-

somes with TbVP1 (Fig. 3B), as reported previously [38].

Western blot analyzes confirmed the expression of the tagged

proteins (Fig. 3E and 3F).

A putative phosphate transporter (TcPho1, TcCLB.508831.60)

in T. cruzi, which was originally annotated as a sodium/sulphate

symporter, localizes to the contractile vacuole and intracellular

membranes of epimastigotes of T. cruzi [34]. The product of the

T. brucei homologue (TbPho91, Tb927.11.11160) co-localized

with TbVP1 in acidocalcisomes (Fig. 3C). Expression of the tagged

protein was confirmed by western blot analysis (Fig. 3G).

Previous work [28] has indicated the presence of a vacuolar

soluble pyrophosphatase in acidocalcisomes of T. brucei (TbVSP,

Tb927.11.7060 and Tb927.11.7080). Although peptides corre-

sponding to this protein were not identified in the proteome,

antibodies against this protein reacted with a band of ,50 kDa

corresponding to the apparent molecular mass of the protein in the

acidocalcisome fraction (S3C Figure, arrow).

We also investigated the localization of a putative acid

phosphatase (Tb927.10.7020; TbAP), which was present in our

acidocalcisome fractions (S1 Table). The presence of an acid

phosphatase activity in T. rangeli acidocalcisomes was detected

by cytochemical methods [41], and early work in T. brucei
rhodesiense also localized an acid phosphatase activity to lysosome-

like vesicles that probably correspond to acidocalcisomes [42]. We

found that TbAP co-localized with TbVP1 to acidocalcisomes

(Fig. 3D). Western blot analysis confirmed the expression of the

tagged protein (Fig. 3H).

Proton pumps
Proton pumps maintain a low pH inside acidocalcisomes. We

identified both TbVP1 and vacuolar proton ATPase (V-H+-

ATPase) in our proteomic analysis (Table 2). Early physiological

studies using bafilomycin A1, a specific inhibitor of V-H+-ATPase

[43], demonstrated V-H+-ATPase activity in permeabilized T.
brucei PCF trypanosomes [8]. This finding was later confirmed in

experiments with intact cells [44] and isolated acidocalcisomes

[24]. All putative subunits of this pump are present in the T. brucei
genome (TriTrypDB.org, S5 Table), and two of the subunits, the

putative H+-translocating subunit a (TbVAa) and the putative H+

transporting subunit d (TbVAd), were found in our acidocalcisome

proteomic analysis (Table 2). We tagged subunits a, and d with a

36 HA tag and found excellent co-localization with TbVP1

(Fig. 4A, and S4A Figure). Additional punctate staining of the a
and d subunits that did not co-localize with TbVP1 could

correspond to labeling of the Golgi complex and endocytic

pathway, where the V-H+-ATPase also localizes in most eukary-

otic cells. In agreement with that additional localization, we found

that part of the antibody reaction against these subunits co-

localizes with the Golgi marker Golgi reassembly and stacking

protein (TbGRASP) [45] (Fig. 4B and S4B Figure) and with the

lysosomal markers cathepsin L (TbCATL), a luminal lysosomal

cysteine peptidase, and p67, a lysosomal membrane glycoprotein

[46] (Figs. 4C and 4D, and S4C Figure and S4D Figure,

respectively). Western blot analyses confirmed the expression of

these proteins (Fig. 4E and S4E Figure).

Fig. 2. Immunofluorescence microscopy analysis of TbIP3R. (A)
TbIP3R co-localized with TbVP1 in acidocalcisomes of PCF trypano-
somes (Pearson’s correlation coefficient of 0.8399). Yellow in merge
images indicates co-localization. Scale bars = 10 mm. (B) Western blot
analysis of TbIP3R expressed in PCF trypanosomes using polyclonal anti-
TbIP3R antibody. Lysate containing 30 mg of protein from PCF
trypanosomes was subjected to SDS/PAGE on 4–15% polyacrylamide
gel, and transferred to a nitrocellulose membrane. Molecular weight
markers at left and arrow shows the band corresponding to TbIP3R.
doi:10.1371/journal.ppat.1004555.g002
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Other transporters
Several acidocalcisome proteins of other trypanosomatids or

with potential localization to acidocalcisomes were also investigat-

ed. Since iron has been detected in acidocalcisomes of T. cruzi
[47], Phytomonas spp. [48,49], and Leishmania amazonensis [50],

we tagged a hypothetical protein (Tb927.3.800) with similarity to

vacuolar iron transporters (VIT). This protein co-localized with

TbVP1 (Fig. 5A), and western blot analysis of PCF trypanosome

lysates showed a single band using anti-HA antibodies (Fig. 5C).

We also tagged a putative metal-ion (zinc) transporter

(Tb927.4.4960) as an homologue in T. cruzi (TcCLB.511439.50)

occurs in acidocalcisomes [51]. Fig. 5B shows that HA-tagged

Tb927.4.4960 co-localized with TbVP1, and western blot analyses

(Fig. 5D) confirmed its expression.

Proteins in the proteome that do not localize to
acidocalcisomes

Several proteins enriched in the acidocalcisome proteome

possess transmembrane domains (TMD), and some have

homologues present in acidocalcisomes of other species. For

example, Tb927.10.3640 has six predicted TMD and is annotated

in TriTrypDB.org as a hypothetical protein. The C terminus was

tagged with a 36 HA tag using homologous recombination with

the endogenous locus. Surprisingly, the protein showed nuclear

membrane localization (S5A Figure), and western blot analysis

identified a single band of ,35 kDa (predicted molecular mass,

32 kDa, S5C Figure). Interestingly, this protein was previously

identified in a nuclear proteome of T. brucei [52]

An ABC transporter was identified in the acidocalcisomes

of Cyanidoschyzon merolae [17] and Tb927.11.540, listed as a

putative ABC transporter with six predicted TMD, was enriched

in the T. brucei acidocalcisome proteome (S1 Table). However,

antibodies against HA co-localized with MitoTracker in the

mitochondrion of PCF (S5B Figure), and western blot analysis

showed a strong band of ,75 kDa compatible with the predicted

molecular mass of 76 kDa. A second band at ,60 kDa, may be

due to cleavage of a mitochondrial targeting signal of 97 amino

acids (S5D Figure).

Fig. 3. Immunofluorescence microscopy and western blot analysis of proteins involved in phosphorus metabolism. TbVtc1 (A),
TbVtc4 (B), TbPho91 (C), and TbAP (D) were 36HA epitope-tagged in situ and co-localized with TbVP1 in acidocalcisomes of PCF trypanosomes
(Pearson’s correlation coefficients of 0.873, 0.734, 0.728, and 0.680, respectively). Yellow in merge images indicate co-localization. Scale bars for (A–
D) = 10 mm. Western blot analyses with monoclonal anti-HA showing labeling of TbVtc1 (E), TbVtc4 (F), TbPho91 (G), and TbAP (H) in PCF
trypanosomes. Molecular weight markers at left, and arrows show the corresponding bands identified. Tubulin (Tub) was used as a loading control.
doi:10.1371/journal.ppat.1004555.g003
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Tb927.8.1870 is a Golgi/lysosome glycoprotein 1 (TbGLP1)

reported to localize in the Golgi complex, multivesicular

lysosomes, and in unidentified small vesicles [53]. As we detected

localization of other acidocalcisome proteins in Golgi and

lysosomes (Fig. 4 and S4 Figure) we tagged the C terminus of

TbGLP1 with 36 HA. The small vesicles previously described

[53] are apparently not the acidocalcisomes as TbGLP1 does not

co-localize with TbVP1 (S6A Figure). Consistent with this,

antibodies against HA co-localized with TbGRASP (S6B Figure),

TbCATL (S6C Figure) and p67 (S6D Figure). Western blot

analysis showed a band of ,90 kDa, close to the apparent

molecular mass of the native protein [53] (S6E Figure).

Proteins of potential acidocalcisome localization
Acidocalcisomes are rich in basic amino acids, and potentially

polyamines to balance anionic charges of polyphosphate, as occurs

in the yeast vacuole [54]. We investigated the localization of HA-

tagged putative polyamine transporters TbPOT1 (Tb927.9.10340)

and TbPOT2 (Tb927.11.6680). TbPOT1 partially co-localizes

with acidocalcisomes (S7A Figure), and with lysosomes (S7B–C

Figure). TbPOT2, in contrast, did not co-localize with Golgi

complex (S8A Figure) and showed an exclusive lysosomal

localization (S8B–C Figure). Western blot analyses confirmed the

expression of the tagged proteins (S7E Figure and S8E Figure,

respectively).

Biochemical evidence for the presence of a Na+/H+ exchanger

in acidocalcisomes of different trypanosomatids [55] including T.
brucei PCF [56,57] has been presented. We therefore investigated

the localization of Tb927.11.840.1, which has 15 predicted TMD

and is annotated as a putative cation/proton antiporter in

TriTrypDB.org, and as a potential Na+/H+ exchanger in

TransportDB. Interestingly, HA-tagged TbFTP localizes to the

distal tip of the flagellum of PCF, and does not co-localize with

acidocalcisomes (S7D Figure). Western blot analysis identified one

band absent in wild type cells (S7F Figure). Few proteins, among

them adenylyl cyclases [58], a calpain-like protein TbCALP.1.3

[59], the kinesin motor Kif13-2 [60], an unknown antigen, and the

flagellar protein FLAM8 [61], have previously been reported to

exhibit localization to the flagellar tip of T. brucei. In addition, a

cation channel does occur in the distal tip of the flagellum T. cruzi
[62] and the presence of channels and exchangers at this

localization may be compatible with the proposed role of the

flagellum as an environmental sensor.

Requirement of newly discovered acidocalcisome
proteins for normal growth

We have reported before that a number of genes encoding

acidocalcisome proteins such as TbVP1 [29], TbPMC1 [36],

TbIP3R [27], TbVtc1 [40], TbVtc4 [38,39], TbVSP [28], and

AP-3 b and d subunits [63] are essential for the growth of BSF

and/or PCF trypanosomes (Table 2). We therefore selected some

of the newly identified acidocalcisome proteins to investigate their

requirement for growth. Knockdown of TbVAa or TbVAd by

induction of double-stranded RNA resulted in growth defects in

both BSF and PCF trypanosomes (Fig. 6A, 6B, and 6D, and 6E,

respectively), with an 8164% and 6963% reduction in the

number of cells, respectively. Northern blots (analysis performed

with ImageJ software) showed that mRNA was down-regulated by

73–96% after 2 and 4 d of RNAi in BSF and PCF trypanosomes,

respectively (Fig. 6C and 6F).

Fig. 4. Immunofluorescence microscopy and western blot analysis of V-H+-ATPase subunit a in PCF trypanosomes. Epitope-tagged V-
H+-ATPase subunit a co-localizes with TbVP1 to the acidocalcisomes (A), with TbGRASP to the Golgi complex (B) with TbCATL (C) and with p67 (D)
and to lysosomes (Pearson’s correlation coefficients of 0.631, 0.539, 0.804, and 0.754, respectively). Yellow in merge images indicate co-localization
(also shown with arrows in (B–D)). Scale bars for (A–D) = 10 mm. (E) Confirmation of tagging by western blot analyses with monoclonal anti-HA in PCF
trypanosomes. HRP-conjugated goat anti-mouse was used as a secondary antibody. Magic Mark XP (Invitrogen) was used as a molecular weight
marker and arrow shows band corresponding to TbVAa. Tubulin (Tub) was used as a loading control (bottom panel).
doi:10.1371/journal.ppat.1004555.g004
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Knockdown of TbVIT1 in both BSF and PCF trypanosomes

(Fig. 6G and 6H) resulted in growth defects with a 4466% and

4163% reduction in the number of cells after 2 and 4 d of

tetracycline addition to BSF and PCF trypanosomes, respectively.

Knockdown of TbZnT only weakly affected the growth of PCF

trypanosomes (Fig. 6J and 6K). Northern blot analyses showed

that the mRNA was downregulated in all cases (Fig. 6I and 6L).

Discussion

We report here the proteomic analysis of subcellular fractions

enriched in acidocalcisomes from T. brucei. These fractions are

enriched in proteins previously demonstrated to localize to

acidocalcisomes like TbVP1 [24], TbPMC1 [36], TbVtc4 [38],

and TbIP3R [27]. Our protocol yields fractions well resolved from

organelle markers for mitochondria (succinate cytochrome c

reductase, TbVDAC), glycosomes (hexokinase, TbPPDK) and

lysosomes (a-mannosidase, Tbp67). We made 580 identifications

in fractions highly enriched in TbVP1 activity. Membrane

proteins are challenging for proteomic analysis, but our dataset

includes a relatively high representation of membrane proteins

(21% in fraction 5). A published plasma membrane proteome of T.
brucei contains a lower proportion of membrane proteins (16.1%

of 1,536 proteins, [64], suggesting that our fractionation success-

fully enriched proteins with potential, membrane-related func-

tions. Additionally, our proteomic analysis confirmed expression of

five proteins previously undetected in whole cell analyses of T.

brucei (data from TriTrypDB.org, accessed May 28, 2014). This

confirms the relevance of subcellular proteomics as a method of

choice for the identification of larger numbers of proteins than

whole cell proteomics [51].

Subcellular fractionation only partially purifies cellular compo-

nents from contaminants. This contamination is due in part to the

abundance of some proteins, the adhesive properties of others, and

also because there are junctions that connect organelles with each

other [65]. In this regard we previously discussed [66] the close

association of acidocalcisomes with mitochondria of trypanosomes

[67], an association that is important for Ca2+ signaling, and could

explain the contamination of our fractions with mitochondrial

membrane proteins. It is therefore essential that mass spectromet-

ric analysis be validated with in vivo expression of tagged proteins.

Only few studies to date [34,51,61,68] have implemented such a

method to verify proteomes of trypanosomatid parasites. To

validate our dataset, we expressed a number of proteins in the

acidocalcisome proteome as HA-fusion proteins. We complement-

ed this set of proteins with selected proteins with known

localizations to the acidocalcisomes in other species, and with

proteins that could potentially be present in the acidocalcisomes

on the basis of our knowledge of the organelle. Interestingly,

several proteins previously localized to acidocalcisomes were

absent in our dataset. These notable absences from our dataset

suggest very low expression levels.

The proteins we localized to the acidocalcisomes (Fig. 7) belong

to three groups: proteins involved in Ca2+ signaling, phosphate

homeostasis, and membrane transport. The acidocalcisome

localization of the IP3R [27] was confirmed using antibodies

against the IP3 binding region of the receptor, which recognized a

band of 345 kDa that corresponds to the apparent molecular mass

of the receptor (343 kDa). The antibody marked an additional

band at ,80 kDa that likely corresponds to a hydrolysis product,

as this band is very weak in immunoblots of total cell lysates.

Although TbIP3R in T. cruzi was suggested to localize to the ER

[35], the IFA results from T. cruzi were not convincing given that

endogenously tagged T. brucei IP3R localizes to acidocalcisomes

[27]. Further work is necessary to confirm this localization in other

trypanosomatids. The identification of a mechanism for Ca2+

uptake (TbPMC1) and Ca2+ release (TbIP3R) in acidocalcisomes

underscore the relevance of these organelles in Ca2+ signaling.

The acidocalcisome localization of two components of the VTC

complex involved in synthesis of polyP [38,40] was confirmed, and

the excellent co-localization of TbVtc1 and TbVtc4 with TbVP1

in acidocalcisomes suggest that previously reported localization of

TbVtc1 in the ER [40] was the consequence of its overexpression

from an exogenous locus.

A phosphate transporter (TbPho91) annotated as sulfate/

sodium symporter, and encoding for a putative Saccharomyces
cerevisiae Pho91p orthologue (S9A Figure) was localized to the

acidocalcisomes. Pho91p, is localized to the vacuole and proposed

to be involved in exporting Pi from the vacuole to the cytosol [69].

The orthologue identified in T. cruzi (TcCLB.508831.60) shares

65% amino acid identity to TbPho91, and has been localized to

the contractile vacuole and other membranes of that parasite [34].

The ORF of TbPho91 encodes a predicted, 728 amino acid

protein with an apparent molecular weight of 81 kDa, nine

transmembrane domains, an N-terminal regulatory SPX domain

and an anion-permease domain that is also present in other anion

transporters. The recognized polypeptide had an apparent

molecular mass of ,70 kDa and, since T. brucei Pho91 possesses

ten transmembrane domains, a size discrepancy between the

expected (99 kDa) and the observed molecular mass could be

attributed to the usual anomalous migration of hydrophobic

Fig. 5. Immunofluorescence microscopy and western blot
analyses of metal ion transporters. Epitope-tagged TbVIT1 (A)
and TbZnT (B) and co-localize with TbVP1 to the acidocalcisomes
(Pearson’s correlation coefficients of 0.6879 and 0.7604, respectively).
Yellow in merge images indicate co-localization. Scale bars for A–
B = 10 mm. Tagging with HA was confirmed by western blot analyses of
TbVIT1 (C) and TbZnT (D) using anti-HA antibodies. Markers are at the
left side, and arrows show the corresponding bands. Tubulin (Tub) was
used as a loading control (bottom panel).
doi:10.1371/journal.ppat.1004555.g005
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proteins on SDS gels [70]. If TbPho91 functions as its orthologue

in S. cerevisiae [69], it could be involved in the release of Pi from

the acidocalcisomes.

The acid phosphatase (TbAP) is the first soluble enzyme

identified at the molecular level in acidocalcisomes of trypanoso-

matids. The gene (Tb927.10.7020) encodes a 50 kDa protein that

has a signal peptide and belongs to the histidine phosphatase

superfamily (TriTrypDB.org). Catalytic activity in the superfamily

centers on phosphorylation and dephosphorylation of a histidine

residue that follows the first b-strand of the protein. A conserved

Arg-His-Gly (RHG) triad has been proposed to contain the

phosphorylated histidine [71] and is conserved in TbAP. The

Fig. 6. Effect of inhibition of expression of four acidocalcisome genes by tetracycline-induced RNAi on cell growth. (A–B), (D–E), (G–I),
and (J–L) show growth of BSF (left panels) and PCF (right panels) trypanosomes of TbVAa, TbVAd, TbVIT1, and TbZnT RNAi in the absence (2Tet, black
lines) or presence (+Tet, red lines) of 1 mg/ml tetracycline for the indicated number of days, respectively. Values are means 6 SD (n = 3–4). (C), (F), (I)
and (L) show northern blot analyses of TbVAa, TbVAd, TbVIT1, and TbZnT RNAi in the absence (0) or presence (2 or 4 days) of tetracycline, respectively.
Tubulin is shown as a loading control. Markers are shown on the right.
doi:10.1371/journal.ppat.1004555.g006
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LTXXG motif in the region between b1 and b2 is also conserved

[71]. It is interesting to note that some acid phosphatases, like the

tartrate-resistant or purple acid phosphatase (S9B Figure) have

exopolyphosphatase activity [72] and further work will be needed

to investigate whether the exopolyphosphatase activity detected in

acidocalcisomes [73] is due to this enzyme.

The presence of a V-H+-ATPase activity was one of the defining

properties that led to the identification of acidocalcisomes in

trypanosomes [8,9]. The enzyme activity was later localized to

acidocalcisomes of different unicellular eukaryotes [5], but this is

the first work studying the localization of the enzyme using

epitope-tagged subunits. V-H+-ATPases are multisubunit proton

pumps composed of two subcomplexes. The peripheral V1

complex consists of eight subunits (A to H) and is responsible for

ATP hydrolysis, whereas the membrane-integral V0 complex (a, c,

c9, c0, d, and e subunits) is responsible for proton translocation

from the cytosol into the lumen of endomembrane compartments

[74]. Epitope tagging of two membrane integral V0 complex

subunits (a and d) identified the localization of this multisubunit

complex to acidocalcisomes, lysosomes, and Golgi complex. This

is in contrast with T. cruzi in which a P-type H+-ATPase is

involved in acidification of the endocytic pathway [75]. As occurs

with most organisms studied to date, the enzyme is essential for

parasite growth and survival. It is also quite interesting that there is

some heterogeneity in TbVP1 stain compared to some of these

markers, which may well suggest that there is more than one class

of compartment or at least differential compositions. This could

indicate either functional differences or maturation/degradation of

these compartments.

Two new metal ion transporters were identified. Tb927.3.800 is

an orthologue to the vacuolar iron transporter (VIT1) originally

described in Arabidopsis thaliana [76] and to the yeast Ca2+-

sensitive cross-complementer 1 (CCC1) [77] (S9C Figure). These

transporters are localized to the plant and yeast vacuole,

respectively, and have been involved in iron and manganese

sequestration into the vacuoles. The present of an iron transporter

is in agreement with the detection of iron in acidocalcisomes of

different species [78].

Tb9274.4960 is a member of the cation diffusion facilitator

(CDF) family [79], which includes mammalian zinc transporters

such as ZnT4 [80], S. cerevisiae ZRC1 [81], A. thaliana metal

tolerance protein 1 (AtMTP1) [82], and Escherichia coli YiiP

(EcYiiP) [83] (S10A Figure). These transporters function as

antiporters of Zn, Cd, Co and/or Ni with protons. All known

CDF domains proteins contain 6 TMD and share characteristic

motifs, such as a CDF family-specific signature sequence at the

start of the second membrane-spanning helix (TM2), and a long

C-terminus [82]. The presence of this zinc transporter is in

agreement with the abundant presence of zinc in the acidocalci-

somes, as detected by X-ray microanalyses of different prokaryotes

and eukaryotes [5,78].

We also report the localization of some proteins not previously

investigated, such as a mitochondrial ABC transporter (Tb

927.11.540) (TbABCT), a flagellar cation/proton antiporter

(Tb927.11.840.1) or flagellar tip protein (TbFTP), a nuclear

periphery protein (Tb927.10.3640) (TbNP), a lysosome/acidocal-

cisome putative polyamine transporter (Tb927.9.10340) (Tb

POT1) (S10B Figure), and a lysosomal putative polyamine

transporter (Tb927.11.6680) (TbPOT2). We also confirmed the

Golgi and lysosomal localization of TbGLP1 [53].

Finally, we report the requirement for growth of two subunits of

the V-H+-ATPase (TbVAa and TbVAd), and of an orthologue of

Fig. 7. Schematic representation of the acidocalcisome of T. brucei. The identified acidocalcisome proteins corresponding to the pumps,
exchangers, transporters or protein complexes in Table 2 are shown in this model. The newly identified acidocalcisome proteins in this study are
marked in blue.
doi:10.1371/journal.ppat.1004555.g007
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a vacuolar iron transporter (TbVIT1) in both PCF and BSF

trypanosomes, supporting the role of acidocalcisomes in parasite

growth and survival.

The identification of novel acidocalcisome proteins provides

useful insights into the biogenesis of these organelles. A common

feature of all the acidocalcisome proteins validated by endogenous

expression with HA-tags in this study is the presence of one or

more tyrosine-based, sorting signals with the YXXØ (Ø corre-

sponds to an hydrophobic amino acid) consensus motif (see S7

Table). The m subunits of at least four of the adaptor protein (AP)

complexes bind to this motif [84]. In this regard, AP-3 is required

for the biogenesis of the acidocalcisomes [63]. All of the proteins

we validated by expression also possess generic N-glycosylation

motifs, phosphothreonine modules binding FHA domains with

large aliphatic amino acids at the pT+3 position as well as casein

kinase 2 (CK2), glycogen synthase kinase b (GSK3b) and NEK2

(never in mitosis (NimA)-related kinases 2) phosphorylation sites

(see S7 Table). A variety of kinases such as GSK3b localize to the

Golgi and regulate post-Golgi membrane trafficking [85]. These

findings will help guiding future studies on the biogenesis of these

organelles.

In summary, in addition to validate the expression at the protein

level of a number of important genes and identify the localization

of proteins not previously studied, we identified several new

acidocalcisome proteins using a strategy complementing subcellu-

lar proteomics and bioinformatics with their localization using in
situ epitope-tagged proteins or specific antibodies, and RNAi for

functional validation. Four of these proteins are newly identified

acidocalcisome proteins, and their identification will facilitate

further studies to elucidate the roles of this organelle in T. brucei
physiology.

Materials and Methods

Ethics statement
Mice experiments in this work followed a reviewed and

approved protocol by the Institutional Animal Care and Use

Committee (IACUC). Animal protocols followed the US Govern-

ment principles for the Utilization and Care of Vertebrate

animals. The University of Georgia IACUC approved the animal

protocol (Protocol number A2012-3-010).

Cell culture
T. brucei PCF trypanosomes (wild type and 29-13 strains) and

BSF (single marker (SM) strains) were used. PCF 29-13 (T7RNAP
NEO TETR HYG) co-expressing T7 RNA polymerase and Tet
repressor were a gift from Dr. George A. M. Cross (Rockefeller

University, NY) and were grown in SDM-79 medium [86],

supplemented with hemin (7.5 mg/mL) and 10% heat-inactivated

fetal bovine serum, and at 27uC in the presence of G418 (15 mg/

ml) and hygromycin (50 mg/ml) to maintain the integrated genes

for T7 RNA polymerase and tetracycline repressor, respectively

[87]. BSF trypanosomes (single marker strain) were also a gift from

Dr. G.A.M. Cross and were grown at 37uC in HMI-9 medium

[88] supplemented with 10% fetal bovine serum (FBS), 10% serum

plus (JRH Biosciences, Inc.), and 2.5 mg/ml G418.

Chemicals and reagents
TRIzol reagent, Taq polymerase, Magic Marker protein

standards, BenchMark protein ladder, Mito-Tracker Red, and

Alexa-conjugated secondary antibodies were purchased from Life

Technologies (Carlsbad, CA). The expression vector pET32 EK/

Lic was purchased from Novagen (Madison, WI). E. coli
OverExpression C43 (DE3) strain was purchased from Lucigen

(Middleton, WI). [a-32P]dCTP (3,000 Ci mmol21) was from

Perkin Elmer (Waltham, Massachusetts). Rabbit antibodies against

T. brucei vacuolar H+-pyrophosphatase (TbVP1) [29] were a gift

from Dr. Norbert Bakalara (Ecole Nationale Supérieure de

Chimie de Montpellier, Montpellier, France). Mouse monoclonal

antibody against HA (purified HA.11 clone 16B12) was purchased

from Covance Inc. (Princeton, NJ). Rat monoclonal antibody

against HA (clone 3F10) and Complete, EDTA-free protease

inhibitor cocktail tablets were purchased from Roche Applied

Science (Indianapolis, IN). The pMOTag4H vector [89] was a gift

from Dr. Thomas Seebeck (University of Bern, Bern, Switzerland).

The p2T7Ti vector [90] was a gift from Dr. John Donelson

(University of Iowa, Iowa City, IA). Antibody against GRASP [45]

was a gift Dr. Graham Warren (Max F. Perutz Laboratories,

Vienna, Austria), and antibodies against p67 and TbCATL [46]

were a gift from Dr. James Bangs (University of Wisconsin,

Madison, WI). Rabbit polyclonal antibody against TbVDAC was

a gift from Dr. Minu Chadhuri (Meharry Medical College, TN).

Anti T. brucei pyruvate, phosphate dikinase (PPDK)-producing

mouse hybridoma culture supernatant was a gift from Dr. Frédéric

Bringaud (University of Bordeaux, France). The enhanced

chemiluminescence (ECL) detection kit was purchased from

Amersham Biosciences (GE Healthcare Life Sciences, Piscataway,

NJ), and Pierce ECL Western blotting substrate was from Thermo

Fisher Scientific Inc. (Rockford, IL). The Bradford protein assay

reagent, Precision Plus Protein WesternC pack, 4–15% polyacryl-

amide Ready gels, Zeta-Probe GT Genomic Testing blotting and

nitrocellulose membranes were from Bio-Rad (Hercules, CA).

AMAXA Human T-cell Nucleofector kit was purchased from

Lonza (Koln, Germany). Prime-a Gene Labeling System was from

Promega (Madison, WI). QIAquick gel extraction kit and

MinElute PCR purification kit, Ni-NTA agarose, and Protein G

Agarose Resins were from Qiagen (Valencia, CA). The primers

were purchased from Integrated DNA Technologies (Coralville,

IA). All other reagents of analytical grade were from Sigma (St.

Louis, MO).

Subcellular fractionation of acidocalcisomes and 1-D gel
electrophoresis

Fractions enriched in acidocalcisomes were isolated and purified

using two iodixanol gradient centrifugations (S1 Figure). PCF

trypanosomes (3–4 g wet weight) were washed twice with Buffer A

(116 mM NaCl, 5.4 mM KCl, 0.8 mM MgSO4, 50 mM Hepes,

pH 7.2) with 5.5 mM glucose. The parasites were washed once in

cold isolation buffer (125 mM sucrose, 50 mM KCl, 4 mM

MgCl2, 0.5 mM EDTA, 20 mM Hepes, 3 mM dithiothreitol

(DTT) supplied with Complete, EDTA-free, protease inhibitor

cocktail (Roche) prior to lysis with silicon carbide in isolation

buffer. Silicon carbide and cell debris were eliminated by a series

of low speed centrifugations (100 g for 5 min, 300 g for 10 min,

and 1,200 g for 10 min). The supernatant was centrifuged at

15,000 g for 10 min, and the pellet was resuspended in 1 ml

isolation buffer and applied to the 34% step of a discontinuous

gradient with 4 ml steps of 20, 24, 28, 34, 37 and 40% iodixanol

(diluted in isolation buffer). The gradient was centrifuged at

50,000 g in a Beckman JS-24.38 rotor for 60 min at 4uC, and

fractions were collected from the top. The pellet was resuspended

in 700 ml isolation buffer and applied to the 27% step of another

discontinuous gradient of iodixanol, with 1.4 ml of isolation buffer

containing 10% w/v sucrose over-layered on the top and 1 ml

steps of 27, 62 and 80% iodixanol, which were diluted from 90%

w/v iodixanol with isolation buffer. To prepare 90% w/v

iodixanol, 60% w/v iodixanol solution (Optiprep) was dried

completely at 70uC and resuspended with isolation buffer. After
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the second gradient centrifugation at 50,000 g for 60 min at 4uC,

fractions were collected from the top, washed twice with isolation

buffer by centrifugation at 20,000 g for 15 min at 4uC, and

analyzed by various organelle marker enzyme assays. The pro-

tein concentration was quantified by Bradford assay using a

SpectraMax Microplate Reader. After washing fraction 5,

containing the highest vacuolar-H+-pyrophosphatase (PPase)

activity (Fig. 1A), it was resuspended in 200-ml isolation buffer.

Aliquots of the purified acidocalcisome suspension were separated

on 4–15% SDS-PAGE gels and stained with Coomassie brilliant

blue, immunoblotted with several acidocalcisome markers,

precipitated for electron microscopy, or used for proteomic

analysis. Chromatograms of protein bands in the SDS-PAGE

gels were obtained after background subtraction using ImageJ

(National Institute of Health, Bethesda, MD).

In-gel tryptic digestion
Gel lanes were washed twice in ddH2O for 15 min and cut into

10 equal slices. Proteins were reduced in a 10 mM dithiothreitol

(DTT)/100 mM ammonium bicarbonate solution at 65uC for 1 h

and carboxyamidomethylated with 55 mM iodoacetamide/

100 mM ammonium bicarbonate for 1 h at room temperature

in the dark. Enzymatic digestion was performed with porcine

trypsin (1:50, Promega, Madison, WI) at 37uC overnight. Tryptic

peptides were extracted two times with 100 ml of 50% acetonitrile/

0.1% formic acid. Combined extracts were evaporated to dryness

and stored at 220uC until mass spectrometry analysis.

Mass spectrometry
Peptides were resuspended in 20 ml of 2% acetonitrile/0.1%

formic acid. Data was acquired using an Agilent 1100 Capillary

LC system (Palo Alto, CA) with a 0.26150 mm Halo Peptide ES-

C18 capillary column packed with 2.7 mm diameter superficially

porous particles (Advanced Materials Technology, Inc., Wilming-

ton, DE). On-line MS detection used the Thermo-Fisher LTQ ion

trap (San Jose, CA) with a Michrom (Michrom Bioresources,

Auburn, CA) captive spray interface. Sample analysis utilized the

LTQ divert valve fitted with an EXP Stem Trap 2.6 mL cartridge

packed with Halo Peptide ES-C18 2.7 mm diameter superficially

porous particles (Optimize Technologies, Oregon City, OR).

Sample injection volume was 8 ml. Gradient conditions increased

the concentration of mobile phase B from 6% to 75% B over

90 min. Mobile phase A consisted of 99.9% water, 0.1% formic

acid and 10 mM ammonium formate. Mobile phase B contained

80% acetonitrile, 0.1% formic acid and 10 mM ammonium

formate. Mobile phases used formic acid, ammonium formate and

acetonitrile from Sigma-Aldrich (St. Louis, MO).

Raw tandem mass spectra were converted to mzXML files, then

into mascot generic files (MGF) via the Trans-Proteomic Pipeline

(Seattle Proteome Center, Seattle, WA). MGF files were searched

using Mascot (Matrix Scientific Inc, Boston, MA) against separate

target and decoy databases obtained from the National Center for

Biotechnology Information (NCBI). The target database contained

all T. brucei protein sequences and the decoy database contained

the reversed sequences from the target database. Mascot settings

were as follows: tryptic enzymatic cleavages allowing for up to 2

missed cleavages, peptide tolerance of 1000 parts-per-million,

fragment ion tolerance of 0.6 Da, fixed modification due to

carboxyamidomethylation of cysteine (+57 Da), and variable

modifications of oxidation of methionine (+16 Da) and deamida-

tion of asparagine or glutamine (+0.98 Da). Mascot files were

loaded into ProteoIQ (NuSep, Bogart, GA), where a 1% false

discovery rate and a 0.9 peptide probability were applied for

confirmation of protein identifications. The ProteinProphet

algorithm utilized by ProteoIQ software combines hit proteins

with degenerate peptide fingerprints into a single identification (a

protein ‘‘group’’) and generates a group probability. In these cases,

one or more of the individual proteins may actually be present in

the sample.

Bioinformatic analysis of mass spectrometry results
Subcellular fractionation protocols enrich samples for target

organelles but produce somewhat heterogeneous preparations

containing material from other cell compartments that are readily

detected by exquisitely sensitive tools such as mass spectrometry.

To identify likely contaminants from non-acidocalcisomal com-

partments in our proteomic dataset, we used a series of subcellular

prediction algorithms: TargetP 1.1 [91], pTARGET [92], SLP-

LOCAL [93], and WoLF-PSORT [94]. Data from each of these

algorithms was processed using Perl scripts and a MySQL

database to screen for proteins with prediction confidence

thresholds of 80%. Final consensus predictions of subcellular

localization for individual protein hits were assigned when two or

more algorithms agreed. In the event when the mass spectrometry

data identified a protein group with more than one member,

consensus predictions for individual proteins were combined into a

group consensus prediction when predictions between at least two

individual proteins agreed. The membrane topology and presence

of signal peptides and was predicted using the following tools:

SignalP3 [95], TMHMM2.0c [96], HMMTOP2.1 [97] and

PolyPhobius [98,99] (accessed May 28, 2014). In addition, we

also used published data for annotated proteins to validate our

data.

Enzyme assays
Pyrophosphatase (PPase) activity (acidocalcisome marker) was

assayed by measuring phosphate (Pi) release using the malachite

green assay [100] with some modifications. Briefly, reactions

contained 130 mM KCl, 2 mM MgCl2, 10 mM Hepes, pH 7.2,

100 mM PPi, 0.5 mg of gradient fraction with or without 40 mM

aminomethylenediphosphonate (AMDP). After incubation at

30uC for 10 min, the reaction was stopped by the addition of an

equal volume of freshly prepared mixture of three parts of 0.045%

malachite and one part of 4.2% ammonium molybdate. The

absorbance (A) at 660 nm was read using the microplate reader.

The amount of Pi released was determined by comparison with a

standard curve. AMDP was used to distinguish between vacuolar

(sensitive) and soluble (insensitive) PPase activities. The specific

activity of TbVP1 was defined as mmol Pi released/min6mg of

protein.

Succinate-cytochrome C reductase activity (mitochondria

marker) was assayed as described previously [101], using 3 mM

succinate (pH 7.2) as the substrate and following the reaction

containing 0.1 mM cytochrome C (Cyt C), 0.3 mM KCN,

40 mM Hepes pH 7.5, and 10 ml of gradient fraction at 30uC at

550-540 nm in the microplate reader. Hexokinase (glycosome

marker) was assayed as described previously [102]. The reaction

mixtures (100 ml) contained 10 mM D-glucose, 0.6 mM ATP,

0.6 mM NADP+, 10 mM MgCl2, 2.5 units/ml glucose-6-phos-

phate dehydrogenase, and 50 mM potassium Hepes, pH 7.8. The

oxidation of NADP was monitored at 30uC in the microplate

reader at 340–430 nm.

Alpha-mannosidase activity (lysosome marker) was assayed

using p-nitrophenyl-a-D-mannopyranoside (pNP-Man) as sub-

strate as described previously [103]. The reaction mixtures

contained 200 mM sodium acetate buffer (pH 4.6), 0.6 mM

pNP-Man and 10 ml of gradient fraction in a total volume of

100 ml. The mixture was incubated at 30uC for 30 min, and the
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reaction was terminated by the addition of 160 ml of 1 M Na2CO3.

Two hundred microliter of the final mixture was transferred to a

microtitre plate and read at 405 nm using the micro plate reader.

1 unit of activity corresponds to the hydrolysis of 1 mmol of

substrate/min at 30uC. The a-mannosidase activity was expressed

as mmol/min6mg protein.

Electron microscopy
Aliquots (25 ml) of the 15,0006g pellet fraction, the pellet of the

first gradient and fraction 5 of the second gradient (Fig. 1 and S1

Figure) were precipitated by centrifugation at 20,000 g for 15 min

at 4uC. The pellets were fixed in 2.5% glutaraldehyde and 4%

paraformaldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) at

room temperature for 1 h. The supernatants were carefully

replaced with fresh fixative without disturbing the pellets and

then stored 4uC. Samples were processed for transmission electron

microscopy at the Electron Microscopy Laboratory at the

University of Georgia College of Veterinary Medicine.

Generation of epitope tagging cassettes and RNAi
constructs

The one-step epitope-tagging protocol reported by Oberholzer

et al. [89] was used to produce 14 C-terminal HA-tagging cassettes

(TriTrypDB gene ID numbers listed in Table 2) for transfection of

T. brucei PCF trypanosomes. In brief, the PCR forward and

reverse primers included terminal 100–120 nucleotides of each

ORF before its stop codon and the reverse complement of the first

100–120 nucleotides of the 39UTR, respectively, followed in frame

by the 21–26 nucleotides of the backbone sequences of pMOTag

vector series [89]. The HA-tagging cassettes containing a

hygromycin resistant gene as a selection marker were generated

for cell transfection by PCR using pMOTag4H as template with

the corresponding PCR primers of the gene.

To knockdown the expression of the TbVAa, TbVAd, TbVIT, or

TbZnT genes (TriTrypDB gene ID numbers listed in Table 2) by

double-stranded RNA expression, the inducible T7 RNA poly-

merase-based protein expression system and the p2T7Ti vector

with dual-inducible T7 promoters were employed. A cDNA

fragment (ranging from 566 to 757 bp) of the genes targeted to

nucleotides (TbVAa: 310–876, TbVAd: 364–1121, TbVIT: 125–

755, TbZnT: 620–1241) of the open reading frames (ORFs) was

amplified using the forward and reverse primers listed in S6 Table,

digested with restriction enzymes (BamHI and HindIII), and

cloned into p2T7Ti vector. The recombinant constructs were

confirmed by sequencing at the DNA Analysis Facility at Yale

University (New Heaven, CT), NotI-linearized, and purified with

QIAGEN’s DNA purification kit for cell transfections.

Cell transfection
Mid-log phase PCF (,56106 cells/ml) were harvested by

centrifugation at 1,000 g for 7 min, washed with Cytomix buffer

(2 mM EGTA, 3 mM MgCl2, 120 mM KCl, 0.5% glucose,

0.15 mM CaCl2, 0.1 mg/ml BSA, 10 mM K2HPO4/KH2PO4,

1 mM hypoxanthine, 25 mM Hepes, pH 7.6) and resuspended

in 0.45 ml of the same buffer at a cell density of 2.56107 cells/

ml. The washed cells were mixed with 50 ml of NotI-linearized

plasmid DNA or purified PCR products (10 mg) in a 0.4-cm

electroporation cuvette and subjected to two pulses from a Bio-

Rad Gene Pulser electroporator set at 1.5 kV and 25 mF. The

stable transformants were obtained in SDM-79 medium

supplemented with 15% FBS plus appropriate antibiotics

(5 mg/ml phleomycin, 50 mg/ml hygromycin and 15 mg/ml

G418).

For the BSF, 10 mg of NotI-linearized plasmid DNA (,10 ml)

were used per 46107 mid-log phase cells in 100 ml AMAXA

Human T-cell Nucleofector solution. Electroporation was per-

formed using 2 mm gap cuvettes with program X-001 of the

AMAXA Nucleofector. Following each transfection, stable trans-

formants were selected and cloned by limiting dilution in HMI-9

medium containing 15% FBS with appropriate antibiotics

(2.5 mg/ml phleomycin and 2.5 mg/ml G418) in 24-well plates.

Antibiotic-resistant clones were further characterized as described

below. The correct epitope-tagging of the target genes was

confirmed by PCR followed by sequencing and Western blot

analyses. RNAi was induced with 1 mg/ml fresh tetracycline when

the cells were at a density of 26106 PCF or 16105 BSF/ml.

Anti-TbIP3R antibodies
The cDNA fragment of TbIP3R encoding a putative IP3

binding domain (amino acids 329–804) [27] was amplified by

PCR using primers TbIP3BD-F and TbIP3BD-R (S6 Table) and

cloned in frame into the expression vector pET32 EK/Lic

(Novagen) to generate pET32(TbIP3R-BD). The correct plasmid

pET32(TbIP3R-BD) was confirmed by sequencing and then

transformed into E. coli OverExpress C43 (DE3) strain (Lucigen,

WI). His-tagged TbIP3R-BD fusion protein was affinity purified

with Ni-NTA agarose (Qiagen) based on the manufacturer’s

protocol. The purified protein was used to immunize mice and

polyclonal antibodies were purified from anti-serum with Protein

G Agarose Resins (Qiagen).

Immunofluorescence microscopy
When Mitotracker Red CMXRos (Invitrogen) was used, live

cells were labeled for 30 min with the red-fluorescent dye at

50 nM in trypanosome culture medium. PCF trypanosomes were

washed with PBS and then fixed with 4% paraformaldehyde in

PBS at room temperature for 1 h. The fixed parasites were washed

twice with PBS, allowed to adhere to poly-L-lysine-coated

coverslips, and permeabilized with 0.3% Triton X-100/PBS for

3 min for PCF. After blocking with PBS containing 3% BSA, 1%

fish gelatin, 50 mM NH4Cl and 5% goat serum for 1 h,

trypanosomes were stained in 3% BSA/PBS with the polyclonal

rabbit antibody against TbVP1 (1:500), mouse polyclonal antibody

against TbIP3R-BD (1:100), purified HA.11 clone 16B12 mouse

monoclonal antibody against HA (1:50), rat monoclonal antibody

against HA (1:100) (Roche), rabbit anti-GRASP antibody (1:100),

mouse anti-p67 monoclonal antibody (1:200), rabbit anti-trypa-

nopain (TbCATL) antibody (1:600) for 1 h. After thoroughly

washing with PBS containing 3% BSA, cells were incubated with

Alexa 488-conjugated goat anti-mouse or anti-rat antibody, and

Alexa 546-conjugated goat anti-rabbit or anti-mouse antibody at

1:1,000 for 1 h. The cells were counterstained with DAPI before

mounting with Gold ProLong Gold antifade reagent (Molecular

Probes). Differential interference contrast (DIC) and fluorescent

optical images were captured using an Olympus IX-71 inverted

fluorescence microscope with a Photometrix CoolSnapHQ CCD

camera driven by DeltaVision software (Applied Precision, Seattle,

WA). Images were deconvolved for 15 cycles using Softwarx

deconvolution software. Pearson’s correlation coefficients (PCC)

were calculated using the Softwarx software by measuring the

images of whole cells or specific cell-staining regions.

Western blot analyses
The cells were harvested and washed twice in PBS. The washed

cells or aliquots of purified acidocalcisome suspension were lysed

with RIPA buffer (150 mM NaCl, 20 mM Tris/HCl, pH 7.5,

1 mM EDTA, 1% SDS, and 0.1% Triton X-100) containing
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protease inhibitor tablet (Roche) in ice for 1 h. The protein

concentration was determined by using Pierce BCA protein assay

kit with the microplate reader. The total cell lysates were mixed

with 26 Laemmli sample buffer (BioRad) at 1:1 ratio (volume/

volume) and directly loaded. The separated proteins were

transferred onto nitrocellulose membranes using a Bio-Rad

transblot apparatus. The membranes were blocked with 10%

non-fat milk in PBS containing 0.5% Tween-20 (PBS-T) at 4uC
overnight. The blots were incubated with rabbit antibodies against

TbVP1 (1:5,000), rabbit antibodies against TbVDAC (1:2,000),

mouse antibodies against TbPPDK (1:200), mouse antibodies

against Tbp67 (1:3,000), rabbit antibodies against TcVSP

(1:5,000), mouse antibodies against TbIP3R (1:1,000), mouse

antibodies against HA (1:1,000), or mouse antibodies against

tubulin (1:20,000) for 1 h. After five washings with PBS-T, the

blots were incubated with horseradish peroxidase conjugated anti-

mouse or anti-rabbit IgG (H+L) antibody at a dilution of 1:20,000

for 1 h. After washing five times with PBS-T, the immunoblots

were visualized using Pierce ECL Western blotting substrate

according to the manufacturer’s instructions.

Northern blot analysis
Total RNA was isolated with TRIzol reagent and treated with

DNA-free following the manufacturer’s instructions. RNA samples

(10 mg/lane) were fractionated on 1% agarose/formaldehyde gels,

transferred to Zeta-Probe nylon membranes by capillary action,

and fixed onto the membranes by baking at 80uC for 1 h. The

probes for TbVAa, TbVAd, TbVIT and TbZnT were generated by

PCR using the same set of primers (S6 Table) from the

corresponding RNAi constructs in p2T7Ti as described above

and labeled with [a-32P]-dCTP using a Prime-a-Gene Labeling

System according to the manufacturer’s protocol. The [a-32P]-

dCTP-labeled probe of Tb-b-tubulin gene (GeneDB

Tb927.1.2390) was generated from T. brucei genomic DNA by

PCR using gene-specific primers TbTubb-F and TbTubb-R (S6

Table). RNA-bound membranes were hybridized with the 32P-

labeled probes in 0.5 M Na2HPO4, pH 7.4 and 7% SDS at 65uC
overnight with agitation. After hybridization, the membranes were

washed twice for 10 min each at 68uC with 16 SSC and 0.1%

SDS and twice for 30 min at 65uC with 0.16SSC and 0.1% SDS.

Northern blots were visualized by autoradiography, and quantified

by using ImageJ (National Institute of Health, Bethesda, MD).

Supporting Information

S1 Figure Subcellular fractionation of acidocalcisomes.
(A) Trypanosome lysates were obtained by grinding with silicon

carbide, decanted by low speed centrifugation to eliminate debris

and silicon carbide, and centrifuged at 15,000 g for 10 min to

isolate the organellar fraction that was applied to the 34% step of a

discontinuous iodixanol gradient. After centrifugation at 50,000 g

for 1 h, the pellet was resuspended and applied to the 27% step of

a second iodixanol gradient and centrifuged at 50,000 g for 1 h.

Aliquots from each fraction were used for enzymatic assays. (B)

Electron microscopy of acidocalcisome fraction prepared by the

iodixanol procedure (fraction 5). Scale bar = 0.2 mm. Arrows and

arrowheads show electron-dense material inside acidocalcisomes.

(TIF)

S2 Figure SDS-PAGE, immunoblots, and electron mi-
crographs of subcellular fractions. (A–B) SDS-PAGE and

immunoblot analyses of the 15,0006g pellet (P1, 30 mg), the first

gradient pellet (P2, 2 mg), and the second gradient fractions (F1 to

F7, 2 mg each). The SDS-PAGE gel (A) was stained with

Coomassie brilliant blue. BenchMark protein molecular markers

(M) are shown at the left. Western blot analyses (B) were done

using antibodies against acidocalcisome marker TbVP1, mito-

chondrial marker voltage-dependent anion channel (TbVDAC),

glycosomal marker pyruvate, phosphate dikinase (TbPPDK), and

lysosome marker Tbp67. M, Magic Marker protein standards. (C–

D) Electron microscopy of the 15,0006g pellet or P1 (C) and the

pellet obtained after the first gradient centrifugation or P2

(D). Arrows indicate electron-dense acidocalcisomes, and other

organelles. M, mitochondria; G, glycosome, Ac, acidocacisome

(note electron-dense material in some of them). Scale bar =

0.5 mm.

(TIF)

S3 Figure Proteins present in fraction 5. SDS-PAGE (left
panels) and western blot analyses (right panels) of fraction 5 from

three representative fractionations. The SDS-PAGE gels were

stained with Coomassie brilliant blue. BenchMark protein

molecular markers are shown at the left for all gels. Western blot

analyses were done using antibodies against TbVP1 (A), TbIP3R

(B), and TcVSP (C), as described under Materials and Methods.

Arrowheads in A and B, and arrow in C show the reactions of

antibodies with the bands of expected size. Arrowhead in C

probably corresponds to the reaction with a soluble pyrophospha-

tase.

(TIF)

S4 Figure Immunofluorescence microscopy and west-
ern blot analysis of V-H+-ATPase subunit d (TbVA d) in
PCF trypanosomes. V-H+-ATPase subunit d co-localize with

TbVP1 to the acidocalcisomes (A), with TbGRASP to the Golgi

complex (B), and with TbCATL (C) and p67 (D) to lysosomes

(Pearson’s correlation coefficients of 0.625, 0.561, 0.785, and

0.796 respectively). Yellow in merge images indicate co-localization

(also shown with arrows in (B–D)). Scale bars for A–D = 10 mm. (E)

Confirmation of tagging by western blot analyses with monoclonal

anti-HA in PCF trypanosomes. HRP-conjugated goat anti-mouse

was used as a secondary antibody. Precision Plus Protein

WesternC marker (Bio-Rad) was used for the molecular weight

markers. Arrow indicates band corresponding to TbVA d. Tubulin

(Tub) was used as a loading control (bottom panel).
(TIF)

S5 Figure Localization of other proteins. (A) Epitope-

tagged TbNP localizes to the nuclear membrane. (B) TbABCT co-

localizes with MitoTracker (Pearson’s correlation coefficient of

0.688). Yellow in merge images indicate co-localization. Scale bars
for A–B = 10 mm. (C–D) Tagging with HA was confirmed by

western blot analyses using anti-HA antibodies. Markers are at the

left side and arrows indicate the corresponding bands. Equivalent

amounts of wild type cell (WT) proteins were loaded as evidenced

by the similar background to the test lanes.

(TIF)

S6 Figure Localization of other proteins. Epitope-tagged

TbGLP1 does not co-localize with TbVP1 (A) but co-localizes

with TbGRASP to the Golgi complex (B), and with TbCATL (C)

and p67 (D) to the lysosome (Pearson’s correlation coefficients of

0.5369, 0.8050 and 0.8426, respectively). Yellow in merge images

indicate co-localization (also shown with arrows in (B–D)). Scale
bars for A–D = 10 mm. (E) Tagging with HA was confirmed by

western blot analyses using anti-HA antibodies. Markers are at

the left side and arrow shows the band corresponding to

TbGLP1. Equivalent amounts of wild type cell (WT) proteins

were loaded as evidenced by the similar background to the test

lanes.

(TIF)
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S7 Figure Immunofluorescence microscopy and western
blot analysis of polyamine transporters TbPOT1. Epitope-

tagged TbPOT1 partially co-localizes with TbVP1 to the acidocalci-

somes (A) and co-localizes with TbCATL (B) and p67 (C), to the

lysosomes (Pearson’s correlation coefficients of 0.4064, 07191, and

0.6710, respectively). Arrrows in merge images show the co-

localization. (D) A putative cation/proton antiporter localizes to the

falgellar tip (white arrow) and was named flagellar tip protein

(TbFTP). (E, F) Tagging with HA was confirmed by western blot

analyses using anti-HA antibodies. Markers are at the left side and

arrows shows the band corresponding to TgGLP1, and TbFTP,

respectively. Equivalent amounts of wild type cell (WT) proteins were

loaded as evidenced by the similar background to the test lanes.

(TIF)

S8 Figure Immunofluorescence microscopy and west-
ern blot analysis of polyamine transporters TbPOT2.
Epitope-tagged TbPOT2 does not co-localize with TbGRASP to

the Golgi complex (A) but it co-localizes with TbCATL (B) and

p67 to the lysosomes (C) (Pearson’s correlation coefficients of

0.8806, 0.8404, respectively). Scale bars for A–C = 10 mm. (D)

Tagging with HA was confirmed by western blot analyses using

anti-HA antibodies. Markers are at the left side. Arrow indicate

band corresponding to TbPOT2. Equivalent amounts of wild type

cell (WT) proteins were loaded as evidenced by the similar

background to the test lanes.

(TIF)

S9 Figure Comparison of three newly identified acid-
ocalcisome proteins and their homologues with known
functions from other organisms. Multiple protein sequence

alignments of (A) phosphate transporters from S. cerevisiae
(ScPho91p, accession number CAY82206), T. cruzi (TcPho91,

TcCLB.508831.60), and T. brucei Pho91 (TbPho91, Tb927.

11.11160). (B) Acid phosphatases from Homo sapiens (HsTRAP,

P13686) and T. brucei (TbAP, Tb927.10.7020). (C) Vacuolar iron

transporters from A. thaliana (AtVIT1, NP_178286), S. cerevisiae
(ScVIT1, DDA09536), and T. brucei (TbVIT1, Tb927.3.800).

The protein sequences were analyzed via ClustalW2 at the

EMBL-EBI website (http://www.ebi.ac.uk/Tools/msa/

clustalw2/). The symbols ‘‘*’’, ‘‘:’’, and ‘‘.’’ represent identical,

conserved, or semi-conserved amino acid (aa) substitutions,

respectively. Red: small and hydrophobic aa (AVFPMILW); blue:

acidic aa (DE); magenta: basic aa (RK); and green: hydroxyl,

amine, and basic aa (STYHCNGQ).

(TIF)

S10 Figure Comparison of two newly identified acid-
ocalcisome proteins and their homologues with known
functions from other organisms. Multiple protein sequence

alignments of (A) Zinc transporters from Mus musculus
(MmZnT4, AAB82593), S. cerevisiae (ScZRC1, CAA88653.1),

A. thaliana (AtMTP1, NP_850459), E. coli (EcYiiP, P69380.1), T.
cruzi (TcZnT, TcCLB.511439.50), and T. brucei (TbZnT,

Tb927.4.4960). (B) Polyamine transporters from S. cerevisiae
(ScTPO1, Q07824) and T. brucei (TbPOT1, Tb927.9.10340).

Analysis was done as in Fig. S9.

(TIF)

S1 Table T. brucei proteins identified with high confi-
dence (1% false discovery rate, protein probability
$0.95) from fraction 5 datasets (ACCS1 and ACCS2).
Proteins with degenerate peptide (peptides shared among all

members of the protein cluster) fingerprints are reported in a single

protein ‘‘group’’ as described in the Methods.

(PDF)

S2 Table Peptide list for all high confidence identifica-
tions (1% false discovery rate, protein probability
$0.95) from the acidocalcisome data sets (ACCS1 and
ACCS2). When high-confidence identifications to similar proteins

were identified but peptide degeneracy limited discrimination,

peptides matched to these indistinguishable proteins are repre-

sented in a single protein ‘‘group’’ as described in the Methods.

(PDF)

S3 Table Signal peptide (SP) and transmembrane
domain (TMD) predictions of high confidence protein
identifications (1% false discovery rate, protein proba-
bility $0.95) from T. brucei acidocalcisome datasets
(ACCS1 and ACCS2). Predictions of TMD and SP for

individual proteins were based on consensus of two or more

algorithms. If the predicted number of TMD varied among the

different predictions packages, we report the median number of

TMD. If a protein group contained more than one protein hit (see

Methods for explanation of protein grouping based on degenerate

peptide fingerprints), the number of TMD and presence of SP

were assigned if predicted in at least two members.

(PDF)

S4 Table Predicted subcellular locations for high-
confidence protein groups (protein probability: 1% false
discovery rate, p$0.95,) identified in the T. brucei
acidocalcisome fractions (ACCS1 and ACCS2) from our
prediction servers using non-plant based algorithms.
Individual protein predictions are based upon agreement between

at least two analysis packages. Consensus for identifications with

multiple protein hits (see Methods for explanation of protein

grouping based on degenerate peptide fingerprints) is given when

prediction for a compartment agrees among two of more members

of the group. S, secreted. C, cytosol. M, mitochondrion. N,

nucleus. PM, plasma membrane. G, Golgi complex. ER,

endoplasmic reticulum. P, peroxisome. L, lysosome. CYKS,

cytoskeleton. Threshold probabilities and confidences used to

screen our predictions with poor reliability: targetP (RC = 1).

pTarget $80%, SLP-LOCAL $2, WoLfPsort $,80%. WoLFP-

SORT thresholds for each subcellular location were derived from

empirical prediction confidence statistics (wolfpsort.org/empiri-

calConfidenceByNumNeighbors/index.html, updated August 15,

2007).

(PDF)

S5 Table Subunits of the vacuolar H+-ATPase present in
the genome of T. brucei.
(PDF)

S6 Table Primers used to generate probes for blotting
and constructs for antibody production or RNAi (the
underlined nucleotides indicate the primer extension
sequences for ligation independent cloning or the
introduced HindIII and BamHI sites).
(PDF)

S7 Table Common features of confirmed acidocalci-
some proteins identified by the ELM server.
(PDF)
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