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MODELING RHYTHM GENERATION IN SWIM CENTRAL PATTERN GENERATOR OF

MELIBE LEONINA

by

DENIZ ALAÇAM

Under the Direction of Andrey Shilnikov, PhD

ABSTRACT

Central pattern generators (CPGs) are neural networks to produce a rich multiplicity of

rhythmic activity types like walking, breathing and swim locomotion. Basis principles of the

underlying mechanisms of rhythm generation in CPGs remain yet insufficiently understood.

Interactive pairing experimental and modeling studies have proven to be vital to unlock-

ing insights into operational and dynamical principles of CPGs and support the consensus

that the most of essential structural and functional elements in vertebrate and invertebrate

nervous systems are shared.

We have developed a family of highly-detailed, biologically plausible CPG models using

the extensive data intracellularly recorded from constituent interneurons of the swim CPG



of the sea slug Melibe leonina. We also have deduced fundamental properties needed for the

devised Hodgkin-Huxley type neuronal models with specific slow-fast dynamics to become

qualitatively and quantitatively similar to biological CPG interneurons and their responses

to parameter and external perturbations. We have studied the onset and robustness of

rhythmogenesis of network bursting the CPG circuits comprised of tonic spiking interneurons

coupled with mixed inhibitory/excitatory, slow chemical synapses. We have shown that the

mathematical CPG model can be reduced functionally from an 8-cell circuit to a 4-cell

one using the calibration of timing and weights of synaptic coupling between CPG core

interneurons.

We demonstrate that the developed mathematical network meets all the experimental

fact-checks obtained for the biological Melibe swim CPG from a variety of state-of-the-art

experimental studies including dynamic-clamp recordings, external pulses perturbations as

well as from its forced behaviors under applications of neuro-blockers such as curare and

TTX.

Our model and developed mathematical approaches and computational methodology

allow for laying down theoretical foundations necessary for devising new detailed and phe-

nomenological models of neural circuits and for making testable predictions of dynamics of

rhythmic neural networks from diverse species.

INDEX WORDS: network dynamics, rhythm generation, Melibe Leonina, sea slug swim
CPG, mathematical modeling,swim locomotion, half-center oscillator,
sea slug, rhythmogenesis, bifurcation analysis, slow synapses, modu-
lar networking
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CHAPTER 1

INTRODUCTION

Mathematical models are commonly used tools in a wide variety of disciplines both in natural

sciences (physics, chemistry, biology) and applied sciences (engineering, economics, sociology,

computer science, etc.). These powerful tools are highly efficient for studying, analyzing, un-

derstanding and predicting the behavior of complex structures. The complexity of biological

structures have been an attractive area for mathematical modeling, and biologically plausible

models have provided significant benefits in various fields such as robotics, developing drugs

and treatments, understanding population and network dynamics.

Emergent behavior of biological models is an increasingly popular topic in the field of

biology, mathematics, and engineering. One of the areas where mathematical models are

substantially used is neuroscience. A plethora of vital rhythmic motor behaviors, such as

heartbeat, respiratory functions, and locomotion are produced and governed by neural net-

works called central pattern generators (CPGs) [1, 2, 3, 4, 5]. A CPG is a microcircuit

of interneurons whose mutually synergetic interactions autonomously generate an array of

multi-phase bursting rhythms underlying motor behaviors. There is a growing consensus in

the community of neurophysiologists and computational researchers that some basic struc-

tural and functional elements must be shared by CPGs in invertebrate and vertebrate an-

imals. As such, we should first understand these elements, find the universal principles,

and develop efficient mathematical and computational tools for plausible and phenomeno-

logical models of CPG networks. Pairing experimental studies and modeling studies have
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proven to be key to unlocking insights into operational and dynamical principles of CPGs

[6, 7, 8, 9, 10, 11, 12, 13]. Although various circuits and models of specific CPGs have

been developed, it remains unclear what makes the CPG dynamics so robust and flexible

[14, 15, 16, 17, 18, 19]. It is also unclear what mechanisms a multi-functional motor system

can use to generate polyrhythmic outcomes to govern several behaviors [20, 21, 22]. The goal

of this study is to gain insight into the fundamental and universal rules governing pattern

formation in complex networks of neurons. To achieve this goal, we should identify the rules

underlying the emergence of cooperative rhythms in simple CPG networks.

Recently, many computational studies have been focused on a range of 3-cell motifs of

bursting neurons coupled by chemical (inhibitory and excitatory) and electrical synapses to

disclose the role of coupling in generating sets of coexisting rhythmic outcomes, see [23, 24,

22, 25, 26] and references therein. These network structures reflect the known physiological

details of various CPG networks in real animals. Next, we would like to explore dynamics

and stability of some identified CPG circuits constituted by 4-cells [27]. Examples of such

sub-networks can be found in the crustacean stomatogastric ganglion (STG) [1, 28, 29, 19],

as well as in the swim CPGs of the sea slugs – Melibe leonina [30] (depicted during swimming

in Fig. 1.1) and Dendronotus iris [31, 32, 33, 34]. Our greater goal is to create dynamical

foundations for the onset, morphogenesis and structural robustness of rhythmic activity

patterns produced by swim CPGs in these animals. The modeling process of developing a

highly detailed mathematical model of the Melibe swim CPG will be discussed in this study.

In this chapter, introductory information about the network configuration of the Melibe
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swim CPG, identification process, and previous and ongoing neurophysiological studies about

the CPG as well as the previous mathematical modeling studies will be presented.The details

of the network features will be provided in later chapters.

Figure 1.1: Melibe Leonina swims with rhytmic behavior of flexing its body laterally left and right.
Figure provided courtesy of Melisa Beveridge

In the second chapter, the early stages of mathematical modeling of Melibe swim CPG

is presented. We used a reduced form of the biological swim CPG in mathematical model-

ing. The reduction process of biological CPG is introduced in this chapter. In the light of

experimental recordings of the time, we considered that all cells in CPG as identical cells.

They are all modeled as tonic spiking cells with same intrinsic dynamics. The synapses are

modeled with fast threshold modulation (FTM) avoiding most details of characteristic fea-

tures for each synapse. Different synapse types are implemented into the model by variation

of coupling strengths (strong or weak) and reversal potentials (inhibitory or excitatory) .

Our goal for this chapter is to generate what we called 3/4-phase shift in control case. As
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we received more experimental data, we understood more of the working mechanism of the

network and realized that the network has much more features than 3/4-phase shift.

In the third chapter, through the experimental studies, we have realized that the cells have

different intrinsic dynamics and two HCOs forming the CPG follow different mechanisms to

generate anti-phase bursting. Also the previous model, failed to capture all features of the

network. According to the experimental findings, we have modeled one pair of interneurons

as tonic spikers and the other pair as hyperpolarized quiescent cells. In order to make the

model biologically more plausible, the synapses are modeled as alpha synapses. FTMs are

fast synapses as indicated in the name and they represent either a fully on or off synapses.

Unlike FTMs, alpha synapses exhibit more realistic dynamics. After the changes in the

model, we saw that the model captures more features of the network but according to the

current experimental results, we had to modify the mathematical model again.

The fourth chapter covers the final version of the mathematical model for Melibe swim

CPG. The latest experimental results showed that all cells used in the mathematical network

are tonic spikers but still they have different intrinsic dynamics such as spiking frequency.

Intrinsic dynamics of all cells are set according to the experimental results. Besides alpha

synapses, we used a dynamic synapse for modeling the slow contralateral excitatory synapse.

The final chapter summarizes the significance of study, presents the conclusions. Also

relevance and significance of the future directions are discussed.
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1.1 Melibe Swim CPG

The nudibranch mollusk Melibe Leonina swims by flexing its body laterally to left and right.

Studies on identifying the CPG which is believed to be in control of swim locomotion of

the sea slug have been going on over a decade [35]. The Melibe swim CPG is one of the

few CPGs which can be described in detail and with a known function. Earlier studies on

idenfiying Melibe swim CPG proposed that it is a very simple circuit of two pairs of swim

interneurons (Sis) [35]. The interneurons are labeled as swim interneurons 1 (Si1) and swim

interneuorons 2 (Si2) and their locations in the brain is shown in Fig. 1.2 (a). One of each pair

is located on contralateral parts of the brain and each pair of interneurons form a half-center

oscillator(HCO) where neurons are connected thorough reciprocal inhibitory connections

[36]. A diagram representation of initial CPG motif is shown in Fig. 1.2(b). HCOs are a

commonly seen small cell configuration in CPGs and the cells can generate rhythmic activity

in anti-phase through HCO configuration while they provide no rhythmic output when they

are in isolation. In the Melibe swim CPG, it is observed that the contralateral interneurons

burst in anti-phase and this rhythm was related to the swim pattern of the animal in early

studies.

In later studies, in addition to previously identified two pairs of swim interneurons (Si1s

and Si2s), two more pairs of interneurons were discovered in the CPG. They are named

similar to the previously identified cells, swim interneuron 3 (Si3) and swim interneuron

4(Si4). The discovery of new pairs of interneurons revealed that the configuration of circuit

is beyond a classical HCO set up. Thompson and Watson [35] proposed that the initially
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(a) (b)

Figure 1.2: (a) Locations of Si1s and Si2s in Melibe brain according to the early results of identifi-
cation studies [35] (b) CPG motif of Melibe swim CPG for early results. Courtesy A.Sakurai

discovered circuit is the core of the CPG and there are no other interneurons involved in

the CPG. With the new findings, complexity of the circuit was carried to a new level.

Detailed connection diagram of the current CPG is given in Fig 1.3. Each contralateral pair

is connected through reciprocal inhibitory synapses, in other words form HCOs. In addition

to the reciprocal inhibitions, there are also ipsilateral and contralateral one way inhibitory

synapses.

In addition to inhibitory synapses in the circuit, there are also excitatory and electrical

connections. Full details of the model and synapses are given in [30]. Each connection has

its own characteristic and specific features of each connection has crucial importance for

mathematical modeling. Using these features, we designed a reduced network for mathe-

matical modeling. The mathematical network contains four cells instead of eight cells in the

biological network. The reduction process is explained in detail in chapters 2,3 and 4.



7

Figure 1.3: Recent CPG diagram of Melibe swim CPG with inhibitory (•), excitatory (J) and
electrical (\/\/) synapses [30]. The filled cells are located on right side of the brain and the unfilled
ones are located on the left side of the brain. The previously identified cells(Si1s and Si2s) and
Si4s are circled by gray dashed line and the inhibition between contralateral pairs is represented by
the gray inhibitory connections between the circles. The wiring diagram provided courtesy of A.
Sakurai.[30]

1.2 Previous Modeling Studies

In earlier stages of experimental studies, it was proposed that one of the most significant

features of the CPG is the phase locked network bursting during active swimming. As a

result, the mathematical modeling studies focused on the generation, stability and robustness

of this particular rhythm.

Earlier experimental studies did not provide information about the characteristics of the

individual cells in isolation. For modeling studies, each cell is assumed to be an intrinsic

burster so the choice of model was leech heart interneuron model which is a Hodgkin-Huxley

type model and developed for endogenously bursting heart interneurons. The earlier network

diagram is used for modeling studies and synapses were modeled with alpha synapses.

This configuration was sufficient for rhythm generation and showed the stability and
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Figure 1.4: (a) Network bursting recorded from Si1s and Si2s during the swimming activity. Record-
ings provided courtesy of A. Sakurai. (b) The voltage traces generated by the leech interheart model
where individual cells are intrinsic bursters.[27]

Figure 1.5: (a) Phase space of the network withe the fixed phase shifts. (b)Network bursting recorded
from Si1s and Si2s during the swimming activity. Recordings provided courtesy of A. Sakurai. [27]

robustness of the rhythm. Later studies revealed that the cells are not bursters in isolation.

They are tonic spiking or hyperpolarized quiescent cells in isolation. Also, the experimental
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studies showed that the phase locked rhythm generation is not the only feature of the network.

Many different characteristics of the network were identified and these characteristics are

discussed in the later chapters. In this study, we will use a more detailed and biologically

plausible mathematical model to investigate the underlying mechanism of the Melibe swim

CPG.

1.3 Purpose of The Study

In this study, we use a highly detailed and biologically plausible Hodgkin-Huxley type con-

ductance base model to understand the underlying mechanism of rhythm generation in the

swim CPGs of sea slugs. The interest to this area is motivated by the common dynamic

properties of various neural systems including motion (sensory and network level) and con-

trol mechanisms in invertebrates, mammals, as well as humans. Many abnormal neurological

phenomena are underpinned by perturbations of normal mechanisms that govern behaviors.

There is emerging evidence that more advanced invertebrates and vertebrates have even a

common design of forebrain circuits in embryonic brain structures of mammals.

The simplicity of invertebrate CPGs provide the opportunity for model studies for un-

derstanding and analyzing the principles of the rhythm generation. The complexity level

of vertebrate and invertebrate neuronal circuits are not comparable but the similar features

of both animal types and studies on the invertebrate CPGs can provide an insight into the

more complex networks.

The general theme of this study, mathematical principles of complex rhythms in biology
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will bring new dimensions to research conducted in computational and experimental neuro-

science. The methodology and computation technology that we develop will be a tool for

future scientists, helping researchers with less expertise in computational sciences to cre-

ate biologically plausible and models faster and more accurately. It is imperative to devise

tractable, data-driven/assimilated models for integrating theoretical and experimental neu-

roscience. The knowledge and the tools created by this project will ultimately lead to new

approaches to re-wiring or rebalancing disordered networks. It will also inform treatment

of neurological disorders that emerge when larger-scale interactions within the circuits of

the brain are disrupted such as stroke, and traumatic brain or spinal cord injury. This

study will also provide a powerful substrate for hypothesis testing relating to elucidating the

mechanisms involved in mental health disorders.

The possible technology impacts of the project include informing treatment and diagnosis

of mental illnesses and neurological conditions relating to motor pattern generation; inform-

ing the engineering of better prosthetics; developing CPG based robots with bio-inspired

locomotion principles.
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CHAPTER 2

LATENT PARABOLIC BURSTERS AND FAST THRESHOLD
MODULATIONS

2.1 Introduction

The neurons in the nervous system form highly complex networks, and central pattern gener-

ators (CPGs) are a commonly seen circuitry in the central nervous system. CPGs are small

neuronal circuits which can autonomously generate rhythmic activity when activated and are

responsible for vital rhythmic behavior like the heartbeat, respiration, walking, breathing,

swallowing, flying and swimming. Emergent collaborative studies between experimentalist

and computational researchers promote the unity of the concept that both invertebrate and

vertebrate animals share similar formations and mechanism. Therefore, to understand more

complex structures like the mammal and human nervous system, it is essential to understand

more basic circuits in more simple animals.

The CPGs of invertebrates are simpler compared to more complex animals like mam-

malians and easier to run experimental studies. Sea slugs are useful subjects in this kind of

studies. The simplicity of their CPGs and also similarities to CPGs of more complex animals

make them highly convenient for experimental studies. The complexity level of invertebrates

and mammals is not comparable but understanding simple CPGs of this primitive animals

provide an insight into working mechanisms of more complex animals like mammals and

human. The mostly studied sea slugs are Tritonia, Aplysia, Dendronotus, Clione, Lymnaea

and Melibe. In this study, we will look at insights of rhythm generation mechanism of Melibe
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(a) (b)

Figure 2.1: (a) Melibe leonina lateral swim style. (b) Network bursting in swim interneurons (Si)
of the Melibe swim CPG halts when Si3R is hyperpolarized, thus its counterpart Si3L begins tonic
spiking; the photographs and in-vitro recording provided courtesy of A. Sakurai [30]

swim CPG in fine details. [37]. The circuitry is shown in Fig. 2.2(a) depicts only some core

elements identified in the biological CPG; its detailed diagram can be found in [30].

Rhythm generation can occur at cellular level or network level. To understand, underlying

rhythm generation mechanism in these neuronal circuits, a variety of mathematical models

are developed. Despite the extensive work in this area, how CPGs work remains unclear.

Understanding the rhythm generation mechanism of small and simple circuits is the first

step of understanding more advanced structures.

Being inspired by experimental studies of voltage activity recorded from the swim CPGs

of the sea slugs Melibe leonina and Dendronotus iris, we would like to develop an assembly line

for CPG construction made of coupled biophysically plausible models. Our first simplifying

assumption is that CPGs are made of universal building blocks – half-center oscillators

(HCOs) [38]. Loosely speaking, an HCO is treated as a pair of interneurons interacting with

each other through reciprocally inhibitory synapses and exhibiting anti-phase bursting. The

interneurons of an HCO can be endogenous bursters, tonic spiking or quiescent ones, which



13

(a) (b)

Figure 2.2: (a) A core circuitry of the biological Melibe swim CPG with inhibitory (•), excitatory
(J) and electrical (\/\/) synapses [30]. (b) In-vitro voltage activity recordings from identified
swim interneurons, Si2R and Si3L/R, of the Melibe swim CPG with the characteristic 3

4 -phase lag
between the HCO2 and HCO3; intracellular recording provided courtesy of A. Sakurai [30].

exhibit alternating bursting only when they inhibit each other. Theoretical studies [39]

have indicated that formation of an anti-phase bursting rhythm is always based on slow

subsystem dynamics. There are three basic mechanisms to generate alternating bursting

in the HCO: release, escape, and post-inhibitory rebound (PIR). The first mechanism is

typical for endogenously bursting neurons [40, 41]. The other two mechanisms underlie

network bursting in HCOs comprised of neurons, which are hyperpolarized quiescent in

isolation [42, 43, 44, 45]. Our second assumption is that the swim CPG interneurons are

intrinsic tonic spikers that become network bursters only when externally driven or coupled

by inhibitory synapses, as recent experimental studies suggest [30]. The third assumption is

that network bursting in the Melibe swim CPG is parabolic, i.e., the spike frequency within

a burst increases at the middle, and decreases at the ends, as one can observe from Fig. 2.3.

This observation indicates the type of neuronal models to be employed to describe network

cores. Our model of choice for parabolic bursting is the Plant model [46, 47, 48]. The
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Figure 2.3: (a) Parabolic distribution of spike frequency within bursts produced by networked in-
terneurons in the Melibe swim CPG. Recording provided courtesy of A. Sakurai and time series
analysis by A. Kelley.

Plant model has been developed to accurately describe the voltage dynamics of the R15

neuron in a mollusk Aplysia californica, which has turned out to be an endogenous burster

[49]. Most dynamical properties of the R15 neuron have been modeled and studied in detail

[50, 51, 52, 53, 54, 37].

2.2 Methods: the Plant model of parabolic bursting

(a) (b) (c)

Figure 2.4: (a) Endogenous bursting in the Plant model as alternations of tonic spiking activity
and quiescent periods. (b) Single burst featuring a characteristic spike frequency increase in the
middle of each burst. (c) Parabolic shape of the frequency distribution of spikes within a burst is
a feature of this kind of bursting. The parameters are ρ = 0.00015ms−1, Kc = 0.00425ms−1 and
τx = 9400ms.
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The conductance based Plant model [48] for the R15 neuron [54] located in the abdominal

ganglion of a slug Aplysia Californica is given by the following set of ordinary differential

equations derived within the framework of the Hodgkin-Huxley formalism to describe the

dynamics of the fast inward sodium [Na], outward potassium [K], slow TTX-resistant calcium

[Ca] and an outward calcium sensitive potassium [KCa] currents.The fast subsystem is given

by the equations below:

CmV̇ = −INa − IK − ICa − IKCa − Ileak − Iext − Isyn, (2.1)

(INa = gNam
3
∞(V )h(V − VNa), IK = gKn

4(V − VK), (2.2)

ICa = gCax(V − VCa), IKCa = gKCa
[Ca]i

0.5 + [Ca]i
(V − VK), (2.3)

Ileak = gL(V − VL), Isyn =
gsyn(Vpost − Erev)

1 + e−k(Vpre−Θsyn)
), (2.4)

ṅ =
n∞(V )− n
τn(V )

, ḣ =
h∞(V )− h
τh(V )

(2.5)

The last three currents are the generic ohmic leak Ileak, external constant Iext and synaptic

Isyn currents flowing from a pre-synaptic neuron. The full details of the representation of

the currents employed in the model are given in the Appendix A.

There are two bifurcation parameters in the individual cell model. The first one is the

constant external current, Iext, which is set Iext = 0. Following [55], the other bifurcation
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parameter, ∆1, is introduced in the slowest equation Ca where the slow subsystem is :

Ċa = ρ (Kcx(VCa − V + ∆1)− Ca) , (2.6)

ẋ = ((1/(e0.15∗(−V−50) + 1))− x)/τx, (2.7)

describing the concentration of the intracellular calcium in the Plant model. By construc-

tion, ∆1 is a deviation from a mean value of the reversal potential VCa = 140mV evaluated

experimentally for the calcium current in the R15 cells. As such, this makes ∆1 a bifurca-

tion parameter. Secondly its variations are not supposed to alter the topology of the slow

motion manifolds in the 5D phase space, which are called tonic spiking and quiescent in the

mathematical neuroscience context, as they are made of, respectively, round periodic orbits

and equilibrium states [of the slow subsystem] of the model (Fig. 2.5).

At ∆1 = 0, the neuron is an endogenous burster, see Fig. 2.4. According to [56], this type

of bursting is termed parabolic. The reason for this term is that the spike frequency within

bursts is maximized in the middle of bursts and minimized at the beginning and the end

(see Fig. 2.4c). The parabolic structure of a burst is due to the calcium-activated potassium

current. Its magnitude is determined by the intracellular calcium concentration. As the

intracellular calcium concentration increases, the calcium-dependent potassium current gets

activated, which causes an increase of the inward potassium current. As the membrane

potential increases over a threshold value, the intracellular calcium concentration decreases,

as well as the outward potassium current (see Eq. (20) in the Appendix). The parabolic

distribution of spikes within bursts is shown in Fig. 2.4. The instant frequency value is
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calculated by the reciprocal of each inter-spike interval. Panels b and c of Fig. 2.4 disclose

the parabolic inter-spike structure of bursts.

It was shown in [56] that the mechanism underlying a transition between quiescent and

tonic spiking of bursting in the Plant model is due to a homoclinic bifurcation of a saddle-

node equilibrium state [57, 58]. This bifurcation occurs in the fast 3D (V, h, n)-subspace

of the model and is modulated by the 2D slow dynamics in the (Ca, x)-variables, which

are determined by slow oscillations of the intracellular calcium concentration [46, 47]. The

unfolding of this codimension-one bifurcation includes an onset of a stable equilibrium, which

is associated with a hyperpolarized phase of bursting, and on the other end, an emergent

stable periodic orbit that is associated with tonic spiking phase of bursting. The period

Figure 2.5: Bursting (green) orbit recursively switching between two slow–motion critical manifolds:
tonic spiking, Mlc, with a characteristic fold and originating through a sub-critical Andronov-Hopf
(AH) bifurcation from a depolarized equilibrium state, and quiescent, Meq (orange curve), projected
onto the (h, V ) and slow Ca variables of the of the Plant model; a plane represents the synaptic
threshold, Θsyn = 0mV .
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(a) 

(b) 

Figure 2.6: Responses of the bursting neuron (∆1 = 0mV ) on the synaptic drive Isyn = gsyn(V −
Vrev). (a) Excitatory synaptic drive with gsyn = 0.002nS and Vrev = 40mV applied at t = 80sec
switches the neuron from bursting to tonic spiking activity. (b) The inhibitory drive with gsyn =
0.005nS and Vsyn = −80mV halts bursting and makes the neuron hyperpolarized quiescent.

of this stable orbit decreases, as it moves further away from the saddle-node equilibrium

mediated by decreasing calcium concentration. The period of the tonic spiking orbit grows

with no upper bound as it approaches the homoclinic loop of the saddle-node [59].

Figure 2.7: Tonic spiking neuron 1 at ∆1 = −34mV near the bifurcation transition between tonic
spiking and bursting is forced to become a network burster with an application of an inhibitory drive
with ginhsyn = 0.001nS, from the pre-synaptic neuron 2 at t = 60sec. Halting the inhibitory drive
restores tonic spiking activity in the targeted neuron (not shown).

Variations of ∆1 change the duty cycle of bursting, which is a ratio of the active tonic
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spiking phase of bursting to its period. Decreasing ∆1 reduces the inactive, quiescent phase

of bursting, i.e. increases its duty cycle. Zero duty cycle is associated with the homoclinic

saddle-node bifurcation that makes the neuron hyperpolarized quiescent. This corresponds

to an emergence of stable equilibrium state for all dynamical variables of the model (3.1).

In other words, decreasing ∆1 makes the active phase longer so that below a threshold

∆1 = −32mV the neuron switches to tonic spiking activity. Tonic spiking activity is as-

sociated with the emergence of a stable periodic orbit in the fast (V, h, n)-subspace, while

the (Ca, x)-variables of the slow subspace converge to a stable equilibrium state. As such,

bursting occurs in the Plant and similar models due to relaxation of periodic oscillations

in the 2D (Ca, x)-subspace, which slowly modulates fast tonic spiking oscillations in the

(V, h, n) variables. The relaxation limit cycles emerge from one and collapse into the other

equilibrium state in the (Ca, x)-plane through Andronov-Hopf bifurcations, which can be

sub- or super-critical. At the transitions between bursting and tonic spiking, and bursting

and hyperpolarized quiescence, the neuron can produce chaotic dynamics, which are basi-

cally due to the membrane potential oscillatory perturbations of plain canards at the folds

of the relaxation cycle.

2.3 Endogenous and network bursting. Inhibitory and excitatory drives

A half-center oscillator is a network of two neurons coupled by reciprocally inhibitory

synapses that robustly produce bursting in alternation or anti-phase bursting. Such a net-

work can be multistable, i.e., produce other bursting rhythms as well, such as synchronous
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Figure 2.8: Bifurcation diagram of the isolated Plant model. As the bifurcation parameter VCa

increases, the isolated cell switches states between tonic spiking to bursting and bursting into hyper-
polarized quiescent. Also, the transition between the states is possible through the synapses. These
transitions are also indicated in the diagram. Applying inhibition to tonic spiking cell results in
a burster cell and further inhibition pushes the cell into the hyperpolarized quiescent state. The
bifurcation diagram summarizes Figs 2.6 and Fig 2.7.

bursting [40] and rhythmic outcomes with slightly shifted phase lags between the endoge-

nously bursting neurons [41].

In this study, the synaptic current Isyn is modeled through the fast threshold modulation

(FTM) approach [60]. The synapses are assumed to be fast and non-delayed, which is true

for the swim CPG in both sea slugs under consideration. The synaptic current is given by

Isyn = gsyn(Vpost − Esyn)
1

1 + e−k(Vpre−Θsyn)
, (2.8)

where gsyn is the maximal conductance of the current, which is used as a bifurcation pa-

rameter of the networked model; Vpost(t) and Vpre(t) are the voltages on the post-synaptic

(driven) and pre-synaptic (driving) neurons; Esyn is the synaptic reversal potential. To make

Isyn excitatory, we set Esyn = 40mV , while in the inhibitory case we set Esyn = −80mV . In
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Eq. (2.8), the second term is a Boltzmann coupling function that quickly, (k = 100), turns

the synaptic current on and off as soon the voltage, Vpre, of the (driving) pre-synaptic cell(s)

raises above and falls below the synaptic threshold, here Θsyn = 0mV (Fig. 2.5).

To model the constant synaptic drive onto the post-synaptic neuron, we assume that

Vpre > Θsyn. This allows us to calibrate the state of the post-synaptic neuron, and to

determine the drive threshold that separates the qualitatively distinct states of the individual

and networked neurons. This statement is illustrated in Fig. 2.6 by simulating responses of

the endogenous parabolic burster to network perturbation. Figure 2.6(a) shows, with a

properly adjusted excitatory drive, that the endogenous burster switches into tonic spiking

activity. On the other hand, bursting in the networked neuron can be halted when it receives

a sufficient inhibitory drive from the pre-synaptic neuron of the network (Figure 2.6(b)).

Eliminating either drive makes the post-synaptic neuron return to its natural state, i.e.,

these experiments de-facto prove that the neuron is mono-stable for the given parameter

values.

An HCO, in the canonical Brown definition [36], is a pair of neurons bursting in anti-

phase when they are networked by inhibitory synapses. In isolation, such neurons are not

endogenous bursters but tonic spikers instead, or remain quiescent [3]. There are multiple

mechanisms underlying such anti-phase bursting, or, more accurately, anti-phase oscillations

in HCOs and CPGs made of relaxation oscillators [45, 61]. The list includes the well-studied

mechanisms of post-inhibitory rebound and escape for quiescent neurons [42, 39, 43, 62, 63],

as well as less-known mechanisms of HCOs constituted by intrinsically spiking neurons. Such
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Figure 2.9: Anti-phase network bursting produced by a HCO of two Plant neurons as soon as the
inhibition is turned on. Blocking the inhibition restores tonic spiking activity in both neurons, and
vice versa. Here, the the network parameters are ginhsyn = 0.008nS and Esyn = −80mV , and the
parameters of the individual neurons are the following: ∆1 = −60mV, ρ = 0.0003ms−1, Kc =
0.0085ms−1, τx = 235ms and x∞(V ) = 1/(1 + e−0.15(V +50)).

networks utilizing the Plant models are discussed below.

To construct such an HCO with relatively weak inhibitory coupling, the Plant model must

be first set into the tonic spiking mode. This is done by setting the bifurcation parameter,

∆1 = −34mV , see Fig. 2.7. Next, we consider a unidirectional network where the tonic

spiking neuron 1 starts receiving an inhibitory drive of gsyn = 0.001nS from the post-synaptic

neuron 2 at t = 60sec. The inhibitory drive is sufficient to shift the post-inhibitory neuron

over the bifurcation transition back into bursting activity. The minimal inhibitory drive

must be increased proportionally to make the targeted neuron a network burster whenever

it stays further away from the bifurcation transition between tonic spiking and bursting in

isolation.
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2.4 Forming a half-center oscillator

In this section, we discuss the dynamics of half-center oscillators made of two tonically

spiking Plant neurons reciprocally coupled with inhibitory synapses. As before, we describe

such synapses within the framework of the fast threshold modulation (FTM) paradigm using

Eq. (2.8) to match the shape and magnitude of inhibitory postsynaptic potentials (IPSPs) in

the post-synaptic neurons. IPSPs are the indicators of the type and the strength of synapses

in the network.

We perform simulations in a fashion that is analogous to the dynamic clamp technique

used in neurophysiological experiments. Dynamic-clamp is an electrophysiology method

which is used for simulating dynamic biological features such as membrane potential and

synaptic currents in between living cells [64, 65, 66]. The approach involves the dynamic

block, restoration and modulation of synaptic connections during simulation. These mod-

eling perturbations should closely resemble the experimental techniques of a drug-induced

synaptic blockade, modulation, wash-out, etc. Restoring the chemical synapses during a

simulation makes the HCO regain network bursting activity with specific phase characteris-

tics. Depending on the coupling strength as well as the way the tonically spiking neurons are

clamped, the network bursting may change phase-locked states, i.e., be potentially multi-

stable. Experimental observations also suggest specific constraints on the range of coupling

strengths of the reciprocal inhibition, such that the networks stably and generically achieve

the desired phase-locking.

Figure 2.9 demonstrates the stages of anti-phase bursting formation in the HCO. The
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Figure 2.10: Onset of emergent network anti-phase bursting in the HCO with reciprocally
inhibitory.(Esyn = −80mV ) synapses at ginhsyn = 0.0073nS.

uncoupled neurons are initiated in tonic spiking mode. After turning on the reciprocally

inhibitory synapses gsyn = 0.008nS, the HCO quickly transitions to the regime of robust anti-

phase bursting. Turning off the synapses restores the native tonic spiking activity in both

neurons. Turning on the reciprocal synapses makes the HCO regain the network bursting.

Note that the length of transients from tonic spiking to network bursting depends on the

strength of the synaptic coupling for the fixed parameters of the individual Plant neurons.

By comparing the magnitude of IPSPs in the voltage traces represented in Figs. 2.9 and

2.10, one can conclude that the coupling in the later case is weaker. This is why the onset

of network bursting in the HCO is less pronounced.

Our modeling studies agree well with experimental recordings from the identified in-

terneurons in the Melibe swim CPG which suggests that the observed bursting is due to

synergetic interactions of interneurons of the network [30]. One can see from Fig. 2.1(b) that

network bursting in the biological HCO formed by two Si3 interneurons of the Melibe swim

CPG is seized as soon as the right one, Si3R, receives a negative current pulse that makes it
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hyperpolarized quiescent, while its left bursting counterpart, Si3L, turns into tonic spiking

activity instead. Moreover, one can deduct from the wiring diagram of the CPG depicted in

Fig. 2.2(a) and the analysis of voltage traces represented in Fig. 2.1(b) that the interneuron

Si2L becomes a tonic-spiker as soon as the pre-synaptic interneuron Si3R stops inhibiting it

(compare with Fig. 2.9.) This further supports the assertion that the swim CPG is made of

intrinsically tonic spiking interneurons.

To test the robustness of network anti-phase bursting to perturbation and to calibrate

the necessary influx of reciprocal inhibition generated by the Plant neurons, we consider an

HCO with excitatory autapses. The objective here is to determine an equivalent amount of

excitatory drive to be projected onto the post-inhibitory network burster to cancel out the

inhibitory drive and shift it back to the initial tonic-spiking mode.

An autapse is a synapse of a neuron onto itself, where the axon of the neuron ends on

its dendrite. After their discovery [67] autapses have been observed in a range of nervous

systems. The autapses are arguable to be responsible for tuning of neural networks. This

Figure 2.11: Turning on the excitatory autapses at gexcaut = 0.016nS in the HCO with ginhsyn =
0.0073nS halts pronounced network bursting.
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particular configuration of the HCO depicted in Fig. 2.11 is formally motivated by the swim

CPG circuitry, see Fig. 2.2(a). One can see from it that the interneurons of the bottom HCO

receive excitatory drives from the top interneurons forming the top HCO. We would like to

find the threshold over which the neurons no longer form a stably bursting HCO. This would

allow us to calibrate and quantify the relative strengths of the mixed synaptic connections

in the swim CPG models.

In this HCO configuration, each neuron inhibits its counterpart and self-excites through

the autapse. Both autapses are introduced to the model using the FTM approach with

Eaut = 40mV . In this experiment, the conductance values for inhibitory synapses are set at

ginhsyn = 0.0073nS. This is sufficient for the HCO to generate robust anti-phase bursting as

seen in Fig. 2.10. Next, we add the autapses along with inhibition and gradually increase

gexcaut. We found that increasing gexcaut proportionally increase the delay. At gexcaut = 0.016nS, the

network stops exhibiting anti-phase bursting. We note that unlike a permanent excitatory

drive from pre-synaptic neurons, an introduction of the excitatory autapse, acting only when

the self-driving neuron is above the synaptic threshold, is effectively perturbation equivalent

for the calibration purpose.

2.5 Assembly line of a Melibe swim CPG

In this final section, we put together a pilot model of the Melibe swim CPG according to

a circuitry based on identified interneurons and synapses; its wiring diagram is sketched in

Fig. 2.2(a). This network model is made of the two HCOs constituted by tonic spiking Plant
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Figure 2.12: Assembly line of the Melibe swim CPG model out of four intrinsically tonic spiking
Plant neurons. First, the reciprocal inhibition between Si3R and Si3L is turned on, followed by
turning on the reciprocal inhibition between Si2R and Si2L, and next simultaneous turning on
unidirectional cross-lateral inhibition from Si3R(L) projected onto Si2L(R), and bi-lateral excitation
originating from Si2R(L) down onto Si3R(L). After a short transient, the CPG model exhibits the
desired 3/4 phase shift lag between Si2L and Si3L. Compare with voltage traces of the biological
CPG in Fig. 2.2(b).

neurons. We would like to find out whether this sample CPG model can already produce

phase lags similar to those between bursting interneurons in the biological CPG. For the sake

of simplicity, we do not include Si4R/L interneurons in the model, and we also omit electrical

synapses. It is known from experimental studies [30] that blocking chemical, inhibitory and

excitatory synapses between the interneurons may be sufficient to break down the motor

pattern by the network. Figure 2.2(b) points out that the interneurons of either HCO burst

in anti-phase and there is the characteristic 3/4 phase lag between the burst initiation in

the neurons Si2L and Si3L, as well as between Si2R and Si3L. This phase lag is repeatedly

observed in both adult and juvenile animals.
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As before, we use the Plant neurons initiated in the tonic spiking mode, relatively close

to the transition to bursting. Initial conditions of the neurons are randomized. After letting

the neurons settled down to tonic spiking activity, the network connections are turned on. As

Fig. 2.12 shows, with the reciprocal inhibition being first turned on, the bottom interneurons

Si3L and Si3R become anti-phase network bursters, and so do Si2R and Si2L as soon as

the reciprocal inhibition between them is turned them on, too. At this stage, the CPG

model is formed by two uncoupled HCOs. A few seconds later, they become coupled by

simultaneous turning on the unidirectional cross-lateral inhibition from Si3R(L) projected

onto Si2L(R), and bi-lateral excitation from Si2R(L) down onto Si3R(L). One can see from

this figure that all four interneurons of the CPG model exhibit network bursting with the

desired phase lags. These are 0.5 (half period) between the interneurons of each HCO, and

3/4 (a fraction of the network period) between the HCOs, or between the corresponding

reference interneurons Si2L and Si3L. We note that such a phase shift was reported in a

similar Melibe swim CPG constituted by endogenous bursters; that model also incorporated

electrical synapses [27]. There is a great room for improvement of CPG network models to

include other identified interneurons and to incorporate additional electrical synapses to find

out whether additions of new elements can stabilize or desynchronize the desired bursting

pattern as it was done using the Poincaré return maps for endogenous bursters [22]. Of our

special interest are various problems concerning structural stability of the network, and its

robustness (Lyapunov stability) for bursting outcomes subjected to perturbations by pulses

of the external current, as well as reductions to return maps between burst initiations in
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constituent neurons. These questions are beyond the scopes of the given examination and

will be addressed in full detail in our forthcoming publications soon. The question about a

possible linking of the characteristic 3
4

phase lag and the Melibe leonina lateral swim style is

the paramount one among them.

2.6 Summary

We have discussed a basic procedure for building network bursting CPGs made of intrinsically

tonic spiking neurons. As a model for such networks, we have employed the biophysically

plausible Plant model that was originally proposed to describe endogenous bursting R15-

cells in the Aplysia mollusk. Such bursting was intracellularly recorded, and identified as

parabolic, from the known interneurons in the swim CPGs of two sea slugs: Melibe leonina

and Dendronotus iris. There is experimental evidence that bursting in these swim CPGs is

due to synergetic interactions of all constituent neurons that are intrinsic tonic-spikers in

isolation. To model the Melibe swim CPG, we have first examined dynamical and struc-

tural properties of the Plant model and its responses to perturbations. These perturbations

include inhibitory and excitatory inputs from pre-synaptic neurons in the network. We

have identified the transition boundary beyond which the bursting Plant model became a

tonic-spiker and shifted it slightly over the threshold using an introduced bifurcation param-

eter. We have shown that the perturbed/calibrated Plant neuron, exhibiting intrinsically

tonic spiking activity, becomes a network burster when it receives an inhibitory drive from

a pre-synaptic neuron. By combining two such neurons, we have created a genuine half-
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center oscillator robustly producing anti-phase bursting dynamics. We have also considered

an HCO configuration with two excitatory autapses to assess the robustness of anti-phase

bursting with respect to excitatory perturbations. Finally, we have employed all necessary

components to assemble a truncated model of the Melibe swim CPG with the characteristic

3/4-phase lags between the bursting onsets in the four constituent interneurons. In future

studies, we plan to examine the dynamics of the CPG models with all synaptic connections,

including electrical, as well as incorporating additionally identified interneurons. We will also

explore their structural stability, robustness and potential multi-stability of their bursting

outcomes with various phase lags. An additional goal is to find out whether the motor pat-

tern with the 3/4-phase lags will persist in networks with interneurons represented by other

mathematical models including phenomenologically reduced ones. Potentially, these findings

shall provide a systematic basis for comprehension of plausible biophysical mechanisms for

the origination and regulation of rhythmic patterns generated by various CPGs. Our goal is

to extend and generalize the dynamical principles disclosed in the considered networks for

other neural systems besides locomotion, such as olfactory cellular networks.
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CHAPTER 3

DIFFERENT INTRINSIC CELL DYNAMICS AND SLOW SYNAPSES

3.1 Introduction

The Melibe swim CPG was initially thought to be a very simple neuronal circuit of two

pairs of interneurons but recent studies on identifying Melibe swim CPG, reveals that four

pairs of interneurons form the circuit [30, 27]. The in vitro voltage recordings gave perfect

opportunity to create a highly detailed and biologically plausible mathematical model. In

the previous chapter, we have used a Hodgkin-Huxley formalism model initially designed for

R15 cells of Aplysia Californica which are intrinsic bursters. We used a similar approach

to model the Melibe swim CPG. The main difference between two animals is the behavior

of the cells in isolation. The swim interneurons(Sis) are known to be network bursters. In

isolation, the cells are either quiescent or tonic spiker cells. The circuit consists of four pairs

of swim interneurons (Sis) which are symmetrically located in the Melibe brain, and these

pairs form half-center oscillators(HCOs) which are commonly seen structures in CPGs and

constitutes the main framework of these small neuronal circuits. HCOs are microcircuits in

which neurons are reciprocally coupled via inhibition and fire or burst in anti-phase.

Experimental results showed that the cells in the CPG are network bursters and non-

bursters in isolation. In order to implement this result to the mathematical model, we

eliminated the bursting state by using dynamical systems theory. More specifically, it is

known that Si2s are tonic spiking cells in isolation and Si3s are tonic spiking cells or quiescent

cells. The delays and phase shifts in the network rhythm implied that the HCO mechanism
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between Si2s and Si3s are different. As mentioned in the previous chapter, generations HCOs

can follow three mechanisms: release, escape and post-inhibitory rebound(PIR). Our first

assumption is that HCO mechanism for Si2s is escape, and Si3s is PIR. According to the

first assumption, we set the intrinsic dynamics of the cells as hyperpolarized quiescent for

Si3s and tonic spiking for Si2s.

Tonic 
Spiking 

Hyperpolarized
Quiescence 

VCa

Bursting

Figure 3.1: The mathematical model is calibrated to generate only tonic spiking and hyperpolarized
quiescent activity. The bursting state is eliminated for ∆2 = −2.

Well designed neurophysiological experiments provided detailed information on the dy-

namics of synapses. Characteristics of synapses are implemented into the mathematical

model through more advanced modeling methods. In the initial modeling study, FTMs were

used to model synapses. In this chapter, FTMs are replaced by alpha synapses and dynamic

synapses, which are biologically more plausible methods for synapse modeling.

For modeling, we used two experimental cases as reference: a control case where the

animal is actively swimming and all connections are active and the curare case where the
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outgoing connections from Si3s are disabled by a synaptic blocker called d-tubocurarine.

We started building our model by putting together the circuitry starting from curare case

because it includes fewer connections compared to the control case and gives more insight

into the characteristics of the existing synapses. After modeling the curare case correctly, we

restored the blocked connections for control case. The essential features that we took into

consideration during the modeling process were the difference in fundamental structures of

the neurons, burst durations, delays in burst initiations and latency at the end of bursts.

3.2 Network

The details of the network will be explained in two subsections: biological network and

mathematical network. In the biological network section, the original biological circuit and its

features used in modeling are described. In the mathematical network section, the reduction

process of the circuit for mathematical modeling is explained in details.

3.2.1 Biological Network

Identification of Melibe swim CPG is still an ongoing neurophysiological work. Details of the

identification process and the circuit structure are given in the previous chapters. Briefly,

the biological network consists of four pairs of swim interneurons (Si1, Si2, Si3, and Si4) and

cells of each pair are located in contralateral parts of the brain (i.e., left and right). Each

pair of Sis composes a simple HCO. The circuit retains excitatory and electrical synapses

besides the inhibitory connections. Electrical connections exist between pairs of Si1s as well

as Si2s. Also, there is a stronger electrical synapse between ipsilateral Si1s and Si2s on both
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sides of the brain. This feature will be used in circuit reduction process. Each synapse and

cell in the CPG has its characteristics. Synapses can exhibit slow or fast dynamics. The

cells differ in their activity in isolation as well as their neurophysiological properties. For

instance, Si2s are the largest cells, so they are easier to detect in the brain. Other cells are

smaller in size. Also, the inhibitory reversal potential varies depending on the physical size

of the cell. Reversal potentials of Si2s and Si3s are VSi2 = −80mv and VSi3 = −50mv.

As mentioned before, the studies on identifying Melibe swim CPG is an ongoing work.

The circuit used in the previous chapter is slightly changed due to the newer experimental

findings. In the previous model, we used contralateral excitation and ipsilateral inhibitions

between Si2s and Si3s. Current experiments showed that the synapses from Si2s to Si3s

are contralateral excitation and ipsilateral inhibition. The difference between the circuits is

presented in Fig.3.2.

1/2L 1/2R

3L 3R

1/2L 1/2R

3L 3R

(a) (b)

Figure 3.2: (a) Previously used simplified Melibe swim CPG where the synapses from Si2s to Si3s
are contralateral inhibition and ipsi-lateral excitation. (b) The most recent simplified Melibe swim
CPG where the synapses from Si2s to Si3s are contralateral excitation and ipsi-lateral inhibition.
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Intracellular voltage values are recorded in saline where all synaptic connections are active

(control case), and the outgoing connections from Si3s are blocked by the synaptic blocker

curare (curare case). The circuit motifs for control and curare cases are shown in Fig. 3.3(a)

and Fig. 3.4(a). Blocking the outgoing connections from Si3s which are reciprocal inhibitory

connections between Si3s and the contralateral inhibitory connections from Si3s to Si2s, has

a significant effect on the bursting characteristics of the network. Blockage of these synapses

causes a significant increase in the burst duration. In control case, the burst length in average

is around 2-4 seconds while it is around 12-13 seconds in curare case.

1/2L 1/2R

3L 3R
0 5 10 15 20 25 30

Time(sec)

(a) (b)

Figure 3.3: (a) Reduced control circuit (b)In-vitro voltage recordings during active swimming.
Si2L/R and Si3sL/R burst in anti-phase with a burst duration of 2-4 seconds while Si2s and Si3s
burst in a phase locked state. Recordings provided courtesy of A. Sakurai.

Each pair of neurons is connected through HCO mechanism. Unsurprisingly, cells within

each pair burst in anti-phase. (i.e., Si2L and Si2R burst in anti-phase, and Si3L and Si3R

burst in anti-phase). While each pair is bursting in anti-phase, Si2s and Si3s burst in a

phase-locked state in both control and curare cases. In curare case, we observed that there

is the delay between burst initiations of contralateral Si2s and Si3s, as well as the tail. All

these features are taken into consideration during the modeling process.
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Figure 3.4: (a) Reduced curare circuit (b) Neuro-blocker curare blocks all outgoing connections from
Si3s which are reciprocal inhibitory connections between Si3s and the contralateral connections from
Si3s onto Si2s. Blockage of these connections yields a significant increase in the burst duration of
all cells. The burst duration increases to 12-13 sec while it was 2-4 sec in the control case. The
other important feature observed in the curare case is the delay between contralateral Si2s and Si3s.
Also, the continuation of Si3s after contralateral Si2s stop bursting is another feature observed in
curare case. These two features give us the key points of modeling.Recordings provided courtesy of
A. Sakurai.

3.2.2 Mathematical Network

The brain is physically and functionally the most complex part of the body. The connections

in a neuronal circuit can be quite complicated which is a challenge for mathematical mod-

eling. To overcome this problem, we used a circuit reduction. The reduced circuit is called

the mathematical network to imply that it is different from the original biological circuit

and it can be extended to the original version. The reduction procedure was implemented in

two steps. The first step of reduction is ruling out Si4s. Si4s are connected to contralateral

Si2s via electrical coupling and inhibit the contralateral Si3s. This can be interpreted as an

indirect connection from Si2s onto Si3s. Due to the latency in the inhibitory synapse, the

burst initiation of Si3s delays. In the biological network, this delay is caused by the existence

of Si4s, but in a mathematical point of view, this delay means that the coupling function of
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the synapse decays slowly. Instead of using an extra cell to create the delay, we used a slowly

decaying synapse from Si2s onto ipsi-lateral Si3s. For details, see the methods section.

2L 2R

3L 3R

1L 1R

4L 4R

2L 2R

3L 3R

1L 1R

1/2L 1/2R

3L 3R

(a) (b) (c)

Figure 3.5: (a) Simplified schematic diagram of biological swim CPG which consists of eight swim
interneurons. (b) The diagram of CPG after the first step of reduction. (c) The Reduced CPG used
in mathematical modeling.

The second step of the reduction process is the merge of the Si1s and Si2s. As mentioned

earlier, the CPG consists of four pairs of swim interneurons. One of each pair is located on

the left side of the brain, and the other one is to the right of the brain. On both, left and

right, sides, the interneurons, ipsilateral Si1s and Si2s, are strongly electrically connected, so

they are firing in a highly synchronized manner. Besides the electrical connection, each cell

receives inhibition from its contralateral pair and diagonal cell(Fig. 3.5(a)). Merging these

two strongly electrically coupled cells into a single cell also requires merge of the inhibitory

synapse weights between Si2 around three times representing clustering all three inhibitory

connections into one.

Through two-step reduction, we have reduced an eight-cell biological network to a four-
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cell mathematical network which provides enough simplicity for modeling. Instead of having

four different types of neurons, we have two different types of neurons, Si2s and Si3s. Si2s

and Si3s have slightly different dynamics in isolation as mentioned earlier.
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Figure 3.6: Individual cell dynamics are set according to the experimental studies which is presented
in Fig 4.1 (d). Experimental results showed Si3s have higher spike frequency than Si2s.

3.3 Model

Biologically plausible circuits constituted by Hodgkin-Huxley (HH) type models of cells cou-

pled by chemical and electrical synapses described by tenable dynamical equations. Based on

recent experimental data showing that the individual neurons of the identified swim CPGs

never burst endogenously in isolation, we developed a very detailed HH-type model of tonic

spiking neurons with multiple time scales. Its key feature is the slow voltage-dependent

calcium-based dynamics that provide very good qualitative and quantitative resemblance

with dynamics of the biological neurons, and more specifically their responses to perturba-

tions such as external currents synaptic currents. Earlier we developed a pilot, biologically

plausible model of the Melibe swim CPG that could realistically reproduce rhythmic out-
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comes of the real circuit in control, but, unlike the newer model, it failed to meet recent

experimental recordings with applications of external perturbations and neuro-blockers such

as TTX and curare [68]. Using data assimilation techniques, the new models of neurons

and chemical synapses was further fitted to match the dynamics of isolated and networked

biological neurons, including their inhibitory and excitatory post-synaptic responses.
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Figure 3.7: (a) Phase plane for slow subsystem (Ca − x) plane of the Plant’s parabolic bursters
model. Curve HC corresponds to degenerate homoclinic orbit (SNIC); periodic solution branch
which emerges along HB terminates here. Burst trajectory (solid) reveals that beginning and end
of the active phase of spiking corresponds to crossing transition boundary HC between steady state
and oscillatory solution branches of equations fast subsystem. Some portions of nullclines have been
eliminated. (b) Bifurcation diagram of the system Ca as a parameter. Also shown are max and min
values of periodic solutions which arise at HB (subcritical) and terminate in homoclinic orbit HC
at saddle-node. Long dashes represent the temporal average of periodic solutions.Figure provided
courtesy of Rinzel and Lee [56]

In this chapter, we use a revised version of the earlier model. The model is initially

designed for R15 neuron located abdominal ganglion of Aplysia californica [46, 47, 48]. R15

neurons are bursters in isolation, and the choice of initial model is inspired by the parabolic

burst structure of bursts in some recordings. Parabolic bursters have a low frequency at the

beginning and end of the burst, and higher frequency in between. This structure leads us
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to Plant’s parabolic bursters’ model [47]. The Hodgkin-Huxley formalism of the previous

model to describe the dynamics of the fast inward sodium, INa, outward potassium IK , slow

TTX-resistant calcium ICa and an outward calcium-sensitive potassium IKCa currents, the

generic ohmic leak Ileak, and synaptic Isyn currents owing to a pre-synaptic neuron.

0 0.5 1 1.5
Ca

0

0.5

1

x

gh = 0.001

gh = 0

gh = 0.001

gh = 0

SNIC

Figure 3.8: Phase portrait of the slow subsystem (Ca-x) with and without h-current. Solid and
dashed purple lines represent Ca-nullcline without and with h-current. Dark and light green curves
represent x-nullcline without and with h-current where both bifurcation variables are zero (∆1 = 0
and ∆2 = 0). The curve SNIC corresponds to the saddle-node on invariant circle bifurcation.

In addition to all these existing currents, we added an h-current, Ih, to the system to avoid

the deep sags between the bursts. Ih is a hyperpolarization activated depolarizing current

[69]. In other words, hyperpolarization of the cell beyond approximately −50mV to −70mV ,

activates h-current and activation of h-current slowly depolarizes the cell towards equilibrium
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state[69]. This way the deep hyperpolarization in between the bursts are prevented. Fig.

3.8 presents effect of h-current on the phase portrait of slow subsystem. H-current does not

have a significant effect on Ca dynamics while it is possible to observe the effect of it on x

dynamics. The dark green line in Fig. 3.8 shows where the h-current is activated and the

characteristics, h-current added to the system. The burs generation occurs through a SNIC

bifurcation similar to the original system. (fig. 3.9) The full details of the currents employed

in the model are given in the Appendix B and the fast subsystem is given below:

CmV̇ = −INa − IK − ICa − IKCa − Ileak − Ih − Isyn, (3.1)

(INa = gNam
3
∞(V )h(V − VNa), IK = gKn

4(V − VK), (3.2)

ICa = gCax(V − VCa), IKCa = gKCa
[Ca]i

0.5 + [Ca]i
(V − VK), (3.3)

Ileak = gL(V − VL), Ih = gh(1/(1 + e−(V−63)/7.8))3y(V − Vh), (3.4)

ṅ =
n∞(V )− n
τn(V )

, ḣ =
h∞(V )− h
τh(V )

), (3.5)

ẏ = 0.5((1/(1 + e10(V−50) − y)/(7.1 + 10.4/(1 + e(V +68)/2.2)). (3.6)

Unlike the R15 neurons, swim interneurons of Melibe are non-bursters in isolation. Ex-

perimental studies show that the cells are tonic spikers or hyperpolarized quiescent cells in

isolation. To achieve this property, we used two bifurcation parameters ∆1 and ∆2. It is

known that reversal potential of calcium ranges between 80-140. These differences led us to

add a biologically plausible bifurcation parameter(∆1) to the mathematical model (Eq. 3.7).

We used this flexibility to change the intrinsic dynamics of the model. In other words, this
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makes ∆1 a natural bifurcation parameter. The second bifurcation parameter ∆2 is to mod-

ify the dynamics of the slow variable x. First, we eliminated the bursting state in the model.

In other words, we eliminated the hysteresis in the model. We used the slow subsystem to

change the dynamics of the system. For ∆2 = −2, the system has two stable fixed points

corresponding to tonic spiking and hyperpolarized quiescent states, and this eliminates the

hysteresis or burst generation in isolation in the system.

Ċa = ρ [Kcx(VCa − V + ∆1)− [Ca]i] , (3.7)

ẋ = ((1/(e0.15(−V−50+∆2) + 1))− x)/τx, (3.8)

Our first assumption is that HCO in between Si2s and Si3s follow different mechanisms,

and set the initial dynamics of Si2s as tonic spikers and Si3s as hyperpolarized quiescent

cells. Variation of the bifurcation parameter ∆1 can be interpreted as variation the calcium

reversal potential. Revised model can only generate tonic spikers or hyperpolarized quiescent

cells same as in the biological network. Since we assume that Si2s and Si3s follow different

HCO mechanisms, we set Si2s as tonic spiking cells and Si3s as hyperpolarized quiescent

cells. The border of two states is found where VCa = 100 (∆1 = −40). The cells are tonic

spikers where the VCa is lower than the border value and hyperpolarized quiescence for higher

values. As the value of VCa gets close to the transition border due to the slow down in the

system, the frequency of spiking decreases. In order to imply the differences between Si2s

and Si3s, their bifurcation parameters are set according to their intrinsic dynamics such as

∆1 = −44 (VCa = 96) for Si2s as ∆1 = −36 (VCa = 104) for Si3s.
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Figure 3.9: Phase portrait of slow subsystem (Ca-x) h-current where both bifurcation parameters
are zero (∆1 = 0 and ∆2 = 0). Similar to the previous version of the mathematical model the burst
generation occurs through a saddle node on invariant circle (SNIC) bifurcation.

Next, we set endogenous dynamics of each cell, we start putting together the network. In

the earlier study, we have used fast threshold modulations(FTMs) for synapses [70]. FTMs

are fast synapses and they are modeled as a Boltzmann equation which means that the

synapse is either on or off. This type of synapse modeling is an efficient method for fast

synapses but it is not a good method for slow synapses that is why instead of FTMs, we

use alpha and dynamic synapses which are biologically more plausible. The alpha coupling

functions (S) and dynamic coupling function (M) are given by the Eq.3.11. The synaptic

current is defined as

Ialphasyn = gsynS(Vpost − Vrev), Idynsyn = gsynSM(Vpost − Vrev) (3.9)
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(a)

(b)

Figure 3.10: 5D phase plane representation of the full system. (a) Bursting (blue curve) orbit
rises through a sub-critical Andronov-Hopf (AH) bifurcation in the fast subsystem. Tonic spiking
manifold MPO is represented by the yellow cylinder. (b) Phase plane for the slow subsystem. Blue
orbit is the projection of the bursting orbit onto the (x; Ca ) where bifurcation parameters ∆1 = 0
and ∆2 = 0 .

where

Ṡ =
α(1− S)

1 + e−k(V−Vth)
− βS, (3.10)

Ṁ = (1/(1 + e−(V +40))−M)/τM (3.11)

where gsyn is the maximal conductance, Vrev is the reversal potential since the network
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Figure 3.11: Termination of the bursting state. (a)Phase plane of the slow subsystem where
∆1 = −45,−30, 50, 100 and ∆2 = 0. The dashed pink lines represent Ca nullcline for given ∆1

values. Transition between tonic spiking (TS), bursting (BT), quiescent (Q) states and subthreshold
oscillations (SO) is possible by the variation of ∆1. (b)Phase plane of the slow subsystem where
∆1 = −45, 50, 100 and ∆2 = −2. The bifurcation parameter ∆2 shifts the x nullcline horizontally.
Shifting is to the right yields termination of the bursting state.

has both inhibitory and synapses and due to the neurophysiological differences between

Si2s and Si3s, their reversal potentials are different. We used the experimental values for

the reversal potentials for inhibitory synapses V Si2
rev = −80mV and V Si3

rev = −50mV and

excitatory synapses Vrev = −10mV . α and β values are the rate of increase and decrease for

the coupling variable.

3.4 Assembling CPG

In this section, we discuss the step-by-step procedure for assembling the mathematical net-

work. We put together the Melibe swim CPG with the modified mathematical model for

the current wiring diagram ( given in Fig. 3.2 (b)) based on the experimentally identified
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Figure 3.12: The dependence of cell dynamics on calcium reversal potential (VCa) is shown in the
bifurcation diagram. The cells in isolation are in tonic spiking or hyperpolarized quiescent states.
In order to qualify the cell properties in our assumptions we set VCa = 104 for Si3s and VCa = 96
for Si2s.

individual cell and synapse dynamics. The fundamental building block of the circuit is HCO.

The HCO formed between Si2s comprise the basis of rhythm generation. Our assumption is

that HCO between Si2s and Si3s follow different mechanisms in order to generate alternating

bursting behavior. There is a strong experimental proof that the Si2 cells are tonic spiking

cells in isolation but for dynamics of Si3s are unknown in isolation. It is also known that the

cells are network bursters which means that they are non-bursters in isolation. According

to what is known about Si3s, we set the intrinsic cell dynamics as hyperpolarized quiescent

(Fig./ 3.6), since our assumption is that each pair is generating anti-phase bursting through

a different HCO mechanism.

The experimental studies were performed under two different conditions where the animal
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(a)

(b)

Figure 3.13: 5D phase plane mimicking burst generation through the application of an inhibitory
external current to a tonic spiking cell where bifurcation parameters ∆1 = −45 and ∆2 = −2 .(a)
Application of hyperpolarizing external current (red curve) to a tonic spiking cell yields the transition
of the cell towards the quiescent state. The tonic spiking orbit is represented by the blue curve, and
the application of the external current is represented by the red section of the orbit. (b) Projection
of the burst generation onto the phase plane of the slow subsystem. Blue orbit is the projection of
the bursting orbit onto the (x; Ca ) plane where red section represents the hyperpolarized applied
current.

exhibits normal swim behavior (control case) and the existence of a neuroblocker which blocks

all the outgoing synapses of Si3s (curare case). The properties of both cases are explained

in detail in previous chapters, and also brief information is given in the biological network

section. To create a more plausible model and calibrate the synapses properly, we started

the assembly from the curare case which is a simpler circuit compared to the control circuit.

Curare circuit includes half-center oscillators between Si2s, ipsilateral inhibitory synapses
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and contra-lateral excitatory synapses from Si2s onto Si3s (Fig. 3.4(a)).

Previously, we used FTMs to model synapses in the model. FTMs are a simple and

efficient modeling technique for fast synapses but failed to meet the properties of the slow

synapses which plays a significant role in rhythm generation in the circuit. The previous

model with FTMs was able to capture the characteristics of control case but failed to meet

the characteristics of curare case. We replaced FTMs with alpha synapses, and for slower

synapses such as contralateral excitation, we used dynamic synapses which are biologically

more plausible synapse models.
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Figure 3.14: Burst duration of Si2s in curare case depends on reciprocal inhibitory connection
strength. (a) For weaker values of inhibitory connection strength (ginhij < 0.005), cells maintain

tonic spiking (b) Increasing the connection strength (0.005 ≤ ginhij ≤ 0.019) causes an increase in

the burst duration. (c) Increasing the connection strength further (ginhij > 0.019) results one cell to
maintain tonic spiking while the other cell goes quiescent. The desired burst length for curare case,
12-13 sec, is obtained for gij = 0.012.

We start assembling the circuit from curare case since it has a less complicated wiring

diagram. Since Si3s are quiescent cells, the network characteristics will be determined by
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the dynamics of Si2s. Si3s will follow the Si2 dynamics through the contralateral excitatory

coupling. Experimental studies showed that the inhibitory synapses between Si2s are fast

synapses, so the α and β values of the coupling variable is chosen accordingly where α = 0.05

and β = 0.005. The most significant feature of the curare network is the burst duration of

the network. The burst duration in curare network lasts around 12-13 seconds. The specific

burst duration of the network is controlled by the burst duration of Si2s. One of the features

of the mathematical model is the structure of recovery period which is controlled by the slow

subsystem. The longer recovery period of post-cell means longer burst duration of pre-cell.

In other words, stronger synaptic strength causes longer recovery time and longer recovery

time causes longer burst duration. The dependence of burst duration on synaptic strength

is summarized in Fig. 3.14. For weaker values of inhibition, the cells keep tonic spiking

(0 < ginhij < 0.005). As the strength of inhibition increases the cells start anti-phase bursting

and the burst duration lasts longer with stronger inhibition values (0.005 ≤ ginhij ≤ 0.020).

As the coupling strength keeps getting stronger, eventually one of the cells shuts down the

other one (ginhij > 0.020). In order to meet the experimental results, we set the coupling

strength at a level which gives desired 12-13 sec burst length (ginhij = 0.012).

Another typical characteristic of the curare network is the delay between the burst initi-

ation and the continuation of spiking activity after Si2 goes to quiescent state what we refer

as the tail of the contralateral Si2s and Si3s (i.e., Si2L-Si3R and Si2R-Si3L). The delay and

tail are controlled by the interactions between the ipsilateral inhibition and the contralat-

eral excitation. Quiescent Si3s follow voltage activities of contralateral Si2s, so contralateral
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Figure 3.15: The inhibitory connections between Si2s are recovered by dynamic-clamp technique
during application of TTX. As the connection strength increases the burst duration increases as
well. This experimental result is verified with the simulation results(See Fig. 3.14). Courtesy of A.
Sakurai.

excitatory synapse dynamics play an important role in the generation this specific feature.

Excitatory synapses build slowly so the ipsilateral inhibition can overrule excitation and

delay the burst initiation. The tail also depends on the dynamics of the excitatory synapse.

The slow decay of excitatory synapse overrules the ipsilateral inhibition during its building

up period, so Si3s keep bursting until coupling variable of the excitatory synapse goes to

zero.
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Figure 3.16: (a) Simulation results for curare network Si2L/R and Si3sL/R burst in anti-phase with
a burst duration of 11-12 seconds with characteristics of what we call delay and tail. (b) Dynamics
of coupling functions for ipsilateral inhibition from Si2s onto Si3s (dark blue) and contralateral
excitation from Si2s onto contralateral Si3s (blue).

Next, we continue with restoring the blocked connections to assemble the control net-

work. There is a significant difference in curare and control networks in curare and control

cases. The burst duration is between 2-4 seconds in control network while it is 12-13 seconds

in curare network. We have examined the dependence of burst duration on synaptic strength

in Si2s, and it is observed that 2-4 sec burst duration generation is not possible to obtain

between Si2s. This burst duration can only be generated with the reactivation of contralat-

eral inhibition from Si3s onto Si2s. As the coupling strength of the synapse is increased the
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Figure 3.17: (a) Reduced curare circuit (b)Simulation results for curare network Si2L/R and
Si3sL/R burst in anti-phase with a burst duration of 11-12 seconds with characteristics of what we
call delay and tail. (c) Reduced control circuit (d) Simulation results for control network. Si2L/R
and Si3sL/R burst in anti-phase with a burst duration of 2-4 seconds while Si2s and Si3s burst in
a phase locked state.

burst frequency of the network increases. Dependence of the network burst duration on the

strength of contralateral inhibition is examined in detail in the next chapter. The network

can generate the desired burst length for ginh = 0.004.

The last characteristic of the control network is the delay between contra-lateral Si2s

and Si3s. In curare network, this delay is controlled by the interaction between contralateral

excitation and ipsilateral inhibition. Restoring the inhibitory synapses between Si3s adds

robustness to the network. It is also observed that as the strength of inhibition increases
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the delay is increasing as well. Fig. 3.17 presents the voltage traces generated by the

mathematical model for both curare network and control network.

3.5 Summary

In this chapter, we have used a revised version of the previous model and discussed the

workflow of the building network bursting of the Melibe swim CPG which is composed of

tonic spiking and quiescent cells. The initial model, Plant’s parabolic bursters model, was

developed for R15 cells in Aplysia which are intrinsic bursting cells. The experimental stud-

ies showed that the Melibe cells are either tonic-spiking or hyperpolarized quiescent cells in

isolation, unlike R15 cells. More specifically, it was shown that the SI2s are tonic spiking

cells, but there was no experimental data showing the intrinsic dynamics of Si3s. Our first

assumption was that the Si2 and Si3 pairs follow different mechanism for HCO generation.

Accordingly, we have assumed that Si2s are tonic spiking cells and Si3s are hyperpolarized

quiescent cells. First modification we have made in the mathematical model is to eliminate

the bursting state. The bursting state of the model is eliminated by using bifurcation the-

ory. Previously, we have examined the model responses to the perturbations and identified

the transition boundaries. We have introduced a second bifurcation parameter to the slow

subsystem. Variation of the second bifurcation parameter terminated the bursting state so

the revised model can only generate tonic spiking or hyperpolarized quiescent cells. First,

we have set the intrinsic dynamics of the cells set as tonic spikers for Si2s and hyperpolarized

quiescent for Si3s through. We followed a similar path to the previous case for assembling
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the network. We started by assembling the Si2 HCO, and unlike the previous model, here we

have used slow synapse dynamics instead of FTM. Synapses are modeled by alpha and dy-

namic synapse models. New experimental results have revealed new features of the network.

Our goal is to capture all these features of the biological network with the mathematical

model. The first feature, we wanted to adapt to the model was the burst duration in the

curare network which is around 11-13 secs. We have continued assembly of the network

with the curare network which has a simpler wiring diagram. We successfully generated the

characteristics of the curare network such as the burst duration, delay, and tail. Finally, we

have recovered the blocked connections to reach the control network. As a result of slow

synapse dynamics, we were able to generate the characteristics of the control case such as

2-4 sec burst duration and the delay between contralateral cells in the network.

As mentioned earlier, the identification process of the Melibe swim CPG is still an ongoing

work, and the most recent experimental studies revealed that both Si2s and Si3s are tonic

spiking cell in isolation. These new findings require recalibration of the mathematical model.

In the next chapter, we will present the process of assembling the network for tonic spiking

cells and slow synapses. We will also verify the mathematical model by performing the

experimental studies with the mathematical model and compare the experimental results

with the simulation results.
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CHAPTER 4

DETAILED MODELING AND MODEL VERIFICATION

4.1 Introduction

Melibe leonina swims with a rhythmic behavior of flexing its body laterally, left and right, and

this behavior is regulated by a small neuronal circuit. These type of small neuronal circuits,

central pattern generators(CPGs), can generate rhythmic activity without a sensory feedback

and are believed to control animal behavior like heartbeat, walking, flying, breathing and

swimming [1, 2, 3, 71, 4, 5]. CPGs are the building blocks of the central nervous system.

Thus, understanding CPGs is the first step of understanding complex neuronal structures

in the central nervous system. The joint work of computational and neuro-physiological

researchers is focused on enlightening the underlying rhythm generation mechanism of these

type of neuronal circuits. Mathematical models are effective tools for this purpose, but

despite broad studies and existence of a variety of mathematical models, working principles

of these mechanisms remain mysterious.

We would like to develop a highly detailed mathematical model for the swim CPG of

Melibe Leonina and make it a biologically as plausible as possible. In previous chapters, the

model development process is explained. In the second chapter, the initial model, Plant’s

parabolic bursters model, is able to produce the rhythm generated during the swim but

failed to meet recent experimental findings such as the delay between burst initiation of

contralateral Si2s and Si3s in curare case or the continuation of spiking (tail) after Si2s

goes to the quiescent state. Also, FTMs are suitable for modeling fast synapses, but the
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Figure 4.1: (a)Melibe leonina body flexing during the swim activity. (b) Voltage activity during
the swim. (c) Effect of TTX on the biological network. (d) Voltage traces with under TTX effect.
Recordings provided courtesy of A. Sakurai.

Melibe swim CPG has slow synapses besides fast ones. In the third chapter, we replaced

FTMs with alpha synapses to be able to implement the slow dynamics of the synapses to

the model. Detailed information about alpha and dynamics synapses are given in chapter 3.

Another detail that we considered in chapter 3, the cells in isolation is either in tonic spiking

state or hyperpolarized quiescent state. The experimental studies showed that they are non-

bursting cells in isolation and experiments proved that the Si2s are tonic spikers. According
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to the experimental results, we eliminated bursting state in the mathematical model. Unlike

Si2s, there was not a particular information about the behavior of Si3s in isolation, but the

findings were enough to say that HCO mechanisms between Si2s and Si3s are different. That

is why we have considered Si2s as tonic spiking cells and Si3s as hyperpolarized quiescent

cells in isolation. The second model was more successful to capture the characteristics of

the network, but the more recent experimental results showed that all cells are tonic spiking

cells in isolation(Fig. 4.1).

In this final chapter for modeling Melibe swim CPG, we considered that all cells are tonic

spiking cells. Experimental studies also revealed that spike frequency Si3s is higher firing

rate than Si2s. The difference in firing frequencies plays a significant role in synapses since

the coupling function has non-linear dependence on the spike frequency of pre-synaptic cell.

The characteristic of coupling function is the key feature of slow and fast synapses. Details

of modeling process are given in the following sections.

4.2 Model

Tetrodotoxin (TTX) is a neuro-toxin that blocks the sodium channels. It inhibits the firing

of action potentials in neurons by blocking the passage of sodium ions into the neuron. In

the Melibe swim CPG, TTX which blocks potential action transmission along the axons

that connect the two halves of the brain, effectively disconnecting those synapses. Applying

TTX to the network gave us the opportunity to examine the intrinsic cell dynamics (Fig.

4.1). Previously, we assumed that Si2 and Si3 pair follow different HCO mechanisms and
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their intrinsic dynamic are different. According to the recent experimental results, this

assumption is not valid, and the intrinsic cell dynamics are quite similar to each other. TTX

experiment showed that all the cells in the mathematical network are tonic spikers but the

spike frequency of Si2s and Si3s are significantly different than each other. Si3s due to their

smaller physical size have higher frequency compared to Si2s.

We revised the mathematical model according to the new findings. We used the same

model as in the previous chapter and added more details for cell and synapse dynamics. The

Hodgkin-Huxley formalism for the voltage value and the currents are given below in closed

form the details are given in the previous chapter and appendix.

CmV̇ = −INa − IK − ICa − IKCa − Ih − Ileak − Isyn (4.1)

As mentioned earlier, there are two different bifurcation parameters for each slow variable

in the system: ∆1 and ∆2. Earlier we have discussed that for ∆2 = −2 there are only two

states exist: tonic spiking and hyperpolarized quiescent. It is known that reversal potential

of calcium ranges between 80-140. We used this flexibility to change the intrinsic dynamics

of the model and set the initial dynamics of the cells as tonic spikers as in the biological

CPG. In other words,this makes ∆1 a natural bifurcation parameter.

Ċa = ρ [Kcx(VCa − V + ∆1)− [Ca]i] , (4.2)

ẋ = ((1/(e0.15∗(−V−50+∆2) + 1))− x)/τx, (4.3)

Variation of the bifurcation parameter ∆1 can be interpreted as variation the calcium reversal
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potential. The border of two states is found where VCa = 100 (∆1 = −40). The cells are

tonic spikers where the VCa is lower than the border value and hyperpolarized quiescence for

higher values. As the the value of VCa gets close to the transition border due to the slow

down in the system, the frequency of spiking decreases. In order to imply the frequency

differences between Si2s and Si3s, their bifurcation parameters are set according to their

spiking frequencies such as ∆1 = −44 (VCa = 96) for Si2s as ∆1 = −54 (VCa = 86) for Si3s.

88   92   96  100

Tonic 
Spiking 

Hyperpolarized
Quiescence 

VCa

84 104

2 Hz 0.8 Hz4 Hz

Figure 4.2: The dependence of firing frequency on calcium reversal potential (VCa) is shown in the
bifurcation diagram. The cells in isolation are in tonic spiking or hyperpolarized quiescent states.
As the cells, get closer to the boundary line (VCa = 100), spiking frequency decreases.

After setting endogenous dynamics of each cell, we start putting together the network. In

the earlier study, we have used fast threshold modulations(FTMs) for synapses [70]. FTMs

are fast synapses and they are modeled as a Botlzmann equation which means that the

synapse is either on or off. This type of synapses are not realistic for a biological network

that is why instead of FTMs we use alpha and dynamic synapses which are biologically more

plausible. The alpha coupling function (S) and dynamic coupling functions are given by the
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Figure 4.3: The dependence of firing frequency on calcium reversal potential (VCa) is shown in
the bifurcation diagram. The cells in isolation are in tonic spiking or hyperpolarized quiescent
states. As the cells, get closer to the boundary line (VCa = 100), spiking frequency decreases. In
order to qualify the cell properties through TTX experiment, VCa values for each cell type is chosen
accordingly. (VCa = 86 for Si3s and VCa = 96 for Si2s.

Eq.4.6. The synaptic current is defined as

Ialphasyn = gsynS(Vpost − Vrev), Idynsyn = gsynSM(Vpost − Vrev) (4.4)

where

Ṡ =
α(1− S)

1 + e−k(V−Vth)
− βS, (4.5)

Ṁ = (1/(1 + e−(V +40))−M)/τM (4.6)

where gsyn is the maximal conductance, Vrev is the reversal potential since the network

has both inhibitory and synapses and due to the neuropyhsiological differences between

Si2s and Si3s, their reversal potentials are different. We used the experimental values for

the reversal potentials for inhibitory synapses V Si2
rev = −80mV and V Si3

rev = −50mV and
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excitatory synapses Vrev = −10mV . α and β values are the rate of increase and decrease for

the coupling variable.
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Figure 4.4: Individual cell dynamics are set according to the experimental studies which is presented
in Fig 4.1 (d). Experimental results showed Si3s have higher spike frequency than Si2s.

In the network, some synapses are identified as slow, and some are fast through exper-

imental studies. In the mathematical model, the dynamics of the synapse depends on the

frequency of the pre-cell and this case is explained in detail in the next section. The dynam-

ics of a synapse also depends on the increase and decrease rate of the coupling function: α

and β. Depending on this experimental results, we have defined different coupling functions

for each synapse. Coupling functions for each synapse type are given in Table 4.1. In the

table, SSi2
inh is inhibitory synapses between Si2s, SSi3

inh is the inhibitory synapses between Si3s,

Scontra
inh is the inhibitory synapses from Si3s onto contralateral Si2s, Sipsi

inh is the inhibitory

synapses from Si2s onto ipsi-lateral Si3s and Scontra
exc is the excitatory synapses from Si2s

onto contralateral Si3s.
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Synapse Type α β

SSi2
inh 0.05 0.005

SSi3
inh 0.02 0.002

Scontra
inh 0.02 0.003

Sipsi
inh 0.05 0.001

Scontra
exc 0.05 0.0003

Table 4.1: Increase (α) and decrease (β) rates for each synapse type

4.3 Assembling the Network

In this section, we discuss the step-by-step procedure of assembling the mathematical net-

work similarly to the previous chapter. Experimental studies provided detailed information

about the network. During the mathematical model development process details of the bi-

ological network are implemented into the mathematical model as much as possible. From

the experiments, it is known that each type of cell and each synapse has its specific charac-

teristics. We started with the characteristics of each cell in the network. The experimental

studies on Melibe swim CPG reveal a new feature of the network in each experiment. In

the previous chapter, our assumption was that Si2s and Si3s generate alternating bursting

activity through different HCO mechanisms and that is why we chose different intrinsic dy-

namics for Si2s and Si3s. The latest studies revealed that both Si2s and Si3s are tonic spiking

cells. The differences in endogenous dynamics of Si2s and Si3s are the spike frequency and

inhibitory reversal potential. After setting the single cell dynamics, we started putting the

network together.
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Figure 4.5: Nonlinear dependence of cumulative coupling strength on the high spike-frequency rate
in presynaptic neurons is imperative for slow excitatory and inhibitory chemical synapses to regulate
neurotransmitter release and to activate synaptic feedback loops for elastically maintaining the CPG
temporal characteristics.

In the previous chapter, we explained that the method to model synapses is changed

from FTMs to alpha and dynamic synapses which are biologically more plausible modeling

methods. Previously, we used the same type of alpha synapses for all inhibitory synapses. In

this chapter, we define an individual coupling variable for each inhibitory synapse depending

on the dynamics described in experimental studies. The inhibitory synapses between Si2s and

the ipsilateral inhibitory synapses from Si2s onto Si3s are faster compared to the contralateral

inhibition from Si3s to Si2s and inhibition between Si3s. The α and β values for each synapse

type is given in the appendix.

The most important feature of the synapses is the nonlinear dependence of cumulative

coupling strength on the high spike-frequency rate in presynaptic neurons. This is impera-

tive for slow excitatory and inhibitory chemical synapses to regulate neurotransmitter release
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and to activate synaptic feedback loops for elastically maintaining the CPG temporal char-

acteristics. The dependence of synaptic variable on frequency is critical component of the

rhythm generation process.

We start assembling the network again similar to the previous chapter from the curare

network due to the simple wiring diagram of the network. Curare network is composed of the

HCO of Si2s, contralateral excitation and ipsilateral inhibition from Si2s onto Si3s. Similar

to the previous case, the burst duration of the network is controlled by the Si2 pair. We

set the inhibitory coupling strength between Si2s to a value, so the burst duration is around

12-13 seconds. Remember that in the previous chapter, Si3s were set to a state where they

are in hyperpolarized quiescent state in isolation. Here, they are considered as tonic spiking

cells in isolation as Si2 cells. Since Si3s are tonic spiking cells, the ipsilateral inhibitory

synapses play a very important role in transition of Si3s to bursting state. While Si2s are in

active phase, the ipsilateral inhibition gets activated and shuts down the ipsilateral Si3s. At

the same time, the contralateral excitation also gets activated and pulls the voltage value

towards the bursting threshold.

The second characteristic of the curare network is the delay and tail between the con-

tralateral Si2s and Si3s. This feature is a result of the interactions between ipsilateral

inhibition and contralateral excitation. The details are given in the previous chapter, so we

will not go over the details in here. The assembled curare network and voltage traces of the

simulations are given in Fig. 4.6.

Next, we will restore the synapses blocked by curare to assemble the control network. We



65

1/2L 1/2R

3L 3R

0 5 10 15 20 25 30
Time(sec)

V
ol

ta
ge

(m
V

)

(a) (b)

Figure 4.6: Assembling curare network for mathematical model. Burst duration of Si2s is fixed to
12-13 sec through the strength of reciprocal inhibitory connections between them. The ipsilateral
inhibition from Si2s onto Si3s pushed the tonic spiking Si3s into bursting state and also controls
the delay between burst initiations of contralateral Si2s and Si3s. Finally adding the contralateral
slow excitation from Si2s onto Si3s, causes the tail of Si3 burst.

start by restoring the contralateral inhibitory synapses in the network. The burst duration

of the network is based on the burst duration of Si2 pair similar to the previous case. The

burst length of Sis depends on the conductance strength of the inhibitory synapses between

them, but the range of burst length does not include the desired 2-4 second burst length for

the control network.

The burst duration is controlled by the contralateral inhibitory synapses from Si3s onto

Si2s. These synapses have slower dynamics compared to the inhibitory synapses between

Si2s. As the synaptic strength of contralateral inhibition increases, the burst duration gets

shorter. The dependence of network dynamics on contralateral inhibition is given in Fig.

4.7. The control network generates the desired burst duration for gij = 0.005.

In the final part of network assembly, we restore the inhibitory connections between Si3s.

These inhibitory connections are imperative for robustness of the rhythm. These inhibitory

connections are slow and experimental studies showed that they are not strong enough to
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Figure 4.7: Biological CPG generates 2-4 sec long bursts in control case and the model reveals that
this burst duration is controlled by inhibition from Si3s onto contraleteral Si2s. The desired burst
length of 2-4 sec is produced where gij = 0.005.

initiate the anti-phase bursting activity between Si3s if the Si3 pair is isolated from the whole

network. The calibration of the synapses is based on this feature. In summary, they are slow

and weaker synapses and have a critical role in generation of the phase locked state between

the contralateral Si2s and Si3s.

We have completed the assembly of the network. Now, we need to verify the model by
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Figure 4.8: Assembling control network for mathematical model. In addition to existing synapses
in curare case, the contralateral inhibitory synapses which reduce the burst duration to 2-4 sec like
in the experimental studies. Also, the reciprocal inhibition between Si3s plays an important role for
the delay between contralateral Si2s and Si3s.

comparing the experimental results and simulation results.

4.4 Model Verification

Our modeling studies are bases on the rhythm generation in two experimental cases: curare

and control. We have successfully generated the rhythm in both cases and also showed that

the model captures the characteristics of the burst duration and phase locked states in both

networks. In this section, we will be comparing the experimental results with the simulation

results to verify the model.

For mathematical modeling, we used a reduced network diagram, and we applied a two-

step reduction process. The first step of the reduction is ruling out the Si4s. The indirect

synapses from Si2s onto Si3s are delayed due to the existence of the Si4s. Instead of gener-

ating this delay through Si4s, we used slow synapses from Si2s onto Si3s. (i.e., contalateral

excitation and ipsilateral inhibition). The second step of the reduction is merge of Si1s and

Si2s. Si1s and Si2s are strongly electrically coupled cells, and due to this strong coupling,
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their firing pattern is in a highly synchronized manner. Using this feature, we have merged

Si1s and Si2s and assumed that ipsilateral cells act as a single cell. When we merged the

cells, we merged the inhibitory connections between them as well. In other words, the in-

hibition between Si2s in the reduced network corresponds to the sum of inhibition between

Si1s, inhibition between Si2s and contralateral inhibition between Si1s and Si2s.

Previously, we showed that the burst duration in curare network is controlled by the

strength of inhibition between Si2s and dependence of the burst length on coupling strength

is given in Fig 3.14. As the synaptic strength gets weaker, the burst duration gets shorter.

We would like to verify this characteristic by an experimental result. By voltage clamp

method, it is possible to suppress certain cells and record from the rest of the network. In

biological curare network, using the voltage clamp technique Si1s are suppressed, and it is

observed that during the suppression the burst frequency of the network increases. Which

supports our assumption that the synaptic strength of the synapses between Si2s controls

the burst duration in curare. By suppressing Si1s, the synapses between Si1s and also the

contralateral inhibitory synapses from Si1s onto Si2 are deactivated. Deactivation of these

connections can be interpreted in the reduced network as weaker coupling strength between

Si2s, so we expect to observe shorter burst duration. This shows that the simulation results

meet the experimental results (Fig. 4.9).

The second experimental study we used as verification of the model is the application of

an external current to Si1R for a short period during the active phase. Implementation of the

external current causes a transition from active phase to quiescent phase of the cell (Si1L)
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Figure 4.9: (a) The wiring diagram of the full circuit under curare effect where Si1L/R are hyper-
polarized through an external current. In other words, it leads to a decrease in the burst duration.
The hyperpolarization of the Si1L/R is interpreted as a decrease in the synaptic strength of the
inhibitory connections between Si2s in the reduced model.

and as soon as the cell goes to the inactive state, the contralateral pair switches to active

phase (Si1R). We implemented the experiment to the mathematical network and applied a

hyperpolarizing current to Si2R. It is observed that as soon as Si2R goes to the quiescent

phase through the application of external current the contralateral pair becomes active.

The third type of experiments that we used for model verification is hyperpolarizing or

depolarizing a single cell in the network via an external current and observe the network

dynamics during the application of external current. The first experimental case is hyperpo-

larizing Si2R during the active swimming. Injecting a hyperpolarizing current to Si2R lead

the transition to hyperpolarized quiescent state. Once Si2R goes quiescent, the ipsilateral

Si3 switches its state from bursting to tonic spiking state since the hyperpolarization of Si2R

deactivates the ipsilateral inhibitory synapse onto Si3R. Unfortunately, we have recordings

from only two cells for this experiment, but through the model experiments, it is possible

to guess the behavior of the cells in the network. Application of the external current shuts
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Figure 4.10: Comparing experimental results with simulation results. (a) Recordings from
Si1L/R(light/dark gray) and Si2L/R(light/dark blue) with curare in the environment. Applica-
tion of a hyperpolarizing external current to Si1R during the active phase hyperpolarizes Si1R and
activated the contralateral pair (Si1L) immediately. (b) Simulation results for the same experimen-
tal design. Applying a hyperpolarizing current to Si2R during the active phase causes the transition
of the active cell to quiescent state while activates the contralateral pair immediately.

down Si2R, and this supports Si3R towards tonic spiking state. High-frequency tonic spiking

of Si3R promotes strength the inhibitory coupling from Si3R to Si3L and Si3R to Si2L, and
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these cells go to hyperpolarized quiescent state as well.
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Figure 4.11: Comparing experimental results with simulation results. (a) Recordings from Si2R and
Si3R during the swim while Si2R is hyperpolarized. (b) Simulation results from the mathematical
network during the swim while Si2R is hyperpolarized.

The second experimental case is opposite of the previous case which is applying a de-

polarizing external current to Si2R. Through the depolarizing current, the cell becomes a

tonic spiking cell. Similar to the previous case, tonic spiking activity promotes the outgoing

inhibitory synapses, and throughout this synapses, Si3R and Si2L receive strong inhibition

which is strong enough to switch their states to quiescent state. We are able to match the

experimental results and modeling results successfully in both cases.

(a) (b)

0 5 10 15 20 25

V
ol

ta
ge

(m
V

)

V
ol

ta
ge

(m
V

)

Time(sec)
0 5 10 15 20 25 30 35 40 45 50

Time(sec)

Figure 4.12: Comparing experimental results with simulation results. (a) Recordings from Si2R
and Si3R during the swim while Si2R is depolarized. (b) Simulation results from the mathematical
network during the swim while Si2R is depolarized.

A similar experiment is designed for Si3s. First, Si3R is hyperpolarized through an

external current. Hyperpolarizing Si3R does not stop the network bursting. The network
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still generates bursting activity, but the characteristics of the bursts slightly change. The

network continues generating bursts with prolonged burst duration and smaller interburst

interval which means larger duty cycle.
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Figure 4.13: Comparing experimental results with simulation results. (a) Recordings from Si2L,
Si3L and Si3R during the swim while Si3R is hyperpolarized. (b) Simulation results from the
mathematical network during the swim while Si3R is hyperpolarized.

The last experiment is depolarizing Si3R through an external current. Depolarizing

current does not stop the network bursting. The network still generates bursting activity,

but the characteristics of the bursts slightly change. The network continues generating bursts

with prolonged burst duration and smaller inter burst interval which means larger duty cycle.
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Figure 4.14: Comparing experimental results with simulation results. (a) Recordings from Si2L,
Si3L and Si3R during the swim while Si3R is depolarized. (b) Simulation results from the mathe-
matical network during the swim while Si3R is depolarized.
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4.5 Summary

In this final stage of our modeling process, we have revised the model according to the

recent experimental studies. Earlier we assumed that the Si2 and Si3 pairs follow different

mechanisms for HCO generation, but the recent experiments showed that all the cells have

similar intrinsic dynamics. TTX is a neuro-toxin which blocks action potential transmission

along the axons that connect the contralateral parts of the brain. In other words, disconnects

the synapses between two halves of the brain. TTX experiment showed all cells in the

mathematical network are tonic spiking cells and Si3s have relatively higher firing frequency

compared to Si2s. We set the intrinsic dynamics of the cells according to the experimental

results. The firing frequency depends on the Ca bifurcation parameter. As the parameter

gets close to the transition border, the firing frequency decreases. The intrinsic dynamics

of the cells are set accordingly where Si2s are closer to the boundary. We again followed a

similar workflow to assemble the network in the previous chapters successfully assemble the

curare and control networks with their characteristics.

As the next step, we have verified our model by implementing the experimental studies

to the mathematical model. We have implemented a variety of experimental studies such

as dynamic-clamp recordings, external pulses, and application of neuro-blockers. Dynamic-

clamp technique is used to recover the inhibitory connections between Si2s while the con-

nections between brain halves are disconnected through TTX. It is observed that as the

connection strength increases the burst duration gets longer. This specific characteristic is

also verified by application of external currents (see Fig. 4.9). We have verified that the
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simulation results meet the experimental results of application of depolarizing and hyperpo-

larizing external currents (Fig. 4.10-4.14).
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

Rhythmic behaviors in animals are controlled by small oscillatory neuronal networks called

central pattern generators (CPGs) [3]. The focus of this study is to understand the rhythm

generation mechanism of Melibe swim CPG. The functional and structural similarities be-

tween vertebrate and invertebrate CPGs are a well known phenomena in biology. High

complexity level of the vertebrate CPGs and the shared features of them with simple in-

vertebrate CPGs directed researchers towards studies on invertebrate CPGs. The simple

structure of invertebrate CPGs is more accessible to analyze and understand the underlying

working mechanism. Understanding working mechanism of these simple CPGs provides an

insight into the more complex CPGs such as CPGs of mammals, humans. In this aspect, sea

slugs are useful and convenient subjects for experimental studies. We are inspired by the ex-

tensive empirical studies on the Melibe swim CPG to develop a highly detailed mathematical

model for this specific CPG. The Melibe swim CPG network has well identified character-

istic features. The focus of earlier modeling studies is generation of the rhythm during the

active swimming [27]. Our model development process is classified in three stages. In the

first phase, the choice of the model was inspired by firing frequency distribution over a single

burst in some of voltage recordings. The bursts have low frequency in the beginning and end,

and higher frequency in the middle part of the bursts. This type of bursting behaviour is

named as parabolic bursting. The base model was Plant’s parabolic bursters model [48, 72]

and the synapses were modeled by FTMs [60]. Our goal was to generate active swimming
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rhythm as in the previous modeling studies. Also, we have reduced the original 8-cell net-

work to a 4-cell network by using the network and synaptic features of the CPG. The first

assumption in this part was that all the cells in the reduced network are tonic spiking cells

with the same intrinsic dynamics. The Plant’s parabolic bursters model originally designed

for intrinsic bursters but using bifurcation theory, we were able to set the initial state of the

cells to tonic spiking state, and successfully generated the desired rhythm during the active

swimming [68] but the model failed to meet other features like the burst duration during the

application of neuro-blocker curare. We have also realized that FTM is a good method to

model fast synapses but inefficient method for slower synapses.

In the second stage of model development, the experimental results showed that the

cells do not burst in isolation. It gave us two options: they are either tonic spiking cells or

hyperpolarized quiescent cells. Our first assumption is that the cells do not have the identical

individual dynamics and each pair follows different anti-phase bursting mechanism. Again

using bifurcation theory, we have terminated the bursting state of the model. According to

this assumption, we have set initial dynamics the cells as tonic spiking and quiescent cells.

The second assumption was that the synapses have slow dynamics. In this aspect, we have

used alpha and dynamic synapse models. Our approach to assembling the network is similar

to induction method. We started with intrinsic cell dynamics and continued by the assembly

of HCO, curare network and finally the control network which is the network controlling the

active swimming behavior. We were able to capture all the features of the network with this

setup, but the most recent experimental results showed that the intrinsic dynamics of the
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cells are quite similar and they are all tonic spikers.

The final stage of the modeling process is assembling the network according to the new

experimental findings where all cells are tonic spiking cells. According to the experimental

results, Si3s have higher firing frequency than Si2s, and this feature was implemented to

mathematical model via bifurcation parameters. Also, in the last stage, we added more

details to the model. Each synapse has own characteristic dynamics, so we have defined

different coupling functions for each synapse reflecting the specific dynamics of the synapse.

Again, we were able to generate the rhythms for curare and control networks with the

characteristic features such as burst duration, delay, and tail. Finally, we have verified the

model by implementing the biological experiments such as dynamic-clamp recordings and

application of external currents to the mathematical network. Comparing the experimental

and mathematical results showed the accuracy of the mathematical model.

As mentioned earlier, it is important to understand the underlying mechanisms of this

small and simple networks. The insights we gain through this simple networks will provide

us the opportunity to develop tools for understanding and analyzing more complex networks

in complex animals. Here we explained the development process of a highly detailed math-

ematical model which captures the almost all characteristics of the Melibe swim CPG. In

other words, we have introduced a methodology for development and verification process

of a mathematical model. Through this model, it is possible to predict the behavior of

the network under different conditions such as external stimulus or deactivation of specific

synapses which are not possible to manipulate with neurophysiological methods. Also, the
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model can also be used to analyze and understand similar CPGs such as Dendronotus swim

CPG. There is already an ongoing work about it, and the adjustable dynamics of the model

allows it to be used modeling different networks.
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A Appendix: Chapter 2

The model in this study is adopted from [48]. The dynamics of the membrane potential, V ,

is governed by the following equation:

CmV̇ = −INa − IK − ICa − IKCa − Ileak − Isyn, (1)

where Cm = 1µF/cm2 is the membrane capacitance, INa is the Na+ current, IK is the K+

current, ICa is the Ca+2 current, IKCa is the Ca2+ activated K+ current, Ileak is the leak

current, Isyn is the synaptic current. The fast inward sodium current is given by

INa = gNam
3
∞(V )h(V − VNa), (2)

where the reversal potential VNa = 30mV and the maximum Na+ conductance value gNa =

4nS. The instantaneous activation variable is defined as

m∞(V ) =
αm(V )

αm(V ) + βm(V )
, (3)

where

αm(V ) = 0.1
50− Vs

exp((50− Vs)/10)− 1
, βm(V ) = 4 exp((25− Vs)/18), (4)

while the dynamics of inactivation variable h is given by

ḣ =
h∞(V )− h
τh(V )

, (5)

where

h∞(V ) =
αh(V )

αh(V ) + βh(V )
and τh(V ) =

12.5

αh(V ) + βh(V )
, (6)
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with

αh(V ) = 0.07 exp((25− Vs)/20) and βh(V ) =
1

exp((55− Vs)/10) + 1
, (7)

where

Vs =
127V + 8265

105
mV. (8)

The fast potassium current is given by the equation

IK = gKn
4(V − VK), (9)

where the reversal potential is VK = −75mV and the maximum K+ conductance value is

gK = 0.3nS.The dynamics of inactivation gating variable is described by

ṅ =
n∞(V )− n
τn(V )

, (10)

where

n∞(V ) =
αh(V )

αh(V ) + βh(V )
and τn(V ) =

12.5

αh(V ) + βh(V )
, (11)

with

αn(V ) = 0.01
55− Vs

exp((55− Vs)/10)− 1
and βn(V ) = 0.125 exp((45− Vs)/80). (12)

The TTX-resistant calcium current is given by

ICa = gCax(V − VCa), (13)
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where the reversal potential is VCa = 140mV and the maximum Ca2+ conductance is gCa =

0.03nS. The dynamics of the slow activation variable is described by

ẋ =
x∞(V )− x
τx(V )

, (14)

where

x∞(V ) =
1

exp(−0.3(V + 40)) + 1
and τx(V ) = 9400ms. (15)

The outward Ca2+ activated K+ current is given by

IKCa = gKCa
[Ca]i

0.5 + [Ca]i
(V − VK), (16)

where the reversal potential is VCa = 140mV . The dynamics of intracellular calcium con-

centration is governed by

Ċa = ρ [Kcx(VCa − V )− [Ca]i] , (17)

where the reversal potential is VCa = 140mV , and the constant values are ρ = 0.00015mV −1

and Kc = 0.00425mV −1. The leak current is given by

Ileak = gL(V − VL), (18)

where the reversal potential VL = −40mV and the maximum conductance value gL =

0.0003nS. The synaptic current is defined as

Isyn =
gsyn(Vpost − Erev)

1 + e−k(Vpre−Θsyn)
(19)

with the synaptic reversal potential Vpost = −80mV for inhibitory synapses and Vpost =

40mV for excitatory synapses and the synaptic threshold Θsyn = 0mV , and k = 100.
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B Appendix: Chapter 3 & 4

The model in this study is adopted from [48]. The dynamics of the membrane potential, V ,

is governed by the following equation:

CmV̇ = −INa − IK − ICa − IKCa − Ih − Ileak − Isyn, (20)

where Cm = 1µF/cm2 is the membrane capacitance, INa is the Na+ current, IK is the K+

current, ICa is the Ca+2 current, IKCa is the Ca2+ activated K+ current, Ileak is the leak

current, Isyn is the synaptic current. The fast inward sodium current is given by

INa = gNam
3
∞(V )h(V − VNa), (21)

where the reversal potential VNa = 30mV and the maximum Na+ conductance value gNa =

4nS. The instantaneous activation variable is defined as

m∞(V ) =
αm(V )

αm(V ) + βm(V )
, (22)

where

αm(V ) = 0.1
50− Vs

exp((50− Vs)/10)− 1
, βm(V ) = 4 exp((25− Vs)/18), (23)

while the dynamics of inactivation variable h is given by

ḣ =
h∞(V )− h
τh(V )

, (24)

where

h∞(V ) =
αh(V )

αh(V ) + βh(V )
and τh(V ) =

12.5

αh(V ) + βh(V )
, (25)
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with

αh(V ) = 0.07 exp((25− Vs)/20) and βh(V ) =
1

exp((55− Vs)/10) + 1
, (26)

where

Vs =
127V + 8265

105
mV. (27)

The fast potassium current is given by the equation

IK = gKn
4(V − VK), (28)

where the reversal potential is VK = −75mV and the maximum K+ conductance value is

gK = 0.3nS.The dynamics of inactivation gating variable is described by

ṅ =
n∞(V )− n
τn(V )

, (29)

where

n∞(V ) =
αh(V )

αh(V ) + βh(V )
and τn(V ) =

12.5

αh(V ) + βh(V )
, (30)

with

αn(V ) = 0.01
55− Vs

exp((55− Vs)/10)− 1
and βn(V ) = 0.125 exp((45− Vs)/80). (31)

The TTX-resistant calcium current is given by

ICa = gCax(V − VCa), (32)



94

where the reversal potential is VCa = 140mV and the maximum Ca2+ conductance is gCa =

0.03nS. The dynamics of the slow activation variable is described by

ẋ =
x∞(V )− x
τx(V )

, (33)

where

x∞(V ) =
1

exp(−0.3(V + 40)) + 1
and τx(V ) = 9400ms. (34)

The outward Ca2+ activated K+ current is given by

IKCa = gKCa
[Ca]i

0.5 + [Ca]i
(V − VK), (35)

where the reversal potential is VCa = 140mV . The dynamics of intracellular calcium con-

centration is governed by

Ċa = ρ [Kcx(VCa − V )− [Ca]i] , (36)

where the reversal potential is VCa = 140mV , and the constant values are ρ = 0.00015mV −1

and Kc = 0.00425mV −1. The h-current is given by

Ih = gh(1/(1 + exp(−(V − 63)/7.8)))3y(V − Vh), (37)

where the reversal potential is Vh = 70mV , and the maximum h-current conductance value

is gh = 0.0006nS. The dynamics of the h-current activation variable is described by

ẏ = 0.5((1/(1 + exp(10(V − 50))− y)/(7.1 + 10.4/(1 + exp((V + 68)/2.2))), (38)

The leak current is given by

Ileak = gL(V − VL), (39)
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where the reversal potential VL = −40mV and the maximum conductance value gL =

0.0003nS. The fast threshold modulation (FTM) is defined as

IFTM =
gsyn(Vpost − Erev)

1 + e−k(Vpre−Θsyn)
(40)

with the synaptic reversal potential Vpost = −80mV for inhibitory synapses and Vpost =

40mV for excitatory synapses and the synaptic threshold Θsyn = 0mV , and k = 100. The

alpha synapses are defined as

Ialpha = gsynS(Vpost − Vrev) (41)

alpha synapse dynamics are defined by

Ṡ =
α(1− S)

1 + e−k(V−Vth)
− βS, (42)

where α = 0.05 and β = 0.001. The dynamic synapses are defined as

Idyn = gsynSM(Vpost − Vrev) (43)

dynamic synapse dynamics are described by

Ṁ = (1/(1 + e−(V +40))−M)/tauM (44)

where tauM = 4000.
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