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RESEARCH ARTICLE Open Access

Cloud computing for detecting high-order
genome-wide epistatic interaction via
dynamic clustering
Xuan Guo†, Yu Meng, Ning Yu and Yi Pan*†

Abstract

Backgroud: Taking the advan tage of high-throughput single nucleotide polymorphism (SNP) genotyping
technology, large genome-wide association studies (GWASs) have been considered to hold promise for unravelling
complex relationships between genotype and phenotype. At present, traditional single-locus-based methods are
insufficient to detect interactions consisting of multiple-locus, which are broadly existing in complex traits. In addition,
statistic tests for high order epistatic interactions with more than 2 SNPs propose computational and analytical
challenges because the computation increases exponentially as the cardinality of SNPs combinations gets larger.

Results: In this paper, we provide a simple, fast and powerful method using dynamic clustering and cloud
computing to detect genome-wide multi-locus epistatic interactions. We have constructed systematic experiments to
compare powers performance against some recently proposed algorithms, including TEAM, SNPRuler, EDCF and
BOOST. Furthermore, we have applied our method on two real GWAS datasets, Age-related macular degeneration
(AMD) and Rheumatoid arthritis (RA) datasets, where we find some novel potential disease-related genetic factors
which are not shown up in detections of 2-loci epistatic interactions.

Conclusions: Experimental results on simulated data demonstrate that our method is more powerful than some
recently proposed methods on both two- and three-locus disease models. Our method has discovered many novel
high-order associations that are significantly enriched in cases from two real GWAS datasets. Moreover, the running
time of the cloud implementation for our method on AMD dataset and RA dataset are roughly 2 hours and 50 hours
on a cluster with forty small virtual machines for detecting two-locus interactions, respectively. Therefore, we believe
that our method is suitable and effective for the full-scale analysis of multiple-locus epistatic interactions in GWAS.

Keywords: Cloud computing, Genome-wide association studies, Dynamic clustering

Background
Genome-wide association study (GWAS) has been proved
to be a powerful genomic and statistical inference tool,
and its goal is to identify genetic susceptibility through
statistical tests on associations between a trait of inter-
ests and the genetic information of unrelated individuals
[1]. In genetics, genotype-phenotype association studies
have established that single nucleotide polymorphisms
(SNPs) [2], one type of genetic variants, are associated
with a variety of diseases [3]. However, the primary
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analysis paradigm for GWAS is dominated by the analy-
sis on susceptibility of individual SNPs, which accordingly
can only explain a small part of genetic causal effects
for complex diseases [4]. For better understanding under-
lying causes of complex disease traits, identifying joint
genetic effects (epistasis) across the whole genome has
attracted more attentions [5]. As a matter of fact, sin-
gle locus-based approaches are insufficient to detect all
interacting genes, especially for those with small marginal
effects. The term epistasis was first used in 1909 and it
was referred as an extension of the concept of dominance
for alleles within the same allelomorphic pair [6]. In recent
literatures, epistasis has been defined generally as the
interaction among different genes [7]. Many studies [8-11]
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have demonstrated that the epistasis is an important con-
tributor to genetic variation in complex diseases such as
asthma, breast cancer [12], diabetes, coronary heart dis-
ease [13], and obesity [14]. In this article, we consider
epistatic interactions as the statistically significant associ-
ations of t-SNP modules (t ≥ 2) with phenotypes [15], i.e.
the full association in terms of logistic regression.
Recently, the problem of detecting high-order genome-

wide epistatic interaction in GWAS has attracted exten-
sive research interests. There are two challenges in finding
high-order genome-wide epistatic interaction on large
GWAS dataset [16]: The first arises from heavy com-
putational burden, i.e. the number of association pat-
terns increases exponentially as the order of interaction
goes up. For example, 1.25 × 1011 statistical tests are
required to detect pairwise interactions for a dataset
with 500,000 SNPs. The second challenge is that existing
approaches lack statistical powers for searching high-
order multi-locus models of disease. Many computational
algorithms have been proposed to overcome two preced-
ing difficulties. They can be broadly categorized to three
groups: exhaustive search, stepwise search and heuristics
approaches.
The naive solution to tack the problem is exhaustive

search using χ2 test, exact likelihood ratio test or entropy-
based test for all modules of multiple-locus. Marchini
et al. [5] showed that it was computationally possible to
test two-locus associations allowing for interactions in
GWAS based on current computation resources. Exam-
ples in exhaustive search, like MDR and its extensions,
utilize repeated cross-validations and permutation tests to
evaluate accuracy and significance of classification [7,17].
In addition,Wan et al. [18] proposed a boolean operation-
based representation to speed up the collection of con-
tingency tables [19,20]. One major barrier for exhaustive
search is the intensive computation, and thus parallel
computing was adopted to further speed up the analy-
sis of gene-gene interactions. For example, GBOOST [21]
is a GPU framework based implementation of BOOST,
and PIAM [22] is developed by Liu et al, which used the
multi-thread to perform Genome-wide interaction-based
association (GWIBA) analysis for exhaustive two-locus
searches. However, finding higher order (more than 2
loci) disease-related associations are too computation-
ally expensive to be feasible, especially for large GWAS
datasets withmillions SNPs. In order to deal with the huge
computation request, stepwise search strategies select a
subset of SNPs or combinations of SNPs based on some
low-order statistic tests (or measures), then extend them
to higher order multi-locus interactions if it is statisti-
cally possible [5,20,23]. Stepwise approaches are much
faster than exhaustive algorithms and make high-order
genome-wide epistasis finding feasible, but they lose pow-
ers when complex diseases show no or little marginal

effects. Unlike the previous two strategies, heuristic meth-
ods adopt machine learning or stochastic procedures to
search the space of interactions rather than explicitly
enumerating all combinations of SNPs. SNPruler [24],
BEAM [25], epiMODE [26] and epiForest [27] fall into
this category. SNPRuler and a few other pattern-based
methods use some data mining approaches as filters to
reduce the number of SNP combinations without assump-
tions of models. Based on the Markov chain Monte Carlo
(MCMC) theory, BEAM iteratively calculates the poste-
rior probability that a locus is associated with the disease
and/or involved with other loci in epistasis interactions.
EpiMODE first uses the Gibbs sampling strategy with a
reversible jump Markov chain Monte Carlo procedure to
simulate the posterior distribution that genetic variants
belong to the epistatic modules and screens out statisti-
cally significant modules based on hypothesis testing. Epi-
Forest treats SNP markers as categorical features, adopts
the random forest to discriminate cases against controls,
and selects a small set of candidate SNPs that could min-
imize the classification error. An drawback of heuristics
approaches is that they will leave out a great deal of sig-
nificant interactions which can be reported by first two
searching strategies.
In this paper, we provide a cloud based computational

method, named “Dynamic Clustering for High-order
genome-wide Epistatic interactions detecting” (DCHE),
to address above challenges. Taking advantages of recent
high-performance computing (HPC) technologies – cloud
computing to accelerate computations, DCHE adopts an
elaborated dynamic clustering procedure to maximize
statistic significance for SNP combinations and ranks
top ones as results. One benefit of cloud computing
technologies is that the executional environment and
experimental conditions can be easily and completely cus-
tomized by newbies in distributed computing, even for
large distributed infrastructures [28]. Furthermore, since
the infrastructure is rented on a pay-per-use rule, imme-
diate access to required resources for scientific exper-
iments become possible without planning beforehand.
With cloud computing, DCHE conducts statistic tests
on merged groups of genotype categories determined by
the dynamic clustering. Each grouped genotype category
tends to share a similar effect associating with corre-
sponding phenotypes. Truly disease-related joint genetic
effects will gain higher ranking values, if genotype com-
binations can be correctly clustered together. Systematic
experiments on simulated two- and three-locus disease
models datasets show that DCHE is more powerful in
finding epistatic interactions than some recently proposed
methods including TEAM [29], SNPRuler, BOOST and
EDCF [20]. Our experiments on two real genome-wide
case/control datasets, Age-related macular degeneration
(AMD) and Rheumatoid arthritis (RA) demonstrate that
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DCHE is feasible for the full-scale analyses of multi-locus
associations on large GWAS datasets and it enriches a
great deal of novel, significant high-order epistatic inter-
actions which have not been reported in literatures.

Results and discussion
We first give definitions of 6 simulated disease models
and the power metric used to evaluate the effective-
ness of DCHE in comparison with other 4 popular
epistatic interactions detecting methods, i.e. TEAM [29],
SNPRuler [24], EDCF [20], BOOST [18]. Three reasons
for choosing above 4 approaches are as follows: (1) TEAM,
EDCF and BOOST all use the exhaustive search strategy
for detecting two-locus interactions, so the comparison of
their performance is fair; (2) a recent review tested five
available methods and recommended BOOST and TEAM
as a powerful tool for searching epistatic interactions on
a genome-wide scale [15]; (3) our goal is to discover high-
order epistatic interactions from GWAS data, and among
4 detectors excluding DCHE, only SNPRuler and EDCF
are equipped the ability to search interactions with more
than 2 SNPs. Before experiments on simulated datasets, a
discussion on how to control the false positive rate is illus-
trated because the Bonferroni correction, most common
method for controlling error rate, can be too conser-
vative to filter significant interactions. We also present
results of DCHE on two real GWAS dataset, Age-related
macular degeneration (AMD) and Rheumatoid Arthri-
tis (RA). Interactions detected by DCHE from different
orders demonstrate a great number of novel, potentially
disease-related genetic factors. At the end, a systematic
performance evaluation of DCHE’s cloud implementation
is conducted on a standard Windows Azure cloud cluster
with up to 40 small size Virtual Machine (VM) instances.
The speed-up achieved by DCHE shows an approximately
theoretical acceleration when the cardinality of epistatic
interaction increases.

Experimental design
Data simulation
To evaluate the effectiveness of DCHE, we perform exten-
sive simulation experiments using six disease models with
two- and three-locus associations. The unassociated SNP
genotypes is generated by the same procedure used in pre-
vious studies [18]. Minor allele frequencies (MAFs) are
uniformly sampled from the set [0.05, 0.5]. By assuming
Hardy-Weinberg equilibrium, we can sample the genotype
gji for individual j. For embedded disease models, 4 two-
locus epistasis models and 2 three-locus epistasis models
are chosen by given odds tables or penetrance table which
can be found in Additional file 1: Tables S1–S3, and named
these six models from model 1 to 6. In addition, we
conduct tests on 50 two-locus epistasis models without
marginal effects as BOOST and EDCF did in [18,20]. For

models 1 to 4 and 50 models without marginal effect, each
simulated dataset contained M = 1000 SNPs and N =
800 or 1600 with balanced samples in case and control
under each parameter setting. For model 5, one dataset
has 1000 SNPs and 2000 or 4000 samples with NU = ND.
For model 6, M = 2000 and N is reduced to 400 and 800
with balanced cases and controls.
A disease model can be defined either by specifying the

penetrance table or the odds table. Relations among pen-
etrance p (D), odds ODDgi and the probability p

(
D|gi

)
that an individual will be affected with a given genotype
combination gi can be calculated as Equation 1, 2.

ODDgi = p
(
D|gi

)
p

(
D|gi

) = p
(
D|gi

)
1 − p

(
D|gi

) (1)

p
(
D|gi

) = ODDgi
1 + ODDgi

(2)

Following [18], the disease prevalence p(D) and genetic
heritability h2 are given by Equation 3, 4.

p (D) =
∑
i
p

(
D|gi

)
p

(
gi

)
(3)

h2 =
∑

i
(
p

(
D|gi

) − p (D)
)2 p (

gi
)

p (D) (1 − p (D))
(4)

For simplicity, we adopt same parameters as used in [18]
formodel 1 to 4, i.e. p (D) = 0.1, h2 = 0.03 formodel 1 and
h2 = 0.02 for Models 2, 3 and 4, MAF ∈ {0.1, 0.2, 0.4}. For
model 5, we adopt similar setting in [20], i.e. p (D) = 0.1,
effect size λ = 0.2, β ∈ {4, 1.5, 1, 0.7, 0.5} and MAF ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. For model 6, MAFs of disease asso-
ciated loci are fixed to 0.5. Effect parameters α and θ

in odds tables for all six models are determined numeri-
cally using same procedures in [25]. Settings for 50models
without marginal effect are similar to [30], i.e. h2 ranges
from 0.05 to 0.4 with five intervals and MAF equals to 0.2
or 0.4.

Statistical power
In the comparison of performances on simulated data, 100
datasets are generated for each setting. In one dataset, we
embed one ground-truth epistatic interaction. The mea-
sure of discrimination power used in [18] is adopted,
which is defined as the fraction of 100 datasets on which
only top interaction given by the method matches the
ground-truth. For all programs, the ground-truth interac-
tion are detected if it is set to the most significant one and
its adjusted p-value is larger than the critical value which
is setted to 0.1 in following experiments.

Experimental setting
Programs, TEAM, SNPRuler, BOOST (64 bit) and
EDCF are downloaded from websites provided by their
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authors. For experiments on simulations, DCHE (in Java),
SNPRuler (in Java) and BOOST are conducted on a 64-bit
Windows 8 platform with 1.8 GHz Intel CPU and 4 GB
RAM; since TEAM and EDCF only provided executable
program on Linux platform, experiments for TEAM and
EDCF are conducted on a 64-bit Linux platform with 2.3
GHz AMD CPU and 16 GB RAM. Experiments on two
real datasets are performed on Windows Azure platform
with up to 40 small size VMs.

False positive rate
Since DCHE uses stepwise strategy similar to EDCF, we
also adopt two levels of multiple comparisons: (1) test(M
t
)
combinations for t loci for a dataset with M SNPs;

(2) test dynamic clustering results, which could end with
up to 3t possible genotype combinations with d groups,
d ∈ {3, 4, 5, 6}. If we use the Bonferroni correction for
above two level multiple tests, the upper bound of pos-
sible ways to do combination is

(M
t
)
63t . Hence, it is too

conservative to obtain significant interaction modules. In
order to reasonably loose the strictness, inspired by EDCF
we combine the Bonferroni correction and permutation
tests for these two levels, that is Bonferroni corrections
for t loci combinations and permutation tests for the
dynamic clustering procedure. More specifically, the sig-
nificant level for an epistatic interaction is calculated as
Equation 5.

α = α0/

(
M
t

)
(5)

In Equation 5, α0 is estimated from permutation tests
for different ts on null simulations and

(M
t
)
represents

the Bonferroni correction. To properly control the false
positive rate, we simulated datasets with five different set-
tings for each t, i.e. we either fix M = 1000 and set
N to 400, 800 and 1600 or fix N = 800 and set M to
1000, 2000 and 4000. Note that one thousand datasets
are generated under one setting. The false positive rate
is defined as nfalse/1000, where nfalse is the number of
datasets where DCHE has found one or more interaction
modules. Test results shown in Figure 1 illustrate: for a
general setting of critical level 0.1, a recommended α0 is
1.5 × 10−3 for two-locus disease model detection, 1.2 ×
10−8 for three-locus disease model detection and 1.0 ×
10−21 for four-locus disease model detection. In addi-
tion, the false positive rates tend to decrease or remain
nearly unchanged as the number of samples and SNPs go
up (Figure 1B and 1C). Therefore, in tests of simulated
datasets and two real GWAS datasets, we set α0 = 1.5 ×
10−3, 1.2 × 10−8, 1.0 × 10−21 for t = 2, 3, 4, respectively,
to control the overall false positive rate for DCHE, unless
otherwise stated.

Two-locus disease models
For a fair comparison, interactions reported by all pro-
grams are filtered using the critical value 0.1 as the sig-
nificant threshold. Test results are illustrated in Figure 2
for model 1 to 4. An common trend for all programs is
that power is increasing as sample size increases from 800
to 1600. Most methods show more power when ground-
truth model interactions’ MAFs are larger, except that
BOOST shows less power on model 1 and 2 when MAFs
goes up. We can see that DCHE achieves highest or
comparable powers on almost all datasets. More specif-
ically, with 24 parameter settings for four disease mod-
els, DCHE outperforms other four methods at 9 settings
and obtains full powers at 10 settings and gains compa-
rable results at 5 settings. Taking results from datasets
with N = 1600 for example, it is obvious that DCHE
defeats other approaches with nearly 100% powers. For
a more straight comparison, we introduce a new con-
cept, the overall quality q = ncorrect/ntotal, where ncorrect
is the number of datasets where programs successfully
detect the ground-truth interactions and ntotal is the total
number of datasets. When N = 800,M = 1000, the
overall quality for DCHE, TEAM, SNPRuler, EDCF and
BOOST are 0.541, 0.455, 0.087, 0.508 and 0.31, respec-
tively. When N = 1600,M = 1000, all five programs
achieve higher accuracies than former settings and q are
0.981, 0.912, 0.162, 0.944 and 0.681, respectively. Note that
DCHE, TEAM and EDCF have abilities to achieve more
than 90% powers, and powers for DCHE reach to at least
98% on datasets with 1600 samples. Note that BOOST is
designed to identify significant statistical interaction with-
out considering the main effects, so it is reasonable that
our method DCHE and other two methods, i.e. EDCF
and TEAM, outperform BOOST for detecting the model
1 through 4. The reason why we still put the BOOST
into the experiments is that the biologists might be more
interested in epistatic interaction as long as it shows sig-
nificant association genotypes with phenotypes. In addi-
tion, similar designs of experiments can be found in other
literatures [15,18,20].
Moreover, we conduct tests on 50 disease models with

little marginal effects. For convenience, penetrance tables
for 50 models are not listed, and they are available in
literature [30]. Since most methods gain near full pow-
ers, we use box plots to demonstrate overall perfor-
mances in Figure 3. We can see that DCHE, EDCF and
BOOST achieve comparable results in two subfigures.
Specifically, they can accurately detect embedded asso-
ciated SNPs interactions under most settings. On the
contrary, TEAM and SNPRuler lose significant powers
on both datasets with MAFs = 0.2 or 0.4. A com-
mon trend to previous experimental results is that five
methods tend to possess more powers as MAFs increase.
After carefully examining results from five techniques,
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Figure 1 False positive rates under null models. The plot in A shows the false positive rates of DCHE using different α0s for different ts, and the
plots in B and C show the false positive rates of DCHE for different ts when sample size and the number of SNPs vary.

N=800 N=1600 N=800 N=1600
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Figure 2 Performance comparison of DCHE, TEAM, SNPRuler, EDCF and BOOST on disease models 1–4. Performance comparison of DCHE,
TEAM, SNPRuler, EDCF and BOOST on four disease models for different allele frequencies and sample sizes. The red, green, blue, cyan and magenta
bars show powers of DCHE, TEAM, SNPRuler, EDCF and BOOST, respectively. Models are ordered from top to bottom and from left to right and they
are model 1, model 2, model 3 and model 4.
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Figure 3 Performance comparison on 50models without main effects. For each model, we simulate data using sample size 800 and
MAF ∈ {0.2, 0.4}. The red, green, blue, cyan and magenta boxes show powers of DCHE, TEAM, SNPRuler, EDCF and BOOST, respectively.

we can find that DCHE apparently outperforms other
three methods except BOOST, although the difference
is not too much. A possible explanation is that these
embedded models with little main effects are more
suitable for model-based detection strategy, and DCHE
is a model-free based method. If we adopt the same
overall quality defined in previous paragraph to evalu-
ate performances, q are 0.972, 0.656, 0.891, 0.951 and
0.984 for DCHE, TEAM, SNPRuler, EDCF and BOOST,
respectively.

Two-locus additive models
Since we intend to find statistically significant associations
of t-SNP interaction (t ≥ 2) with phenotypes, an additive
model is used to evaluate method for detecting additive
effects. The additive model with 3 different settings can be
found in Additional file 1: Table S4. The cell in the table
is the odd-ratio of given genotype, and the odd-ratio can
be accumulated as the presence of minor allele(s). Both
the additive effects of two disease related alleles are equal,
which equal to β . For the simulation process, we adopt
the one which is used in [18], and the value of α and β

are determined by the prevalence p(D) and the genetic
heritability h2. We fix p(D) = 0.1 and h2 = 0.03, set
MFA = 0.1, 0.2 and 0.4 by giving N = 800 and 1600. We
simulate 100 datasets under each setting (3 pairs of α and
β) with 1000 SNPs under 800 and 1600 samples in balance.
Test results are illustrated in Figure S2 in Additional

file 1 for the additivemodels. As we expect, DCHE, TEAM
and EDCF show limited powers when the sample size
is small, and the power goes up as the size of sample
increases. SNPRuler and BOOST can not detect any pairs,
since BOOST is designed to detect the statistic interaction

which is absent in the additive model. Following our pre-
ceding measurement, the overall qualities are 0.850, 0.858
and 0.771 for our method, TEAM and EDCF, respectively.
It is worthy to note that TEAM is time consuming com-
pared to DCHE. Under the same computing environment,
TEAM takes about 2 hours to finish analysis of 100 simu-
lated datasets with 1600 samples, while it can be done in
15 minutes by using DCHE.

Three-locus disease models
For comparisons on three-locus disease models, two
methods are dropped, i.e. TEAM and BOOST, because
both of them are designed only for detecting two-locus
interactions. Based on settings of model 5 given in pre-
vious sections, we get 10 groups of datasets with 100
replicates, which can be further categorized to two fami-
lies with N = 2000 or 4000. Note that when MAF = 0.5,
there is no marginal effect, otherwise disease models have
λ = 0.2. Experimental results are illustrated in Figure 4.
Similar to models 1 to 4, three programs generally tend to
get more powers as MAF or sample size increases. Con-
sidering parameter β in (β ,MAF), we can see that powers
go up when β goes down for all methods. A significant
difference can be found is that SNPRuler can only obtain
acceptable results when (β = 0.5,MAF = 0.5); otherwise
SNPRuler hardly gets powers. Although the distinction
between DCHE and EDCF is not too much, we can still
observe that DCHE hits more ground-truth SNPs inter-
actions than EDCF does at datasets with N = 4000.
Additionally, overall qualities for DCHE and EDCF are
0.514 and 0.52 with N = 2000, and the overall qual-
ity for DCHE rises up to 0.914 comparing with 0.866
for EDCF.
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N=2000 N=4000

Figure 4 Performance comparison on the three-locus epistasis models. Performance comparison of DCHE, SNPRuler and EDCF on two
three-locus epistasis models, model 5 and model 6, for different allele frequencies and sample sizes. The red, blue and cyan bars show powers of
DCHE, SNPRuler and EDCF, respectively.

For Model 6, we set MAF = 0.5 and population preva-
lence p = 0.01 as EDCF does in [20]. Note that model 6
with penetrance table in Additional file 1: Table S6 gets the
maximum h2 when p ∈ (0, 1

16 ]. Three methods’ results are
shown in Figure 4, fromwhich we can see that all methods
can get nearly full powers for model 6. With considering
the overall quality, DCHE and EDCF both reach 100% and
SNPRuler hits to 0.965.

Experiments on AMD data
Age-related macular degeneration (AMD) is an acquired
degeneration of the retina which usually affects older
adults and results in a loss of vision in the centre of the
visual field. Like many other chronic diseases, AMD is
caused by a combination of genetic and environmental
risk factors, including and not limited to macular degen-
eration gene, too much exposure to sunlight and smoking.
The reported AMD dataset contains genotypes of 103,611
SNPs from 96 affected individuals and 50 controls [31].
Before applying DCHE on AMD dataset, the same qual-
ity control used in [18] is applied: SNPs with more than
10%missing data orMAF < 0.05 or p-values fromHardy-
Weinberg Equilibrium (HWE) tests less than 0.001 are
removed. Subsequently, 90,449 SNPs from 50 controls and
96 cases are left in the dataset. The setting of parameters
for DCHE is as follows: l = {10000, 4000, 2000}, t = 2, 3, 4
and α0 = 1.5 × 10−3, 1.2 × 10−08, 1.0 × 10−21 for two-,
three- and four-locus interactions detections, respectively.
When we set α0 = 1.5 × 10−3 to filter out insignificant

interactions for two-locus epistatic interactions detect-
ing, DCHE can hardly report any qualified modules, so
we select top-k modules to conduct analysis. For t = 3
and 4, DCHE generates more than 1000 pairs epistatic
interactions. In order to give a straight view of results,
we introduce two concepts, “centre SNPs” and “centre
genes”, similar to those in [32]: we arrange those SNPs

and genes in descending manner according to their fre-
quencies showing in top-k interactions, and select top-s
SNPs or genes as “centre”. Based on the previous proce-
dure, Table 1 and Table 2 give a general view of DCHE’s
results on AMD dataset with k = 1000 for t = 2, 3,
k = 500 for t = 4, and s = 6. Names of SNPs or genes
showed in boldface indicate their first time to appear in
the table. As we can see, top-k-s SNPs or genes tend to
share some common elements among different settings

Table 1 Centre SNPs identified in top-1000/500 SNPs
interactions on AMD dataset

# SNPs per Centre SNPs from analyses of AMD dataset

interaction Centre SNPs (Genomic position) # Interacting SNPs

2

rs380390 (Ch1: 196701051) 524

rs1329428 (Ch1: 196702810) 253

rs1394608 (Ch5: 155783294) 23

rs1740752 (Ch10: 38538771) 20

rs1363688 (Ch5: 174609731) 11

rs10512174 (Ch9: 88886574) 11

3

rs380390 (Ch1: 196701051) 709

rs1329428 (Ch1: 196702810) 106

rs1363688 (Ch5: 174609731) 63

rs618499 (Ch11: 108148839) 47

rs1926489 (Ch13: 92667989) 35

rs3781868 (Ch11: 108059569) 34

4

rs380390 (Ch1: 196701051) 459

rs618499 (Ch11: 108148839) 188

rs3781868 (Ch11: 108059569) 115

rs294278 (Ch3: 31127911) 36

rs300780 (Ch2: 110819) 35

rs315511 (Ch1: 84849116) 28

Note: SNP in boldface indicates the first time to appear in the table.
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Table 2 Centre genes identified in top-1000/500 SNPs
interactions on AMD dataset

# Genes per Centre genes from gene-only SNP analyses

interaction Centre genes # Interacting genes

2

CFH: complement factor H 777

ZNF25: zinc finger protein 25 23

SGCD: sarcoglycan,
delta (35kDa dystrophin-
associated glycoprotein)

23

LRIG3: leucine-rich repeats
and immunoglobulin-like
domains 3

14

DRD1: dopamine receptor
D1

11

ISCA1: iron-sulfur cluster
assembly 1

11

3

CFH: complement factor H 815

DRD1: dopamine receptor D1 63

ATM: ataxia telangiectasia
mutated

47

GPC5: glypican 5 43

NPAT: nuclear protein,
ataxia-telangiectasia locus

34

KDM4C: lysine (K)-specific
demethylase 4C

25

4

CFH: complement factor H 459

ATM: ataxia telangiectasia
mutated

191

NPAT: nuclear protein,
ataxia-telangiectasia locus

115

LRIG3: leucine-rich repeats and
immunoglobulin-like domains 3

73

TGFBR2: transforming
growth factor, beta receptor
II (70/80kDa)

38

ACP1: acid phosphatase 1,
soluble

35

Note: Gene in boldface indicates the first time to appear in the table.

of order of interactions, t. For AMD dataset, two SNPs
(rs380390 and rs1329428) already have been reported as
disease associated SNPs with AMD based on results from
single allelic association tests with df = 1 [31]. In our
results, DCHE also ranks rs380390 and rs1329428 as top 2
centre SNPs both in two- and three-locus epistatic inter-
actions detecting. Both rs380390 and rs1329428 locate
inside the gene CFH whose location is 1p32, and their
protein products have an essential role in the regula-
tion of complement activation and restricting the innate
defence mechanism to microbial infections. In addition
to rs380390 and rs1329428, we also find another inter-
esting SNP, rs3781868, in the category t = 4. rs3781868
locates in the gene NPAT with location 11q22-q23 which

is known to be essential for histone mRNA 3’ end process-
ing and recruiting CDK9 to replication-dependent histone
genes.
We also analyse results using gene-only from top-

1000/500 SNPs subset. Top-1000/500 SNPs aremapped to
disease-related genes, which have been annotated on the
HuGE Navigator database, and we get 720, 851 and 424
genes for t = 2, 3, 4 showed in Table 3. It is obvious that
the majority of centre genes have not yet been reported by
HuGE as associated with the AMD disease. Applying sim-
ilar analysis used in [32], we submit centre genes reported
in Table 3 to the ToppGene, a candidate gene prioritiza-
tion tool [33], to evaluate biological significances of these
novel genes. From DCHE’s results, ToppGene enriches an
cell-cell communication pathway with the name ‘REAC-
TOME_ADHERENS_JUNCTIONS_INTERACTIONS’.
Reported in Reactome, this pathway contains 14 cen-
tre genes, and only one gene in this pathway presents
in HuGE Navigator database. As gene names given in
HGNC, these genes are PVRL3, CDH18, CDH10, CDH11,
CDH12, CDH13, CDH2, CDH4, CDH7, CDH6, CDH9,
CDH8, CADM1, CADM3.
For the detection of two-locus epistatic interaction on

AMD dataset, DCHE successfully indentifies rs380390
and rs1329428 reported by the original paper. Comparing
with results obtained by other existing methods, we find
that there are some overlaps between them. For exam-
ple, DCHE lists two pairs of SNPs with ranking 246 and
247 (rs1394608 and rs3743175, rs1394608 and rs2828155),
which have been identified by epiMODE applied on AMD
dataset [26]. In addition, DCHE reports another interac-
tionmodule (rs1394608 and rs6847164), whose p−value is
more significant than the above two (p− valueunadjusted =
6.78 × 10−10). rs1394608 resides within the intron of
SGCD, a gene located on chromosome 5q33-34, which
has been implicated in AMD [26]. rs6847164 resides
within PDE5A, a gene located on chromosome 4q27.
According to the databases of NCBI and Entrez, PDE5A
is involved in the regulation of intracellular concentra-
tions of cyclic nucleotides and is important for smooth
muscle relaxation. DCHE has also detected other sig-
nificant three-locus and four-locus interaction modules:
(rs10487833, rs10495593, rs1740752) and (rs9302001,

Table 3 The disease association of DCHE selected genes
from gene-only SNP analyses

# SNPs per # DCHE genes in top
Reported in HuGE
Navigator database

interaction 1000 (500) SNP pairs # Analyzed # DCHE
genes genes

2 720

151

20

3 851 28

4 424 13
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rs10497231, rs380390, rs1940041) whose unadjusted p-
values are 3.24 × 10−18 and 8.28 × 10−28, respec-
tively. rs10487833 locates about 0.3Mb upstream of gene
NAMPT on chromosome 10. NAMPT encodes a protein
which is thought to be involved inmany important biolog-
ical processes, including metabolism, stress response and
aging. rs10497231 resides at about 0.3Mb downstream of
gene KCNH7 on chromosome 2. KCNH7 encodes a mem-
ber of the potassium channel, voltage-gated, subfamily
H related to the functions including regulating neuro-
transmitter release, heart rate, insulin secretion, neuronal
excitability, epithelial electrolyte transport, smooth mus-
cle contraction, and cell volume. rs9302001 locates about
0.4Mb upstream of gene ABCC4 on chromosome 13. The
protein encoded by ABCC4 is a member of the superfam-
ily of ATP-binding cassette (ABC) transporters, which is
thought to play a role in cellular detoxification as a pump
for its substrate, organic anions. The clustering details
of genotype combinations of the above three interaction
modules can be found in Additional file 1.

Experiments on RA data
Rheumatoid arthritis (RA) is a chronic and systemic
autoimmune disorder, which causes that afflicted joints
become warm, swollen, tender, stiff, and in the final stage,
deformed. RA is believed to be a heterogeneous disease in
which genetic factors account for 60% of disease suscep-
tibility by rough estimation. The genome-wide RA data
comes with 545,080 SNPs, 868 cases and 1194 controls
and it is collected by the NARAC and provided by the
Genetic Analysis Workshop 16. The same quality control
for AMD dataset has also been applied to RA dataset.
Subsequently, 487,678 SNPs from 1,194 controls and 868
cases remained. The parameters for DCHE are set as fol-
lows: l = {10000, 4000, 2000} for t = 2, 3, 4 and α0 =
1.5 × 10−3, 1.2 × 10−8, 1.0 × 10−21 for two-, three- and
four-locus interaction detection, respectively.
Based on definitions of centre SNPs, Table S9 in

Additional file 1 gives a general view of DCHE results
on RA dataset with k = 1000 for t = 2, 3, 4 and
s = 10. From the overview of centre SNPs, we can see
that most top-ranked SNPs are coming from chromo-
some 6 at which the well known MHC region locates.
Recent studies conducted by the WTCCC via single-
locus association mapping have shown that RA are
strongly associated with the MHC region [18]. In addi-
tion to SNPs in chromosome 6, some other interest-
ing SNPs located at other chromosomes are detected
in 4-order SNPs interactions, including rs888206 and
rs1359679. rs888206 locates in the gene MMD, monocyte
to macrophage differentiation-associated, whose protein
product is expressed in vitro differentiated macrophages
but not freshly isolated monocytes. Another suggested
alternative function of MMD is related to an ion channel

protein in maturing macrophages. rs1359679 locates near
the gene BRINP1 on chromosome 9 with location 9q32-
q33. According to NCBI, BRINP1 is within a chromoso-
mal region which shows loss of heterozygosity in some
bladder cancers and it may undergo hypermethylation-
based silencing in some bladder cancers. Table S10 in
Additional file 1 lists a summary of top-ranked reported
genes from HuGE Navigator database and DCHE. Simi-
lar to results in AMD dataset, the majority of potentially
disease-related interacting genes detected by DCHE are
novel for RA dataset. Through analyses of top-10 frequent
centre genes in Table S11 of Additional file 1, we can see
that some genes already have been established associa-
tions with RA, including HLA, BTNL2, C6orf10, and we
also find some other potential genetic causal factors, like
CCAR2, KDM4C.

Computation time
From a practical point of view, a key issue of detecting
high-order epistatic interactions in GWAS is the com-
putational efficiency. In this section, we evaluate the
performance of the proposed parallel strategy on Win-
dows Azure cloud platform with respect to its speed-up.
To measure the speed-up, we keep the size of datasets
constants and increase the number of nodes (computing
cores) in the cloud system. Speed-up given by the larger
system is defined by the following formula [34]:

Speedup (p) = T1
Tp

(6)

where p is the number of nodes (computers), T1 is the
execution time on one node and Tp is the execution time
on p nodes. The ideal parallel method is expected to
demonstrate linear speed-up: a system with p computing
nodes generates a speed-up of p. However, linear speed-
up is only a theoretical predication because the speed-up
is curved by both the inevitable node failures and the
communication cost which increase as the number of
computing nodes in cluster becomes large.
We perform the speed-up evaluation on datasets with

quite different sizes ranging from 10,000 to 100,000. The
number of nodes (virtual machines provided by Windows
Azure platform) varies from 1 to 40 with 5 as minor units.
Figure 5 shows speed-up for these datasets with three
settings. As results showed, the proposed cloud imple-
mentation of DCHE has a very good performance with
respect to the speed-up. When there are a limited num-
ber of SNPs in the dataset, e.g.M = 10, 000, it has a lower
speed-up curve, because dataset with such size along SNP
dimension can be easily processed by a stand-alone ver-
sion program alone in a couple of minutes. As the size of
datasets increases, speed-up performs better (green and
blue curves). Therefore, we believe our proposed parallel
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Figure 5 Speed-up. Computing nodes are sampled from 1 to 40 with 5 as interval. The red, blue, cyan and grey curve show functions of speed-up
ofM = 10, 000,M = 50, 000 andM = 100, 000 with sample size fixed to 800.

strategy for DCHE on Windows Azure cloud comput-
ing platform can be used to treat massive data analyses
efficiently.

Discussion
Relationship between DCHE and BOOST
Two key differences lie between DCHE and BOOST:

• BOOST is designed to detect statistic interactions via
log-linear models, using the χ2 test with df = 4.
DCHE aims to identify significant associations via
model-free method, using the χ2 test with df ranges
from 2 to 6.

• BOOST can be only applied to find gene-gene
interaction within two-locus. DCHE is flexible to
search t-SNP interaction patterns with t ≥ 2 and has
been implemented in cloud platform on Windows
Azure.

In order to prove that our method possesses the power
to detect epistatic interaction which demonstrates signifi-
cant interaction effect, the overlap of results from BOOST
and DCHE on two-locus simulated models are showed in
Additional file 1: Figure S3. The bar with full height means
that all modules produced by BOOST are all marked
as the most significant interaction by DCHE. For mod-
els embedded ground-truth modules with both main and
interaction effects, nearly all modules reported by BOOST
are also found by DCHE. Only 3 out of 24 do not reach
100%, but they are all above 90%. For datasets without

main effect or with weak main effect, although 7 out of 50
do not get 100% overlap, it is still convincing to conclude
that significant interactions identified by BOOST can be
mostly covered by DCHE.

The advantages and limitations of DCHE
The development of DCHE is triggered by the limitations
of existing works on finding high-order epistatic inter-
action from genome-wide data. DCHE displays several
advantages over existing methods:

1. DCHE detects high-order epistatic interactions from
genome-wide data without exhaustive enumeration;

2. DCHE is a model-free method and does not assume
any prior distribution;

3. DCHE does not assume any particular epistasis
model. This is very important for real studies because
the patterns of SNP interactions are generally
unknown and could be very complex;

4. DCHE provides a list of ranked interaction based on
their significance.

The current version of DCHE cannot distinguish which
type of epistatic interaction contributing most to the sig-
nificant SNP module, i.e. the statistical interaction or
the full association with only main effects. It is a gen-
eral problem for other existing model-free methods, like
MDR, BEAM, TEAM, SNPRuler and EDCF. Future work
can be extended to addressing the above issue. In addi-
tion, how to reduce false positive errors is a challenging



Guo et al. BMC Bioinformatics 2014, 15:102 Page 11 of 16
http://www.biomedcentral.com/1471-2105/15/102

problem in GWASs for our method, although we combine
permutation test and Bonferroni correction to control
type I error. Incorporating the haplotype information and
pathway information to further help reduce false positive
errors can be another direction of our future work.

Conclusions
In this manuscript, a cloud based algorithm DCHE, for
detecting high-order genome-wide epistatic interactions
is proposed. The key step of DCHE is the dynamic
clustering procedure, which is used to guide on how
to merge genotype categories to a limited and vari-
able number of groups. By dynamic clustering, DCHE
tries to approximately categorize genotypes with similar
genetic effects on phenotypes. The cloud implementation
of DCHE takes advantages of cloud computing technol-
ogy, especially the Windows Azure cloud platform with
high level and efficient I/O operation, queue and blob
storage, to guarantee the correctness and enable parallel
statistic testing. Comprehensive and systematic compar-
isons on simulated datasets shows that DCHE can obtain
more or comparable powers for both two- and three-
locus interaction modules detecting comparing to other
four recently developed algorithms, i.e. TEAM, SNPRuler,
EDCF and BOOST. Furthermore, experiments on two
real datasets of AMD and RA demonstrate that DCHE
discovers many novel high-order associations which are
significantly enriched in cases and a great deal of centre
SNPs and genes which only appear in detections of high
order epistatic interactions. The computation time anal-
ysis confirms that our method provides a promising way
to accurately accelerate large genome wide association
studies.

Methods
Notation
Suppose a GWAS dataset hasM diallelic SNPs andN sam-
ples. In general, bi-allelic genetic markers use uppercase
letters (e.g. A, B,...) to denote major alleles and lowercase
letters (e.g. a, b) to denote minor alleles. For encod-
ing three genotypes, one popular way is to use {0, 1, 2}
to represent {AA,Aa, aa}, respectively. In a GWAS case-
control dataset, NU denotes the number of cases (i.e.
disease individuals) and ND denotes the number of con-
trols (i.e. normal individuals). X is utilized to indicate the
ordered set of the M SNPs, and Xi represents the i-th
SNP in X. MAF(Xi) denotes the minor allele frequency
of Xi and gji denotes the genotype of j-th individual at
Xi. For t-locus interaction,

(
Xi1 , . . . ,Xit

)
, one genotype

combination denotes as
(
gi1 , . . . , git

)
.

Dynamic clustering
An intuitive strategy to detect genome-wide epistatic
interactions is to test differences of genotypes’ frequen-

cies for single SNP or SNPs’ combinations in cases and
controls. The contingency table in Table 4 gives an exam-
ple for two-locus disease model, where there are 9 geno-
type combinations and NU = ND = 800. Numbers
within the parentheses are counted from controls. Cells
with higher frequencies in cases are coloured by grey
background. Some methods, like Multifactor dimension-
ality reduction (MDR) [12] and its extensions [35], take
the case/control ratio of each genotype combination to
test associations between SNP combinations and disease
status. However, the frequency cannot be a fair indica-
tor to uncover disease related associations, because it can
be biased by many factors, including effect size, allele
frequency, linkage disequilibrium between markers and
disease loci as well as sampling errors. Other recent devel-
oped strategies use Pearson’s χ2 test, exact likelihood ratio
test and entropy-based test to examine the independence
of observations. For the example in Table 4a, the unad-
justed p-value from Pearson’s χ2 test with 8 degrees of
freedom is 1.724 × 10−18. If we use Bonferroni correc-
tion to adjust p-value, this pair can still be significant
with threshold 0.05 for a large GWAS dataset. However, it
will not always be the case, and some limitations, includ-
ing uneven or insufficient samples, tiny penetrance on
single genotype, would dramatically affect the adjusted
p-value. Another toy example sampled from a two-locus
multiplicative effects model (see Table 5) is shown in
Table 4b, where NU = ND = 400. Normally, the approx-
imation to the χ2 distribution breaks down if more than
20% expected frequencies below 5. The unadjusted p-
value of Table 4b is 1.09 × 10−6 and the adjusted p-value
is 0.547 if M = 1, 000, which is obviously larger than
0.05. Another popular method, BOOST [18] which uti-
lizes the likelihood ratio to test statistic, cannot get a
significant result for Table 4b by setting the significant
level to 0.1. We can observe the same result by apply-
ing EDCF which utilizes the concept of frequent item to
group genotype combinations and adopts the χ2 test with
df = 2.
To address the preceding issues, we propose a dynamic

clustering procedure. Basically, we first merge all 3nt geno-
type cells to nd groups based on certain combination
criteria, where nd ranges from 3 to 6. The criterion to
combine two genotype categories is rooted from their

Table 4 Examples for the contingency tables

(a) (b)

BB Bb bb BB Bb bb

AA 71(108) 97(151) 44(47) 40(55) 49(76) 13(21)

Aa 89(138) 184(184) 93(55) 43(62) 110(103) 49(22)

aa 29(43) 113(57) 80(17) 16(24) 50(27) 30(10)

Note: The entries in boldface are the ones with ratios greater than ND

NU
.
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Table 5 Two-locus interactionmultiplicative effects

BB Bb bb

AA α α α

Aa α α (1 + θ) α (1 + θ)2

aa α α (1 + θ)2 α (1 + θ)4

similar effects which associate with phenotypes. Secondly,
we collect statistic test values on merged groups. For
better illustration, we take Table 5 for example. Although
there are 9 genotype categories, some have same pene-
trances, so we can partition them into 4 groups, where
penetrances are α,α (1 + θ) ,α (1 + θ)2 and α (1 + θ)4. In
reality, it is different to predict the order of complex dis-
ease model and its penetrance table. Therefore, we try to
find a statistically significant evaluation of interactions in
a stepwise manner by merging genotype categories into a
range of number of groups and test levels of significance.
We select the most significant one as the evaluation for t
SNPs interaction. The full algorithm of dynamic clustering
is as follows.

• Step 1. For a set of SNPs, cross-tabulate genotype
combinations of SNPs with the categories of the
dependent variable (phenotype).

• Step 2. Find a pair of genotype combinations whose
2 × 2 sub-table is least significantly different. If this
significance does not reach a critical value, merge the
two combinations and consider this merger as a
single compound combination, and repeat this step.

• Step 3. Calculate the significant evaluation for each
merged group pattern when categories’ number is
larger than three and less than six. Select the most
significant one as the unadjusted p-value as the
evaluation for the current interaction.

In Step 2, there are several ways to measure the differ-
ence of a 2-by-2 contingency table, like Pearson’s χ2 test
with df = 1 and phi coefficient. In our algorithm, we
adopt Pearson’s χ2 test with df = 1 to measure the dif-
ference. Following the dynamic clustering procedure, we
can get the most significant group pattern as 161, 129,
110 in cases and 238, 59, 103 in controls for Table 4. Note
that the df varies when the number of clusters changes.
According to our setting that nd ranges from 3 to 6, the
df changes from 2 to 5, respectively. Along the clustering,
we calculate the p−valueunadjusted for each clustering with
corresponding df . The trace of merging for Table 4b is
(0, 1, 2, 3, 6), (5, 7, 8) and (4), if cells are labelled from left
to right, from top to bottom and start from 0. It is easy to
output this ground-truth interaction by the combination
of Bonferroni correction and permutation tests for con-
trolling type-I error. (p−valueunadjusted = 1.15×10−9 and

the significant level is α = 3.0 × 10−9 with false positive
rate nearly equals to 0.1).

Evaluation of interactions
The goal of DCHE is to identify t-SNP (t ≥ 2)
epistatic interactions significantly associated with phe-
notype. As stated in [7,18], epistasis can be interpreted
as the statistical interaction or the full association.
The evaluation of interactions used by DCHE is simi-
lar to detect full associations in model-based methods.
In terms of logistic regression, the epistatic interac-
tion we are looking for may contain main effects or
interaction effects or both. In order to detect the sig-
nificant association between genotype and phenotype,
we use model-free method and p-value from Pearson’s
χ2 test to indicate the significance. Since DCHE aims
to find high-order genome-wide epistatic interaction,
the high-order interaction module may consist of one
or some redundant SNPs, which do not contribute to
increase the significance. To avoid such cases, we give
a definition of the least possible significant epistatic
interaction.

Definition 1. A SNPs module (Xi1 ,Xi2 , . . . ,Xit ) is con-
sidered as the least possible significant epistatic interaction
by giving the significant level α, if it meets the following two
conditions:

(1) the p − value of clusters of (Xi1 ,Xi2 , . . . ,Xit ) ≤ α;
(2) the p − value of clusters of any subset of

(Xi1 ,Xi2 , . . . ,Xit ) < the p − value of clusters of
(Xi1 ,Xi2 , . . . ,Xit ).

Algorithm
Since testing all high-order SNP combinations is impos-
sible for large GWAS datasets of millions of SNPs,
we utilize a stepwise strategy to emulate and run
dynamic clustering on all two-locus SNPs combinations.
As shown in a recent theoretical study [36], the possi-
bility that a high-order (size-t) combination with strong
differentiation shows zero differentiation in all of its
subsets decreases dramatically when t increases (gener-
ally it becomes impossible for t ≤ 5). Therefore, we
use top-lt low-order SNPs combinations which demon-
strate some significance as candidates. For higher order,
we add one SNP X each time to interactions and re-
invoke the dynamic clustering procedure, until t reaches
the defined value. We adopt same bitwise operations and
Boolean Representation as introduced in BOOST [18] to
collect and compress contingency tables. The details of
the sequential algorithm is shown in Algorithm 1. The
cloud implementation of DCHE will be elaborated in
next section.
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Algorithm 1: The DCHE Algorithm
Input: An N × (M + 1) matrix, where N = ND + NU

and the first column denotes disease statuses; t,
critical level α and l = {l2, ..., lt}

Output: The top-lt significant t-locus interaction with
p − valueadjusted > α

1 Read N × (M + 1) matrix file;
2 Boolean represent N × (M + 1) matrix as

(3 × M) × N matrixW ;
3 Initialize an ascending list L with length as max(l);
4 Set t′ = 2;
5 for each pair of SNPs,

(
Xi,Xj

)
,
(
1 ≤ i < j ≤ M

)
do

6 Collect the contingency table Ci,j;
7 Set p − valuei,j = DynamicClustering

(
Ci,j

)
;

8 Insert p − valuei,j into L;
9 end

10 t′ = t′ + 1;
11 Initialize another ascending list L′ with length max (l);
12 while t′ <= t do
13 for each interaction

(
Xi1 , . . . ,Xit′

)
in top-lt′

positions of L do
14 for each SNP Xj,

(
1 ≤ j ≤ M

)
do

15 if j /∈ {i1, . . . , it′ } then
16 Collect the contingency table Ci1,...,it′ ,j;
17 Set p − valuei1,...,it′ ,j =

DynamicClustering
(
Ci1,...,it′ ,j

)
;

18 Insert p − valuei1,...,it′ ,j into L′;
19 end
20 end
21 end
22 Clean list L, Initialise Lt′ , Copy top-lt′ elements in

L′ to L, Lt′ , Clean list L′;
23 end
24 for each interaction

(
Xi1 , . . . ,Xit

)
in the top-lt position

of {L2, . . . , Lt} do
25 if p − valuei1,...,it ≤ α then
26 for subset Q of

(
Xi1 , . . . ,Xit

)
do

27 if Q ∈ {L2, . . . , Lt−1} and p − value of Q ≥
the p − value of

(
Xi1 , . . . ,Xit

)
then

28 break;
29 end
30 end
31 Write

〈(
Xi1 , . . . ,Xit

)
, p − valuei1,...,it

〉
into

result file;
32 end
33 end

Each column in matrix M is converted to 3 rows in
matrixW based on Boolean Representation (line 1–2). An
ascending list where redundancy is not allowable is initial-
ized with size max (l). The structure of an element in L

consists a pair of key and value that the key is SNPs combi-
nations and value is the unadjusted p-value (line 3). DCHE
uses bitwise operations to collect contingency tables for
all two-locus interaction and calculates evaluations of sig-
nificance via DynamicClustering procedure. The p-value
will be inserted into L (line 4–9). DCHE only selects top-
lt′ interactions to extend in DynamicClustering procedure
and inserts estimated significance into another candidate
list L′. At the end of each iteration for specific t, list L gets
cleaned and DCHE transfers top-lt′ elements from L′ to L
and new list Lt′ (line 10–23). When t reaches the defined
value, top-lt interaction modules with p − value > α will
be written into the result file (line 24–33).
The time complexity of dynamic clustering is O

(
3t

)
.

According to the theory in [36], we only need to apply
dynamic clustering procedure for up to 4 order of SNPs
combinations. So when t = 2, the time complexity to
test all 2-locus interactions is O

(
NM2). Inserting an ele-

ment into ascending list takes time O
(
log (max (l))

)
. The

total time complexity for 2-locus interaction detection
is O

(
NM2) + O

(
log (max (l))

)
. When t = 3, the time

complexity to extend all candidate 2-locus interactions to
3-locus modules is O (l3M). Hence, the entire time com-
plexity reaches toO (l3M) +O

(
NM2) +O

(
log (max (l))

)
,

if the user plans to search 3-locus interaction. Similar
time complexity analysis can be applied to higher order
interaction detection by using our DCHE.

Cloud implementation
We implemented DCHE on the Windows Azure plat-
form [37]. Due to several practical considerations of asso-
ciation detection for GWAS, like typical GWAS datasets
reaching up to size of gigabytes, statistic tests for all SNPs
combinations. A Windows Azure application running in
the cloud or in data centre can be divided into logical
parts which are called roles inWindowsAzure as shown in
Figure 6. A role contains a specific set of codes and will be
running on relatively independent environment. In addi-
tion, Windows Azure applications can be easily deployed
to a customized cloud infrastructure, even for users who
are not HPC experts.
Since statistic tests of all interaction are independent,

it is suitable and easy to parallel dynamic clustering pro-
cedure. The details of cloud framework for DCHE is
described as follows (see Figure S1 in Additional file 1).
Windows Azure storage service come with highly efficient
distributed file systems and two basic storage features
using in DCHE are as follows. (1) Blob: like traditional
file system, where files can be retrieved by its name, and
the limit size of single blob file can be up to 50GB [37].
(2) Queue: An asynchronous massage passing mecha-
nism for communication among computing nodes; an
important feature of Queue is that messages will auto-
matically show up again until explicitly deleted [38]. Two
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Figure 6 Illustration of the suggestedWindows Azure application model.

issues for cloud computing are that it may consumes
huge time in communication and it is difficult to bal-
ance workload between nodes. Therefore, we design a
way to split the whole dataset into several parts and
pack up a bunch of dynamic clustering calculations.
Detailed steps for Cloud DCHE are elaborated in next
paragraph.

• Step 1. The whole matrix of GWAS dataset is
partitioned into d parts on SNPs dimension. For the
i-th portion, it contains

{
pj, gji , g

j
i+d, . . .

}
, where

j = {1, 2, . . . ,M} and p denotes the phenotype. The
reason why we split dataset in such way is that it can
optimally balance both workloads within and among
partitions.

• Step 2. Each worker role instance reads one copy of
all partitions which are compressed using Boolean
Representation [18].

• Step 3. Customized parameters used in DCHE will be
set through web role instance, including size of the
matrix, numbers of partitions of data, critical value,
maximum loci interaction pattern and length of the
ascending list. Note that the number of worker role
instances do not need to be specified because all tasks
are executed asynchronously and controlled by a
unique file name as a key recognized by worker and
master.

• Step 4. A particular work role, named master role, is
used to pack tasks commands into a queue and detect
running status via emulating files in the blob. There is
only one instance of master role, which is
programmed to pack a pair of key (unique file name)
and value (task orders).

• Step 5. Worker role instances simply fetch
commands from queues. The key factor to
implement fault tolerant is that same undone task
packs will show up again in queues after a user
defined period if there are any failure.

• Step 6. All results will be stored in ascending lists and
written into blob, when worker role instances finish
tasks, i.e. dynamic clustering procedures.

• Step 7. Master role will detect which stage the
algorithm is running on and communicate with web
role relying on file information in blob.

• Step 8. Web role instance is the interface to interact
between user and DCHE by retrieving running status.

Availability of supporting data
DCHE and its cloud implementation code is available
at http://www.cs.gsu.edu/~xguo9/DCHE.html Password
for the source code of cloud implementation is dche;
The simulated data is available on the original paper au-
thors’ websitel (http://bioinformatics.ust.hk/BOOST.html
and http://discovery.dartmouth.edu/epistatic_data/); The
genome-wide Rheumatoid arthritis data is provided by the
Genetic AnalysisWorkshops 16 (http://www.gaworkshop.
org/).

Availability and requirements
Project name: Cloud Computing for Detecting High-
Order Genome-wide Epistatic Interaction via Dynamic
Clustering; Project home page: http://www.cs.gsu.edu/~
xguo9/DCHE.html, and https://sourceforge.net/projects/
dche/ Operating system(s): Windows 8, Windows Azure
Programming language: Java 1.7 or higher; C#, coded in
Visual Studio 2012.

http://www.cs.gsu.edu/~{x}guo9/DCHE.html
http://bioinformatics.ust.hk/BOOST.html
http://discovery.dartmouth.edu/epistatic_data/
http://www.gaworkshop.org/
http://www.gaworkshop.org/
http://www.cs.gsu.edu/~{x}guo9/DCHE.html
http://www.cs.gsu.edu/~{x}guo9/DCHE.html
https://sourceforge.net/projects/dche/
https://sourceforge.net/projects/dche/
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