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Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between
distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as
being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent be-
tween studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using rest-
ing state eyes-closed functional imaging and independent component analysis on amulti-site data that included 151
schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain
data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subse-
quently evaluated group differences in functional network connectivity, both in a static sense, computed as the
pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic
sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete func-
tional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show sig-
nificantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory,
motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modali-
ties. Dynamic analysis suggests that (1), on average, schizophrenia patients spendmuch less time than healthy con-
trols in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more
pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-
correlations) and strong positive connectivity between sensory networks are those that show the group differences
of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other
connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks
during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connec-
tivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency
power and connectivitywith sensory networks is altered in patients, suggesting different functional interactions be-
tween sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences
between patients with schizophrenia and healthy controls have been identified, one should interpret the results
with caution given the history of medication in patients. Taken together, our results support and expand current
knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better
account for and understand functional connectivity differences.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

It has beenmore than 100 years since Kraepelin (1971) intuited that
the clinical syndrome he described as ‘dementia praecox’ and was later
to become schizophrenia (Bleuler, 1950) was an organic brain disorder.
In that time, we have learned a great deal about the neural differences
associated with the illness through a variety of approaches; however
we have yet to determine the root causes of schizophrenia. Structural
imaging has revealed subtle differences between patients and controls,
but these do not reflect differences in brain function. Task-based func-
tional imaging approaches can probe differences in neuronal network
activity, however such approaches are limited by both pragmatic issues
such as subjects performing scanner tasks differently (Mathalon and
Ford, 2008; Mazoyer et al., 2001) leading to interpretational difficulties,
and broader theoretical limitations, such as the validity of using transi-
tory state-based measures to make inferences about chronic or persis-
tent illness states. Resting state functional connectivity can identify
networks of co-activating brain areas, overcoming some of these limita-
tions by essentially providing a comprehensive set of functional net-
works that resemble those during various tasks (Smith et al., 2009).
However these approaches have used measures of brain connectivity
averaged over multiple minutes at rest giving a static or steady state
connectivity likely blurring together different modes of dynamic brain
activity.

Dynamics are potentially evenmore prominent during resting-state
(Deco et al., 2013), during which mental activity is unconstrained, than
in task-activation studies. By not capturing the underlying changes in
dynamics important differences are obscured and our ability to detect
the functional brain changes that characterize complex mental illness
is blurred. There is recent interest in this topic as several new studies
have focused on dynamic connectivity changes. Studies in both animals
and humans demonstrated that the spontaneous blood oxygen level de-
pendent (BOLD) signals measured during rest exhibit intrinsic spatio-
temporal dynamic organization (Chang and Glover, 2010; Hutchison
et al., 2013b; Keilholz et al., 2013; Liu and Duyn, 2013; Sakoğlu et al.,
2010). Most of these methods do not evaluate the whole brain (Liu
and Duyn, 2013) or scale to multiple subjects (Cribben et al., 2012),
and studies of spatial dynamics are quite limited.We recently proposed
away of characterizing dynamic changes inwhole brain functional con-
nectivity (FC) using short time windowed correlations computed on
time courses of spatial independent components obtained using inde-
pendent component analysis and further clustering these dynamic con-
nectivity patterns using k-means approach (Allen et al., 2012).

To our knowledge, no fMRI studies have yet focused on the dynamics
of the resting fMRI differences in schizophrenia. Despite the large body
of evidence showing aberrant brain structural and functional connectiv-
ity in schizophrenia (Breakspear et al., 2003; Calhoun et al., 2011;
Friston, 1998; Pearlson and Marsh, 1999; Pearlson, 2000), there is a
lack of consistency of observed functional connectivity differences in
schizophrenia across studies (Fox and Greicius, 2010). For example,
some studies have reported increased connectivity within the default
mode regions (Whitfield-Gabrieli et al., 2009) or between nodes of de-
fault mode regions and cortical and subcortical regions in patients with
schizophrenia (Salvador et al., 2010) while others found both reduced
and mixed connectivity between default mode regions and cortical re-
gions (see Fornito et al., 2012 for a review). Although this could in
part be due to differences in disease subtypes or symptoms, we hypoth-
esize that part of the heterogeneity is driven by making comparisons
using a static connectivity measure of functional connectivity obtained
which represents an average across different dynamic modes of brain
activity during an unconstrained resting state. In this work, our goal
was to assess whole brain functional connectivity differences between
healthy controls (HC) and schizophrenia (SZ) patients and to evaluate
if any observed differences primarily occur in certain connectivity states
during the scan duration.We show that during eyes closed resting con-
ditions, compared to healthy controls, patients with schizophrenia

show hypoconnectivity within sensory regions, hyperconnectivity of the
thalamus with these regions and that these differences are pronounced
in a couple of connectivity states consistently across participants.

2. Materials and methods

2.1. Participants

In this work, we report on resting state functional magnetic reso-
nance imaging data collected from 163 healthy controls (117 males,
46 females; mean age 36.9) and 151 age- and gender matched patients
with SZ (114males, 37 females;mean age 37.8) during eyes closed con-
dition at 7 different sites across United States and pass data quality con-
trol (see supplemental material). Informed consent was obtained from
each participant prior to scanning in accordance with the Internal Re-
view Boards of corresponding institutions. A total of 162 volumes of
echo planar imaging BOLD fMRI data were collected with a TR of 2 s
on 3T scanners.

2.2. Imaging parameters

Imaging data for six of the seven sites was collected on a 3T Siemens
Tim Trio System and on a 3T General Electric Discovery MR750 scanner
at one site. Resting state fMRI scans were acquired using a standard
gradient-echo echo planar imaging paradigm: FOV of 220 × 220 mm
(64 × 64 matrix), TR= 2 s, TE= 30 ms, FA= 770, 162 volumes, 32 se-
quential ascending axial slices of 4 mm thickness and 1 mm skip. Sub-
jects had their eyes closed during the resting state scan.

2.3. Data preprocessing

Data processing was performed using a combination of toolboxes
(AFNI1, SPM2, GIFT3) and custom codewritten inMatlab.We performed
rigid body motion correction using the INRIAlign (Freire and Mangin,
2001) toolbox in SPM to correct for subject head motion followed by
slice-timing correction to account for timing differences in slice acquisi-
tion. Then the fMRI datawere despiked using AFNI3s 3dDespike algorithm
to mitigate the impact of outliers. The fMRI data were subsequently
warped to a Montreal Neurological Institute (MNI) template and
resampled to 3 mm3 isotropic voxels. Instead of gaussian smoothing,
we smoothed the data to 6 mm full width at half maximum (FWHM)
using AFNI3s BlurToFWHM algorithm which performs smoothing by
a conservative finite difference approximation to the diffusion equa-
tion. This approach has been shown to reduce scanner specific vari-
ability in smoothness providing “smoothness equivalence” to data
across sites (Friedman et al., 2008). Each voxel time course was var-
iance normalized prior to performing group independent compo-
nent analysis as this has shown to better decompose subcortical
sources in addition to cortical networks.

2.4. Group independent component analysis

After preprocessing the data, functional data from both control and
patient groups were analyzed using spatial group independent compo-
nent analysis (GICA) framework as implemented in the GIFT software
(Calhoun et al., 2001; Erhardt et al., 2011). Spatial ICA decomposes the
subject data into linear mixtures of spatially independent components
that exhibit a unique time course profile. A subject-specific data reduc-
tion stepwasfirst used to reduce 162 timepoint data into 100directions
of maximal variability using principal component analysis. Then subject
reduced data were concatenated across time and a group data PCA step
reduced this matrix further into 100 components along directions of
maximal group variability. One hundred independent components

1 http://afni.nimh.nih.gov/.
2 http://www.fil.ion.ucl.ac.uk/spm/.
3 http://mialab.mrn.org/software/gift/index.html.
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were obtained from the group PCA reducedmatrix using the infomax al-
gorithm (Bell and Sejnowski, 1995). To ensure stability of estimation,
we repeated the ICA algorithm 20 times in ICASSO4, and aggregate spa-
tial maps were estimated as the modes of component clusters. Subject
specific spatial maps (SMs) and time courses (TCs) were obtained
using the spatiotemporal regression back reconstruction approach
(Calhoun et al., 2001; Erhardt et al., 2011) implemented in GIFT
software.

2.5. Post-ICA processing

Subject specific SMs and TCs underwent post-processing as de-
scribed in our earlier work (Allen et al., 2012). Briefly, we obtained
one sample t-test maps for each SM across all subjects and thresholded
these maps to obtain regions of peak activation clusters for that compo-
nent; we also computed mean power spectra of the corresponding TCs.
We identified a set of components as intrinsic connectivity networks
(ICNs) if their peak activation clusters fell on gray matter and showed
less overlap with known vascular, susceptibility, ventricular, and edge
regions corresponding to head motion. We also ensured that the mean
power spectra of the selected ICN time courses showed higher low fre-
quency spectral power. This selection procedure resulted in 47 ICNs out
of the 100 independent components obtained. The cluster stability/
quality (Iq) index for these ICNs over 20 ICASSO runs was very high
(Iq N 0.9) for all of the components, except an ICN that resembles lan-
guage network (Iq = 0.74).

The subject specific TCs corresponding to the ICNs selected were
detrended, orthogonalizedwith respect to estimated subjectmotion pa-
rameters, and then despiked. The despiking procedure involved detect-
ing spikes as determined by AFNI3s 3dDespike algorithm and replacing
spikes by values obtained from third order spline fit to neighboring
clean portions of the data. The despiking process reduces the impact/
bias of outliers on subsequent FNC measures (see Supplemental Fig. 1
in (Allen et al., 2012)).

2.6. Static functional network connectivity (sFNC)

We computed functional network connectivity (FNC), defined as
pairwise correlation between ICN time courses, as a measure of average
connectivity among different ICNs during the scan duration. In this
work, the FNC computed using the whole ICN time courses is referred
to as stationary or static FNC (sFNC). Since correlation among brain net-
works is primarily shown to be driven by low frequency fluctuations in
BOLD fMRI data (Cordes et al., 2001), we band pass filtered the proc-
essed ICN time courses between [0.01–0.15] Hz using 5th order
Butterworth filter prior to computing FNC between ICNs. The mean
sFNC matrix was computed over subjects. The mean sFNC matrix was
initially organized into modular partitions using the Louvain algorithm
of the brain connectivity toolbox (https://sites.google.com/site/bctnet/).
The modular partitions obtained from the algorithm were slightly
rearranged to match the order of sFNC matrix rows to our recent work
(Allen et al., 2012). After this ordering, the rows of sFNC matrix were
partitioned into sub-cortical (SC), auditory (AUD), visual (VIS), sensori-
motor (SM), a broad set of regions involved in cognitive control (CC)
and attention, default-mode network (DMN) regions, and cerebellar
(CB) components as shown in Fig. 1.

Following our earlier work, we used a MANCOVA framework (Allen
et al., 2011)with backward selection to assess group differences in sFNC
between ICNs. In addition to diagnosis, we used gender and site as fac-
tors, age as a covariate, as well as interactions of age by diagnosis and
gender by diagnosis. Additionally, we included mean framewise dis-
placement, (meanFD) as nuisance covariate to account for any residual
motion related variance in ICA derivedmeasures, as suggested by recent
studies investigating the effects of microheadmovements on functional

connectivity measures (Satterthwaite et al., 2013; Yan et al., 2013). At
each step, the multivariate model compared the variance explained in
the response variable by the current full model to a reducedmodel (ob-
tained by dropping one term and any associated interactions) using the
Wilks3 Lambda likelihood ratio test statistic (Christensen, 2001). In each
iteration of model reduction, the least significant term that does not
meet α = 0.01 threshold for the F-test is removed. The final reduced
model contains all the terms and their interaction terms (if any) if the
main effect or its interaction termmeets the threshold. Subsequent uni-
variate tests are performed using the final reduced model. The univari-
ate results are presented along with the false discovery rate (FDR)
multiple comparison correction threshold of pFDR = 0.05. The sFNC re-
sults are summarized in Fig. 2.

2.7. Dynamic functional network connectivity (dFNC)

As recent studies both in animals and humans have highlighted the
nonstationary nature of functional connectivity in BOLD fMRI data
(Chang and Glover, 2010; Hutchison et al., 2013), we sought to deter-
mine whether the observed sFNC differences were primarily driven by
certain connectivity configurations (Hutchison et al., 2013a). Following
our recent work (Allen et al., 2012), dynamic FNC (dFNC) between two
ICA time courseswas computed using a slidingwindowapproachwith a
window size of 22 TR (44 s) in steps of 1 TR (Fig. 3A). As in our earlier
work, the window constituted a rectangular window of 22 time points
convolved with Gaussian of sigma 3 TRs to obtain tapering along the
edges. Since estimation of covariance using time series of shorter length
can be noisy, we estimated covariance from regularized inverse covari-
ancematrix (ICOV) (Smith et al., 2011; Varoquaux et al., 2010) using the
graphical LASSO framework (Friedman et al., 2008).We imposed an ad-
ditional L1 norm constraint on the inverse covariance matrix to enforce
sparsity. The regularization parameter was optimized for each subject
by evaluating the log-likelihood of unseen data of the subject in a
cross-validation framework. It has recently been reported that the
original graphical LASSO implementation might not ensure positive
semi-definiteness of the estimated covariance matrix (Mazumder and
Hastie, 2012) and so we verified that all of the eigenvalues of the esti-
mated dynamic covariance matrices estimated are positive. After com-
puting dFNC values for each subject, these covariance values were
Fisher-Z transformed and residualized with respect to age, gender and
site using the reduced model determined from our sFNC analysis.

2.8. Clustering

Based on our observation that patterns of dFNC connectivity pat-
terns reoccur within subjects across time and also across subjects, we
used a k-means algorithm to cluster these dynamic FNC windows,
partitioning the data into a set of separate clusters so as to maximize
the correlation within a cluster to the cluster centroid. Instead of clus-
tering all of the dFNC windows across all subjects, initial clustering
was performed on a subset of windows from each subject, called subject
exemplars hereafter, corresponding to windows of maximal variability
in correlation across component pairs. To obtain the exemplars, we
first compute variance of dynamic connectivity across all pairs at each
window. We then select windows corresponding to local maxima in
this variance time course. This resulted in an average of 8 subject
exemplar windows per subject (range: 4–13). The optimal number of
centroid states was estimated using the elbow criterion, defined as the
ratio of within cluster to between cluster distances. A k of 5 was ob-
tained using this method in a search window of k from 2 to 9. The
correlation distance metric was chosen as it is more sensitive to the
connectivity pattern irrespective of magnitude (although choosing
other distance functions such as L1 distance did not make a differ-
ence in observed results). These sets of initial group centroids were
used as a starting point to cluster all of the dFNC windows from all
subjects.4 http://www.cis.hut.fi/projects/ica/icasso.
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2.9. Group differences in dynamic connectivity

We computed a subject median (computed element-wise) for each
partition from the subject windows that were assigned to that partition
as a representative pattern of connectivity of the subject for that state.
To investigate if the observed effects of diagnosis on sFNC are primarily
driven by certain dynamic FNC states, we used these subject medians
for each state and evaluated the differences using a two sample t-test
in a univariate manner. All of the results reported correspond to a
false discovery rate multiple comparison correction threshold q b 0.05.

Using these subject state vectors, we also computed average dwell
times in each state and also probability of transitioning from one state
to another. Group differences in dwell times in each state as well as in
probability of transition between states were also evaluated using two
sample t-tests. We did not observe any significant differences in proba-
bility of transition between states across subjects.

2.10. Relationship between low frequency power and connectivity

Given the state-specific differences in connectivity between SC and
AUD, VIS, and SM regions and recent findings on the influence of ampli-
tude of low frequency fluctuations on local and long range functional

connectivity measures (Di et al., 2013), we performed a post-hoc anal-
ysis evaluating the relationship between power of each SC ICN and its
connectivity by state. To perform this analysis, for every subject, we
computed the power spectrum of each SC ICN time course in the low
frequency range (0.023–0.08 Hz; the lower threshold corresponds to
the slowest frequency resolved by 44 s window) within each dynamic
state, as well as the mean of the subjects3 FNC connectivity between
the SC node and sensory ICNs as a measure of its connectivity strength
(Fig. 4A). To assess the group difference in the relationships between
LF power of a component and its connectivity to sensory ICNs, robust re-
gression models were fit for each SC component, predicting SC-sensory
connectivity as a function of LF power, diagnosis, and a diagnosis-by-LF
power interaction.

3. Results

Eyes-closed resting state fMRI scans from 151 SZ patients and 163
age- and gender matched healthy controls were obtained as part of
themulti-site fBIRNproject (Potkin and Ford, 2009). Following previous
investigations of whole-brain functional connectivity (Allen et al.,
2012), intrinsic connectivity networks (ICNs) and their associated
time courses were decomposed using spatial ICA (Fig. 1, Table 1).

visual (VIS: 11)

Z = 12X = 28 Y = −83 Z = -4 

sensorimotor (SM: 6)

Y = −26 Z = 42X = 60

default-mode (DMN: 8)

  X = −49 Z = 23 Y = −57 X = 30

attention/cognitive control (CC: 13)

X = 57 Y = −30 Z = 35

X = −52 Y = −15X = −14 Y = −15 Z = 3

X = −3 

X = 9 Z = 24

X = −3 Z = −24

cerebellar (CB: 2)

sub-cortical (SC: 5) auditory (AUD:2)

Z = 1

Fig. 1. Composite maps of the 47 identified intrinsic connectivity networks (ICNs), sorted into seven subcategories. Each color in the composite maps corresponds to a different ICN. Com-
ponent labels and peak coordinates are provided in Table 1.
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Forty seven ICNs are broadly categorized based on anatomy and prior
knowledge of their function into the following sub-categories: subcorti-
cal (SC), auditory (AUD), visual (VIS), somatomotor (SM), cognitive
control (CC) processes, default-mode (DMN), and cerebellar (CB) net-
works. To characterize group differences in functional connectivity, we
examined both the static functional network connectivity (sFNC), de-
fined as temporal correlation between ICNs computed using the whole
ICN time course and representing average connectivity between the net-
works (Jafri et al., 2008), and the dynamic FNC (dFNC), computed using a
sliding-window and clustering approach, capturing the changes in con-
nectivity throughout the scan (Allen et al., 2012).

3.1. Group differences in static FNC

Group differences in sFNCwere evaluated with aMANCOVA statisti-
cal model with backward selection (Allen et al., 2011), treating gender,
diagnosis, and site as factors of interest, age as a covariate, and mean
framewise displacement (meanFD, mean of absolute frame to frame
head motion assuming 50 mm head radius) as a nuisance covariate.

Interactions between age and gender, and age and diagnosis were also
included. The final terms retained in themodel after backward selection
using an alpha level of 0.01 included diagnosis (Hotelling3s T = 214.9,
b 1e−16), site (T = 213.0, p b 1e−13), age (T = 117.0, p b 2e−11),
meanFD (T = 77.0, p b 2e−9), and an age-by-diagnosis interaction
(T = 32.0, p b 5e−3). Subsequent univariate tests were performed
using a reduced model with these terms. The group-specific mean
sFNC matrices are shown in Fig. 2A–B along with the group difference
(Fig. 2C), after residualizing with respect to gender, site and meanFD.
Since the effect of diagnosis was tested with the age-by-diagnosis
term included in the model, the diagnosis effect corresponds to differ-
ences at the mean age across groups. Repeating the analysis after
dropping the age-by-diagnosis interaction term revealed an identical
set of significant sFNC pairs, indicating sFNC differences in diagnosis
are present across the age span studied for all ICN pairs that showed sig-
nificant group differences5*. Compared to the HC, the SZ group showed
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Fig. 2. (A–B)Mean static functional network connectivity (sFNC)map for healthy controls (A) and patientswith schizophrenia (B) after correcting for age, gender andmeanFD. Thick black
lines partition the FNCmaps into the seven subcategories depicted in Fig. 1. The seven subcategories into which the ICNs are partitioned into are: sub-cortical (SC), auditory (AUD), visual
(VIS), sensorimotor (SM), cognitive control (CC) and attention, default-mode network (DMN), and cerebellar (CB) components. C) The group difference (SZ–HC) in sFNC. Values are plot-
ted as−log10(p-value) × sign(t-statistic), where statistics are obtained from the diagnosis term in univariatemultiple regressionmodels (see SImethods). The FDR threshold (q b 0.05) is
depicted on the color barwith red arrows. D) Covariation between thalamic-sensory (AUD, VIS, SM) connectivity and sensory connectivity. Thalamic-sensory connectivity is defined as the
average correlation between the thalamic network and all AUD, VIS and SM networks (average of cells within white rectangle labeled (1)); sensory connectivity is defined as the average
correlation between all AUD, VIS, and SM ICNs (average of cells within magenta rectangle labeled (2)). Correlation between thalamic-sensory connectivity and sensory connectivity is
more pronounced in HC (black circles) compared to SZ (red circles).

5 Figures reflect the original test with interaction; though visually the results without
the interaction term are indistinguishable.
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significantly weaker connectivity between all AUD, SM and VIS net-
works. Additionally, the SZ group showed hyperconnectivity between
SC networks (particularly the thalamus) and AUD, VIS and SM cortical
networks. As depicted in Fig. S1A and Fig. S1B, these group differences

are consistent across all the sites with reasonably high effect sizes
(Cohen3s D range: [–1.5 1.5]).

Based on the observation of high within network connectivity
among sensory (AUD, VIS and SM) ICNs and their inverse correlation
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Fig. 3.A) Schematic depicting the computation of the state transition vector for each subject. First, dFNCmatrices are computed onwindowed portions of the ICN time courses. Then, dFNC
matrices from all subjects are clustered using the k-means algorithm, yielding cluster centroids and cluster membership assignment for all windows. When viewed in time, the window
membership represents the state transition vector. B) Themedians of cluster centroids by state for HC (top) and SZ (middle) alongwith the count of subjects that had at least onewindow
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red arrows. (C–D) Illustration of the dependence of groupdifferences on connectivity states/patterns. In (C), the group difference (SZ–HC) in thalamic-sensory connectivity, and putamen–
sensory connectivity are plotted as a function of subcortical-sensory antagonism (average of cells within subcortical to sensory nodes) found in each state averaged over HC. In (D), the
same group differences are displayed as a function of sensory connectivity. The error bars in (C–D) are obtained using bootstrap resampling. E) Themean± standard error of dwell times
by state for HC (black) and SZ (red). Asterisks indicate p b 0.05 (FDR corrected) and double asterisks indicate p b 0.001 (FDR corrected), as obtained via two-sample t-tests.
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to the thalamus, we tested if these two patterns covary across subjects. In
Fig. 2D, we show that the mean strength of thalamic connectivity to sen-
sory nodes (average of cells in white rectangle labeled (1) and referred to
as thalamic-sensory connectivity) covaries with the strength of mean
connectivitywithin these sensory ICNs (average of cells inmagenta trian-
gle labeled (2) and referred to as sensory connectivity) in an inverseman-
ner that is much more pronounced in healthy controls than SZ patients.

To determine whether current medication could account for the
observed sFNCdifferences related to diagnosis,we repeated the analysis
after regressing out medication (summarized as chlorpromazine

equivalence scores) from patient sFNC values. We found similar group
differences (T = 195.3, p b 1e−16). Additional MANCOVA tests within
the patient group investigating the effects of symptom scores (positive
and negative symptom scores (PANSS), and general psychopathology
scale) on sFNC measures revealed no significant associations. To de-
termine whether the observed differences between the groups were
largely a reflection of duration of chronic illness in patients per se, we
regressed out duration of illness from the patient sFNC values and
evaluated the effect of diagnosis using the MANCOVA model. The ef-
fect of diagnosis remained very significant (T = 184.9, p b 1e−15).
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3.2. Group differences in dynamic FNC

The group-specific medians for each state are shown in Fig. 3B (top
two rows). States 1, 2 and 3 show moderate to high correlation
among the VIS,MOT andAUDICNs. In states 2 and 3, sub-cortical regions
as well as a set of ICNs in CC category show antagonism with AUD, SM,
and VIS ICNs as compared to state 1. State 3 distinguishes itself from
state 2 with respect to connectivity of default mode ICNs; connectivity
within default mode regions is stronger and also more anticorrelated
from sensory andmotor regions in state 3. State 4 shows aweak connec-
tivitywithin each subcategory and demonstrates no strong connectivity
between subcategories. State 5 is similar to state 4 except that the con-
nectivity of default mode ICNs resembles that of state 3.

The group differences in dFNC among five identified connectivity
states are shown in Fig. 3B (bottom row). Note that not all subjects

Table 1
Peak activations of ICN spatial maps for high model order decomposition. The quality in-
dex Iq associated with each ICN is listed in parentheses adjacent to the component
number.

BA Nv Tmax. Coordinate

Sub-cortical networks
IC 75 (0.97)
Bi substantia nigra 317 31.6 –15, –15, –9
IC 1 (0.97)
R putamen 327 63.3 24 12,–3
L putamen 288 58.8 –24, 12, –6
IC 13 (0.98)
Bi caudate 665 50.6 –9, 18, 0
IC 2 (0.98)
R globus pallidum 293 56.7 30, –6, 0
L globus pallidum 275 51.6 –30, –6.3
IC 18 (0.98)
Bi thalamus 534 55.3 –9, –15, 3
Auditory networks
IC 58 (0.97)
L Heschl3s gyrus 41 440 38.3 –36, –30, 12
R superior temporal gyrus 22 359 36.9 51, –15, 3
IC 51 (0.97)
R middle temporal gyrus 21 440 32.6 63, –15, –9
L middle temporal gyrus 21 300 30.4 –60, –18, –6
Visual networks
IC 91 (0.93)
R lingual gyrus 19 277 29.9 27, –66, –6
IC 57 (0.98)
L parahippocampal gyrus 37 234 37.5.0 –24, –45, –12
R parahippocampal gyrus 37 206 39.3 30, –45, –12
IC 42 (0.98)
R middle temporal gyrus 39 325 42.4 51, –69, 6
L middle occipital gyrus 37 201 33.8 –45, –72, 6
IC 60 (0.98)
R precuneus 19 357 39.8 30, –78, 33
L cuneus 19 278 33.6 –27, –78, 27
IC 20 (0.98)
R Middle Frontal gyrus 10 332 31.2 –30, –93, –6
L superior frontal gyrus 10 278 29.4 30, –90, 5
IC 76 (0.98)
Left lingual gyrus 18 802 41.7 –9, –78, –6
IC 78 (0.98)
R cuneus 18 949 29 3, –87, 21
IC 80 (0.97)
R middle temporal gyrus 22 414 38.4 54, –51, 12
L middle temporal gyrus 22 185 28.1 –54, –51, 9
IC 7 (0.98)
R cuneus 17 855 54.4 3, –84, 6
IC 43 (0.98)
R calcarine gyrus 30 952 23.2 15, –63, 9
IC 24 (0.97)
R Superior parietal lobule 7 768 25.3 –32, –88, –1
Somatomotor networks
IC 59 (0.98)
R postcentral gyrus 3 240 32.4 63, –15, 27
L postcentral gyrus 3 212 31.4 –60, –18, 33
IC 9 (0.98)
L medial frontal gyrus 6 823 51.9 42, –21, 54
IC 6 (0.97)
Right postcentral gyrus 3 622 39.8 42, –21, 54
IC 10 (0.98)
L precentral gyrus 4 598 39.6 –36, –24, 51
IC 5 (0.98)
R precentral gyrus 6 328 47.4 54, –6, 27
L precentral gyrus 6 288 49.6 –54, –9, 30
IC 74 (0.98)
L SMA 4 553 38.6 0, 0, 48
Cognitive control networks
IC 63 (0.97)
L fusiform gyrus 37 236 35.6 –42, –57, –12
R fusiform gyrus 37 89 28.1 45, –54, –12
IC 65 (0.97)
R inferior frontal gyrus 46 278 30 51, 39, 3
L inferior frontal gyrus 46 203 31.4 –45, 39, 3
IC 28 (0.98)
R inferior frontal gyrus 47 244 47.5 33, 24, –6
L inferior frontal gyrus 47 180 41.6 –33, 24, –6

(continued on next page)

Table 1 (continued)

BA Nv Tmax. Coordinate

IC 89 (0.91)
L supramarginal gyrus 40 293 37.3 –54, –57, 36
R supramarginal gyrus 40 288 38.7 60, –51, 9
IC 35 (0.92)
L precuneus 7 506 46.5 –6, –72, 39
R cingulate gyrus 23 120 39.9 3, –27, 27
IC 21 (0.98)
R middle frontal gyrus 10 332 31.2 33, 54, 12
L superior frontal gyrus 10 278 29.4 –33, 45, 21
IC 47 (0.98)
Cingulate gyrus 23 621 47.4 0, –36, 27
IC 94 (0.97)
R inferior parietal lobule 40 374 34.9 –42, –42, 45
IC 66 (0.98)
R inferior parietal lobule 40 510 41.2 42, −45, 48
IC 34 (0.95)
R inferior frontal gyrus 9 244 32.2 42, 9 30
L middle frontal gyrus 9 180 32.7 –45, 12 30
IC 40 (0.97)
Precuneus 7 661 50.4 0, –60, 48
IC 41 (0.96)
R insula 13 325 41 45, –3, 0
L insula 13 188 33.3 –45, 0, 3
IC 96 (0.96)
R inferior parietal loble 40 200 34.1 57, –30, 24
L inferior parietal loble 40 98 27.9 –60, –36, 24
Default-mode networks
IC 30 (0.93)
Precuneus 7 641 58.2 0, –57, 33
IC 53 (0.98)
L anterior cingulate gyrus 32 742 43.5 –3, 48, 12
IC 69 (0.97)
R medial frontal gyrus 8 443 45.8 3 2042, 45
IC 95 (0.97)
L angular gyrus 40 555 43 –48, –63, 42
IC 84 (0.98)
R angular gyrus 40 443 45.8 51, –60, 39
IC 90 (0.98)
R angular gyrus 39 213 36.1 45, –75, 30
L superior occipital gyrus 19 89 26.6 –36, –81, 30
IC 61 (0.74)
L middle temporal gyrus 22 197 29.3 –57, –42, 0
R inferior frontal gyrus 44 195 32.6 –54, 15 6
IC 12 (0.98)
L precuneus 30 729 57.1 –12, –57, 15
Cerebellar networks
IC 46 (0.97)
L culmen 182 32.2 –24, –42, –24
R culmen 171 33.8 27, –48, –24
IC 88 (0.97)
R declive 870 39.4 30, –75, –24

BA=Brodmannarea;Nv=number of voxels in each cluster; Tmax.=maximum t-statistic
in each cluster; Coordinate = max coordinate (mm) in MNI space, following LPI
convention.

Cognitive control networks
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have dynamic windows that are assigned to every state, thus the num-
ber of observations (subject-specific matrices, and therefore degrees of
freedom in the model) changes with each state (see subject counts per
state shown in Fig. 3B). Examining group differences by state demon-
strates that the observed hyperconnectivity between the thalamus
and sensory ICNs in patients with SZ occurs primarily during states
2 and 3, in which there is greater cortical–subcortical antagonism
and when the sensorimotor networks are highly synchronized. To
depict these relationships visually, we plot thalamic to sensory ICN
hyperconnectivity as a function of each state3s sensory-subcortical
connectivity, computed by averaging dFNC between subcortical re-
gions and sensory ICNs in Fig. 3C, and each state3s average within
sensory network connectivity in Fig. 3D, computed by averaging
the dFNC values between sensory networks. In addition to the thalamus,
dFNC analysis reveals that posterior putamen ICN is the only node among
SC regions in which patients with SZ show hypoconnectivity with
AUD, VIS and SM regions compared to HC; this hypoconnectivity is
also more pronounced in states 2 and 3 where the thalamus shows
hyperconnectivity (Fig. 3C and 3D). Subsequent tests investigating
the association between thalamic hyperconnectivity and putamen
hypoconnectivity revealed that these do not covary across subjects
(r = 0.002 and 0.13 for states 2 and 3 respectively), suggesting dis-
tinct mechanisms.

An examination of the proportion of subject windows assigned to
each state suggests that patients with SZ, in general, spend significantly
more time in relativelymore sparsely connected state 4, and less time in
states 1 and 2 (Fig. 3E). Compared to HC, patients make fewer transi-
tions to states 1 and 2, dwell in these states for much shorter duration,
and make more transitions to states 4 and 5, as well as stay longer in
these states. The dwell time patterns were consistent across all sites
(Fig. S2). Even though patients dwell longer in states 4 and 5, the tha-
lamic and sensory connectivity differences observed in sFNC are not
pronounced during these states. Also, fewer patients transition into
states 1, 2 and 3 compared to healthy controls suggesting variability in
sFNC differences from smaller samples may well be determined by the
probability that they transition into certain states.

To test whether the observed effects were related to wakefulness,
the k-means clustering was repeated for dFNC windows corresponding
to thefirst and second half of scan sessions separately. Consistent results
were obtained regarding both the percent of windows assigned to each
state, as well as in the state-specific group differences observed (albeit
with a reduced strength in observed connectivity differences due to
using 50% of the data), suggesting that the observed differences are
not strongly driven by wakefulness, which would be expected to de-
crease during the scan.

Tests on association between SC nodes and their connectivity to sen-
sory networks revealed that during states 2 and 3, HC demonstrate a
significant negative slope between the thalamus power spectra and its
connectivity to sensory ICNs, meaning that larger low frequency tha-
lamic signal fluctuations are associated with greater anti-correlation
with sensory areas. In contrast, patients show the opposite (state 3) or
reduced (state 2) trend (Fig. 4C). The individual subject values for
state 3 are shown in Fig. 4B. In addition to the thalamus, posterior
putamen also showed group differences in the relationship between
low frequency power and connectivity. In patients, greater low fre-
quency power was associated with stronger putamen–sensory anti-
correlation, however this trend was absent or reversed in states 3,
4, and 5 for healthy controls.

4. Discussion

In this study, we investigated the differences in functional connec-
tivity dynamics during eyes closed resting between HC and SZ patients.
Our analysis suggests that, compared with controls, patients show
(1) hyperconnectivity between the thalamus and sensory networks,
(2) reduced connectivity between auditory, sensorimotor and visual

networks and (3) most pronounced abnormalities during connectivity
states that exhibit cortical–subcortical antagonism and states of in-
creased connectivity within sensory ICNs. Furthermore, the relationship
between thalamic low frequency power and thalamocortical connec-
tivity is altered during these connectivity states in SZ, with patients
showing weak positive connectivity with greater power between
the thalamus and sensory networks while healthy controls show in-
verse relationship between the two.

4.1. Thalamus dysconnectivity in schizophrenia

The observed hyperconnectivity between the thalamus and sensory
ICNs in patients with SZ in sFNC is consistent with and significantly ex-
tends recent reports using seed-based connectivity approaches. By in-
vestigating connectivity of thalamic voxels to non-overlapping cortical
seeds (Woodward et al., 2012), Woodward and colleagues showed
that compared to HC, patients with SZ show stronger connectivity
between the thalamus and motor/somatosensory regions while the
connectivity between the thalamus and prefrontal cortex is lower.
In a recent report using seed-based functional connectivity analysis,
Anticevic and colleagues (Anticevic et al., 2013) demonstrate similar
hyperconnectivity between the thalamus and sensory-motor corti-
ces and hypoconnectivity between the thalamus and prefrontal–
striatal–cerebellar regions in a large sample of patients with SZ. They
also demonstrate interplay between nodes that show hypoconnectivity
with the thalamus and nodes that demonstrate hyperconnectivity with
the thalamus: In both healthy controls and patients with SZ, subjects
that showed the lowest thalamo-prefrontal-cerebellar coupling were
the ones that showed the highest thalamo-sensory-motor coupling
and the strength of this coupling was much weaker in patients com-
pared to controls. In our static FNC results, we replicate this finding
(Fig. S3A) and in addition show that couplingwithin sensory-motor re-
gions and cortical–subcortical antagonism co-occurs with this thalamic
hyperconnectivity (Fig. S3B). Investigations of structural connectivity
support these findings. Marenco and colleagues have shown higher
total structural connectivity between the thalamus and sensory motor
regions along with lower structural connectivity between the thalamus
and prefrontal cortex using diffusion tensor imaging data (Marenco
et al., 2011).

In addition to the thalamus hyperconnectivity, our sFNC results also
suggest hypoconnectivity between AUD, VIS and SM ICNs in patients.
This, apparently novel, finding is present in data from almost all sites,
suggesting a robust and reproducible effect that should be explored in
future work. The identification of this group difference, along with con-
nectivity differences related to subcortical areas, speaks to the strength
of our whole-brain, data-driven approach, which is not limited by the
selection of specific seeds or regions of interest.

Although stationary analyses of FC do reveal significantly altered
connectivity patterns in patients with SZ, it is critical to determine
whether these differences persist throughout time, regardless of the
mental activity in which subjects are engaged, or arise only during cer-
tain brain states. Using a dynamic analysis based on sliding windows
and k-means clustering, we identified five different connectivity pat-
terns (see Fig. 3), and found that the thalamus hyperconnectivity in pa-
tients is primarily observed in states that depict cortical–subcortical
antagonism along with stronger connectivity within sensory ICNs. This
antagonismbetween cortical and subcortical regions has been observed
during descent to sleep, alongwith a breakdown of connectivity among
default-mode regions (Larson-Prior et al., 2009; Spoormaker et al.,
2010) with an increase in functional modularity (Boly et al., 2012). Sim-
ilar functional connectivity states have been associated with slowing of
EEG oscillations in simultaneous EEG–fMRI recordings (Allen et al.,
2013).We speculate that during unconstrained state of eyes closed con-
dition, connectivity patterns in state 2 might correspond to the descent
into light sleep or drowsiness.

306 E. Damaraju et al. / NeuroImage: Clinical 5 (2014) 298–308



4.2. Advantages of a dynamic approach

The consistency of observed static connectivity differences or lack
thereof between groups across independent studies could well be at-
tributed to differences in the mental states during which subjects are
scanned. In our multi-site study, patients with SZ spent significantly
longer duration in weakly connected state 4 and tended to make
fewer transitions to states that show cortical–subcortical antagonism;
group differences in transitions show remarkable consistency across
sites (see Fig. S2). Whether the observed differences in dwell times
across states or the differences in connectivity strengths in a given
state are more critical needs to be determined.

Given that the resting state data were collected in eyes closed state,
one could argue that the observed sFNC group differences might be
driven by differences in wakefulness between groups. Investigating
these FC differences dynamically makes this less problematic as group
differences in connectivity are computed from similar connectivity
states obtained from data-driven clustering assignment. Also these
state specific functional connectivity differences were prevalent during
both halves of the rest scan suggesting that the observed differences
may not be explained just by differences in wakefulness.

Furthermore, it has been suggested that functional connectivity
measures computed as statistical association between networks over 5
or more minutes stabilize (Van Dijk et al., 2010) and follow anatomical
connectivity (Deco et al., 2011). This measure of average connectivity,
although useful, might not be enough to fully characterize the dynami-
cally changing association between networks which is thought to be
critical to process, coordinate, integrate and respond to internal and ex-
ternal stimuli (Hutchison et al., 2013). In the current analysis, the ob-
served hypoconnectivity of putamen ICN with sensory ICNs in patients
ismore apparent in dynamic analysis and is not significant in sFNC anal-
ysis as this effect is specific to certain states.

4.3. Limitations and future directions

4.3.1. Future directions
The thalamus is a crucial node involved in transmitting, processing,

communicating and integrating neuronal signals and composed of ana-
tomically distinct sub-nuclei with different functional properties (Byne
et al., 2009). Recent functional imaging studies reporting thalamo-
cortical informational flow disruptions in patients with SZ have used ei-
ther anatomically predefined ROI3s within the thalamus (for example
medio-dorsal nucleus ROI inWelsh et al., 2010) or data driven clustering
of voxelswithin the thalamus based on their connectivity (Anticevic et al.,
2013; Woodward et al., 2012) to further localize the perturbation within
the thalamus. In our group ICA framework, the thalamus manifests as a
single ICN and further localization of the observed disconnectivity in the
thalamus can provide greater insights into the observed connectivity
differences.

Also patients with SZ have been shown to have deficits in thalamic
reticular nucleus neurobiology which plays an important role in top
down processes such as attentional modulation as well as bottom up
processes such as sensory gating and generation of sleep spindles
(brief bursts of 12–16 Hz oscillations in EEG) during descent to sleep
(Ferrarelli and Tononi, 2011). Additional experiments using simulta-
neous EEG–fMRI may help us understand what processes the observed
state-specific connectivity differences in patients correspond to.

4.3.2. Limitations
Although we partially replicate the whole brain dynamic connectiv-

ity patterns observed in our earlier study performed on healthy controls
(Allen et al., 2012), it is still unclear whether the observed connectivity
patterns are of neural origin, or whether they are merely spurious
patterns induced by non-neural sources. Although recent evidence
from animals and humans has demonstrated links between FC dynam-
ics and neural activity (Pan et al., 2013) as well as FC dynamics and

behavioral variability (Fox andRaichle, 2007), reports have alsohighlight-
ed the pitfall of over-interpreting fluctuations in FC as having a neural or-
igin, when in fact these fluctuations can arise from basic BOLD signal
properties (Handwerker et al., 2012; Hutchison et al., 2013; Keilholz
et al., 2013). There is perhaps less concern for spuriousfindings in the cur-
rent work due to ourmultivariate clustering approach, whichwe show in
a control analysis using synthetic data where ICN time courses have been
phase randomized in the Fourier domain. The phase randomized data
yielded cluster centroids that did not have any modular structure, sug-
gesting that the observed structure in connectivity patterns requires in-
tact phase relationships across different nodes of the brain (Fig. S4 and
Supplementary methods S2). Notably, this is not the case in univariate
analyses that usemeasures of correlation variability (such as the standard
deviation or Fourier power) as proxies for dynamics (Handwerker et al.,
2012; Keilholz et al., 2013).

Recent neuroimaging studies have highlighted the importance of
controlling for small micromovements of subjects3 heads during the
scan session, as such movements are shown to influence the functional
connectivity metrics differently with distance between nodes (Power
et al., 2012). In lieu of these concerns, the sFNC analysis was repeated
with select few subjects that had a mean framewise displacement of
less than 0.2 mm, and the dFNC analysis was performed on select
windows after discarding any dynamic window segment that had a
micromovement greater than 0.5 mm. In both analyses, the group dif-
ferences in sFNC (Fig. S5), the centroids of clustered dFNC states as
well the differences in dwell times in each state remained similar to
the results obtained using all of the data (Fig. S6).

The patients with SZ were medicated andmany have a history of al-
cohol and drug abuse, both of whichmight have an impact on observed
group differences. Although the observed group differences in connec-
tivity remain significant even after regressing out chlorpromazine
equivalence scores of current medication from patient group, the effect
of differentmedications cannot be equated as the underlyingmechanism
of the typical and atypical antipsychotics is quite different. Furthermore,
long termeffects ofmedication cannot be accounted for given the known
impact of these medications on brain structure (Moncrieff and Leo,
2010) although regressing out duration of illness as a proxy did not
have any impact on observed differences. Similar analysis on data from
non-medicated first episode SZ patients would provide better insights
into the primary causes of observed disturbances in FNC.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2014.07.003.
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