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SIGN PATTERNS OF J-ORTHOGONAL MATRICES

by

CAROLINE PARNASS

Under the Direction of Frank J. Hall, PhD and Zhongshan Li, PhD

ABSTRACT

This thesis builds upon the results in “G-matrices, J-orthogonal matrices, and their sign

patterns”, Czechoslovak Math. J. 66 (2016), 653-670, by Hall and Rozložńık. Some general

results about the sign patterns of J-orthogonal matrices are proved, including about block

diagonal matrices. It is shown that every full 4× 4 sign pattern allows J-orthogonality and

as a result that, for n ≤ 4, all n × n full sign patterns allow a J-orthogonal matrix as well

as a G-matrix. The 3× 3 sign patterns of the J-orthogonal matrices which have zero entires

are also characterized.

INDEX WORDS: Qualitative matrix theory, J-orthogonal matrix, Sign pattern matrix,

Exchange operator
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1 Introduction

The goal of this thesis is to study and characterize J-orthogonal matrices of certain or-

ders and classes and their sign patterns. This introduction will familiarize the reader with

the basic concepts of J-orthogonality and sign patterns. J-orthogonal matrices have been

studied in many contexts such as group theory and generalized eigenvalue problems. In

the recent decades and particularly in numerical mathematics, a class of problems appeared

where the scalar products were indefinite and involved J-orthogonal matrices. Although

J-orthogonality has many numerical connections, this thesis has more of a combinatorial

matrix theory point of view, building on the results in [10]. The topic of sign pattern matri-

ces originated with economist Paul Samuelson [12] in response to the need to solve problems

given only the signs of entries in a given matrix. Since that time, sign pattern matrices have

found new applications in areas such as communication complexity, neural networks, and

chemistry [8].

Following [6], we say that a real matrix A is a G-matrix if A is nonsingular and there

exist nonsingular diagonal matrices D1 and D2 such that

A−T = D1AD2

where A−T denotes the transpose of the inverse of A. Now, denote by J a diagonal (sig-

nature) matrix whose diagonal entries are ±1. Then a real nonsingular matrix Q is called

J-orthogonal if

Q−T = JQJ,

or equivalently if

QTJQ = J.

Thus we can see the close relationship that G-matrices and J-orthogonal matrices have, since

every J-orthogonal matrix is a G-matrix with D1 = D2 = J . On the other hand, as shown
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in [10], every G-matrix can be transformed into a J-orthogonal matrix.

Definition 1.1. We say that two real matrices A and B are positive-diagonally equivalent

if there exist diagonal matrices D1 and D2 with all positive diagonal entries such that B =

D1AD2.

Theorem 1.2. [10, Theorem 2.6] A matrix A is a G-matrix if and only if A is positive-

diagonally equivalent to a column permutation of a J-orthogonal matrix.

Hence, much discussion of J-orthogonal matrices also relies on properties of G-matrices.

A sign pattern matrix (or sign pattern) is a matrix with entries in the set {+,−, 0}. A

sign pattern is called full if it has no 0 entries. For a real matrix B, the sign pattern sgn(B)

is the matrix obtained by replacing each positive (respectively, negative, zero) entry of B

with + (respectively, −, 0). For example, given

B =

 −3 0

2 1

 , sgn(B) =

 − 0

+ +

 .
Given an m× n sign pattern A, the sign pattern class or qualitative class of A is

Q(A) = {B ∈Mm,n(R) : sgn(B) = A}.

For convenience of notation, we can say for a real matrix C that Q(sgn(C)) = Q(C). The

set of all n × n sign pattern matrices is denoted Qn. A sign pattern matrix P is called a

permutation pattern (generalized permutation pattern) if exactly one entry in each row and

column is equal to + (+ or −). Just as for real matrices, we say P TAP is permutationally

similar to A if A ∈ Qn and P is a permutation pattern of order n. A signature pattern is

a diagonal sign pattern matrix, each of whose diagonal entries is + or −. If S1 and S2 are

n× n signature patterns and A,B ∈ Qn, then we say that B is signature equivalent to A if

B = S1AS2.

The next theorem provides some easily proved properties of J-orthogonal matrices.
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Theorem 1.3. (i) For a fixed signature matrix J , the set of all J-orthogonal matrices is a

multiplicative group, which is also closed under transposition and signature equivalence.

(ii) The direct sum of square diagonal blocks A11, . . . , Akk is a J-orthogonal matrix if and only

if each diagonal block Aii is a Ji-orthogonal matrix, where Ji is the corresponding diagonal

block of J .

(iii) The Kronecker product of Ji-orthogonal matrices is a J-orthogonal matrix with J equal

to the Kronecker product of the Ji’s.

(iv) If Q is J-orthogonal and P is a permutation of the same order, then P TQP is J1-

orthogonal with J1 = P TJP .

If P is a property referring to a real matrix, we say that a sign pattern A requires P if

every matrix in Q(A) has property P, and we say that A allows P if some matrix in Q(A)

has property P.

One property of real matrices of concern to this thesis is that of singularity. If every

matrix B ∈ sgn(A) is singular, then A is said to be sign singular. If A = [aij] is an n×n sign

pattern matrix, then a (simple) cycle of length k (or a k-cycle) in A is a formal product of the

form γ = ai1i2ai2i3 . . . aiki1 , where each of the elements is nonzero and the indices i1, i2, . . . , ik

are distinct. A composite cycle γ in A is a product of simple cycles, say γ = γ1γ2 . . . γm,

where the index sets of the γi’s are mutually disjoint. If the length of γi is li, then the length

of γ is
∑m

i=1 li. It is known that an n× n sign pattern matrix A is sign singular if and only

if A has no composite cycle of length n.

Of course, any orthogonal matrix is also J-orthogonal with J = I. One question that

has been explored in the past is what sign patterns allow orthogonality. We denote by POn

the set of all n× n sign patterns that allow orthogonality. A slightly more general question

is which sign patterns allow J-orthogonality. Of particular interest are sign patterns that

allow J-orthogonality but to not allow orthogonality. We let Jn denote the set of all sign

patterns of the n× n J-orthogonal matrices (for various possible J). We also denote Gn to

be the set of all n × n sign patterns that allow a G-matrix. Notice that if A ∈ Jn, then A
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cannot be sign singular.

The following result gives some straightforward properties of the set of J-orthogonal

matrices.

Theorem 1.4. [10, Lemma 6.3] The set Jn is closed under the following operations:

(i) negation;

(ii) transposition;

(iii) permutation similarity;

(iv) signature equivalence.

The use of these operations yields “equivalent” sign patterns, which will be referenced

throughout the thesis.

With the above notations, we have an immediate consequence of Thorem 1.2.

Theorem 1.5. [10, Theorem 4.3] The sign patterns in Gn are exactly the column permuta-

tions of the sign patterns in Jn.

Theorem 1.5 can be paraphrased as follows: Gn = JnPn, where Pn is the set of all n× n

permutation patterns. Observe that GTn = Gn, J T
n = Jn, and PT

n = Pn. Hence, by taking

the transpose on both sides in the equation Gn = JnPn, we obtain Gn = PnJn, which is the

content of the next theorem.

Theorem 1.6. The set of all n× n sign patterns that allow a G-matrix is the same as the

set of all row permutations of the n× n sign patterns allowing J-orthogonality.

In fact, we can generalize this result as follows:

Theorem 1.7. The set of all n× n sign patterns that allow a G-matrix is the same as the

set of all permutation equivalences of the n× n sign patterns allowing J-orthogonality.

Proof. From Theorem 1.5, we have Gn = JnPn. Thus, it suffices to show that JnPn =

PnJnPn. Since the identity sign pattern is in Pn, obviously JnPn ⊆ PnJnPn. To show the
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reverse inclusion, let P1QP2 ∈ PnJnPn, where P1 and P2 are permutation patterns and Q

allows J-orthogonality. By Theorem 1.4 we know P1QP
T
1 allows J-orthogonality, and hence

P1QP2 = (P1QP
T
1 )(P1P2) ∈ JnPn.

Let A be an n× n sign pattern matrix. From [10], the very important fundamental sign

potentially J-orthogonal (SPJO) conditions are that there exists a (+,−) signature pattern

J such that

ATJA
c←→ J (1)

and

AJAT c←→ J, (2)

where
c←→ denotes (generalized) sign pattern compatibility.

These are necessary conditions for A ∈ Jn. If these conditions do not hold, then A 6∈ Jn.

When J = I, we get the normal SPO conditions for orthogonal matrices, see for example

[4]. The SPJO conditions are not sufficient for an n × n sign pattern matrix to allow J-

orthogonality, as illustrated in [10].

Observe that ATJA and AJAT are symmetric generalized sign pattern matrices. So,

to verify the SPJO conditions we need only to find a J which fulfills the upper-triangular

part of the compatible conditions. Let J = diag(ω1, . . . , ωn). Note that (1) and (2) may be

restated as
n∑

k=1

ωkakiakj
c←→ δijωj for all i, j (3)

and
n∑

k=1

ωkaikajk
c←→ δijωj for all i, j. (4)

(With an n× n (+,−) sign pattern A, for i = j, (3) and (4) automatically hold for any J .)

In [10], the following important result was proved.

Theorem 1.8. [10, Theorem 6.11] For all n ≥ 1, each n×n full sign pattern A satisfies the

SPJO conditions.
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If we allow zero entries, then Theorem 1.8 may fail. For example, an n× n sign pattern

A with a zero column does not satisfy ATJA
c←→ J and an n×n sign pattern A with a zero

row does not satisfy AJAT c←→ J , for any signature pattern J .

In Section 2, a number of other general results on sign patterns are proved and used in

subsequent sections. The 3 × 3 sign patterns of the J-orthogonal matrices which have zero

entries are characterized in Section 3. In Section 4 it is shown that all 4×4 full sign patterns

allow J-orthogonality. Important tools in this analysis are Theorem 2.2 on the exchange

operator and Theorem 3.2 on the characterization of J-orthogonal matrices in the paper [11]

by Nick Higham.

2 Block Upper Triangular Matrices and Sign Patterns

Definition 2.1. An n × n matrix A that contains an s × (n − s) zero submatrix for some

integer 1 ≤ s ≤ n− 1 is said to be partly decomposable. If no such submatrix exists, then A

is fully indecomposable.

The following structural result of G-matrices was established in [10].

Theorem 2.2. [10, Theorem 2.1] Let A be a nonsingular real matrix in block upper triangular

form

A =


A11 . . . A1m

. . .
...

0 Amm

 ,
where all the diagonal blocks are square. Then A is a G-matrix if and only if each Aii

(i = 1, . . . ,m) is a G-matrix and all the strictly upper triangular blocks Aij are equal to 0.

Furthermore, if A is a G-matrix that has a row (or a column) with no 0 entry, then A is

fully indecomposable.
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Example 2.3. Let

A =



0 + + 0

+ + + +

+ + + +

0 + + 0


.

Notice that A is permutationally equivalent to the sign pattern



+ + + +

+ + + +

0 0 + +

0 0 + +


,

which by Theorem 2.2 does not allow a G-matrix. Hence, A does not allow a J-orthogonal

matrix. The same holds for any similar n× n sign pattern.

Using the result given in Theorem 1.7, we give the following generalization of Threom 2.2.

Theorem 2.4. Let A be an n×n sign pattern matrix, and P and Q be permutation patterns

such that PAQ has the block upper triangular form

PAQ =


A11 . . . A1m

. . .
...

0 Amm

 ,

where all the diagonal blocks are square. If A ∈ Jn, then PAQ ∈ Gn, each Aii (i = 1, . . . ,m)

allows a G-matrix, and all the strictly upper triangular blocks Aij are equal to 0. If PAQ /∈

Gn, then A /∈ Jn.

We note that when the sign pattern A in Theorem 2.4 is not sign singular, such a

PAQ block upper triangular form where specifically the square diagonal blocks are fully

indecomposable, is always possible [2, Theorem 4.2.6].

7



Of specific interest is the following.

Theorem 2.5. If A is an n×n sign pattern matrix with exactly n+ 1 nonzero entries, then

A /∈ Jn.

Proof. If A has no composite cycle of length n then of course A /∈ Jn because A is sign

singular. If A does have a composite cycle of length n, then for some permutation sign

pattern P , the permutation equivalence AP has no zero diagonal entries and exactly one

nonzero off-diagonal entry. By Theorem 2.2, AP /∈ Gn. Hence, by Theorem 2.4, we have

A /∈ Jn.

Notice that the results from Theorem 1.5 can also be applied to sign patterns.

Theorem 2.6. Let the n× n sign pattern matrix be the direct sum

A =


A11 0

. . .

0 Amm

 ,

where all the diagonal blocks are square. Then A allows a J-orthogonal matrix if and only if

each Aii (i = 1, . . . ,m) allows a J-orthogonal matrix.

Remark 2.7. The Kronecker product of sign patterns which allow a J-orthogonal pattern

also allows a J-orthogonal matrix. For a fixed sign pattern matrix J , a product of J-

orthogonal matrices can produce a different sign pattern allowing a J-orthogonal matrix for

the same J .

Observe that any generalized permutation pattern allows orthogonality (and indeed J-

orthogonality with J = 1), since if B is a generalized permutation matrix, then BT IB =

BTB = I. Hence we have another result:

Theorem 2.8. If A is an n× n generalized permutation sign pattern, then A ∈ Jn.
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The following structural result can be of general use.

Theorem 2.9. Suppose that B is an n× n real nonsingular matrix, and suppose that B is

both J1-orthogonal and J2-orthogonal, where J1 = diag(Ip1 ,−Iq1), J2 = diag(Ip2 ,−Iq2), and

J1 6= J2. Then it follows that

B =


B11 0 B13

0 B22 0

B31 0 B33

 ,

where the partitioning of B results from the partitioning of the matrix J2J1.

Proof. Since the matrix B is J1-orthogonal, from BTJ1B = J1 we have that J1B = B−TJ1.

Similarly, we can obtain BJ2 = J2B−T . These two identities give (J2J1)B = B(J2J1). Notice

that J2J1 = diag(Imin(p1,p2),−Imax(p1,p2)−min(p1,p2), Imin(q1,q2)). We partition B using the same

dimensions as J2J1 to get

B =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 .
Equating the blocks of (J2J1)B = B(J2J1) forces B12 = B21 = B23 = B32 = 0.

Remark 2.10. Let P be the permutation matrix such that J̃ = P (J2J1)P
T = diag(Ip,−Iq),

where p = min(p1, p2) and q = max(p1, p2)−min(p1, p2). Using this permutation matrix P ,

the matrix B is permutationally similar to the block diagonal matrix

B̃ =


B11 B13 0

B31 B33 0

0 0 B22


that is J̃-orthogonal, satisfying B̃T J̃B̃ = J̃ .

9



Corollary 2.11. If A is an n×n full sign pattern matrix, then there does not exist B ∈ Q(A)

that is both J1-orthogonal and J2-orthogonal, where J1 6= J2.

Example 2.12. Given the sign pattern

A =


+ − −

+ + −

+ − −

 ,

there are two possible choices for J that satisfy the SPJO conditions, namely J1 = diag(1, 1,−1)

and J2 = diag(1,−1,−1).

For d > 1√
2
, the real matrix


1 −1 −1

d 1
2d

−2d2−1
2d

d − 1
2d
−2d2+1

2d

 ∈ Q(A)

is J1-orthogonal. For example, if d = 1, then

B =


1 −1 −1

1 1/2 −1/2

1 −1/2 −3/2

 ∈ Q(A)

satisfies BTJ1B = J1.

On the other hand, for j > 1√
2
, the real matrix


2j2+1
2j

−2j2−1
2j

−1

1
2j

1
2j

−1

j −j −1

 ∈ Q(A)

10



is J2-orthogonal. For example, if j = 1, then

B =


3/2 −1/2 −1

1/2 1/2 −1

1 −1 −1

 ∈ Q(A)

satisfies BTJ2B = J2.

In the above example, the two signature matrices used are equivalent (though not all

the resulting J-orthogonal matrices are equivalent). In the next example, we exhibit the

property with non-equivalent signature matrices in the case of two sign patterns.

Example 2.13. Consider the 4× 4 all + sign pattern matrix. This pattern is J-orthogonal

with the two non-equivalent signature matrices J1 = diag(1, 1, 1,−1) and J2 = diag(1, 1,−1,−1):

A1 =
1

3



4 1 1 3

1 4 1 3

1 1 4 3

3 3 3 6


is J1-orthogonal,

A2 =
1

3



4 1 2 2

1 4 2 2

2 2 4 1

2 2 1 4


is J2-orthogonal.

11



Also consider the sign pattern

A =



+ + + + +

+ + + + +

+ + + + +

+ + − + +

+ + + + +


.

Let J1 = diag(1, 1, 1− 1,−1) and J2 = diag(1, 1, 1, 1− 1). Then A1, A2 ∈ Q(A) and

A1 =
1

106



203 97 158 85 239

97 203 158 85 239

202 202 46 118 242

35 35 −2 117 1

281 281 202 161 429


is J1-orthogonal

A2 =
1

81



8 89 103 64 127

89 8 103 64 127

149 149 106 58 229

20 20 −26 79 34

155 155 163 106 304


is J2-orthogonal.

An interesting question is the following: Is it true that whenever a square full sign pattern

A and a signature pattern J satisfy the SPJO conditions, then A allows J-orthogonality (for

this particular J)? That the answer is no is seen in [4, Example 3.8] where the 6× 6 pattern

is SPO but is not in PO6. However, specifying the ∗ entries as +, this pattern is in J6, as

shown as follows.
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Example 2.14. Let

A =



+ + + + + +

+ + + + + −

+ + + + − +

+ + + + − −

+ + − − + +

+ − + − + +


and let J = diag(1,−1,−1,−1,−1,−1). Then we produced the following decimal approxi-

mation of a matrix B ∈ Q(A) such that BTJB = J to within four decimal places:

B =



1.8457 0.1748 1.2301 0.5382 0.0023 0.7572

0.4467 0.4877 0.5807 0.5934 0.3467 −0.3900

1.2188 0.1332 0.7813 0.7961 −0.0450 1.1053

0.1207 0.4068 0.1700 0.0456 −0.8983 −0.1055

0.0121 0.7684 −0.0923 −0.4680 0.2659 0.3339

0.8408 −0.1379 1.2361 −0.2876 0.0113 0.2776


Thus, the question of whether a full sign pattern satisfying the SPJO conditions for some J

implies J-orthogonality is still open.

3 Characterization of sign patterns in J3 with 0 entries

We want to identify all those 3× 3 sign patterns with 0 entries which allow J-orthogonality.

To organize our argument, we consider sign patterns with varying numbers of zero entries.

Note that all 3× 3 full sign patterns allow J-orthogonality [10].

Sign patterns with 9, 8, or 7 zero entires. Any 3 × 3 sign pattern with only 2, 1

or 0 nonzero entires cannot contain a composite cycle of length 3; thus, any such pattern is

sign singular and hence cannot allow J-orthogonality, since if B is J-orthogonal, then B is

13



nonsingular.

Sign patterns with 6 zero entries. Note that a 3 × 3 sign pattern with exactly

3 nonzero entries must not be sign singular in order to allow J-orthogonality, so we only

consider such sign patterns which have a composite cycle of length 3, namely the 3 × 3

generalized permutation patterns. By Theorem 2.8, these patterns allow J-orthogonality.

Thus, the sign patterns in J3 with exactly 6 zero entries are precisely the 3× 3 generalized

permutation patterns.

Sign patterns with 5 zero entries. That no 3× 3 sign pattern with exactly five zero

entries allows a J-orthogonal matrix simply follows from Theorem 2.5.

Sign patterns with four zero entries. In order to determine the sign patterns with

four zero entries that allow J-orthogonality, we can systematically consider the number of

zero entries on the main diagonal. Let ? denote a + or − entry. Note that if we require

all nonzero entries to occur on the main diagonal, then, up to equivalence, there are three

patterns to consider. Two of these patterns


? ? ?

0 ? 0

0 0 ?

 ,

? ? 0

0 ? ?

0 0 ?


do not satisfy the SPJO conditions for any J , while it can be seen that


? ? 0

? ? 0

0 0 ?


does allow J-orthogonality.

Now suppose there is one zero entry on the main diagonal. Then we may permute it

to the (1, 1) position. By systematic inspection it can be seen that no pattern of this form

14



allows J-orthogonality.

Now, if there are two zero entries on the main diagonal, then up to equivalence there is

one pattern of this form that allows J-orthogonality:


? 0 ?

? 0 ?

0 ? 0

 .
Finally, with three zero entries on the main diagonal, there is no pattern that allows

J-orthogonality.

Sign patterns with three or two zero entries. We can conduct a similar investigation

of the sign patterns by systematically inspecting the possibilities. Once again the SPJO

conditions come into play. In this way, we find that there is no 3 × 3 sign pattern with

exactly three or two zero entries that allows J-orthogonality.

Sign patterns with one zero entry. In this case, we first eliminate from consideration

all those sign patterns which are sign potentially orthogonal, since for n = 3, every SPO

pattern allows orthogonality [1].

So suppose A is a 3 × 3 non-SPO pattern with exactly one zero entry. If the zero is on

the main diagonal, we permute it to the (3, 3) position. Suppose first that the inner product

of the first two columns is not 0 or #. Since they are nonzero, these columns are either the

same or negative of each other. So we can multiply on the left and right by suitable signature

patterns so that all the entries in the first two columns are +. We can also multiply the

third column by − if necessary to obtain the form

A =


+ + +

+ + ?

+ + 0

 ,
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leaving two possible patterns up to equivalence. Note that if ? = −, then A does not

satisfy the SPJO conditions for any J . On the other hand, if ? = +, then we can obtain a

J-orthogonal matrix of this form; for example


2 1

√
2

2√
6

2√
6

√
3

1√
3

2√
3

0


allows J-orthogonality with J = diag(1,−1,−1).

Similarly, if the first and third columns are not SPO, then by signature equivalence we

can obtain the form 
+ + +

+ ? +

+ ? 0

 ,
while if the second and third columns are not SPO, we obtain


+ + +

? + +

? + 0

 .

Upon inspection we find that no matrix of the above forms (except for all the ? equal to +,

as described above) allows J-orthogonality.

Now suppose that the zero entry is off the main diagonal, and without loss of generality,

permute the zero to the (2, 3) position. Then similar to the above discussion, we obtain three

possible forms: 
+ + +

+ + 0

+ + ?

 ,


+ + +

+ ? 0

+ ? +

 ,


+ + +

? + 0

? + +

 .
Of these possible patterns, four allow J-orthogonality. They are listed below along with
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examples of J-orthogonal matrices with those sign patterns:

A =


+ + +

+ + 0

+ + +

 ;

B =


4√
3

2√
3

√
3

1√
3

2√
3

0

2 1 2

 ∈ Q(A) is J-orthogonal with J =


1 0 0

0 −1 0

0 0 −1



A =


+ + +

+ + 0

+ + −

 ;

B =


1 1

2
1
2

1√
3

2√
3

0

1√
3

1
2
√
3
−
√
3
2

 ∈ Q(A) is J-orthogonal with J =


1 0 0

0 −1 0

0 0 1



A =


+ + +

+ − 0

+ + +

 ;

B =


1 2 2

2√
5
− 1√

5
0

2√
5

4√
5

√
5

 ∈ Q(A) is J-orthogonal with J =


1 0 0

0 1 0

0 0 −1
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A =


+ + +

− + 0

+ + +

 ;

B =


1 1 1

− 1√
2

1√
2

0

1√
2

1√
2

√
2

 ∈ Q(A) is J-orthogonal with J =


1 0 0

0 1 0

0 0 −1

 .

These are all of the non-SPO 3 × 3 sign patterns, up to equivalence, with exactly one

zero entry which allow J-orthogonality.

We have thus proved the following result.

Theorem 3.1. Up to equivalence, the sign patterns in J3 with at least one zero entry are


+ + 0

+ ? 0

0 0 +

 ,


+ 0 +

+ 0 ?

0 + 0

 ,


+ + +

+ + +

+ + 0

 ,


+ + +

+ + 0

+ + +

 ,


+ + +

+ + 0

+ + −

 ,


+ + +

+ − 0

+ + +

 ,


+ + +

− + 0

+ + +

 ,
as well as the 3 × 3 generalized permutation sign patterns and the 3 × 3 SPO sign patterns

with one zero entry, where ? denotes a + or − entry.

4 The 4× 4 full sign pattern case

An initial investigation of the question of whether the full n× n sign patterns always allow

J-orthogonality was begun in [10], and for n ≤ 3 it was shown to be true.
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Remark 4.1. It was observed in [4] that for n ≤ 4, the SPO patterns are the same as the

sign patterns in POn, and that this is also the case for full sign patterns of order 5 (see [1]

and [15]). So, regarding the above question with n ≤ 5, we need only consider non-SPO

patterns.

In this section, we establish that every 4 × 4 full sign pattern allows J-orthogonality.

As observed above, for n ≤ 4, the SPO patterns are the same as the patterns in POn.

Therefore, since every orthogonal matrix is also J-orthogonal, we need only consider those

patterns which are not sign potentially orthogonal. Since J4 is closed under transposition,

we consider those patterns which are not sign potentially column orthogonal.

Any given full sign pattern can be multiplied on the left and right by signature patterns

so that it has the form 

+ + + +

+

+

+


.

Moreover, since we are considering sign patterns which are not sign potentially column

orthogonal and which have no zero entries, this means that two columns must be the same.

Thus we can use permutation similarity and signature equivalence to reduce to the case



+ + + +

+ +

+ +

+ +


, (5)

which leaves us with 26 = 64 distinct sign patterns to consider. We can reduce this number
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of cases by noting that



+ + + +

+ + + −

+ +

+ +


and



+ + + +

+ + − +

+ +

+ +


are equivalent, since we can switch the third and fourth columns, and simultaneously switch

the third and fourth row. Now, using (5) as our template, there are three possibilities

to consider, depending on the sign of the (2, 3) and (2, 4) entries. We inspect each case

individually.

4.1. If the (2, 3) and (2, 4) entries are both +

There are 16 possible ways to fill the remaining entries from the set {+,−}. By inspection,

we find that four of these are symmetric staircase patterns and therefore in J4 [10, Theorem

6.2]. A further 2 patterns are permutationally similar to symmetric staircase patterns, so

these too are in J4.

Now consider the non-symmetric staircase pattern

A =



+ + + +

+ + + +

+ + + +

+ + − −


.

If we construct J1 and J2 as in [10, Remark 5.7], then J2 = PJ1P
T where P = [e1, e2, e4, e3].
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Since AP = A, we have A ∈ J4. The transpose of A is also in J4. Additionally,

B =



+ + + +

+ + + +

+ + − −

+ + + +


is permutationally similar to A, so B, BT ∈ J4.

Now consider another non-symmetric staircase pattern

A =



+ + + +

+ + + −

+ + + −

+ + + −


.

Similarly to the above discussion, A and AT allow J-orthogonality with J = diag(+,+,−,+)

and P = [e1, e3, e2, e4], since AP = A. Let S = diag(+,+,+,−) and Q = [e3, e2, e1, e4]. Then

B = QTASQ =



+ + + +

+ + + +

+ + + −

+ + + +


∈ J4; B

T ∈ J4.

There are 3 remaining patterns, up to equivalence, which we still must show are in J4.

We address these patterns further down in Subsection 4.4.
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4.2. If the (2, 3) and (3, 4) entries are both −

In this case there is one staircase pattern

A =



+ + + +

+ + − −

+ + − −

+ + − −


for which, following [10, Remark 5.7], we see that AP = A. So A ∈ J4. Note from A we can

also multiply the third and fourth columns by − and permute the first and second lines to

obtain 

+ + + +

+ + − −

+ + + +

+ + + +


∈ J4. (6)

More matrices in this case can be obtained as follows:

We begin with the staircase pattern

A =



+ + + +

+ + + −

+ + + −

+ + − −


.
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If we compute P as in [10, Remark 5.7], then we find that AP 6= A. But in fact,

AP =



+ + + +

+ − + +

+ − + +

+ − − +


.

So AP ∈ J4. Now we can obtain the pattern

B =



+ + + +

+ + − −

+ + + −

+ + + −


from AP by permutation similarity, so B ∈ J4. If Q = [e1, e2, e4, e3], then QTBQ is another

sign pattern in this subcase that allows J-orthogonality.

Similarly, if we begin with the staircase pattern A =

[
+ + + +
+ + + −
+ + − −
+ + − −

]
, we find that

AP =



+ + + +

+ − + +

+ − − +

+ − − +


∈ J4 (7)

and by permutation similarity, B =

[
+ + + +
+ + − −
+ + − −
+ + + −

]
∈ J4. If Q = [e1, e2, e4, e3], then QTBQ is

another pattern in this subcase that allows J-orthogonality.

We can obtain another pattern in J4 by letting A be the pattern in equation (7), and

letting S = diag(+,−,−,+) and P = [e2, e4, e3, e1]. Then B = P TASP =

[
+ + + +
+ + − −
+ + + +
+ + − +

]
∈ J4,

and permuting the third and fourth lines of B yields another pattern in this subcase.

There are 5 more patterns, up to equivalence, in this subcase still to be determined. They
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will be addressed in Subsection 4.4.

4.3. If the (2, 3) entry is + and the (2, 4) entry is −

The staircase pattern

[
+ + + +
+ + + −
+ + + −
+ + + −

]
can be seen to be in J4 by the process in [10, Example 5.9].

If we take S = diag(+,+,+,−) and P = [e2, e1, e3, e4], then P TASP =

[
+ + + +
+ + + −
+ + + +
+ + + +

]
∈ J4.

We can obtain two more patterns in this subcase from (6) above by taking the transpose

and performing permutation similarity to obtain the patterns



+ + + +

+ + + −

+ + + −

+ + + +


,



+ + + +

+ + + −

+ + + +

+ + + −


.

Up to equivalence, there are 5 unresolved patterns in this subcase, to be addressed in the

next subsection.

4.4. Remaining cases

To this point, there remain 11 unresolved patterns, up to equivalence:

A1 =



+ + + +

+ + − −

+ + − +

+ + + +


, A2 =



+ + + +

+ + + −

+ + − +

+ + + +


, A3 =



+ + + +

+ + + −

+ + + +

+ + − +


,
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A4 =



+ + + +

+ + + +

+ + − +

+ + + −


, A5 =



+ + + +

+ + + +

+ + + −

+ + − +


, A6 =



+ + + +

+ + + +

+ + − +

+ + − −


,

A7 =



+ + + +

+ + − −

+ + − −

+ + + +


, A8 =



+ + + +

+ + − −

+ + − +

+ + + −


, A9 =



+ + + +

+ + + −

+ + − −

+ + − −


,

A10 =



+ + + +

+ + + −

+ + + +

+ + − −


, A11 =



+ + + +

+ + + −

+ + − +

+ + − −


.

To settle most of these remaining sign patterns, we use the following result contained in

[11]. As stated in [11], this decomposition was first derived in [7]; it is also mentioned in

[11] that in a preliminary version of [14] (which was published later) the authors treat this

decomposition in more depth.

Theorem 4.2. [11, Theorem 3.2] We define

J =

 Ip 0

0 −Iq

 , p+ q = n.

Assume also that p ≤ q. Let

B =

 B11 B12

B21 B22


be J-orthogonal with B11 ∈ Rp,p, B12 ∈ Rp,q, B21 ∈ Rq,p and B22 ∈ Rq,q. Then there are
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orthogonal matrices U1, V1 ∈ Rp,p and U2, V2 ∈ Rq,q such that

 UT
1 0

0 UT
2


 B11 B12

B21 B22


 V1 0

0 V2

 =


C −S 0

−S C 0

0 0 Iq−p

 , (8)

where C = diag(ci), S = diag(si) and C2 − S2 = Ip (ci > si ≥ 0). Any matrix B satisfying

(8) is J-orthogonal.

Remark 4.3. In the case n = 4 and J = diag(1, 1,−1,−1), every J-orthogonal matrix B

has a factorization of the form

B =

 B11 B12

B21 B22

 =

 U1 0

0 U2


 C −S

−S C


 V T

1 0

0 V T
2


=

 U1 0

0 −U2


 C S

S C


 V T

1 0

0 −V T
2

 .
For J = diag(1, 1,−1,−1), we can choose suitable 2× 2 orthogonal matrices U1, U2 and

V1, V2, we can generate some 4 × 4 J-orthogonal matrices. However, some sign patterns

are quite difficult to achieve by a product of two 2 × 2 orthogonal matrices and a diagonal

matrix. For a fixed pair V1, V2, the two block rows of the matrix B can be interpreted as two

orthogonal transformations of four vectors in the plane. Thus, the sign pattern will allow

a J-orthogonal matrix only if there exists an orthogonal transformation mapping the four

vectors with the sign pattern of the first block row of the four vectors with the sign pattern

of the second block row. This is clearly not always possible.

Remark 4.4. In the case n = 4 and J = diag(1,−1,−1,−1), every J-orthogonal matrix B

26



has a factorization of the form

B =

 B11 B12

B21 B22

 =


c1u1v1 −s1u1(V2e1)T

−s1v1U2e1 U2

 c1 0

0 I2

V T
2

 , (9)

where u1, v1 ∈ R, U2, V2 ∈ R3,3 are orthogonal and e1 = [1 0 0]T ∈ R3.

It was noted that a given 4× 4 full sign pattern can be multiplied on the left and right

by signature patterns so that it has the form



+ + + +

+

+

+


. (10)

For J = diag(1,−1,−1,−1) this sign pattern essentially leads to the condition u1v1 = 1

due to c1 > 1. Taking u1 = −1 and v1 = −1 we get to the conditions that both U2e1 and

V2e1 should have the sign pattern equal to [+ + +]T . So, given the orthogonal matrices

U2, V2 ∈ R3,3 such that sgn(U2e1) = sgn(V2e1) = [+ + +]T , then there exists a J-orthogonal

matrix of the form (9) with the sign pattern (10). The sign pattern of the lower right diagonal

block is given by the sign pattern of the matrix

U2

 c1 0

0 I2

V T
2 = U2V

T
2 + (c1 − 1)U2e1e

T
1 V

T
2 .

Note that the sign pattern of U2e1e
T
1 V

T
2 is the 3×3 matrix of all +. In addition, for sufficiently

small c1 − 1, the sign pattern of U2

 c1 0

0 I2

V T
2 becomes equal to the sign pattern of the

3× 3 orthogonal matrix U2V
T
2 . This is the way we can generate 3× 3 J-orthogonal matrices

with some prescribed sign patterns of the form (10).
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We can now address some of the sign patterns remaining in our analysis.

We can handle A3 by the approach given in Remark 4.4. Let

U2 =
1

3


2 1 −2

1 2 2

2 −2 1

V2; V2 =
1

7


6 −3 2

3 2 −6

2 6 3

 .

Then the matrix U2V
T
2 has the same sign pattern as the lower right block of the pattern A3.

It can also be verified that the first column of the matrix U2 has all positive entries. Then,

in Remark 4.4, the matrix

B =



2 6
7

√
3 3

7

√
3 2

7

√
3

11
21

√
3 164

147
82
147

− 76
147

16
21

√
3 145

147
146
147

130
147

8
21

√
3 146

147
− 74

147
65
147


is J-orthogonal with respect to J = diag(1,−1,−1,−1). Eight other patterns from the list

of unresolved patterns can be handled by this approach.

Note that A7 is equivalent to the sign pattern



− + − +

+ + + +

+ + + +

+ − + −


.

This pattern can be handled by the approach given in Remark 4.3. We choose

U1 =

 0 −1

1 0

 ,−U2 =

 1 0

0 1

 , V T
1 = −V T

2 =
1√
2

 1 1

1 −1

 ,
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C1 =

 3 0

0 2

 , S1 =

 2
√

2 0

0
√

3

 .
Then, as can be checked, the matrix

B =



−
√

2
√

2 −
√
3√
2

√
3√
2

3√
2

3√
2

2 2

2 2 3√
2

3√
2

√
3√
2
−
√
3√
2

√
2 −

√
2


is J-orthogonal with respect to J = diag(1, 1,−1,−1).

Now, A9 is the only 4×4 full sign pattern that we have not shown to be in J4. To handle

this final case, we need the notion of the exchange operator. Let p and n be positive integers

with p ≤ n. Let B be an n × n matrix partitioned as B =

 B11 B12

B21 B22

 such that B11 is

p × p and is nonsingular. The exchange operator applied to B with respect to the above

partition yields

exc(B) =

 B−111 −B−111 B12

B21B
−1
11 B22 −B21B

−1
11 B12

 .
The following theorem found in [13, Theorem 2.1] and [11, Theorem 2.2] reveals the

close connections between orthogonal matrices and J-orthogonal matrices via the exchange

operator.

Theorem 4.5. Let p and n be positive integers with p ≤ n. Let B be an n × n real matrix

partitioned as B =

B11 B12

B21 B22

 such that B11 is p × p. Let J = diag(Ip,−In−p). If B is

J-orthogonal, then the leading p × p principal submatrix of B is nonsingular and exc(B)

is orthogonal. Conversely, if B is orthogonal and B11 is nonsingular, then exc(B) is J-

orthogonal.

Hence, every J-orthogonal matrix can be constructed from a suitable orthogonal matrix
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using the exchange operator and permutation similarity. This approach can be used to show

that a given full sign pattern allows J-orthogonality for a particular signature matrix J . This

process can be done for hundreds of thousands of “random” rational orthogonal matrices

using MATLAB.

For every full 4 × 4 sign pattern A that satisfies the SPJO conditions for a specific

signature pattern J , we can generate a J-orthogonal matrix in Q(A). In particular, note

that A9 satisfies the SPJO conditions with the signature pattern J1 = diag(+,−,+,−).

With the help of MATLAB running the procedure, for J = diag(1, 1,−1,−1), we obtain the

following J-orthogonal matrix

B =
1

12



8 18 12 10

26 −9 18 −17

20 6 24 −2

14 −15 6 −23


,

which satisfies P TBP = A9 for P = [e1, e3, e2, e4]. It follows that A9 allows a J1-orthogonal

matrix with J1 = P TJP = diag(1,−1, 1,−1), and hence A9 ∈ J4.

We now reach the following conclusion.

Theorem 4.6. Every 4× 4 full sign pattern allows a J-orthogonal matrix.

Combined with known results on full sign patterns of orders at most three, we get the

following result.

Corollary 4.7. For n ≤ 4, every n× n full sign pattern allows a J-orthogonal matrix.

In view of Theorem 1.5, we also have

Corollary 4.8. For n ≤ 4, every n× n full sign pattern allows a G-matrix.

Thus we have the following nice result.

Corollary 4.9. For every n× n full sign pattern A with n ≤ 4, A ∈ Gn iff A ∈ Jn.
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Suppose a full n×n sign pattern A allows a J-orthogonal matrix B ∈ Q(A). Without loss

of generality, we may assume that all the positive entries of J occur at the leading diagonal

entries. By Theorem 4.5, exc(B) is an orthogonal matrix. Observe that exc(exc(B))=B.

Write exc(B) as a product of real Householder matrices Hv1 , . . . , Hvk (where k ≤ n). Replace

each vi with a rational approximation ṽi. Since matrix multiplication and exchange operator

are continuous, we see that when the rational approximations ṽi are sufficiently close to vi,

B̃ = exc(Hṽ1 · · ·Hṽk) is a rational J-orthogonal matrix in Q(A). Thus we have shown the

following interesting result.

Theorem 4.10. Let A be a full n× n sign pattern. If A allows a J-orthogonal matrix, then

A allows a rational J-orthogonal matrix with the same signature matrix J . In particular, if

A allows orthogonality, then A allows a rational orthogonal matrix.

As a consequence, if the n× n full sign pattern A does not allow a rational J-orthogonal

matrix for any signature matrix J , then A does not allow a real J-orthogonal matrix.

5 Concluding remarks

The question of whether every n × n full sign pattern allows a J-orthogonal matrix is still

open. It seems to be a complicated and impressive problem. Even for n = 5 the number

of cases is daunting. Some examples of rational 5 × 5 J-orthogonal matrices are given in

Appendix A. Some other techniques will need to be developed to prove that every full sign

pattern allows J-orthogonality.

This thesis forms the basis for the publication [9].
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Appendix A

This appendix gives some examples of 5× 5 J-orthogonal matrices generated in MATLAB.

The program used is based on the exchange operator. Some random Householder matrices

are generated in order to create an orthogonal matrix to which the exchange operator can be

applied and a signature matrix J is designated. Then the randomly generated J-orthogonal

matrix is checked against some desired sign pattern to determine whether or not it will be

output. This method can be used to generate a large number of J-orthogonal matrices of a

given sign pattern. Thus far, every full 5 × 5 sign pattern that has been checked with this

method has turned out to allow J-orthogonality. However, to check every case is a large

task.

Examples:

28
25

6
25

1
5

1
25

13
25

6
25

37
25

2
5

2
25

26
25

11
25

22
25

2
5

−13
25

31
25

7
25

14
25

−1
5

19
25

22
25

1
5

2
5

1 2
5

1
5


is J-orthogonal with J = diag(1, 1,−1,−1,−1)



25
18

37
126

40
63

31
63

4
9

1
18

121
126

−2
63

−11
63

−2
9

1
9

13
63

−40
63

32
63

−2
9

5
9

11
63

34
63

61
63

−2
9

7
9

19
63

53
63

8
63

8
9


is J-orthogonal with J = diag(1,−1,−1,−1,−1)



88
57

67
57

1
57

1
57

2
57

43
57

58
57

−27
57

−27
57

−34
57

7
19

9
19

18
19

−1
19

−2
19

7
19

9
19

−1
19

18
19

−2
19

14
19

18
19

−2
19

−2
19

15
19


is J-orthogonal with J = diag(1,−1,−1,−1,−1)
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27
16

1
26

1
13

5
26

5
26

1
26

27
26

1
13

5
26

5
26

1
13

1
13

−11
13

5
13

5
13

5
26

5
26

5
13

25
26

−1
26

5
26

5
26

5
13

−1
26

25
26


is J-orthogonal with J = diag(1, 1,−1,−1,−1)



19
18

1
12

5
27

23
108

11
54

1
12

9
8

5
18

23
72

11
36

1
12

1
8

17
18

−1
72

−13
36

1
18

1
12

−4
27

95
108

−25
54

1
3

1
2

4
9

11
18

8
9


s J-orthogonal with J = diag(1, 1,−1,−1,−1)
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