
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-14-2017

Machine Learning Methods for Finding Textual
Features of Depression from Publications
Zhibo Wang
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Wang, Zhibo, "Machine Learning Methods for Finding Textual Features of Depression from Publications." Dissertation, Georgia State
University, 2017.
https://scholarworks.gsu.edu/cs_diss/132

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

METHODS FOR FINDING TEXTUAL FEATURES OF MACHINE LEARNING

DEPRESSION FROM PUBLICATIONS

by

ZHIBO WANG

Under the Direction of Dr. Yanqing Zhang

ABSTRACT

Depression is a common but serious mood disorder. In 2015, WHO reports about 322

million people were living with some form of depression, which is the leading cause of ill health

and disability worldwide. In USA, there are approximately 14.8 million American adults (about

6.7% percent of the US population) affected by major depressive disorder. Most individuals with

depression are not receiving adequate care because the symptoms are easily neglected and most

people are not even aware of their mental health problems. Therefore, a depression prescreen

system is greatly beneficial for people to understand their current mental health status at an early

stage. Diagnosis of depressions, however, is always extremely challenging due to its complicated,

many and various symptoms. Fortunately, publications have rich information about various

depression symptoms. Text mining methods can discover the different depression symptoms

from literature. In order to extract these depression symptoms from publications, machine

learning approaches are proposed to overcome four main obstacles: (1) represent publications in

a mathematical form; (2) get abstracts from publications; (3) remove the noisy publications to

improve the data quality; (4) extract the textual symptoms from publications. For the first

obstacle, we integrate Word2Vec with LDA by either representing publications with document-

topic distance distributions or augmenting the word-to-topic and word-to-word vectors. For the

second obstacle, we calculate a document vector and its paragraph vectors by aggregating word

vectors from Word2Vec. Feature vectors are calculated by clustering word vectors. Selected

paragraphs are decided by the similarity of their distances to feature vectors and the document

vector to feature vectors. For the third obstacle, one class SVM model is trained by vectored

publications, and outlier publications are excluded by distance measurements. For the fourth

obstacle, we fully evaluate the possibility of a word as a symptom according to its frequency in

entire publications, and local relationship with its surrounding words in a publication.

INDEX WORDS: Information retrieval, Text representation, Text mining, Document

summarization, Outlier document detection, Textual feature extraction, Social network,

TextRank, Word2Vec, Latent Dirichlet allocation, One-class SVM, Keyword Extraction,

Depression, Textual symptoms

MACHINE LEARNING METHODS FOR FINDING TEXTUAL FEATURES OF

DEPRESSION FROM PUBLICATIONS

by

ZHIBO WANG

A Dissertation Defense Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2017

Copyright by

ZHIBO WANG

2017

MACHINE LEARNING METHODS FOR FINDING TEXTUAL FEATURES OF

DEPRESSION FROM PUBLICATIONS

by

ZHIBO WANG

Committee Chair: Yanqing Zhang

Committee: Rajshekhar Sunderraman

Saied Belkasim

Ruiyan Luo

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

November 2017

iv

DEDICATION

I dedicate this dissertation to my wife, who supported me each step of the way. Also, my

unreserved gratitude goes to my parents who always encouraged and support all my scholarly

endeavors.

v

ACKNOWLEDGEMENTS

The writing of this dissertation has been one of the most significant academic challenges

I have ever had to face. I would not be able to finish this dissertation without the help of so many

people in so many ways.

 I would like to express my deepest appreciation to my committee chair, Dr. Yanqing

Zhang for his guidance, understanding, patience, and most importantly, his friendship during my

graduate studies at Georgia State. He was always there, listening and encouraging me for both

my study and life.

I would like to gratefully and sincerely thank Dr. Raj Sunderraman, who continually and

convincingly conveyed a spirit of adventure and an excitement in regard to research.

I would like to thank Dr. Saied Belkasim, who patiently corrected my writing and gave

me many valuable suggestions with my research and further work.

I would also like to thank Dr. Ruiyan Luo, for guiding my research for the past several

years and helping me to develop my background in statistics, and public health. I would also

thank Department of Computer Science at Georgia State, especially those members of my

doctoral committee for their input, valuable discussions and accessibility. My research would not

have been possible without their helps.

Finally, and most importantly, I would like to thank my parents, and my family. They

were always supporting me and encouraging me with their best wishes. And a special thank you

to my wife, Ye Cui. She was always there cheering me up and stood by me through the good

times and bad. I appreciate my baby, my little girl Ava Wang for abiding my ignorance and the

patience she showed during my thesis writing. Words would never say how grateful I am to all

v

of you. I consider myself the luckiest in the world to have such a lovely and caring family,

standing beside me with their love and unconditional support.

vii

TABLE OF CONTENTS

DEDICATION.. i

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ... vii

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Challenges for text representation ... 3

1.3 Problem statement... 4

2 RELATED WORK ... 7

2.1 Bag of Words Model ... 7

2.1.1 Stop words removal: .. 8

2.1.2 Stemming ... 8

2.1.3 Term Frequency – Inverse Document Frequency (IF-IDF) 8

2.2 Word2Vec Model... 9

2.2.1 Introduction of Word2Vec CBOW Algorithm ... 10

2.2.2 Sample Outputs of Word2Vec... 11

2.3 Latent Dirichlet Allocation ... 13

viii

2.3.1 Introduction to the Latent Dirichlet Allocation Algorithm 13

2.3.2 Real Examples ... 14

2.4 Support Vector Machine (SVM) .. 14

2.4.1 Introduction of SVM ... 14

2.4.2 Binary SVM ... 15

2.4.3 One-Class SVM ... 16

3 A NOVEL METHOD FOR DOCUMENT SUMMARIZATION USING

WORD2VEC ... 18

3.1 Introduction ... 18

3.2 Overall Framework ... 21

3.2.1 Projecting words to word vectors .. 22

3.2.2 Clustering words as features... 22

3.2.3 Transforming features into feature vectors ... 22

3.2.4 Converting documents to document vectors .. 23

3.2.5 Projecting partitions of document to partition vectors 23

3.2.6 Measuring similarity between documents and features 24

3.2.7 Evaluating similarity between a document partition and features 24

3.2.8 Assessing similarity between documents and document partitions using

distance vectors ... 25

3.2.9 Identifying non-topic related partitions ... 25

ix

4 A TEXT INFORMATION RETRIEVAL METHOD USING AUGMENTED

MATRIX ……………………………………………………………………………………….31

4.1 Introduction ... 31

4.2 Overall Framework ... 32

4.2.1 Generating word-to-topic document vectors .. 32

4.2.2 Deriving word-to-word document vectors .. 32

4.2.3 Construct augmented document vectors .. 33

4.3 Experiments ... 33

5 A DOCUMENT REPRESENTATION METHOD USNG WORD2VEC AND

LATENT DIRICHLET ALLOCATION .. 35

5.1 Introduction ... 35

5.2 Overall Framework ... 38

5.3 Experiments ... 39

6 A HYBRID MACHINE LEARNING METHOD FOR FINDING DEPRESSION

RELATED PUBLICATION BY ELIMINATION OUTLIER PUBLICATIONS 44

6.1 Introduction ... 44

6.2 Text Representation Method .. 46

6.2.1 Word2Vec .. 46

6.2.2 Latent Dirichlet Allocation ... 48

6.2.3 Our Hybrid Method ... 49

x

6.3 One-Class Support Vector Machine (OCSVM) ... 50

6.4 Experiment ... 51

7 A SEMI-SUPERVISED MACHINE LEARNING METHOD FOR

IDENTIFYING TEXTUAL DEPRESSION SYMPTOMS FROM PUBLICATIONS 58

7.1 Introduction ... 58

7.2 Proposed Framework .. 59

7.3 Experiment ... 61

8 EXTRACTING DEPRESSION SYMPTOM WORDS BY TEXTRANK AND

WORD2VEC ... 64

8.1 Introduction ... 64

8.2 Proposed Framework .. 65

8.3 Experiments and Results .. 68

REFERENCE .. 73

xi

LIST OF TABLES

Table 2-1The topics and their keywords discovered from Sarah Palin’s emails by LDA 14

Table 3-1Measurement of similarity between a document and its partition using cosine distance 27

Table 3-2 Classification results under different scenarios using bag-of-words model 28

Table 3-3 Classification results under different scenarios using distributed representation model 28

Table 4-1 Classification results using the new document representation ... 34

Table 5-1 Topic distribution and distance distribution of the example document 40

Table 5-2 Words contained in topic 15 and topic 45 .. 41

Table 5-3 Average 10-fold micro-F1 score of different methods ... 42

Table 5-4 Average 10-fold micro-F1 score of LDA and our method under different number topics 42

Table 6-1average 10-fold micro-f1 score and std. to classify depression abstracts with other data 54

Table 6-2 results of our method and TF-IDF based method to evaluate the outlier detection capability on

different data ... 56

Table 7-1 comparing the precision of the three models to extract 20, 50, 100 keywords 62

Table 7-2 comparing the recall of the three models to extract 20, 50, 100 keywords 62

Table 7-3 comparing the F-score of the three models to extract 20, 50, 100 keywords 63

Table 7-4 average distances from extracted word vector to the symptom vector 63

Table 8-1 comparing the precision of the four models to extract 3, 5, 7, 10keywords 70

Table 8-2 comparing the recall of the four models to extract 3, 5, 7, 10keywords 71

Table 8-3 comparing the F-measurement of the four models to extract 3, 5, 7, 10keywords 71

Table 8-4 symptoms found by each model from top 5 keywords ... 72

xii

LIST OF FIGURES

Figure 2-1 Two structure of Word2Vec model ... 10

Figure 2-2 Sample outputs of Word2Vec model .. 11

Figure 2-3 Visualized word representations use t-SNE .. 12

Figure 2-4 A graph of Latent Dirichlet allocation .. 13

Figure 2-5 Linear classifiers in two-dimensional spaces .. 15

Figure 3-1 Process of the proposed framework .. 21

Figure 3-2 An example of a document from 20 Newsgroup datasets ... 26

Figure 5-1 Processes and results of LDA (a) and out hybrid method (b) ... 37

Figure 5-2 An original document sample ... 40

Figure 6-1 Word2Vec CBOW model ... 46

Figure 6-2 A graphic of LDA model .. 48

Figure 6-3. Use PCA to display depression, obesity, myocarditis and non-medical articles in a 2-D space.

 .. 54

Figure 6-4 ROC curve of our method against different types of noise data ... 56

Figure 8-1 a graph model and its weight initialization ... 67

Figure 8-2 symptoms description from WEBMED .. 69

Figure 8-3 An example of literature sample ... 72

1

1 INTRODUCTION

1.1 Background

The sheer volume of new articles being published every day is growing exponentially. A

surprising number is that there are about 300,000 literatures about “depression” in PubMed

database. This number also exposes that many researchers are concerned about the research of

depression diagnosis and treatments since depression is an extremely challenging disease for

accurate diagnosis. The depression diagnosis usually takes a couple of weeks to watch patients’

signs or symptoms, and meanwhile understand patients’ potential risk factors such as personal or

family history of depression, major life changes, trauma, stress and so on. Also, the treatment to

depression is much more difficult because depression is different from most of other diseases

such as cancer. Depression not only requires the treatment of medications or drugs, but also

needs psychotherapy. Therefore, it is highly demanded that a depression specialist must be able

to comprehensively diagnose patient’s conditions in a short time and propose a reasonable and

feasible treatment plan since the earlier that treatment can begin, the more effective it is.

Besides learning depression related knowledge in schools or from experienced doctors,

medical literatures can be used to find out peers’ recent research progress, learn the cutting-edge

cure methods, and understand latest contributions to the depression diagnosis. Therefore, reading

medical publications for doctors is very helpful to improve their professional skills and expand

their knowledge to take better treatment plans. However, due to either their tight work schedules

or the large amount of newly publications, doctors don’t have enough time to read and study all

the most recent publications. Also, it is more likely that they have forgotten many publications

that have been read.

2

Text mining is a growing area of computer science because unstructured data increases

exponentially in both relevance and quantity. Unstructured data differs from the traditional

structured data that does not reside in a traditional row-column database. The unstructured data

accounts about 70-80 percent of the total data, and the amount of unstructured data is growing

faster than that of the structured data. Unstructured data contains text and multimedia contents

such as e-mails, tweets, webpages, and other text files without fixed formats. The unstructured

data cannot be used by the models of structured data directly. Therefore, a preprocess step is

needed to translate unstructured data to understandable data. In other words, a mathematical

representation is required to describe the collection of words and symbols. Academically, text

mining methods can categorize documents based on their meanings, extract important targeted

entities, analyze the sentiment of documents, retrieve the hidden topics from a collection of

documents, and so on. Many techniques have been applied to solve real problems in industry in

terms of revealing insights, patterns and trends from unstructured data. Customer care service is

a classical application to improve customer experiences using texting mining. Natural language

processing methods are used to analyze different text resources such as customer surveys, trouble

tickets, and phone-call conversation notes to improve the quality, effectiveness and speed in

resolving problems. Many companies are employing robots as customer representatives to

communicate with clients and solve their problems, which dramatically reduces the reliance on

the call center. Customer behavior prediction is another successful application of text mining.

With the increase of unstructured social media data, there is a big potential market to predict the

opinions, emotions, and future behaviors by analyzing prolific extracted information from the

social media data such as user profiles, relationship among multiple users, behaviors and

interests of users, and so on. Except for the two applications mentioned above, text mining is

3

also applied to risk management, knowledge management, cybercrime preventions, fraud

detection through claims, contextual advertising, business intelligence, content enrichment and

so on.

The vast numbers of biomedical texts are the main source to study the relevant medical

knowledge and the references of research. Text mining can help us to extract information and

knowledge from the huge amount of texts. It has been widely applied in biomedical research.

The number of publications by querying the keyword “text mining” or “literature mining” grew

substantially from 13 papers in 2000 to about 256 papers in 2011 [1]. It exposes that more and

more researchers are interested in text mining methods. Generally, biomedical text mining is to

derive implicit knowledge hidden in unstructured text data, and present the knowledge in a

quantitative form. Most researchers are focusing on four aspects: information retrieval,

information extraction, knowledge discovery, and hypothesis generation. Information retrieval is

to get targeted contents on a certain topic [2]; information extraction is usually to extract

predefined patterns such as entities and relations contained in the texts; knowledge discovery

methods can help us to extract novel knowledge hidden in the text; hypothesis generation is used

to explore and discover the unknown biomedical facts from text. Thus, biomedical text mining

mainly focuses on information retrieval, named entity recognition and relation extraction,

knowledge discovery and hypothesis generation.

1.2 Challenges for text representation

Structured data unlike unstructured data is in forms of tables, which most of us know of

through spreadsheet packages like Excel. The numbers in the table can be easily used for

statistical or machine learning models, such as the text classification and outlier text detection.

Generally, we only need to clean the data which includes missing value imputation, outlier

4

removal, and so on. However, in many ways, texts are like data, but it is important to keep in

mind that texts are not data since it cannot be used easily. Even in the ways that text has some

formats or laws to follow, it still needs “converting” and “structuring” to mold the texts into a

shape fit for analysis.

Text data has rules of syntax, grammar and expression, resulting in the same content being

able to carry different meanings. For example, “How true!” is not the same as “How is it true?”

because of the domain-sensitive interpretation. So, the same text could acquire different

meanings when used in media and entertainment or in say, medical research. Likewise, there are

dialect-specific or culture-specific nuances, sarcasm and emotions that alter meaning that must

be inferred from context than mere words. Additionally, most text mining applications are

context-specific and then it needs large scale processing, therefore, a powerful algorithm should

also learn texts from a global perspective over all training text data.

Thus, how to develop a method to represent texts in a comprehensive way is a big

challenge for the text mining. In another word, we need to find a way to represent texts not only

containing the local neighboring information of the words, but also considering their meaning by

evaluating the topics over texts.

1.3 Problem statement

In the framework, we aim to extract the important textual features from given publications,

which are downloaded online by the keyword search. Therefore, the first problem to be solved is

text representation.

Text representation is one of the most challenging problems in text mining and Information

Retrieval (IR). It mathematically describes the unstructured text data to be numerically

computable. For a collection of text documents 𝐷 = {𝑑𝑖, 𝑖 = 1, 2, … , 𝑛}, where 𝑑𝑖 stands for a

5

document, the problem of text representation is to represent each 𝑑𝑖 of 𝐷 as a point 𝑝𝑖 in a

numerical space 𝑆, where the distance similarity between each pair of points in space 𝑆 is well

defined.

Nowadays, the most commonly used text representation model is called Vector Space Model

[3] [4]. Bag of Words model (BOW) is one the most used VSM is the Bag of Words model

(BOW). It uses all words appeared in the given document set 𝐷 as the index of the document

vectors. If a term appears in a document, there has a “1” in the position, which corresponds to

this term, in the document vector. Otherwise, the term weight is “0”.

Later, Term Frequency Inversed Document Frequency (TFIDF) model was proposed. It uses

real values which capture the term distribution among documents to weight terms in each

document vector. However, there are many limitations in the traditional BOW text representation

model. For example, (1) BOW ignores the within document term correlation such as the order of

terms in each document; (2) the polysemy and synonymy problems can greatly decrease the

performance of text representation; and (3) the TFIDF model cannot capture the semantics of

documents. Thus, in my proposal, we propose a text representation method which successfully

integrates the local information within each document with global information among documents.

Keywords are widely used to download resources from search engine or database. The

publications we collect are from National Center for Biotechnology Information (NCBI) using

the keyword “depression”. Extracting the contents of large entries of text into a small set of

words is difficult and time consuming for human beings, it is more likely an impossible task to

accomplish with limited manpower as the size of the information grows. Therefore, we want to

find a way to let machines taking the place of humans to automatically discover the important

textual features of given topics. Moreover, due to the complexities of natural language, whether a

6

word or a set of words accurately represent topics of a document and how to determine these

words become more challenging.

7

2 RELATED WORK

2.1 Bag of Words Model

In the bag of words (BOW) model, any document is treated as a collection of unordered

terms [5]. Give a document 𝐷 = {𝑑𝑖, 𝑖 = 1, 2, … , 𝑛}, suppose there are 𝑚 unique terms existed in

the document. Mathematically, the corpus of documents can be represented by a 𝑚 × 𝑛 matrix

𝑆 ∈ 𝑅𝑚×𝑛 . Each document is denoted by a column vector 𝑠𝑖 , 𝑖 = 1,2, … , 𝑛 and each term is

denoted by a row vector. The 𝑗𝑡ℎ entry of 𝑠𝑖 is denoted by 𝑠𝑗𝑖, 𝑗 = 1,2, … , 𝑚.

For example, there are two documents. 𝑆1 = “He investigates the text representation

approaches” and 𝑆2 = “What is the meaning of text representation approach for text

documents?”. From 𝑆1 and 𝑆2, there are 13 unique terms, which are “He, investigates, the, text,

representation, approaches, What, is meaning, of, approach, for, documents”. There, the list of

terms roughly represents the two document by a 13 × 12 matrix. The problem is how to weight

each entry of this matrix. Considering the one-hot encoding model first. If a term exists in a

document, we set the weight with 1 at its corresponding place. Otherwise, we give a weight with

0. So we transform the two documents to a matrix

𝑆𝑇 = (
1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 1 1 1 1
)

where the order of term index is the same as the term list given above. There are three obvious

problems in the text representation strategy: (1) not all terms have the physical meaning in

representing documents such as “the”, “is” etc.; (2) some terms such as “approaches” and

“approach” have the same meanings; (3) the importance of all terms is equal in a document with

the strategy we used. But, in fact, in a document, some of the terms are used to emphasize the

topics, and others are used to construct the sentences. To improve the quality of the text

representations, there are three main steps.

8

2.1.1 Stop words removal:

The stop words are the name of the terms that should be filtered out before text documents

indexing or natural language processing. There has no fixed stop words list for all text processing

applications. Generally, the stop words list will include the terms like “a”, “the”, “an”, etc.

2.1.2 Stemming

The stemming aims at reducing inflected words to their stem. For example, “approaches” is

stemmed to “approach,” “investigates” is stemmed to “investigate” and “representation” is

stemmed to “represent.”

After 2.1.1 and 2.1.2, the list of terms has been reduced to “He, investigate, text, represent,

approach, what, mean, document”. Thus, the two documents 𝑑1 and 𝑑2 can represented by an

8 × 2 matrix, which is as below. So far, the problem (1) and (2) have been solved by 2.1.1 and

2.1.2.

𝑆𝑇 = (
1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1
)

2.1.3 Term Frequency – Inverse Document Frequency (IF-IDF)

The TFIDF aims to assign a weight to each term according to a document in a collection or

corpus [6]. In other words, TFIDF aims to assign different weights for all entries 𝑠𝑗𝑖 in matrix 𝑆.

An intuition is that the more times a term appears in a document, the more important is this term

to this document. Thus, weight should increase proportionally to the number of times a term

appears in the document. On the other hand, if a word appears in many documents in the corpus,

the discriminative power of the term will be weak. Thus, the weight is offset by the frequency of

the word in the corpus. The former step is called the Term Frequency (IF). It can be counted

directly from the documents. For example, the TF of term “text” in 𝑑2 is 2. A normalizing factor

9

is always used for calculating the TF of a term in a document. Since 𝑑2 there are 7 terms after

stop words removal and stemming. Among them, 2 of them are “text”. Thus, the TF for term

“text” in 𝑑2 is 2/7. Next, we are talking about the Inverse Document Frequency (IDF). It is a log

function. The IDF for term 𝑡 is:

log
𝑛

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑛𝑣𝑜𝑙𝑣𝑒 𝑡𝑒𝑟𝑚 𝑡

Thus, the TFIDF weighting schema can be as simple as 𝑇𝐹 × 𝐼𝐷𝐹. There are various variations

of TFIDF text indexing. The major differences are how to normalize and smooth the weight

equation.

2.2 Word2Vec Model

Word2Vec model is a particularly computationally-efficient predictive model to learn word

embeddings from a collect of texts [7]. It includes two alternative models to update parameters. 1)

Continuous Bag of Words (CBOW) is a way to predict words by using contexts of its

surroundings; 2) in contrast, Skip-gram uses a word’s information to predict its neighboring

words. As shown in Fig. 2, both models contain three layers: an input layer, a projection layer

and an output layer. We take CBOW as example to briefly explain how Word2Vec works.

10

2.2.1 Introduction of Word2Vec CBOW Algorithm

Figure 2-1 Two structure of Word2Vec model

Given a sentence W = {wt−2, wt−1, wt, wt+1, wt+2} ∈ ℝm, where wt is the target word.

Input layer: Context(v(wt)) = {v(wt−2), v(wt−1), v(wt+1), v(wt+2)} ∈ ℝm.

Projecting layer: a contextual vector v(xw) is calculated by

𝑣(𝑥𝑤) = ∑ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑣(𝑤𝑖))

𝑡+2

𝑖=𝑡−2

where 𝑖 ≠ 𝑡.

Output layer: A word in vocabulary is treated as a leaf node in a Huffman tree according to

its occurrence in the corpus. Therefore, each word has a unique path from root node to leaf node.

At each node except for the leaf node, the probability of selecting left child or right child can be

estimated by the logistic model by

 left child ∶ σ(v(xw)Tθ) =
1

1 + e−v(xw)Tθ

right child: 1 − σ(v(xw)Tθ)

11

p (v(xw)|Context(v(xW))) can be learned in the tree by a production of probabilities at

each node, where dj
w ∈ {0,1} is the jth digit in word w’s Huffman code and j is any node on the

path except as the leaf node.

The objective function below can be learned by maximizing the log-likelihood, and then

use gradient descent method to update θ, v(xw) and its contextual words.

ℒ = ∑ log ∏ { [σ(v(xw)Tθj−1
w)]

1−dj
w

[1 − σ(v(xw)Tθj−1
w)]

dj
w

 }

n

j=2w∈C

2.2.2 Sample Outputs of Word2Vec

Figure 2-2 Sample outputs of Word2Vec model

12

Figure 2-3 Visualized word representations use t-SNE

As shown in figure 2.2, the outputs show that the word representation can well maintain

the relationships before vectorization [8]. The left figure tells Word2Vec can learn associations

behind the words. The figure in the middle shows even without stemming processing Word2Vec

can well study different tenses of verbs. The right figure perfectly describes the relationship

between the capitals and countries. t-Distributed Stochastic Neighbor Embedding (t-SNE) is a

dimensionality reduction technique which can well suited for the visualization of high-

dimensional data [9]. In figure 2.3, it shows the 2-D results of word representations whose

13

dimensions are reduced by t-SNE. It is as expected that the similar words are closed to each other,

which can be easily applied to word clustering tasks.

2.3 Latent Dirichlet Allocation

Figure 2-4 A graph of Latent Dirichlet allocation

2.3.1 Introduction to the Latent Dirichlet Allocation Algorithm

LDA is an unsupervised method to discover the latent topics 𝑍 from a collection of

documents 𝐷 [10]. In LDA, each document 𝑑 is represented as a probability distribution 𝜃𝑑 over

topics, where each topic 𝑧 is a probability distribution 𝜑𝑧 over all words in vocabulary. Figure

2.4 shows the generative process. Both 𝜃 and 𝜑 have prior distributions with hyperparameters 𝛼

and 𝛽. For every word 𝑤𝑑𝑖 in document 𝑑, a topic 𝑧𝑑𝑖
can be extracted by two equations below, a

word 𝑤𝑑𝑖
can be returned. Repeat equation (1) and (2) N times, a document 𝑑 is generated, where

N is the size of document d.

𝜃𝑑 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) 𝑧𝑑𝑖
~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑑) (1)

14

𝜑𝑧 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽) 𝑤𝑑𝑖
 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑛𝑖𝑎𝑙 (𝜑𝑧𝑑𝑖

) (2)

By using Gibbs Sampling, θ and φ can be inferred to discover the latent topics in

documents, and predict any new document with a topic proportion distribution.

2.3.2 Real Examples

An example from Edwin Chen’s blog which is about the analysis of several thousand

emails from Sarah Palin’s time as governor of Alaska [11]. By learning the emails, we can easily

see the main topics contained in the emails, and the associated words are very reasonable to

describe their corresponding ponding topics.

Table 2-1The topics and their keywords discovered from Sarah Palin’s emails by LDA

Topics Keywords

Wildlife/BP Corrosion

game, fish, moose, wildlife, hunting, bears, polar, bear,

subsistence, management, area, board, hunt, wolves, control,

department, year, use, wolf, habitat, hunters, caribou, program,

denby, fishing, …

Energy/Fuel/Oil/Mining
energy, fuel, costs, oil, alaskans, prices, cost, nome, now, high,

being, home, public, power, mine, crisis, price, resource, need,

community, fairbanks, rebate, use, mining, villages, …

Trig/Family/Inspiration

family, web, mail, god, son, from, congratulations, children,

life, child, down, trig, baby, birth, love, you, syndrome, very,

special, bless, old, husband, years, thank, best, …

Gas

 gas, oil, pipeline, agia, project, natural, north, producers,

companies, tax, company, energy, development, slope,

production, resources, line, gasoline, transCanada, said, billion,

plan, administration, million, industry, …

Education/Waste

school, waste, education, students, schools, million, read, email,

market, policy, student, year, high, news, states, program, first,

report, business, management, bulletin, information, reports,

2008, quarter, …

Presidential Campaign/Elections

mail, web, from, thank, you, box, mccain, sarah, very, good,

great, john, hope, president, sincerely, wasilla, work, keep,

make, add, family, republican, support, doing, p.o, …

2.4 Support Vector Machine (SVM)

2.4.1 Introduction of SVM

Support vector machines represent a set of supervised learning techniques that create a

function from training data [12] [13]. The training data usually consist of pairs of input vectors

15

and desired output. The learned function can be used for predicting the new input. SVM are

typically used for classification where the function outputs one of finite classes. Two special

properties of SVMs (1) high generalization by maximizing the margin, where margin is the

distance between the hyperplane and the closest data vectors in the feature space. (2) Support

efficient nonlinear classification by kernel trick. The kernel trick is used to convert a linear

classifier into a non-linear one by using a non-linear function to map the original observations

into a high-dimensional space.

2.4.2 Binary SVM

A binary classification is to classify data objects into either positive or negative class. Each

data point is represented by a 𝑛-dimensional vector. Each of these data points belongs to only

one of two classes. A linear classifier separates them with an 𝑛 − 1 dimensional hyperplane.

Figure 2-5 Linear classifiers in two-dimensional spaces

For example, in figure 2.5, two groups of data points are separated by three hyperplanes 𝐿1,

𝐿2, and 𝐿3 correctly. In order to achieve maximum separation between the two classes, SVM

picks the hyperplane with the maximum margin is maximized. Such a plane is likely to

16

generalize better, meaning that the hyperplane not only correctly classify the given data points,

but also is likely to correctly classify the unknown data points.

2.4.3 One-Class SVM

One-Class SVM is a special form of support vector machine [14], which has been applied

to various applications [15] [16] [17] [18]. It learns a minimum volume hypersphere that

enclosed most of the data. In another word, One-Class SVM only recognizes one class from the

normal training data. If a newly data is too different to this class, model labels this data as out-of-

class. One-Class SVM is an optimization problem because we expect the ball as small as

possible but the ball contains most of the data.

Most time we use One-Class SVM when we only have the data of one class. The objective

function can be learned by (3) and (4):

𝐹(𝑅, 𝑎, 𝜉𝑖) = 𝑅2 + 𝐶 ∑ 𝜉𝑖

𝑖

 (3)

𝑠. 𝑡. (𝑥𝑖 − 𝑎)𝑇(𝑥𝑖 − 𝑎) ≤ 𝑅2 + 𝜉𝑖, ∀𝑖≥ 0 (4)

where a is the center, R is the radius, and xi is the training data.

We can solve the optimization with Lagrangian multipliers in (11):

𝐿(𝑅, 𝑎, 𝛼𝑖, 𝜉𝑖) = 𝑅2 + 𝐶 ∑ 𝜉𝑖

𝑖

− ∑ 𝛼𝑖{𝑅2 + 𝜉𝑖 − (𝑥𝑖
2 − 2𝑎𝑥𝑖 + 𝑎2)} − ∑ 𝛾𝑖𝜉𝑖

𝑖𝑖

 (5)

where 𝛼𝑖 ≥ 0 and 𝛾𝑖 ≥ 0.

After deriving the parameters and let derivatives set to zero, we can get (12), (13) and (14):

∑ 𝛼𝑖

𝑖

= 1 (6)

𝑎 =
∑ 𝛼𝑖𝑥𝑖𝑖

∑ 𝛼𝑖𝑖
= ∑ 𝛼𝑖𝑥𝑖

𝑖

 (7)

17

𝐶 − 𝛼𝑖 − 𝛾𝑖 = 0 (8)

By substituting (6), (7), and (8) to the Lagrangian multiplier, we can get:

𝐿 = ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥𝑖) − ∑ 𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑖,𝑗𝑖

 (9)

To distinguish whether a new data is normal or abnormal, the Kernel equation is applied.

𝐾(𝑧, 𝑧) − 2 ∑ 𝛼𝑖

𝑖

𝐾(𝑧, 𝑥𝑗) + ∑ 𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 , 𝑥𝑗) ≤ 𝑅2

𝑖,𝑗

 (10)

18

3 A NOVEL METHOD FOR DOCUMENT SUMMARIZATION USING WORD2VEC

3.1 Introduction

Tons of textual resources are created and uploaded to Internet every day, such as Tweets,

Blogs, webpages and so on. These text data not only require lots of storage space to save and

backup, but also bring in a lot of data organizing, processing and analyzing tasks. Hence, to

extract meaningful and non-trivial knowledge from the humongous textual database becomes the

overarching goal of text mining. However, unstructured text data, unlike those quantitative data,

cannot be simply analyzed at the word level. A data pre-processing step has to be implemented

to clean the texts, and convert them to a more understandable format by computers.

Generally, a document always contains some words which are not quite related to the

documents’ topics. Removing these words reduces the corpus size such that decreases the

dimension of features at the same time; additionally, it reduces noises of the documents in order

to improve the usability of documents. Stop-words like prepositions, articles, and pro-nouns are

high-frequency words in documents. These words do not carry any information regarding

contents, but used only for grammar purpose. Therefore, removing these words do not have any

effect on the document itself. Moreover, documents always contain various data formats and

non-informative features such as date formats, number formats or currency format. There are

alternative ways to address these formats. Besides elimination, other ways to handle them

include putting all the dates in a container named DATE, and converting numbers into letter-

format such as 5 is May or 10 is ten, etc. But there is not a standard way to pre-process the

punctuations according to the purpose of analysis. For example, punctuations are much useful for

the sentimental analysis that “:)” is positive and “T_T” is negative. For other purpose, however,

19

punctuations should be removed at the very beginning. Therefore, the way to pre-process the

textual databases is highly dependent on its applications.

Normally, there are two ways to convert the textual data into quantitative data used for

advanced analysis: one is based on one-hot word representation and the other one is based on the

word embedding.

One-hot word representation is a vastly used word representation method, which builds a

vocabulary according to the word occurrences in all given documents. It simply represents a

word with a vocabulary size vector with 1 at its corresponding positon and 0 at other positions.

Bag-of-words model extends one-hot presentation to represent a document by aggregating all

one-hot word vectors in the document. It is obvious that the resulting document vector length is

the same as the vocabulary size and each element in the document vector is the frequency of

corresponding word [5]. Bag-of-words model has two drawbacks, on one hand, as the number of

dimensions of document vector replies on the occurrence of words all documents, the one-hot

vectors usually have very high dimensions. On the other hand, bag-of-words model ignores

spatial relationship among words since element in vector only represent the counts of the word.

Distributed representation predicts each word with a very low-dimension vector ranging

from 50 to 300 [19]. Generally, a word vector is randomly initialized, and is trained and updated

according to each word’s contexts. Since contextual information is taken into account, models

like Neural Network are able to update each word vector with semantic meanings. Global

Vectors for Word Representation (Glove) and Word2Vec are the most popularly used among the

distributed representation methods. Glove predicts words and contexts by constructing co-

occurrence matrix according to the given documents, and updates the vectors by reducing the

dimensionality of the matrix. Word2Vec uses a three-layer neural network to train each word

20

vector with respect to its surroundings, and uses Gradient Descent algorithm to update the

weights of the network [20] [7]. The resulting word vectors by Word2Vec are highly correlated

with the practical semantics, for example “king – man + woman = queen”, and “Paris – France +

Italy = Roma” [21]. Comparing with one-hot representation methods, distributed representation

models are able to identify the relationship between two words even that one occurs much more

frequently than the other. For example, a sentence “There is a dog running in the park.” occurs

many times, while the other sentence “It is a cat sitting in the park.” appears only once.

Word2Vec analyzes the contexts of the word ‘cat’ which is very similar to the contexts’ of “dog”,

and then predicts “cat” at a position closer to “dog” in the semantic space. Recently, researchers

have proposed many variations of Word2Vec to determine relationships between labels and

words. Doc2Vec is one of these algorithms. Additionally, it integrates paragraph vectors at the

input layer that cooperates with the word vectors to investigate correlation between labels and

words [22]. Another hybrid method clusters the word vectors and considers each cluster as a bag-

of-words. It thus uses frequency of words in each bag as features of the document [23].

However, these methods also analyze many vague and trivial words that are not highly

correlated with document topics. In this section, we propose a method to further optimize the

document size by eliminating the non-topic related words. In a document, some of the words are

only used for connecting purpose or descriptions that are not related with the document topics.

Although these words are necessary for communications, they are not meaningful for text data

analysis. Our proposed method which targets on the issue of these irrelevant words is able to

identify and remove them to optimize the process by extending the idea of Word2Vec.

Word2Vec is a widely-used algorithm to transform each word in the corpus into a word vector

with semantic meanings. We consider each cluster formed by word vectors using K-means as a

21

feature that supervises the subsequent optimization by measuring its distance from other target

semantic groups. Generally, a document can be divided into multiple partitions such as

paragraphs or part of paragraphs. In addition to word vectors, we also transform the document

and its partitions into vectors and process them as continuous bags-of-words. Specifically,

document partitions, document, and features are represented by single vectors, which dimensions

are the same as any word vector in the document. Afterwards, we measure the Cosine distances

between them that shorter distance indicates higher correlation, and vice versa. Hence, only

partitions meet certain criterion are retained. Experimental results show that using our method

size of document is significantly reduced, while accuracy of classification remains at a high level.

3.2 Overall Framework

Figure 3-1 Process of the proposed framework

Generally, Word2Vec model builds a semantic space projected from the word vectors that

trained and outputted by the model, where each word is considered as a point in the space. It

measures and interprets similarity in grammar or semantics through distance between any two

distinct points. Both Euclidean and Cosine distance are commonly adopted as ways to calculate

22

the distance between two points in researches. Extending the idea of Word2Vec, we generate

different levels of vectors other than only word vectors to compare resemblance. The resulting

output contains only “qualified partitions” which are highly correlated with the document topics.

Following, we explain specifically the way to select the qualified partitions to represent the

document, which is decomposed into 9 consequent steps.

3.2.1 Projecting words to word vectors

Given a set of 𝐷 documents {𝑑1, 𝑑2, … , 𝑑𝐷} , a dictionary containing 𝑛 words is built

accordingly. By applying Word2Vec model, we predicts the word 𝑤𝑥 by its contextual

words {𝑤𝑥−2, 𝑤𝑥−1, 𝑤𝑥+1, 𝑤𝑥+2}, here window size 2 is set as an example. Thus, each word in the

collection of documents is projected into a 𝑚 dimension vector 𝑣(𝑤𝑥), where 𝑚 is a predefined

value usually ranging from 50 to 300.

3.2.2 Clustering words as features

Semantically related words are clustered utilizing K-means. Moreover, we are able to

extract conceptual features or categories from the word clusters. For example, in processing words

in the pool of documents, we group “cat” and “dog” in a cluster using K-means because of their

high correlation. In addition to the cluster, an abstract feature is actually derived like “animal” or

“pet’. Conclusively, we adopt K-means to assemble word vectors into 𝑁 clusters, which centroids

represent cumulative conceptual features generated from a series of similar meaning words.

3.2.3 Transforming features into feature vectors

It is intuitive to consolidate the word vectors that are grouped in the same cluster into a

feature vector. However, sizes of clusters may vary dramatically in occasions. In order to diminish

the impact of sizes of clusters and unify a criterion for assessment, we adjust the cluster vectors

23

using a size scaler. Equation (11) provides a mathematically demonstration of the aggregating and

rescaling process.

𝑣(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑐) =
∑ 𝑣(𝑤𝑥

𝑐)𝑋
𝑖=1

𝑋
 (11)

Where X is the number of words in clusterc.

3.2.4 Converting documents to document vectors

Furthermore, we develop the idea of converting documents to document vectors. Though

documents are consisted of both topic related words and uninteresting trivial words, it is expected

that they are closer to location of the document topics in the semantic space. Therefore, we define

a document vector 𝑣(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑) as a representation of 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑 which can be used to

evaluate the closeness between topics of document partition document and topics of the

document. Similar to the calculation of the cluster vector in step 3, equation (12) shows the way to

determine the document vector.

𝑣(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑) =
∑ 𝑣(𝑤𝑥

𝑑)𝑌
𝑖=1

𝑌
 (12)

Where Y is the number of words in documentd.

3.2.5 Projecting partitions of document to partition vectors

Accordingly, we assume partitions of a document share the same property of document that

each partition concentrates around the neighborhood of its topics in the semantic space. Thus, we

propose a partition vector by accumulate information of the word vectors in it. In the calculation

of a partition vector, the size scaler is denoted as 𝑍 in equation (13).

24

𝑣(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑘
𝑑) =

∑ 𝑣(𝑤𝑥
𝑘)𝑧

𝑖=1

𝑍
 (13)

3.2.6 Measuring similarity between documents and features

Construction of document vectors and feature vectors allows us to measure the similarity

between a document and any semantic category that K-means generates. In this step, we introduce

the intermediate factor — features rather than compare the similarity between a document and its

partitions directly. Since a feature is derived to represent a more conclusive concept, adopting it

enables us to generate the semantic meanings of both documents and document partitions by a

global view. Additionally, it allows us to perceive the topics hidden in the document partitions

which is measured in the following step. Cosine distance is calculated by equation (13). Thus,

each document can be further represented by a distance distribution over all features in the form

of a vector (14).

𝑑𝑖𝑠𝑑
𝑐 = 1 −

𝑣(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑) ∙ 𝑣(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑐)

∥ 𝑣(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑) ∥2∥ 𝑣(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑐) ∥2
 (13)

𝑣(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑)𝑁𝐸𝑊 = (𝑑𝑖𝑠𝑑
1, 𝑑𝑖𝑠𝑑

2, … , 𝑑𝑖𝑠𝑑
𝑁−1, 𝑑𝑖𝑠𝑑

𝑁) (14)

where 𝑁 is the total number of clusters generated from the pool of documents {𝑑1, 𝑑2, … , 𝑑𝐷},

3.2.7 Evaluating similarity between a document partition and features

Likewise, we use equation (15) to calculate the cosine distance from a document partition to

a feature which is a representation of similarity between the document partition and a topic.

Furthermore, each partition is restructured into a new vector, where each element is the cosine

distance (16).

25

𝑑𝑖𝑠𝑘
𝑑,𝑐 = 1 −

𝑣(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑘
𝑑) ∙ 𝑣(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑐)

∥ 𝑣(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑘
𝑑) ∥2∥ 𝑣(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑐) ∥2

 (15)

𝑣(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑘
𝑑)

𝑁𝐸𝑊
= (𝑑𝑖𝑠𝑘

𝑑,1, 𝑑𝑖𝑠𝑘
𝑑,2, … , 𝑑𝑖𝑠𝑘

𝑑,𝑁−1, 𝑑𝑖𝑠𝑘
𝑑,𝑁) (16)

3.2.8 Assessing similarity between documents and document partitions using distance

vectors

In this step, semantic similarities between a document and its partitions are measured using

the newly constructed distance vectors (17).

𝑑𝑖𝑠𝑘
𝑑 = 1 −

𝑣(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑘
𝑑)

𝑁𝐸𝑊
∙ 𝑣(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑)𝑁𝐸𝑊

∥ 𝑣(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑘
𝑑)

𝑁𝐸𝑊
∥2∥ 𝑣(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑)𝑁𝐸𝑊 ∥2

 (17)

3.2.9 Identifying non-topic related partitions

Distance measured in the preceding step represents similarity between a document and a

partition of it. Shorter distance indicates higher correlation in their topics, and vice versa. Thus,

we set a criterion to evaluate the correlations. Finally, partitions with longer distance comparing

to the cut-off value are eliminated. If no partition of a given document meet the predefined

criteria, the one with smallest distance is retained. Therefore, the remaining partitions construct a

new representation of the document topics.

26

Figure 3-2 An example of a document from 20 Newsgroup datasets

We implement our proposed method on the 20 Newsgroups dataset, which consists of

18,846 labeled newsgroup documents proposed by Ken Lang [24]. The entire datasets are utilized

to generate word vectors using the Word2Vec model. To perform the experiment we apply

Hierarchical Softmax framework and CBOW scheme as algorithm of the Word2Vec model, and

execute it by Python Gensim package with default settings [25].

In addition, Python Scikit-learn package is selected to implement the K-means cluster

algorithm and the Support Vector Machine (SVM) classification algorithm [10].

Figure 3.2 illustrates an example of a newsgroup document in the dataset. Table 1 shows the

analysis results according to it. We divide the document in Figure 3.2 into 11 partitions after

removing the symbols, numbers, stop-words and some low-frequency words. Each of these

partitions includes 6 words, which are listed in column 2 of the table. Following the steps

described in the previous section, the distances between each partition and the document are

27

measured and recorded in column 3. It is easy to acquire the topic from the original document

which is related with the keyword — “car”. Setting criterion to 0.01, partitions 5, 7, 8, 9, and 10

are selected as representations of the document which are “car” related. This result agrees with

our assumption that shorter distances indicate higher correlations. Other non-topic related

partitions, therefore, are removed to reduce the size of the document.

Table 3-1Measurement of similarity between a document and its partition using cosine distance

No. Contents of Partition Distance

1 lerxst, wam, umd, ed, thing, subject 0.0143

2 car, nntp, posting, host, rac, wam   0.0182

3 umd, ed, organization, university, maryland, college 0.0110

4 park, lines, wondering, anyone, could, enlighten 0.0101

5 car, saw, day, door, sports, car 0.0071

6 looked, late, early, called, bricklin, doors 0.0126

7 really, small, addition, front, bumper, separate 0.0081

8 rest, body, know, anyone, tellme, model 0.0065

9 name, engine, specs, years, production, car 0.0071

10 made, history, whatever, info, funky, looking 0.0070

11 car, please, mail, thanks, brought, neighborhood 0.0196

12 lerxst 0.0341

To quantify the effects of our proposed method, additional experiments are implemented.

We conduct classification analysis on both our processed documents that consists only of topic-

related partitions and the “original” documents. Both types of documents are pre-processed by

removing symbols, numbers, stop-words and very low-frequency words. The only difference

28

between them is our processed documents eliminate non-topic related partitions. This analysis

attempts to evaluate the impact of reduced document size to subsequent analyses by comparing

classification accuracies between the two sets of documents.

Table 3-2 Classification results under different scenarios using bag-of-words model

Avg. Document Size

No. of Clusters
Distance

Threshold
Std. Dev.

Avg. 10-Fold F1-

Score

Proc. Doc

24 50 0.005 0.009 0.638

53 50 0.010 0.009 0.732

92 50 0.015 0.010 0.792

115 50 0.020 0.008 0.825

50 100 0.005 0.010 0.707

90 100 0.010 0.011 0.803

110 100 0.015 0.008 0.835

126 100 0.020 0.007 0.850

25 150 0.005 0.009 0.646

68 150 0.010 0.007 0.751

101 150 0.015 0.008 0.807

124 150 0.020 0.007 0.833

Orig. Doc

160 - - 0.009 0.841

Table 3-3 Classification results under different scenarios using distributed representation model

Avg. Document Size No. of Clusters Distance Threshold Std. Dev.
Avg. 10-Fold F1-

Score

Proc. Doc

24 50 0.005 0.010 0.702

53 50 0.010 0.011 0.765

92 50 0.015 0.012 0.812

115 50 0.020 0.013 0.801

50 100 0.005 0.012 0.694

90 100 0.010 0.014 0.762

110 100 0.015 0.009 0.834

126 100 0.020 0.013 0.810

25 150 0.005 0.011 0.699

68 150 0.010 0.013 0.766

101 150 0.015 0.012 0.823

124 150 0.020 0.012 0.805

Orig. Doc

160 - - 0.012 0.806

29

We explore the performance of the proposed method under several scenarios. Different

clusters are tested to assess the impact of various topic specification scales. Word clusters group

into different semantic categories with predefined number 50, 100, and 150. Additionally, we

contrast the outcomes by various distance criteria as well, which are set to 0.005, 0.010, 0.015,

and 0.020 respectively. Utilizing SVM we conduct the classification analysis under bag-of-words

and distributed representation model, and measure the results with average 10-fold F1-score as

well as standard deviation. Table 3.2 compares classification accuracy under different scenarios

and also demonstrates the average document size after removing non-topic related partitions.

Results of Table 3.2 and Table 3.3 are derived from bag-of-words method and distributed

representation method respectively. After removing symbols, numbers, stop-words and other low-

frequency words, the average size of the original documents is 160 in the collection of the 18,846

documents. The average size of the processed documents varies according to different scenarios.

The smaller distance criterion is selected, the less words are retained the documents. Since smaller

and stricter criterion is associated with higher correlation. Thus, setting the criterion to 0.005

enables the method to remove more moderately related partitions than setting it to 0.020.

However, the average document size is not linearly associated with the predefined number of

clusters. Smaller number of clusters implies the generated features are broader and more general.

Topic of a feature could be very ambiguous because the feature is an aggregation of a very wide

range of words. In contrary, larger number of clusters indicates the derived features are very

specific. Topics of this type of features could be very vague. Since these features probably are

constructed with extremely less words than its natural semantic categories should contain.

Apparently the most accurate classifications identified from Table 3.2 and Table 3.3 belong

to the processed documents group. 85% of the documents are detected to the correct labels using

30

bag-of-words method, 83.4% are properly classified implementing while distributed

representation method, and in contrast results from the original documents are 84.1% and 80.6%.

Both improve the accuracy of converting the original documents under different methods.

Moreover, with the improvement in accuracy, the document sizes reduced significantly.

Comparing with the average size of original documents 160, the number of words in the best

scenarios are 126 and 110. With a decrease of document sizes about 21% - 31%, considerable

storage space is released. Hence, our proposed method significantly abbreviates the original

documents while maintains important topic-related information as a suggested step prior to further

analyses.

31

4 A TEXT INFORMATION RETRIEVAL METHOD USING AUGMENTED MATRIX

4.1 Introduction

Text information retrieval (IR) techniques are widely used to generate abbreviate and

essential representations of documents to improve performances of Natural Language Processing

(NLP) tasks like classification, clustering, and summarization, and etc. [2]. In recent years, many

methods have been proposed which are converged to two general types of techniques — one-hot

models and distributed representation models.

One-hot models such as Latent Dirichlet Allocation (LDA) investigates latent topics from a

collection of documents and represent each document with a probability distribution over the

discovered topics [10]. A topic is extracted and summarized from distinct words with semantic

similarities. Probability distributes differently according to occurrence of a word in a specific

topic. It is very plausible that a given document is associated with a topic if the document contains

high probability words from the topic, and vice versa. Specifically, LDA concentrates on handling

those high probability words and disregard any low probability ones. Distributed representation

models are also extensively utilized, including Word2Vec which predicts words using word

vectors that are generated by the surrounding contexts of the target words. In contrast to LDA,

Word2Vec is able to predict the low-frequency words accurately [7].

However, both models have some drawbacks according to their attributes. LDA

underestimates the correlation between a document and topic when low probability words occurs

frequently in the document. On the other hand, Word2Vec model merely uses local contexts

within sentence to generate word vectors. It is impossible to globally improve the quality of word

representations. In this section, therefore, we propose a hybrid method to represent documents by

integrating the global statistical model and local semantic information. The experimental results

32

indicate our method improve accuracy of classification analysis significantly comparing to either

LDA or Word2Vec.

4.2 Overall Framework

In this section, we propose a method attempts to summarize a document in a numeric form

which incorporate both global and local information prompted by LDA and Word2Vec. Thus, we

describe a document as a vector which is a mixture of word-to-topic association and word-to-

word correlation; where the first part is the probability distributed over latent topics generated

from the corpus and latter part is topographic association of each word in a document in semantic

space. Following is the generative process of document vectors in 3 steps.

4.2.1 Generating word-to-topic document vectors

Adopting the idea of LDA, we convert a document into a vector, where each element of the

vector corresponds to the probability that a topic is included in the document in equation (12).

𝑝(𝑤|𝛼, 𝛽) = ∫ 𝑝(𝜃|𝛼)(∏ ∑ 𝑝(𝑧𝑘|𝜃)𝑝(𝑤𝑖|𝑧𝑘, 𝛽))

𝑀

𝑘=1

𝑁

𝑖=1

𝑑𝜃 (12)

where w is a document or a collection of words, and α is the parameter vector of the Dirichlet

distribution that is used to generate θ. Probability of selecting a topic for a document following

Multinomial distribution 𝑝(𝑧𝑘|𝑤)~𝑀𝑢𝑙𝑡(𝜃). β is a matrix generated by the entire corpus, that

each element represents the conditioned probability of a word is included in a given topic. The

document vector is 𝑣1(𝑤) = 𝑝(𝑤|𝛼, 𝛽).

4.2.2 Deriving word-to-word document vectors

Employing Word2Vec, we are able to transform each word in a document into a word

vector which is an aggregation of its surrounding word vectors. For a semantic space, a k

33

dimensional vector is generated to initialize a word, where k is a predefined value for

dimensionality. The vector is updated using logistic regression according to word-to-word

relationship demonstrate by Huffman tree code. Subsequently, given a word wx, the word vector

is determined as the aggregation of its surrounding word vectors. Use 2 as the size of window,

thus,

𝑣(𝑤𝑥) = ∑ 𝑣(𝑤𝑖)

𝑖

, 𝑖 = 𝑥 − 1, 𝑥 − 2, 𝑥 + 1, 𝑥 + 2 (13)

Intuitively, we define a document vector by consolidate all word vectors in the document, and

adjust it using a size scaler N.

𝑣2(𝑤) =
1

𝑁
∑ 𝑣(𝑤𝑥)

𝑥

 (14)

N is the size of the document.

4.2.3 Construct augmented document vectors

We augment the word-to-topic and word-to-word vectors to construct vectors for each

document accordingly in the corpus. Hence, each vector is considered to be a representation of

both global and local information shown in equation (15).

𝑣(𝑤) = [𝑣1(𝑤)|𝑣2(𝑤)] (15)

4.3 Experiments

20 Newsgroups dataset is used to implement our idea, which collects 18,846 labeled

newsgroup documents organized and proposed by Ken Lang [24]. We extract latent topics from

the entire corpus, and generate document vectors under the hybrid model of LDA and

34

Word2Vec. Classification analysis is conducted using Python Gensim package with default

settings [25] and Scikit-learn package [26].

Table 4-1 Classification results using the new document representation

Topics
Word2Vec

Average F1-Score (Std. Dev)

LDA

Average F1-Score (Std. Dev)

Our method

Average F1-Score (Std. Dev)

50 0.807 (0.013) 0.620 (0.018) 0.815 (0.011)

75 0.807 (0.013) 0.662 (0.013) 0.832 (0.009)

100 0.807 (0.013) 0.665 (0.017) 0.843 (0.013)

125 0.807 (0.013) 0.668 (0.014) 0.854 (0.010)

150 0.807 (0.013) 0.672 (0.016) 0.855 (0.009)

200 0.807 (0.013) 0.680 (0.015) 0.856 (0.010)

250 0.807 (0.013) 0.654 (0.017) 0.827 (0.011)

300 0.807 (0.013) 0.652 (0.013) 0.808 (0.013)

We use Table 1 to demonstrate accuracy of classification analysis among LDA,

Word2Vec, and our method. Column 3 shows the average F1-scores according to different

number of topics defined, which is enhanced considerably with smaller variations comparing to

either LDA or Word2Vec. The best scenario in the experiment is achieved when the number

latent topics is set to 200 generated from the 18,846 documents. On average, 85.6% of

documents are corrected labeled with a favorable standard deviation 1%, which indicates a very

steady classification task is performed. Moreover, we observe an incremental change in the

accuracy in the test as the number of topics increases from 50 to 200. But the precision declines

when number of topics is set over 200. Since the predefined number of topics determines the

coverage of each topic. The experimental results imply that the coverages of latent topics

significantly the generation of satisfactory document representations.

35

5 A DOCUMENT REPRESENTATION METHOD USNG WORD2VEC AND LATENT

DIRICHLET ALLOCATION

5.1 Introduction

With the explosive growth of online resources such as web pages, blogs, and social

networks, text mining plays a more and more important role to analyze and organize these

documents. An excellent representation of textual data should contain as much information as

possible from the original document. Generally, there are two ways to represent a document —

one-hot encoding and word embedding.

One-hot encoding describes a word in a high-dimensional vector, which is a dictionary

composed of all words occurred in a set of documents. Each word is represented by a vector with

1 at its corresponding position and 0 in other positions. A model to represent a document called

“bag-of-words” was proposed [5]. It sums up all the one-hot vectors in a document; and each

element in the resulting vector becomes the occurrence of a word. Furthermore, Term

Frequency-Inverse Document Frequency (TF-IDF) model was given to replace the counts with

TF-IDF score [6]. The new model calculates TF scores to the selected high frequency words in a

document, and also measures how unique these words occur across all documents using IDF

scores. Using the product of the TF-IDF scores, the high frequency but less meaningful words

can be eliminated, such as “that”, “this”, “the”, etc.

LDA is a probabilistic topic model to discover latent topics from a large volume of

documents and describe each document with a probability distribution over the discovered topics

[10]. It is commonly considered as a feature reduction method by grouping words in different

topics, thus a document can be mapped to a lower dimensional space. Additionally, words are

assumed to occur independently in LDA, and documents are treated as bag-of-words. Therefore,

36

LDA does not study the contextual relationship among words. Moreover, LDA is also a doubly

sparse model which prefers fewer topics in each document and fewer words to describe a topic.

Thus, the document vector is very sparse.

Recently, Word embeddings has been a strong trend in Natural Language Processing. It

distributes a word in a low-dimension vector that is highly correlated with the real semantics.

Generally speaking, there are two approaches: one builds a co-occurrence matrix for the entire

document and reduces the size of the matrix to generate words and context, such as Glove,

Spectral Word Embeddings, and Word Embeddings through Hellinger PCA (HPCA) [20] [27]

[28]. The other one, such as Latent Semantic Analysis (LSA), density based word embeddings,

and Word2Vec, predicts a word by inspecting its surroundings [29] [30] [7]. For example, if two

words “soccer” and “basketball” occur in a same “position” in two sentences “I like soccer” and

“I like basketball”, “soccer” and “basketball” are more likely related either in semantics or

syntactic. A method clusters the embedded word vectors as features and uses a count distribution

as document representations [23]. A Doc2Vec model trains a document vector by a linear

combination of the embedded word vectors [31].

LDA with strong capability to extract the main contents of the article is quite

interpretable by humans. Therefore, many researchers use LDA on the text classification tasks. A

feature-enhanced smoothing method was developed [32]. Those words existing in testing

documents but not in the training corpus are very useful to improve accuracy of classification

and the quality of features. An improved algorithm gLDA was designed by containing categories

for each document [33]. The probability distribution of each document is generated by the most

relevant categories of documents. The word-topic mapping performance was improved by using

a large-scale trained corpus applied to the data with smaller corpus [34]. Websites were divided

37

into different subjects with slash tags and a relationship between each subject and topics used to

classify the data was found [35]. A novel classifier named Multi-LDA Boost applied a boosting

strategy by choosing the best scenario from multiple models with different parameters, and

performed a weighted method to improve the accuracy of categorization [36].

Similar ideas but different methods and purposes by integrating LDA and Word2Vec are

implemented. LDA models a global relationship from each document to all topics, and

Word2Vec in the other hand captures the relationships by learning the target word from its

contexts. Topic2Vec integrates the word contextual information from Word2Vec to learn topic

representations in LDA, whose resulting topics are much more distinguishable than those

generated by LDA [37]. LDA2Vec successfully uses the contextual word information to learn

much more interpretable topics by adding the document vector in the step of generating word

vectors [38].

Figure 5-1 Processes and results of LDA (a) and out hybrid method (b)

38

5.2 Overall Framework

As we have discussed, LDA is a way to describe a global relationship among documents,

while Word2Vec predicts words in a very local manner. So, we combine these two techniques to

use a more comprehensive vector to represent documents, meanwhile, the new representation

with a density vector enhances the capability of discrimination and predication applied to Natural

Language Process tasks.

Our new method as shown in Fig. 3 (b) projects words, documents, and topics in a high-

dimension semantic space. A document vector is considered as a single vector, which is the

centroid of all words in the document as what Word2Vec does in the projection layer. In

addition, each document has its individual length, thus its vector is divided by the number of

words in the document to guarantee the measurements with same scale. We construct topic

vectors in a similar way, but it is a little more complicated. A subset of ℎ high-probability words

in each topic is employed to represent the topic, and then their probabilities are rescaled as the

weights of words. Hence different words have different contributions to the topic. We measure

Euclidean distances from each document to topics so that a document can be represented with a

distance distribution.

In details, given a set of documents 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛}, whose vocabulary is built with

𝑁 words {𝑤1, 𝑤2, … , 𝑤𝑁} . By training 𝐷 , LDA outputs latent topics {𝑡1, 𝑡2, … , 𝑡𝑇} and

probabilities of words in each topic 𝑡𝑖, where the 𝑗𝑡ℎ word in 𝑡𝑖 is denoted as 𝜃𝑖𝑗
. Word2Vec

trains 𝐷 and vectorizes each word in vocabulary into a fixed length

vector {𝑣(𝑤1), 𝑣(𝑤2), … , 𝑣(𝑤𝑁)}. To generate topic vectors, ℎ highest-probability words in 𝑡𝑖are

selected. Meanwhile, the probabilities of words in 𝑡𝑖 are rescaled as weights in (16). In (17), the

topic vector 𝑣(𝑡𝑖)is calculated by summing the productions of each word vector and its weight.

39

𝜔𝑖 =
𝜃𝑖

∑ 𝜃𝑛
ℎ
𝑛=1

 (16)

𝑣(𝑡𝑖) = ∑ 𝜔𝑖𝑛
𝑣(𝑤𝑖𝑛

)

ℎ

𝑛=1

 (17)

Next, we calculate document vectors 𝑣(𝑑𝑖) by (18), where 𝑐 is the number of words in

the document.

𝑣(𝑑𝑖) =
∑ 𝑣(𝑤𝑖𝑛

)𝑐
𝑛=1

𝑐

(18)

Therefore, each document can be represented by a distance distribution from the

document to all topics in a semantic space, and a distance is calculated as (19).

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣(𝑑𝑖), 𝑣(𝑡𝑖)) = |𝑣(𝑑𝑖) − 𝑣(𝑡𝑖)| (19)

Therefore, the new defined vector is no longer sparse by comparing the results in (a) and

(b) of Fig. 3, which distributes risks to all elements 𝑑𝑖𝑠𝑡𝑖𝑗 in the vector, also possesses more

information in 𝑑𝑖𝑠𝑡𝑖𝑗 to be discriminated from other documents. Moreover, the probability

distribution over topics in LDA is still held in the space generated by the new method; and these

topics are closer to the specific document. Meanwhile, other related important topics are found as

well because of more word-level information is involved.

5.3 Experiments

The 20Newsgroups dataset contains 18846 newsgroup documents collected by Ken Lang,

which is organized into 20 different newsgroups [24]. We use all the documents in the dataset to

train LDA and Word2Vec to extract latent topics and word vectors. Both LDA and Word2Vec

are implemented with Gensim which is a free Python package widely used for topic models [25].

40

In LDA, the hyperparameter 𝛼 is set to 0.1 and 𝑝𝑎𝑠𝑠𝑒𝑠 is set to 20 to guarantee convergence.

Word2Vec uses the CBOW model with default settings in Gensim. We use the Python scikit-

learn package to perform SVM for the classification with 𝑔𝑎𝑚𝑚𝑎 = 0.001 [39].

Figure 5-2 An original document sample

In the first part of our experiment, we tested whether our new representation carried the

relationships from LDA, and enriched results with extra benefits Word2Vec brings. Next, we

compared our method with three other methods on classification tasks.

Table 5-1 Topic distribution and distance distribution of the example document

Topic Dist.

(Index,

Prob.)
Distance Dist. (Index, Distance)

 (1, 2.005) (2, 1.597) (3, 2.376) (4, 1.285) (5, 2.119) (6, 1.646) (7, 1.889)

(8, 2.704) (9, 1.698) (10, 2.254) (11, 1.692) (12, 1.691) (13, 2.646) (14, 1.743)

(15, 1.154) (16, 1.928) (17, 1.269) (18, 1.706) (19, 2.147) (20, 1.775) (21, 1.792)

(22, 1.603) (23, 1.927) (24, 2.030) (25, 1.421) (26, 2.169) (27, 1.418) (28, 1.803)

(29, 1.774) (30, 2.323) (31, 1.793) (32, 1.568) (33, 2.010) (34, 1.604) (35, 2.067)

(36, 1.107) (37, 1.591) (38, 1.594) (39, 1.743) (40, 2.096) (41, 1.879) (42, 1.703)

(43, 1.655) (44, 1.286) (45, 3.728) (46, 2.107) (47, 1.269) (48, 1.638) (49, 0.985)

(50, 2.002)

*Mean = 1.820 Minimum=0.985

41

Table 5-2 Words contained in topic 15 and topic 45

Topic 15 Topic 45

writes, bike, article, dod, lines, organization, org, posting,

nntp, host, apr, rochester, bmw, mitre, ride, upenn,

clarkson, dog, att, riding, sas, motorcycle, john, bikes,

reply, shaft, inc, rec, rider, noise, helmet, chain, well,

mail, list, ahl, motorcycles, like, tek, ysu, sport, dave,

corporation, road, bill, wave, wax, yfn, lock, pink

max, bhj, giz, scx, rlk, chz, qax, bxn, biz, air, fij, okz,

gcx, nrhj, rck, ync, frustrated, uww, fil, cho, mvs,

hernia, nei, mbs, tct, rmc, lhz, umu , wwiz, nuy, ahf,

qtm, ghj, kjz, vmk, ecs, mcx, fpl, syx, pmf , dct,

barman, srcs, gizw, mkg, qvf, bhjn, mgb, mas, khf'

Fig. 4 shows an original news document from the 20 Newsgroups dataset. After learned

by LDA, the topic distribution is shown in the left column of Table 1, which has 5 very relevant

topics 9, 11, 22, 47, and 49. Except for these, other topics with values of zero are considered as

irrelevant. The right column is the distance distribution using our method. The bolded topics

underlined are corresponding to the topics listed in the left column, where the first value is the

index of topics and the second value is the normalized distance. We can see that all the

highlighted values are below the mean of 1.82 and topic 49 is the minimum value 0.985 among

all topics. Therefore, the conclusions of LDA are well held in our new representations.

Moreover, we are also interested in the italicized and bolded topics in the right column, such as

the topic 15 with a very short distance and topic 45, who has the longest distance. To interpret

these, we investigate Table 2 at first, which has two word lists of topic 15 and topic 45. Topic 15

is found by our method but missed by LDA. The words in topic 15 such as “motorcycle”, ‘bmw’,

‘bike’, ‘sport’, etc. are quite related to the word ‘car’ mentioned in the example document, where

‘car’ and ‘motorcycle’, ‘bike’ belong to vehicles, also ‘bmw’ is a brand of ‘car’. Therefore, topic

15 and the example document are highly relevant at the word-level. Topic 45 obviously contains

a lot of ‘trash’ words without any semantic meanings, therefore, it makes sense that it has the

longest distance to the document.

42

To investigate the performance, we compare TF-IDF, Word2Vec, LDA and our method

using the SVM model. From Table 3, TF-IDF performs the best prediction with about 2% more

accuracy rate over our method, but it takes more than 4 times of the running time comparing with

our method with about 20000 features. In contrast, Word2Vec only trains a predefined number of

features no more than 500, while LDA and our method only train the same number of features as

topics. With the growing words occurred in documents, the performance of TF-IDF begins to

decrease more drastically. Moreover, similar to LDA, TF-IDF describes the occurrences of

words without semantic meanings. Considering the prediction accuracy, running time, and the

volume of semantic information involved, our method performs effectively among any single

methods.

Table 5-3 Average 10-fold micro-F1 score of different methods

Methods Average 10-fold micro-F1 score

TF-IDF+SVM 0.822

Word2Vec+SVM 0.717

LDA +SVM 0.639 (# topic = 100)

Our method 0.803 (# topic = 250)

Table 5-4 Average 10-fold micro-F1 score of LDA and our method under different number topics

Average 10-fold micro-F1 score (Standard deviation)

50 topics 100 topics 150 topics 200 topics 250 topics 300 topics

LDA+SVM 0.615 (0.016) 0.639 (0.016) 0.639 (0.016) 0.619 (0.015) 0.589 (0.010) 0.536 (0.019)

Our method 0.748 (0.016) 0.777 (0.014) 0.794 (0.013) 0.796 (0.015) 0.803 (0.012) 0.789 (0.015)

Another experiment is conducted to evaluate the performances of LDA and our method

under different number of topics. As shown in Table 4, 100 - 150 topics are the optimal range of

LDA to categorize the newsgroups data, while the range of 150 -250 topics is the best for our

43

model. Therefore, our method requires more topics to predict documents because our document

representation takes more contextual information in consideration.

44

6 A HYBRID MACHINE LEARNING METHOD FOR FINDING DEPRESSION

RELATED PUBLICATION BY ELIMINATION OUTLIER PUBLICATIONS

6.1 Introduction

The sheer volume of new articles being published every day is growing exponentially. A

surprising number is that there are about 300,000 literatures about “depression” in PubMed

database. This increasing number of publications exposes that researchers are continuously

contributing to either the depression diagnosis or treatment. The depression diagnosis always

takes couple weeks to watch patients’ signs or symptoms, and meanwhile understand potential

risk factors such as personal or family history of depression, major life changes, trauma, or stress

and so on. Depression treatment is also different from other regular diseases since is not only

treated with medications, but also with psychotherapy, or a combination of the two. Therefore,

depression specialists should comprehensively diagnose patient’s conditions in a short period

and propose a treatment plan since the earlier that treatment can begin, the more effective it is.

To improve the doctors’ specialty, text mining models have been used for years to extract

the significant contents from textual data, which can help doctors learn much more cases than

before. Keyword-search based method to download the literatures is the easiest but most used

way to collect the resources from either online or existing medical database. But the drawback of

this method is that some of the downloaded literatures are not truly discussing the keyword, but

only contain the targeted keyword. These literatures can result in poor accuracy or deviated

results since some models update their parameters or weights by learning all training data.

Text representation is to translate text data to a model understandable language, normally

as a vector of numbers. Bag-of-words and its extended form Term Frequency-Inverse Document

Frequency (TF-IDF) are most used because of its simplicity and intuitive [5] [36]. Latent

45

Dirichlet Allocation (LDA) is a probabilistic topic model that discovers hidden topics from

literatures [10]. Each literature is represented with a set of probabilities to the latent topics. A

feature-enhanced smoothing method finds that the words in testing literatures but not in training

corpus are significant to the accuracy in classification models [32]. An improved algorithm

gLDA uses large and grouped data to train the model and apply it to smaller corpus to improve

the accuracy [33]. Multi-LDA uses the boosting strategy to train multiple modes with different

parameters, and performs a weighted method to improve the accuracy [36]. Word Embedding is

another method to represent word in a vector format. Global Vectors for Word Representation

(Glove), Spectral Word Embedding and Word Embedding through Hellinger PCA (HPCA) use a

co-occurrence matrix for the entire document and reduce the size of the matrix to generate word

and context [20] [27] [28]. Latent Semantic Analysis (LSA), density based word embedding,

Word2Vec predict a word by its surroundings with contextual information [40] [30] [7].

Averaging the word vectors in a document is a way to calculate the document representation.

There are also other ways such as Doc2Vec, that combines words with a linear relationship [31].

Outlier analysis has been studied and applied in many applications. Numerical methods

have been proposed. Distance-based methods declare outliers which are far away from the dense

regions [41] [42]. Density-based methods declare outliers with low local density with respect to

the remaining points [43]. Subspace methods declare outliers based on subspace behavior of the

underlying data [44] [45] [46] [47] [48]. Recent years, Non-negative Matrix Factorization (NMF)

is used to detect outliers. It is derived from the low rank approximation technique but constrain

the fact matrices with non-negative values to find out abnormal individuals [49] [50] [51] [52].

Next, we propose a novel text representation method paired with One-class Support

Vector Machine to detect and eliminate outlier literatures to improve the data purity. Word2Vec

46

and LDA are two important models to our method which are explained in section 6.2. In section

6.3, One-class SVM is introduced. In section 6.4, experiment results are discussed. Section 6.5

are conclusions and future insights.

6.2 Text Representation Method

Feature extraction is a dimensionality reduction approach to represent data in a compact

feature vector. Literatures composed of words are not recognized by models. Therefore,

literature representation is to convert texts to a model understandable format, and contain as

much information of the original texts as possible. Next, we will explain how to incorporate two

advanced models with better performance.

6.2.1 Word2Vec

Figure 6-1 Word2Vec CBOW model.

Word2Vec based on a deep neural network predicts word vectors by their surroundings.

Thus, words are mapped to a lower dimension space, where similar meaning words are assigned

at closer positions. Any occurrence of a word will update its word vector as well as its’s

neighbors. A Word2Vec model can guess word associations (such as “man” is to “boy” what

47

“women” is to “girl”) as well as understand meanings across different languages (such as “ONE”

in English and “UNO” in Spanish are at the very closed positions in the vector space).

Next, one of the Word2Vec architecture CBOW will be introduced. Each model contains

three layers: input layer, a projection layer, and an output layer.

Input layer: wt is the targeted word vector and it is predicted by four neighbors wt−2,

wt−1, wt+1, and wt+2, where window size is set to 2.

Projection layer: a contextual vector

Xw
context = ∑ wi

t+2

i=t−2

 where i ≠ t.

Output layer: A Huffman tree is constructed and all occurred words are assigned to leaf

nodes, where higher frequency words with shorter depth. Thus, each word in the tree is

represented with a unique Huffman code to be accessed.

A child to its parent is estimated by a logistic model

σ(Xw
T θ) =

1

1 + e−xw
T θ

and the other child is calculated by1 = σ(Xw
T θ)

Then, the probability of wx to its neighbors at each node is calculated by (1).

p(Xw|Xw
context) = [σ(Xw

T θj−1
w)]

1−dj
w

[1 − σ(Xw
T θj−1

w)]
dj

W

(20)

where dj
w ∈ {0,1} is the jth digit in word w′s Huffman code and j is any node on the

path except as the leaf node.

Finally, the objective function is optimized by the gradient descent method to maximize

the log-likelihood (2).

48

6.2.2 Latent Dirichlet Allocation

Figure 6-2 A graphic of LDA model

LDA is an unsupervised method to discover the latent topics Z from a collection of

documents D. In LDA, each document d is represented as a probability distribution θd over

topics, where each topic z is a probability distribution φz over all words in vocabulary. Figure 2

shows the generative process. Both θ and φ have prior distributions with hyperparameters α and

β. For every word wdi in document d, a topic zdi
can be extracted by equations (22) and (23), a

word wdi
can be returned. Repeat (3) and (4) N times, a document d is generated, where N is the

size of document d.

𝜃𝑑 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) 𝑧𝑑𝑖
~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑑) (22)

𝜑𝑧 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽) 𝑤𝑑𝑖
 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑛𝑖𝑎𝑙 (𝜑𝑧𝑑𝑖

) (23)

ℒ = ∑ log ∏ { [σ(v(xw)Tθj−1
w)]

1−dj
w

[1 − σ(v(xw)Tθj−1
w)]

dj
w

 }

n

j=2w∈C

(21)

49

By using Gibbs Sampling, 𝜃 and 𝜑 can be inferred to discover the latent topics in

documents, and predict any new document with a topic proportion distribution.

6.2.3 Our Hybrid Method

LDA is a topic model that discovers the hidden topics from literatures. It overlooks the

entire literatures to extract a global relationship based on the word occurrences and distributions.

In contrast, Word2Vec predicts a target word by focusing on its neighboring words as shown in

figure 1. Therefore, a word vector well maintains the associations to its neighbors. LDA and

Word2Vec are complements to each other, this is one reason that we combine the two models.

The other reason is the rule of LDA to assign topics to each literature. LDA is a doubly sparse

model that uses fewer topics to describe a literature. Thus, the literature vector is too sparse to be

applied to the models. Next, our proposed literature representation method will be explained on

how to overcome the two points mentioned above.

n topics {T1, T2, … , Tn} are extracted from the literatures by LDA. And then a Word2Vec

model is trained by the entire literatures. d word vectors are {w1, w2, … , wd}. A literature is a

collection of words, which can be calculated by summing the containing word vectors in

Equation (24),

𝑣 =
∑ 𝑤𝐿

𝑐
𝑛=1

𝑐
 (24)

where 𝑤𝐿 ∈ {𝑤1, 𝑤2, … , 𝑤𝑑}. and 𝑐 is the number of words in 𝐿

Like generating the literature vectors, topics also are collections of words. Each topic

contains its most related keywords that are ranked by their probabilities. The probability 𝜃 of a

word can be interpreted as its importance to the topic. If a literature contains a keyword with

high probability to a topic, there is more likely the literature has strong association to the topic.

50

In our method, top rated h words from each topic are used to generate the topic vector.

Probabilities of words are used as the weights calculated by (23). The topic vectors are calculated

by (24).

𝑤𝑡 =
𝜃

∑ 𝜃𝑛
ℎ
𝑛=1

 (23)

𝑣(𝑇) = ∑(𝑤𝑡𝑛 ∗ 𝑤𝑇𝑛
)

ℎ

𝑛=1

 (24)

where 𝑤𝑡 is the weight calculated from the probability and 𝑤𝑇 ∈ {𝑤1, 𝑤2, … , 𝑤𝑑}.

After vectoring literatures and topics, Euclidean distance measures the similarity between

literatures and topics by (25). A set of similarity values between literature and topics are new

representations to describe literatures.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣(𝐿), 𝑣(𝑇)) = |𝑣(𝑑𝑖) − 𝑣(𝑡𝑖)| (25)

6.3 One-Class Support Vector Machine (OCSVM)

OCSVM is a special form of support vector machine [14], which has been applied to

various applications [15] [16] [17] [18]. It learns a minimum volume hypersphere that enclosed

most of the data. In another word, OCSVM only recognizes one class from the normal training

data. If a newly data is too different to this class, model labels this data as out-of-class. OCSVM

is an optimization problem because we expect the ball as small as possible but the ball contains

most of the data.

Most time we use OCSVM when we only have the data of one class. The objective

function can be learned by (26) and (27):

F(R, α, ξi) = R2 + C ∑ ξi

i

 (26)

51

s. t. (xi − a)T(xi − a) ≤ R2 + ξi, ∀i, ξi ≥ 0 (27)

where a is the center, R is the radius, and xi is the training data.

We can solve the optimization with Lagrangian multipliers in (28):

L(R, α, ai, ξi) = R2 + C ∑ ξii − ∑ γiξii − ∑ ai{R2 + ξi − (xi
2 − 2ax + a2)}i (28)

Where ai ≥ 0 and γi ≥ 0

After deriving the parameters and let derivatives set to zero, we can get (29), (30) and

(31):

∑ ai

i

= 1 (29)

a = ∑ aixi

i

 (30)

C − ai − γi = 0 (31)

By substituting (29), (30), and (31) to the Lagrangian multiplier, we can get:

L = ∑ aiK(xi, xi) − ∑ aiajK(xi, xj)

iji

 (32)

To distinguish whether a new data is normal or abnormal, the Kernel equation is applied.

K(z, z) − 2 ∑ aiK(z, xj)

i

− ∑ aiajK(xi, xj)

ij

≤ R2 (33)

6.4 Experiment

The National Center for Biotechnology Information (NCBI) advances science and health

by providing access to biomedical and genomic information. Our medical literatures used in the

experiments are collected from NCBI database and downloaded through a Python package

named Biopython. There are about 300,000 “depression” related abstracts are used to train the

52

model. Plus, we also randomly download 3000 “obesity” related abstracts and 3000

“myocarditis” related abstracts as the testing data. The reason we use obesity literatures as the

testing data is that obesity is also a disease requires both the mental and physical aspects.

Comparing with depression and obesity, myocarditis is a regular disease which only needs

physical treatment. 20Newsgroups dataset is also as part of my testing data. Majority of the

articles are not related to medical topics such as politics, religions etc. [24]. We randomly select

3000 articles from 20Newsgroups articles as the test data.

To simulate the real problem, we are facing, we replace the words “obesity” and

“myocarditis” with “depression” in the testing data. For the articles from 20Newgroups, we add

“depression” at a random position in each article.

Python packages Gensim and sciket-learn are used to implement the LDA and Word2Vec

models [39]. The hyerparameter α in LDA model is set to 0.1 and passes is set to 20 to

guarantee that the convergence can be finished. Word2Vec sets the window size to 5. OCSVM

uses a non-linear kernel Radial Basis Function (RBF). 200 topics are used in LDA model. We

use Word2Vec to map all the words in a 200 dimensions’ numerical space.

Firstly, to display the distributions, we randomly select 100 depression abstracts, 100

obesity abstracts, 100 myocarditis abstracts, and 100 articles from 20Newsgroup to visually

demonstrate the performance of our proposed framework in Figure 3. 300,000 depression

abstracts except the selected 100 abstracts (totally 299,900 depression abstracts) are used to train

the OCSVM model. Principle Component Analysis (PCA) model is used to map each literature

to a 2-D space. In Figure 3, the pink area is the learned model, where a publication in the pink

area is considered as a normal point, and a publication out of this area is treated as an outlier

literature. From the experiment, we find about 40% depression data not contained in the

53

hypersphere. To evaluate the model’s distinguishability, 100 depression literatures are used as

testing data. The results in the Figure 3A is that 17 of 100 abstracts are not recognized by the

model. The accuracy is 83%. The figure 3B shows the results to detect the obesity abstracts. 35

of 100 literatures are found as outliers. Depression and obesity share many similar symptoms and

medicines. Thus, it is very challenging to distinguish these two types of publications. In figure

3D, non-medical articles are scattered to the space with less associations to the depression

abstracts, and the model performs very high accurate that 80 of 100 are considered as outliers.

The reason is the entire training data only describe the shape of the regular terms, thus, it highly

requires that the text representation method can keep and capture as much descriptive

information as possible. Another experiment in table 1 shows the performances using our text

representation method compared with TF-IDF in classification problem. We use support vector

machine (SVM) as the classifier. The data in the experiment is to randomly select 20,000

abstracts from each disease and 20Newgroups dataset. The results indicate that the frequency-

based TF-IDF as the text representation performs better to classify the medical and non-medical

publications. However, for different types of medical publications, TF-IDF cannot discover the

differences in semantics.

Back to the discussion of outlier detection, we further test the performance of our

proposed model, table 2 continues to show the results with more testing data. The OCSVM

model is trained with 200, 000 depression data by both TF-IDF and out proposed method. The

remain 100,000 depression abstracts are used as the testing data. Experiment runs 20 times with

same parameters. Each time we randomly select 3000 articles from each topic as the testing data.

The numbers in table 2 are the average values of 20 experiments. From table 2, TF-IDF still

54

performs better than our method for non-medical outlier publications. But for medical outlier

publications, our method is much better than TF-IDF based method.

Table 6-1average 10-fold micro-f1 score and std. to classify depression abstracts with other data

 Obesity Myocarditis 20Newsgroup

TFIDF+SVM

0.421

(0.016)

0.502

(0.014)

0.862

(0.011)

Proposed Method

0.532

(0.015)

0.634

(0.012)

0.825

(0.013)

Figure 6-3. Use PCA to display depression, obesity, myocarditis and non-medical articles in a 2-D

space.

Python Gensim and sciket-learn packages are used to implement the LDA and Word2Vec

models. The hyerparameter 𝛼in LDA model is set to 0.1 and 𝑝𝑎𝑠𝑠𝑒𝑠 is set to 20 to guarantee that

55

the convergence can be finished. Word2Vec will set the window size to 5. OCSVM uses a non-

linear kernel Radial Basis Function (RBF).

Firstly, to display the distributions, we randomly select 100 depression abstracts, 100

obesity abstracts, 100 myocarditis abstracts, and 100 articles about other topics to visually

demonstrate the performance of our proposed framework. 300,000 depression abstracts except

the selected 100 abstracts are used as normal data to train the OCSVM model. Principle

Component Analysis (PCA) model is used to map each literature to a 2-D space [53]. In figure

6.3, One-class SVM is trained by about 300,000 depression abstracts. White points represent

training depression abstracts, and purple points are the testing depression abstracts. In figure A,

B, C, yellow points are corresponding articles associated to different topics. The pink area is the

learned model, where inside the area is considered as a normal literature, and outside the area

outlier literatures. From the experiment, we find about 40% depression data not contained in the

hypersphere. To evaluate the model’s distinguishability, 100 depression literatures are used as

testing data. The results in the figure 6.3A is that 17 of 100 abstracts are not recognized by the

model. The accuracy is 83%. The figure 6.3B shows the results to detect the obesity abstracts. 35

of 100 literatures are found as outliers. Depression and obesity share many similar symptoms and

medicines that means they have many same keywords contained both. It is a challenge to

understand the real differences for the model. Figure 6.3C shows better performance that our

method successful find 55 of 100 myocarditis abstracts. In figure 6.4D, non-medical articles are

scattered to the space with less associations to the depression abstracts, and the model performs

very high accurate that 80 of 100 are considered as outliers.

56

Table 6-2 results of our method and TF-IDF based method to evaluate the outlier detection capability

on different data

 Depression Obesity Myocarditis 20News

TF-IDF 62.5% 28.7% 43.1% 83.2%

Proposed

method

77.4% 36.1% 51.5% 81.7%

Figure 6-4 ROC curve of our method against different types of noise data

To further demonstrate the model performance, table 1 continues to show the results with

more testing data. The OCSVM model is trained with 200, 000 depression data, and the remain

data are used as testing data. We also have enough other types of testing data. Experiment runs

20 times with same parameters. Each time we randomly select 3000 articles from every topic as

testing data. The numbers in table 1 are average values of 20 experiments, which is very closed

57

to the results discussed above. Therefore, it tells that our model has a very stable prediction

capability.

In statistics, Area under Curve (AUC) is the area under the receiver operating

characteristic (ROC) that is an important factor to illustrate the discrimination performance of

system. The AUC is a probability between 0 to 1, and a larger probability indicates the model

has better capability to detect the normal literatures and abnormal literatures. If the model is no

better than random guessing, the true positive rate will increase linearly with the false positive

rate and the area under the curve will be around 0.5. Moreover, outlier detection is a problem that

is different from other traditional classification problems. The analyzing data is usually

extremely imbalanced, in which a very small portion of data is the target to be distinguished. In

figurer 4, the ROC curves show the detecting capabilities of our model to the 3 types of articles

with different color lines. To against the medical articles blue line and green line, it performs as

high as 0.6 of AUC value, and against the non-medical articles with red line, it reaches as high as

0.8.

58

7 A SEMI-SUPERVISED MACHINE LEARNING METHOD FOR

IDENTIFYING TEXTUAL DEPRESSION SYMPTOMS FROM PUBLICATIONS

7.1 Introduction

The number of literatures are growing explosively, which has been far beyond a person’s

reading volume. Most of the time, keywords as the smallest meaningful units are widely used to

prescreen literatures. However, a literature always contains multiple topics, while majority of

time we are only interested in one or some of the topics. Therefore, we develop an approach to

extract keywords from literatures regarding limited given topics. Many existing work on

keyword extraction from a text has been conducted. Word frequency based methods are the

earliest methods we used, and many later methods are extended from it [54]. TFIDF is the most

used techniques that not only considers the word frequency, but also look at the distributions

both in a single document and the full document set [6]. The advantages of the above approaches

are easily to be implemented, and it conforms to the habit of human’s writings that people prefer

to repeat the contents they want to emphasize. However, the bad thing is that these methods

always ignore the low-frequency words, such as the new-found biomarker, new medicines, and

so on. Another type of keyword extraction method is to consider the lexical semantic information

among words or sentences. Semantic relations between words can be obtained from a manually

constructed thesaurus such as WordNet. Ye et al. used the frequency of all words belonging to

the same WordNet concept set [55]. Probabilistic Latent Semantic Analysis (PLSA) as a topic

model is used to build a dictionary, in which words are ranked according to the topical similarity

to the topics [56]. Rose et al. fully consider dependencies among words, word co-occurrence in a

document, and apply TextRank to identify the importance of words to the document [57]. Li et

59

al. use Word2Vec model to study the word vectors and represent document by a cluster of word

vectors. Then the center of the cluster is selected as the keyword [58].

In this chapter, we propose a hybrid method for keyword extraction that rewards both

word similarity, to identify the major topics regarding the given subject, and word frequency, to

identify prominent words to related to the subject if necessary. The chapter is organized as

follows. In section 7.2 we introduce how our method integrates Word2Vec with LDA. Section

7.3 shows the details of experiments and results. Section 7.4 is the conclusion and future work.

7.2 Proposed Framework

In the framework, LDA as a topic model discovers latent topics by learning all the

literatures. Each latent topic is composed of a set of words with probabilities. If a literature

includes a higher probability word of a topic, it is more likely that the literature is about the

topic. Therefore, each literature can be described by a probability distribution over all topics.

Word2Vec is deep neural network which projects words into a high-dimensional space in form

of word vectors. Hence, the relationship between any two words can be easily measured by the

cosine similarity. We studied depression symptoms from WebMD, which is an authoritative

online publisher of news and information pertaining to human health and well-being. Based on

its descriptions of depression symptoms, we manually choose 10 most important symptoms

“fatigue”, “worthlessness”, “helplessness”, “hopelessness”, “insomnia”, “irritability”,

“restlessness”, “anxious”, “sad”, and “suicidal” to form a depression symptom vector. A

similarity between any word and symptom vector can be used to measure the probability a word

to be depression symptom. Therefore, by calculating similarities of words in a topic, we can

measure the degree of a topic about depression. Finally, the word frequency is counted by two

60

conditions: (1) only words in important topic will be counted; (2) only the literature has

probability to the topic. Higher frequency words are more likely to be a depression symptom.

In details, given a set of literatures 𝐿 , a word dictionary 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} is

constructed where 𝑑 is word existed in 𝐿 . By training 𝐿 , LDA finds 𝑛 latent topics 𝑇 =

 {𝑡1, 𝑡2, … , 𝑡𝑛}. Top 50 highest probability words are used to represent the topic. The 𝑛𝑡ℎ word in

𝑚𝑡ℎ topic can be denoted by 𝑑𝑛
𝑚 , and its probability is denoted with 𝑤𝑝𝑛

𝑚 . By training the

Word2Vec model, words in 𝐷 are vectored to 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}. By learning the symptoms

online, 10 words 𝐷𝑠𝑦 = {𝑑1
𝑠𝑦

, 𝑑2
𝑠𝑦

, … , 𝑑10
𝑠𝑦

} are used to represent depression symptoms, and from

𝑉 , symptom words 𝐷𝑠𝑦 are mapped to 𝑉𝑠𝑦 = {𝑣1
𝑠𝑦

, 𝑣2
𝑠𝑦

, … , 𝑣10
𝑠𝑦

} . Symptom vector can be

calculated by (34).

𝑆𝑉 =
∑ 𝑣𝑛

𝑠𝑦10
𝑛=1

10

(34)

Next, words 𝑑𝑛
𝑚 in topics are vectored to 𝑣𝑛

𝑚. We represent each topic in a vector form by

aggregating the word vectors in it. The vector value of 𝑚𝑡ℎ topic is calculated by (35).

𝑉𝑇𝑚 =
∑ 𝑣𝑛

𝑚50
𝑛=1

50

(35)

We measure the similarity by calculating the cosine values between any two vectors. 𝜃 is

the angle between current topic and depression vector. The similarity is calculated by dot product

and magnitude (36). A threshold is set to determine if a topic is a depression symptom topic. If

the similarity larger than the threshold, 𝑓𝑙𝑎𝑔𝑡 = 1, else 𝑓𝑙𝑎𝑔𝑡 = 0.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑚 =
𝑉𝑇 ∙ 𝑆𝑉

∥ 𝑉𝑇 ∥2∥ 𝑆𝑉 ∥2

(

36)

For any single literature, LDA represents it with a series of probabilities to indicate the

relationship to all topics, where 0 indicates no relationship between the literature and the current

61

topic, and any value between 0 and 1 is the correlation of the literature to the current topic. So

the correlation of 𝑚𝑡ℎ literature’s 𝑛𝑡ℎ topic is denoted by 𝑡𝑝𝑛
𝑚.

Next, we measure how likely a word within a topic is a symptom in a literature.

 For the 𝑚𝑡ℎ literature, check the probability distribution of topics. We replace the

probabilities with binary values. If any probability is 0, we set 𝑓𝑙𝑎𝑔𝑝 = 0 with 0; if it is

not 0, 𝑓𝑙𝑎𝑔𝑝 = 1.

 We use logical AND operator with 𝑓𝑙𝑎𝑔𝑡 and 𝑓𝑙𝑎𝑔𝑝. If returned value is true, the topics

will be kept.

 We calculate how important a word in kept topics to a literature by equation (37).

𝑠𝑐𝑜𝑟𝑒𝑛
𝑚 = 𝑤𝑝𝑛

𝑚 × 𝑡𝑝𝑛 (37)

where 𝑛 is the 𝑛 is 𝑛𝑡ℎ kept topic and 𝑚 is the 𝑚𝑡ℎ word in 𝑛𝑡ℎ topic.

 Iterate all literatures and aggregate scores of each word. All words are ranked by the

scores. The score will be used to show the possibilities a word to be a symptom.

7.3 Experiment

In the experiment, we downloaded 300,000 depression related literatures from National

Center for Biotechnology Information (NCBI) database. Python NLTK package is used to clean

and prepare text data [59]. We also use Python Gensim package to implement LDA model and

Word2Vec model [25]. Besides these, we also manually choose 10 depression symptoms from

the WEBMED website which is an authoritative online platform fulfills the promise of health

information. The 10 symptoms are “fatigue”, “worthlessness”, “helplessness”, “hopelessness”,

“insomnia”, “irritability”, “restlessness”, “anxious”, “sad”, and “suicidal”. Based on these 10

symptoms, a symptom dictionary including 100 symptom words is constructed by adding their

synonyms words.

62

In order to evaluate the performance of our model, we compare it with two other models

TFIDF and original LDA-Word2Vec. The difference between the original LDA-Word2Vec and

our model is that we use symptom vector to select topics. Our experiment requires each model

returns 20, 50, 100 most important words based on the rank either by frequency or by score.

Therefore, precision (P), recall (R), and F-measure are most used for this type of tasks. The

corresponding equations are (38), (39), and (40).

𝑃 =
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 ∩ human annotated keywords

human annotated keywords

(

38)

𝑅 =
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 ∩ human annotated keywords

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠

(

39)

𝐹 − 𝑚𝑒𝑎𝑟𝑠𝑢𝑟𝑒 =
2 ∙ 𝑃 ∙ 𝑅

𝑃 + 𝑅

(

40)

Table 7-1 comparing the precision of the three models to extract 20, 50, 100 keywords

 20 words 50 words 100 words

TF-IDF 0.04 0.08 0.15

Word2Vec + LDA 0.06 0.09 0.19

our model 0.09 0.21 0.35

Table 7-2 comparing the recall of the three models to extract 20, 50, 100 keywords

 20 words 50 words 100 words

TF-IDF 0.02 0.16 0.15

Word2Vec + LDA 0.03 0.18 0.19

our model 0.45 0.42 0.35

63

Table 7-3 comparing the F-score of the three models to extract 20, 50, 100 keywords

 20 words 50 words 100 words

TF-IDF 0.02 0.11 0.15

Word2Vec + LDA 0.04 0.12 0.19

our model 0.15 0.28 0.35

In Table 7.1 – Table 7.3, we find out that our model performs much better than the other

two models in precision, recall and F-measure. With the increasing number of words extracted

from literatures, our model has a clear upward trend to discover more symptoms, while the other

models do not have a big rise.

The second experiment is to measure the average distances in terms of similarity from

extracted word vector to the symptom vector. Similarly, we extract 20, 50, 100 words from the

three models. The cosine similarity is ranged from -1 to 1, where negative value means opposite

meanings, 0 means no relationship, and positive value means similar meanings. In Table 4, we

can see TF-IDF model hardly find out symptom words so that its aggregated word vector has

completely different directions of the symptom vector. Also, without the guidance of the

symptom vector, the original LDA+Word2Vec model lacks concentration on any single topic.

Compared to the above methods, our mod has much stronger learning capability to find out

symptoms.

Table 7-4 average distances from extracted word vector to the symptom vector

 Avg. Distance

20 words 50 words 100 words

TFIDF -0.2767 -0.1792 -0.0561

LDA + Word2Vec 0.1529 0.1388 0.0782

Our model 0.3886 0.3209 0.2633

64

8 EXTRACTING DEPRESSION SYMPTOM WORDS BY TEXTRANK AND

WORD2VEC

8.1 Introduction

Keyword extraction is a task that automatically finds a small set of the words that best

describe the contents of document. Keywords as the smallest unit to express the meanings in

document, it plays a crucial role to improve the performances of text indexing, text abstracting,

information retrieval, document classification and clustering, and so on. To identify keywords,

basically it needs word tokenization, word stemming, removing stop words and so on.

Linguistic based methods take the position of words into account. It labels words as part-

of-speech tagging, and according to the grammatical structures to decide the importance of

words in document. Statistical methods count the occurrences of words in all documents. It treats

high frequency words with more importance to the document. Term frequency–inverse document

frequency (TF-IDF), as an example, is used to evaluate how important a word is to a document

in corpus [6]. The importance increases proportionally to the occurrences of a word exists in

document, meanwhile, the importance decreases by the frequency of the word in corpus. Another

type of statistical model is probability-based method. Latent Dirichlet Allocation (LDA)

investigates latent topics from corpus and represent each document with a probability

distribution over the discovered topics [10]. Each topic is composed of words to describe the

topic’s contents where we can extract keywords based on the importance of words to the topics.

TextRank as the reprehensive of the graph-based model, it uses the structure of the document and

the known parts of speech of words to assign a score to words that is used to evaluate the

importance of words to the document [60].

65

8.2 Proposed Framework

In our frame, we treat the keyword extraction problem by ranking the importance of

words in document. The words with higher score are considered as prominent words to the

document. A graph model is constructed as the keyword network where nodes are words as the

basic meaning unit, and edges are the weights between every two words. By iterating words in

any given document, it aims to optimize each word’s weight to score the importance to

document. Each word is learnt in the Word2vec and represented in a high-dimensional space. We

measure the relativity between the current word and the target topic vector. Then the relativity is

used in the iteration step to improve the output. Before we build the keyword graph model, we

apply 5 steps to preprocess the training articles:

1. Select 𝑁 training articles Using the NLTK package to divide 𝑁 articles to sets of words,

𝑐1, 𝑐2, … , 𝑐𝑁, and build the training words set 𝑆1. The stops words are removed from each

set. M articles as testing data and construct test word set 𝑆2.

2. Tag 𝑆1 and 𝑆2. Retain the important words such as nouns, verbs, adjectives.

3. Remove the duplicate words in 𝑆1 and 𝑆2. And generate the candidate word dictionary

𝐷 = {𝑤1, 𝑤2, … , 𝑤𝑛} ∈ (𝑆1 ∪ 𝑆2).

4. Use model to train 𝑀 + 𝑁 articles. And generate k-dimension word vectors 𝑉 =

 {𝑣1, 𝑣2, … 𝑣𝑚}.

5. Learn top 10 targeted topic related words 𝑇 = {𝑡1, 𝑡2, … , 𝑡10}. We sum the word vectors

as the topic vector 𝑇𝑉 in 𝑇 if it exists in 𝑉. And builder a relativity list 𝑅 where words in

D to the topic vector.

Use CBOW model and Skip-gram model to train the articles, we project words on 𝐷 in to

k-dimension word vector in 𝑉. The topic vector can be calculated by summing the values

66

at corresponding dimensions, and each dimension is divided by the number of topic

keywords by equation (41).

𝑇𝑉 = 𝑠𝑢𝑚(𝑇)/10 (41)

where 𝑇 = 𝑡1, 𝑡2, … , 𝑡10 are selected top 10 related words to the topic.

The relativity between word vectors in 𝑉 and topic vector 𝑇𝑉 can be calculated by (42)

𝑠𝑖𝑚(𝑣𝑥, 𝑇𝑉) = 𝑐𝑜𝑠𝜃 =
𝑣𝑥 ∙ 𝑇𝑉

∥ 𝑣𝑥 ∥∙∥ 𝑇𝑉 ∥

(42)

where 𝑣𝑥 is the 𝑥𝑡ℎ vectors in Vector dictionary, and 𝑇𝑉 is the topic vector in (41). Based on

(42), we save the similarities of all the words in dictionary 𝐷 and the targeted topic 𝑇𝑉 in the list

𝐿𝑠𝑖𝑚 (43).

𝐿𝑠𝑖𝑚(𝑣𝑥, 𝑇𝑉) = [𝑣1𝑇𝑉, 𝑣2𝑇𝑉, … , 𝑣𝑚𝑇𝑉] (43)

Similarly, we also construct a similarity matrix which is used to initialize graph model by

(44).

𝑀𝑠𝑖𝑚(𝑥, 𝑥𝑗) = [

𝑥1𝑦1 ⋯ 𝑥1𝑦𝑛

⋮ ⋱ ⋮
𝑥𝑛𝑦1 ⋯ 𝑥𝑛𝑦𝑛

]
(44)

where each value in matrix is the similarity between two words, such as 𝑥𝑖𝑦𝑗 represents the

similarity between word 𝑥𝑖 and word 𝑦𝑗.

After preprocessing the articles, TextRank is used to build the graph model. The main

idea of TextRank is that the importance of a word node replies on the number of other word

nodes connecting to it as well as their neighboring weights. The weight of a word node can be

calculated by (45)

67

𝑅(𝑤𝑖) = 𝛾 ∑
𝑒(𝑤𝑗, 𝑤𝑖)

𝑂(𝑤𝑗)
𝑅(𝑤𝑗) + (1 − 𝛾)

1

|𝑉|
𝑗:𝑤𝑗→𝑤𝑖

(45)

where 𝑅(𝑤𝑖), is the weight of word 𝑤𝑖, 𝑂(𝑤𝑗) is the number of the word node connected to other

nodes, 𝑒(𝑤𝑗, 𝑤𝑖) is 𝑤𝑗 → 𝑤𝑖 ’s weight on the edge, 𝑉 is a set of word nodes, 𝛾 ∈ [0,1] is the

damping factor with value 0.85.

Normally, TextRank algorithm sets the weights of all word nodes with 1 as the default

value. Then sequentially iterating words in the article to update its weight according to its

neighbors. Meanwhile, the neighboring nodes also get updated and contributions is equally

divided by the number connected nodes.

For example, 6 nodes {𝑣, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} graph model as shown in figure 8.1. The

weight of each node is initialized with 1. The weight of 𝑣 is equally contribute to the connected

nodes {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and edge weigh is set to 0.2. For the nodes 𝑣1 − 𝑣5, they only linked to

node 𝑣, so the weight is 1. Then the weights are updated by the same steps.

Figure 8-1 a graph model and its weight initialization

In this section, we will discuss how to optimize the initialization weights for nodes, how

to decide the importance of word node, and how to improve the ranking methods of words to

68

extract keywords form documents. It is obvious that the initialization weight assigned with 1is

not the best scenario. A better way is that we can employ the similarity matrix in (44) to set the

starting edge weights.

Moreover, the similarity list in (43) is applied to the weight updating during the iteration.

The updating process contains two components to affect the new weight. One part is to utilize

original TextRank method to learn the importance of the word in the article. The other part is the

similarity between the current word and the given topic by equation (46).

𝑆(𝑤𝑖) = (1 − 𝛾)
1

|𝑉|
+ 𝛾(𝑑1 ∑

𝑅(𝑤𝑗)

𝑂(𝑤𝑗)
𝑗:𝑤𝑗→𝑤𝑖

+ 𝑑2 ∑
𝑆𝑖𝑚(𝑤𝑖 , 𝑇𝑉)

𝑂(𝑤𝑖)
𝑗:𝑤𝑖→𝑇𝑉

)
(46)

where 𝛾 ∈ [0,1] is the damping factor, in the experiment we set it as 0.85. 𝑑1 + 𝑑2 = 1, here we

set is 0.5 and 0.5. 𝑅(𝑤𝑖), is the weight of word 𝑤𝑖 , 𝑂(𝑤𝑗) is the number of the word node

connected to other nodes, 𝑆𝑖𝑚(𝑤𝑖, 𝑇𝑉) is the similarity of the current word and the topic vector,

𝑂(𝑤𝑖) is the number the current word’s connections. 𝑉 is the set of word nodes. When

calculating the 𝑆𝑖𝑚 (𝑤𝑖, 𝑇𝑉), we can use the output of equation (3) [𝑣1𝑇𝑉, 𝑣2𝑇𝑉, … , 𝑣𝑚𝑇𝑉].

Therefore, we integrate Word2Vec with TextRank for keyword extraction. There are two

times we apply Word2Vec outputs involved in TextRank to improve the performance of

keyword extraction. We successfully find the global relationship among words by Word2Vec,

and also we integrate it with the local relationship detected by TextRank to make the proposed

algorithm much more powerful.

8.3 Experiments and Results

In the experiment, we downloaded 300,000 depression related literature summaries from

the National Center for Biotechnology Information (NCBI) database. WEBMED is an

organization that fulfills the promise of health information on the Internet. It provides credible

69

information, supportive communities, and in-depth reference material about health subjects that

matter to you. Their sources for original and timely health information as well as material all are

from well-known content providers. Based on its description of depression symptoms. So based

on its description of depression symptoms as shown in figure 8.2, we extract 10 most important

symptoms keywords manually based on human’s understanding. They are “fatigue”,

“worthlessness”, “helplessness”, “hopelessness”, “insomnia”, “irritability”, “restlessness”,

“anxious”, “sad”, and “suicidal”.

Figure 8-2 symptoms description from WEBMED

Python NLTK package is used to tokenize the words, process word

stemming/lemmatization, and remove the stops words for each literature [59]. Python Gensim

package is to train the Word2Vec model from the 300,000 articles [25]. TextRank algorithm is

improved and developed used based on David’s work on Github

(https://github.com/davidadamojr/TextRank). A keyword dictionary is constructed by expanding

the synonyms of the given 10 keywords, and human annotated word, totally 100 words.

https://github.com/davidadamojr/TextRank)

70

To design the experiment, we use 100,000 literature as the training data. Then we

randomly select 120 literatures from the pool as the training data. Each time we let each method

to extract 3, 5, 7, 10 keywords from each literature, and check if the keyword is listed in the

keyword dictionary we built above. The experiment will be repeated five times, and the

precision, recall and F-measurement are averaged values. Basically, precision, recall and F-

measurement are calculated by equation (47), (48), and (49) respectively. To further evaluate the

performance, we compare with TF-IDF, original TextRank, and Word2Vec models on the

dataset.

𝑃 =
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 ∩ human annotated keywords

human annotated keywords

(

47)

𝑅 =
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 ∩ human annotated keywords

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠

(

48)

𝐹 − 𝑚𝑒𝑎𝑟𝑠𝑢𝑟𝑒 =
2 ∙ 𝑃 ∙ 𝑅

𝑃 + 𝑅

(

49)

Table 8-1 comparing the precision of the four models to extract 3, 5, 7, 10keywords

 TF-IDF TextRank Word2Vec Word2Vec+TextRank

3 0.325 0.334 0.273 0.285

5 0.278 0.346 0.289 0.318

7 0.256 0.348 0.314 0.359

10 0.245 0.341 0.335 0.388

71

Table 8-2 comparing the recall of the four models to extract 3, 5, 7, 10keywords

 TF-IDF TextRank Word2Vec Word2Vec+TextRank

3 0.336 0.329 0.281 0.289

5 0.277 0.341 0.287 0.312

7 0.249 0.351 0.321 0.358

10 0.228 0.338 0.333 0.392

Table 8-3 comparing the F-measurement of the four models to extract 3, 5, 7, 10keywords

 TF-IDF TextRank Word2Vec Word2Vec+TextRank

3 0.330 0.331 0.277 0.287

5 0.277 0.343 0.288 0.315

7 0.252 0.349 0.317 0.358

10 0.236 0.339 0.334 0.390

From Table 8.1- Table 8.3, the comparing results show us the precision, recall, and F-

measurement among the 4 methods. The performance of TF-IDF is getting worse when the number of

keywords extracted from literatures increases. Also, its overall performance is the worst. TextRank

method is not affected a lot by the number of keywords, while Word2Vec model raises its accuracy with

increasing the extracted keyword amounts. By integrating TextRank and Word2Vec, our method has

better performance when number of keywords are increased, and the overall performance is the best

among the 4 methods.

72

Figure 8-3 An example of literature sample

Table 8-4 symptoms found by each model from top 5 keywords

 Top 5 Keywords # found keywords

TF-IDF relationship, depression, significantly, correlated,

sleep

1

TextRank score, sleep, difficulty, dis, study 2

Word2Vec difficulty, correlated, depression, disturbances,

sleep

2

Word2Vec + TextRank dis, insomnia, sleep, disturbances, difficulty 4

Another way that we can evaluate the performance of the new method is replying on the

judgement by human. We randomly select one literature from the training data as shown in

figure 8.3. And in table 8.4, we list the top 5 words returned from different methods. Based on

my knowledge, I highlighted the words that I consider it as a symptom or related to symptom.

Our method successfully find out 4 words dis, insomnia, sleep, disturbances from the literature,

while other methods just get 1 or 2 keywords.

73

REFERENCE

[1] F. Zhu and etc., "Biomedical text mining and its applications in cancer research,"

Journal of Biomedical Informatics, vol. 46, no. 2, pp. 200-211, 2013.

[2] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, New

York: McGraw-Hill, Inc., 1986.

[3] T. o. Indexing, A theory of indexing, vol. 18, SIAM, 1975.

[4] G. Salton and M. J. McGill, Introduction to modern information retrieval, New

York, 1983.

[5] Z. S. Harris, "Distributional Structure," vol. 10, pp. 146-162, 1954.

[6] G. Salton and C. Buckley, "Term-weighting approaches in automatic text

retrieval," Information Processing and Management: an International Journal , no.

24, p. 5, 1988.

[7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, "Distributed

Representations of Words and Phrases and their Compositionality," in Advances in

neural information processing systems, 2013.

[8] TensorFlow, "Vector Representations of Words," [Online]. Available:

https://www.tensorflow.org/tutorials/word2vec.

[9] L. v. d. Maaten, "Accelerating t-SNE using Tree-Based Algorithms," Journal of

Machine Learning Research, vol. 15, no. 1, pp. 3221-3245, 2014.

74

[10] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent dirichlet allocation," The Journal of

Machine Learning Research, vol. 3, pp. 993-1022, 2003.

[11] E. Chen, "Introduction to Latent Dirichlet Allocation," 22 1 2011. [Online].

Available: http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-

allocation/.

[12] J. Suykens and J. Vandewalle, "Least Squares Support Vector Machine

Classifiers," Neural Processing Letters, vol. 9, no. 3, pp. 293-300, 1999.

[13] T. Joachims, "Text categorization with Support Vector Machines: Learning with

many relevant features," European Conference on Machine Learning, vol. 1398,

pp. 137-142, 1998.

[14] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond, Cambridge: MIT Press, 2001.

[15] C. Campbell and K. P. Bennett, "A linear programming approach to novelty

detection," in NIPS'00 Proceedings of the 13th International Conference on Neural

Information Processing Systems, Dever, 2000.

[16] F. Desobry, M. Davy and C. Doncarli, "An online kernel change detection

algorithm," IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2961-2974,

2005.

[17] A. Ganapathiraju, "Support vector machines for speech recognition," Mississippi

State University, Mississippi, 2002.

[18] L. M. Manevitz and M. Yousef, "One-class svms for document classification," The

Journal of Machine Learning Research, vol. 2, pp. 139-154, 2002.

75

[19] Y. Bengio, R. Ducharme, P. Vincent and C. Janvin, "A neural probabilistic

language model," The Journal of Machine Learning Research, vol. 3, pp. 1137-

1155, 2003.

[20] J. Pennington, R. Socher and C. D. Manning, "Glove: Global Vectors for Word

Representation," Conference on Empirical Methods in Natural Language

Processing, vol. 14, pp. 1532-1543, 2014.

[21] Google, "word2vec," 2013. [Online]. Available:

https://code.google.com/archive/p/word2vec/.

[22] Q. Le and T. Mikolov, "Distributed Representations of Sentences and Documents,"

Proceedings of The 31st International Conference on Machine Learning, vol. 32,

pp. 1188-1196, 2014.

[23] Y. Z. Long Ma, "Using Word2Vec to process big text data," in BIG DATA '15

Proceedings of the 2015 IEEE International Conference on Big Data (Big Data),

San Diego, 2015.

[24] K. Lang, "20 Newsgroups," 2008. [Online]. Available:

http://qwone.com/~jason/20Newsgroups/.

[25] R. Řehůřek and P. Sojka, "Software Framework for Topic Modelling with Large

Corpora," in Proceedings of the LREC 2010 Workshop on New Challenges for

NLP Frameworks, Malta, 2010.

[26] R. Garreta and G. Moncecchi, Learning scikit-learn: Machine Learning in Python,

Packt Publishing ©2013, 2013.

[27] P. S. Dhillon, D. P. Foster and L. H. Ungar, "Eigenwords: spectral word

76

embeddings," The Journal of Machine Learning Research, vol. 6, no. 1, pp. 3035-

3078, 2015.

[28] R. Lebret and R. Collobert, "Word emdeddings through hellinger PCA," arXiv

preprint arXiv:1312.5542, 2013.

[29] S. Dennis, T. Landauer, W. Kintsch and J. Quesada, "Introduction to latent

semantic analysis," in 25th Annual Meeting of the Cognitive Science Society,

Boston, 2003.

[30] L. Vilnis and A. McCallum, "Word representations via gaussian embedding,"

arXiv preprint arXiv:1412.6623, 2014.

[31] Q. V. Le and T. Mikolov, "Distributed Representations of Sentences and

Documents," International Conference on Machine Learning, vol. 14, pp. 1188-

1196, 2014.

[32] D. Liu, W. Xu and J. Hu, "A feature-enhanced smoothing method for LDA model

applied to text classification," in Natural Language Processing and Knowledge

Engineering, 2009.

[33] D. Zhao, J. He and J. Liu, "An improved LDA algorithm for text classification," in

Information Science, Electronics and Electrical Engineering (ISEEE), 2014.

[34] D. Q. Nguyen, R. Billingsley, L. Du and M. Johnson, "Improving topic models

with latent feature word representations," Transactions of the Association for

Computational Linguistics, pp. 299-313, 2015.

[35] D. Ramage, D. Hall, R. Nallapati and C. D. Manning, "Labeled LDA: A supervised

topic model for credit attribution in multi-labeled corpora," in EMNLP '09

77

Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, 2009.

[36] Y. Wang and Q. Guo, "Multi-LDA hybrid topic model with boosting strategy and

its application in text classification," in InControl Conference (CCC), 2014 33rd

Chinese, IEEE, 2014.

[37] L. Niu, X. Dai and J. Zhang, "Topic2Vec: Learning distributed representations of

topics," arXiv:1506.08422, 2015.

[38] C. MOODY, "A Word is Worth a Thousand Vectors," 30 Mar 2015. [Online].

Available: http://multithreaded.stitchfix.com/blog/2015/03/11/word-is-worth-a-

thousand-vectors/.

[39] F. e. a. Pedregosa, "Scikit-learn: Machine learning in Python," Journal of Machine

Learning Research, pp. 2825-2830, 2011.

[40] E. M. Knorr and R. T. Ng, "Algorithms for mining distancebased outliers in large

datasets," in Proceedings of the International Conference on Very Large Data

Bases, 1998.

[41] S. Ramaswamy, R. Rastogi and K. Shim, " Efficient algorithms for mining outliers

from large data sets," in SIGMOD '00 Proceedings of the 2000 ACM SIGMOD

international conference on Management of data, Dallas, 2000.

[42] M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, " LOF: identifying density-

based local outliers," in SIGMOD '00 Proceedings of the 2000 ACM SIGMOD

international conference on Management of data, Dallas, 2000.

[43] C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," in

78

SIGMOD '01 Proceedings of the 2001 ACM SIGMOD international conference on

Management of data, Barbara, 2001.

[44] F. Keller, E. Muller and K. Bohm, "HiCS: High Contrast Subspaces for Density-

Based Outlier Ranking," in Data Engineering (ICDE), 2012 IEEE 28th

International Conference on, 2012.

[45] H.-P. Kriegel, P. Kröger and E. Schubert, "Outlier detection in arbitrarily oriented

subspaces," in Data Mining (ICDM), 2012 IEEE 12th International Conference

on., 2012.

[46] A. Lazarevi and V. Kumar, "Feature bagging for outlier detection," in Proceedings

of the eleventh ACM SIGKDD international conference on Knowledge discovery

in data mining, 2005.

[47] M. E. Muller, I. Assent, P. Iglesias, Y. Mulle and K. Bohm, "Outlier ranking via

subspace analysis in multiple views of the data," in Data Mining (ICDM), 2012

IEEE 12th International Conference on, 2012.

[48] C. Ding, T. Li and W. Peng, "NMF and PLSI: equivalence and a hybrid

algorithm," in Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, 641-642, 2006.

[49] E. Gaussier and C. Goutte, " Relation between PLSA and NMF and implications,"

in Proceedings of the 28th annual international ACM SIGIR conference on

Research and development in information retrieval, 2005.

[50] D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix

factorization," Nature,401(6755), pp. 788-791, 1999.

79

[51] W. Xu, X. Liu and Y. Gong, "Document clustering based on non-negative matrix

factorization," in Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in informaion retrieval, 2003.

[52] E. J. Jackson, A user's guide to principal components, vol. 587, John Wiley &

Sons, 2005.

[53] P. Lawrence, S. Brin, R. Motwani and T. Winograd, "The PageRank citation

ranking: Bringing order to the web," Stanford InfoLab, 1999.

[54] R. Mihalcea and P. Tarau, "TextRank: Bringing order into texts," Association for

Computational Linguistics, 2004.

[55] Wikipedia, "Named-entity recognition," [Online]. Available:

https://en.wikipedia.org/wiki/Named-entity_recognition.

[56] C. Sutton and A. McCallum, "n introduction to conditional random fields,"

Foundations and Trends® in Machine Learning, pp. 267-373, 2012.

[57] K. S. Jones, "A statistical interpretation of term specificity and its application in

retrieval," Journal of Documentation, vol. 28, no. 1, pp. 11-21, 1972.

[58] M. I. Yutaka Matsuo, "Keyword extraction from a single document using word co-

occurrence statistical information," International Journal on Artificial Intelligence

Tools, pp. 157-169, 2004.

[59] R. B. W. S. Christian Wartena, "Keyword extraction using word co-occurrence," in

In Proceedings of the 2010 Workshops on Database and Expert Systems

Applications, Washington, 2010.

80

	Georgia State University
	ScholarWorks @ Georgia State University
	12-14-2017

	Machine Learning Methods for Finding Textual Features of Depression from Publications
	Zhibo Wang
	Recommended Citation

	MANUSCRIPT TITLE

