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BAYESIAN METHODS IN BRAIN CONNECTIVITY CHANGE POINT DETECTION

WITH EEG DATA AND GENETIC ALGORITHM

by

BING LIU

Under the Direction of Jing Zhang, PhD

ABSTRACT

Human brain is processing a great amount of information everyday, and our brain

regions are organized optimally for this information processing. There have been increasing

number of studies focusing on functional or effective connectivity in human brain regions

in the last decade. In this dissertation, Bayesian methods in Brain connectivity change

point detection are discussed. First, a review of state-of-the-art Bayesian-inference-based

methods applied to functional magnetic resonance imaging (fMRI) data is carried out, three

methods are reviewed and compared. Second, the Bayesian connectivity change point model

is extended to change point analysis in electroencephalogram (EEG) data, and the ability

of EEG measures of frontal and temporo-parietal activity during mindfulness therapy to

track response to dysfunctional anxiety patients’ treatment is tested successfully. Then an



optimized method for Bayesian connectivity change point model with genetic algorithm (GA)

is proposed and proved to be more efficient in change point detection. And due to the good

parallel performance of GA, the change point detection method can be parallelized in GPU

or multi-processor computers as a future work. Furthermore, a more advanced Bayesian

bi-cluster connectivity change point model is developed to simultaneously detect change

point of each subject within a group, and cluster subjects into different groups according to

their change point distribution and connectivity dynamics. The method is also validated on

experimental datasets. After discussing brain change point detection, a review of Bayesian

analysis of complex mutations in HBV HCV and HIV studies is also included as part of my

Ph.D. work. Finally, conclusions are drawn and future work is discussed.

INDEX WORDS: Bayesian inference, Brain network, Change point, Connectivity dynam-
ics, Markov chain Monte Carlo, Electroencephalography, Genetic algo-
rithm
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CHAPTER 1

INTRODUCTION

1.1 Brain Connectivity

Our brain processes a large number of information everyday, and most of the infor-

mation is processed by different but related brain regions. The paradigm in neuroscience

is that the anatomical and functional connections between our brain regions are organized

optimally for information processing [39]. Brain connectivity often refers to three pattern-

s of links, dependencies or interactions: anatomical connectivity, functional connectivity,

effective connectivity [79].

• Anatomical connectivity, also notes as anatomical links or structure connectivity, which

is in a form of a network of structural connections linking neurons or elements of neu-

ronal systems. At shorter time scales (seconds to minutes), the anatomical connections

are relatively stable, while at longer time scales (hours to days), it is likely to observe

some plasticity.

• Functional connectivity, often called statistical dependencies, on the other hand, is

based on statistical concepts. It captures the dependency between distributed and

remote neuronal units. Theses statistical dependencies may be inferred by estimating

the correlation or covariance, spectral coherence or phase-locking, and they are highly

time dependent.

• Effective connectivity, also called causal interactions, describes the effect from one

neural on another directionally. It can be considered as a combination of structural

and functional connectivities. Oftentimes, these casual effects can be analyzed by time

series analysis.
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There have been increasing number of studies focusing on functional or effective con-

nectivity in the last decade, mostly from functional neuroimaging techniques like functional

magnetic resonance imaging (fMRI), electroencephalogram (EEG), magnetoencephalogram

(MEG), positron emission tomography (PET), and so on. The predominant technique,

however, studies functional magnetic resonance imaging data and the blood-oxygen-level-

dependent (BOLD) signal [39].

1.2 Brain Connectivity Change Points Detection and Dynamics Exploration

Recently in the research area of functional magnetic resonance imaging (fMRI), an in-

creasing interest comes in the dynamic connectivity of brain regions which communicate

one from another. Lindquist et al. [48] proposed a statistical method, named as Hierarchi-

cal Exponentially Weighted Moving Average (HEWMA), on fMRI data to detect the state

change of BOLD signals in response to stimulus. Cribben et al. [12] developed a Dynamic

Connectivity Regression method, which is a data-driven method for detecting functional con-

nectivity change points. Independent component analysis (ICA) method, including dynamic

spatial ICA, was developed by Sakog̈lu et al. [75] to investigate the connectivity dynamics.

Also, sliding-time-window-based approaches were designed to capture the dynamics of brain

functional interactions across different time windows [41][103][67][53][102][1]. For example,

Allen et al. [1] described an approach to assess whole-brain functional connectivity (FC)

dynamics based on spatial ICA, sliding-time-window correlation analysis, and k-means clus-

tering of windowed correlation matrices, and it revealed unanticipated FC states which were

strongly different from stationary connectivity patterns. Li et al. [41] derived functional

connectomes (FCs) to characterize brain conditions from resting-state fMRI data and then

FCs were divided into quasi-stable segments temporally via a sliding-time-window approach.

In [103], a novel framework was designed by the combination of sliding-window approach and

multiview spectral clustering to extract temporally dynamic functional connectome patterns

for resting-state networks, and the four detected clusters are believed to play critical roles in

functional brain dynamics during resting states. In [67], a novel algorithmic framework based
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on hidden Markov models was presented to cluster and label the brains functional states,

represented by a large-scale functional connectivity matrix and derived via an overlapping

sliding-time-window approach. The framework achieved decent classification performance

on the data including 25 ADHD (attention-deficit/hyperactivity disorder) patients and 49

normal controls. Lv et al. [53] also adopted the sliding-window-based method and em-

ployed a dynamic programming strategy to infer functional information transition routines

on structural networks and identified the hub routers that participate in these routines most

frequently.

Inspired by the multivariate graphical models based on Bayesian networks, which has

been shown to be robust and reliable in estimating functional interactions and less sensitive to

noise in the fMRI signals [73][81][77], recently, several Bayesian-inference-based methods were

proposed to infer global functional interactions within brain networks and their temporal

transition boundaries [46][43][101][64][65][45]. By evaluating and estimating both simulated

and real data, Bayesian-inference-based methods are proved to be more powerful approaches

for analysis fMRI data comparing to the methods mentioned above.

1.3 Main Contributions

In this dissertation, the main contributions are summarized as follows:

• A review of state-of-the-art Bayesian-inference-based methods applied to functional

magnetic resonance imaging (fMRI) data:

– Bayesian Magnitude Change Point Model;

– Bayesian Functional Connectivity Change Point Model;

– Dynamic Bayesian Variable Partition Model;

• An extension of Bayesian connectivity change point model to EEG data change point

analysis:

– detect brain connectivity change points from EEG measurement signals;
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– design multiple experiments to validate the model on EEG data;

– apply the model to EEG data from dysfunctional anxiety patients;

– test the ability of EEG measures of frontal and temporo-parietal activity during

mindfulness therapy to track response to treatment.

• An optimized method for Bayesian connectivity change point model with genetic al-

gorithm:

– combine Bayesian connectivity change point model with a modified genetic algo-

rithm;

– optimize the evolutionary procedure to improve the detection accuracy;

– decrease the time consumption/computational cost;

– validate the optimized method on simulated and real data.

• A Bayesian bi-cluster connectivity change point model:

– detect change point of each subject within a group, and simultaneously

– cluster subjects into different groups according to their change point distribution

with bayesian framework;

– develop a two level MCMC scheme to sample from the posterior distribution;

– validate the proposed method on experimental datasets;.

• Other topics: a review of Bayesian analysis of complex mutations in HBV HCV and

HIV studies:

– review the Bayesian-inference-based methods applied to Hepatitis B virus (HBV),

Hepatitis C virus (HCV) and the human immunodeficiency virus (HIV) studies

with a focus on the detection of the viral mutations and various problems which

are correlated to these mutations;
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– summarize the Bayesian Variable Partition (BVP) model, and the Recursive Mod-

el Selection (RMS) procedure, which are designed to detect the mutations and to

further infer the detailed dependence structure among the interactions;

– summarize of the Bayesian methods applications toward these viruses studies,

where several important and useful results have been discovered;

1.4 Structure of the Rest of the Dissertation

The remainder of the dissertation focuses on the brain connectivity change point detec-

tion methods on both fMRI and EEG data. Chapter 2 reviews the current novel Bayesian

statistical inference methods for change point detection in fMRI data. Chapter 3 extends one

of the Bayesian change point detection methods from fMRI data to EEG data and focuses

on a preliminary research in testing the ability of EEG measures of frontal and temporo-

parietal activity during mindfulness therapy to track response to treatment, as an evaluation

of EEG as a physiological aid in therapy. Chapter 4 introduces an optimized method for

Bayesian Connectivity Change Point Model with genetic algorithm, which improves the es-

timate efficiency in detecting brain connectivity change points. Chapter 5 presents a more

advanced bi-cluster Bayesian inference model to simultaneously detect change points and

cluster subjects/patients according to their connectivity change point patterns, which po-

tentially can be used to classify healthy subjects and diseased patients. After discussing the

change point analysis, some other Bayesian methods applied in the fields of HBV, HCV and

HIV researches are also discussed and reviewed in Chapter 6 as part of this dissertation.

Finally, Chapter 7 summarizes the conclusions and discusses future work.
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CHAPTER 2

A REVIEW OF BAYESIAN INFERENCE FOR FUNCTIONAL DYNAMICS

EXPLORING IN FMRI DATA

The material in Sections 2.1 through 2.7 of this chapter draws heavily on the author’s

previously published review article [31].

2.1 Bayesian Inference

Bayesian inference is a statistical inference method in which Bayes’ Rule is used to

update the estimated probability for a hypothesis as evidence is acquired, and it is a novel

method for combining prior knowledge with observed information to answer the questions

that researchers are usually interested in, like “what is the probability of getting lung cancer

for certain patients who does not smoke?”. It is a natural way to combine multiple exper-

iments information and fit realistic but complicated models. On the other hand, Bayesian

inference often has more computational cost and requires at least one of elicitation of re-

al subjective probability distributions of prior beliefs. The good thing is that sensitivity

analysis shows that the choice of prior does not strongly affect the inference.

Bayes’ Rule [90]

If θ is a discrete random variable with a probability mass function (p.m.f.), then

p(θ|y) =
p(y|θ)p(θ)∑
i p(y|θi)p(θi))

(2.1)

When θ is continuous, Bayes’ Rule has the following form

p(θ|y) =
p(θ, y)

p(y)
=
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫

i
p(y|θ)p(θ))dθ

(2.2)

Bayes’s Rule is often written as p(θ|y) ∝ p(θ)p(y|θ), when treated as a function of θ
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for a fixed y, and p(y|θ) is the likelihood. So Bayes’ Rule is considered as the posterior is

proportional to the product of prior and likelihood,

Posterior ∝ Prior × Likelihood

p(θ|y) ∝ p(θ)× p(y|θ)
(2.3)

Basics of the Bayesian Inference [90]

When we use Bayesian statistics to make inferences, consider

1. Setting up a probability model;

2. Applying the probability theory and the Bayes’ Rule.

For example, let (X1, ..., Xn) be an independent and identically distributed sample from

Binomial distribution Bin(n, π), where n is the sample size and π is the probability of

success. We have x|π ∼ Bin(n, π). And the likelihood can be written as

p(x|π) =

(
n

x

)
πx(1− π)n−x; π ∈ [0, 1] (2.4)

If we want to make inference on π given x and n, a prior distribution p(π) for π is needed,

for example, we can choose a uniform distribution such that, π ∼ U(0, 1):

p(π) =


1, if 0 ≤ π ≤ 1

0, otherwise

(2.5)

Then by applying the Bayes’ Rule, we get

p(x, π) =

(
n

x

)
πx(1− π)n−x

p(x) =

∫ 1

0

(
n

x

)
πx(1− π)n−xdπ =

1

n+ 1

p(π|x) =
p(x, π)

x
= (n+ 1)

(
n

x

)
πx(1− π)n−x (2.6)
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Conjugate Prior [90]

A prior probability distribution is said to be conjugate to the sampling density if the

resulting posterior distribution is a member of the same parametric family as the prior. For

example, binomial likelihood × beta prior = beta posterior.

Bayesian Analysis on fMRI Data

An fMRI data series consists of values at specific voxel of the image at some time point

t. These series are collected as a T -dimensional vector ~y = (y1, y2, ..., yT ). Suppose we record

the data based on m regions of interest (ROIs), then the dataset is an m× T matrix Y . An

example can be found in Figure 2.1 [31].

Figure 2.1. Illustration of data matrix Y with m ROIs and T time points, and a block

indicator vector ~I, where yi is the values of all m ROIs at the time point i.

Our purpose is to use Bayesian analysis to make inference on the dynamic functional

connectivity change points. Define a block indicator ~I = (I1, I2, ..., IT ) to indicate the loca-

tions of change points in the m × T dataset. And this indicator becomes our parameter of

interest. Follow the Bayesian framework, we assume the prior of ~I is Bernoulli(0.5) so that

P (~I) =
∏T

t=1 p(Ii). If ~I is given, we can calculate the likelihood of the data as p(Y |~I). Thus,
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the posterior distribution of p(~I|Y ) can be obtained by

p(~I|Y ) ∼ p(~I)p(Y |~I) (2.7)

Then a Markov chain Monte Carlo (MCMC) scheme can be used to sample the posterior

with a random initial block indicator.

Following these procedures, several models have been established and applied in change

point detection research. In the following sections in this chapter, three Bayesian models are

reviewed: Bayesian magnitude change point model, Bayesian connectivity change point mod-

el, and Bayesian variable partition model for detecting functional interaction and transition

patterns.

2.2 Bayesian Magnitude Change Point Model

Lian et al. proposed a Bayesian Magnitude Change Point Model (BMCPM) to detect

group-wise consistent magnitude change points [46]. A key feature of BMCPM is the capa-

bility to consider the group-wise fMRI signals of corresponding cortical landmarks across a

population of subjects and optimally determines the change boundaries. Magnitude change

points are defined as the temporal points dividing ROI data matrix into blocks which exhibit

substantial differences in brain states from each other. Figure 2.2 [31] demonstrates the basic

idea in BMCPM. One temporal change point located at time point T100 partitions the ROI

data matrix into two time blocks with different distributions.

Figure 2.2. An ROI signal with one magnitude change point at time point T100.

Given a vector ~a = (a1, a2, ...at) i.i.d. from a normal distribution with mean µ and

variance σ2, a ∼ N(µ, σ2), t is the dimension of vector ~a. We use a conjugate prior Normal-
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Inverse-Chi-Square (N -Inv-χ2) [28] for unknown mean and variance, then the posterior dis-

tribution is in the same family as the prior probability distribution. Thus, by assuming a

conjugate prior N -Inv-χ2(µ0, σ
2
0/κ0, ν0, σ

2
0) for (µ0, σ

2
0), the posterior distribution of (µ, σ2)

will be N -Inv-χ2(µt, σ
2
t /κt, νt, σ

2
t ). Then the probability of a1, a2, ...at can be calculated as

p(a1, a2, ...at) =

(
1

2π

)t/2√
κ0

κt

Γ(νt/2)

Γ(ν0/2)

(ν0σ
2
0/2)ν0/2

(νtσ2
t /2)νt/2

(2.8)

Based on (2.8), given a data matrix A = (~a1,~a2, ...,~am), where ~ai is a vector with the data

i.i.d. from the normal distribution as described before, and ~ai’s are independent. Then, the

probability of A can be calculated as

p(A) =
m∏
i=1

p(~ai) (2.9)

where p(~ai) is computed as in (2.8)

To make inferences on the magnitude temporal change points, we define a block indicator

vector ~I = (I1, I2, ..., IT ), Ii = 1 if the ith observation is the beginning point of a block, and

Ii = 0 otherwise. Note that I1 = 1 as the first location is always being considered as a

change point. Let Yi denote the data of m ROIs at the ith location. Then for data matrix Y

defined as in previous section, the likelihood given a block indicator vector can be calculated

as

p(Y |~I) =

∑
Ij∏

i=1

p(Yi) (2.10)

where P (Yi) can be calculated using (2.9). Then the posterior of ~I can be obtained by

p(~I|Y ) ∝ p(~I)p(Y |~I) (2.11)

A Bernoulli distribution with parameter θ which could be adjusted to reflect our knowledge

about the prior distribution of I is used, i.e., p(~I) ∝ θ
∑
Ij(1− θ)(T−

∑
Ij)



11

2.3 Bayesian Functional Connectivity Change Point Model

In order to analyze the joint probabilities among the nodes of brain networks between

different time periods, a Bayesian Connectivity Change Point Model (BCCPM) [43] was pro-

posed to determine the temporal boundary where there is an abrupt change of multivariate

functional interactions in the brain networks. Different from BMCPM, which considers ROIs

independent of each other, BCCPM infers the boundaries of temporal blocks via a unified

Bayesian framework by analyzing the dynamics of multivariate functional interactions.

Suppose a vector (b1, b2, ..., bt) i.i.d. from an m-dimensional multivariate normal dis-

tribution s.t. bi ∼ N(~µ,Σ), i = 1, 2, ..., t, where t is the number of vectors and m is

the dimension of vector bi, ~µ denotes the m-dimensional mean vector and Σ denotes the

m × m covariance matrix. For multivariate normal distribution with unknown mean and

unknown covariance, we can use a conjugate prior Normal-Inverse-Wishart (N -Inv-Wishart)

[28]. Therefore, assuming a conjugate prior N -Inv-Wishart(µ0,Λ0/κ0, ν0,Λ0) for (~µ,Σ), the

posterior will be N -Inv-Wishart(µt,Λt/κt, νt,Λt).

As we are interested in the posterior distribution of the configuration, the joint proba-

bility of b1, b2, ..., bt can be calculated as

p(b1, b2, ..., bt) =

(
1

2π

)mt/2(
κ0

κT

)m/2
Γm(νt/2)

Γm(ν0/2)

(det(Λ0))ν0/2

(det(Λt))νt/2
2mt/2 (2.12)

where Γm is the multivariate Gamma distribution.

The model aims to detect the connectivity change points which separate the tempo-

ral segments where the joint probabilities have underlying differences among the m ROIs

between different time periods. Figure 2.3 [31] shows the idea of BCCPM.
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Figure 2.3. Three ROI signals with one connectivity change point at time point T100. The

multivariate normal distribution inside the block T1-T100 of color blue is different from the

distribution of signal in the rest block of color orange.

A block indicator ~I = (I1, I2, ..., IT ) is defined similarly as in BMCPM. The marginal

likelihood of the data matrix Y = (y1, y2, ..., yT ) can be calculated as

p(Y |~I) =

∑
Ij∏

i=1

p(Yi) (2.13)

where p(Yi) can be calculated by (2.12). Similar to BMCPM, the posterior distribution of

the configuration p(~I|Y ) can be calculated by (2.11). Note that one important assumption

here is that the temporal segments (blocks) indicated by ~I are mutually independent to each

other across T.

2.4 Bayesian Change Point Model Using One-Level MCMC Scheme

In BMCPM and BCCPM, Metropolis-Hastings (MH) scheme is used for calculating the

Bayesian inference. A one-level MH (MCMC) scheme is provided as follows with a randomly

initialized block indicator ~I0 and a user-defined iteration number N :

1. Generate a new block indicator ~I∗ by randomly switching the value of one element

from 0 to 1 or from 1 to 0 in ~In−1. Then calculate p(~I∗|Y ) by (2.11);
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2. Generate a random number u from Uniform(0,1) and update ~In by

~In =


~I∗, if u ≤ min

[
1, p(~I∗|Y )

p(~In−1|Y )

]
~In−1, otherwise

(2.14)

3. Iterate step 1 and 2 until n reaches N ;

4. Finally, the posterior probabilities for each time point being a change point can be

calculated from the MCMC samples excluding the burn-in samples.

By default, the initial parameters µ0, κ0, ν0, σ
2
0,Λ0 are fixed constants. The number of

iterations N can be determined by the trace plot of posterior probability or the Gelman and

Rubin scale reduction factor [29].

2.5 Dynamic Bayesian Variable Partition Model

Zhang et al. [101] proposed a Dynamic Bayesian Variable Partition Model (DBVPM) to

simultaneously infer global functional interactions within brain networks and their temporal

transition boundaries. Two dependence structures, chain- and V -dependence structures, are

designed to capture all the conditional independence global structure. An example can be

found in Figure 2.4 [31], the DBVPM aims to simultaneously infer the temporal change

points and the dependence structure inside the temporal block.
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Figure 2.4. Three ROIs signals with one temporal change point at time point T100. Left

block shows a chain dependence structure with signals i→ j → k and the right block shows

a V -dependence structure with signals i→ j ← k.

2.5.1 Chain-Dependence Model

A set of variables XG has a chain-dependence model if the index set G can be grouped

into three subgroups U , V , and W such that XU and XW are independent given XV , i.e.

XU → XV → XW . The joint distribution of the chain-dependence model is given as

p(XG) = p(XU)p(XV |XU)p(XW |XV ) =
F (XV , XU)F (XW , XV )

F (XV )
(2.15)

where F (XV , XU , ...) is the joint probability function of (XV , XU , ...)

2.5.2 V-Dependence Model

A set of variables XG has a V -dependence model if the index set G can be grouped

into three subgroups U , V , and W such that XU and XW are mutually independent, i.e.

XU → XV ← XW . The joint distribution of the V -dependence model is given as

p(XG) = p(XU)p(XW )p(XV |XU , XW ) = F (XU)F (XW )
F (XV , XU , XW )

F (XU , XW )
(2.16)

where F (XV , XU , ...) is the joint probability function of (XV , XU , ...)
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2.5.3 Dynamic Bayesian Variable Partition Model

DBVPM uses the similar Bayesian inference as in BCCPM but the number of dimen-

sion in the multivariate normal distribution is not fixed among the temporal order. Given

c1, c2, ..., ct i.i.d. from r-dimensional multivariate normal distribution N(~µ,Σ), i = 1, 2, ..., t,

we only need to change the dimension from m to r from (2.12), and r is determined by the

joint variables.

To infer the dependence structure (chain or V structures) in DBVPM, two more indi-

cator vectors are introduced. An indicator vector ~IG = (IG1 , I
G
2 , ..., I

G
m) is used to denote the

grouping of the index G of ROIs to subgroups U , V , and W , where IGi = j means ith ROI

is in subgroup j (j = 0 means U, j = 1 means V, and j = 2 means W). Another binary

indicator ICV is used to denote the dependence structures (chain or V structures). Now the

posterior distribution for observations in ith temporal block can be calculated as

p(~IG, ICV |Yi) ∝ p(Yi|~IG, ICV )p(~IG)p(ICV ) (2.17)

where Yi is the under the same definition as before, p(Yi|~IG, ICV ) is calculated by (2.15)

when ICV = 0 and by (2.16) when ICV = 1.

Combine with the previous temporal block indicator ~I = (I1, I2, ..., IT ), let ~ICV =

(ICV1 , ICV2 , ..., ICV∑
Ii

) be the structure indicator vector and ~IG = (~IG1 , ~I
G
2 , ...,

~IG∑ Ii
), where ~IG =

(IG1 , I
G
2 , ..., I

G
m) with IGi = 0, 1, 2, be the partition indicator vector in the ith block. Then the

posterior distribution of data matrix Y = (y1, y2, ..., yT ) can be calculated by

p(~I, ~IG, ~ICV |Y ) ∝ p(Y |~I, ~IG, ~ICV )p(~I, ~IG, ~ICV ) (2.18)

where p(Y |~I, ~IG, ~ICV ) =
∏
p(Yi|~IGi , ICVi ) and p(~I, ~IG, ~ICV ) = p(~I)

∏
p(~IGi , I

CV
i |Ii). A uni-

form prior can be used on p(~I) and p(~IGi , I
CV
i |Ii).



16

2.6 DBVPM Using Two-Level MCMC Scheme

In DBVPM, a two-level MH (MCMC) scheme is applied to sample from the posterior

distribution of the temporal blocks and the dependence structure within each block. The

lower level MCMC samples from the posterior distribution of dependency structures within

a block given the temporal block boundaries; the higher level MCMC samples from the

posterior distribution of block boundaries. Specifically, the lower level MCMC involves

changing between the chain structure and V structure, and updating the group lables of

each variable of ROI. The likelihood functions can be evaluated by using (2.15), (2.16),

and (2.18). The higher level MCMC involves dividing one block into two, merging two

neighboring blocks into one, and shifting the value in the block indicator. In each iteration

in higher level MCMC, each block runs though a lower level MCMC. A dependency structure

is sampled for each block in the higher level proposal and the log likelihood of the proposal

can be calculated by summing up all the log likelihood probabilities of each block. Details

of this two level MCMC and calculation can be found in [101].

2.7 Summary

To summarize the three models we reviewed, the major differences lie in the assumptions

of the relationships among ROIs. For BMCPM, no explicit connection is assumed among

the ROIs, so it used one-dimensional normal distribution model. For BCCPM, the ROIs

are linked together one way or another so multivariate normal distribution is employed. For

DBVPM, the chain- and V - dependence structures are used to capture more complex con-

nections among ROIs. These Bayesian inference methods have been applied to solve three

problems in the anaylsis of fMRI data: 1) detecting magnitude change points; 2) detecting

functional connectivity change points; and 3) detecting change points and identifying func-

tional interaction patterns. The DBVPM can identify not only all possible change points but

also the functional interaction patterns, but the convergence speed is much slower comparing

with BMCPM and BCCPM as it nests two levels of MCMC scheme. Detailed computational
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cost comparison can be found in [31].
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CHAPTER 3

BRAIN CONNECTIVITY CHANGE POINT DETECTION ON EEG DATA

WITH BCCPM

This research is collaboration work with Dr. Jessica Turner and Dr. Matthew Turner

in the Department of Psychology at Georgia State University. The author truly thanks Dr.

Jessica Turner for her support with the EEG data provided for this dissertation research

(See Appendix B for her Letter of Support). Special thanks to both Dr. Jessica Turner and

Dr. Matthew Turner for their generous help.

3.1 Introduction and Contributions

In the previous chapter, we reviewed the state-of-art Bayesian inference methods applied

to fMRI data in exploring the brain dynamics. In this chapter, we extend the application of

one of the three models, the Bayesian connectivity change point detection model (BCCPM),

onto the change point analysis of Electroencephalography (EEG) data to determine network

dynamics over time. In particular, the concept of Bayesian inference by using BCCPM is

applied to find the change points on EEG data in order to test the ability of EEG measures

of frontal and temporo-parietal activity during mindfulness therapy to track response to

treatment, as preliminary evaluation for EEG as a physiological aid in therapy [86].

In the EEG literature of the studying anxiety and related disorders, research focuses

on the measures of quantitative EEG, which include spectral band amplitude, individual

peak frequency, and individualized bandwidths [6]. A more complex approach studies the

“microstates”, which are very short periods of stability in the EEG signal across different

scalp locations [89][36]. These microstates fluctuate in spatial arrangement and duration, and

comparing with healthy population, they have been shown to vary in subjects with mood and

panic disorders [37]. The dynamic functional interaction patterns also differ in subjects with
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psychiatric disorders. In [64], BCCPM was successfully applied in differentiating attention-

deficit/hyperactivity disorder (ADHD) children from normal control group on fMRI datasets.

In this research, we are able to apply the network analysis of BCCPM to the EEG signals.

BCCPM can identify these brain networks of signals which are “coherently interacting over

time” and detect the change points [86]. Although the BCCPM was originally “developed

and refined on fMRI data” [86], we successfully developed and validated this model for

discovering the brain functional interaction patterns through EEG data. Also, we are able

to use the results in EEG data to support that the subjects become less anxious as the

therapy sessions continue and that the dynamics change is with response to the treatment.

3.2 Introduction to EEG Data

Electroencephalography (EEG) is an electrophysiological monitoring method to record

electrical activity of the brain; it is typically noninvasive, with the electrodes placed along the

scalp to record brain activities [91]. EEG measures voltage fluctuations resulting from ionic

current within the neurons of the brain [62]. In clinical contexts, EEG refers to recording of

the brain’s spontaneous electrical activity over a period of time [62], from multiple electrodes

placed on scalp.

EEG is “used extensively in neuroscience, cognitive science and cognitive psychology,

neurolinguistics, and psychophysiology research” [91]. Research on mental health and mental

disabilities like attention deficit hyperactivity disorder (ADHD) is also becoming more and

more widely known using EEG [91].

There are some advantages of EEG over the other methods such as fMRI, magne-

toencephalography (MEG), positron emission tomography (PET), Single-photon emission

computed tomography (SPECT), magnetic resonance spectroscopy (MRS), Near-infrared

spectroscopy (NIRS) and Event-related optical signal (EROS), etc. Despite the relatively

poor spatial sensitivity of EEG, it has several advantages over the others [91]:

• EEG data recording’s hardware costs are significantly lower than most of other tech-

niques [87].
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• EEG recording devices can be used in more places than fMRI, MEG, PET, SPECT

or MRS. Those techniques need sizable and immobile equipments. For instance, fMRI

requires the use of a 1-ton magnet in a magnetically shielded room; MEG requires

equipment consisting of liquid helium-cooled detectors that can be used only in shielded

rooms, altogether costing upwards of several million dollars [32].

• EEG is relatively tolerant of subject movement, unlike most other neuroimaging tech-

niques. There even exist methods for minimizing, and even eliminating movement

artifacts in EEG data [63].

• EEG does not have any sound, which allows for better study of the responses to

auditory stimuli [91].

• EEG is not exposed to high-intensity (> 1 tesla) magnetic fields, as in some of the other

techniques, especially MRI and MRS. These can cause a variety of undesirable issues

with the recorded data, and also prohibit use of these techniques with participants who

have metal implants in their body, such as metal-containing pacemakers [76].

• EEG has a “better understanding of what signal is measured as compared to other

research techniques, i.e. the BOLD response in MRI” [91].

EEG can detect changes over milliseconds, which is excellent considering an action

potential take approximately 0.5-130 milliseconds to propagate across a single neuron, de-

pending on the type of neuron [2]. Other methods like fMRI and PET have time resolution

between seconds and minutes [91]. EEG measures the brain activity through electrical ac-

tivity directly while other methods record changes in blood flow (like fMRI) or metabolic

activity (like PET), which are indirect markers for brain activity [91].
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3.3 Data Acquisition and Processing

3.3.1 Data Acquisition Device

In this research, the EEG data are recorded using the EPOC/EPOC+ system by Dr.

Jessica Turner and Dr. Matthew Turner. The EMOTIV EPOC+ 14 Channel Mobile EEG

system is a low-cost research grade EEG system designed for practical contextualized research

and advanced brain control interface (BCI) applications [86] [16]. It has 14 channel electrodes

and a fixed selection of electrodes placements on the scalp [86]. It provides us the access to

the raw EEG signals [16]. “The EPOC/EPOC+ records at 2048 Hz internally, resolution is

14 or 16 bits per channel and the frequency response is 0.16 43 Hz” [86]. The system has

an “open-source interface to the raw real-time data signals” [86]. Figure 3.1 [15] shows an

example of the EPOC/EPOC+ headset device kit with 14 electrodes that can be placed on

scalp for signal recording.

Figure 3.1. EPOC/EPOC+ headset device with 14 electrodes. Image from EMOTIV

EPOC User Manual.

The recording system can be used in different environments so the data can be collected

in the clinic or a convenient but suitable room [86]. It requires the use of saline instead of gel
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on the electrodes, so the starting preparation almost does not cost any time and the recording

can start off when it’s placed on the scalp (demonstration can be found in Figure 3.2 [15]).

Besides the recording headset, it also comes with a USB proprietary wireless receiver that is

compatible with major platforms including Windows, OS X, Linux, Android, and iOS [86]

[16]. Thanks to the wireless design, the recording subject can be seated anywhere within the

range [86]. The company designs the product for use in brain training and video games and

researchers have used the device in neurofeedback and raw EEG signal recording outside of

standard laboratories [4] [14] [85].

Figure 3.2. EPOC/EPOC+ headset placement demonstration. Image from EMOTIV

EPOC User Manual.
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3.3.2 Data Preprocessing

The collected raw EEG data is pre-processed by using EEGLAB, an interactive Matlab

toolbox for processing continuous and event-related EEG data [84]. After the pre-processing,

the EEG dataset will become a matrix with size n× T , where n is the number of electrodes

(in our EEG recording, n = 14), and T is the total number of time points in the recording.

The dataset is saved in text file.

3.4 Experimental Results

In this section, four settings of experiments are designed and EEG data are collected in

different sessions separately. The first design has 3 minutes’ EEG and 6 blocks of activities,

each of them lasts for 30 seconds; the second design has 4 minutes’ recording and 4 blocks of

activities, each of them lasts for 1 minute; The third design has 2 minutes and 30 seconds’

EEG and 4 blocks of activities (30 seconds, 30 seconds, 1 minute and 30 seconds each); and

the last design also has 4 minutes’ recording and 4 blocks of activities, each of them lasts

for 1 minute. All experiment designs show good results after we apply the BCCPM model,

which allows us to use BCCPM in detecting change points in EEG data in additional to

fMRI data on which the BCCPM was original designed and validated.

Note that in BCCPM, there is one tuning parameter p in the program allowing us to

try different values to detect change points with different sensitivity. By default, the p is set

to be 0, if we increase p to positive values, there will be more change points detected from

the EEG data; if we decrease p to negative values, say -1000, -2000, etc., there will be fewer

change points detected. In the experimental data, choosing the optimal p is also of interest,

so multiple values has been applied: 0, -1000, -2000, -4000, -6000. We start from 0 because

there are already more than wanted change points detected at this level. Also note that we

repeat the MCMC five times for each of the recorded data and choose the best result.
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3.4.1 Experimental Design

The first experiment setting has 3 minutes recording with the following activities (a

brief summary can be found in Table 3.1):

• The first 30 seconds: listen to music

• The second 30 seconds: solve basic mathematical operations problems in mind

• The third 30 seconds: read paragraphs from a novel

• Repeat the first 30 seconds: listen to music

• Repeat the second 30 seconds: solve basic mathematical operations problems in mind

• Repeat the third 30 seconds: read paragraphs from a novel

Table 3.1. Experiment 1 (in seconds)

0 - 30 30 - 60 60 - 90 90 - 120 120 - 150 150 - 180

music math novel music math novel

The second setting has 4 minutes recording with the following activities (Table 3.2):

• The first minute: listen to music

• The second minute: read paragraphs from a novel

• Repeat the first minute: listen to music

• Repeat the second minute: read paragraphs from a novel

Table 3.2. Experiment 2 (in minutes)

0 - 1 1 - 2 2 - 3 3 - 4

music novel music novel
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The third setting has 2 minutes and 30 seconds recording with the following activities

(summary shown in Table 3.3):

• The first 30 seconds: listen to live news on the radio

• The second 30 seconds: solve basic mathematical operations problems in mind

• Another one minute: listen to live news on the radio (minor change rather than re-

peating for the same time period)

• Repeat the second 30 seconds: solve basic mathematical operations problems in mind

Table 3.3. Experiment 3 (in seconds)

0 - 30 30 - 60 60 - 120 120 - 150

news math news math

The fourth setting has 4 minutes recording with the following activities (Table 3.4):

• The first minute: listen to live news on the radio

• The second minute: solve basic mathematical operations problems in mind

• Repeat the first minute: listen to live news on the radio

• Repeat the second minute: solve basic mathematical operations problems in mind

Table 3.4. Experiment 4 (in minutes)

0 - 1 1 - 2 2 - 3 3 - 4

news math news math
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3.4.2 Results

All the four experimental results show good detection of the designed change points.

As mentioned at the beginning of this subsection, different values of tuning parameter p are

applied and the results are compared, we can observe that as p decreases from 0 to -1000 to

-2000, the number of change points decreases accordingly.

Results of the first experiment are shown in Figures 3.3 to 3.13. When p = 0, the

convergence of the markov chains are shown in Figure 3.3 and the change points detected

by BCCPM are shown in Figure 3.4. The top left plot in Figure 3.4 has the best result

according to the convergence trace plot (highest curve) and it’s enlarged as in Figure 3.5.

Now let’s take Figure 3.5 as an example, right before or after each of the red dotted lines

(locations of the designed change points), there is always a spike, which indicates a change

point detected by BCCPM at that location. At the same time, we may also observe there are

many other spikes, which are change points detected within each block at p = 0. Those could

be simply the change of brain activity related to specific task within each designed activity

block, and the number will decrease as p goes to -1000, -2000,..., -6000. When p = −1000,

the results are shown in Figures 3.6 to 3.8. Now we can observe that the number of change

points decreases. When p = −2000, the results are shown in Figures 3.9 to 3.11, the number

of change points keeps decreasing to an optimal stage where we can observe the change point

pattern much more clearly. In this study, we keep decreasing the p to -4000 and -6000, to

show that the model can detect the actual designed change points without other possible

change points not directly related to the designed blocks; for simplicity, only the best results

are shown in Figures 3.12 to 3.13. Other figures are listed in Appendix A from A.1 to A.4.

Results of the second experiment are shown in Figure 3.14 to 3.24, A.5 to A.8; results

of the third experiment are shown in Figure 3.25 to 3.35, A.9 to A.12; and results of the

fourth experiment are shown in Figure 3.36 to 3.46, A.13 to A.16, respectively.
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Figure 3.3. Experiment 1: Traceplot shows the convergence of MCMC chains (p=0).

Figure 3.4. Experiment 1: Change points detected by BCCPM for five repeated MCMC

chains (p=0). Red dotted lines are the locations of designed change points.
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Figure 3.5. Experiment 1: Change points detected by BCCPM for the best detection result

(p=0). Red dotted lines are the locations of designed change points.

Figure 3.6. Experiment 1: Traceplot shows the convergence of MCMC chains (p=-1000).
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Figure 3.7. Experiment 1: Change points detected by BCCPM for five repeated MCMC

chains (p=-1000). Red dotted lines are the locations of designed change points.

Figure 3.8. Experiment 1: Change points detected by BCCPM for the best detection result

(p=-1000). Red dotted lines are the locations of designed change points.
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Figure 3.9. Experiment 1: Traceplot shows the convergence of MCMC chains (p=-2000).

Figure 3.10. Experiment 1: Change points detected by BCCPM for five repeated MCMC

chains (p=-2000). Red dotted lines are the locations of designed change points.
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Figure 3.11. Experiment 1: Change points detected by BCCPM for the best detection

result (p=-2000). Red dotted lines are the locations of designed change points.

Figure 3.12. Experiment 1: Change points detected by BCCPM for the best detection

result (p=-4000). Red dotted lines are the locations of designed change points.

Figure 3.13. Experiment 1: Change points detected by BCCPM for the best detection

result (p=-6000). Red dotted lines are the locations of designed change points.
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Figure 3.14. Experiment 2: Traceplot shows the convergence of MCMC chains (p=0).

Figure 3.15. Experiment 2: Change points detected by BCCPM for five repeated MCMC

chains (p=0). Red dotted lines are the locations of designed change points.
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Figure 3.16. Experiment 2: Change points detected by BCCPM for the best detection

result (p=0). Red dotted lines are the locations of designed change points.

Figure 3.17. Experiment 2: Traceplot shows the convergence of MCMC chains (p=-1000).
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Figure 3.18. Experiment 2: Change points detected by BCCPM for five repeated MCMC

chains (p=-1000). Red dotted lines are the locations of designed change points.

Figure 3.19. Experiment 2: Change points detected by BCCPM for the best detection

result (p=-1000). Red dotted lines are the locations of designed change points.
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Figure 3.20. Experiment 2: Traceplot shows the convergence of MCMC chains (p=-2000).

Figure 3.21. Experiment 2: Change points detected by BCCPM for five repeated MCMC

chains (p=-2000). Red dotted lines are the locations of designed change points.
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Figure 3.22. Experiment 2: Change points detected by BCCPM for the best detection

result (p=-2000). Red dotted lines are the locations of designed change points.

Figure 3.23. Experiment 2: Change points detected by BCCPM for the best detection

result (p=-4000). Red dotted lines are the locations of designed change points.

Figure 3.24. Experiment 2: Change points detected by BCCPM for the best detection

result (p=-6000). Red dotted lines are the locations of designed change points.



37

Figure 3.25. Experiment 3: Traceplot shows the convergence of MCMC chains (p=0).

Figure 3.26. Experiment 3: Change points detected by BCCPM for five repeated MCMC

chains (p=0). Red dotted lines are the locations of designed change points.
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Figure 3.27. Experiment 3: Change points detected by BCCPM for the best detection

result (p=0). Red dotted lines are the locations of designed change points.

Figure 3.28. Experiment 3: Traceplot shows the convergence of MCMC chains (p=-1000).
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Figure 3.29. Experiment 3: Change points detected by BCCPM for five repeated MCMC

chains (p=-1000). Red dotted lines are the locations of designed change points.

Figure 3.30. Experiment 3: Change points detected by BCCPM for the best detection

result (p=-1000). Red dotted lines are the locations of designed change points.
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Figure 3.31. Experiment 3: Traceplot shows the convergence of MCMC chains (p=-2000).

Figure 3.32. Experiment 3: Change points detected by BCCPM for five repeated MCMC

chains (p=-2000). Red dotted lines are the locations of designed change points.
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Figure 3.33. Experiment 3: Change points detected by BCCPM for the best detection

result (p=-2000). Red dotted lines are the locations of designed change points.

Figure 3.34. Experiment 3: Change points detected by BCCPM for the best detection

result (p=-4000). Red dotted lines are the locations of designed change points.

Figure 3.35. Experiment 3: Change points detected by BCCPM for the best detection

result (p=-6000). Red dotted lines are the locations of designed change points.
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Figure 3.36. Experiment 4: Traceplot shows the convergence of MCMC chains (p=0).

Figure 3.37. Experiment 4: Change points detected by BCCPM for five repeated MCMC

chains (p=0). Red dotted lines are the locations of designed change points.
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Figure 3.38. Experiment 4: Change points detected by BCCPM for the best detection

result (p=0). Red dotted lines are the locations of designed change points.

Figure 3.39. Experiment 4: Traceplot shows the convergence of MCMC chains (p=-1000).
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Figure 3.40. Experiment 4: Change points detected by BCCPM for five repeated MCMC

chains (p=-1000). Red dotted lines are the locations of designed change points.

Figure 3.41. Experiment 4: Change points detected by BCCPM for the best detection

result (p=-1000). Red dotted lines are the locations of designed change points.
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Figure 3.42. Experiment 4: Traceplot shows the convergence of MCMC chains (p=-2000).

Figure 3.43. Experiment 4: Change points detected by BCCPM for five repeated MCMC

chains (p=-2000). Red dotted lines are the locations of designed change points.
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Figure 3.44. Experiment 4: Change points detected by BCCPM for the best detection

result (p=-2000). Red dotted lines are the locations of designed change points.

Figure 3.45. Experiment 4: Change points detected by BCCPM for the best detection

result (p=-4000). Red dotted lines are the locations of designed change points.

Figure 3.46. Experiment 4: Change points detected by BCCPM for the best detection

result (p=-6000). Red dotted lines are the locations of designed change points.
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3.5 Results on EEG Data from Mindfulness Therapy for Dysfunctional Anxiety

Patients

After we validated the application of BCCPM towards EEG data through experimental

designs, we finally applied the model to our real data analysis. Results indicate that: 1)

as the mindfulness therapy goes from session 1 to later sessions, the change points in EEG

data from the subjects are decreasing, this pattern overtime indicates the subjects become

less anxious as the therapy sessions goes on; 2) At the same time, with paired data analysis,

we observe that the change-point patterns are different for different subjects in the same

session. This implies that the dynamics change is with response to treatment.

3.5.1 Recorded Data Description

In the study, there are 8 pairs of subjects in multiple mindfulness therapy sessions. A

list of paired subjects is shown in Table 3.5 with recording date, subject number and session

number.

Table 3.5. List of paired subjects

Recording Date Subject Session

10/26/2015 1001 1
1003 1

11/02/2015 1002 2
1006 2

11/30/2015 1002 5
1005 5

12/07/2015 1002 6
1006 6

12/14/2015 1001 7
1005 7

02/01/2016 1012 1
1013 1

02/22/2016 1009 4
1012 4

03/21/2016 1012 8
1013 8
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3.5.2 Results

As briefly discussed at the beginning of this subsection, there are two main results we

can find form change point analysis of this EEG data. First, as the mindfulness therapy goes

from session 1 to later sessions, the number of change points in EEG data is decreasing, this

pattern overtime indicates the subjects become less anxious as the therapy sessions goes on.

This can be shown in Figure 3.47, as the therapy session goes on from 1 to 4 to 7 for subject

1, the number of change points decreases, which indicates that as the therapy continues,

the subject become less anxious in terms of brain activities changes. The same trend is

discovered in all the subjects. Note that in this section, p is set at -2000 for best results.

Figure 3.47. Comparison of number of change points of Subject 1 from therapy session 1 to

4 to 7. The number of change points decreases as sessions go on (p=-2000).
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In order to measure this trend quantitatively, we used Poisson process and estimated the

parameter rate which can be interpreted as the average number of points per some unit of

extents such as length, area, volumn, or time (which is our case). The Poisson rate describes

the average number of change points per time in our study and the results are summarized

in Table 3.6. We can see that the rate decreases for each subject as session goes on for all

the subjects (except for subject 1006). The standard errors are shown in round brackets ().

Table 3.6. Poisson rates of test subjects in different sessions (p=-2000).
Subject Session Rate

(Std. Error)

1001 1 0.00075
(0.00031)

1001 4 0.00050
(0.00025)

1001 7 0.00025
(0.00018)

1002 2 0.000625
(0.00028)

1002 5 0.000375
(0.00022)

1005 5 0.00125
(0.0004)

1005 7 0.000875
(0.00033)

1006 2 0.0005
(0.00025)

1006 6 0.0005
(0.00025)

Second, the change-point patterns are different for two subjects in the same session.

This implies that the dynamics change is with response to treatment. An example is shown

in Figure 3.48. For Subject 1 and Subject 5 in session 7, the change point patterns are quite

different, which implies the change points are not associated with the therapy instructions

given by the therapist, instead it shows the true brain activities changes of the individual

subjects.
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Figure 3.48. In session 7, Subject 1 and Subject 5 have different change point patterns

(p=-2000).

3.6 Summary

In this chapter, we successfully extend the application of the Bayesian connectivity

change point detection model (BCCPM) onto the change point analysis of Electroencephalog-

raphy (EEG) data to determine network dynamics over time. The ability of EEG measures

of frontal and temporo-parietal activity during mindfulness therapy to track response to

treatment as preliminary evaluation for EEG as a physiological aid in therapy is successfully

tested by employing the concept of Bayesian inference using BCCPM.
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CHAPTER 4

AN OPTIMIZED BAYESIAN FUNCTIONAL CONNECTIVITY CHANGE

POINT MODEL WITH GENETIC ALGORITHM

The material in this chapter is from the author’s research articles [98][97].

This research was supported by the Brains-Behavior Seed grant and Molecular Basis of

Disease(MBD) from Georgia State University. It’s a collaborative work with Dr. Xiuchun

Xiao, Dr. Jing Zhang, Dr. Yi Pan and Xueli Xiao.

The paper [98] is to appear in the Journal of Computational Biology ; Xiuchun Xiao

and Bing Liu are joint first authors, and Jing Zhang and Yi Pan are joint corresponding

authors of this paper. The paper [97] has been published and can be found at https:

//doi.org/10.1007/978-3-319-59575-7_28 .

4.1 Introduction

Understanding functional localizations and exploring functional interactions within the

brain is an ongoing challenge in the area of neuroscience [68][52]. Among several methods,

neuroimaging is an efficient way to achieve this task. Functional magnetic resonance imag-

ing(fMRI) is a functional neuroimaging method [92]. By quantifying blood flow using MRI

technology, fMRI data can be used to measure human brain activities [92][22][51].

In the recent years, multiple neuroscience researches on neuronal network-level activi-

ties using fMRI dataset have invoked increasing number of attentions [101][66]. Modeling

functional connectivity and abrupt boundaries among regions of interest(ROIs) in fMRI data

has been generally considered as a powerful way to investigate brain functional interactions

[67][101][64][57].

Inspired by the successes of signal analysis technologies, sliding time window, short-

time Fourier transform(STFT), and wavelet transform(WT) based schemes are proposed

https://doi.org/10.1007/978-3-319-59575-7_28
https://doi.org/10.1007/978-3-319-59575-7_28
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to detect brain functional dynamics in recent literatures [1][101][5][23]. Unfortunately, these

frameworks are limited due to some difficulties such as how to decide the length of the sliding

window. Sparse representation is widely used in applications such as image processing,

audio processing, and document analysis [68][96][56][71][104][54]. Recently, there are several

researches that utilize sparse representation for fMRI signal analysis, and some excellent

results are achieved. However, sparse representation is based on the typical assumptions

that the neural integration of those components is linear and the components of each voxels

fMRI signal are sparse [68]. Generally, these basic assumptions might not be easy to reach for

fMRI data analysis. From a technical perspective, several other very popular tools for signal

analysis can also be developed for exploring brain functional interactions, such as Markov

random field (MRF) models, principal component analysis (PCA), independent component

analysis (ICA), autoregressive spatial models [67][68][54][65].

In some recent studies, several Bayesian inference based methods have been proposed

for exploring brain functional dynamics. These methods are less sensitive to fMRI noises and

more reliable in estimating functional interactions [80]. Lian, et.al proposed a Bayesian Con-

nectivity Change Point Model(BCCPM) to detect change points(defined as abrupt bound-

aries of functional interactions in brain networks) in fMRI [43]. It uses Bayesian inference

method to calculate the probability of multivariate time series while some certain time points

are assumed as change points among fMRI data. It obtains significant performance. How-

ever, it is based on Markov Chain and Monte Carlo (MCMC) strategy and not easy to be

speeded up with multi-processor computers or GPU.

In this chapter, in order to develop a higher accuracy algorithm that can be par-

allelized in multi-processor computers or GPU in the future realization, we investi-

gate most Bayesian inference based methods for exploring brain functional interactions

[46][43][101][45][31][80][44][97]. By combining Bayesian connectivity change point model,

we propose a modified genetic algorithm to optimize the evolutionary procedure to improve

the detection accuracy and decrease the time consumption. We test GA-Based-BCCPM

on several synthesized datasets, and the experimental results verify that our new model
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produces results with higher accuracy in less time. Also, we apply the new model to real

block-designed task-based fMRI dataset, and excellent results are obtained.

4.2 Modified Genetic Algorithm and Bayesian Inference Theory

In this section, we mainly describe the modified genetic algorithm and Bayesian con-

nectivity change point model(BCCPM). The modified genetic algorithm will be utilized as

an optimization strategy and Bayesian inference theory will be used to calculate fitness of

each individual in genetic algorithm.

4.2.1 Modified Genetic Algorithm

As aforementioned, we need an optimization method to achieve better performance

such as higher accuracy and lower time consumption. Moreover, the potential parallelized

realization is an important factor we may concern.

Genetic algorithm (GA) is a kind of evolutionary method inspired by the process of

natural selection [50][69]. Commonly, we represent the possible solutions of a problem with

indicator vectors called individuals. Then, we evolve the initial individuals to the next

generation using selection, crossover, and mutation operators.

Actually, genetic algorithm may utilize very different selection, crossover, and mutation

strategies for different problems. To effectively explore brain functional interactions, we

design a series of special selection, crossover, and mutation operators as follows,

Selection and crossover:

Step 1 Randomly produce an integer n ∈ 1 ∼ n0.

Step 2 Randomly produce two different integers a1 and a2 ∈ 1 ∼ n, and select the a1-th

and a2-th individuals in the sorted i-th generation.

Step 3 Randomly produce two different integers b1 and b2 ∈ 1 ∼ N as the selected

positions.

Step 4 Crossover the selected individuals at the selected positions.



54

Mutation:

Step 5 Randomly produce a floating point number u ∈ [0, 1].

Step 6 if u > u0, go to Step 8.

Step 7 Randomly produce integers c1, c2, , cs ∈ [0, N ].

Step 8 Change the c1-th, c2-th, ... , and cs-th position from 1 to 0 or from 0 to 1.

Step 9 If all the individuals have been generated, stop; otherwise, go to Step 1.

Figure 4.1 [98] illustrates the structure and flowchart of the modified genetic algorithm.

The main procedures of the algorithm can be summarized as follows:

Firstly, we randomly initialize some binary indicator vectors to represent different dis-

tributions of change points. The dimensions of these indicator vectors are the same as the

number of time points in the fMRI data. From the view of genetic algorithm, these indicator

vectors can be regarded as individuals of the initial population.

We then calculate Bayesian posterior probability and use it as the fitness of everyone.

Finally, we evolve individuals of the current generation toward the next higher fitness

generation by a series of modified genetic operators, i.e., special selection, special crossover,

and special mutation strategies.

After several evolutionary procedures, individuals in the final generation may have out-

standing fitness and the highest fitness individual can represent the most likely change point

distribution in the corresponding fMRI data. Thus, the most probable change points distri-

bution could be resolved.
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Figure 4.1. Flowchart of the modified genetic algorithm.

Moreover, if we carefully inspect every step illustrated in Figure 4.1, we can see that

the modified genetic algorithm is different from a traditional one. Besides typical selection,

crossover, and mutation operators, it has a sorting operation and a duplication operation.

These two operations exert very important influence on all other operators, and may di-

rectly improve the performance. Commonly, the general genetic algorithm may select some

excellent individuals to produce the next generation by using evolutionary operators such
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as crossover and mutation. However, in our method, we copy a few best individuals direct-

ly to the next generation. This strategy could make sure the optimal solution will not be

changed by the coming evolutional operators and also could make them exert more influence

on generating the new individuals. In fact, we think this strategy is fair because the excellent

individuals may have long life or survive long in the natural world. Figure 4.2 [97] illustrated

the influence more intuitively. Carefully inspect Figure 4.2 (b) to (c), we can see that all

the evolutional operators used to produce individuals from the i-th generation to (i+1)-th

generation should use the sorted fitness results.

Figure 4.2. The fitness values influence: sorted fitness values exert more influence on

evolutional operators in each iteration.
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4.2.2 Bayesian Connectivity Change Poing Model

In this subsection, we will review the Bayesian connectivity change point model (BC-

CPM) again, which was firstly proposed by Lian et al in literature [43]. We will use Bayesian

inference theory to calculate fitness of each individual in genetic algorithm.

Given an R × T dataset X = (x1, x2, ..., xT ), in which T is the number of observations

and R is the number of ROIs, we are interested in if there are some differences in the joint

probabilities within these ROIs between different time periods.

We define a block indicator vector as,

~I = (I1, I2, ..., IT ) (4.1)

where Ik = 1 if the k-th observation xk is a change point at the beginning of a temporal

block, Ik = 0 otherwise.

Now, suppose a set of vectors x1, x2, ..., xT are i.i.d. (independent and identical-

ly distributed) from R-dimensional multivariate normal distribution, i.e. x ∼ N(µ,Σ),

t = 1, 2, ..., T , where T denotes the number of vectors, R denotes the dimension of vec-

tors, µ denotes the R-dimensional mean vector, and Σ denotes the R×R covariance matrix.

The conjugate prior distribution of (µ,Σ) is N -Inv-Wishart [28], and the posterior distribu-

tion of (µ,Σ) based on the data X = (x1, x2, ..., xT ) is also N -Inv-Wishart [28]. Therefore,

we can calculate the probability of as follows,

P (x1, x2, ..., xT ) =
P (x1, x2, ..., xT ;µ,Σ)

P (µ,Σ|x1, x2, ..., xT )
=

(
1

2π

)RT/2(
κ0

κT

)R/2 ΓR(νT
2

)

ΓR(ν0
2

)

(det(Λ0))ν0/2

(det(ΛT ))νT /2
2RT/2

(4.2)

where ΓR(z) is the multivariate gamma function:

ΓR(z) = πR(R−1)/4

R∏
j=1

Γ(z + (1− j)/2) (4.3)
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Consider the block indicator vector in Equation (4.1), the likelihood of the data matrix

X = (x1, x2, ..., xT ) is:

p(X|~I) =

∑
Ik∏

b=1

p(Xb) (4.4)

where Xb is the temporal observations that belong to b-th block and p(Xb) can be calculated

according to Equation (4.2). The temporal blocks are independent from each other; therefore,

the posterior distribution of the configuration is:

p(~I|X) ∝ p(~I)p(X|~I) (4.5)

where p(~I) =
∏T

t=1 p(It) and p(It) ∼ Bern(0.5).

It is worth noting that Equation (4.4) will be regarded as the fitness function of the

proposed genetic algorithm to calculate the fitness of every new individual generated by the

evolutionary operators.

4.3 Simulation Study and Real Data Application

In this section, intensive simulation study is carried out to evaluate and validate MCMC-

Based-BCCPM[22] and GA-Based-BCCPM on several simulation datasets. Furthermore, the

application results on a real emotion processing task-based fMRI dataset are compared and

summarized.

4.3.1 Simulation Study I

In the first set of simulation study, we perform several experiments between MCMC-

Based-BCCPM and GA-Based-BCCPM for network (a)-(f) illustrated in Figure 4.3 [97]. We

repeat every simulation experiments for 5 times and save all results to calculate their average

performance. For the purpose of fairness, all parameters of BCCPM are set as same values.

The iterative number of GA-Based-BCCPM is set as 100 while GA-Based-BCCPM is set

as 20000 to synchronously achieve good convergence and detection results for both the two
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methods.

Figure 4.3. Six different structures of dynamic networks and their

change-point-distributions.

Figure 4.4 [97] illustrates the convergence curve of the MCMC-Based and GA-Based-

BCCPM. Figure 4.4 [97](a)-(f) denote the convergence curves of network (a)-(f), respectively;

and the results of MCMC-Based and GA-Based-BCCPM are listed on the left and right

column, respectively. Carefully observe the results of left and right columns, we can see the

convergence curve of MCMC-Based-BCCPM vibrates even when it has reached its highest

peak, while GA-Based-BCCPM only climbs for the highest peak. Obviously, the good results

of proposed method may benefit from the modified GA, since it will always copy individuals

with highest fitness values directly into the next generation.

Figure 4.5 [97] illustrates Change point detection results for network (a)-(f) of the

MCMC-Based and GA-Based-BCCPM. We can observe that GA-Based-BCCPM outper-

forms MCMC-Based-BCCPM for all six networks in detection precision. Even more, GA-
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Based-BCCPM does not miss or mistake change points in any network.

Figure 4.4. Convergence curve for network (a)-(f) (Left column is results of

MCMC-Based-BCCPM. Right column is results of GA-Based-BCCPM).
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Figure 4.5. Change point detection results for network (a)-(f) (Left column is results of

MCMC-Based-BCCPM. Right column is results of GA-Based-BCCPM).
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Finally, we take the time consumption into our consideration, the running time of

MCMC-Based and GA-Based-BCCPM are listed in Table 4.1 [97]. The environment of

our experiment is as follows: operating system: Windows 10 Pro; system type: 64-bit

operating system x64-based processor; CPU: Intel(R) Core(TM) i7-6600U CPU@2.6GHz

2.81Hz; memory: 12 GB. The last row of Table 4.1 [97] is the average running time and the

other rows are networks (a)-(f). It is very easy to see that GA-Based-BCCPM is faster than

MCMC-Based-BCCPM in all networks, and of course the average time consumption.

Table 4.1. Comparison of computational cost (time in ms)

MCMC-Based-BCCPM GA-Based-BCCPM

Network (a) 5796.8 3631.2

Network (b) 6206.0 3568.6

Network (c) 7825.2 4391.0

Network (d) 6268.8 4231.4

Network (e) 6218.2 4231.2

Network (f) 6472.0 4256.4

Average 6464.5 4051.6

4.3.2 Simulation Study II

In the second set of simulation study, eight datasets are generated based on eight differ-

ent structures of dynamic networks (Figure 4.6 (a - h)) to testify that GA-Based-BCCPM

can effectively detect the change points [98]. There are various types of interaction patterns

in the eight different structures of dynamic networks to make sure the applicability of the

model. Multiple experiments are completed to validate the proposed model. The designed

change points of eight different dynamic networks are shown in Figure 4.6 by using a vertical

solid line with a position number below it.
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Figure 4.6. Eight different structures of dynamic networks and their change-point

distributions.

For each of the eight structures of dynamic networks, we repeat the experiments for

50 times and all the results are saved to calculate their average performance. The number

of repetitions of GA-Based-BCCPM is set as 100 and the number of repetitions of MCMC-
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Based-BCCPM is set as 20000 to achieve good convergence and change points detection

results for both methods. Note that all parameters of BCCPM are set at the same values

for the sake of fairness.

The simulation results are summarized in Figure 4.7 [98] and Figure 4.8 [98] to compare

the convergence curves and change point detection results. In Figure 4.7 [98], the convergence

curves of the two methods are displayed on the left and right columns respectively from

network (a) to network (h). We can observe that there are some vibrations within the

highest peaks of the convergence curves in MCMC-Based-BCCPM. However, thanks to the

advantage of the proposed modified genetic algorithm, which copies the subjects with highest

fitness directly to the next generation, GA-Based-BCCPM performs better as it always climbs

to its peak monotonically. In Figure 4.8 [98], the change point detection results of the two

methods are shown on the left and right columns respectively from networks (a) to (h). It

is obvious that GA-Based-BCCPM has better performance than MCMC-Based-BCCPM,

as we can observe the proposed GA-Based-BCCPM catches all the designed change points

precisely, while MCMC-Based-BCCPM mistakes some positions in networks (b), (c), (d),

(f), and (h).

On top of that, the computational cost of each method is again taken into our consider-

ation. The running time (in milliseconds (ms)) of MCMC-Based-BCCPM and the proposed

GA-Based-BCCPM are recorded and summarized in Table 4.2 [98]. We can easily see that

the proposed GA-Based-BCCPM has lower computational cost in all eight networks. Note

that our computing environment is: Windows 10 Pro; Processor: Intel Core i7-4770K CPU

@ 3.50GHz; Installed RAM: 16.0 GB; System type: 64-bit operating system, x64-based

processor.
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Figure 4.7. Convergence curves for networks (a)-(h) (Left column shows results from

MCMC-Based-BCCPM. Right column shows results from GA-Based-BCCPM).
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Figure 4.8. Change point detection results for network (a)-(h) (Left column shows results

from MCMC-Based-BCCPM. Right column shows results from GA-Based-BCCPM).
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Table 4.2. Comparison of computational cost (time in ms)

MCMC-Based-BCCPM GA-Based-BCCPM

Network (a) 3572.2 3168.6

Network (b) 5284.6 3618.8

Network (c) 8687.4 4468.6

Network (d) 5000.2 2790.4

Network (e) 6009.4 3206.4

Network (f) 8784.6 4525.0

Network (g) 7890.2 5706.0

Network (h) 8218.8 5728.2

4.3.3 Real Data Application

In this study, we applied the GA-Based-BCCPM on a real emotion processing task-based

fMRI data and compared the results with MCMC-Based-BCCPM. These 9 fMRI datasets

are acquired from an Emotion Processing task on a Siemens Skyra 3T scanner [35]. The total

scan length was 176 frames (i.e. time points). The datasets were preprocessed by authors in

[43] using the open source DICCCOL tools in [105]. From each of the scanned subjects brain,

fMRI time series are extracted from 358 DICCCOL Region of Interest (ROIs) . Details of the

data processing can be found in [43][35]. The resulting size of each dataset is 358*176, where

358 is the total number of ROIs and 176 is the total number of frames (i.e. time points). The

application results are summarized in Table 4.3 [98]. Similar to [43], we define change points

that are detected within 5 time points as aligned with boundaries, and change points that

are detected within 10 time points as partially aligned. From the results, we can see that

our proposed GA-Based-BCCPM detects change points more precisely than MCMC-Based-

BCCPM among most of the 9 subjects. On average, out of the 7 expected change points,

MCMC-Based-BCCPM detects 75% (aligned and partially aligned), and GA-Based-BCCPM

detects 81%(aligned and partially aligned).
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Additionally, change points that are not aligned with any boundaries are also shown

in Table 4.3 [98]. The average number of not aligned change points detected by MCMC-

Based-BCCPM is 2.44, while those detected by GA-Based-BCCPM is 1.67. It also indicates

that the GA-Based-BCCPM has better performance compared with MCMC-Based-BCCPM.

Furthermore, these not aligned change points could be used to infer the dynamic changes

happened within the designed blocks.

Table 4.3. Results on real data application
Subject Model # of change # of change # of change # of change

points points points points not
detected aligned partially aligned

with aligned with any
boundaries with boundaries

boundaries
1 MCMC-Based 7 1 2 4

GA-Based 7 5 1 1
2 MCMC-Based 7 3 2 2

GA-Based 8 5 2 1
3 MCMC-Based 8 5 1 2

GA-Based 7 2 2 3
4 MCMC-Based 7 4 1 2

GA-Based 7 2 3 2
6 MCMC-Based 8 4 2 2

GA-Based 7 6 1 0
7 MCMC-Based 8 2 3 3

GA-Based 8 4 3 1
8 MCMC-Based 8 4 2 2

GA-Based 7 2 2 3
9 MCMC-Based 8 4 2 2

GA-Based 8 2 4 2
10 MCMC-Based 8 3 2 3

GA-Based 7 2 3 2

To better understand the functional interactions between the ROIs within the temporal

blocks found by our method, the PC algorithm [78] is applied to search the patterns which

can represent the underlying causal structure from the data. Since subject 6 has the most

aligned change points detected by our method, we will use subject 6 as an example to show
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the functional interaction patterns searched by the PC algorithm. In Figure 4.9 [98], the

top graph shows that the change points detected by GA-Based-BCCPM align with designed

task blocks and only the last one is not aligned per our definition. From these temporal

blocks, three of them are labeled as I, II and III, which represent a face block, a shape block

and a fixation block in the experiment respectively. The bottom row in Figure 4.9 shows

the functional interaction patterns searched by the PC algorithm for I. face block, II. shape

block, and III. fixation block. Its obvious that the interaction patterns are different from

each other in the two task blocks and the fixation block.

Figure 4.9. Top: Detected change point shown in blue ridges with designed blocks split

by red dotted lines of subject 6. Bottom: Functional interaction patterns searched by PC

algorithm from three temporal blocks: I. face, II. shape, III. fixation.
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4.4 Conclusion and Future Work

Finally, we conclude our method and discuss further work in Section 4. In this chapter,

an optimized method for Bayesian connectivity change point model using genetic algorithm

is presented. We apply it to detect change point in synthesized and real fMRI data, and

excellent results are obtained.

In the future, we will combine our method with other Bayesian inference model, such

as BMCPM and DBVPM. Furthermore, for the potential parallel realization of the genetic

algorithm, GA-Based-BCCPM could be easily implemented in a parallel mode and run

efficiently within GPU or multi-processor computers, thus, we will also investigate its GPU

or multi-processor version.
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CHAPTER 5

BAYESIAN BI-CLUSTER CONNECTIVITY CHANGE POINT MODEL

Human brain’s functional dynamics have been demonstrated with recent studies and

detecting the functional connectivity change points of single subject is also carried out by

different researches. However, the clustering of multiple subjects with finding change points

at the same time is still very challenging. To contribute in this area, this work presents a

novel Bayesian bi-cluster change-point model (BBCCPM). This model simultaneously infers

the dynamics of functional brain interactions as well as the cluster of different subjects based

on the boundaries of temporally quasi-stable blocks. The proposed model analyzes the joint

probabilities among multiple subjects with whole brain ROIs between different time-periods

and applies the MCMC scheme to sample the posterior probability distribution of each time

point as being a change point as well as different subject cluster scheme. Finding the change

points can help investigate temporal functional brain dynamics, and grouping them can help

us distinguish the differences of the brain dynamics among multiple subjects and lead to

further research on finding the reasons behind it. The BBCCPM has been evaluated and

validated by experimental datasets and good results are achieved.

This is collaboration work with Dr. Xuan Guo, Dr. Xiuchun Xiao, Dr. Yi Pan, and

Dr. Jing Zhang.

5.1 Introduction

In recent year, there are lots of neuroimaging researches on functional Magnetic Reso-

nance Imaging (fMRI) data. In particularly, various Bayesian-inference-based methods have

been designed to detect magnitude or functional connectivity change points and further-

more led to infer the interaction patterns based on the temporal blocks [31]. As discussed

in Lindquist M.A., et al. (2007)[48], the detection of functional brain state-related change
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points without a known timing information has been an important consideration, as psy-

chological processes could not be specified in advance; at the same time, the onset time

and the duration of the response may vary considerably across subjects. Besides functional

connectivity, the study on functional network connectivity, which focuses on the interactions

in network level, estimates the clusters of brain regions having similar functionalities and

has been applied to many diseases to examine brain network differences between healthy and

diseased brains [9][3][106].

However, we are also very interested in clustering of multiple subjects with finding

change points at the same time, and this is still very challenging. In previous studies, mul-

tivariate graphical causal models based on Bayesian networks are more robust and reliable

in estimating functional interactions and less sensitive to noise in the fMRI signals [73], and

Lian, et al. has developed a novel Bayesian Bayesian Connectivity Change Point Model

(BCCPM) [43] to detect the change points by finding the boundaries of temporal blocks via

a unified Bayesian framework via the analysis of the dynamics of multivariate functional

interactions. In this work, we present a novel Bayesian bi-cluster change-point model (B-

BCCPM). This model simultaneously infers the dynamics of functional brain interactions as

well as the cluster of different subjects based on the boundaries of temporally quasi-stable

blocks. The proposed model analyzes the joint probabilities among multiple subjects with

whole brain ROIs between different time-periods and applies the MCMC scheme to sample

the posterior probability distribution of each time-point as being a change point as well as

different subjects’ clustering scheme.

5.2 Methodology

5.2.1 Bayesian Bi-cluster Connectivity Change Point Model

Fundamentals of Bayesian inference

For T vectors y1, y2, ..., yT i.i.d (independent and identically distributed) from r-
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dimensional multivariate normal distribution

yt ∼ N(µ,Σ), t = 1, 2, ..., T

where T is the number of vectors, r is the dimension of vector yt, µ is the r-dimensional

mean vector, and Σ is the r × r covariance matrix. When µ and Σ are both unknown, the

prior distribution of (µ,Σ), which is conjugate, is the N -Inv-Wishart(µ0,Λ0/κ0, ν0,Λ0) [28]:

µ|Σ ∼ N(µ0,Σ/κ0)

Σ ∼ Inv −Wishart(ν0,Λ0)

The posterior distribution of (µ,Σ) given the data y1, y2, ..., yT is the same type of

N -Inv-Wishart(µT ,ΛT/κT , νT ,ΛT ), with:

µT =
κ0

κ0 + T
µ0 +

T

κ0 + T
ȳ

κT = κ0 + T

νT = ν0 + T

ΛT = Λ0 + S +
κ0T

κ0 + T
(ŷ − µ0)(ŷ − µ0)T

S =
T∑
i=1

(yi − ŷ)(yi − ŷ)T

Here S is na r × r matrix. Then we can calculate the probability of y1, y2, ..., yT as

follows:

P (y1, y2, ..., yT ) =
P (y1, y2, ..., yT ;µ,Σ)

P (µ,Σ|y1, y2, ..., yT )
=

(
1

2π

)rT/2(
κ0

κT

)r/2
Γr(νT/2)

Γr(ν0/2)

(det(Λ0))ν0/2

(det(ΛT ))νT /2
2rT/2

(5.1)

where Γr is the multivariate gamma function:

Γr(z) = πr(r−1)/4

r∏
j=1

Γ(z + (1− j)/2)
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Baysian bi-cluster connectivity change point model

Given an r×T data matrix Y = (y1, y2, ..., yT ), in which T is the number of observations

and r is the number of ROIs as shown in the sample matrix (Figure 5.1), we are interested

in if there are some differences in the joint probabilities within the r ROIs between different

time periods and the locations of change points from each other.

Figure 5.1. Data matrix of Y and block indicator vector I, where yt are the values of all

ROIs at time t (the t-th column in the matrix), Yj are the values of the j-th ROI at all times

(the j-th row in the matrix) and It is a block indicator (identifying the change points) at

time t

Now we define a block indicator vector:

~I = (I1, I2, ..., IT )

in which It = 1 if the t-th observation yt is a change point, It = 0 otherwise. Then the

T observations would be divided into
∑T

t=1 It blocks, in which the starting time point I1

is always considered as a change point. The marginal likelihood of the data matrix Y =

(y1, y2, , yT ) can be represented as follows:

p(Y |~I) =

∑
It∏

b=1

p(Yb) (5.2)
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where Yb are the observations belonging to b-th block and p(Yb) can be calculated according

to Equation (5.1). We assume statistical independence among the blocks. Therefore, the

posterior distribution of p(~I|Y ) can be easily obtained by:

p(~I|Y ) ∝ p(~I)p(Y |~I)

where p(~I) =
∏T

t=1 p(It) and p(It) ∼ Bern(0.5).

Likelihood of multiple subjects.

Now say for N subjects data matrix ~Y = (Y (1), Y (2), ..., Y (N)), Y (n) is r × T ROI data

matrix for the n-th subject. Based on Equation (5.2), assuming all the subjects follow the

same block partition, the marginal likelihood of ~Y is,

p(~Y |~I) =

∑
It∏

b=1

N∏
n=1

p(Y
(n)
b ) (5.3)

where Y
(n)
b ’s are the observations belonging to b-th block of the n-th subject and p(Y

(n)
b ) can

be calculated according to Equation (5.1).

Clustering of subjects based on block partition.

The main purpose of the proposed method is to cluster multiple subjects into different

groups, and subjects within each group follow the same dynamics of functional brain interac-

tion (i.e. the same block partition). Please note that the total number of groups of subjects

S is unknown but between 1 and N. Figure 5.2 illustrate an example of the proposed idea,

where the first two subjects belong to one group and the third sub-ject belongs to a second

group.

We define a specific representation of clustering group structures: Each subject receives

a unique label: 1,2,...,N. Each clustering group of subjects also obtains a unique label which

is the lowest label among all the subjects it contains. For example, given the clustering

group structure illustrated in Figure 5.2, the Group 1 (G1) containing subjects 1 and 2 is



76

labeled 1 and the Group 2 (G2) consisting of subject 3 is labeled 3. There is no group label

2 for such grouping structure. This representation of group labels makes sure each distinct

group structure will receive a unique labeling. Therefore the same clustering group structure

cannot be labeled in two different ways.

Figure 5.2. Three subjects in two clustering groups.

Based on the above representation of group labels, we define a subject indicator vector

~J = (J1, J2, ..., JN) where Jn denotes the label of grouping which the n-th subject belongs to.

Each subject only belongs to one group, meaning there is no overlapping between different

clustering groups. Still taking the above clustering group structure of 3 subjects in Figure 5.2

as an example, its subject indicator vector is ~J = (1, 1, 3) according to the above clustering.

The 3 subjects are clustered into two groups.

Recall that we totally have S (unknown) groups, thus we define a block indicator matrix

I = (~IG1 , ~IG2 , ..., ~IGS
) where ~IGs is a block indicator vector for s-th clustering groups Gs as

defined previously. Therefore, in each clustering group Gs, all the subjects are segmented

into multiple blocks by the block indicator vector ~IGs .

Given a subject indicator vector ~J and a block indicator matrix I, the marginal likelihood

of the data ~Y = (Y (1), Y (2), ..., Y (N)) is:

p(~Y | ~J, I) =
S∏
s=1

p(~YGs | ~J, ~IGs) (5.4)
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where ~YGs is the data of all the subjects belongs to s-th clustering group Gs and the likeli-

hood p(~YGs| ~J, ~IGs) can be calculated by Equation (5.3) given the block indicator vector ~IGs .

Different clustering groups are independent, so the posterior distribution is

p( ~J, I|~Y ) ∝ p( ~J, I)p(~Y | ~J, I) (5.5)

where p( ~J, I) = p( ~J)p(I) = p( ~J)
∏S

s=1 p(
~IGs), and we use independent uniform priors for

p( ~J) and p(~IGs). By substituting Equation (5.4) into Equation (5.5), we have

p( ~J, I|~Y ) ∝ p( ~J, I)
S∏
s=1

p(~YGs| ~J, ~IGs) (5.6)

5.2.2 Two-level MCMC Scheme

In this section, a two-level MCMC scheme [42] is proposed to sample from the posterior

distribution of the cluster grouping structures and block boundaries within each clustering

group, as illustrated in Figure 5.3. The lower level MCMC samples from the posterior

distribution of the block boundaries within each clustering group, and the higher level MCMC

samples from the posterior distribution of the clustering group structures. The posterior

distribution of the configuration can be evaluated using the formula (Equation (5.3) and

(5.6)) described previously.

In the higher level MCMC, three proposals for updating subject indicator vector ~J

are: 1) randomly selecting one clustering group and dividing it into two smaller clustering

groups; 2) randomly selecting two clustering groups and merging them together; 3) randomly

selecting two subjects and switching their clustering group memberships.

In the lower level MCMC, within each clustering group, there are also three proposals

for updating block indicator vector ~IGs : 1) randomly selecting one block and dividing it

into two smaller blocks; 2) selecting two consecutive blocks and merging them together; 3)

randomly selecting one block and shift its boundary to the left or the right.

In the higher level MCMC, after proposing a new subject indicator vector, we need to
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re-label the subject indicator to satisfy our specific representation of clustering groups. For

example, given ~J = (1, 1, 3), we randomly select two subjects 1 (the first) and 3 (the third),

and switch their clustering group memberships and have ~J = (3, 1, 1). After re-labeling, a

new group indicator vector ~J∗ = (1, 2, 2) is generated.

Figure 5.3. Work flow of the two-level MCMC scheme.

5.3 Experimental Results

In this section, we are going to validate our proposed Bayesian bi-cluster change point

model on experimental datasets.

The experimental datasets includes five subjects with two clustering groups: Subject

1 and 2 in one group, and Subjects 3, 4, and 5 in another group. Figure 5.4 shows the

change point distributions and clustering structure. The first group has 3 temporal blocks

with change points at 101 and 201, and the second group has 2 temporal blocks with change
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point at 151; both groups have 3 ROI’s and 300 time points.

Figure 5.4. Experimental design: Five subjects with two group clusterings and their change

point distributions.

The repetition of the lower MCMC is set at 500 and the repetition of upper MCMC

is set at 200 (larger numbers for these two repetitions are expected for more complicated

change point distributions and group clusters). The results are good as the proposed method

detects the change points correctly, and at the same time, clusters the five subjects into two

groups. Figure 5.5 shows the overall convergence trace plot of the 2-level MCMC. Figures

5.6 - 5.9 shows the convergence trace plots of the lower MCMC in the last repetition of the

upper MCMC, and the corresponding change point detection results in group 1 and 2.

Figure 5.5. Overall convergence curve.
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Figure 5.6. Convergence curve for lower level MCMC in Group 1 (Subjects 1,2).

Figure 5.7. Change point detection result for Group 1 (Subjects 1,2).
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Figure 5.8. Convergence curve for lower level MCMC in Group 2 (Subjects 3,4,5).

Figure 5.9. Change point detection result for Group 2 (Subjects 3,4,5).
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The result of the subject indicator vector is ~J = (1, 1, 3, 3, 3), which correctly clusters

the five subjects into two groups, the first two in group 1 and the later three subjects in

group 2. The probability of getting this subject indicator is calculated as 100% without

burn-in period.

5.4 Conclusion and Future Work

In this chapter, we present a novel Bayesian bi-cluster connectivity change-point model

(BBCCPM), which can simultaneously infer the dynamics of functional brain interactions as

well as the cluster of different subjects based on the boundaries of temporally quasi-stable

blocks. The method has been evaluated on a set of simulated datasets and good results are

obtained. In the future, the method may be applied to study the brain dynamics in different

group of people and has the potential to classify healthy and diseased patients according to

their brain dynamics. As this method utilizes a two-level MCMC scheme, it takes a lot of

more time than one-level MCMC. So the modified genetic algorithm may also be employed

to achieve good results with less computational cost.
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CHAPTER 6

OTHER TOPICS: BAYESIAN ANALYSIS OF COMPLEX MUTATIONS IN

HBV HCV AND HIV STUDIES

The material in this chapter is from the author’s review article [49]. It’s a collaborate

work with Shishi Feng, Dr. Yi Pan and Dr. Jing Zhang. The article has been submitted

and under review.

In this article, we aim to provide a thorough review of the Bayesian-inference-based

methods applied to Hepatitis B virus (HBV), Hepatitis C virus (HCV) and the human

immunodeficiency virus (HIV) studies with a focus on the detection of the viral mutations

and various problems which are correlated to these mutations. Although these interacting

mutation patterns are extremely difficult to efficiently uncover and interpret, the use of

Bayesian statistical modeling provides an unprecedented opportunity to solve these problems.

Here we summarize a novel statistical approach, the Bayesian Variable Partition (BVP)

model, and the Recursive Model Selection (RMS) procedure, which are designed to detect

the mutations and to further infer the detailed dependence structure among the interactions.

The BVP and RMS in which Markov Chain Monte Carlo (MCMC) methods are used have

been widely applied in a number of HBV, HCV and HIV studies in the recent years. We

will also provide a summary of the Bayesian methods applications toward these viruses

studies, where several important and useful results have been discovered. We envisage the

applications to other infectious diseases and cancer cells of more modified Bayesian methods

will be following with important medical results before long.

6.1 Introduction

Per historical data, there are up to 30 million people across the world who are infected

with Hepatitis B virus (HBV) and up to 600 thousand die every year [33][95]. Among



84

infected adults, less than 5% of otherwise healthy persons who are infected as adults will

develop chronic infection, and 20%− 30% of adults who are chronically infected will develop

cirrhosis and/or liver cancer; and rate is higher in younger populations: 80% − 90% of

infants infected during the first year of life develop chronic infections, and 30% − 50% of

children infected before the age of 6 years develop chronic infections [95]. There are about

1/3 of chronic infected subjects will have irreversible liver damage and it lead to cirrhosis

and hepatocellular carcinoma; and the other 2/3 infected subjects will retain the virus in

their body and become highly infectious though asymptomatic [61]. In total, up to 25% of

subjects with chronic infected HBV die from the complications due to the disease [61].

HBV is a member of the Hepadnaviridae family, and it comprises an icosahedral protein

capsid surrounding the viral DNA, with a lipoprotein viral envelope [8][94][59][88]. The virus

DNA is organized in 4 open reading frames (ORF): S, which stands for surface and it encodes

HBsAg; C, which stands for core and it encodes HBcAg and HBeAg; P, which stands for

polymerase and it encodes DNA polymerase; and X, which encodes an X protein, whose

precise function is currently unclear [94][88]. Two highly immunogenic proteins consist the

nucleocapsid, they are HBcAG and HBeAg, and a less immunogenic surface antigen HBsAg

is in the viral envelop [94][59][88]. In patients with chronic hepatitis B, serum HBV-DNA

reflects the disease progression as well as the transition across the different stages of the

disease [60]. Identifying HBsAg mutations correlated with different levels of serum HBV-

DNA in HBV chronically infected patients naive to anti-HBV drugs is one of the interests

of HBV studies. In the meantime, Occult HBV infection (OBI) is a threat for the safety

of blood-supply, and has been associated with the onset of HBV-related hepatocellular car-

cinoma and lymphomagenesis. The genetic markers in HBsAg (particularly in D-genotype,

the most common in Europe) significantly associated with OBI in vivo are missing, so the

correlation between HBaAg-mutations and OBI and its impact on HBsAg detection is also

of importance [83]. The above problems can be solved by using Bayesian framework.

Hepatitis C virus (HCV) is a single-strand RNA virus and has been classified into
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at least six genotypes with several subtypes in each. The responses patterns of different

genotypes to interferon-based therapy are diverse with them spreading in different regions

[72]. In previous clinical experience, IFN and ribavirin combined therapy has a significantly

higher rate of sustained response in chronic HCV patients compared with interferon-based

therapy which has only less than 20% sustained response [13][58].

Some variations in the HCV sequences have the ability of interfering the effective func-

tioning of IFN-based therapies. Among all these variations, the ones in the NS5A region

[55][19] are the main subject in our review. NS5A is a nonstructural protein that can lead to

IFN therapy resistance by impacting the function of an important mediator of IFN response

called dsRNA dependent protein kinase (PKR) [27][26]. NS5A region has 1344 base pairs

linking to 448 amino acid and constitutes several regions: the membrane attachment region

(aa 1 - 236), the carboxyl region (aa 237 - 448), and the regions within the carboxyl end

which included PKRbd (aa 237 - 302), variable region 4 (V4; aa 310-330), variable region 4

(V3; aa 381-409), the region between V3 and V4 (aa 331-380), and the downstream region

of V3 (aa 410-448) [25].

In general, mutations in NS5A region have been proposed to be related to therapy re-

sistance by Enomoto and Sato [20] and other researchers [18][30]. However, the relation

between mutations in NS5A region and IFN resistance remains ambiguous because of con-

tradictory results obtained in studies concerning PKR binding domain in NS5A [11]. Thus, a

better understanding of the role of NS5A region plays in antiviral resistance to IFN therapy

will contribute greatly to the development of treatment strategies against HCV.

The human immunodeficiency virus (HIV) is an enveloped virus with a single-stranded

RNA genome and is the cause of the Acquired Immunodeficiency Syndrome (AIDS) which

killed more than 20 million people since 1980s [70][40][93]. The replication cycle of HIV-1

virus consists of 13 important steps, beginning with the attachment step and ending with

the protease-mediated mutation process. The attachment step marks the entry of virus into

host cell by the fusion of membranes of the cell and virus [17][21]. A trimer of gp120 and
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gp41 heterodimers forms the only protein envelope on the viral surface. The HIV-1s delivery

of genome in to the host cell is an extremely intricate process in which a collaborative

interaction of the envelope glycoprotein gp120 with the CD4 receptor and with chemokine

receptors is required. The chemokine receptors mainly refer to CC chemokine receptor type

5 (CCR5) and C-X-C chemokine receptor type 4 (CXCR4) [7].

These receptors can be used to classify HIV-1 virus since the ability of virus to use the

CCR5 and CXCR4 co-receptor differs from each other. It has been proposed by previous

studies that R5-reopic viruses which can only use the CCR5 co-receptor, are the predominant

in majority of newly HIV-1 infected patients and are generally responsible for the initial

infection. Meanwhile, CXCR4 co-receptor usage is observed more often in advanced stages

of disease [7][74]. And among the domains of HIV-1 gp120, the V3 loop is the primary

determinant for HIV-1 co-receptor usage [34]. Thus, in order to provide more valuable

information for the development of anti-HIV-1 drugs targeting on inhibiting the entry of

CCR5-tropic HIV-1 strains into host cell, we keep our focus on defining the V3 genetic

determinants and the structural features underlying the ability of HIV-1 to use the CCR5 and

CXCR4 co-receptors. Moreover, understanding the detailed interaction mutation patterns

related to drug-resistance in V3, is also of great importance to develop effective treatment

against HIV [38].

Zhang et al. [100] proposed an innovative method for investigating mutation interactions

of HIV after certain drug treatment. This method has been used in detecting genome-wide

associations on HBV and HCV as well. In this article, we will provide a thorough review of

the Bayesian Variable Partition (BVP) model, the Recursive Model Selection (RMS), and

their real applications in HBV, HCV and HIV studies.

6.2 Bayesian Methods in HBV, HCV and HIV Studies

In this section, we will first summarize and generalize the Bayesian statistical models

applied to HBV, HCV and HIV studies in terms of finding the virus sequence mutations and

the difference in two (or three) different groups of patients. Then a summary of important



87

and interesting results found by applying these methods will be carried out for HBV, HCV

and HIV studies. An introduction to basics of Bayesian inference can be found in Section

2.1 as reference.

6.2.1 Bayesian Variable Partition Model

Zhang et al. (2010) [100] first developed the Bayesian Variable Partition (BVP) model to

detect and understand combinatorial mutation patterns responsible for HIV drug resistance.

Up to now, this method has been successfully applied in various virus studies.

Generally, suppose we have two data sets in the form of matrices, say A = [A1, ..., Am]

(of dimension nA ×m) and B = [B1, ..., Bm] (of dimension nB ×m), respectively (each row

is a sequence, each column is a position of amino acid sequence). The number of sequences

in two groups are denoted using nA and nB, and m denotes the number of positions. On

top of that, we establish the following four assumptions for the distribution of the positions

from the two groups [24]:

• H1: The identity of the independent positions, where group A and group B data

share the same probability distribution.

• H2: The identity of the independent positions, where group A and group B data

have different probability distributions.

• H3: The identity of the dependent positions, where group A and group B data share

the same probability distribution.

• H4: The identity of the dependent positions, where group A and group B data have

different probability distributions.

From these hypotheses, we are interested in positions from H2 and H4 particularly.

Therefore, we will start with the positions from H2. Given that the position i is from H2,

and we assume there are ci possible values (amino acids) at position i, and for every sequence

in group A, we have p1 for the first value, p2 for the second, ..., p(ci) for the last value, and
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∑ci
j=1 pj = 1. Then we can calculate the likelihood for data set A at position i as,

P (Ai|p1, p2, ..., pci , H2) =

ci∏
j=1

p
nj

j (6.1)

where nj denotes the number of sequence with the j-th value in Ai. At the same time, we

have p
′
j for the j-th value in group B, and

∑ci
j=1 p

′
j = 1. So the likelihood for group B at

position i is,

P (Bi|p
′

1, p
′

2, ..., p
′

ci
, H2) =

ci∏
j=1

(p
′

j)
n
′
j (6.2)

where n
′
j is the number of sequence with the j-th value in Bi.

Under the assumption of H2, pj 6= p
′
j, since we dont know the true values of pj or p

′
j,

we assume they are random and a Dirichlet prior is applied on them.

p ∼ Dirichlet(α1, α2, ..., αci) : P (p1, p2, ..., pci |H2, α1, α2, ..., αci) =
1

B(α)

ci∏
j=1

p
αj−1
j (6.3)

where B(α) =
∏cj

j=1 Γ(αj)

Γ(
∑cj

j=1 αj)
, α = (α1, α2, ..., αci) and Γ(x) =

∫∞
0
tx−1e−tdt;

p
′ ∼ Dirichlet(α

′

1, α
′

2, ..., α
′

ci
) : P (p

′

1, p
′

2, ..., p
′

ci
|H2, α

′

1, α
′

2, ..., α
′

ci
) =

1

B(α′)

ci∏
j=1

(p
′

j)
α
′
j−1 (6.4)

where B(α
′
) =

∏cj
j=1 Γ(α

′
j)

Γ(
∑cj

j=1 α
′
j)

, α
′
= (α

′
1, α

′
2, ..., α

′
ci

) and Γ(x) =
∫∞

0
tx−1e−tdt.

Then we have

P (Ai, p1, p2, ..., pci |H2) =

ci∏
j=1

p
nj

j ×Dirichlet(α1, α2, ..., αci) =
1

B(α)

ci∏
j=1

p
nj+αj−1
j (6.5)

P (Bi, p
′

1, p
′

2, ..., p
′

ci
|H2) =

ci∏
j=1

(p
′

j)
n
′
j ×Dirichlet(α′1, α

′

2, ..., α
′

ci
) =

1

B(α′)

ci∏
j=1

(p
′

j)
n
′
j+α

′
j−1 (6.6)
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By integrating out p and p respectively, we get

P (Ai|H2) =

∫
p

P (Ai, p1, p2, ..., pci|H2)dp =

cj∏
j=1

Γ(nj + αj)

Γ(αj)

Γ(
∑cj

j=1 αj)

Γ(
∑cj

j=1(nj + αj))
(6.7)

P (Bi|H2) =

∫
p

P (Bi, p
′

1, p
′

2, ..., p
′

ci
|H2)dp

′
=

cj∏
j=1

Γ(n
′
j + α

′
j)

Γ(α
′
j)

Γ(
∑cj

j=1 α
′
j)

Γ(
∑cj

j=1(n
′
j + α

′
j))

(6.8)

And then

P (Ai, Bi|H2) = P (Ai|H2)P (Bi|H2) (6.9)

When under H1, we have pj = p
′
j, so we can obtain

P (Ai, Bi|H1) =

∫
p

P (Ai, Bi, p1, p2, ..., pci |H1)dp =

∫
p

1

B(α)

ci∏
j=1

p
nj+n

′
j+αj−1

j

=

cj∏
j=1

Γ(nj + n
′
j + αj)

Γ(αj)

Γ(
∑cj

j=1 αj)

Γ(
∑cj

j=1(nj + n
′
j + αj))

(6.10)

For hypothesis H4, let’s assume there are c possible number of combinations of the

dependent positions. Likewise, suppose for every sequence in group A, we have p1 for the first

combination, p2 for the second combination, ..., pc for the last combination, and
∑c

j=1 pj = 1;

for every sequence in group B, we have p
′
1 for the first combination, p

′
2 for the second

combination, ..., p
′
c for the last combination, and

∑c
j=1 p

′
j = 1. Then, we have:

P (dependent positions in A|H4) =
c∏
j=1

Γ(nj + αj)

Γ(αj)

Γ(
∑c

j=1 αj)

Γ(
∑c

j=1(nj + αj))
(6.11)

P (dependent positions in B|H4) =
c∏
j=1

Γ(n
′
j + α

′
j)

Γ(α
′
j)

Γ(
∑c

j=1 α
′
j)

Γ(
∑c

j=1(n
′
j + α

′
j))

(6.12)

where nj and n
′
j are the numbers of the j-th combination in A and B separately, and then

P (dependent positions in A, B|H4) = P (dependent positions in A)×P (dependent positions in B)

(6.13)
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Now under H3, we have pj = p
′
j, so similarly we have:

P (dependent positions in A, B|H3) =
c∏
j=1

Γ(nj + n
′
j + αj)

Γ(αj)

Γ(
∑c

j=1 αj)

Γ(
∑c

j=1(nj + n
′
j + αj))

(6.14)

We define an indicator vector I = [I1, I2, , Im] to indicate the hypothesis group of m

different positions belong to, where Ii = 1 means position i is from H1, Ii = 2 means

position i is from H2, Ii = 3 means position i is from H3, and at last Ii = 4 means that the

position i is from H4.

Then, as we are interested in the inference of I, so we want to find the posterior distri-

bution of I, given the data sets A and B, i.e. P (I|A,B). Applying the Bayes theorem, we

obtain:

P (I|A,B) =
P (I)P (A,B|I)∑

all possible I P (I)P (A,B|I)
(6.15)

Therefore,

P (I|A,B) ∼ P (I)P (A,B|I) (6.16)

Based on H1, H2, H3, and H4, we have

P (A,B|I) =
∏
Ii=1,2

P (Ai, Bi|Ii)×P (dependent positions from H3)×P (dependent positions from H4)

(6.17)

In practice, we also need to assume the prior for I. For example, we may assume

most positions should be in H1 and H3, then we set P (Ii = 2) = P (Ii = 4) = 0.01, and

P (I) =
∏m

i=1 P (Ii).

6.2.2 Bayesian Partition on Dual Usage of Co-receptor Model

To detect and understand genetic and structural features in HIV-1 B subtype V3 under-

lying HIV-1 co-receptor usage, Chen et al [10] developed a Bayesian Partition on Dual Usage

of Co-receptor Model (BPDUCM) to define V3 genetic determinants either independently

or interactively associated with the usage CCR5 co-receptor only, CXCR4 co-receptor only
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or dual of CCR5/CXCR4 co-receptor.

This method is based on three datasets - CCR5 only, CXCR4 only and dual usage.

Suppose there are Nt sequences from CXCR4-using viruses, Nu from CCR5-using viruses

and Nw from dual-using. Each sequence is of p-residues long. Let X = (X1, X2, , Xp)

be the observation of sequences. Xj is a column vector that contains N = Nt + Nu + Nw

observations at the j-th position. Set dataset indicator Y = (Y1, Y2, , YN) represent the status

of co-receptor usage of each sequence: Yi = 0 if ith sequence is from CCR5, Yi = 1 if CXCR-

4, and Yi = 2 if dual-using. The goal is to describe the complicated relationship between

the sequence observations (X) and the dataset indicator (Y). Basically, we partitioned the p

positions into K groups according to their relationship to Y. Each of the K groups represent

one relationship between X and Y. Denote with I = (I1, I2, , Ip) as the group indicator,

Ij = k, (j = 1, .., p and k = 1, , K) means j-th position is partitioned into the k-th group.

Given Y, we want to infer I when X is observed and when we have p and K as fixed. The

likelihood is P (X|I, Y ), and the posterior probability is P (I|X, Y ), we have

P (I|X, Y ) ∝ P (I|Y )P (X|I, Y ) (6.18)

assuming I is independent from Y, P (I|Y ) = P (I).

6.2.3 Metropolis-Hastings Algorithm

Then the Markov chain Monte Carlo (MCMC) is used to sample from the posterior

probability P (I|A,B) (or P (I|X, Y )) via the Metropolis-Hastings (M-H) algorithm to in-

fer which variables are associated with the treatment status, group indicators, etc. The

procedure of M-H algorithm is as follows [24]:

1. Initialization: randomly assign a starting value I(t) to I, here t=0;

2. Proposal: propose a new I as follows: randomly choose one I
(t)
i and change it to other

values with equal probabilities, set new I as y;
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3. Evaluation: evaluate the posterior. Since the proposal is symmetric, the acceptance

probability is α(I(t), y) = min{1, P (I = y|A,B)/P (I = I(t)|A,B)};

4. Update: generate u from Uniform(0,1) and set

I t+1 =


y, if u ≤ α(I t, y)

I(t), otherwise

(6.19)

5. If t ≥ N , stop; otherwise set t=t+1 and go to step (2) and repeat this procedure. (N

is the total number of iterations.)

6.2.4 Recursive Model Selection

In the studies, the next step is to apply the Recursive Model Selection (RMS) [38] pro-

cedure to infer the detailed dependence structure among the interacting positions generated

by the Bayesian variable partition model. The strategy is to apply a model selection of two

cruder models recursively until the data does not support more detailed models. One of the

two is the chain-dependence model and the other is the V-dependence model.

Chain-Dependence Model. A set of variables XG has a chain-dependence model

if the index set G can be grouped into three subgroups U , V , and W such that XU and

XW are independent given XV , i.e. XU → XV → XW . The joint distribution of the chain-

dependence model is given as

p(XG) = p(XU)p(XV |XU)p(XW |XV ) =
F (XV , XU)F (XW , XV )

F (XV )
(6.20)

where F (XV , XU , ...) is the joint probability function of (XV , XU , ...). Illustration of chain-

dependence model is shown in Figure 6.1 (reproduced according to [38]).
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Figure 6.1. The chain-dependence model structure. Colors indicate different sets of

variables.

V-Dependence Model. A set of variables XG has a V -dependence model if the index

set G can be grouped into three subgroups U , V , and W such that XU and XW are mutually

independent, i.e. XU → XV ← XW . The joint distribution of the V -dependence model is

given as

p(XG) = p(XU)p(XW )p(XV |XU , XW ) = F (XU)F (XW )
F (XV , XU , XW )

F (XU , XW )
(6.21)

where F (XV , XU , ...) is the joint probability function of (XV , XU , ...). Illustration of V-

dependence model is shown in Figure 6.2 (reproduced according to [38]).

Figure 6.2. The V-dependence model structure. Colors indicate different sets of variables.

Notice that variables in U are marginally independent of the variables in W.

Note that in these two models, only set W is allowed to be empty, in which case these

models become the saturated model.

We can use a model indicator ICV = (ICV1 , ICV2 , , ICVL ) to imply the membership of the L

positions with ICVj = 0 representing the chain-dependence model and ICVj = 1 indicating the
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V-dependence model. If we use S to denote the set partition, then the posterior distribution

of ICV and S is

P (S, ICV |data) ∝ P (data|S, ICV )P (S)P (ICV ) (6.22)

One can set equal priors for ICV and S. Then we can use the MCMC algorithm again

to sample from the posterior and find the optimal model type and variable selection. The

procedure is applied recursively until only single-variable nodes are available.

Then we can apply BVP and RMS sequentially to the data of the different groups to

make inferences on the mutations.

6.3 Applications of Bayesian Methodology to HBV, HCV and HIV studies

6.3.1 Applications in HBV studies

The Bayesian methods described has been applied to multiple HBV related studies

including detecting correlation between specific mutations in the C-terminus domain of HBV

surface antigen and low level of serum HBV-DNA in patients with chronic HBV infection,

HBV amino acid sequence mutations in occult infections, the correlation between HBsAg

markers and occult HBV infection and detection. A summary of the results from these

studies can be found in Table 6.1. Note that one of the advantages is that the Bayesian-

based method showed the ability of analyzing high-order combinations of positions [47].

6.3.2 Applications in HCV studies

By applying Bayesian Variable Partition (BVP) model and Recursive Model Selection

(RMS) method to multiple controlled datasets, some interesting findings were discovered to

help understanding the HCV drug response and resistance related mutations.

Lets concentrate on NS5A region particularly for HCV genotype 1a in [25]. In NS5A

region there are 1344 base pairs, linking to 448 amino acids. The Bayesian methods were

applied to the pretreatment sequences of response (47 sequences) and non-response (29

sequences) samples. The result gives us a reliable idea of the mutation mechanism of positions
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49, 349, and 199, 209, 242, 398 which have the highest frequencies. Detailed results can be

found in Table 6.2.

Table 6.1. A summary of results from applications of Bayesian methods to HBV studies

HBV genotype Mutations discov-

ered

In correlation with Comments

by Bayesian methods

D (and/or A) M197T,-S204N-

Y206C/H-F220L

serum HBV-

DNA<2000IU/ml

These mutations were

localized in the HBsAg

C-terminus, known to be

D (and/or A) Y206C/H and/or F220L lower median (IQR) HBsAg-

levels and lower median

(IQR) transaminases

involved in virion and/or

HBsAg secretion

C (HBV and OBI) RT mutation V173L drug resistance in patients re-

ceiving antiviral treatments,

such as adefovir and lamivu-

dine; HBV vaccine escape

Details results can be

found in [82]

C (HBV and OBI) H126Q, H126Q+138R OBI samples

D 20 HBsAg-mutations occult HBV D-genotype in-

fection in vivo

Details results can be

found in [83]

Table 6.2. Single positions result summary

Position Result Comments

49, 349 statistically different in response

and non-response patients and are

independent of other positions.

Position 49 is in membrane attachmen-

t region; Position 349 is in the region

between V3 and V4;

199, 209, 242, 398 dependent and demonstrate signifi-

cant difference in response and non-

response patients

Positions 199 and 209 are in membrane

attachment region; Position 242 is in IS-

DR region; Position 398 is in V3 region.

These positions may have some biolog-

ical influence on drug resistance to IFN

and ribavirin [25].
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While analyzing single positions as above is helpful, a lot of positions are not mutating

independently. Figure 6.3 [25] shows the interacting positions detected by BVP in response

samples and Figure 6.4 [25] shows the interacting positions detected by BVP in non-response

samples. And some significant discoveries can be found in Table 6.3.

Figure 6.3. Flowchart of detected mutation positions and position combinations in the

pretreatment sequence of patients who respond to the treatment.
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Figure 6.4. Flowchart of detected mutation positions and position combinations in the

pretreatment sequence of patients who don’t respond to the treatment.

Table 6.3. Dependence structure inferred by RMS in detail

Position amino acid(s) Result Comments

285 E frequency is 13.8% in non-

response samples and 8.5% in

the response samples

199 L frequency decreases from 100%

to 87.2%, from non-response

samples to response samples

226 M frequency decreases from 20.75

to 14.9%, from non-response

samples to response samples

107, 226, 288, 410,

439

EMIAE does not exist in response sam-

ples

indicates that those po-

sitions combined may be

a distinguishing factor

for response and non-

response patients

107, 226, 288, 410,

439

KEIAG, TMVAG,

TLIAE

only exist in non-response sam-

ples
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6.3.3 Applications in HIV studies

The Bayesian methods summarized in previous chapter has also been successfully ap-

plied to multiple HIV drugs in both single-drug treatments and multiple-drug treatments.

A compact summary of the results of such Bayesian analysis was carried out in Table 6.4

[100][99]. We can observe that several statistically significant interaction patterns among

resistance causing mutations have been discovered using the Bayesian methods. It is of

importance that the molecular basis of multiple interacting mutations found by RMS was

analyzed with MD simulations and free energy calculations [99]. Therefore, this is another

example of the statistical study where biological processes underling drug resistance can be

extracted from the discovered independence groups.

Table 6.4. A summary of results from applications in HIV drug resistance studies

Drugs Antiretroviral

effect

Mutation interactions

discovered

Comments

by Bayesian methods

Indinavir (IDV) Protease inhibitor {24,47{32{46⊥54|82}}} Interesting group

{10,71}{73,90} {46,54,82}1

Nevirapine Non-nucleoside {106}{188}{103?181}{190} Weak interactions

RT inhibitor

Zidovudine Nucleoside analog {41,210,215}{67,219}{70} Further biochemical

RT inhibitor investigations needed2

IDV, NFV Protease inhibitors {24,54,82}{30,88}{73,90} 6 positions disappeared3

IDV, SQV Protease inhibitors {61,71}{46,54,82}{73,90} Other details ambiguous

IDV, NFV, SQV Protease inhibitors {30,88}{73,90}{24,46,54,82} Ambiguous structure in 3rd group

Epistatic mutations discovered with BVP approach are partitioned using RMS algorithm. Independence

groups are enclosed in brackets. “?” indicates inconclusive result.

1 Sequential mutation acquisition in this group leads to conditional independence. The results were

confirmed by the MD simulations

2 It is not possible to study the structural basis of mutations using MD simulations for Zidovudine

3 When compared to single-drug treatment profiles
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6.4 Summary and Discussion

In this review article, we presented and summarized three important applications of

the Bayesian inference paradigm. First of all, in HBV studies, the evidence has been pro-

vided that there exists some specific HBsAg-mutations which correlate with its replicative

potential, particularly, the state of low level serum HBV-DNA and HBsAg [60][83][47][82].

At second, several independent HCV-drug-resistance-related mutations and interacting mu-

tation patterns have been detected [25][24]. Moreover, a detailed understanding of complex

interacting mutation patterns and new genetic determinants underlying co-receptor usage in

HIV-1 have been revealed [100][10][99].

The Bayesian statistical analysis of viral genetic characteristics described above is an

advanced and innovative method that can connect statistical modeling with molecular dy-

namic simulations [24], thus to detect interacting mutations. However, certain significant

issues should be addressed in more detailed and be paid more attention to, such as the

emergence of bias caused by multiple subpopulations in the data and the decreased sensitiv-

ity of the BVP algorithm caused by the transmitted resistance occurrence [38]. Moreover,

many factors that may affect the results of the above studies about the three viruses have

been ignored since the proposed statistical method is only designed as a baseline analysis.

For instance, further studies might be needed to strengthen the correlation between HBsAg

mutations and low serum HBV-DNA due to the overlapping of HBsAg and RT genes [60].

Despite all other ignored possibilities, the Bayesian method proposed here has given us

several valuable information that will contribute to not only further studies in related areas

but also the development of antiviral treatment.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, Bayesian methods in brain connectivity change point detection and

network dynamics exploration are discussed. These methods include existing methods like

BMCPM [46], BCCPM [43], and DBVPM [101], which are state-of-art Bayesian-inference-

based methods applied to fMRI data; as well as newly proposed optimized BCCPM with

genetic algorithm and bi-cluster connectivity change point model. These successful Bayesian

methods can provide good application in brain connectivity exploration and potential usage

in studying brain-related diseases.

With the good results achieved from these methods, especially the excellent results

obtained from BCCPM in ADHD studies [64], it has been further extended and successfully

applied to change point detections in EEG data. This extension of BCCPM helps to test the

ability of EEG measurements of frontal and temporo-parietal activity during mindfulness

therapy to track response to treatment.

The modified method for BCCPM with genetic algorithm aims to improve the compu-

tation efficiency in the MCMC scheme that was used in the original BCCPM with similar

or better accuracy. The modified genetic algorithm can optimize the evolutionary process

to improve the detection accuracy and at the same time decrease the time consumption in

computation. The modified method has been proved to have the claimed advantages through

validation results from both simulated experimental designs and real datasets.

In order to cluster/distinguish subjects into different groups (e.g., healthy group and

diseased group), the BBCCPM is proposed to simultaneously detect change points in each of

the subjects within a group, and cluster subjects into groups according to their change point

distributions. Currently, we applied a 2-level MCMC scheme to sample from the posterior

distribution to make inference on both the change point detection and clustering. This
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method is validated on experimental datasets and achieve good results in both inferences.

To summarize these existing and proposed methods, we present a table with the models’

abilities of detecting change points and/or clustering subjects in Table 7.1. In application,

if one has simple fMRI data and tries to infer magnitude change points, then BMCPM

[46] should be used as it’s simple and takes less time to converge than BCCPM [43] and

DBVPM [101]; if one wants to detect the functional connectivity change points, we now

have two choices: BCCPM and GA-BCCPM, the latter will have better performance when

the dimension of the data is larger; if one wants to infer the functional interaction patterns,

then DBVPM [101] can be applied; if one wants to cluster subjects according to change point

distributions into different groups such as diseased/non-diseased, BBCCPM is a good choice

now.

Table 7.1. Summary of existing and proposed models

BMCPM[46] BCCPM[43] DBVPM[101] GA-BCCPM BBCCPM

Updating scheme One-level

MCMC

One-level

MCMC

Two-level

MCMC

Genetic Al-

gorithm

Two-level

MCMC

Ability to infer magnitude

change points

Yes Yes Yes Yes Yes

Ability to infer function-

al connectivity change

points

No Yes Yes Yes Yes

Ability to infer functional

ineraction patterns

No No Yes No No

Ability to cluster subjects

according to change point

distributions

No No No No Yes

Computational cost low medium high low high

Besides the brain connectivity change point analysis, Bayesian inferences are widely ap-

plied in different areas, and one of them is the analysis of complex mutations in viruses such

as HBV, HCV, and HIV. We reviewed the Bayesian methods applied to these studies with
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a focus on detection the viral mutations and various problems related to these mutations.

In particular, BVP and RMS are discussed and results from applications of these two meth-

ods on HBV, HCV and HIV are summarized. We believe that the Bayesian methods will

contribute to not only further studies in related areas but also the development of antiviral

treatment.

In the future, we will continue on several approaches: 1. Redesign and modify the

evolutionary process in other change point detection models such as BMCPM, DBVPM and

BBCCPM to improve the computational efficiency and detection accuracy. For example, in

DBVPM and BBCCPM, 2-level MCMC are used to sample from the posterior distribution

of parameters of interest. This makes the estimation process very time-consuming, if we

can utilize the good features of genetic algorithm, these models’ efficiency will be improved.

2. Further extend these Bayesian methods in EEG data analysis. EEG data has its own

advantage that the recording can be done using simple devices like the EPOC/EPOC+

system. With easy accessible data, we can study more interesting brain-related disorders or

diseases through the analysis of EEG data. 3. As machine learning and artificial intelligence

are very hot topics with potential applications in many different fields, we are also exploring

machine learning techniques like auto-encoding and deep learning, and combine them with

probability models to have better prediction and clustering performance. In the big picture,

we hope the Bayesian inference methods will be applied to more data analysis areas and

make contributions to improving human health.
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Appendix A

ADDITIONAL FIGURES FOR CHAPTER 3

Figure A.1. Experiment 1: Traceplot shows the convergence of MCMC chains (p=-4000).

Figure A.2. Experiment 1: Change points detected by BCCPM for five repeated MCMC

chains (p=-4000). Red dotted lines are the locations of designed change points.
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Figure A.3. Experiment 1: Traceplot shows the convergence of MCMC chains (p=-6000).

Figure A.4. Experiment 1: Change points detected by BCCPM for five repeated MCMC

chains (p=-6000). Red dotted lines are the locations of designed change points.
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Figure A.5. Experiment 2: Traceplot shows the convergence of MCMC chains (p=-4000).

Figure A.6. Experiment 2: Change points detected by BCCPM for five repeated MCMC

chains (p=-4000). Red dotted lines are the locations of designed change points.
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Figure A.7. Experiment 2: Traceplot shows the convergence of MCMC chains (p=-6000).

Figure A.8. Experiment 2: Change points detected by BCCPM for five repeated MCMC

chains (p=-6000). Red dotted lines are the locations of designed change points.
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Figure A.9. Experiment 3: Traceplot shows the convergence of MCMC chains (p=-4000).

Figure A.10. Experiment 3: Change points detected by BCCPM for five repeated MCMC

chains (p=-4000). Red dotted lines are the locations of designed change points.
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Figure A.11. Experiment 3: Traceplot shows the convergence of MCMC chains (p=-6000).

Figure A.12. Experiment 3: Change points detected by BCCPM for five repeated MCMC

chains (p=-6000). Red dotted lines are the locations of designed change points.
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Figure A.13. Experiment 4: Traceplot shows the convergence of MCMC chains (p=-4000).

Figure A.14. Experiment 4: Change points detected by BCCPM for five repeated MCMC

chains (p=-4000). Red dotted lines are the locations of designed change points.
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Figure A.15. Experiment 4: Traceplot shows the convergence of MCMC chains (p=-6000).

Figure A.16. Experiment 4: Change points detected by BCCPM for five repeated MCMC

chains (p=-6000). Red dotted lines are the locations of designed change points.
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