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A phenotype is an observable characteristic of an individual and is a function of

its genotype and its growth environment. Individuals with different genotypes are

impacted differently by exposure to the same environment. Therefore, phenotypes

are often used to understand morphological and physiological changes in plants as

a function of genotype and biotic and abiotic stress conditions. Phenotypes that

measure the level of stress can help mitigate the adverse impacts on the growth

cycle of the plant. Image-based plant phenotyping has the potential for early stress

detection by means of computing responsive phenotypes in a non-intrusive manner.

A large number of plants grown and imaged under a controlled environment in a high-

throughput plant phenotyping (HTPP) system, are increasingly becoming accessible

to research communities. They can be useful to compute novel phenotypes for early

stress detection.

In early stages of stress induction, plants manifest responses in terms of physio-

logical changes rather than morphological, making it difficult to detect using visible

spectrum cameras which use only three wide spectral bands in the 380nm - 740 nm

range. In contrast, hyperspectral imaging can capture a broad range of wavelengths

(350nm - 2500nm) with narrow spectral bands (5nm). Hyperspectral imagery (HSI),

therefore, provides rich spectral information which can help identify and track even

small changes in plant physiology in response to stress.



In this research, a data-driven approach has been developed to identify regions in

plants that manifest abnormal reflectance patterns after stress induction. Reflectance

patterns of age-matched unstressed plants are first characterized. The normal and

stressed reflectance patterns are used to train a classifier that can predict if a point

in the plant is stressed or not. Stress maps of a plant can be generated from its

hyperspectral image and can be used to track the temporal propagation of stress.

These stress maps are used to compute novel phenotypes that represent the level of

stress in a plant and the stress trajectory over time. The data-driven approach is

validated using a dataset of sorghum plants exposed to drought stress in a LemnaTec

Scanalyzer 3D HTPP system.
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Chapter 1

Introduction

Phenotyping is the process of identifying attributes of an organism that can be quan-

tified. In plants, phenotypes can broadly be divided into two types - morphological

and physiological. Morphological phenotypes are derived from structure of the plant

like leaf length, stem angle, etc. Physiological phenotypes are impacted by the un-

derlying biological processes that occur within the plant like photosynthesis, water

absorption, etc. In plants, stress can manifest in the form of physiological changes

that can be quantified by phenotyping like photosynthesis rate, water usage efficiency,

etc. Stresses in plants can be categorized into two types - biotic and abiotic. Biotic

stresses are caused by organisms like parasites, insects and fungi while abiotic stresses

are caused by factors like sunlight, temperature and soil. Understanding the impact

of stress on growth of plants can help develop plants which can tolerate stress. Stress

based phenotypes can help track temporal propagation of stress and study its rela-

tionship with different genotypes.

Phenotypes can be computed in two ways - intrusively and non-intrusively. In-

trusive approaches involve using hand-held devices for measuring phenotypes directly

from the plant. Non-intrusive phenotyping is an indirect approach of computing

phenotypes from images of the plant. While intrusive approaches are accurate in

measuring stress-based phenotypes, they are not scalable approach and hence are
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not suitable for large-scale phenotype computation (high-throughput plant pheno-

typing). Imaging is the most common non-intrusive way of measuring phenotypes

in a high-throughput plant phenotyping system. There are many different imaging

modalities including infrared thermography, fluorescent imaging and thermal imag-

ing. Due to their ability to capture images at fine resolution, hyperspectral imaging

can be particularly helpful in computing stress based phenotypes. A brief description

of hyperspectral imaging and its potential for plant phenotyping is described in the

following sections.

1.1 Hyperspectral Imaging

Hyperspectral imagery (HSI) gives reflectance across a wide range of the electromag-

netic spectrum. While visible spectrum (RGB) cameras capture an image in the

visible range of 400-700 nm, hyperspectral cameras can capture imagery beyond visi-

ble spectrum typically in the range of 350 - 2500 nm. It is a collection of images, each

of which are acquired at narrow wavelength intervals across a continuous spectrum.

For ease of management, these images are arranged in an increasing order of their

wavelengths in the form of a cube called hyperspectral cube (HSC). Essentially, an

output of a hyperspectral camera is a HSC of size (l × b × n) where l and b are the

length and breadth of an image capturing spatial information and n is the number of

spectral bands which carry the spectral information captured by the camera. Each

pixel location on this HSC is a (1 x n) array that can be visually represented as a spec-

tral reflectance curve. These reflectance curves can represent variations in reflectance

values with respect to spectral bands. It can help identify spectral signatures.

Initially, hyperspectral imaging was used in remote sensing and found applications

in weather forecasting, environmental study, mineral exploration and land use map-
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ping. Later, it has been used to capture images in close range and found applications

in the areas of biology, food safety and control, etc. In biology, HSI has helped in

identification of specific chemical compositions and in the detection of onset of certain

biological processes. In plants, HSI is being used to calculate vegetation indices that

can, for example, estimate nitrogen content, canopy water content, evaluate light use

efficiency, etc.

1.2 Plant Phenotyping using Hyperspectral Imagery

A phenotype is an attribute of an organism that can be quantified based on the

morphological and physiological changes it undergoes due to its genotype and the

environment around it [34]. They can be used to understand the underlying plant

growth processes. They also play an important role in studying the responses of

organisms to different conditions. In plants, they help estimate the effects of biotic and

abiotic stresses. Some phenotypes that can be measured in plants are leaf area, stem

diameter, plant height, area of convex hull, photosynthesis rate, nitrogen content,

salt stress, canopy water content, etc. While plants belonging to different genotypes

may manifest same phenotype when the environmental factor is constant, plants

kept under different environmental conditions and belonging to same genotype may

manifest different phenotypes.

Image based plant phenotyping is a non-intrusive way of measuring plant traits

by using spectral information captured using visible, near-infrared (NIR), fluorescent

or hyperspectral range cameras. Visible range cameras are widely used for measuring

morphological phenotypes whereas NIR, fluorescent and hyperspectral range cameras

are competent to measure physiological properties of the plants. The advantage of

hyperspectral imagery over other spectral images lies in its ability to capture spec-
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tral reflectances in narrower bands over a wide range of wavelengths which can help

increase the probability of identification of spectral signatures unique to a certain

compound or a biological process. These spectral signatures can act as attributes to

quantify physiological changes of a plant and define existing or new plant phenotypes.

Some existing phenotypes that can be computed using HSI are chlorophyll content,

water content, greenness, photosynthetic activity, etc. [1, 2, 3]. It has also been used

to detect diseases in plants by way of quantifying the differences between reflectance

data of normal plants and diseased plants. Given its ability to capture reflectance

data over a broad range of wavelengths, HSI has the potential to detect and predict

important events in a plant’s life cycle like early-stage stress detection, prediction of

flowering day, etc., as well as estimate the productivity of a crop and various factors

effecting it.

1.3 Research Challenges

One of the main challenges of using HSI is the curse of dimensionality. A large num-

ber of spectral bands increases the spectral dimensionality of the dataset and thereby

adds a new set of challenges. Also, high correlation in the reflectance data of nearby

spectral bands due to closely spaced wavelength intervals can introduce data redun-

dancy. Analysis of close-range hyperspectral imagery on plants must address irregular

illumination effects caused by uneven leaf surfaces and overall canopy structure. Since

they can significantly alter the reflectance values, they cause misclassification.

Development of algorithms for computing stress based phenotypes has many chal-

lenges as listed below:

• Data collection: A large dataset that includes multiple stressed and un-

stressed plants imaged over period of time in a uniform environment must be
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compiled before any algorithm development can start. This can be often difficult

without a large greenhouse facility.

• Lack of ground truth: While we can record when the stress is introduced in

a plant, it is unclear when and how different parts of the plant will be impacted

and manifest in the captured images. Development of a classifier therefore must

be preceded by identifying normal and outlier behavior.

• Non-uniformity in plant’s growth patterns: Plants are complex organisms

and hence different plants of same genotype growing under same conditions

exhibit different responses. Furthermore, different parts of a plant (stressed on

unstressed) may also have different reflectance properties. Characterization of

the exact nature of the normal reflectance must therefore be a part of any stress

identification algorithm.

1.4 Contributions

The aim of this study is to identify unique traits in reflectance patterns of a stressed

plant when compared to a normal plant and build a classifier that can detect if a

plant is under drought stress in its early stages. This thesis has the following novel

contributions:

• A data-driven approach to identify classes in stressed and unstressed plants and

generate ground truth by segmenting stressed responses from unstressed.

• A classification model that can predict stress in a plant based on reflectance.

• A novel stress phenotype that can quantify stress in a plant.
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These techniques enable a non-intrusive approach for early-stage stress detection in

plants. The stress phenotype will help identify genotypes which have better drought

tolerant characteristics. As we will be able to contain the issue in early stages, it can

also help increase the productivity of the plant.

1.5 Thesis Overview

This section discusses the topics covered in this thesis. Chapter 2 discusses related

work in the field of computer vision applied to hyperspectral imaging. Chapter 3

defines the problem and the proposed methodology to solve it. Chapter 4 discusses

the details of the experiment conducted to obtain the dataset and shows the results of

applying our methodology on it. Chapter 5 concludes the report and discusses future

work.
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Chapter 2

Related Work

Employing hyperspectral data to compute physiological phenotypes that could detect

and quantify stresses in plants has been an active research area in plant science and

agronomy. However, HSI analysis often comes at a cost of dealing with large, high

dimensional datasets. This problem can be mitigated using dimensionality reduction

techniques that can convert a high dimensional dataset into a low dimensional dataset

with minimal information loss. Section 2.1 focuses on related work in dimensionality

reduction for close-range HSI of plants. Classifier models, when trained on needful

HSI data, can help predict and quantify stress activity in plants. In this thesis, we

focus on close range HSI of individual plants. Section 2.2 focuses on related work in

classification of single plant images.

2.1 Dimensionality Reduction

Dimensionality reduction can help mitigate the effects of curse of dimensionality in

HSI by extracting useful features that have higher inter-class variability. Some pre-

dominantly used techniques described below.

Principal Component Analysis: It is a data transformation technique that aims

at reducing the dimensionality of the original data by calculating a new set of features
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called principal components (PCs). PCs are latent features that are linear combina-

tions of the original features in the dataset. They are orthogonal to each other which

make them an independent set of features. Qin et al. [5] used principal component

analysis (PCA) on HSI of citrus fruit to extract useful features. Based on visual in-

spection of the score images, the first five principal components provided meaningful

information that could differentiate normal grape fruits from the ones infected with

citrus canker disease.

Kernel PCA: It is an extension of PCA where the data is projected onto a higher

dimensional space defined by the kernel before performing dimensionality reduction.

It is a non-linear dimensionality reduction technique typically used for data that

is linearly inseparable. Here, the PC’s are non-linear combinations of the original

features where the non-linearity is defined by the kernel. Some widely used kernels

for this operation are Radial Basis Function, Polynomial and Sigmoid.[14]

Independent Component Analysis: This technique assumes that a random vari-

able in a given data object is a linear mixture of independent components (IC’s) such

that the IC’s are statistically independent from each other and each IC has a non-

gaussian distribution [15]. It has proven to be effective in performing source separation

and has found applications in medical signal processing and image processing.

Autoencoders: This introduces a deep learning approach for extracting high level

features from data in an unsupervised manner [20]. It works in an encoder-decoder

model where input x is encoded into a lower dimensional latent feature space h and

reconstructed back. The reconstruction loss computed from decoder output is used

as a metric to fine tune the feature space. This model is resilient to noise present in

the input data and can work even on unseen data.
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While the aforementioned techniques are used for feature transformation in HSI,

we have to understand that the transformed features no longer preserve the original

spectral information which may be useful to deduce certain conclusions about the

spectral bands like their biophysical meaning, etc [4]. The following statistical tech-

niques can help identify features that contribute most towards inter-class variability

and those which are most likely independent of class.

Feature Selection using Fischer’s statistics: It is a filtered feature selection

process that aims to enhance the class separability between two predefined classes

[17] [4]. The Fischer’s statistics (F-value) for a given feature is the ratio of between

class variability and within class variability for that feature. If the F-value of a feature

is larger than other features and its corresponding p-value is less than desired sig-

nificance level, we can say that that feature offers better class separability compared

to other features. Asaari et al. [4] used F-value criterion to rank individual spectral

bands on HSI of maize plant. The top-scoring spectral bands that could clearly dis-

criminate between healthy and drought stressed plants were selected. This technique,

unlike PCA where new features are extracted from original features, preserves the

original features that could later be interpreted for its properties.

Tree based feature selection: A Decision tree classifier is a white-box classifica-

tion model [18]. The inverted tree look-alike structure is build up of decision nodes

and tree nodes. The decision node represents a test on a feature of the dataset while

the leaf node is the classification result. This classifier makes it possible to visualize

the hierarchical decision making process in the tree. As a result, it is possible to

ascertain the significance of features. However, it might require a certain degree of

hyperparameter tuning to give optimal results.
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2.2 Classification

Classification can help detect and quantify stress levels in plants. In HSI, it is widely

used for remote sensing data [19] [20]. This thesis is focused on classification of

individual pixels (spectral curves) for close-range HSI of individual plants. Some

widely used techniques are:

Support Vector Machines (SVM): SVMs’ [21] are widely applied to classifi-

cation problems and nonlinear regressions [22]. It aims to find the best separating

hyperplane between classes by means of maintaining the largest distance from the

data points. This is achieved by adding two equidistant, parallel, imaginary hyper-

planes to the separating hyperplane and trying to widen the margin between these

two imaginary hyperplanes. The wider the margin, the higher is the generalization

ability of the classifier. In HSI classification, SVM technique have helped in signifi-

cant reduction of classification complexity and improved classification accuracy [23].

SVMs have also been proved as a valid and effective alternative to conventional pat-

tern recognition approaches which employ a combination of feature reduction and

classification methods to classify hyperspectral remote sensing data [24]. Behmann,

et al. [12] have been able to detect drought stress in barley plants using a Linear

Ordinal SVM classifier with an accuracy of 70%. Linear Ordinal SVM has proved to

be a compact model which could be applied to a high-throughput phenotyping system

under limited resources. Rumpf, et al. [10] used spectral vegetation indices calculated

from hyperspectral data as features to classify the normal plants from plants affected

by sugar beet diseases. They have used support vector machine (SVM) as a classifier

to detect early onset of the disease and discriminate between three other diseases.



11

Artificial Neural Network (ANN): Artificial Neural Networks are a class of su-

pervised and unsupervised machine learning algorithms which take inspiration from

the biological nervous system. While kernel-based SVMs and decision trees employ a

two-layered model, ANNs’ use multiple layers of processing to extract more abstract

features that are capable of achieving higher levels of accuracy in classification [25].

In HSI classification where training datasets can be large and high-dimensional with

high degrees of spectral-spatial diversity, ANNs’ can automate the process of feature

construction by building high-level features from low-level ones. Baranowski, et al.

[11] were able to achieve 90.5% prediction accuracy using a back-propagation neu-

ral network for predicting responses of Oilseed Rape to a fungal species of Genus

Alternaria. Rojas, et al. [26] were able to quantify different levels of physical pertur-

bation on the mushroom pilei plant using an ANN.
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Chapter 3

Approach

3.1 Problem Definition

The problem addressed in this research is defined as follows. Given a dataset, derived

from a stress based experiment that includes (a) a set of plants P defined as: P =

{p1, p2, . . . pi, . . . , pn}, where plant pi is given by pi = {pi1, pi2, . . . , pij, . . . , pim} and

pi,j is the hyperspectral cube of plant pi at time j and (b) a set of stressed plants

Ps ⊂ P , develop (a) a classifier χ which maps a hyperspectral cube of a plant, p to

a stress image s, i.e. s = χ(p) and (b) novel stress phenotypes algorithm, ψ which

maps the stress image s to a set of phenotypes Σ, i.e. Σ = ψ(s).

3.2 Overview

The following methodology is divided into six modules as follows:

• Preprocessing: As illustrated in Figure 3.3, this step involves removing the

most noisy bands from the spectrum, performing image segmentation on pij to

separate plant part from the background and generating spectral curves SCij

(refer Algorithm 1).

• Denoising: Denoising the spectral information involves eliminating the illumi-



13

nation effects from the universal set of spectral curves S (refer Algorithm 1),

which otherwise adversely effect the analysis results.

• Grouping spectral classes: Spectral curves from denoised set N are divided

into normal class SCn and stress class SCs using a list of stressed plants Ps (refer

Algorithm 1). Each of the SCn and SCs are grouped into κ spectral classes

and stored in Cn and Cs respectively. The spectral classes identify different

physiological processes that occur in a plant.

• Spectral Feature Selection: As referred to in Algorithm 3 this process helps

in identifying and selecting spectral bands that manifest large variability be-

tween stressed and unstressed plants.

• Ground truth generation and labeling: Here, the spectral curves which

show stress behavior are segregated from normal and labeled likewise (refer

Algorithm 4).

• Stress classification modeling: It involves developing a Hyperspectral Im-

agery Stress Classifier (HISC) (refer Algorithm 3) that can predict if a given

spectral curve is stressed or unstressed, as illustrated in Figure 3.1.

• Phenotype computation: The output from the HISC for a given plant can be

used to plot a stress map and compute novel stress phenotypes (refer Algorithm

4).

3.3 Preprocessing

The raw image data obtained from a hyperspectral camera can contain blacked-out

images and non-plant objects like pot, soil, etc. As illustrated in Figure 3.3, the
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Figure 3.1: Overview of the hyperspectral imagery based stress classifier development

Algorithm 1 Stress Phenotype Computation Algorithm

Input: P = {P11, P12, ..., P1,n, P2,1, ..., Pm,n}, PS, Aopt, tdist
Output: Phenotypes

1: S = φ
2: for i = 1...m do
3: for j = 1...n do
4: Sij ← Segment(Pij)
5: SCij ← GenerateSpectralCurves(Sij)
6: S = S ∪ SCij
7: N ← Denoise(S)
8: {SCn, SCs} ← DivideSpectralCurves(N,LS)
9: {Cs, Cn} ← Group(SCn, SCs)
10: HISC ← DevelopClassifier(Cs, Cn, Aopt, tdist)
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process of removing noisy bands, image segmentation and generating spectral curves

is primary for data analysis.

3.3.1 Removal of Noisy Bands

The hyperspectral camera in a HTPP system is prone to capture extremely noisy

images, especially in the initial spectral bands. It is not possible to extract the

underlying spectral information from these images. If present, they can adversely

effect classification and analysis results. So it is important to eliminate these spectral

bands from our study.

3.3.2 Plant Segmentation

The HSI of sorghum plants can consist of non-plant objects like pot, soil, etc., which

need to be separated from the plant part. To obtain spectral information correspond-

ing only to the plant part, we perform plant segmentation. For close-range HSI of

plants, one of the widely used segmentation techniques is Normalized Difference Veg-

etation Index (NDVI) based segmentation. Previously, it has been used in [8] and [9]

for generating a plant mask which is superimposed on the HSI cube to extract plant

part.

The NDVI based segmentation utilizes the disparity in absorption and reflectance

patterns of plants to segregate pixels corresponding to the plant part. For spectrum

in the HSI range (546 nm - 1700 nm), chlorophyll present in a plant absorbs a major

portion of the visible part of spectrum (400 - 700 nm) but reflects about 50% of the

infrared part of spectrum (700 - 1100 nm). In contrast, the non-plant parts absorb

and reflect both parts of the spectrum uniformly as shown in Figure 3.2. The NDVI

based segmentation utilizes this disparity in reflectances to segregate plant pixels. The

NDVI is an index that measures photosynthetic activity by utilizing the disparity in
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absorption of visible and infrared spectra by the chlorophyll pigment. It is given by

the formula:

NDV I =
PλNIR

− PλV IS

PλNIR
+ PλV IS

(3.1)

where PλNIR
and PλV IS

are the proportions of radiations reflected by a plant for

wavelengths λNIR in near infrared and λV IS in visible range respectively. The range

of NDVI is between -1 and 1. Higher values of NDVI would mean the plant is rich in

chlorophyll content and lower values mean otherwise.

For segmentation of a HSC Pij, a given pair of λNIR and λV IS values are selected.

A mask of the plant part is created by subtracting the selected λNIR band image

from the selected λV IS band image. This fades out the background part and exposes

only the plant part. A binary version of this mask converts the values of background

pixels to zero and plant pixels to one, which makes it easy to superimpose on a HSC.

So, a segmented HSC Sij is generated by binarizing the mask using a given threshold

and then superimposing it on all the band images in Pij. The values of λNIR and

λV IS need to be fine tuned for a higher NDVI value. The higher the NDVI value, the

better is the segmentation result.

3.3.3 Spectral Curves Generation

A spectral curve is a one dimensional vector quantity that represents a given pixel

along its spectral dimension. In this thesis, it forms the input for pixel-wise data

analysis. It can be graphically represented as shown in Figure 4.3. Spectral curves

can help represent three-dimensional HSCs in a two-dimensional tabular format where

rows represent the pixels and columns represent the reflection coefficients across each

of the spectral bands. Each spectral curve is also tagged with its respective plant ID,

time stamp and pixel location. For a given segmented HSC Sij, the corresponding
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Figure 3.2: Difference in absorption of visible and near infrared wavelength by plants

set of spectral curves is given by SCij. For better management and portability of

the dataset, the spectral curves SCij corresponding to all plants P are merged into a

single set S given by Equation 3.2.

S = {SC11, SC12, . . . , SC1j, SC2j, . . . , SCij} (3.2)

Figure 3.3: Preprocessing
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3.4 Denoising Spectral Information

In a high-throughput plant phenotyping(HTPP) chamber, uneven illumination effects

is a phenomenon that can be caused due to the morphological structure of the plant,

mainly due to the leaves as shown in Figure 4.4. There are two ways that light gets re-

flected by leaves - one is reflections caused when leaf acts as a Lambertian surface (i.e.

reflected rays scatter uniformly in all directions) and the second is specular reflections

(i.e. incident light is reflected in a single direction) [4]. While the energy received

by the hyperspectral camera due to leaf acting as a lambertian surface depends on

factors like the cosine of the angle between light source and leaf and distance between

leaf and camera, specular reflections are largely caused by the texture of the leaf and

may vary from plant to plant [4]. Both these effects are wavelength independent and

add as a scalar factor to the reflectance values. But their presence can pose undue

advantage to certain spectral bands during analysis and classification. A viable ap-

proach to correct these illumination effects is using Standard Normal Variate (SNV)

technique which is given by the equation,

SNV =
X − µ
σ

(3.3)

where X is the reflection coefficient for a pixel at a given spectral band and µ and σ

are respectively the mean and standard deviation for the set of reflection coefficients

for that band.

SNV transformation is performed for each spectral band independently. For an

input S to this process, the resultant denoised dataset is given by N .
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3.5 Grouping Spectral Classes

There can be several physiological processes that occur in plants during its life cy-

cle which manifest uniquely in HSI. Also, these processes may respond differently to

stress. It may be beneficial to divide the HSI data into distinct classes, each rep-

resenting a unique process, and analyze them individually for stress patterns. In a

data-driven approach, the optimal value of the number of clusters (κ) can be calcu-

lated using elbow method described in Section 3.5.1. Later, the closest distance to

centroid based κ-means clustering technique is used to divide the spectral data into

κ spectral classes.

3.5.1 Determination of Optimal Number of Clusters

There are different ways to determine optimal κ. Some widely used methods are

elbow method, dendrogram, etc. In this thesis, we use compute it over the cumu-

lative dataset of spectral curves S using elbow method. Elbow method helps in

visually illustrating the optimal value of κ (κopt) by plotting the total Error Sum of

Squares(SSE) values for different κ. The value of κ where we find a visual elbow is

considered the optimal clustering number.

For a given cluster of data points A, SSEA can be defined as the sum of the

squares of differences between each data point in A and the mean of the cluster xA,

given by the Equation 3.4.

SSEA =
∑
i∈A

(xi − xA)2 (3.4)

For a dataset X containing κ clusters of data points, the SSE over all the κ
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clusters, SSEk, is the sum of SSE’s of each of the clusters, given by the Equation 3.5.

SSEk =
∑
j∈Y

SSEj , where Y = {1...κ} (3.5)

As the value of κ increases, the average distance of each point to its respective

cluster center decreases resulting in lower SSEk values. Typically, we notice a steady

decrease in SSE for every increase in κ value. However, the impact of κ on SSE is

not uniform. The elbow point is where an increase in κ does not lead to a substantial

decrease in value of SSE i.e. the curve starts to flatten. The value of κ at this point

is considered the optimal clustering number.

However, for large volume of high-dimensional data, the values of SSE’s can be huge

and may cause a hurdle in estimating the elbow on graph. To mitigate this problem,

we use a modified cost function SSEk derived from [4], given by Equation 3.6.

SSEk = | log(SSEk) − log(SSEk−1)| (3.6)

The elbow point on a plot of SSEk values for different κ gives κopt for dataset S.

3.5.2 Clustering

In a data-driven approach, clustering may help identify different classes of physio-

logical processes that occur in plants. For this, we use the closest distance to center

based κ-means clustering. It is a technique that is used to partition N data points

into κ clusters such that the distance from each data point to the center of cluster is

minimum. The run-time complexity of this algorithm is O(N2) [35]. In HSI classi-

fication, κ-means algorithm (Algorithm 2) [30] has been used for data labelling and

quantifying similarity. A specific value of κ can be decided based on a prior knowledge
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about the data or using techniques like elbow method (Section 3.5.1), dendrogram,

etc., to examine the underlying data structure. In this thesis, κopt has been derived

from Section 3.5.1 and clustering has been performed on spectral curves belonging to

the normal plants (SCn) and stressed plants (SCs) separately, as shown in algorithm

2 [40]. The output of clustering is stored in cluster sets Cn and Cs corresponding to

normal and stressed plants respectively.

Algorithm 2 κ-means algorithm for Spectral Curves

Input: {SCi, κopt }
Output: Ci = {Ci

1, C
i
2, ..., C

i
κ}

1: Select κ spectral curves as the initial centroids.
2: repeat
3: Form κ clusters by assigning all spectral curves to the closest centroid.
4: Recompute the centroid of each cluster.
5: until the centroids do not change.
6: return Set of clusters (Ci).

To explore the abstract level behavior of each cluster, we plot the mean spectral

curves graph which is a graphical representation of means calculated for each of the

clusters across all the bands. They can be used to visualize the differences between

clusters and mark unique spectral signatures. They can also be used to compare and

contrast corresponding cluster behavior between a stressed and an unstressed plant.

A sample of the mean spectral curves for a single, unstressed plant is shown in Figure

4.6. In this thesis, mean spectral curves are used as a reference to pair corresponding

clusters in Cn and Cs in a hierarchical order and assign each pair a cluster pair index

(CPI).

3.6 Spectral Feature Selection

Given the high dimensionality of the spectral data, there is a need to select only those

spectral features (bands) which offer best inter-class separability while reducing the
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curse of dimensionality and overfitting during classification [7]. An effort has been

made to find the contribution of each band towards differentiating unstressed from

stressed plants using the Fisher’s statistics (F-value) criterion [4]. For each cluster

pair CPI (Section 3.5.2), F-value is computed for each of the spectral bands. The

K highest scoring F-values whose p-values are less than a 0.05 significance level (95

% and above confidence level) are selected as K best features of the data set. The

higher the F-value, greater is the between group variability for that spectral band

which translates to that feature being able to better differentiate between the normal

and stressed classes. The highest scoring feature offers the best inter class separability.

In this thesis however, small K may not produce desired accuracies while classification

as we consider stress manifesting as a complex function of interdependent features.

As referred to in Algorithm 3, K acts as a tuning parameter to achieve optimal

classification accuracy (Aopt) for stressed and unstressed spectral curves, Xn and Xs

respectively. The value of K is incremented until the accuracy of classifier reaches

Aopt (Algorithm 3).

3.7 Ground Truth Generation

As we assume that not all the spectral curves in plants that are subjected to stress

actually manifest stress behavior, a methodology has been proposed, as shown in

Figure 3.4, to identify the stressed spectral curves in the stressed class of data and

label them accordingly. After selecting the best spectral features (Section 3.6), an

effort as been made to identify the stressed cluster pairs (3.7.1) which noticeably

manifest stress. To quantify the divergence of each spectral curve from normal, a

normal curve (3.7.2) is generated and taken as a reference to compute the distances

to each of the spectral curves. To identify spectral curves which manifest stressed
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behaviour, a statistical data binning approach [13] is used to plot histograms and

identify spectral curves which manifest abnormal behavior. A detailed description of

these methodologies are discussed in the following sections.

Figure 3.4: Generating ground truth

3.7.1 Stress Clusters Identification

From the notion that the physiological processes in a plant respond in varying mag-

nitudes to stress, we assume that not all clusters manifest same degree of stress.

This procedure aims to identify clusters which are noticeably effected by stress. We

use SAM as a comparison metric due to it ability to use spectral direction and not

magnitude as metric to measure similarity between spectra [29] [36]. As described

in Algorithm 3, a normal cluster (Cn
j ) and its corresponding stressed cluster (Cs

j ) for

a given CPI are taken and K best features are selected using the spectral feature

selection process described in Section 3.6. Then the SAM value is computed between

the mean spectral curves of the normal and stressed class for those K best features.
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If this SAM value is greater than tdist, then the stressed cluster (Cs
j ) in cluster pair

is manifesting noticeable stress behavior. This cluster pair is labeled stressed cluster

pair (SCP) and its index j is added to the Indicess list. This process is carried out

for all corresponding cluster pairs in stressed and unstressed classes.

A SCP is a cluster pair containing a cluster from normal class paired with its

corresponding cluster in stress class which noticeably manifests stress. There can be

more than one SCP for a given data set. If there are more than one SCP’s, the K

best features of the SCP with highest tdist value is considered the universal set of best

features and applied to the whole dataset for further analysis.

3.7.2 Similarity Computation and Histogram Generation

We were able to identify SCPs’. However, not all pixels in the stressed clusters

corresponding to SCPs’ show stressed behavior. There is a need to segregate stressed

pixels from normal pixels. For this, each SCP is considered individually and a mean

spectral curve of its normal cluster, i.e., a normal curve (SC
nj
mean) is generated, as

described in Algorithm 3. Spectral angles (SAM) are computed between this normal

curve and each spectral curve in the normal and stressed clusters, (Cn
j ) and (Cs

j )

and stored in dn and ds respectively. A statistical data binning approach [13] is used

to plot two histograms, hn and hs, for dn and ds respectively. To compare these

histograms on a same scale, we normalize the bin heights by approximating it to a

probability density function. This process is carried out for all SCPs’. At the end of

this process, a pair of histograms, hn and hs, are generated for each SCP. They help

with segregating stressed pixels from normal and labeling them accordingly.
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3.7.3 Stress Identification and Spectral Curves Labeling

The histogram pairs generated for each SCP create a means to visually identify pixel

groups in stressed classes which show unique behavior. For a given SCP, the his-

tograms are compared with each other to decide on a threshold of SAM (tSAM).

However, the binning size is unknown, which makes it difficult to decide on the tSAM .

The normal density curves plotted for dn and ds may not always fit the shape of his-

togram correctly. To estimate an unknown probability density function for dn and ds,

we go for kernel density estimation (KDE) [38] where a kernel function (gaussian, in

our case) is fitted to each data point and summed over all data points. This produces

a smooth density estimate curve for each of dn and ds. Now, when these two KDE

curves are plotted together,tSAM is selected as the point where the two curves diverge.

Each SCP may have a different tSAM value. For a given SCP, all pixels in its

stressed cluster whose SAM values are greater than tSAM are labeled as stressed

pixels (xs) and all other points in both normal and stressed cluster of that SCP are

labeled normal or unstressed (xn). This process is implemented for all SCPs’. The

xn and xs pixel sets pertaining to all SCP’s are grouped into Xn and Xs respectively

which correspond to all normal and stressed pixels. Also, all pixels pertaining to

clusters in both stressed and unstressed classes which are not part of SCP (non-SCP)

are labeled normal as well and added to Xn.

3.8 Stress Classification Modeling

Although tSAM helps in differentiating between normal and stressed spectral curves

in the stressed class, there may be quite a number of spectral curves even in the

normal class whose SAM values are greater than tSAM , as seen in Figure 4.9, which

requires us to build a classifier that can differentiate between these two classes. Also,
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Algorithm 3 DevelopClassifier
Input: Cs, Cn, Aopt, tdist
Output: Hyperspectral Imagery Stress Classifier(HSISC)

1: K = Number of features
2: q = |Cs| = |Cn|
3: for i = 1...K do
4: for j = 1...q do
5: if Distance(Cs

j , C
n
j ) > tdist then

6: Indicess = ∪ {j}
7: SC

nj
mean ← GenerateNormal(Cn

j , Indices
s)

8: for j in Indicess do
9: dn ← GenerateDistances(Cn

j , SC
nj
mean)

10: ds ← GenerateDistances(Cs
j , SC

nj
mean)

11: {hn, hs} ← GenerateSimilarityHistograms(dn, ds)
12: {xn, xs} ← GroundTruth(hs, hn)
13: Xn = ∪ xn
14: Xs = ∪ xs
15: Classifieri ← BuildClassifier(Xn, Xs)
16: if Accuracy(Classifieri) >= Aopt then
17: HISC ← Classifieri
18: return HISC

the classifier needs to be able to differentiate between spectral curves belonging to

SCP and non-SCP classes. To learn these complex patterns and underlying hidden

features, we use a supervised artificial neural network (ANN), also called a multi-layer

perceptron based classifier.

An ANN is a collection of artificial neurons (also called perceptrons) structured

with an input layer, hidden layer and an output layer. Each layer can have any number

of nodes and there can be multiple hidden layers. Each perceptron in the hidden layer

takes a weighted sum of all inputs from training data set, passes them through an

activation function and fires an output. Each perceptron in the output layer in turn

takes a weighted sum of outputs from each perceptron in the hidden layer, passes

them through an activation function and gives a final output. These output labels

are compared with their corresponding ground truth labels and an error is calculated.



27

Some widely used activation functions are Softmax, Sigmoid, Tanh and Rectifier

Linear Unit (ReLU) [28]. In this thesis, we use a Proximity Rectifier Linear Unit

(ReLU) as an activation function for perceptrons in the hidden layers and sigmoid in

the output layer. The PReLU activation function [31] [32] supposedly improves model

fitting with reduced risk of overfitting the model. The sigmoid activation function in

the output is widely used for estimating labels in a binary classification model.

The output error can be reduced by fine tuning the weight vectors in the net-

work. This is achieved using the back propagation algorithm [27] where the error is

propagated back into the network and used to tune the weights connecting output

layer to hidden layer, weights connecting sequential pairs of hidden layers (in case of

a multi-layer network) and weights connecting input layer to the hidden layer. This

back propagation mechanism is achieved using the gradient descent algorithm [27].

The process of fine tuning the weights is carried out iteratively until their values sta-

bilize. Each iteration is called an epoch. The number of epoch that a model needs to

be trained on is an important hyper parameter that needs to be defined while model

building. We use early-stopping criteria with a given patience factor to decide on an

optimal epoch number.

The classifier (Ci) is trained on two classes of spectral curves: Stressed (Xs) and

Unstressed (Xn). To estimate the accuracy of the prediction model and also make

sure that the model generalizes well on independent datasets, we perform K-fold cross-

validation while training [39]. At the end of training, we calculate certain evaluation

metrics like accuracy, precision and recall using the test dataset and compare it with

Aopt. If accuracy is less than Aopt, we increment the size of feature set (K) and

repeat the process. The qualifying classifier is named Hyperspectral Imagery Stress

Classifier (HISC).
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3.9 Stress Phenotype Computation

The HISC can perform point wise prediction of whether a given pixel (spectral curve)

belongs to stressed or unstressed class. For HSI of a given plant (Pij), the output of

HISC can be used to generate a stress map on the plant image with S points marked

as stressed and the remaining U marked unstressed. To measure the spatial extent of

stress, we propose a novel phenotype called Plant Stress Index (PSI) that is given by

the equation 3.7. It is the ratio of pixels marked stressed (S) and the total number

of pixels (S + U). The range of PSI is in between 0 and 1.

PSI =
S

S + U
(3.7)

For computing phenotypes of Pij, as referred to in Algorithm 4, we need to perform

plant segmentation, generate spectral curves S from segmented plant part Sij and

denoise the data, as shown in Figure 3.5. The denoised data N is now sent to HISC

where the K best features are selected and then passed on to the classifier part. The

output of classifier is used to generate a stress map and compute phenotypes.

Figure 3.5: Stress phenotype computation
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Algorithm 4 Stress Phenotype Computation Algorithm
Input: Pij
Output: Phenotypes

1: Sij ← Segment(Pij)
2: S ← GenerateSpectralCurves(Sij)
3: N ← Denoise(S)
4: StressMap← HISC(N)
5: Phenotypes← ComputePhenotypes(StressMap)
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Chapter 4

Implementation and Results

In this chapter, we discuss the results for the methodology described in chapter 3.

4.1 Dataset Description

The HSI dataset P used for evaluating our algorithm was of sorghum plant. The

experiment was conducted at Lemnatec Scanalyzer 3D high-throughput plant pheno-

typing (HTPP) facility in Nebraska Innovation Campus using a hyperspectral camera

that was able to capture spectral information for wavelength bands between 546 nm

and 1700 nm with a 4.7 nm wavelength interval (243 bands). The dataset comprised

of ten plants belonging to the same genotype and have been imaged for a span of

eight days. Of the ten plants, five were being grown under unstressed conditions and

the other four were subjected to drought stress conditions where drought was induced

on day one. The images were captured from the side view at an angle of 90 degrees.
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4.2 Preprocessing

4.2.1 Removal of Noisy Bands

Through visual inspection, the eight spectral bands from wavelengths 546nm to

583nm were found to be noisy. Samples of noisy band images are shown in Fig.4.1.,

with most parts of the image either completely dark or white. The gray-scale images

pertaining to these bands were removed.

Figure 4.1: Noisy bands

4.2.2 Plant Segmentation

In this study, we used spectral images of plants at λV IS = 678nm, as shown in

Fig.4.2 (a), and λNIR = 800nm, as shown in Fig.4.2 (b), to perform segmentation.

Each of them is multiplied by two to increase the intensity of their pixels as shown in

images Fig.4.2 (c and d). These brightened images are subtracted (Fig.4.2 (e)) and

then subjected to binarization (Fig.4.2 (f)) with a threshold of 0.25. This creates a

mask of the plant part. In some plants, there were bits and pieces of background
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Figure 4.2: NDVI based plant segmentation

left after binarization. To eliminate this kind of noise, parts in the image that were

disconnected from plant with a pixel count less than 500 were removed. The resultant

mask is then mapped onto all the images across the HSC, Pij, giving a segmented

HSC, Sij.

4.2.3 Spectral Curves Generation

For better manageability of data, spectral curves corresponding to all HSCs’ are

stored in a single set S. For each HSC, a pixel belonging to the plant part was

scanned along the spectral dimension and appended to a 2-D array SCij along with

its tag of attributes like pixel location, plant ID (i) and time stamp(j) for future

reference. After scanning all the pixels in a HSC, its corresponding 2-D array is

appended to S. The final S contained 1,632,478 spectral curves corresponding to all

plants for all treatments across all days, each with its own tag.
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Figure 4.3: Spectral curves at different locations on a plant

4.3 Denoising Spectral Information

To evenly reduce the effects of illumination and shadowing on HSI, like the one

shown in Figure 4.4, we perform SNV transformation on S. The mean (µ) and

standard deviation (σ) are computed for each of the spectral bands. These µ and σ

values must be used as parameters while preprocessing in Algorithm 4 for all future

transformations of HSI data.
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Figure 4.4: Illustration of uneven illumination effect

4.4 Grouping Spectral Classes

4.4.1 Determination of Optimal Number of Clusters

To determine the optimal κ, we employ the elbow method for dataset S. As shown

in Figure 4.5, there is a consistent decrease in SSEk values from κ = 2 to κ = 5 after

which the curve starts to flatten out. However, there is a probable elbow point even

at κ = 7. Considering the higher bend angle at 5, we go with κ = 5.

4.4.2 Clustering

We perform clustering individually on normal and stressed plants using κ-means algo-

rithm. For this, S is regrouped into SCn and SCs corresponding to normal and stress

classes respectively using Ps. The number of spectral curves in SCn corresponded to

866,575 and those in SCs corresponded to 765,903. To visualize the behavior of the

clusters on an abstract level, we plot the mean spectral curves graph for normal and

stress classes as shown in Figures 4.6 and 4.7. The proportion of points belonging to
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Figure 4.5: Elbow method for optimal cluster number determination

a specific cluster is shown in the legend of the graph next to the cluster number.

4.5 Spectral Feature Selection

To select theK spectral bands that offered best inter-class variability (between normal

and stress), we opt for F-value criterion. For this, we group corresponding clusters

into cluster pairs with the help of Figures 4.6 and 4.7 in a hierarchical manner and

assign an index called cluster pair index (CPI) to each pair as shown in Table 4.1. For

a given CPI, we select K best spectral bands. As we follow an incremental approach

in the number of spectral features used for analysis, we obtain an optimal K, Kopt at

30.
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Figure 4.6: Mean spectral curves of each cluster group in the normal class

Figure 4.7: Mean spectral curves of each cluster group in the stress class
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Table 4.1: Corresponding normal-stress cluster pairs

Cn
i Cn

i (%) Cs
i Cs

i (%) CPI

0 22 2 23 1
1 8 3 9 2
2 8 0 8 3
3 34 4 34 4
4 25 1 23 5

4.6 Ground Truth Generation

4.6.1 Stress Clusters Identification

To identify clusters that show stress behavior, we measure the spectral variability

between Cn
j and Cs

j for each CPI. Then, we compute the mean spectral curves of

Cn
j and Cs

j , as shown in Figure 4.8 (P = 50), and measure the spectral angle (SAM)

between them, as shown in Table 4.2. If this distance is greater than tdist, we label

the CPI as a SCP. For this experiment, the tdist was set at 2 based on which cluster

pair with CPI equal to 3 was labeled as SCP, as shown in Table 4.2.

4.6.2 Similarity Computation and Histogram Generation

To quantify the stress factor for each point, we measure the spectral angle between

that point and a normal curve, as shown in Fig.4.8. The spectral angles are com-

puted for all spectral curves in normal and stress cluster of a given SCP individually.

The spectral angles of normal cluster are stored in dn and stress cluster in ds. The

normalized histograms hn and hs are generated individually for dn and ds as shown

in Figs. 4.9 and 4.10.
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Figure 4.8: Spectral curves of a SCP for different percentile of normal and stress
clusters

Table 4.2: Distance between the cluster pairs

CPI Distance (SAM) Label

1 0.017 non-SCP
2 0.041 non-SCP
3 2.666 SCP
4 0.058 non-SCP
5 0.091 non-SCP

4.6.3 Stress Identification and Spectral Curves Labeling

The histogram hn has larger proportion of pixels closer to the normal curve (SAM

range between 0.15 and 2) and smaller proportion far away from normal (SAM range

between 2 and 3). However, histogram hs has smaller proportion of pixels closer to

normal and larger proportion far away. To compute a pin pointed value of threshold

tSAM , we plot the kernel density estimation curves for dn and ds. The point were

these two curves diverge, tSAM , is plotted at 2.1 as shown in Fig. 4.11. Based on
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Figure 4.9: Normalized probability density with histogram for the normal class

tSAM , the number of spectral curves labeled normal were 1,485,095 and those labeled

stressed were 147,383.

4.7 Stress Classification Modeling

For point-wise stress classification, ANN is employed. As shown in Figure 4.12, it is

designed using 2 hidden layers, each housing 15 perceptrons and trained on labeled

data from Section 4.6.3. The input data is divided into 60% training and 40 % testing.

For validation at each epoch, 20% of the training data is used. The classifier has been

trained for 30 epochs based on early stopping criteria [33]. To validate the network,

a plot of validation errors as shown in Fig. is used. To test the classifier, we compute

a confusion matrix as shown in Table 4.7 where the rows rows represent actual class

and columns represent predicted class. Further, we compute accuracy, sensitivity and
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Figure 4.10: Normalized probability density with histogram for the stress class

Figure 4.11: Kernel density estimate for spectral angles of SCP
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Table 4.3: Confusion matrix for classification results on the test data set

Label Normal Stress

Normal 582457 11564
Stress 9519 49452

Figure 4.12: Architecture of artificial neural network for the HISC

specificity metrics to evaluate the performance of the HISC. For this experiment, we

have set Aopt at an accuracy of 95%. For these parameters, optimal K, in reference

to Section 4.5, is found at K = 30. The accuracy for HISC was found to be 96.7 %

with a sensitivity of 98 % and specificity of 81 %.
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4.8 Stress Maps

To compute and visualize the stress maps, we consider the HSI of an age-matched

normal and a stressed plant from the validation set which are not used in the process of

stress classification modeling. They undergo preprocessing, spectral curve generation

and denoising using the same parameters used for training data in reference to 4. The

label obtained for each point is mapped to its corresponding location on the plant

image as shown in Figures 4.13 (a to h) and 4.14 (a to h) for each of the eight days.

The points labeled stressed are marked red and unstressed are marked green.

As we observe in Figure 4.14 (a to h), the spatial extent of stress is clearly visible

in the stressed plant from the initial days as compared to the normal plant (Figure

4.13 (a to h)) where the normalcy is consistent. However, even for the normal plant,

there are some pixels which are marked stressed, especially in the last day (Figure

4.13(h)). This can be mitigated by increasing the specificity of ANN from the current

81% (Section 4.7 through building a better classification model.(Table 4.7).

4.9 Phenotype Computation

The S and U values required for computing PSI is derived from the stress map. The

PSI values for the stressed plant increases overtime as shown in Figure 4.15 when

compared to a normal plant. The plot of means of the PSI values (Figure 4.15) shows

that there is a clear difference between normal and stressed plants.

4.10 Evaluation

The PSI values computed for normal and stressed plants (Section 4.9), shows that

HISC is able to clearly differentiate a stressed plant from early stages of stress induce-
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Figure 4.13: Stress maps of normal plant, Day 1 to Day 8

ment. It is able to quantify the stress level for a whole plant in terms of the spatial

extent of stress. Also, PSI may be considered as a viable phenotype which is able to

detect reasonably early differences in stressed plants. Looking at Figure 4.15, there

are fairly clear differences between two classes from day 3 though the early days of

stress (day 1 and day 2) appear to look like aberrations.

Having in-situ measurements of stress and ground truth would have lead to the

complete picture of stress manifestation. Nevertheless, this data driven approach

too shows promising results as it can be seen that normal plants in general have

consistently low PSI compared to stress plants.

From Figure 4.15, we observe that the PSI does not follow a uniform trend for
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Figure 4.14: Stress maps of stressed plant, Day 1 to Day 8

either for normal or stressed plants. This may be due to the fact that the HSI was

imaged only from the side view and it is difficult to capture all the plant pixels from

one view. Since stress is manifesting only in the leaves part and leaves twist, turn and

bend from day to day, the pixels that appear on a particular day may not reappear in

the consecutive days. So the pixels manifesting stress behavior for a given day may

not be imaged for other days thereby not giving a complete view of the spatial extent

of stress.



45

Figure 4.15: PSI values from Day 1 to Day 8
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Chapter 5

Summary and Future Work

Physiological phenotyping is important to understand the impact of stress on a plant’s

growth. In this thesis, we focused on understanding stress using HSI. We have devel-

oped a data-driven approach to characterize normal behavior of a spectral curve as

a cluster process and used it as a reference to generate ground truth. This ground

truth was used to build a classifier that can classify a given spectral curve as stressed

or unstressed.

Using the dataset derived from a HTPP system, results show that we can (a)

Identify spectral curves in stressed plants that manifest stress behavior. (b) Classify

a given spectral curve as stressed or unstressed. (c) Quantify stress level in a plant

by defining a stress phenotype.

This work has not considered some interesting dimensions. One of them is that the

ground truth is unknown. Perhaps some physical measurements that can locate stress

parts more accurately can be used to build the ground truth for stress. Imaging the

HSI of plants from multiple views and angles may help in computing better holistic

stress phenotypes. Also, we considered this a two class classification problem although

it may have had multiple classes (levels) of stress, which gives scope to multiclass

stress classification. We could extend this work to other plant species and analyze

the results. It would also be interesting to apply this methodology on plants which
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are in stress recovery stage.

Plotting the spectral curves at pixel level for high resolution HSI will help in

tracking the behavior of the plant at a finer spatial level. It may also help visualize the

transitions that a plant undergoes when subjected to stress. Our classification dataset

was imbalanced with the number of spectral curves marked unstressed outnumbering

those that are marked stress by ten times. Using larger datasets can help mitigate

this problem. Modeling this problem as an outlier detection problem rather than a

classification model may be an interesting approach.
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